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Abstract

Natural Language Processing (NLP) and machine learning technologies have trans-
formed many facets of life science research and healthcare in recent years. However,
the development of advanced Language Models (LMs) and NLP tools for life
sciences has largely been limited to English because of the scarcity of scientific pub-
lications in other languages. This language barrier presents significant difficulties
for international researchers and healthcare professionals, limiting their ability to
use the most recent NLP features in their native languages. The aim of this thesis
is to explore innovative methods for developing competitive life science LMs for
non-English languages, focusing on French, by exploiting recent progress in Machine
Translation (MT). The study was structured around two primary hypotheses:

1. The current state of MT enables the development of a LM trained entirely
on an automatically translated corpus, maintaining competitiveness with

State-of-the-Art (SOTA) models in the field.

2. Domain-Specific (DS) tokenization enhances the performance of Pre-trained
Language Models (PLMs) on specialized downstream tasks.

To support the first hypothesis, TransBERT, a French life science model, was
trained exclusively on an extensive collection of automatic translated MEDLINE
abstracts. Specifically, the advanced M2M-100 translation model was deployed to
translate more than 22M MEDLINE abstracts from English to French, creating
TransCorpus, the most extensive French life science corpus to date, encompass-
ing roughly 36GB of raw text. Subsequently, following the training of a BERT
architecture on a Masked Language Model (MLM) task utilizing this synthetic
corpus, TransBERT was evaluated against two SOTA PLMs through comprehensive
experiments. The first model, CamemBERT, is a French LM trained on a general
corpus, whereas the latter, DrBERT) is a life science focused LM developed using
a native French corpus. The performance of these models was assessed on various
life science NLP tasks employing an adaptation of DrBenchmark, the first French
biomedical benchmark for Natural Language Understanding (NLU). Even though
TransBERT was pre-trained solely on translated data, our results showed that
it achieved competitive or better performance compared to these leading models.
Statistical analyses validated the strong performance of TransBERT in two key
tasks of the field, classification and Named Entity Recognition (NER).

To evaluate the second hypothesis, the effect of DS tokenization on model
performance was analyzed by comparing TransBERT, which employs a DS tokenizer
trained on TransCorpus, with ¢TransBERT, an equivalent model architecture pre-
trained on the same corpus but using CamemBERT’s general domain tokenizer.
Using the same benchmark, our analysis shows that the model using the DS
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tokenizer repeatedly enhanced performance while getting statistical significance for
NER. These results highlight the necessity of tailoring the tokenizer to the specific
domain when developing specialized LMs.

Beyond just validating our core hypotheses, this research makes several key
contributions to the field of multilingual life science NLP. Firstly, we illustrate
a scalable method for swiftly developing competitive DS LMs for low-resource
languages by leveraging high-quality MT. This approach can potentially be applied
to other domains and language pairs. Secondly, we provide TransCorpus as a
valuable new resource for life science NLP research. Finally, our comprehensive
evaluation framework and statistical analysis methodology offer a rigorous way to
compare LMs performance that goes beyond simple metric comparisons.

This thesis introduces innovative strategies for bridging the linguistic gaps in
life science NLP by leveraging MT and DS pre-training. The success of TransBERT
demonstrates that it is feasible to develop highly effective DS LMs for non-English
languages, even in the absence of extensive native corpora. These insights have
significant implications for democratizing access to advanced NLP capabilities across
various languages and domains. Future research can build on this foundation to
further improve cross-lingual transfer learning and domain adaptation techniques,
ultimately aiming for truly multilingual biomedical Artificial Intelligence (AI)
systems that can benefit researchers and clinicians worldwide.



Résumé

Les technologies de Traitement du Langage Naturel (TLN) et d’apprentissage
automatique ont transformé de nombreux aspects de la recherche en sciences
de la vie et dans le domaine de la santé ces dernieres années. Cependant, le
développement de Modeles de Langage (ML) avancés et d’outils de TLN pour
les sciences de la vie a été largement limité a I'anglais en raison de la rareté des
publications scientifiques dans d’autres langues. Cette barriere linguistique présente
des difficultés importantes pour les chercheurs internationaux et les professionnels
dans le domaine de la santé, limitant leur capacité a utiliser les fonctionnalités
de TLN les plus récentes dans leur langue maternelle. L’objectif de cette these
est d’explorer des méthodes innovantes pour développer des MLs compétitifs en
sciences de la vie pour les langues non-anglaises, en se concentrant sur le francais.
Pour ce faire, cette these exploite les progres récents en Traduction Automatique
(TA). L’étude a été structurée autour de deux hypotheses principales :

1. L’état actuel de la TA permet le développement d’'un ML entrainé entierement
sur un corpus automatiquement traduit, tout en restant compétitif avec les
modeles de pointe dans le domaine.

2. L’entrainement d’un tokenizer spécifique au domaine (SD) améliore les per-
formances des Modeles de Langage Pré-entrainés (MLPs) sur des taches
spécialisées.

Pour soutenir la premiere hypothese, TransBERT, un modele frangais en sciences
de la vie, a été entrainé exclusivement sur une vaste collection de résumés MEDLINE
automatiquement traduits. Plus précisément, le modele de traduction avancé M2M-
100 a été déployé pour traduire plus de 22 millions de résumés MEDLINE de
I’anglais vers le francais, créant TransCorpus, le corpus francais en sciences de la
vie le plus grand a ce jour, englobant environ 36 Go de texte brut. Par la suite,
apres l'entrainement d'une architecture BERT sur une tache de Modele de Langage
Masqué (MLM) utilisant ce corpus synthétique, TransBERT a été comparé a deux
MLPs de pointe sur plusieurs taches. Le premier modele, CamemBERT, est un
PML francais, tandis que le second, DrBERT, est un PML développé a partir de
documents biomédicaux natifs francais. Les performances de ces modeles ont été
évaluées sur diverses taches de TLN en sciences de la vie en utilisant une adaptation
de DrBenchmark, le premier benchmark biomédical francais pour la Compréhension
du Langage Naturel (CLN). Bien que TransBERT ait été pré-entrainé uniquement
sur des données traduites, nos résultats ont montré qu’il atteignait des performances
compétitives ou meilleures par rapport aux modeles de pointe. Des tests statistiques
ont confirmé 'efficacité de TransBERT dans deux taches essentielles du domaine, a
savoir la classification et la reconnaissance des entités nommées (REN).
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Pour évaluer la seconde hypothese, 'effet de la tokenisation spécifique au do-
maine (SD) sur les performances du modele a été analysé en comparant TransBERT,
qui utilise un tokenizer SD entrainé sur TransCorpus, avec ¢TransBERT, un modele
d’architecture équivalente pré-entrainé sur le méme corpus, mais utilisant le tok-
enizer de domaine général de CamemBERT. En utilisant le méme benchmark, notre
analyse montre que TransBERT obtient des résultats compétitifs voir meilleurs
sur toutes les taches, et le confirme avec un test statistique en REN. Ces résultats
soulignent la nécessité d’adapter le tokenizer au domaine lors du développement de
MLs spécialisés.

Au-dela de la simple validation de nos hypotheses principales, cette recherche
apporte plusieurs contributions clé au domaine du TLN multilingue en sciences de
la vie. Premierement, nous illustrons une méthode évolutive pour développer rapi-
dement des MLs SD compétitifs pour les langues a faibles ressources en exploitant
la traduction automatique de haute qualité. Cette approche peut potentiellement
étre appliquée a d’autres domaines et paires de langues. Deuxiemement, nous
fournissons TransCorpus comme une nouvelle ressource précieuse francaise pour la
recherche en TLN en sciences de la vie. Enfin, notre cadre d’évaluation et notre
méthodologie d’analyse statistique offrent une fagon rigoureuse de comparer les
performances des PMLs qui va au-dela des simples comparaisons de métriques.

Cette these introduit des stratégies innovantes pour combler les lacunes linguis-
tiques dans le TLN des sciences de la vie en exploitant la TA et le pré-entrainement
SD. Le succes de TransBERT démontre qu’il est possible de développer des ML SD
hautement efficaces pour les langues non-anglaises, méme en ’absence de corpus
natifs. Ces résultats ont des implications significatives pour démocratiser ’acces aux
capacités avancées de TLN a travers diverses langues et domaines. Les recherches
a venir pourront s’appuyer sur cette fondation pour perfectionner encore les tech-
niques d’apprentissage par transfert inter-langues et d’adaptation aux différents
domaines, dans le but de développer des systémes d’'Intelligence Artificielle (IA)
biomédicaux véritablement multilingues, profitant ainsi aux chercheurs et cliniciens
a ’échelle mondiale.
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Chapter 1

Introduction

1.1 Motivation

Natural Language Processing (NLP) has become increasingly essential in the life
sciences domain, revolutionizing the manner in which researchers and healthcare
professionals manage substantial amounts of unstructured data. Indeed, consid-
ering that most biomedical data appear in unstructured formats, NLP tools are
indispensable to extract important insights from scientific literature, clinical notes,
and patient records. In practice, NLP methods are used to construct and update
biomedical knowledge graphs, enabling swift access to and integration of the latest
research outcomes from numerous clinical studies (Nicholson and Greene, 2020).
In the field of drug discovery, Al-driven Language Model (LM), including NLP
methods, are employed to recognize potential drug targets and expedite various
phases of pharmaceutical development (Khan et al., 2022). Furthermore, NLP
approaches are utilized to process free-text information in electronic health records,
aiding in the development of clinical decision support systems that can help health-
care providers make more informed decisions (Demner-Fushman et al., 2009). One
notable advancement is the development of architectures like BERT-based models,
which have shown near-human performance in categorizing adverse drug reaction
reports. This underscores their ability to rapidly process and classify safety infor-
mation in pharmacovigilance (Bergman et al., 2023). As the volume of biomedical
data continues to expand rapidly, NLP has become an essential tool for uncovering
the hidden value in unstructured information and driving innovation within the
life sciences sector.

However, the scarcity of life science data in languages other than English
significantly hinders the development of LMs in this domain. This linguistic gap
stems from the historical dominance of English in the scientific literature and
international research collaborations. Consequently, most high-quality scientific
papers, clinical trial records, and medical databases are written mostly in English.
This lack of linguistic diversity creates substantial barriers for non-English speaking
researchers and healthcare professionals, limiting their access to recent scientific
findings and potentially reducing progress in their regions. Furthermore, this
linguistic imbalance obstructs the creation of robust NLP tools crafted for life
sciences purposes. The lack of comprehensive datasets in multiple languages
presents a major hurdle in training models that can accurately interpret or generate
scientific content or annotation in various linguistic contexts. To tackle this problem,
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one approach could be to encourage scientific publishing in multiple languages,
construct annotated datasets in various languages, or even develop cross-lingual
transfer learning methods that utilize the extensive English-language data while
adapting to other languages.

The progress in the development of Domain-Specific (DS) LMs for life sciences
has been remarkable in recent years, especially with the introduction of models such
as BioBERT (Lee et al., 2019) and PubMedBERT (Gu et al., 2020) for English.
BioBERT, which was introduced in 2019, was trained on a vast amount of biomedical
literature and showed significant improvement over general-domain BERT models
in various biomedical text mining tasks. PubMedBERT), released in 2020, took the
advancements further by training exclusively on PubMed abstracts and full-text
articles from scratch, outperforming BioBERT’s performance on many biomedical
NLP benchmarks. In the French language domain, similar initiatives have recently
been launched to meet the demand for specialized biomedical language models.
CamemBERT-bio (Touchent et al., 2023), introduced in 2023, continually pre-trains
the original CamemBERT (Martin et al., 2020) model on a new public French
biomedical dataset, achieving notable improvements in various biomedical tasks.
Likewise, DrBERT (Labrak et al., 2023b), also published in 2023, was trained from
scratch solely on a life science corpus. These models employed different pre-training
strategies and were assessed on a range of biomedical tasks, showing comparable or
superior performance to existing French models. The arrival of CamemBERT-bio
and DrBERT signifies a major advancement in providing specialized LMs for French
biomedical text mining, reflecting the progress made in English LMs and meeting
the growing demand for robust NLP tools in French-speaking medical and research
communities. Nonetheless, it is important to note that although these French
models show progress, they leverage only a small fraction of the data compared
to their English counterparts, highlighting the sustained disparity in DS foreign
resources.

The domain of Machine Translation (MT) has recently experienced significant
advances with the introduction of advanced models such as M2M-100 in 2023 (Fan
et al., 2020). This progress is marked by a movement towards more comprehensive
and efficient multilingual translation frameworks. Before the advent of M2M-100,
many multilingual models heavily relied on English as a pivot language, often
resulting in diminished nuance and accuracy for translations between non-English
languages. Facebook AI’s development of M2M-100 represented a major leap
forward, as it became the first model capable of translating directly between
any two of 100 languages without utilizing English data. This methodology has
demonstrated up to about 8 points improvement over English-centric models on the
BLEU metric, a standard measure for MT quality. M2M-100 was trained with an
extensive dataset encompassing 2,200 language directions, which is 10 times larger
than previous top English-centric multilingual models, allowing it to maintain
meaning more effectively during translations between different language pairs. This
progress has facilitated more equitable and precise translations, particularly helping
speakers of underrepresented languages and enhancing communication across a
wider range of global communities.
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1.2 Model Scope

This thesis focuses only on Natural Language Understanding (NLU) models, which
are designed to transform sequences of words into vector representations. In
contrast, Natural Language Generation (NLG) models are crafted to produce words
derived from a given context. Although both models employ similar technologies to
some extent, the methods for training the encoding component differ considerably
from those used in the decoding one. For example, at training time, the generative
module focuses solely on the left-side context, since the model is meant to generate
a word conditionally on the past words. Conversely, the NLU module, that is,
the encoder, is not limited to attend only to the preceding text, as each word is
informed by its neighboring words to obtain a contextual representation for each
word. This awareness allows NLU models to perform sequence-level classification
and clustering, as well as word-level tasks such as Named Entity Recognition (NER)
and Part-Of-Speech (POS). Consequently, NLU may be regarded as analogous to
the process of reading, whereas NLG can be likened to the act of writing.

Understanding the difference between these two approaches for solving NLP
tasks is essential as both models are widely used in the literature. For example,
in classification tasks, a generative model needs a particular prompting such as
”Categorize the following text into one of these classes: positive, negative, or
neutral. Text:”, allowing it to predict a response in text form, one word at a
time. Because a generative model produces a text sequence, inadequate training
might lead to random or irrelevant output during a classification task. The current
State-of-the-Art (SOTA) generative models are typically Transformer-based, either
as encoder-decoder or decoder-only architectures, and they require more parameters
than NLU models to work properly, since they tend to be trained on a wide range
of tasks such as summarizing, text enhancement, and more.

Conversely, when using a NLU model for a classification task, the usual bi-
directional vector representation of the sequence is fed to a classifier to produce class
probabilities. This implies that NLU models demand custom-designed datasets
for training and deliver a one-step classification whose output is directly per-
tinent to the specific problem. Although this enables them to make sequence
classification predictions in a single pass, it also implies that NLU models are
incapable of performing generative tasks such as generative Question Answering
(QA)/summarization or text enhancement.

In summary, generative models act as versatile incremental solutions for broad
problems, while NLU models respond more specifically and efficiently to defined
problems, necessitating task-specific training data.

1.3 Hypothesis

The fast progress in MT and LMs has created new opportunities to mitigate
linguistic disparities in specialized fields such as life sciences. With MT systems
such as M2M-100 showing unmatched proficiency in translating directly between
various language pairs, an intriguing hypothesis arises.
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The current state of Machine Translation (MT) enables the
development of a Language Model (LM) trained entirely on an
automatically translated corpus, maintaining competitiveness

with State-of-the-Art (SOTA) models in the field.

This hypothesis questions the conventional dependence on native language
corpora for the development of DS LMs and proposes that high-quality M'T might
help close the gap in foreign scientific data. Should this be proven effective, this
method could reshape language boundaries by creating DS corpora for languages
that lack DS data, especially in areas like biomedicine, where the majority of
resources are in English. Such an advancement would not only make cutting-edge
NLP tools accessible across different languages, but could also facilitate scientific
research and the distribution of knowledge in regions where English is not the
primary language.

Although DS LMs have demonstrated significant advancements in various
specialized domains, research that specifically measures the effect of DS tokenization
on model performance in downstream tasks is surprisingly sparse. Most studies
have emphasized the advantages of pre-training on DS corpora or task-specific fine-
tuning, often neglecting or assuming the importance of tokenization. Tokenization,
which involves segmenting text into units meaningful for LMs, can drastically affect
a model’s ability to capture DS nuances and terminology. In specialized areas
such as biomedicine, characterized by complex technical jargon and abbreviations,
conventional tokenizers may not adequately reflect the vocabulary, potentially
impairing model performance. This gap in our knowledge prompts a critical
research question and supports our second hypothesis.

Domain-Specific (DS) tokenization enhances the performance
of Pre-trained Language Models (PLMs) on specialized down-
stream tasks.

This hypothesis indicates that customizing the tokenization process to align
with DS vocabulary and linguistic characteristics of a particular domain can yield
additional enhancements in model performance, surpassing the gains obtained from
DS LM pre-training alone.

1.4 Manuscript Overview

This thesis is structured to explore the use of automatic translation for DS knowledge
transfer. The subsequent paragraphs describe the arrangement and substance of
each chapter, giving an overview of the research discussed in this document. Each
chapter extends the groundwork established in the preceding one, leading to a
thorough evaluation of our suggested methods and their impact on the domain.
Chapter 2 offers an extensive summary of NLP tools and their increasing
influence in daily life. It investigates NLU tasks within various life sciences fields,
including biomedical, clinical, and chemical areas, and reviews evaluation techniques
such as the Biomedical Language Understanding & Reasoning Benchmark (BLURB)
benchmark. The chapter follows the development of LM from Word2Vec (W2V)
to Bidirectional Encoder Representations from Transformers (BERT), exploring
how computers interpret text and presenting essential concepts such as subword
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segmentation and Sequence-to-Sequence (Seq2Seq) models. It finishes with a review
of MT advancements and research utilizing translation for NLU system training.

Chapter 3 provides the methodological groundwork for the forthcoming chapters,
offering a modular way of seeing each section of the research methods. It elaborates
on the development of TransCorpus, an innovative fully translated life sciences
corpus, and describes the training procedures for TransTokenizer, TransBERT,
and cTransBERT. The chapter also presents datasets and tasks for fine-tuning,
establishing a basis for future experiments. While the main emphasis is on method-
ology, interim results are provided when possible to ensure each module delivers
the correct output for the subsequent one.

Chapter 4 extends the framework introduced in Chapter 3 to examine the
hypothesis that present MT quality facilitates the development of competitive LMs
trained on automatically translated corpora. It establishes a comprehensive report-
ing system incorporating statistical testing to evaluate the model’s performance on
datasets derived from DrBenchmark, a newly introduced life science benchmark
in French. The chapter ends by evaluating TransBERT’s competitiveness against
CamemBERT and DrBERT on genuine French downstream tasks using task-level
statistical analysis.

Chapter 5 expands the experimental setup to evaluate TransBERT versus
c¢TransBERT, with the goal of confirming the hypothesis that DS tokenization
improves Pre-trained Language Models (PLMs) performance on specific downstream
tasks. This chapter modifies the statistical testing approach for comparing two
models and emphasizes combined results per task to underscore the effects of
tokenization.

Chapter 6 offers a comprehensive summary of the research performed in this
thesis. It starts by revisiting the key hypotheses and methods used throughout the
investigation. Subsequently, it analyzes the limitations of the study, particularly
addressing the challenges in applying the findings to different domains and languages,
especially those with low resources. A notable segment is devoted to proposing
future research directions, such as exploring new languages, creating multilingual
models, and comparing the results with Large Language Models (LLMs). The
chapter wraps up by underscoring the thesis’s contributions to the NLP field in
life sciences and highlighting the potential influence of the developed resources on
future research in DS NLP, with a focus on languages with limited resources.






Chapter 2

Literature Review

In this literature review, Natural Language Processing tools will be presented
to highlight the increasing impact of this active research field on our daily lives.
Subsequently, a concise overview of Natural Language Understanding (NLU) tasks
in various life sciences sectors, i.e., biomedical, clinical, and chemical, will be
provided along with evaluation methods through benchmarks such as BLURB.
Prior to discussing the progress of Language Models from Word2Vec to BERT,
we will show how computers handle text from its raw form, its treatment through
subword segmentation algorithms, up to modeling approaches including Sequence-
to-Sequence, a Natural Language Generation model that combines two Recurrent
Neural Networks. Following the introduction of the Transformer model, we will
delve into the evolution of Machine Translation leading to the current State-of-
the-Art model. Finally, we will conclude with a discussion of relevant research
leveraging translation for NLU system training.

2.1 Natural Language Processing tools

People often use Natural Language Processing (NLP) tools unknowingly, as these
tools are designed to operate seamlessly, allowing users to focus on their tasks. For
instance, when writing a document such as this thesis, functions like spell checking,
LaTeX code suggestions, tables of contents/acronyms, and bibliography generation
are managed in the background, enabling the author to focus on the content.

These types of features have been around for a long time, improving over the
years. For example, in previous versions of Microsoft Word, spell-checking was a
basic task of matching words with a dictionary. Today, thanks to the progress of
Artificial Intelligence (Al), it is possible not only to correct grammar errors in a
sentence but also to enhance its overall quality. Even more impressive, generative
models like ChatGPT?!, a Large Language Model (LLM) combined with instruction
tuning tasks, are able to assist users with features such as scientific papers writing?,
webpages summarizing, or questions answering as if they were interacting with
someone with extensive encyclopedic knowledge.

Certain research areas within NLP have seen higher levels of activity compared
to others. In the 1980s, the focus of automatic translation was primarily on

'https://chat.openai.com/
’https://jenni.ai/
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translating sentences word-by-word (Brown et al., 1988), without considering the
context of neighboring words. More recently, after the emergence of Transformer
models (Vaswani et al., 2017), computers have become proficient at translating texts
effectively, even when they include technical terms or spelling errors. It is possible
to display a website in one’s preferred language, as web browsers automatically
translate any foreign language content. We have reached a point where generated
answers from Al models can be used as a source of inspiration, and with basic
knowledge coupled with some fact-checking, writing a trustworthy essay on a wide
range of topics seems possible.

2.1.1 Natural Language Understanding

Natural Language Understanding (NLU) is a subset of NLP, which aims to extract
meaning from a textual source. There exist a multitude of tasks, e.g., text classifi-
cation, Named Entity Recognition, Question Answering, each of which focuses on
different "understanding” facets of the language. NLU systems can be evaluated
on one or more tasks using one or more metrics. In the following subsections, the
most common tasks and metrics, as well as common training practices such as
cross-validation, will be defined.

2.1.1.1 Classification

Classification is employed to assign a predefined class to a text sequence. Sentiment
analysis is a well-known classification task where a model determines whether a
sequence conveys a positive or negative sentiment. As illustrated in Figure 2.1,
there are three classification types: binary, multi-class, which aims to differentiate
mutually exclusive categories, and multi-label, which can be viewed as multiple
independent binary classification tasks.

A softmax function is typically applied in the final layer of a Neural Network
(NN), following the projection of the last hidden layer to a vector with a dimension
C' (the number of classes). This function transforms the raw unnormalized scores,
known as logits, into exclusive probabilities for each class. The softmax function
computes the exponential of every element in an input vector and subsequently
normalizes these results by dividing them by the sum of all the exponentials. This
normalization step guarantees that the resulting output probabilities add up to 1,
making the function suitable for both binary and multi-class classification problems.
The formula for the softmax function is given by:

e
softmax(x;) = (2.1)

e

Usually, when softmax is defined at the end of a model, it is conjointly deployed
with the categorical cross-entropy loss defined in Equation 2.2, which is then the
objective function that needs to be optimized in order to fit the model.

C
Ecrossfentropy = - Z Yi lOg(@l) (22)
i=1

Where y; is the actual label and ¢ is the prediction of the system.
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Binary Multi-Class Multi-Label

The new smartphone has a great camera and long battery life.

Figure 2.1: Various Types of Text Classification In this illustration,

a text sample is categorized using a binary classifier to determine if it per-
tains to the technology topic or not, a multi-class classifier to identify if the
sequence is about smartwatches, laptops, tablets, or smartphones, and a multi-
label classifier to allocate the specific features the text discusses.

2.1.1.2 Named Entity Recognition & Part-Of-Speech Tagging

Named Entity Recognition (NER) and Part-Of-Speech (POS) Tagging are fun-
damentally word-level classification tasks within a text sequence, allowing the
identification of various categories. POS tagging usually involves associating each
word with a semantic category, whereas NER assigns a sequence of words to a class,
such as a company or city name.

To segment entities into word sequences, it is typical to extend POS tagging
using the Inside-Outside-Beginning (IOB) format. This format involves assigning
each word a tag that indicates whether it is the beginning, inside, or outside of a
given entity. Assigning a label to a word is challenging because of polysemy, as a
word can possess different meanings. For this reason, recent word representation
methods, such as self-attention (Section 2.3.2.3), consider the surrounding context.

Figure 2.2 demonstrates the use of a multi-class NER model to detect names,
locations, and dates. Notably, using the IOB format, to categorize 'Kat Graham’,
the model first had to classify 'Kat’ as B-Name and 'Graham’ as I-Name. Similar
to other classification tasks, NER can cover binary, multi-class, or multi-label
scenarios, with the ability to include nested classes, i.e., a class within a class.
It’s important to mention that IOB does not support nested classes, so custom
solutions are often developed for such scenarios.



10 CHAPTER 2. LITERATURE REVIEW

Named Entity Recognition

A |
was born in a) on |September 5, 1989.

(. J

Figure 2.2: Example of a NER Application This figure demonstrates
how a NER model assigns classes to individual words, resulting in a refined
text containing entities such as ’dates’, 'names’, and ’locations’.

2.1.1.3 Question Answering

In its extractive form, Question Answering (QA) involves locating answers to
questions within a sequence. Various methods can be used for solving Question
Answering (QA), with one of the most straightforward approaches being to view
the task as a multi-class NER problem. In this setup, the model is required to
categorize each word in the context sequence into one of the classes: [None, start,
end]. The segment between the predicted positions start and end is identified as
the answer to the question. As illustrated in Figure 2.3, the model takes a question
concatenated with a passage that potentially contains the answer, classifies the
start and end positions, if any, and then generates the correct answer accordingly.

2.1.1.4 Sementic Textual Similarity

Semantic Textual Similarity (STS) seeks to assess the degree of similarity between
two texts in terms of their meanings. Contrary to basic lexical similarity, which com-
pares the surface forms of words, STS targets the underlying semantics, presenting
a more difficult problem due to the intricacies of natural language. Addressing STS
generally involves performing a regression on a dataset containing sentence pairs
annotated for similarity. Figure 2.4 provides an example in which two sentences are
compared to one another, with the most similar receiving a high similarity score
and the other a low score.

2.1.1.5 Metrics: Precision, Recall, F-Score & More

In order to evaluate the performance of models in a given task, it is essential to
compute metrics that compare the model’s predictions with the actual values (gold
standard). Precision, Recall, and F;-Score are the standard metrics used in the
field and can be applied to the tasks discussed in the previous sections.
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Question Answering

Answer

—_—
P P
a) on [September| 5, [1989.
Questions Candidate

- J

When was Kat Graham born? Kat Graham was born in

Figure 2.3: Example of a QA Application A question is appended to

a candidate that may include the answer. The model then categorizes each
word to identify the beginning and end of the answer using the special classes
start and end, respectively. The answer is determined by selecting the words
between the start and end tokens.

A prediction is called positive (P) when a class/label is detected and negative
(N) otherwise. Once compared to the gold standard, an observation is called
true (T") when correctly classified and false (F') otherwise. Thus, for a given class,
TP and TN are, respectively, positive and negative instances that are classified
correctly, while F'P and F'N instances are misclassified observations that had been
classified by the model as positive and negative, respectively.

After comparing the predictions with the gold standard throughout the dataset,
the Precision can be computed in the following manner:

TP
P 1S1ON = —————— 2.
recision TP L PP (2.3)

Precision refers to the ratio of accurately predicted positive instances to all
instances that were predicted as positive, whereas Recall represents the ratio of
accurately predicted positive instances to all actual positive instances.

TP
R@CCL” = m—m (24)

There exist multiple ways of aggregating Precision and Recall together, the Fy-
Score, which is the harmonic mean of both Precision and Recall, is the commonest.

F =2 Precision - Recall

) 2.5
Precision + Recall (2:5)

It is important to note that all the metrics are computed using a dataset to
which the model has not been exposed, namely the test set. This enables the



12 CHAPTER 2. LITERATURE REVIEW

“. 1~ 0.0 ~1.0 | ' '4
This is not a pipe. [ I This is a pipe.
I Model
e \

E

My mobile phone is primarily used for browsing the internet and checking emails.

)

I use my mobile phone to check emails and browse the internet.

)

The battery life of my mobile phone is very short, and it often dies quickly.

E

Figure 2.4: Example of a Semantic Textual Similarity Application -
This figure illustrates two sets of sentences, each using the middle sentence as
a reference. The top sentences set is displayed in green and the bottom pair
of sentences in red. After processing through a regression model, each set of
sentences receives a score, with the green sentence obtaining a high similarity
score and the red sentence receiving a low one.

assessment of the model’s true ability to generalize. The F;-Score is commonly used
as a standard metric. Assigning all instances to a class will result in a Recall value
of one, but Precision is more difficult to improve; due to the inverse relationship
between Precision and Recall, an increase in one leads to a decrease in the other.
This is the reason why the Fi-Score is valuable, as it forces the enhancement of
both metrics simultaneously. In domains like Information Retrieval (IR), where
Recall is a fundamental metric, using a cut-off Qk to retrain only the k£ highest
scores returned is seen as a strategy to address Recall limitations.

When assessing models on multi-class or multi-label problems, it’s common
to use a metric for each category. However, various aggregation methods can be
used to provide a comprehensive understanding across all categories. The macro
aggregation averages the metric across all categories, ensuring each category is
given equal importance regardless of dataset balance. Conversely, weighted average
aggregation considers the category distribution, meaning categories appearing more
frequently will have their metrics proportionally represented as in the dataset. Micro
aggregations are another way to aggregate metrics, it can be done by summing all
TP, FP, and FN values to compute the overall metric. Equations 2.6, 2.7 and 2.8
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refer, respectively, to the weighted, micro and macro F-Scores.

~ Precision; - Recall;
Flweighted = Z wi : (2 ) <26)
i=1

' Precision; + Recall;

Where w; represents the weight of class i, Precision; and Recall; are the Precision
and Recall for class i.

_9 PreCiSionmicro : Recaumicro (27)

Precision, ;..o + Recall,,icro

lmicro

Where Precision, ;.o and Recall, ;... are the overall Precision and Recall calcu-
lated by aggregating the TP, FP, and FN across all classes.

1 — Precision; - Recall;
Flmac'ro = E ; (2 ) (2'8)

' Precision; + Recall;

The micro, macro, and weighted F;-Scores each comes with their own benefits
and drawbacks when assessing multi-class classification models. Fj,_, = aggregates
the contributions of all classes to derive the average metric, making it particularly
advantageous for imbalanced datasets. By giving equal weight to each sample,
it tends to favor the performance of majority classes, potentially masking the
poor performance of minority classes. In contrast, F} ., calculates the metric
separately for each class and then finds the unweighted mean, treating all classes
equally irrespective of their support. This makes it more sensitive to how well a
model performs on minority classes, but it might not be an accurate reflection of
overall accuracy in imbalanced datasets. Fi,, .., strikes a middle ground between
the two by computing the average F;-Score weighted by the support of each class.
This method accounts for class imbalance while providing insight into performance
across all classes.

The selection of these metrics depends on the specific needs of the classification
task and the importance of minority class performance in the given context. It
should be noted that F} .  is equivalent to the accuracy in multi-class classi-
fication with single-label samples. In situations where the dataset is perfectly
balanced, which means that each class contains the same number of instances,
all [} aggregations can be identical. In such balanced scenarios, the weights in

lueigntea r€ equal, which makes Fy . ..., equivalent to Fy, .. Consequently, the
overall Precision and Recall would also be equal to both aggregated Precision and
Recall, which means £, ., would be equal to Fi_,_ ..

An alternative approach to assessing the performance of a multi-label problem
is by considering the metric from an observation-wise perspective rather than
a category-wise one. In this context, Exact Match Ratio (EMR) identifies the
proportion of instances where the predicted labels match the actual labels exactly.
EMR is especially advantageous in contexts where every label must be correctly
predicted for the instance to be correct, such as in medical diagnostics or document
classification. This metric is highly sensitive, as it demands complete accuracy;
even a single incorrect label causes the entire instance to be classified as incorrect.
The formula for computing EMR is given by:
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1 n
n; (i = %) (2.9)

where n is the total number of instances, y; is the true set of labels for the
1-th instance, y; is the predicted set of labels for the i-th instance, and I is the
indicator function that returns 1 if y; equals g;, and 0 otherwise. Although EMR
offers a precise and straightforward measure of model performance, its rigidity
often necessitates the use of additional metrics to capture partial correctness and
deliver a more detailed assessment.

Root Mean Squared Error (RMSE) is a commonly used and straightforward
metric for assessing regression model performance for tasks such as STS. It quantifies
the average size of the errors between predicted and actual values, giving a clear
sense of the model’s effectiveness. RMSE is especially intuitive because it is
presented in the same units as the target variable, simplifying interpretation. A
lower RMSE value suggests a better model fit, indicating closer alignment between
predicted and actual values. Furthermore, RMSE places more emphasis on larger
errors by squaring the residuals, which helps to spotlight models that produce
significant prediction errors. This susceptibility to large errors makes RMSE an
excellent metric for evaluating model accuracy, particularly in scenarios where
substantial deviations are highly undesirable.

n

1
— — C41.)2
RMSE - g (yi — Ui) (2.10)

i=1

where y; are the actual values, 7; are the predicted values, and n is the number of
observations. Although RMSE is a straightforward metric for evaluating regression,
it diminishes with the error magnitude and does not scale with other task metrics
for aggregation. Conversely, the R? value, which ranges from 0 to 1, indicates the
proportion of variance in the dependent variable explained by the independent
variables. Higher R? values signify better model fits. Furthermore, R? is easy to
understand and can be combined with other metrics, such as the F} score, making
it a useful tool for model comparison and aggregation in performance evaluation.

2 1 Doy (Y = 0i)°
R =1 ST (=) (2.11)

2.1.1.6 Cross-Validation

Cross-validation is a method that evaluates the generalization performance of a
model on a dataset that is separated from the one used for training. It involves the
splitting of the dataset into various subsets (see Figure 2.5), training the model
on one part of the data, and subsequently evaluating it on the remaining unseen
data. In k-fold cross-validation, the training procedure is iterated k£ times, each
time on different splits. This guarantees the uniformity of the model performance
over various data partitions, thus mitigating overfitting and offering a more robust
assessment of the model’s metrics. Overfitting occurs when a model learns the
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noise in the sety qining instead of the true underlying patterns, leading to poor
generalization of new and unseen data. This technique facilitates model evaluation
and comparison on a larger dataset indirectly, but it is time-consuming because
the model needs to be trained for each fold.

Figure 2.5 shows the training process for a given fold after splitting the
dataset into k-folds. First, the setirqining is divided into two different subsets,
the subsetyyqgining that is used to fit the model with a gradient-based optimizer
and the setye, that is iteratively predicted by the model, e.g. each epoch or n
steps. Applying Hyperparameter Optimization (HPO), the model is fine-tuned
with the optimal hyperparameters identified for a specific fold /metric/setq., and
subsequently utilized to predict the set;cs;.

This process is repeated for each fold, allowing the accumulation of k predicted
splits. Subsequently, the model performance metrics are computed on all these
predictions, which encompass the whole dataset. This approach allows for a more
robust model assessment, particularly in situations where the size of the dataset is
limited.

(" Shuffle & split in & folds (" For each fold

Dataset Define set gey
lit. | — ldataset| 1s0 | |dataset| _p __ |dataset|

[ [splity] = % ][ |splita| = % ] |splity| = % [ SubSCtyraining [ . ]]
_ J
e : N

Definine k-folds where the set,.; is always different Model Training / Hyperparameters Optimization
fold,
Training Mctrictcvtf_llméz
new set o s
E"ldz Ye X ) ] (e.g. LR, BS, Epochs)

Predict setyes; with best model

foldy Modelpess Prediction(settest)
( ) )]

& /. J

)

( After predicting all the set,.,;, compute metrics )
Dataset Compute Metrics
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! Pred(setest) fold, i 0 Pred(settest) folds E ! Pred(setiest) fold;, i _1 [Prc(:isi,on] [ Recall ] [ F}-Score ] [ RMSE ]
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Figure 2.5: Cross-Validation Workflow - First, the dataset is divided
into k equally sized segments, and each fold involves assigning the set;cs; to

a different split each time. Subsequently, in each fold, a model is iteratively
trained and assessed using a predefined subset; qining and a setqe,. Based on
a predetermined metric, different sets of hyperparameters are tested, and the
model that achieves the highest score is employed to predict the current fold’s
settest- Finally, once all folds have been processed, metrics are calculated for
the entire dataset which has been covered by each fold’s setyest.

2.1.1.7 Hyperparameters Optimization

Before performing tasks such as classification, NER, or QA, models need to undergo
a training phase to align with the data, usually using gradient-based optimizers.
The field of optimization covers numerous methods that will not be discussed in
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this thesis. The Adam optimizer (Kingma and Ba, 2017) will be the go-to optimizer
as it is commonly used in various NLP applications, including the fine-tuning of
Language Model (LM), a topic that is covered in Section 2.4.2.3.

During the training phase, the model weights are updated, after defining a loss
function, an optimizer, and a set of hyperparameters which may include batch size
(the amount of data used per gradient update), the number of epochs (how many
times the training data is presented to the model), the learning rate and more.
Optimizing these hyperparameters greatly impacts model performance, hence it is
recommended to employ HPO.

Grid search is arguably the most straightforward HPO method because it
requires assessing each possible combination of hyperparameters within a predefined
range and granularity. However, this method can quickly become impractical and
potentially counterproductive, especially when early trials show a decrease in
performance upon tuning a particular hyperparameter. For instance, if we choose
to experiment with batch sizes of [16, 32,64, 128], noting that performance is high
at 16 but drops with 32 and 64, it would seem inefficient to test a batch size of 128
every time we explore new hyperparameter settings.

When looking at more sophisticated HPO methods, Sequential Model-Based
Optimization (SMBO) iteratively builds models to estimate the performance of
hyperparameters using past measurements and then selects new hyperparameters
to evaluate based on these models. Different models can then be trained with
varying sets of hyperparameters, and the decision to continue training or not can
be based on a metric from the sety.,, which comprises data not used in model
training. This is exactly the kind of HPO method that can be used in conjunction
with cross-validation as illustrated in Figure 2.5.

2.1.1.8 Statistical Significance

After training all models, a direct comparison of their performances does not
definitively indicate the best model. Instead, statistical tests must be conducted
to determine if there are meaningful differences between the models. The level
at which these statistical tests are conducted is crucial; they can either compare
prediction differences between models to discern if the differences are random
or analyze various metrics to see if they are statistically similar or differ with
statistical significance. In the latter situation, the choice of the test depends on the
distribution of the metrics and the number of models being compared. Table 2.1
shows the appropriate tests for typical scenarios.

N \rodels ‘ Parametric Tests Non-parametric Tests

=2 t-test Wilcoxon
>2 ANOVA — Tukey Friedman — Nemenyi

Table 2.1: Statistical Tests for Comparing Models Metrics - This table displays
the type of test based on the number of models being compared and whether the data
adheres to a specific distribution when dealing with more than two models, a two-folds
conditional test is usually performed to get each 1-vs-1 comparisons.

The primary consideration when choosing a test is the number of models being
compared. Performing multiple pairwise tests instead of a single test for more
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than two groups increases the likelihood of a Type I error, which is the incorrect
rejection of the hypothesis that the models are identical (Hp). Tests intended to
compare more than two groups account for variability both within and between
groups. If the overall result suggests that at least one group significantly differs
from others, a follow-up test can provide detailed pairwise comparisons, adjusted
for Type I error.

On a different note, parametric tests usually offer higher statistical power than
non-parametric tests when their assumptions are met, as they more efficiently detect
real effects or differences by using more detailed data information, such as actual
values instead of ranks. However, ensuring that data meets specific assumptions,
such as normality and homoskedasticity for Analysis Of Variance (ANOVA), is
critical before conducting a parametric test. In practice, these assumptions are
often unmet in model metrics, leading to the use of non-parametric tests in machine
learning model comparisons (Demsar, 2006). Thus, when evaluating multiple
models simultaneously, it is common to apply a Friedman test (Friedman, 1937)
followed by a Nemenyi test. Obtaining statistical significance is difficult with a
small dataset; therefore, it is crucial to test models on various datasets for improved
comparison.

When evaluating the performance of various models, it is essential for the metric
distributions to be independent. Although this approach is widely used in the
field, running the same experiment repeatedly on the same dataset is not viable for
comparing model metrics. The abstraction level is what provides meaning to the
testing; in fact, for a given dataset, one can merely demonstrate that models behave
differently and, at most, identify a model as superior for that specific dataset. To
claim that a model excels at a particular task, such as classification, it should be
evaluated on multiple datasets to assess differences in metrics.

To assess variations in model predictions, the McNemar test is frequently
utilized for binary tasks. Despite being essentially a pairwise test, it is often
employed to compare multiple groups, combined with a Bonferroni (Dunn, 1961)
correction to handle the numerous pairwise comparisons required (Dietterich, 1998).
Although this adjustment is often deemed overly conservative, it is widely used for
its simplicity.

2.1.2 General Language Understanding Evaluation: a Bench-
mark for Natural Language Understanding

Typical NLP services often consist of sequences of tasks that may include document
retrieval /classification and re-ranking, NER, Machine Translation (MT), QA, and
Relation Extraction (RE). Researchers are continuously working to enhance the
State-of-the-Art (SOTA) techniques for each NLP task by experimenting with
various datasets in pursuit of improved outcomes.

An example of a QA dataset is the famous Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) that contains more than 100 thousands
(k) questions related to a set of Wikipedia articles where the answer to each question
can be found. Its published leaderboard can be found online® where the current
best model gets better results than their evaluated human performance.

3https://rajpurkar.github.io/SQuAD-explorer/
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Following the emergence of LM publications, it became evident that assessing
the performance of a NLU model required the grouping of various downstream
tasks to create a metric for global comparisons. (Wang et al., 2018) introduced
the General Language Understanding Evaluation (GLUE) benchmark to facilitate
such comparisons. GLUE comprises nine tasks sourced from diverse datasets with
varying sizes, scopes, and complexities. The public leaderboard, including its
upgraded version SuperGLUE that features more demanding tasks, is available
online*.

The datasets used for these benchmarks are commonly referred to as general-
domain or non-Domain-Specific datasets since they are not specific to any particular
field and do not require Domain-Specific (DS) knowledge to achieve optimal perfor-
mance. The following section will introduce key concepts essential to understanding
the application of NLP in the life sciences domain.

2.2 Natural Language Processing in Life Sciences

In the field of bioinformatics, maintaining and organizing scientific literature
is crucial to support researchers in navigating through a vast and constantly
changing collection of papers. Therefore, specialized NLP tools play a vital role in
handling the influx of new publications. For instance, the UniProt Knowledgebase
(UniProtKB) (Consortium, 2022) serves as a protein database where certain entries
are annotated by automated systems. UPCLASS (Teodoro et al., 2020) is one of
them. It is a classifier that assigns categories such as function, interaction, and
expression to a publication related to a specific protein. These types of models
enable scientists to manage the growing volume of research data and concentrate
on extracting the pertinent information they seek about a particular protein.

Another illustration of a tool based on a classification task can be found in
(Mottin et al., 2023), which is developed to facilitate the automated categorization
of the four Response Evaluation Criteria in Solid Tumors (RECIST) scales using
radiology reports. It also investigates the impact of language variations and insti-
tutional characteristics of Swiss teaching hospitals on the accuracy of classification
in French and German languages.

Throughout the COVID-19 pandemic, there was an unprecedented surge in
the volume of digital data from various fields, resulting in over 140k papers being
produced in just a few weeks for the COVID-19 Open Research Dataset (CORD-19)
(Wang et al., 2020). This rapid increase made it challenging for medical professionals
and epidemiologists to expand the epidemiological curation process (Chen et al.,
2020). The COVID-19 Open Access Project (COAP) is a living evidence of COVID-
19 (Project, 2020), now leveraging LM to perform reference indexing and assist
with epidemiological curation and review. These automated categorizations enable
curators to stay abreast of the escalating volume of COVID-19-related publications
(Knafou et al., 2023).

There are numerous competitions available in the field of life sciences and our
research group has participated in several of them involving NER. An example is the
task proposed at the Workshop on Noisy User-generated Text (W-NUT) 2020 event,
which focuses on Wet Lab protocols, referring to chemistry or biology experiments

‘https://gluebenchmark.com/
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described in natural language. The objective of addressing this challenge is to
streamline the automation of experimental procedures using robots. The highest F
score in the competition is achieved using a combination of models (Knafou et al.,
2020). This approach is typically more robust compared to a standalone model
(Naderi et al., 2021). Two additional instances of competitive NER tasks were
(1) the third competition of DEfi Fouille de Textes (DEFT) 2020, which aimed to
recognize particular details in 12 categories within a set of clinical cases written in
French (Copara et al., 2020a) and (2) the first task of Cheminformatics Elsevier
Melbourne University (ChEMU) 2020, which concentrated on the identification and
categorization of chemical compounds according to their functions in a chemical
reaction (Copara et al., 2020b).

Every year, the renowned Text REtrieval Conference (TREC) organizes various
tracks where participants can showcase their methods and assess their performance
against others. In the realm of bioinformatics, a range of tracks have been available
from 2003 through the most recent campaign in 2023. These include TREC
Genomics (2003-2007), which targeted genomics researchers in search of pertinent
biomedical literature; TREC Medical Records (2011-2012), which focused on
retrieving patient cohorts from Electronic Health Records (EHRs); Clinical Decision
Support (2014-2016), which catered to clinicians seeking evidence-based literature
to aid in diagnosis, treatment, and testing decisions; Precision Medicine (2017-2020),
which addressed oncologists in search of evidence-based treatment literature and
clinical trials; Clinical Trials (2021-2023), an ongoing track that aims to match
patients with suitable clinical trials; new tasks are still being introduced in the
campaign of this year.

During the pandemic, TREC-COVID (Voorhees et al., 2020), a IR track was
introduced to create a test dataset for pandemics by carrying out several rounds
using CORD-19 as the document collection and a series of biomedical questions as
the topics. Unlike traditional TREC tracks, this specific task involved condensed
rounds where systems were allowed to incorporate relevant feedback from previous
rounds. In order to achieve optimal performance measures, different teams have
developed a two-step process involving a conventional IR system for document
retrieval, followed by a LM for re-ranking (Roberts et al., 2021; Teodoro et al.,
2021).

During the eleventh edition (Nentidis et al., 2023) of the BioASQ challenge, held
within the framework of Conference and Labs of the Evaluation Forum (CLEF)
2023, two biomedical QA tasks were featured. The first task consisted of two stages.
In phase A, participants were required to identify and submit relevant content from
specified sources, specifically PubMed/MEDLINE abstracts and extracted snippets.
During phase B, the participants’ systems were required to give accurate responses
in the form of entity names or short sentences, along with optimal answers presented
as natural language summaries of the information requested. The second task,
named Synergy, seeks to enhance collaboration between automated QA systems
and biomedical experts. These systems offer pertinent information and responses
to experts who have raised unresolved queries. The experts evaluate these answers
and share their feedback with the systems. Subsequently, the systems use this
feedback to offer more relevant information, incorporating recent data that may
have become accessible in the meantime, and to provide enhanced responses to the
experts. In this campaign, the optimal strategy for the first task (Almeida et al.,



20 CHAPTER 2. LITERATURE REVIEW

2023) entails a two-phase retrieval method to address phase A, using the Anserini
BM25 (Yang et al., 2017) as the primary stage, followed by the implementation of a
re-ranking model based on a LM. In phase B, their strategy includes incorporating
the article from phase A into a LM model tuned on instruction e.g., Large Language
Model Meta Al (LLaMA) (Touvron et al., 2023). This results in generating answers
conditioned on the articles collected in phase A.

2.2.1 Biomedical Language Understanding & Reasoning
Benchmark

In the last section, we briefly discussed the importance of having a NLU bench-
mark by introducing GLUE. In the field of biomedicine, several models, such as
BioBERT (Lee et al., 2019), have shown how a Pre-trained Language Model (PLM)
trained on a DS corpus can outperform a generic model on a DS downstream
task. In (Gu et al., 2021), the researchers evaluated their model using Biomedical
Language Understanding & Reasoning Benchmark (BLURB), a benchmark they
introduced along with a PLM trained from scratch on a biomedical corpus they
call PubMedBERT.

BLURB is designed to evaluate the effectiveness of NLU models within the
biomedical domain. Inspired by Biomedical Language Understanding Evaluation
(BLUE) (Peng et al., 2019), it enhances the existing benchmark by addressing
certain limitations, incorporating a QA component, and increasing the proportion
of biomedical/clinical datasets. The BLURB framework consists of five NER tasks,
a module for extracting evidence-based medical information, three RE tasks, an
STS, a document classification task, and two QA tasks. The leaderboard for
BLURB is publicly accessible online®.

2.3 Introduction to Modern Natural Language
Processing Approaches

This section introduces some model architectures by covering the process from
the input to the prediction, as understanding these basics is crucial for comparing
models in the subsequent sections. First, text encoding will be covered from the
simplest whitespace separation method to the subword segmentation algorithms
that are currently deployed in the latest models. Next, the transformer architecture,
on which most current SOTA models are built, will be introduced by following
the development of Recurrent Neural Networks (RNNs). This section seeks to
investigate the methods for comprehending models such as BERT, which will be
discussed in Section 2.4.2; along with machine translation models like Sequence-to-
Sequence (Seq2Seq) (Sutskever et al., 2014) or the more recent M2M-100 introduced
in Section 2.5.4.

2.3.1 Raw Text Tokenization

Data analysis typically employs models that require a vector or matrix as an input.
Consequently, when working with unprocessed text, it is necessary to perform a

Shttp://aka.ms/BLURB
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data transformation before proceeding to the data analysis stage. These preliminary
procedures generally seek to represent the input with minimal interference and
substitute it with numerical values. The process of transforming raw text into its
final form may include several operations such as converting to lowercase, removing
stop-words, stemming, and spell-checking. In this context, our focus will be on
tokenization, the process of segmenting sentences into tokens, which typically serves
as the final preparatory step before supplying data to a model.

2.3.1.1 Whitespace Separation

The conventional approach to segmenting text involves using spaces as a delimiter
for words. When a corpus is segmented on the basis of these spaces, it is converted
into a collection of individual words. Given the potentially high number of unique
words in a corpus, it is common to establish a threshold for the vocabulary size and
preserve the most frequently occurring words in the original corpus. Subsequently, a
word dictionary is generated to associate each word with a distinct identifier ranging
from 1 to the specified vocabulary size. A fundamental method for representing a
textual sequence in vector format is to initialize a vector of the vocabulary size
with 0’s and then add 1’s to the indices corresponding to the words present in the
sequence.

Figure 2.6 illustrates this kind of representation with a preset dictionary size of
10 words. This example shows a few particularities of such approaches. First, rare
words do not appear in the dictionary and get ignored in the vector representation,
for instance, "superduper” and ”encoded” are not in the initial dictionary and end
up being discarded. Misspelled words suffer from the same effect and are not taken
into account, even if their correct version is in the dictionary. There is an obvious
trade-off between a massive vocabulary size that creates large sparse vectors and
a small vocabulary size that tends to ignore words that give sense to a sequence.
Besides these flaws, this is by far the fastest way to represent text. Combined with
Term Frequency-Inverse Document Frequency (TF-IDF) or Word2Vec (W2V), it
can sometimes be the best speed/performance trade-off.

2.3.1.2 Subword segmentation algorithm

Using the whitespace separation method implies having a large vocabulary size
to compensate for Out-of-Vocabulary (OOV) issues, that is, words that will be
ignored from the model dictionary. Subword segmentation algorithms allow us to
represent all sequences possible by encoding a sequence with only parts of words.

Byte Pair Encoding (BPE) (Gage, 1994) is a data compression algorithm that
processes a complete sequence by identifying the most common pair of characters
and substituting it for an unused character. The algorithm is trained by repeating
this process until the vocabulary reaches a specific predetermined size. The initial
vocabulary includes all the individual characters present in the text. Initially used
as a tokenizer in (Sennrich et al., 2016), BPE helped with the handling of OOV
terms, which arise from infrequent or incorrectly spelled words.

In contrast to the approach of BPE which repeatedly selects the most common
pair of characters to build its vocabulary, the Unigram Language Model (Kudo,
2018) relies on the probability of occurrence to determine the vocabulary from a
given corpus. By treating each subword as independent, this technique enables the
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Figure 2.6: Count-Based Vector Representation - Illustration of the
process from the sequence to the count-based vector representation based on
preset dictionary

optimal segmentation of a sentence based on likelihood. Furthermore, by storing the
probability for each subword, this strategy supports subword sampling, a technique
introduced in the aforementioned paper.

SentencePiece® (Kudo and Richardson, 2018) incorporates both methods within
a single package, enhancing speed while operating at sentence level. This is
particularly important in languages where words are not explicitly separated
by spaces. Previously, subword segmentation was performed based on words to
construct their vocabulary. However, SentencePiece does not depend on whitespace
separation or treat words as separate units; instead, it views whitespaces as ordinary
characters.

Figure 2.7 demonstrates the iterative process through which the BPE model
constructs its vocabulary by identifying the pair of characters that occurs the most
frequently. Initially, at iteration 0, the vocabulary comprises all the individual
characters in the training sequence. Subsequently, at iteration 1, the pair of
characters [’e’, 'n’] is identified as the most common, leading to the inclusion of
the subword ’en’ in the vocabulary. This process continues iteratively, with the
model replacing the pair of most frequent tokens at each step. By iteration 4,
the model identifies ['en’, c’] as the predominant pair, resulting in the emergence
of tokens consisting of three characters. After 30 iterations, the advantages of
subword segmentation become apparent. For instance, the word ’superduper’ is
segmented into ['__s’, 'uper’, ’d’, 'uper’], enabling the retention of meaningful word
components even in the case of misspellings. By iteration 44, all words in the
sequence are included in the dictionary, facilitating word-by-word tokenization. It
is important to highlight that even at iteration 0, the model could already encode

the entire sequence using individual characters.

Shttps://github.com/google/sentencepiece
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Figure 2.7: BPE Iterative Process - Evolution of both the vocabulary and
encoded sequence using Byte Pair Encoding

2.3.2 The Fundamentals of Transformer

This section will introduce the Transformer model (Vaswani et al., 2017), which
will facilitate the discussion of SOTA models in LM and MT in Sections 2.4 and
2.5, respectively, including BERT and other Transformer-based models.

2.3.2.1 Recurrent Neural Network

Prior to the introduction of attention mechanisms, which is a fundamental concept
in Transformers, SOTA performances were achieved primarily using RNNs. In all
Natural Language Generation (NLG) tasks, such as translating or summarizing,
recent models are composed of an encoder that reads and encodes the input sentence,
serving as a NLU module, and a decoder that predicts translated sentences one
word at a time.

RNNs exhibit recurrence because the computation of each word vector depends
on the hidden state of the previous word, as depicted in Figure 2.8. Although RNNs
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Figure 2.8: Folded and Unfolded RNN Diagram - Illustration of the
model’s recurrence, h;—; is always required to compute h;.

were leading the translation leaderboards, they tend to struggle with long sentences
because the decoder lacks awareness of the part of the sentence being translated
(Cho et al., 2014). To address this issue, some strategies involve presenting the input
sentence in reverse order, leading to better performance (Sutskever et al., 2014).
The assumption is that giving the sentence backward simplifies the optimization
problem by introducing many short-term dependencies. Fundamentally, when
providing a sentence to the encoder, the first word to be translated is typically
placed at the start of the sentence, necessitating a reliance on long-term memory.

The process is better illustrated in Figure 2.9 that shows an encoder-decoder
with an attention mechanism. Without the attention mechanism, when translating
the final words of a long sentence, the decoder, which should translate the first
words at the start, will be provided with (1) the encoder latent representation,
which has flaws due to the long-term dependencies, and (2), words predicted in
earlier iterations, which tend to be wrong as they were predicted using a flawed
latent representation. In the scenario of giving as input a backward sentence, the
decoder will be provided with (1) the encoder latent representation with short-term
dependencies, as last words would be the first to be predicted, and (2) when
predicting the last words, words predicted in earlier iterations, specifically, o; up to
01 as illustrated in Figure 2.9.

RNNs commonly employ cells to compute h; and oy, representing the hidden
and current states of the cell, respectively. These cells function as components with
matrix multiplication and activation functions designed to mitigate the problem
of vanishing gradient encountered by conventional RNNs. The most popular cell
types are Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU),
both of which receive the current word embedding (i.e., word vector representation)
and the previous cell’s hidden state as inputs. Figure 2.8 illustrates how a RNN
cell uses x; (the current word embedding) and h,_; (the previous hidden state)
to compute h; (the hidden state at time ¢) and o; (the current cell state), which
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can be forwarded to a classifier or the subsequent layer. In the original Seq2Seq
architecture introduced in (Sutskever et al., 2014), the final hidden state h;,, is
transferred to a decoder, a RNN responsible for sequentially generating words. For
each word prediction, the decoder incorporates the previously predicted words until
it predicts a token <STOP>. Similarly, the decoder starts with a token <GO> as the
initial input word.

2.3.2.2 Attention Mechanism

Enhanced performance on long sentences is achieved by incorporating attention
mechanisms into Seq2Seq models (Bahdanau et al., 2014). The fundamental concept
involves providing the decoder with a weighted sum of all the hidden states from
the encoder, emphasizing the words relevant to the model’s current prediction.
Specifically, a probability distribution of the source words is computed for each
predicted word, and a combination of this distribution and the source word states
is fed to the decoder. Figure 2.9 illustrates how attention allows signals to take
shortcuts, thus avoiding long-term dependencies that may arise when translating
the first words into long sentences.

During the decoding process, such as in translation or summarization tasks,
when the model is predicting a word in the middle of a sequence, it will assign
higher importance to the words linked to that same word in the source sequence
compared to others (see Figure 2.9). This enables the model to focus on the most
relevant words. In the context of translation, prior to the introduction of the
attention mechanism, the decoder would consider the final state of the word as
the overall representation of the sequence, which was inadequate and led to loss
of information, particularly with lengthy sequences. As illustrated in Figure 2.9,
the model remains similar to a standard Seq2Seq model; however, the decoder now
receives a weighted combination of representations of all words rather than relying
solely on the last hidden state hg,,, in this scenario, thus addressing the challenges
posed by lengthy sentences.

2.3.2.3 Self-Attention

The introduction of self-attention (Lin et al., 2017; Paulus et al., 2017; Parikh
et al., 2016; Cheng et al., 2016) expands the application of attention mechanisms
to models that do not have decoders. Now, large documents can be classified using
RNNs combined with self-attention without encountering the problem of vanishing
signals. In (Cheng et al., 2016), the concept is referred to as ’intra-attention’ as
the main idea is to compute a word’s representation using other words’ hidden
states. In their version based on a LSTM model, each word is allowed to attend to
its preceding words.

There is no standard attention or self-attention, as various publications simul-
taneously introduce their own variations. The one version that is now considered
as a standard is depicted in figure 2.10 which can be viewed as a soft averaging
lookup as it consists of comparing a query vector (¢) to a set of key vectors (k)
and return a weighted average of each key’s values vectors (v).

In other words, each token has a set of ¢q/k/v vectors and in order to perform
attention on a given word, one needs to compute a similarity score between the
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Figure 2.9: Attention Mechanism Diagram - In this representation of
an encoder-decoder system, we can see that without the attention, the model
will predict the " word relying solely on a fixed source representation. At-
tention allows to assemble a context vector ¢; at each prediction step allowing
the model to focus on the source sentence part that matters the most when
predicting the ¢

word.

word’s query and all the sequence’s key vectors and scale it with a softmax function
(see Equation 2.1):

o — _caplalk;)
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Once all the a are computed for a given token, the attention output will simply
be equal to the weighted sum of the key’s value vectors:

0; = Z QU5 (213)
J

(2.12)

Figure 2.10 shows an intuitive way of picturing self-attention, first, ¢; is compared
to other k vectors, resulting in different shade of a according to the similarity of g
and k, then o; is calculated as the sum of the v vectors weighted by a’s intensity.
Although this way of computing word representation is parallelizable, it doesn’t
take word order into account.

2.3.2.4 Transformers

Shortly after the introduction of models that incorporate self-attention, the idea
of getting rid of the recurrent component of the model was investigated in the
Transformer architecture (Vaswani et al., 2017). Transformer is a MT model
consisting of an encoder that receives the source sequence and a decoder that
predicts the target sequence word-by-word. Similar to the Seq2Seq framework,
the decoder in the Transformer takes its own previous predictions as input each
time a word is being predicted. Through the use of self-attention, the model can
concurrently compute contextual word representations for all input sequences. In
order to solve the order problem discussed in Section 2.3.2.3, a position embedding
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Figure 2.10: Self-Attention Diagram - Self-Attention computes all the «
as a similarity score between a token query and all the sequence’s key vectors.
Finally, a sum of the values vectors (v) is computed using the o’s intensities.

vector is added to the word representation before going through the self-attention
layer. Trained on 8 Graphics Processing Units (GPUs) for approximately 8 hours
(64 GPU hours) for the base configuration, the model surpasses all prior models or
ensembles; while requiring only a fraction of computational resources.

Such a high-performance level is achieved by stacking up multiple attention
blocks as illustrated in Figure 2.11. Each self-attention component is known as an
attention head. Following the computation of the multi-head attention projection
(size=h), the model combines all attention heads and provides a linear combination
as input to the subsequent layer. Each attention head consists of three trainable
matrices, denoted K, V', and @), representing the key, value, and query matrices,
respectively. The linear combination of the query and key undergoes normalization
and is then passed through a softmax layer (see Equation 2.1), which is subsequently
multiplied by the value matrix. Since the output maintains the same structure as
the input, all layers can be stacked sequentially. In their publication, the authors
stack a total of N = 6 layers before transmitting the final output representation to
the decoder.

By using self-attention, the model’s recurrence is solely based on the number
of layers. Specifically, to compute layer ¢, layer ¢ — 1 must be computed first.
Consequently, the entire sequence can now be parallelized, provided that it fits
within the available memory. Figure 2.11 illustrates the functioning of the encoder,
which comprises N modules with h attention heads. An almost similar decoder is
then deployed. As in Figure 2.9, the decoder takes as input the encoder output as
well as the previous word predictions. Although this seems to mirror the Seq2Seq
framework we discussed in Section 2.3.2.1, there is no recurrence anymore through
the sequence computation. The model’s enhanced speed is attributed to its parallel
processing capability, enabling it to be trained on larger datasets within the same
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Figure 2.11: Transformer’s Encoder Architecture - Text is first tokenized and each token
is represented by a vector z; and gets a position embeddings added to it. Using the matrix
parameters @, K, and V, each token gets a query, key, and vector representation, respectively.
Then, each token is represented using h— attention heads. Before getting normalized, the residual
connection is added to the self-attention output. Finally, a feed-forward layer is also normalized
after getting the residual connection. The attention block is repeated N X before being sent to
the decoder.

fixed timeframe.
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2.4 Language Models

This section will outline the progression of LMs leading to Bidirectional Encoder
Representations from Transformers (BERT). Subsequently, the improved perfor-
mance of this novel model in a wide range of NLP tasks will be discussed, followed
by an exploration of different BERT variants.

2.4.1 Prelude to Modern Language Models

The concept of LM was initially introduced in the field of speech recognition (Bahl
et al., 1983), followed by its application in MT (Brown et al., 1990) and automatic
spell checking (Mays et al., 1991). During this period, the primary purpose of
LMs was to determine the most likely sentence based on the output of another
model. For example, in MT, once a sentence was translated word-by-word, a
LM would compute the probabilities of one word given another. By assuming
independence between words, the probability of the sentence would be the product
of these conditional probabilities. Consequently, the system would generate the
most probable sentence structure based on its translation.

Later, the use of NN enhances the performance of LMs (Bengio et al., 2003).
During this period, reduction in perplexity was the sole metric employed for
comparing different methods. In this setting, additional efforts were directed
towards enhancing LMs. In particular, (Morin and Bengio, 2005; Mnih and Hinton,
2008) achieved superior results with a 258x acceleration in training time and a
193x improvement in testing time compared to the work by (Bengio et al., 2003).

In (Collobert and Weston, 2008), LM changes its function and is ultimately
utilized for its ability to generate word representation to address various NLP tasks
such as POS, chunking, NER, Semantic Role Labeling (SRL), and Semantically
Related Words (SRW). Researchers are focusing on contrasting various methods of
acquiring word representations and leveraging them to tackle specific tasks (Turian
et al., 2010). As a result, the perplexity metric is no longer used to evaluate the
performance of LMs.

This marks a shift in model comparison, as LM are now trained for word
representation enhancement through the improvement of metrics across downstream
tasks. In 2013, two NN-based methods to train word representations, namely Skip-
Gram and Continuous Bag-of-Words (CBOW), were published along with their
W2V trained model (Mikolov et al., 2013b,a). In both cases, the inputs and
outputs are one-hot encoded indices, and their induced vector representations can
be retrieved for further training by taking the first layers of the input. While CBOW
focuses on predicting a central word based on a context window of surrounding
words, Skip-Gram operates in reverse, predicting the surrounding words given
a central word. Another word representation model, Global Vectors for Word
Representation (GloVe), was introduced a year later, outperforming Word2Vec in
various tasks (Pennington et al., 2014).

Although these new approaches preserve both semantic and grammatical pat-
terns, they are unable to model polysemy. This implies that the term ’bank’ in
the sentences "The bank interest rate is low.” and "The bank I sat on is red.” are
assigned identical vector representations, despite their distinct meanings. By using
a Bi-LSTM RNN, Embeddings from Language Models (ELMo) (Peters et al., 2018)
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can generate word embeddings that encompass contextual information around
them. ELMo enables the dynamic computation of word embeddings based on its
context. For instance, the word embeddings of ’bank’ in "The bank I sat on is red.’
should be closer to a suitable synonym like 'chair’ than to ’bank’ in "The bank
interest rate is low.”, which pertains to a financial institution. ELMo improves all
previous SOTA results in six different tasks. Despite its good results, it came out
just after Transformer models (Vaswani et al., 2017) and researchers quickly took
advantage of the highly parallelizable feature of the said model to publish a LM
taking advantage of this new model architecture.

2.4.2 Bidirectional Encoder Representations from Trans-
formers

Introduced by Google”, BERT is a groundbreaking LM that takes advantage of
the Transformers architecture (Vaswani et al., 2017) and the WordPiece tokenizer
(Schuster and Nakajima, 2012) while also addressing polysemy. In the training
process, BERT leverages the encoder of the recently published Transformer model
to perform simultaneously Masked Language Model and Next Sentence Prediction
tasks. Due to its highly parallelizable design, the model can undergo pre-training
on an unprecedentedly large corpus before being fine-tuned for various downstream
tasks. The following sections further elaborate on the unique characteristics of the
model.

2.4.2.1 WordPiece Tokenizer

Before subword segmentation, a common approach to handling OOV was to
substitute each missing word with a pre-trained OOV word representation, usually
denoted as <UNK>. Some papers started to use subword segmentation algorithms in
MT and speech recognition to deal with OOV words (Luong et al., 2015). The first
notable paper to implement word segmentation was (Chitnis and DeNero, 2015)
using Huffman codes, then BPE (Gage, 1994) was applied to other MT models
(Sennrich et al., 2016; Wu et al., 2016; Britz et al., 2017; Vaswani et al., 2017) and
finally WordPiece (Schuster and Nakajima, 2012) in the BERT paper.

The tokenization model used in BERT plays a crucial role in its success. Al-
though ELMo has the capability to capture polysemy, as discussed earlier, it
generates representations at the word level, thereby making it challenging to encode
OOV or misspelled words. By breaking words down into smaller units, WordPiece
(Schuster and Nakajima, 2012) effectively handles misspellings and uncommon
words. This approach is a variation of BPE, a tokenization technique introduced
in Section 2.3.1.2 that computes pair scores differently. Unlike BPE, which uses
the frequency of the pair as a score, WordPiece divides the pair frequency by the
product of the frequency of each component of the pair. As the vocabulary size
of the tokenizer increases, so does the number of parameters. With a vocabulary
size of 30k tokens, the models require 110 millions (M) and 340M parameters for
BERT}ase and BERT .46, Tespectively. For instance, if the vocabulary expands to
50k, the models would need 125M and 55M parameters for the base and large
versions, respectively.

"https://github.com/google-research/bert
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2.4.2.2 Pre-Training

The pre-training of BERT involves two distinct tasks: Masked Language Model
(MLM) and Next Sentence Prediction (NSP). These tasks are executed together,
with the former concentrating on the token level (using the WordPiece unit) and the
latter on the sentence level. The pre-training stage is extensive and expensive, as
it establishes the model’s parameters on a vast unsupervised dataset, which is then
leveraged to create generalized representations for various tasks. By virtue of its
modular design, the model can subsequently undergo ”fine-tuning” on supervised
tasks, which is faster and cheaper than the pre-training, while taking advantage of
the pre-learned representations.

In the MLM task, as shown in Figure 2.12, when a token [MASK] feeds the
model, its final hidden vector passes through a softmax layer (see Equation 2.1)
that predicts the token that was originally in the text. In other words, the model is
trained to retrieve the most probable tokens according to its surrounding context.
At training time, each token has a 15% chance of being altered and thus updated
by its gradient. Since the [MASK] token will not be used later in production, once
a token is selected for gradient update, the input token will be replaced, 80% by
a [MASK] token, 10% by a random token and remain unchanged otherwise (also
10%). A cross-entropy loss as defined in Equation 2.2 is used to fit the MLM task.

The NSP task consists of predicting whether two sentences follow each other by
performing a binary classification of the token [CLS], which stands for ”classify”.
During the training phase, every sequence starts with the token [CLS], which re-
tains the representation of the sequence and is succeeded by two sentences divided
by the token [SEP]. If the two sentences follow each other, the sequence will be
labeled IsNext and NotNext if they do not. As an example, here would be a pos-
itive classification: [CLS, ’my’, ’dog’, ’is’, ’cute’, SEP, ’he’, ’likes’,
‘play’, ’##ing’] — IsNext, and a negative would be: [CLS, ’my’, ’dog’,
’is’, ’cute’, SEP, ’he’, ’likes’, ’play’, ’##ing’, ’piano’] — NotNext.
In half of the cases, the following sentence will be its continuation, while in the
remaining instances, a sentence will be selected at random from the corpus. After
being pre-trained, the [CLS] token has the capability to represent the complete
input sequence, which can be useful for unsupervised tasks like document clustering.

The PLM comes in various sizes, which involves a trade-off between resources and
performance since larger models generally achieve better overall results. Although
the paper only compares base and large models, a variety of sizes, such as tiny,
mini, small, and medium, are also published on their GitHub repository®. These
models have been pre-trained on the BooksCorpus (Zhu et al., 2015) and the
English Wikipedia, which contain 800M and 2,5 billions (B) words, respectively.
The training process uses a batch size of 256 sequences for 100M steps, a learning
rate of le-4, and the Adam optimizer (Kingma and Ba, 2017) with a learning rate
warm-up for the first 10k steps.

2.4.2.3 Fine-tuning

After completion of the pre-training phase, the modular design of the BERT model
allows the connection of the PLM building block to a newly initialized layer for

8https://github.com/google-research/bert
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Figure 2.12: BERT Pre-Training Diagram - A pair of sentences, sepa-
rated by the [SEP] token, are input into a Transformer encoder, which was
introduced in Figure 2.11. The resulting outputs are linked to two different
loss functions, which are optimized simultaneously. The first token, [CLS],

is linked to Lnsp, responsible for determining whether the sentences are se-
quentially related. The second loss function, Ly, focuses on predicting the
[MASK] tokens by considering their surrounding context.

fine-tuning. In the case of a sequence classification task, a softmax layer is added
on top of the final hidden layer corresponding to the [CLS] token. For tasks like
NER and QA, the last hidden state of each token is used to classify their respective
entities. The recommended hyperparameters for fine-tuning by the authors include
a batch size ranging from 16 to 48 and a learning rate between 5e-5 and 2e-5.

Performance is assessed on GLUE (Wang et al., 2018), SQuAD (refer to Sec-

tion 2.1.2) versions 1.1 and 2.0, as well as Situations with Adversarial Generations
(SWAG) (Zellers et al., 2018), which assess grounded common sense using pairs
of sentences. In every task, BERT significantly outperforms all previous SOTA
models. On average, across all tasks, the larger version outperforms the previous
best results by approximately 7 points.
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2.4.3 BERT Variations

Following the success of BERT, numerous variations of models have emerged.
Various aspects like hyperparameters, the language or domain of the corpus, or
even the type of tokenizers offer endless possibilities for tweaking to enhance
performance on downstream tasks. To this day, the renowned library HuggingFace
hosts approximately 0.5M models in its repository®. In the upcoming sections,
we will introduce the most notable models, emphasizing their distinctions and
highlighting their contributions to the field. However, some model categories will
not be covered in this section, notably distilled models, in particular, DistilBERT
(Sanh et al., 2020) or generative models such as Generative Pre-trained Transformer

(GPT).

2.4.3.1 Variations in Pre-training Methods & Hyperparameters

The first set of publications that tried to tweak the original BERT aimed to enhance
the model for similar tasks by refining some of the model’s methods. In (Liu et al.,
2019), there are two main contributions to the field of language modeling with
BERT. Firstly, the paper conducts an ablation study on several crucial steps of
the method or hyperparameters, such as the format of the input sequence, the
inclusion or exclusion of the NSP training objective, the batch size, the number
of training steps on a larger corpus, and the use of a different tokenizer. Second,
Robustly optimized BERT approach (RoBERTa), a PLM that incorporates the
optimal hyperparameters identified in their research, is made publicly available.
Their ablation study reveals the following findings.

e The original BERT model applied static masking, which means that the
same words were masked for each epoch during pre-training. The study
demonstrates that employing dynamic masking, that is, varying masking for
each epoch, yields a comparable or slightly improved performance compared
to a static approach.

e The study compares four different methods to input data into the model,
two with/without the NSP training objective. The results indicate similar or
slightly better performance without the NSP task. Removing the NSP task
allows loading the 512 tokens sequence to its maximum capacity, as there are

no longer constraints on the alignment of the two sequences required by the
NSP task.

e The results suggest that increasing the batch size leads to better performance
for the same computational cost compared to the original BERT batch size of
256. Essentially, running the model for 125k steps with a batch size of 2k is
more efficient than running it for 1M steps with the default BERT batch size.

e As mentioned already, the models BERT use a WordPiece tokenizer, although
BPE seems to show slightly worse end-task performance on some tasks (results
not shown in the paper), the fact that BPE uses a universal encoding scheme
is believed to be a better choice. By using BPE, the authors set the vocabulary

https://huggingface.co/models
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size at 50k, which increases the number of parameters by 15M and 20M for
base and large sizes, respectively.

RoBERTa, the released model demonstrates superior performance across all
metrics in the GLUE benchmark. When evaluated on SQuAD v1.1, it achieves
results comparable to the previous SOTA model at that time, XLNet (Yang et al.,
2019), which was also released around the same period. In the context of SQuAD
v2.0, RoBERTa surpasses the performance of all individual models.

To summarize the differences with BERT, RoBERTa uses a larger BPE tokenizer
and dynamic masking without the NSP training objective with an 8k batch size
for 500k steps. It is worth noting that without the NSP task, RoBERTa is unable
to give a sequence vector representation out-of-the-box, as BERT can do through
its [CLS] token.

Up to the present time, RoOBERTa remains extensively used in the field, with
approximately 16M downloads of the base version reported in January 2024'°. For
comparison, during the same period, the original monolingual non-DS base BERT
model had 38M downloads, serving as a common reference point in academic work,
while DeBERTa (He et al., 2021) ranked third with 5M downloads.

2.4.3.2 Variations in Corpora Domain

By using DS corpora in the pre-training phase, PLMs such as FinBERT (Yang et al.,
2020) and LegalBERT (Chalkidis et al., 2020) show improvement, respectively,
in both financial and legal NLP tasks. The first PLM on biomedical corpora
is BioBERT (Lee et al., 2019). It takes BERT as a starting point and keeps
pre-training the model on both PubMed and PubMed Central (PMC) corpora,
accounting for about 18B words, which is more than the training corpora of BERT.
The released model is then fine-tuned on a NER, a RE, and a QA biomedical
tasks. The article shows that the more biomedical text feeds the model, the better
it gets in the DS downstream tasks. BioBERT outperforms BERT in almost all
biomedical tasks and has quickly become a standard of its kind.

With the abundance of biomedical literature, (Gu et al., 2021) demonstrate
that it was not necessary to start with a general-domain PLM, in order to train a
biomedical LM. Surpassing BioBERT in nearly all tasks, PubMedBERT is currently
the most widely used biomedical PLM, with approximately 922k downloads in
January 2024 compared to 230k for BioBERT. A notable distinction in their
approach compared to BioBERT is the decision to train the model from the ground
up. Consequently, PubMedBERT’s weight initialization is independent of the
BERT tokenizer. Instead, both a WordPiece tokenizer and a randomly initialized
BERT architecture are trained on a PubMed corpus of 14M abstracts. In contrast
to RoBERTa, PubMedBERT is pre-trained using both MLM and NSP training
objectives, similar to the original BERT. The authors employ Whole-Word Masking
(WWM) (Cui et al., 2021), which involves masking each token of a given word
if one of its subwords is selected. PubMedBERT excels over all previous SOTA
models in nearly all tasks of BLURB, which was introduced in the same paper (see
Section 2.2.1).

The paper also shows how important the training of a DS tokenizer is to
the success of the model. It first runs an ablation study showing the impact on

Onttps://huggingface.co/FacebookAI/roberta-base
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performance when switching to an in-domain vocabulary. Then, it hypothesizes
that the observed improvement is due to the fact that the tokenizer does not need
to break down DS terms into word pieces as much as the BERT tokenizer. To
demonstrate such behavior, the paper first shows that common biomedical terms
are missing in general-domain vocabulary, forcing the tokenizer to break down
important words into pieces. It finally shows a few examples of misclassification of
models using general-domain tokenizers, depicting the difficulty of the model to trace
a signal among word pieces. These examples are juxtaposed with PubMedBERT,
which accurately classifies each example since its tokenizer does not need to break
down any common biomedical terms.

2.4.3.3 Variations in Corpora Language

HuggingFace’s platform hosts a variety of PLMs that have been trained on corpora
in different languages, some monolingual and others multilingual. For instance,
the Chinese version of BERT was developed directly by HuggingFace'. Although
some models such as the Japanese'? and Korean'? variations have been pre-trained
without formal publications, most models are published along with their research
papers that describe their training methods. Examples include BETO and BERTIN
for Spanish (Canete et al., 2023; la Rosa et al., 2022), BERTimbau for Portuguese
(Souza et al., 2020), and HindBERT for Hindi (Joshi, 2022). We will focus on
three models, CamemBERT (Martin et al., 2020), FlauBERT (Le et al., 2020) and
XLM-RoBERTa (Conneau et al., 2019), two French and a multilingual models,
respectively.

The corpus used to train CamemBERT, the first French BERT PLM, consists
of the French section of Open Super-large Crawled Aggregated coRpus (OSCAR)
(Ortiz Sudrez et al., 2019). The model employs the SentencePiece version of the
BPE tokenizer, which is trained on the corpus with a vocabulary of 32k tokens.
A WWM approach is implemented for an MLM pre-training objective using a
batch size of 8k for 100k steps without the inclusion of the NSP task, which is
similar to RoBERTa. Although the model outperforms other SOTA models in
different downstream tasks, it should be noted that being the first French model, it
is compared against other BERT-based models that are multilingual, which are
not typically the most suitable baselines, as they often do not perform as well
as monolingual models when comparing models of the same sizes (Lample and
Conneau, 2019).

For its pre-training, FlauBERT’s French corpora were gathered from various
sources. Subsequently, they underwent processing using a BPE tokenizer with
an expanded vocabulary of 50k tokens. In contrast to CamemBERT, FlauBERT
employs a subword masking approach for the MLM objective instead of WWM.
Unlike CamemBERT, FlauBERT also investigates a model of a larger size denoted
as FlauBERT 4 with 373M parameters. Both models use the same batch size of 8k;
however, the total number of training steps is not specified, only the computational
time is provided, approximately 13k GPU hours for the base and 50k GPU hours for
the large version. FlauBERT,e generally exhibits superior performance compared

Uhttps://huggingface.co/google-bert/bert-base-chinese
2https://huggingface.co/tohoku-nlp/bert-base-japanese
Bhttps://huggingface.co/kykim/bert-kor-base
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to other models, which is expected given its double parameter size. The performance
of FlauBERT},.s. is comparable to or slightly inferior to models of similar size. As
of January 2024, the number of downloads for CamemBERT in that month stands
at 2.6M, which is roughly 78 times higher than the downloads for FlauBERT.

Similar to previous models such as XLM (Lample and Conneau, 2019) or mBERT
(Devlin et al., 2018), XLM-RoBERTa stands out as the current standard for a
multilingual general-domain PLM. Both the model and the tokenizer underwent
training on a corpus containing 100 languages. A substantial vocabulary size of
250k was created using SentencePiece’s implementation of the Unigram Language
Model. Expanding the size of the vocabulary results in an increase in the number
of model parameters. For instance, adding 220k tokens to the vocabulary expands
the BERT},se model from 110M to 270M parameters, making it 2.4 times larger.
To address the issue of splitting low-resource language words at the character level,
the tokenizer was trained on sentences sampled from the multilingual corpus using
a distribution that mitigates bias towards high-resource languages.

In their paper, various ablation studies highlight the challenge of multilingualism,
which can be observed with a decrease in overall performance when incorporating
new languages into a model. By analyzing performance decrease separately for
high- and low-resource languages, their findings show that models tend to underfit.
Indeed, although high-resource languages are negatively affected by the addition
of each new language, low-resource languages initially show improvement due
to language complementarity, benefiting from similarities with other languages.
However, as the performance of both low- and high-resource languages starts to
decline, one way to counteract this decline is by increasing the model size. Pre-
trained on a 2.5TB corpus, XLM-RoBERTa surpasses other multilingual PLMs in
various downstream tasks while being able to deal with 100 languages.

2.4.3.4 Variation in Both Corpora Domain & Language

Foreign DS PLM can be difficult to find, given the rarity of their training datasets.
In fields such as biomedicine, where data scarcity is a common issue, models are often
initialized based on another existing model due to limited data availability (Shrestha,
2021; Schneider et al., 2020; Carrino et al., 2021; Tiirkmen et al., 2023). For example,
a recent development in the French language is CamemBERT-bio, which enhanced
the performance of CamemBERT by pre-training it on French biomedical data
(Touchent et al., 2023). However, as demonstrated in the PubMedBERT study
(Gu et al., 2021), the CamemBERT tokenizer has a tendency to split common
biomedical terms more frequently than a tokenizer trained on a standard dataset,
potentially leading to inaccurate sequence representations in the model.

DrBERT (Labrak et al., 2023b) is the first French biomedical PLM to be
developed entirely from the ground up, trained on a corpus comprising 4GB of
private data and 7.4GB of public data. DrBERT tokenizer uses SentencePiece’s BPE
implementation with a vocabulary size of 32k tokens. Four fixed-size models with
110M parameters were pre-trained on varying corpus sizes to facilitate performance
evaluation. These models underwent optimization over 80k steps with a batch
size of 4k sequences. In addition to the models, a French biomedical benchmark
encompassing two POS Tagging, three NER, a multi-label classification, and
a Multiple-Choice Question Answering (MCQA) tasks were introduced. Since
CamemBERT-bio, the only other French biomedical PLM, was released during
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the same period, there were no performance comparisons with any French DS
PLM. DrBERT results demonstrate improvements over English DS or French
general-domain models such as BioBERT, PubMedBERT, and CamemBERT on
their benchmark and four other proprietary tasks.

2.5 Machine Translation

In this section, we will first discuss the evaluation of MT systems by presenting
BLEU, the metric commonly used in the field. We will then provide a brief
overview of Statistical Machine Translation before delving into the evolution of
Neural Machine Translation leading up to the introduction of the M2M-100 model.
Unlike traditional multilingual systems, M2M-100 is trained not only on aligned
corpora centered on English. Although this strategy requires substantial efforts in
data gathering, we will see that it showcases significant improvement in performance
in non-English directions.

2.5.1 Machine Translation Evaluation

In contrast to NLU, NLG is a field that aims to produce textual outputs. Text
generation can be complex to evaluate automatically due to the numerous possible
correct answers. As human evaluation is labor-intensive and costly, MT model
assessments used to involve the comparison of model perplexities (Bengio et al.,
2003). Fortunately, a proposed metric that requires a source sentence and one or
more target translation options enables accurate comparisons of MT systems.

2.5.1.1 Bi-Lingual Evaluation Understudy

The Bi-Lingual Evaluation Understudy (BLEU) metric was first introduced in
(Papineni et al., 2002) and has subsequently become the standard evaluation
metric for MT. Calculating the metric is not straightforward, as it was designed
to address various shortcomings that a translation metric might exhibit. The
BLEU score is specified as follows, typically using the default values of N = 4 and
w, =1/N =1/4:

N
BLEU = BP-exp(} _ w, -logp,) (2.14)

n=1

Where BP is a brevity penalty that exponentially tends to zero the smaller the
generated translation (candidate) is with respect to the target sentence (reference):

1 ife>r
BP = 2.15
{el_’"/c ife<r (2.15)

Where ¢ and r are the candidate and the reference number of words, respectively.
In Equation 2.14, BP multiplies the geometric average of the modified n-gram
Precision (p,,), which can be defined as the number of n-gram candidate/reference
matches over the candidate’s number of n-grams.
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_ Countyp(n — gram)
" Count(n — gram)

(2.16)

In its modified variant, the n-gram Precision takes into account repe-
titions in the generated candidate by using Count.;,, which is basically
min(Count, max_ref_Count). That way, a n-gram is never counted more than the
number of times it appears in a reference sentence.

2.5.2 Statistical Machine Translation

MT has been a challenge for seven decades, initially addressed by linguistic spe-
cialists who created Rule-Based Machine Translation (RBMT) systems between
the 1950s and 1970s. Subsequently, in the 1980s, the focus in the field of MT
shifted towards Example-Based Machine Translation (EBMT) systems, which op-
erate by using pre-translated sentences as models and adjusting them as needed.
Throughout a decade, this area experienced significant activity, with opportunities
for enhancement across all aspects, including storage and matching techniques, as
well as methods for adapting examples through rules.

Statistical Machine Translation (SMT) is the first MT data-driven method,
consisting of splitting the translation problem into two, each of which can be treated
by its own model. For a sentence pair (S, T) of, respectively, a source and target
languages, the idea is to find S from which a translator would have produced T'.
Using Bayes’ theorem, maximizing P(S|7") is the same as (Brown et al., 1990):

arg maxP(S)P(T|S) (2.17)

The P(S) is computed by a LM and P(T|S) by a translation model. The
problem can be seen as the translation model suggesting words or phrases from
the source language that might have produced the words that we observe in the
target sentence, which will then be ordered by the LM.

Considerable effort is put into enhancing both submodels (Brown et al., 1992;
Schwenk et al., 2006). Thanks to research on word-alignment, such as IBM Model
1 (Brown et al., 1993), Phrase-Based systems can be trained on aligned corpora.
This type of model has fueled translation services including Google Translate for
more than a decade, until recent Deep Learning (DL) models revolutionize MT.
Since the current state of the field does not directly incorporate any SMT SOTA
models or concepts, we will not go into this area further.

2.5.3 Neural Machine Translation

Unlike SMT, Neural Machine Translation (NMT) systems produce output in a
seamless manner without the need for word-aligned datasets. The Transformer
model introduced earlier (see Section 2.3.2.4) falls under the category of NMT
models. As depicted in the Seq2Seq workflow in Figure 2.9, all NMT systems
consist of an encoder, responsible for deriving a latent representation from a source
sentence, and a decoder, which uses the encoder’s output for translation. Although
modern SOTA NMT models are predominantly based on Transformers, they have
been developed using various architectural approaches.



2.5. MACHINE TRANSLATION 39

The first article introducing this type of model architecture uses a Convolutional
Neural Network (CNN) for encoding and a RNN for decoding (Kalchbrenner and
Blunsom, 2013). Similar to the variations of BERT discussed in Section 2.4.3.1,
researchers have been experimenting with enhancing BLEU scores in different
languages by adjusting various methods aspects such as preprocessing techniques
(e.g., tokenization), model architecture, or specific components namely LSTM or
GRU cells.

Taking advantage of their renowned Seq2Seq architecture, (Sutskever et al.,
2014) demonstrated SOTA results in an English-to-French translation experiment
employing RNNs for both the encoder and the decoder. Furthermore, the translation
of long sentences was enhanced by feeding the source sequence in reverse order to a
RNN with LSTM cells. Since only a single word can be predicted at a time, a beam
search decoder that evaluates the k most likely predictions at each stage is used
instead of relying solely on the most probable word. This optimization technique,
which ultimately yields the most likely prediction in general, has become standard
practice in modern MT frameworks.

Following the integration of attention mechanisms (Bahdanau et al., 2014) (see
Section 2.3.2.2) into RNNs, researchers began to integrate subword segmentation
algorithms (see Section 2.3.1.2) into NMT systems. This strategy, previously
explored in the domain of speech recognition (Schuster and Nakajima, 2012),
addresses issues related to infrequent words by dividing them into subword units,
each receiving its unique vector representation. Through the use of the Huffman
code method in their preprocessing step, (Chitnis and DeNero, 2015) managed
to enhance a model, which encodes rare words using a token [UNK], by up to 1.7
BLEU points in a French-to-English translation task.

As discussed in Section 2.3.2.4, Transformer (Vaswani et al., 2017) outperforms
existing SOTA models in directions such as English-to-German and English-to-
French. Its parallel processing capabilities enable it to handle an extensive amount
of data, offering potential for further enhancements. The Transformer model stands
as the leading architecture in various DL domains, including computer vision
(Dosovitskiy et al., 2020) and speech recognition (Radford et al., 2022).

2.5.4 Many-to-Many Multilingual Translation Model

In this section, we introduce the well-documented M2M-100 model (Fan et al.,
2020). The complete source code for both data generation and model training
is available on GitHub!'“. Along with documentation, three different sizes of the
model (418M, 1.2B and 12B parameters) are also available for four GPU memory
size configurations (2x32GB/4x16GB/6x12GB/8x8GB).

2.5.4.1 M2M-100 Model

M2M-100 is the first non-English-centric Many-to-Many (M2M) multilingual trans-
lation model. Based on the Transformer architecture, it accounts for 12 encoder
and decoder layers for a total of 1.2B parameters. For comparison, the Transformer
(big) had 213M of parameters. Since all parameters are common across languages,

Ynttps://github.com/facebookresearch/fairseq/blob/main/examples/m2m_100/
README.md
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special tokens are assigned to the encoder and decoder to indicate the source and
target languages.

A shared vocabulary of 128k tokens was developed by training a SentencePiece
tokenizer that covers all languages. To prevent underrepresentation in low-resource
languages, monolingual data were injected into the corpus in addition to a sampling
correction. During the generation process, a beam search with a size of 5 is used.
The paper does not provide details on the batch size or the total number of steps.
The model is openly available in three sizes 418M, 1.2B, and 12B parameters.

2.5.4.2 Dataset Building

Three main criteria were taken into account when choosing languages: (1) the
selection should encompass language families spoken extensively in various regions,
(2) each language should have an evaluation benchmark that is publicly available for
evaluating the model, and (3) each language should have at least some monolingual
data accessible to facilitate large-scale corpus mining. Following the compilation of
a comprehensive list of 100 languages, a dataset containing 7.5B aligned sentences
was produced through the application of data mining methods and Backtranslation
(BT) covering a total of 2200 directions. This dataset was then used to train the
M2M-100 model.

As most parallel sentence corpora (bitext data) pass through English, the
authors used LASER (Artetxe and Schwenk, 2019), a multilingual encoder known
to generate embeddings, in conjunction with CCMatric (Schwenk et al., 2020)
and CCAligned (El-Kishky et al., 2020) projects to identify aligned sentences in
a wide range of corpora. Given the impracticality of analyzing all 9900 language
combinations, the selection of language pairs was done thoughtfully. Initially, the
100 languages were grouped into 14 clusters based on common characteristics
such as geographical proximity or linguistic origin. This grouping facilitated the
identification of language pairs within each cluster due to the inherent connections
that bind them. Subsequently, to establish links between clusters, the top 1-3
languages with the most available resources from each cluster were selected to
identify inter-cluster language pairs.

BT creates artificial bilingual texts using monolingual data, which involves
generating additional data through the translation of monolingual target sentences
into the source language. However, as it is time-consuming even for a single
direction, the emphasis is placed on 100 directions with a BLEU score ranging from
2 to 10. As per (Caswell et al., 2019), a unique BT token has been included on the
encoder side of these translations to signal to the model that they are synthetic.
An experimental analysis demonstrates that incorporating the BT dataset with
the mined data leads to improved BLEU scores in nearly all language directions.

2.5.4.3 Results

An ablation study emphasizes the importance of training the model on non-English-
centric data, showing similar results for translation to and from English, but
significant improvements of more than 5 BLUE points for non-English translation
pairs. In zero-shot translation, which involves translating between language pairs
the system was not trained on (Gu et al., 2019), the M2M approach outperforms
the English-centric’s by almost 11 BLUE points.
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Another comparison has been conducted regarding the model density, demon-
strating that wider models exhibit better scalability compared to deeper ones.
Specifically, for the same words per second at training, wider models generally
achieve higher overall BLUE scores. Additionally, the performance of all three
model sizes is evaluated across low, medium, and high-resource languages. On
average, the results show an increase of approximately 2 BLEU when switching
from 418M to 1.2B parameters, and around 1.5 BLEU from 1.2B to 12B parameters.
These findings suggest that the model may still be underfitting however, the runtime
and memory requirements for further scaling up would be excessively prohibitive
given the expected potential improvement in performance.

The main results illustrate the practicality of this model in a real-world case
scenario. While the Switzerland case is not specifically referenced, there exist other
areas globally where the use of multiple languages besides English is prevalent. In
more than 30 different language pairs, recent SOTA BLEU scores have seen an
average increase of 7.6 BLEU points. In particular, if we were to consider the case
of Switzerland, improvements of 9.9 and 7.2 BLEU points have been achieved in
the Italian-to-German and Italian-to-French language pairs, respectively.

To contrast the model with English-centric ones, the authors used benchmarks
from the famous Workshop on Machine Translation (WMT). Across 13 directions,
the current top-performing bilingual standalone model is outperformed by up to
7.6 BLEU points, while it falls short in four directions, with three showing minimal
differences and one exhibiting a deficit of 5 BLEU points (English — Chinese).
On average, there is an enhancement of approximately 2 BLEU points across all
evaluated English-centric directions. Furthermore, for three additional multilingual
benchmarks, the model outperforms previous SOTA results.

A final assessment is conducted by experts to evaluate the semantic accuracy of
non-English-centric languages in both intra- and inter-cluster language directions.
Most directions produce scores ranging from 8.5 to 9.5 on a scale of 10. However,
despite remaining reasonable, the results tend to be lower for low-resource languages.
A further human evaluation is performed in a blind test setting in 10 directions,
where a comparison is made with an English-centric model. The results reveal a
higher translation quality for the M2M system in all 10 directions.

2.6 Synthetic Translated Data in Natural Lan-
guage Understanding

As demonstrated in this literature review, the introduction of BERT following
the Transformer model has enabled pre-training on extensive datasets with re-
markable efficiency across various common tasks. This level of generalization has
made any previous generation of NLU system obsolete in performance, which
means that trying to improve Word2Vec performance through translation would
be impractical. Consequently, our examination of related work focuses on recent
post-BERT publications that seek to boost the performance of LM by leveraging
artificially generated translated data. Although the BT technique, as described
in Section 2.5.4.2, has been proven to be effective, it will not be covered as it is
specifically tailored for training MT systems.

To this day, a limited number of publications use translated data for training
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NLU systems. This could be due to the fact that recent research on multilingual
PLMs (Conneau et al., 2019), discussed in Section 2.4.3.3, has shown great results
in various general-domain tasks. Therefore, researchers may opt to use synthetic
data, such as translated text, when they encounter limitations in the availability
of real data. As illustrated in Section 2.4.3.1, the scarcity of corpora is often
associated with either low-resource languages or DS in foreign languages. Three
approaches have been pinpointed as relevant in related work. The first subsection
will investigate the application of translation in the final stage, specifically by
translating the downstream task dataset. The subsequent subsection will explore
recent researches that utilize translation or partial translation to pre-train a LM
for low-resource languages. Lastly, a paper that leverages biomedical translation to
keep pre-training a generative LM on a low-resource language will be presented.

2.6.1 Synthetic Translated Data at the Downstream Task
Level

In (Isbister et al., 2021), sentiment analysis is approached in four low-resource
Scandinavian languages using three different methods. The first approach fine-tunes
a native monolingual PLM on the original downstream task datasets, the second
translates each sequence of the downstream task datasets into English and then
fine-tunes an English PLM on the translated data, and finally the third fine-tunes a
multilingual PLM directly on the native downstream task datasets. Generally, the
results favor the third method, which employs the multilingual model. However, it
is worth noting that fine-tuning the English model with translated data generally
produces superior results compared to fine-tuning the low-resource language PLM.

2.6.2 Synthetic Translated Data for Language Model Pre-
Training in Low-Resource Languages

Luxembourgish is a low-resource language that has a close structural and ety-
mological relationship with German. In their study, to address the scarcity of
data to train a LM, a partial translation of common and unambiguous words
from the high-resource auxiliary language was performed (Lothritz et al., 2022).
Subsequently, four strategies were evaluated across five downstream tasks. The
first leverages mBERT, the multilingual variant of BERT}; the second and third use
a BERT pre-trained on either the entire available Luxembourgish corpus of 130M
words or a combination of Luxembourgish and German data; the fourth fine-tunes
LuxemBERT, a BERT pre-trained on corpora comprising half Luxembourgish and
half German data that have been partially translated into Luxembourgish. An
experiment comparing models trained on three different dataset sizes indicates
that the data augmentation approach improves performance in downstream tasks.
Although LuxemBERT demonstrates superior performance compared to mBERT,
the statistical significance of the Wilcoxon test yields a p-value of 0.109, which is
not optimal.

After the introduction of EIhBERTeu (Urbizu et al., 2022), a PLM trained on a
corpus of 351M words in Basque, a strategy has been implemented using synthetic
translated data to improve the corpus size of this low-resource language (Urbizu
et al., 2023). Using Spanish as the auxiliary language, a MT Transformer Base
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model consisting of 65M parameters has been trained on 8.6M parallel sentences
in order to translate a corpus from Spanish to Basque. Subsequently, all their
BERT models have been trained using a Unigram tokenizer with a vocabulary size
of 50k and a batch size of 256 for 1M steps on a WWM implementation of the
MLM task. Evaluated on BasqueGLUE (Urbizu et al., 2022), which comprises nine
downstream tasks, the results show that the PLM trained solely on synthetic data
is competitive, although it does not outperform the model trained only on a native
Basque corpus. Another experiment shows that pre-training a LM on translated
data can give comparable results when using the same information by pre-training
two LMs on a parallel corpus, one on the Basque part, the other on a synthetic
translation in Basque of the Spanish part. Subsequently, to show that the domain
and cultural context of the Spanish translated data had an impact on the model
performance, the authors pre-trained another LM on a corpus that geographically
and culturally filtered text from the Basque Country before translation. The model
with a filter performed slightly better than the one without filtered data, even if
it was substantially trained on a smaller corpus. Finally, a study that tweaks the
native/translated data ratio shows that the addition of synthetic data enhances
the native PLM performance.

2.6.3 Synthetic Translated Data for Pre-Training Domain-
Specific Generative Language Model in Low-Resource
Languages

As they all fall into the NLG group of models, neither GPTs (Brown et al., 2020) nor
Text-to-Text Transfer Transformers (T5s) (Raffel et al., 2023) have been discussed
in this literature review. However, it is important to note that these models have the
potential to address NLU tasks through prompt engineering, which involves framing
a task as a text generation problem. In their paper, (Phan et al., 2023) enhance
Mtet (Ngo et al., 2022), the current SOTA MT model in the English-to-Vietnamese
direction by injecting synthetic biomedical parallel text into its training corpus.
Although no details on the size of the MT models are mentioned, their fine-tuned
MT system outperforms the models to which it is compared, that is, M2M-100,
Google Translate and Mtet, in two translation test sets covering both general and
biomedical domains. The resulting translation model is used to generate ViPubmed,
a Vietnamese-translated corpus comprising 20M abstracts, as well as ViMedNLI, a
benchmark dataset generated by translation of MedNLI (Romanov and Shivade,
2018) and refined with human experts. Subsequently, ViPubmed is used to keep
pre-training ViT5 (Phan et al., 2022), the first pre-trained T5 for the generation of
the Vietnamese language, while ViMedNLI is used for fine-tuning. ViPubMedT5,
the final model, outperformed models including ViT5 in ViMedNLI and acrDrAid,
an acronym disambiguation task, while being close second in a summarization task,
showing that using artificially translated data can improve model performance.






Chapter 3

Methods

The aim of this chapter is to gather all the common methodologies that will be
employed in Chapter 4 and Chapter 5 into one place. Each section in this chapter
serves as modules that can be integrated into the subsequent one. It starts with
(1) the assembly of a vast life science corpus, which will be incorporated into
(2) a translation module, creating TransCorpus, the first fully translated corpus
in the life sciences field consisting of 22 millions (M) abstracts translated from
English to French. Subsequently, the training of TransTokenizer, TransBERT and
cTransBERT (3) will be carried out using (2) TransCorpus. While TransBERT
leverages TransTokenizer, which is pre-trained on TransCorpus, cTransBERT
utilizes CamemBERT tokenizer. Finally, (4) the fine-tuning datasets and tasks will
be presented, where both (3) TransTokenizer and TransBERTSs will be plugged in.
Despite being the most time-consuming part of this thesis, no results are anticipated
from this chapter. However, whenever feasible, an interim results section will be
included at the end of a module to evaluate whether the process was executed
correctly.

3.1 Biomedical & Life Sciences Literature Corpus

Following a succinct overview of MEDLINE, PubMed, and MEDLINE /PubMed
Baseline Repository (MBR), this section briefly justifies the choice of the dataset
used to build the training corpus. At the end of it, a comparison will be drawn
between the freshly retrieved corpus containing 22M abstracts and the corpora
used to train other models.

3.1.1 PubMed & MEDLINE & PubMed Central

MEDLINE is a repository of life sciences references, particularly focusing on
biomedicine. This database is essential for researchers, healthcare professionals,
and students, providing access to over 30M citations from more than 5,200 journals
around the world. MEDLINE’s records are meticulously indexed with National
Library of Medicine (NLM)’s Medical Subject Headings (MeSH), which significantly
improves search precision and efficiency. In addition, it covers a broad spectrum of
biomedical disciplines, ranging from fundamental research to clinical practice and
public health.
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Within this framework, PubMed stands as a search tool created and maintained
by NLM’s National Center for Biotechnology Information (NCBI). It integrates
MEDLINE as its primary component while offering a broader spectrum of informa-
tion. PubMed gives access to more than 36M! citations from life science journals,
online books, and MEDLINE. Although it focuses mainly on cataloging journal
articles in the fields of biomedicine and health, PubMed also includes references to
complete articles accessible through PubMed Central (PMC) and publisher plat-
forms. Accessible to the public since 1996, PubMed has simplified the exploration
and retrieval of medical information.

Since 2002, MEDLINE /PubMed Baseline Repository (MBR) offers access to
snapshots of the MEDLINE /PubMed database at specific times. These snapshots
are static and represent the citation data without updates to the MeSH vocabulary
and other revisions that typically occur throughout the year. The baselines are
generated at the beginning of each new MeSH indexing year, usually in mid-
November, and cover all citations in MEDLINE up to that date. In its last version,
it accounts for over 36M citations. The primary purpose of MEDLINE /PubMed
Baseline Repository (MBR) is to function as a historical archive, allowing researchers
to examine and analyze the data as it was at the time of each baseline creation.
This can be especially beneficial for longitudinal studies and for monitoring changes
in the medical literature and indexing practices over time. The collection includes
MEDLINE references with MeSH, OLDMEDLINE and PubMed-not-MEDLINE
entries?. Following the creation of the baseline files, daily updates are distributed,
including new, updated and removed records.

PMC functions as a free digital archive, currently hosting over 9M freely
accessible full-text articles, predominantly from the biomedical and life sciences
journal literature. Functioning as the National Institutes of Health (NIH) digital
archive for biomedical and life sciences journals, PMC plays an essential role in
ensuring that research funded by NIH is universally accessible. While it does not
publish, it serves as a repository for journal literature.

3.1.2 Corpus Compilation

In our review of the literature, we discuss the top biomedical Pre-trained Language
Models (PLMs), BioBERT, and PubMedBERT, which have been trained using
MBR, PMC, or a combination of both. According to (Lee et al., 2019), the
performance comparison between a version trained on PMC and another version
trained on MBR’s abstracts does not reveal any significant gain in performance.
Although the citation count in MBR is approximately three times the full-text count
in PMC, the latter has about three times more words. In essence, a corpus based
on PMC would be more voluminous but would cover fewer citations. Consequently,
translating full-text articles would require a substantial increase in resources,
with no projected performance benefits. Therefore, the corpus will utilize MBR’s
abstracts.

For the building of this life sciences corpus, the 2021 MBR baseline, encompass-
ing 31M citations, and updates up until April 2021 was downloaded. These data

'https://pubmed.ncbi.nlm.nih.gov/
’https://lhncbc.nlm.nih.gov/ii/information/MBR/MEDLINE_Baseline_Repository_
Detail_2017.pdf
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repositories, comprising 1,062 and 150 files for the baseline and updates respectively,
hold collections of JSON documents that maintain citation details such as title,
abstract, journal, authors, PMID, MeSH, among others, as illustrated in Figure A.1
in Appendix A. Subsequently, in order to get a clean set of abstracts, each citation
in the dataset that includes a PMID, a title, and an abstract is kept and its raw
text is modified by substituting any sequence of one or more whitespace characters
with a single space. Figure 3.1 presents an example of a title and abstract after
modification, as it would appear prior to translation.

PMID: 44
Title: The origin of the alkaline inactivation of pepsinogen.

Abstract: Above pH 8.5, pepsinogen is converted into a form which cannot
be activated to pepsin on exposure to low pH. Intermediate exposure to
neutral pH, however, returns the protein to a form which can be activated.
Evidence is presented for a reversible, small conformational change in the
molecule, distinct from the unfolding of the protein. At the same time, the
molecule is converted to a form of limited solubility, which is precipitated
at low pH, where activation is normally seen. The results are interpreted
in terms of the peculiar structure of the pepsinogen molecule. Titration of
the basic NH2-terminal region produced an open form, which can return
to the native form at neutral pH, but which is maintained at low pH by
neutralization of carboxylate groups in the pepsin portion.

Figure 3.1: Example of a Citation From the MBR Database

A considerable amount of citations lack one of the three essential attributes, i.e.
title, abstract, or PMID. For example, citations before 1975 do not include abstracts.
Consequently, after applying this procedure to the complete dataset, our corpus
comprises 21,567,136 abstracts, amounting to 30.2GB of raw text, 202,190,607
sentences, 4,362,901,244 words, and 6,748,255,011 BERT tokens. Table 3.1 shows a
comparison with other models corpora. As mentioned already, despite that both
BioBERT and PubMedBERT have a version that also includes PMC full-text
articles, only those that use PubMed are displayed for a better comparison.

Despite a few missing unknown values, Table 3.1 provides a comprehensive
comparison of our corpus statistics against several models such as BERT, BioBERT,
and PubMedBERT. This comparison is crucial for understanding the scale of data
that similar models have been trained on, which directly impacts their performance
and applicability in various Natural Language Processing (NLP) tasks. In terms
of word count, the proposed corpus contains approximately 4.4 billions (B) words,
which is closely aligned with BioBERT’s 4.5B while exceeding PubMed BERT’s
3.1B and BERT’s 3.3B. This high word count is indicative of the extensive material
that the model will be exposed to after translation. Even though it is in a different
language, the statistics of the DrBERT corpus emphasize the scale disparity when
compared to English corpora, underscoring the lack of available Domain-Specifics
(DSs) open data in foreign languages.
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Corpus Before | pppt | BioBERT | PubMedBERT | DrBERT
Translation

Abstracts 22M N/A - 14M N/A
Size 30.2GB 16GB - 21GB 7.5GB
Sentences 202M - - - 54M
Words 4.4B 3.3B 4.5B 3.1B 1.1B
Tokens 6.7B - - - -

Table 3.1: Corpus Statistics for Different Models - 'N/A’: Not Applicable, -": Un-
known value, Tokens number is computed using a Bidirectional Encoder Representations
from Transformers (BERT) cased tokenizer.

3.2 Corpus Translation in French

This section will cover the decision-making steps that guided the translation process,
and then it will provide a comprehensive explanation of the procedure undertaken
to translate 22M abstracts from English to French. This resulted in the development
of TransCorpus, the first fully synthetic life science corpus translated from English
to French. Intermediate results are presented to ensure that everything went well
and allowing us to move on to the next module.

3.2.1 Translation Approach

As highlighted in the literature review, the M2M-100 model is a State-of-the-
Art (SOTA) translation system capable of translating between 98 source and 97
target languages. The model’s parameters are fixed and can be obtained from
its GitHub repository 3. This fixed nature provides a significant advantage over
online translation services like Google Translate. These online services tend to be
more costly and may also implement updates without notice, which can hinder
reproducibility.

We have two main factors to evaluate: (1) the model’s size, which can be either
418M, 1.2B, or 12B parameters, and (2) the translation techniques, which can be
executed either on a sentence-by-sentence basis or on the entire abstract. Each
technique has its own pros and cons. Sentence-wise translation might be faster
than abstract translation but could be less accurate due to the lack of context a
sentence might need. To determine the suitable model size and method, a sample
of abstracts was translated using the Fairseq library. The following subsections
provide a summary of the Fairseq framework and discuss the analysis that informed
our translation approach selection.

3.2.1.1 Fairseq Library

Fairseq is a Python library created by Facebook Al Research, who are the authors
of the M2M-100 paper (Fan et al., 2020). Therefore, besides supporting Graphics
Processing Units (GPUs) and being built with Pytorch, a widely-used framework
in modeling, Fairseq is utilized in the documentation of the M2M-100 project on its

3https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_100
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GitHub page. Although this model can be integrated into a HuggingFace generative
pipeline, the fastest method for translating large volumes of text is through the
Fairseq generative API, which enables sequences to be processed in parallelizable
batches.

First, to translate a list of text sequences, the Fairseq generation API requires
that they must be tokenized using the model’s SentencePiece encoder. Tokenizing
before translation allows sorting the sequences by size, facilitating quick parallel
translation by bucket. The tokenized sequences are then transformed into a binary
file, which serves as the input for the generative function.

Several key parameters can be adjusted to address memory issues. Specifically,
when generating sequences, the batch size is not the only parameter to consider,
as the sequence length generated is unpredictable. In our experiments on a
V100 GPU, we found that using --max-tokens=4600 instead of a fixed batch
size was effective, as it allowed the batch size to vary depending on the input
length. Other relevant parameters that were not modified in the corpus translation
are —-max-len-a and --max-len-b, which define the output maximum length
as max-len = max-len-a * source-len + max-len-b, a linear combination of
these two parameters.

3.2.1.2 Model Size & Translation Method Selection

As a reminder, in the M2M-100 paper (Fan et al., 2020) three versions are intro-
duced : a small, base, and large, with 418M, 1.2B, and 12B parameters, respectively.
When considering the average enhancement across languages with low, mid, and
high resources, the transition from the small to the base version results in an aver-
age improvement of 1.9 Biomedical Language Understanding Evaluation (BLUE).
Similarly, upgrading from the base to the large version leads to an increase of
1.4 BLUE. However, it is important to note that the first increase multiplies the
parameter count by 2.9, while the second one amplifies it by a factor of 10.

Deploying the large model would be computationally prohibitive. Indeed, given
its substantial size, it requires four distinct GPUs, which requires inter-GPUs
communication, further decelerating the translation process. The combination of
high computational costs and minimal performance gains led to the decision to
discard this model size for our next translation tests.

The first method for selecting model size and translation techniques is through
quantitative analysis. Based on a 1000-abstracts sample, Figure 3.2 compares (a)
the input level by examining the number of tokens per sentence or abstract, (b) the
translation time per abstract by both model sizes and methods, and lastly, (¢) the
word distribution after translation for both model sizes compared to the original
distribution methods.

Figure 3.2a illustrates that by splitting abstracts into sentences, many small-
sized sentences are clustered together, facilitating faster processing through effective
batch handling. Conversely, abstracts generally exhibit a more dispersed token
distribution, making them less suitable for parallel processing, with many abstracts
exceeding the token limit that the model can accommodate.

In the second graph (Figure 3.2b), a noticeable difference between the two meth-
ods can be seen. Sentence-wise translation is evidently faster, and an exponential
growth is noted when the model size is increased, comparing both methods. This
phenomenon occurs because the computational complexity of transformer models,
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Figure 3.2: Abstract translation analysis on a 1000 abstracts sam-
ple - (a) Box plot showing the number of tokens per sentence and abstract,
with a red line at 512 tokens representing the maximum token limit that
M2M-100 can handle. (b) The average time in seconds to translate each
abstract using the 418M and 1.2B model versions, comparing sentence-level
and abstract-level translation. (c¢) Distribution of word count per abstract for
both model sizes, displayed with the original English abstract at the bottom
when translating by abstract (middle) and by sentence (top). All distributions
are normalized to the same scale, so their areas add up to 1.

especially in the self-attention layers, increases quadratically with the sequence
length. When the model size grows and longer sequences are used, the translation
time per abstract is nearly quintupled.

In Figure 3.2c, when performing translations sentence-by-sentence (top), the
distribution is very similar to that of the original abstract in English (bottom).
Yet, an irregular word distribution when whole abstracts are translated at once
can be observed on the middle distributions of In Figure 3.2c.

Qualitatively, a detailed examination of the translations indicates that the
distribution disparity observed in Figure 3.2c is partially due to a 'repetition’
problem. Appendix B shows an observed example, all four translations are displayed
for comparison. It is worth noting that M2M-100 was trained on sentence pairs
and is probably aimed to be used the way it was trained.

Both quantitative and qualitative analyses led to the choice of sentence-wise
translation. Following some extrapolations and using multiple V100 GPUs, the use
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of the larger model was deemed feasible. In the next stage, we will detail how the
entire corpus will be translated with the 1.2B parameters model using sentence-wise
translation.

3.2.2 Large Scale Translation Process
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Figure 3.3: Large Scale Translation Workflow - Following the extraction
of 22M abstracts from JSON files, the corpus was shuffled to reduce length
biases, then divided and allocated across 32xGPUs. Before translating 3% of
the corpus, each abstract was broken down into sentences. The Fairseq toolkit
encoded each sentence with the model’s tokenizer and translated them into
batches using bucketing to optimize the process. Once translation was fin-
ished, sentences were decoded back into strings and reassembled into abstracts.
Finally, all pieces of the translated abstracts were concatenated, completing
the translation of the entire corpus.

Translating the entire dataset requires significant resources. Two virtual ma-
chines running Ubuntu, each equipped with 80 CPUs and 16x V100 GPUs (totaling
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32 V100s), were employed for approximately two weeks, amounting to around
11.52 thousands (k) GPU/hours. Figure 3.3 depicts the method used for the
translation process.

First, the 22M abstracts extracted from the JSON files are divided and dis-
tributed across the two machines to parallelize the translation process. Each
abstract is then split into sentences, with the Fairseq package handling the tok-
enization and translation of these sentences in batches. Once the sentences are
translated, they are matched to their respective abstracts and sentence numbers,
and the entire corpus is reconstructed.

Grouping a batch of sentences of the same length allows for bucketing. Though it
may seem counterintuitive, there is a considerable increase in speed when translating
sentences of the same length simultaneously. This is why it is essential not to
translate abstracts individually using the HuggingFace generative pipeline as it
would take years to translate a corpus this size.

The splitting of abstracts into sentences is performed using a pre-trained
sentence tokenizer using the Natural Language Toolkit (NLTK)(Bird et al., 2009)
library. Each sentence must have a minimum of 10 characters; if a sentence is
shorter, it is merged with the following one. Appendix C presents an example of
split and tokenized abstract. Figure 3.4 shows an example after translation and
reconstruction sentence-by-sentence

PMID: 44
Title: L’origine de I'inactivation alcaline du pepsinogene.

Abstract: Au-dessus du pH de 8,5, le pepsinogene est converti en une
forme qui ne peut pas étre activée en pepsine en cas d’exposition a un pH
bas. L’exposition intermédiaire au pH neutre, cependant, renvoie la protéine
a une forme qui peut étre activée. Des preuves sont présentées pour un
changement réversible, de petite conformation dans la molécule, distinct du
déploiement de la protéine. Dans le méme temps, la molécule est convertie en
une forme de solubilité limitée, qui est précipitée a faible pH, ou 'activation
est normalement observée. Les résultats sont interprétés en termes de la
structure particuliere de la molécule de pepsinogene. La titration de la région
terminale de base NH2 produit une forme ouverte, qui peut revenir a la forme
native a pH neutre, mais qui est maintenue a un pH bas par la neutralisation
des groupes carboxylés dans la portion de pepsine.

Figure 3.4: Example of Title and Abstract Citation From the MBR Database
Translated in French (McPhie, 1975)

3.2.3 Intermediate Results

Considering that our study comprises interconnected modules and our research
question seeks to evaluate the performance of the final model, we have opted to
add a short section for interim results at the end of each module section. This
approach ensures that we can confirm everything went smoothly along the way.
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In this section, TransCorpus will be presented, compared with others and a few
samples will be analyzed.

3.2.3.1 TransCorpus

After translation, the resultant raw text file is 36.4GB, containing 221M sentences
and 5.25B words. Table 3.2 compares TransCorpus with the only two French life
science corpora leveraged for pre-training. The comparison reveals that DrBERT,
although it utilizes the largest corpus until now, is about five times smaller than
TransCorpus.

TransCorpus | DrBERT Came;ril(]?ERT
Size 36.4GB 7.5GB ~ 4G B*
Sentences 221M 54M -
Words 5.25B 1.1B 413M

Table 3.2: Corpus Statistics After Translation Compared to DrBERT’s - ’-’:
Unknown value, *’: Number obtained by extrapolation because only the size in GB for

a given proportion are disclosed.

Additionally, both DrBERT and CamemBERT bio have diverse types of sources
for their corpora, which might be confusing for a Language Model (LM) during
the pre-training phase. For instance, CamemBERT bio includes both scientific
literature, drug leaflets and clinical cases/leaflets. If a provided sequence is too
short for the model to deduce a context helping it identify the kind of document it
is receiving, this may cause confusion, potentially resulting in ineffective learning.
In such scenarios, it would be wise to indicate the source at the beginning of the
sequence with a special token. This approach is similar to what MLM applies to
facilitate language translation, where the first token signifies the language, thereby
aiding the model in avoiding confusion.

While the corpus size is important, its quality must also be closely monitored.
Our source for the corpus is already considered a benchmark of quality for the
training we plan to perform as it is used by BioBERT and PubMedBERT. However,
it remains crucial to assess the quality of our translations to make sure that
everything has been conducted properly.

To assess the quality of translation, we will employ the same approach used
in the assessment of translation methods. In particular, Figure 3.5 illustrates
the distribution of words per abstract, which raised concerns when reviewing
Figure 3.2¢c, as a kind of binomial distribution appeared when entire abstracts were
translated. Thankfully, Figure 3.5 shows the same distribution shape as observed in
our previous sample study for sentence-by-sentence translation, which also centered
on about 250 words per abstract.

3.2.3.2 Translation Comparison to True French

Although DrBERT and CamemBERT bio do not provide examples of the raw data
used to train their models, the nature of our research methodology necessitates
showcasing a few instances. While evaluating the translation quality through
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Figure 3.5: Distribution of the Number of Words per Abstract -

manual assessment would have been feasible, deriving a metric such as Bi-Lingual
Evaluation Understudy (BLEU) score without any points of reference would seem
useless.

Luckily for us, there are authentic French abstracts in PubMed that have
already been translated in TransCorpus. In fact, PubMed allows setting filters
to display original articles in French. After acquiring a French abstract, we can
verify whether the associated PMID has been translated. Figure 3.6 presents
an article (Lauby-Secretan et al., 2019) found in PubMed that already had been
translated. Additional examples are available in Appendix D, obtained from
PubMed through three diverse queries aimed at creating a comprehensive lexicon:
psychology, chemical drugs, and molecular genetics. Even though a French speaker
might observe minor discrepancies in certain writing styles or find acronyms
incorrectly recomposed, the translations are predominantly precise.
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Original:

La prévalence du surpoids et de 1'obésité est en augmentation dans le monde
depuis plusieurs décennies, chez les hommes comme chez les femmes. En France,
la prévalence du surpoids chez les adultes atteint 49 % en 2015 (54 % des hommes
et 44 % des femmes), dont 17 % d’obeses. D’apres la derniére évaluation réalisée
par le CIRC en 2017, le surpoids et l'obésité sont des facteurs de risque établis
pour 13 localisations de cancers avec un risque de cancer chez les obeses variant
fortement en fonction des localisations cancéreuses. En 2015 en France, on estime
que 5,4 % des cancers étaient attribuables & l’exces de poids soit 18 600 cas,
dont 3400 cancers du colon, 2600 cancers du rein, 4500 cancers du sein et 2500
cancers de ’endometre. L’obésité est aussi associée a un moins bon pronostic pour
certains cancers, en particulier les cancers du sein et du colon. L’obésité chez les
enfants et les adolescents, en augmentation dans de nombreux pays, a également
été associée a une augmentation du risque de cancer a ’age adulte. L’obésité a
pour origine principale un déséquilibre de la balance énergétique et est favorisée
par un régime alimentaire riche en produits transformés, viande rouge, acides
gras trans et saturés, boissons et aliments sucrés et pauvres en fruits et légumes,
légumineuses et céréales completes. Les principales recommandations nationales
et internationales en matiere de réduction de la prévalence de ’obésité préconisent
donc de pratiquer une activité physique et d’avoir une alimentation équilibrée.

Translated:

Au cours des dernieres décennies, la prévalence de 1’obésité et du surpoids a
augmenté dans le monde entier, tant chez les hommes que chez les femmes. En
France, la prévalence du surpoids chez les adultes était de 49% en 2015 (54% chez
les hommes et 44% chez les femmes), dont 17% chez les adultes obeses. Selon la
derniere évaluation réalisée par 'TARC en 2017, le surpoids et ’obésité sont des
facteurs de risque établis pour 13 sites de cancer avec des estimations de risque
par 5 kg/m2 qui varient en grande partie en fonction du site de cancer. En 2015,
en France, 5,4% des cas de cancer pouvaient étre attribués & ’exces de poids,
correspondant a 18 600 cas, dont 3400 cancers du colon, 2600 cancers du rein, 4500
cancers du sein et 2500 cancers de I’endometre. L’obésité est également liée a un
mauvais pronostic pour certains cancers, en particulier les cancers du sein et du
cOlon. L’obésité chez les enfants et les adolescents, également en hausse dans de
nombreux pays, a également été associée a une augmentation du risque de cancer
chez 'adulte. Une cause majeure de 1’obésité est un déséquilibre dans 1’équilibre
énergétique favorisé par un régime riche en aliments transformés, viande rouge,
acides gras trans et saturés, aliments et boissons sucrés et pauvres en fruits et
légumes, légumes et céréales entieres. Les principales recommandations nationales
et internationales pour réduire la prévalence de I’obésité sont d’avoir un régime
alimentaire équilibré et une activité physique réguliere.

Figure 3.6: Comparison of Translation Original True French - Translation and
original of [Lauby- Secretan et al., 2019] (PMID: 31227175)
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3.3 Language Model Training

This section elaborates on the training process for a tokenizer and two language
models. It supports the recommendation of using SentencePiece as the tokenizer for
enhanced multilingual compatibility and describes the training of TransTokenizer,
a Unigram tokenizer trained on 10M translated abstracts. For LMs, two models
are pre-trained using TransCorpus: TransBERT, which employs TransTokenizer,
and cTransBERT, which uses the CamemBERT tokenizer trained on native French
corpus. The pre-training of each model adheres to the Robustly optimized BERT
approach (RoBERTa) setup and spans approximately 90 days on three A100 GPUs
per model.

3.3.1 Tokenizer Training

In contrast to PLMs, there is no established consensus on the most effective to-
kenizer, as subword segmentation algorithms aim to split words optimally using
probability. For the purposes of this thesis, considering the potential addition of
more languages in the future, choosing a tokenizer capable of handling specific
linguistic features could prove beneficial. As noted in the literature review, Sen-
tencePiece treats whitespaces as regular characters rather than relying on them,
which means that it is suited for all kinds of languages.

As SentencePiece tokenizers require a considerable amount of RAM to run, 10M
translated abstracts were randomly selected in order to train a DS tokenizer based on
our synthetic translated corpus. The original SentencePiece implementation® (Kudo
and Richardson, 2018) is used to train a Unigram tokenizer with a vocabulary
size of 32,000 and a character coverage set to 0.9995 (default values). It took
approximately four hours to train the model on a machine with 600GB of RAM.

3.3.2 Language Model Training Settings

Based on the literature review LMs comparisons, the choice in the pre-training
setting was straightforward. It basically features RoOBERTa’s hyperparameters,
which is a BERT base architecture featuring 12 hidden layers, each with 12 attention
heads of dimension 768 and an extensive batch size of 8k. The Adam Optimizer
with default settings is used, along with 24,000 warmup steps and a learning rate
of 6e-4. To achieve this batch size, we accumulate 28 gradient steps on each batch
of 96 per GPU, resulting in an effective batch size of 8,064 sequences.

Two BERT},. model architectures were trained: one with the tokenizer trained
on the synthetic data (see Section 3.3.1) and the other with the CamemBERT
tokenizer (Martin et al., 2020), which was trained on a native French corpus. Using
these hyperparameters, each model’s training process lasted approximately 90 days
on 3xA100s on Baobab High-Performance Computing (HPC)® of the University
of Geneva, totaling roughly 6.48k GPU /hours for the 500,000 steps. To assess
the models and mitigate overfitting, sety., and set;.s, both containing 100,000
abstracts, were evaluated: setg., every 10,000 steps and set;.; on the model with
the lowest lossge, at the end of the training loop.

“https://github.com/google/sentencepiece
Shttps://www.unige.ch/eresearch/en/services/hpc/
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Following the RoBERTa implementation, the Next Sentence Prediction (NSP)
task is excluded, focusing solely on the Masked Language Model (MLM) task. By
employing an adaptive on-the-fly dataloader, both RoBERTa’s dynamic masking
strategy and full-sentence input format are emulated. This ensures that each input
consists of complete sentences sequenced from one or multiple abstracts, capped
at a maximum length of 512 tokens. As described in the referenced paper, inputs
may span across document boundaries. When an abstract ends, sentences from the
subsequent abstract are incorporated, with an additional separator token between
abstracts.

3.3.3 Intermediary Results

As already mentioned, an intermediary results section which evaluates a modular
milestone is necessary. If the intrinsic value of pre-training a LM can only be ob-
served on a downstream task, there are two aspects that need to be reviewed before
going to the next stage. TransTokenizer, which has been trained on TransCorpus
should be evaluated and compared with DrBERT and CamemBERT. Finally, the
MLM task should be assessed and compared with the same models using the
Pseudo-Perplexity, which will be presented in the following sections.

3.3.3.1 TransTokenizer

In Chapter 5, various comparisons between CamemBERT and TransTokenizer will
be presented. A common metric for evaluating tokenizers is the number of tokens
generated for a sequence. Generally, fewer tokens are preferable, as they typically
result in reduced noise within vector representations. An examination of the number
of tokens produced by CamemBERT and TransTokenizer across various DS Named
Entity Recognition (NER) datasets revealed that TransTokenizer uses significantly
fewer tokens to encode the same entities. Specifically, while CamemBERT almost
doubles each entity with a tokenization rate of 1.99, TransTokenizer increases it to
1.65, which represents a delta of 20%. Figure 3.7 illustrates how TransTokenizer
processes a named entity consisting of three words with three tokens, whereas
CamemBERT decomposes it into smaller segments. Although subword tokenization
enables the tokenization of any words, the representation of ’__infarctus’ is likely
more accurate than the combined vector representation of ’__inf’, ’arc’, 'tu’, ’s’.

Entity: [infarctus’, ’du’, 'myocarde,’] (3 words)
TransTokenizer: [__infarctus’, '__du’, '__myocarde’, ’,’] (4 tokens)

CamemBERT: [__inf’, ’arc’, 'tu’, ’s’, '__du’, '__my’, ’oc’, ’arde’, ’)] (A+5)

Figure 3.7: CamemBERT Vs TransTokenizer Sample - An example of tokenization
shows that the tokenizer of TransBERT (i.e., TransTokenizer) requires less tokens than
the tokenizer of CamemBERT to encode the same sequence.

Considering that TransTokenizer was entirely trained on a corpus which was
itself relying on the translation model tokenizer, concerns arose about its effective-
ness on actual DS datasets. Despite using 20% fewer tokens than CamemBERT,
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understanding how TransTokenizer compares to an authentic DS tokenizer was
critical. Consequently, the same experiment was conducted with the DrBERT
tokenizer, which is trained on its DS corpus. DrBERT yielded a ratio of 1.55, indi-
cating that TransTokenizer needs 6% more tokens to represent the same sequence.
Nonetheless, it is crucial to highlight that DrBERT’s tokenizer primarily focused
on clinical text, akin to the type used in this assessment. Yet, this experiment
demonstrates that the training of TransTokenizer has been effective. Appendix I
presents examples of tokenizations as detailed in Chapter 5 illustrating differences
from both CamemBERT and DrBERT.

3.3.3.2 TransBERT and cTransBERT

Two LMs have been pre-trained on TransCorpus: TransBERT and ¢TransBERT,
which utilize TransTokenizer and CamemBERT’s tokenizer, respectively. Through-
out the pre-training phase, an assessment was performed using different translated
abstracts on the MLM task to prevent overfitting. However, since this set of ab-
stracts consisted solely of synthetically translated data, it was not used to compare
different tokenizers. To gain an understanding of how the models perform relative
to others, Pseudo-Perplexity (PPPL) was calculated across the models using a
sample of 50 authentic French abstracts. To comprehend PPPL as outlined in
(Salazar et al., 2020), one must understand the concept of Pseudo-Log-Likelihood
scores (PLLs). This metric assesses the likelihood of a sentence according to the
model. To derive such a score, one must determine the probability of each word in
a sentence given the surrounding words.

Wi
PLL(W) = " log P(wy|uw\) (3.1)

t=1

Given W as the set of words forming a sentence, w; as the t** word, and w\; as
all the other words. The Pseudo-Perplexity (PPPL) is then represented by:

PPPL(W) = exp (—% > log PLL(W)) (3.2)

Where W denotes the set of sentences of the corpus to evaluate and N represents
the number of tokens that the corpus comprises. Although computing this metric is
relevant to all models, comparing their value across models with different tokenizers
is complex. Typically, (Salazar et al., 2020) argues that, when models use a different
tokenizer, using the number of words as a normalizer (instead of N) offers a better
comparison, even if it is not a perfect fit. Table 3.3 presents the evaluation results
for the 50 French abstracts retrieved. A simple whitespace separation was used to
separate the words in the text.

This table corroborates our previous tokenizer analysis, which indicated that
CamemBERT’s tokenizer requires significantly more tokens to encode the same
sequence, whereas DrBERT requires slightly fewer. It should be noted that we
are far from the 20% discrepancy observed in our results, as the text used for
those figures mainly consisted of medical named entities, which are more complex
than abstracts. Focusing on the only two models directly comparable due to their
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‘ TransBERT ‘ cTransBERT ‘ CamemBERT‘ DrBERT

PPPL;oen 6.00 4.14 174.42 8.30
PPPLyorq 11.71 8.59 2474.88 17.55
Tsentence ‘ 376

Nuword | 9,204

Nioken | 12,640 13,934 13,934 12,459

Table 3.3: Pseudo-Perplexity Comparison Across Models - Pseudo-Perplexity
across models, with the highest uncertainty highlighted in bold.

use of the same tokenizer, cTransBERT scores 4.14, while CamemBERT scores
174.42. This suggests that even tested on genuine French text, a model pre-trained
on translated data can effectively learn life science terminology better than a
model trained on native French non-DS corpus. For comparison of other models,
PPPL,,-q serves as a reference metric; however, with adjustments, this metric is
only indicative. The main takeaway is that CamemBERT operates on a different
scale, while LMs trained on life science corpora are comparable.

3.4 Language Model Fine-Tuning

To evaluate the model on multiple tasks, an extensive adaptation of DrBenchmark
(Labrak et al., 2024) is implemented to improve consistency and robustness. First,
cross-validation is applied to each dataset, followed by Hyperparameter Optimiza-
tion (HPO) for each task, ensuring that each model is evaluated with its optimal
hyperparameter configuration. This approach ensures a fair comparison between
models while increasing data size through cross-validation, allowing for proper
statistical testing. This section finishes with an examination of each dataset/task
of the benchmark, showcasing data samples and fundamental dataset statistics for
each case.

3.4.1 DrBenchmark: An Adaptation

As previously noted in the literature review, foreign language DS datasets are
challenging to procure, particularly within the biomedical domain where data
privacy presents a significant hurdle. Released in May 2024, DrBenchmark (Labrak
et al., 2024) stands as the first publicly accessible French biomedical language
comprehension benchmark, featuring 20 varied datasets in tasks such as NER,
Part-Of-Speech (POS), Semantic Textual Similarity (STS), and classification. The
paper is complemented with a GitHub® repository comprising the used datasets
and the code that have been run in order to evaluate the benchmark on 8 SOTA
PLMs. In their paper, the authors conclude that there is no evidence a model is
better than others across all the tasks. In the upcoming sections, adjustments to
the benchmark methodology will be introduced to enhance training performance
using HPO as well as statistical testing through a 5-fold cross-validation procedure.

Shttps://github.com/DrBenchmark/DrBenchmark
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3.4.1.1 5-Folds Cross-Validation Implementation

In the benchmark’s paper (Labrak et al., 2024), to achieve a more precise assessment
of PLM performance during fine-tuning, each experiment is performed four times,
with the final layer being randomly re-initialized each time. While being broadly
used in the field, this method helps to reduce all random effects, e.g. model
initialization, and batch order, without providing extra insights about the model’s
advantage on a particular dataset.

To address this issue, we will merge the sets seti qin, S€tgey, and setyes, divide
each dataset into five subsets and train the model five times as described in Sec-
tion 2.1.1.6. Therefore, each fold will expose entirely unseen observations, thereby
partially preserving the independence assumption among the sets. However, it can
be argued that within a k-fold training schema, some intersection between training
sets is inevitable when k& > 2. To streamline the procedure and acknowledging that
the model assesses completely fresh observations in each fold, we will relax the
independence assumption.

It is worth noting that labels that are very sparse and do not appear at least
once in every fold will be excluded from the dataset reporting and statistical testing.

3.4.1.2 Hyperparameters Optimization Implementation

Model performance on a particular dataset is greatly impacted by hyperparameters.
However, There are no mention as of how hyperparameters were fixed; one can
only deduce that certain groups of hyperparameters appear to be fairly uniform
for various types of tasks. In the original DrBenchmark’s implementation, each
model receives identical sets of hyperparameters, whereas each model can have an
optimal set of hyperparameters for a given task, impacting deeply the potential
performance of each PLM.

To ensure an unbiased selection of hyperparameters, HPO has been incorporated
into our existing fine-tuning framework using the RayTune” library. Utilizing
Sequential Model-Based Optimization (SMBO) as mentioned in Section 2.1.1.7,
we assigned a range of hyperparameters to each task based on the time needed to
complete it. In our experiments, some tasks took almost a full day using 4x GPUs
to be trained, we decided to decrease HPO hyperparameters range so the training
time would not be prohibitive.

Appendix E details the hyperparameters ranges set to keep training time under
five hours. This decision stems from the fact that the optimization time scales with
the number of models to be fine-tuned, the number of folds, which is five in our
case, and the number of tasks, which is 20 in the original DrBenchmark paper. As
later, our experiments will focus on fine-tuning a total of four PLMs (4 GPUs x
20 tasks x 4 PLMs x 5 hours), the maximum fine-tuning time is capped at 1,600
GPU /hour in our setup.

The set of hyperparameters is restricted to the following: (1) batch size, which
can be adjusted by changing the actual batch size or altering the number of gradient
accumulation steps, (2) learning rate, (3) number of epochs, (4) weight decay, (5)
warmup ratio, (6) dropout, (7) the number of evaluations before deciding to drop a
trial, and (8) the number of trials. To shorten the training duration, we primarily

"https://docs.ray.io/
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decreased the number of trials and epochs as hyperparameters. For tasks like
NER and POS, where a small batch size typically yields optimal results, dropping
gradient accumulation steps was considered when training time was still longer
than five hours.

In our preliminary tests, HPO enhanced metrics up to more than 10 points
using the same models, data splits, and training code. More importantly, metrics
improved consistently across all the tasks.

3.4.1.3 Multiple Training Repetition Re-implementation

After a model has completed a training iteration with HPO on all tasks, it will
undergo four additional rounds of retraining using the previously optimized hy-
perparameter sets on a freshly initialized model. This extra process, as initially
introduced in the original DrBenchmark paper, helps to prevent a fortunate ini-
tialization from unfairly enhancing a model’s performance for a specific dataset or
task. Consequently, each model will be trained and evaluated over five folds, five
times, totaling 25 runs per task or dataset. Although this fine-tuning repetition
was already implemented, this time, it takes into account the newly optimized set
of hyperparameters set in the first round.

It is important to note that this will only serve to modify training randomness
and will not enhance statistical power during testing. This is why, in order to
evaluate significance at the class level, the iterations of models must be aggregated
at the prediction phase, prior to evaluation. The key concept is that if one model
misses a classification decision, for instance, while the other four rounds capture
it, the combined predictions will consider these minor errors and adjust them to
reflect what a particular PLM would typically predict.

3.4.1.4 Sparse Dataset or Method Improvement

Each dataset was examined for duplicates, and empty entries. Tasks that are
divided into sub-tasks will be combined if feasible and required. In Section 3.4.3,
each dataset will be described, and any alterations to the original code will be
highlighted.

For NER, sequences without labels were excluded from the entire dataset as
it may confuse the model at training if getting batches with little to no label.
Although an alternative could have been to eliminate such sequences exclusively
from the training set, the decision to remove them from the whole dataset was
driven by the cross-validation setting, which aims to provide consistent support
across each fold. While empty sequences can help evaluate models for false positives,
it is worth noting that NER sequences are usually sparse, with labeled tokens
comprising a minor fraction, thereby false positives are inherently assessed by
design.

Since DEFT2020 was under a license, the dataset could be accessed with the
authors’ permission. After identifying an issue with downloading DEFT2021, the
download code remains unsuccessful, so this task will not be considered in our
analysis.

Additionally, minor enhancements will be applied to the training methods when
needed, such as randomizing the order of sentences in the STS task. Whenever
such a modification is made, it will be mentioned in the relevant dataset section.
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3.4.2 Downstream Tasks & Metrics

The downstream tasks and their corresponding metrics have already been presented
in Section 2.1.1. Unless mentioned otherwise in the subsequent section, the original
training codes were employed. The primary metric utilized will be the F;-Score,
unless specified differently.

3.4.3 Datasets

The following sections will present each of the available datasets of the benchmark
by task. It will start with a small description, followed by a data sample and
basic statistics to get the intuition on what to expect from it. When required,
a clarification about data/model modification will be given. Table 3.4 shows an
overview of all the 15 retained datasets with a few details such as the number of
instances per label and the type of data source.

Name ‘ Task ‘ Instance ‘ Label ‘ Source ‘ Section
CAS | POS | 86,805 | 30T | CC | Section 3.4.3.3.1
CLISTER | STS | 1,000 | 0to5 | CC | Section 3.4.3.4.1
DEFT-2020 | STS | 1,009 | 0to5 | CC, encyclopedia & Section 3.4.3.4.2
| cLs | 110 | sc | 9e | Section 3.4.3.1.1
DiaMed | CLS | 726 | 15C | CC | Section 3.4.3.1.2
E3C/Clinical I npr 3270 | 1B | oo | Section 3.4.3.2.1
E3C/Temporal ‘ ‘ 5,756 ‘ 5E ‘ ‘
ESSAI POS | 150269 | 2or | Clinical Trial Pro-fiq 034332
tocols
FrenchMedMCQA ‘ CLS ‘ 3,102 ‘ 5C ‘ Pharmacy Exam ‘ Section 3.4.3.1.3
MantraGSC NER | 879 7E Eiomedical’ Prug | goction 3.4.3.2.2
Patent
MorFITT | CLS | 5,115 | 12L | Biomedical | Section 3.4.3.1.4
PxCorpus | NER | 11,465 | 30E | Drug | Section 3.4.3.2.3
| CLS | 1,727 | 4C | | Section 3.4.3.1.5
QUAERO/EMEA ‘ NER ‘ 6,001 ‘ 10E ‘ Drug & Biomedical‘ Section 3.4.3.2.4
QUAERO/Medline | | 6,765 | | |

Table 3.4: DrBenchmark Adaptation: Data & Tasks Summary - By alphabetical
order - Overall, every model tested will be evaluated using cross-validation on 15 distinct
datasets covering a broad range of tasks. In the Label column, C indicates a class within
a multi-class framework, while L denotes the count of potential labels in a multi-label
classification, T tag and E entity. The instance count reflects the number of positive C, L,
T or E. In the source column CC stands for Clinical Cases.
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3.4.3.1 Classification

This section presents four classification datasets with three multi-class and one
multi-label.

3.4.3.1.1 DEFT-2020/Task 2

DEFT-2020 (Cardon et al., 2020) includes clinical cases, encyclopedic entries,
and drug descriptions. Introduced during the 2020 edition of the annual French
Text Mining Challenge known as DEfi Fouille de Textes (DEFT), this dataset is
annotated for two different tasks.

Entailing a classification problem, the second task of the challenge consists of
determining which sentence, out of three options, most closely resembles a provided
source sentence. A manual review of the dataset reveals that life science-related
sentences are sparse; thus, the results sections will emphasize DS entries, as this is
the crucial area for model comparison. Figure G.4 shows an example of a source
sentence that is linked to another among two other sentences that are somehow
related to the source topic while not being similar to the source sentence. The
first task of this challenge utilizes the same dataset, but rather than performing a
classification, it conducts a STS task, which will be detailed in the STS section.

3.4.3.1.2 DiaMed DiaMed is a dataset that has been launched along with
DrBenchmark’s paper. It comprises 739 new French clinical cases collected from
an open-source journal (The Pan African Medical Journal). The cases have been
manually annotated by several curators, one of which is a medical expert, into 22
chapters of the International Classification of Diseases, 10th Revision (Organization,
2015). These chapters provide a general description of the type of injury or disease.
Upon analyzing the dataset, "External causes of morbidity’ lacks any observations,
effectively reducing the dataset to 21 classes. Furthermore, several classes offer very
limited support, which prevents achieving a minimum of one observation per fold.
Once these classes are removed, the dataset comprises 726 sequences distributed
among 15 classes.

Figure G.6 shows an example of such a classification. In the original code, the
"Title” was not taken into account whereas it usually contains essential information
in classification tasks, it has therefore been added to the classification pipeline,
which is now title + clinical_case — label. Table F.2 presents the label
distribution after adjustments, highlighting an unbalanced dataset where the first
three labels comprise over 55% of the total. Initially, within the 21 classes observed,
14 had fewer than 30 observations, but this count now pertains to only 8 classes.

3.4.3.1.3 FrenchMedMCQA

FrenchMedMCQA (Labrak et al., 2022) is a Multiple-Choice Question Answering
(MCQA) dataset designed for the biomedical field. It comprises 3,105 questions
sourced from actual exams of the French medical specialization diploma in pharmacy,
featuring both single and multiple correct answers. In DrBenchmark’s paper,
the dataset is subdivided into two tasks: (1) create a model that automatically
determines the correct answers from the five options provided for a given question
and (2) identify the number of answers (ranging from 1 to 5) believed to be correct
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for a given question. Figure G.10 shows a question example. During the data-
cleaning process, a formatting error (the appearance of \xa0) was fixed. There are
21 identical questions, which are due to typical questions such as "Which one of
these answers is correct?’. We discovered three identical questions with the same
set of answers and removed the duplicates.

The final dataset consists of 3,102 unique sets of questions and possible answers.
Figure 3.8b illustrates that most questions have only one answer, while the rarest
scenario involves five correct answers, where every answer is correct. Interestingly,
there are more questions with three correct answers than with two, indicating that
the frequency does not decrease strictly with the number of correct answers.

[J CLISTER FrenchMedMCQA
[ | DEFT-2020 (Task 1) ) FrenchMe Q
0.2 900

>, =

= = 600

0.1 O

A 300 D
0.0 0 - o
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Figure 3.8: Data Distribution for CLISTER, DEFT-2020 (Task 1)

and FrenchMedMCQA - Figure (a) depict the similarity score distribution
of the CLISTER and DEFT-2020 datasets in blue and pink, respectively. Fig-
ure (b) illustrates a histogram of the number of answers of the FrenchMedM-

CQA

MCQA - Aborted - The first task involves predicting the correct answer(s)
for a given question. In tackling the task, the original code uses a model with a
softmax layer connected to all possible cases (’a’, 'b’, ..., ’ab’, 'ac’, ..., ’abede’),
which seems like a workaround solution to adapt a multi-class model to a multi-label
problem. Since this choice is not justified while getting an average score of only
3% on their main metric, a multi-label model is implemented instead for each
potential answer. For this task, the Exact Match Ratio (EMR), essentially the
ratio of correctly answered questions, is used as the main metric (see Equation 2.9).
To increase diversity in answer order, training permutations are applied, and
sampling is used during inference. For each question/answer pair prediction, the
maximum sample probability is taken, with the default set to npermutation = 10. The
input format remains unchanged: question + answers[a+b+c+d+e] — labels.
Under this new configuration, the results remain on par with the original method
(EMR=~3%).

Further task analysis reveals that treating it as a retrieval problem returning
the top-k answers, where k is the number of correct answers for a given question,
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boosts the average EMR to ~16%, a fivefold increase. Even though this result
appears to be impressive, randomly providing k answers for each question actually
outperforms this method with a EMR of approximately 18%. This indicates that
(1) the model has not learned anything in the training phase, and (2) knowing the
exact number of correct answers is crucial to enhancing this metric.

A final test with a binary classifier that reranks each question/answer pair
independently shows better performance (EMR=~24%), but this comes at a high
cost, requiring seven hours to run a single fold for one model and one trial, which is
prohibitive for the potential gain. Additionally, returning the top-k answers usually
involves knowing the number of answers to return which is basically the second
task of this dataset.

In conclusion, conventional methods do not seem to affect performance, indi-
cating that modeling does not contribute to solving this task. Therefore, it has
been decided to remove it from the benchmark to avoid redundant analysis in the
upcoming chapters. Notably, even a generative model with 65B parameters such as
LLaMa, which has about 590 times more parameters than BERT, struggles with
an EMR of 33.76% (Labrak et al., 2023a). The only competitive model tested on
this task is GPT-4, achieving an EMR of 72.83%(OpenAl et al., 2024) with its
1,760B parameters, approximately 27 times more than LLaMa, or about 16,000
times more than BERT.

Classification - In this subsequent task, the same dataset is employed, but
this time the model is fine-tuned to estimate the count of correct answers. For this
purpose, the original code uses the format question + answers[atb+c+d+e] —
number of correct answers, by linking the PLM to a feed-forward layer followed
by a softmax function.

3.4.3.1.4 MorFITT MorFITT (Labrak et al., 2023c) is a dataset aimed at
multi-label classification, consisting of 3,624 biomedical abstracts sourced from
PMC Open Access and annotated with 12 medical specialties, resulting in 5,116
annotations. After cleaning and identifying one duplicate, the dataset comprises
3,623 sequences and 5,115 labels overall. Figure G.14 illustrates an abstract
annotated with two labels: Genetics and Veterinary. Table F.7 presents the
distribution of the 12 labels, which are fairly balanced, with the least occurring
label appearing 152 times and the most frequent 824 times, making up 16.11%
of the dataset. For the classification, the input is tokenized up to the maximum
length of 512 tokens. By using a binary cross-entropy loss function, a multi-label
model is fine-tuned, which enables the prediction of multiple classes concurrently
for a single abstract. The 0.7 threshold, which was previously hardcoded without
explicit justification, has now been revised to an arbitrarily established threshold
of 0.5.

3.4.3.1.5 PxCorpus/Task 2 PxCorpus (Kocabiyikoglu et al., 2022) is a
dataset for spoken language understanding in the context of medical drug pre-
scription transcripts. It comprises 4 hours of transcribed and annotated dialogues
(1,981 recordings) related to drug prescriptions. The recordings were manually
transcribed and semantically annotated. Our analysis routine of the dataset reveals
177 duplicate sequences which are removed, resulting in a dataset size of 1,727
sequences for both tasks.
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A significant portion of the sequences consists of only a few words, with counts
such as 80 sequences of length 1, 52 of length 2, and 48 of length 3, averaging 11.9
words per sequence. Figure G.15 illustrates an example from the dataset, where
each sequence is used for both NER (Task 1) and classification (Task 2).

The second task of the PxCorpus dataset involves the classification of each
sequence into one of four specific intent categories: medical prescription, replace,
negate, or none. Since there are no additional data modifications, Table F.9
illustrates how imbalanced the distribution of labels is, with Medical Prescription
making up 91.14% of the sequences.

3.4.3.2 Named Entity Recognition

This section introduces four multi-class NER datasets. Both E3C and QUAERO
are divided into two sub-datasets each, resulting in a total of six NER datasets
for the benchmark. Metrics are computed at the entity level in a strict manner,
meaning that the model must predict the exact boundaries of the entity to be
considered correct.

3.4.3.2.1 E3C E3C (Magnini et al., 2020) is a multilingual collection of clinical
case reports annotated for NER. The dataset includes two categories of annotations :
(1) clinical entities such as diseases, (2) temporal details, and factual descriptions
such as events. Although the dataset encompasses five languages, only the French
section is utilized in this work. As both sub-tasks are NER, an effort has been
made trying to merge the two datasets. However, there were 695 shared sequences
that could not be combined because some words had conflicting labels. This occurs
because the labeling schemas are not mutually exclusive across the datasets. By
excluding multi-label word sequences, the combined dataset would result in 1,763
unique sequences, which is significantly less than the 3,048 sequences anticipated
from summing both datasets. As a result, the decision was made to abandon
merging the two subtasks.

Clinical - The original subset includes 3,498 sequences. We identified 10
duplicates and 1,556 sequences without labels (i.e., sequences full of 'None’ labels).
Given that nearly half of the sequences lack labels, we chose to remove these
entries. This results in a dataset containing 1,941 sequences comprising 57,370
words. Figure G.7 shows an example of CLINENTITY tagging.

By eliminating the entries without labels, the proportion of unlabeled words
decreases from 94% to 90%, which still indicates a sparse dataset. Table F.3
shows the dataset of 3,270 entities with only one entity to detect. Same way as
POS tagging, models are trained by classifying the first word’s token to either
'0’, 'B-CLINENTITY”, or 'I-.CLINENTITY”, then metrics are computed by named
entity i.e. "CLINENTITY".

Temporal - By addressing the issues of duplicate and unlabeled sequences, we
reduced the dataset from 1,109 to 1,107 sequences. A temporal NER example is
displayed in Figure G.8 while Table F.4 presents another unbalanced dataset of
28,726 words comprising 5,756 entities spread across five named entities, with the
least frequent appearing 333 times.

3.4.3.2.2 MantraGSC
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Merged - The MantraGSC dataset (Kors et al., 2015) is annotated for biomed-
ical NER and covers multiple languages, from which only the French subset is used
in this benchmark. This dataset is compiled from three different sources which
were initially partitioned to be evaluated with two annotation schemes: Medline
(11 classes), and EMEA and Patents (10 classes). These sources encompass various
types of documents including biomedical abstracts/titles, drug labels, and patents.
Given the extremely small size of the sub-datasets (100 sequences each for EMEA
and Medline, and 50 for Patents), they were merged to form a single dataset.
After eliminating duplicates and sequences without labels, the combined dataset
consists of 238 sequences for 10 classes. An example from each subset is depicted
in Figure G.11, G.12 and G.13, while Table F.6 shows the distribution of the
combined dataset, showing only three entities occur over 100 times, highlighting
the necessity of merging the data.

3.4.3.2.3 PxCorpus/Task 1 The first task of the already described PxCorpus
dataset focuses on NER, classifying each word in a sequence into one of 37 categories,
including drug, dose, and mode. After data-cleaning, 95 sequences without labels
are eliminated, resulting in a NER subset comprising 1,640 sequences spread across
30 named entities. Table F.8 presents the named entity distribution, revealing a
substantial number of classes and a highly unequal dataset distribution among
named entities. Specifically, 15 out of the 30 entities have fewer than 100 occurrences,
and the top five classes represent more than half the label occurrences.

3.4.3.2.4 QUAERO QUAERO (Névéol et al., 2014) provides annotated
entities and concepts for NER tasks. The dataset encompasses two genres of text:
drug leaflets and biomedical titles, comprising a total of 103,056 words derived
from EMEA or Medline.

EMEA - After removing empty sequences, duplicates, and "no-label” sequences,
the EMEA dataset accounts for 1130 sequences. Figure G.16 shows an example
of a sequence while Table F.10 shows the distribution of named entities. Even
if the entities are not distributed evenly, there is a lot more data than in the
MantraGSC dataset, which refers to exactly the same entities. This time, only two
entries appear less than 100 times against four in the merged MantraGSC dataset
(Table F.6).

Medline - With even more data, Medline has not even a single entity appearing
less than 100 times. After a data cleaning process, the dataset goes from 2,498 to
2,386 sequences. Figure GG.17 and Table F.11 display both an example and the
named entities distribution, respectively.

3.4.3.3 Part-of-Speech Tagging

This section presents the two POS datasets of the benchmark. In this task, as each
word gets a label, metrics are computed at the word level.

3.4.3.3.1 CAS

The CAS dataset (Grabar et al., 2018) comprises 3,790 clinical cases annotated
for POS tagging with 31 different classes. After going through a few data-cleaning
steps, 35 duplicate entries were identified and excluded, resulting in 3,753 unique
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sequences. Upon dividing the dataset into 5 folds, one class was left out, leading
to 86,805 words being spread across 30 classes. Figure G.1 presents an example of
POS tagging in a clinical case sentence, where medical terms like ”hypogastriques,”
which is classified as an adjective, are shown. The distribution of tags shown
in Table F.1 indicates an imbalanced distribution of tags, with the top five tags
accounting for over 65% of the tags. To address POS tagging, each word is tokenized
using the model’s tokenizer, and the first token representation of each word is
classified into one of the 30 classes.

3.4.3.3.2 ESSAI

The ESSAI dataset (Dalloux et al., 2021) includes 7,247 clinical trial protocols
annotated with 41 POS tags using an automatic tagger. A data analysis revealed
333 duplicate entries, 13 of which had different labels. Consistent with previous
datasets, these duplicates were removed, resulting in a final dataset of 6,068
documents with a total of 150,240 words distributed across 35 classes, 10 of which
occur less than 100 times. Figure G.9 shows a sequence extracted from a clinical
trial with POS tagging. After splitting the dataset into 5 folds, ESSAI ends up
with 150,269 spread across 29 tags, Table F.5 shows the classes distribution of the
corrected dataset.

3.4.3.4 Semantic Textual Similarity

This section presents the two STS datasets of the benchmark. Since this task
involves forecasting a bounded number, the main metric is the R2.

3.4.3.4.1 CLISTER CLISTER (Hiebel et al., 2022) is a French dataset
designed for STS that focuses on clinical cases. It includes 1,000 pairs of sentences,
each rated by multiple annotators with similarity scores ranging from 0 to 5. These
scores were then averaged to yield a single floating-point value representing the
overall similarity. The aim of this dataset is to develop models that can predict
similarity scores matching the reference score based on the given sentence pairs.
After further data cleaning, the dataset itself remains unchanged.

Figure G.2 shows an example of a pair of sentences which display a medical
lexicon. A modification in the model fitting code has been made in order to allow
permutation of the sentences when inputting into the regression model. Indeed, as
the similarity score is insensitive to the order of sentences, switching order 50% of
the cases is a kind of free data augmentation that can help generalize at prediction.
In other words, the model used to receive data in the original order: text; + texts
— Score and now, randomly, half the time, the model receives text, + text; —
Score.

Figure 3.8a shows the distributions of the similarity scores across two datasets.
In the blue distribution, which refers to CLISTER, we can see that there is a pick
frequency at 0.0 (no similarity) and at 4.0 (high similarity), overall, the labels seem
to be well distributed.

3.4.3.4.2 DEFT-2020/Task 1  The first task of the DEFT-2020 consists
of assigning similarity scores of sentence pairs, ranging from 0 (least similar) to
5 (most similar). With one duplicate, it has a final size of 1009 sentence pairs.
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Figure G.3 illustrates two sentences with a similarity score of 3.7. Four out of
five evaluators strongly agree on the high similarity of the sentences, resulting in
an average score of 4.1. However, one evaluator rates the similarity lower at 2.0,
which brings the overall similarity score down to 3.7. This example highlights
the significance of having multiple curators to provide an objective assessment
that reflects individual opinions. Similar to the CLISTER task, sentence order is
reversed 50% of the time. Figure 3.8a shows a distribution pattern resembling the
CLISTER task (Section 3.4.3.4.1), with a high frequency of sentence pairs having
a similarity score around 0 and a small peak near 3-4.






Chapter 4

TransBERT: A Synthetically
Translated Language Model

Following a brief introduction and the presentation of our hypothesis, this chapter
focuses on developing a framework that is built on the final module from the
previous chapter to conduct an experiment. The goal of this experiment is to
validate the hypothesis that the current quality of Machine Translation (MT)
supports the creation of a Language Model (LM) pre-trained on an automatically
translated corpus, while still remaining competitive with State-of-the-Art (SOTA)
models. Using various statistical tests, a reporting system will be set up to evaluate
the performance of each model across all datasets in our DrBenchmark’s adaptation.
After assessing the performance of TransBERT, CamemBERT, and DrBERT on
each dataset, an aggregation will be deployed allowing statistical testing at the task
level to deduce the competitiveness of TransBERT on genuine French downstream
tasks.

4.1 Introduction

This section briefly outlines the context, motivation, and central hypothesis of the
research, laying the groundwork for the experimental framework that follows.

4.1.1 Motivation

For many years, computers have been employed to support healthcare professionals
in their research. As mentioned in our literature review, from classification to
Information Retrieval (IR), life science researchers are actively enhancing their
respective fields assisted by advancing technologies. Recently, Pre-trained Language
Models (PLMs) significantly impacted Natural Language Processing (NLP), leading
to numerous model variations based on different methodology, language and training
corpus. In the meantime, the advent of Transformer-based models has greatly
improved automatic translation, rendering it possible to translate extensive corpora
in an efficient timeframe.

Given that training frameworks require data, Language Models (LMs) are
predominantly centered around the English language. Although a few French
models like CamemBERT exist, locating a Domain-Specific (DS) model trained in
another language is generally challenging. Earlier this year, DrBenchmark (Labrak
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et al., 2024) was launched, it includes a collection of French/Life sciences datasets
that encompass classification, Named Entity Recognition (NER), Part-Of-Speech
(POS), and Semantic Textual Similarity (STS) tasks. Despite the paper’s mixed
results regarding an overall superior model, their model, DrBERT, appears to be
on of the most competitive.

4.1.2 Hypothesis

Taking into account the limited availability of life science data in French and the
advancements in automatic translation along with DrBenchmark’s publication, it
becomes feasible to (1) translate a substantial life science dataset, (2) train a LM
entirely on synthetically translated data, and (3) test and evaluate this model
against other models such as DrBERT. The goal of this chapter is to address our
first hypothesis, which is:

The current state of Machine Translation (MT) enables the
development of a Language Model (LM) trained entirely on an

automatically translated corpus, maintaining competitiveness
with State-of-the-Art (SOTA) models in the field.

The subsequent section will describe the experimental framework formulated to
rigorously evaluate our hypothesis.

4.2 Experimental Setting

This section provides an overview of the experimental framework constructed to
thoroughly assess the hypothesis detailed in the Introduction. It contains a brief
summary of the methodology, model comparison, statistical testing, and reporting
strategies used in the research. The section is organized to guide the reader through
the experimental process, from selecting models to interpreting results, ensuring a
full grasp of the research approach.

4.2.1 Model Comparison

To evaluate our hypothesis with competitive models, we decided the top performing
models of each kind, a general French model, to see at least how our model compares
with a general model and a DS model. Given that the general French models
produced similar results in DrBenchmark, we selected the most downloaded one,
CamemBERT (Section 2.4.3.3). For the DS model, the highest performing one,
DrBERT (Section 2.4.3.4), was picked. In the previous chapter, TransBERT, our
LM entirely trained on synthetic translated data, was developed. TransBERT was
compared to two State-of-the-Art (SOTA) models for two main reasons: (1) adding
another model would significantly increase computation time, and (2) there is no
evidence suggesting that an additional model would outperform these two SOTA
models.
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4.2.2 From Fine-Tuning to Results

Each model will be fine-tuned over five distinct rounds or iterations as described in
Chapter 3. It is important to highlight that metrics are only evaluated at the fold
level and are not combined across different rounds, as doing so would compromise
our independence assumption required for statistical purposes. To establish this
essential framework, for every tested dataset, fold, or observation, the combined
predictions from all rounds for a particular model will be considered. This means
predictions will be averaged over the rounds. Metrics will be calculated at the fold
level and can then be aggregated with other metrics to derive new measurements
or used for statistical analysis.

For instance, metrics such as macro and weighted averages are composite
measures derived from the performance of a model’s label on a specific dataset
fold. Since each dataset is divided into five folds, it will generate five metric sets
per dataset. Thus, for every label, there will be five metrics, and if a fold has
several labels, there will also be five micro, macro, and weighted averages. Treating
each fold separately is crucial for the later inter-dataset testing, which results in
somewhat unusual reporting. Although this method differs from the conventional
approach in the community, where folds are typically averaged or concatenated,
independence across fold is considered essential for validating a statistical test that
could validate our chapter hypothesis.

4.2.3 Statistical Testing

As described in Section 3.4.1.1, the current setup of DrBenchmark has been modified
to increase the data range available. By employing a 5-fold cross-validation approach
for each dataset, the metrics for each dataset will essentially be calculated five
times. By assuming each dataset’s fold as being independent, this results in models
being assessed across an effective total of 75 datasets (5 folds x 15 datasets). This
separation aids in performing statistical tests as detailed in Section 2.1.1.8. Various
statistical tests will be carried out in the following sections, taking each dataset
and fold into account.

During the prediction phase for tasks such as classification, NER, and POS
tagging, we will assess the statistical significance for each distinct class/label,
named entity, and POS tag. To statistically evaluate model differences in a multi-
class/label scenario, we need to treat each class/label as a separate binary problem.
After binarization, each class/label will be analyzed using the commonly employed
McNemar test to detect disparities between models. Still at the fold level, this
binary test will also be applied for the micro-average metric, where all labels are
treated as binary. As stated in Section 2.1.1.8, since the McNemar test is a pairwise
test, a Bonferroni correction will be applied.

For the STS task, we will analyze the residuals to check for consistency across
various models. Given that residuals typically follow a normal distribution, the
repeated measures Analysis Of Variance (ANOVA) will be performed on the
residuals. If the hypothesis that all groups are identical is rejected, a paired t-test
with Bonferroni correction will be conducted. Given that normality and equal
variances cannot be assumed, the Shapiro test and Levene test will be performed
accordingly. Should these assumptions be compromised, the Friedman test will be
performed, followed by the Nemenyi test for pairwise comparisons.
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Until now, the only test purpose is to identify differences among models in a
specific dataset fold, which can only lead to the conclusion that a model behaves
differently. The determination of it being superior is achieved through metric
measurement. When a model achieves the best metrics with statistical significance,
it can be deemed the best and attributes its success to its features rather than
randomness. To draw a comparison, it is akin to winning a 100-meter sprint by 0.1
seconds versus several seconds. However, although obtaining statistical significance
for a particular class within a dataset is challenging, it only shows excellence in a
specific context. Continuing with the analogy, if an athlete wins all of its races by
1/10 second, at one point, this pattern cannot be attributed to randomness. In
other words, excelling in one dataset doesn’t prove much, but comparing models
across various datasets provides a more accurate representation of their overall
performance.

According to (Demsar, 2006), employing the Friedman test succeeded by the
Nemenyi test is a recommended practice for comparing metric rankings to assess
model differences over multiple datasets. Hence, for these tests, three levels of
abstraction can be evaluated: (1) at each fold, by comparing the metrics for each
label that make up both the macro and weighted averages, (2) at the dataset
level, by comparing the metrics for each label of each fold that make up the macro
and weighted averages averaged across all folds, and (3) at any logical level of
aggregation, such as the weighted aggregation of all binary classification F} scores,
which will be covered in Section 4.4. This approach not only provides a metric
to compare models but also statistically demonstrates differences between models,
thereby rejecting the idea that metric values are due to randomness.

To summarize, at the dataset level, three elements will not undergo statistical
testing: (1) each label metric averaged across folds, (2) the micro average averaged
across folds, and (3) the R? averaged across folds. The reason for this is straightfor-
ward: while it would be insightful to test the averaged metrics, the Friedman test
would not yield conclusive results with only five values. An alternative approach,
such as using the McNemar test or combining STS testing on the concatenated
folds, was dismissed because it would essentially involve testing a different metric.
Indeed, although concatenating folds might have allowed for statistically significant
testing, it would not pertain to the metric we are evaluating. In essence, considering
each fold as an independent dataset implies that testing averaged metrics across
five values is not viable.

4.2.4 Reporting

To reflect independence across folds, while avoiding table repetition per fold, a
special reporting that takes into account each dataset common features will be intro-
duced. Table 4.1 provides an example of how to capture each model’s performance
for each fold in a single table preserving dataset’s label /metric uniformity.

Each value in the table represents the corresponding metric averaged over all
folds, with bold text indicating the first place and underlined text indicating the
second place. Although mainly indicative, this value reflects a key distribution
parameter: the mean. Additionally, to provide a quick overview of per-fold
performance, a medal reward system has been adopted. This system assigns a gold
medal to the top model for each metric/label pair, a silver medal to the second-best,
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and a bronze medal to the third. Similar to the Olympic Games, in the event of a
tie, the highest rank is assigned to each model sharing that tie, and the subsequent
rank takes into account the number of ties. For instance, if two models tie for first
place, the following model is ranked third. Red medals indicate a tie with a metric
of 0.00. From left to right, the first medal represents the first fold, and so forth.

| CamemBERT | DrBERT | TransBERT \support
| P R R| P R FR| P R F |

Classes

Neoplasms 85.41 90.12 87.50|84.62 91.36 87.83|89.34 91.09 90.10| 242

Blood Disorders 0.00 0.00 0.00 |20.00 10.00 13.33| 16.67 30.00 21.33 7

Macro avg 45.25 46.95 43.64 | 52.60 49.30 49.33 |60.77* 60.21 58.34*| 726

u
Micro avg (Accuracy) — 6598 — | « 7009 — —~ 75.88 — 726

Table 4.1: Example of a Dataset Detailed Model Evaluation - This is a reporting
example using a modified table of DiaMed.

Pastel colors provide insights into the rankings for a specific metric or label,
while vibrant colors indicate ranks with statistical significance. As discussed in the
previous section, various levels of testing will be conducted, each corresponding to
its suitable test. At the label level, the McNemar test is used to assess each fold
by comparing the models binary predictions with the true labels. Still at the fold
level, this test is similarly applied for micro averaging or accuracy in this example.
Both macro and weighted averages are evaluated at two levels: (1) indicated by
vibrant colors at the fold level, and (2) marked with an asterisk across folds to
highlight the given metric. Both levels are tested using the Friedman test followed
by the Nemenyi test; (1) compares a specific metric for each label within a fold,
while (2) applies the same test across all folds.

At first, this reporting system might seem hard to interpret, but it thoroughly
details and visualizes each metric well. Let’s focus on Table 4.1 and examine the
insights one can draw with and without the medal system. Looking at Camem-
BERT’s Recall for the ” Neoplasms” category, the raw figures suggest it has the
lowest metric among all models, indicating it performs the worst in retrieving
” Neoplasms” sequences. However, when considering the medals, it becomes evident
that CamemBERT achieved the highest Recall in three out of five folds but the
lowest in the remaining two, probably by a larger margin. Since there was no major
difference among the five medals, these variations were likely minor.

In terms of macro average, TransBERT achieves the highest F} score across every
fold. Despite a considerable 9-point difference from the second-best model, none of
the macro folds were statistically significant. This is likely because the test’s nature
is derived from the label metrics, which shows that the macro level significance is
greatly influenced by the number of labels in the dataset. Fortunately, evaluating
the same metric across various folds, encompassing a quintuple comparison of label
metrics, ultimately confers statistical significance upon the aggregate measurement.

As disclosed in Section 4.2.3, the F . averaged across folds will not be tested.
In our example, TransBERT consistently ranks first, once achieving statistical
significance. On the other hand, CamemBERT often ranks in the opposite position
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ranking third, once with statistical significance.

As mentioned in Section 3.4.1.1, labels that are very sparse and do not appear
at least once in each fold were excluded from the dataset reporting and statistical
evaluation. Consequently, in certain cases of multi-class classification, the micro
average may show different figures for Recall and Precision, when this is not the
case, only one number will be displayed, which is an equivalent of the accuracy
metric.

Since DEFT-2020/Task 2 is addressed in a way that makes any class aggregation
a useless metric, the main metric used will be Fy . for this dataset. To maintain
consistency, Table 4.2 will use this same metric for comparing all datasets, including
classification, NER, and POS. Given that the only meaningful metrics for the entire
dataset, which get statistically tested at the dataset level, are the macro and
weighted averages averaged across the folds, many dataset conclusions will rely
on those metrics. In reports such as Table 4.2, a Confidence Interval (CI) can be
provided for information purposes, as the normality is never implied.

4.3 Model Performance Overview

In the subsequent sections, each task will be individually evaluated to ascertain
whether any model offers unique knowledge supporting task completion. It is
important to highlight that all models possess the same architecture and undergo
fine-tuning via an identical methodology, differing solely in the pre-training phase.
As a Table of Content of the results, with link going back and forth each section,
Table 4.2 illustrates the main task metric for each dataset, averaged over five folds
for each model. A 95% CI is included to depict the variability of performance
across folds, only for information purposes, as normality will not be assumed in
our statistical tests. For ease of navigation, links to detailed results sections for
each task are included within the table, and each section begins with a reference to
this table.

As an overview of the detailed task analysis provided in subsequent sections, this
introduction will briefly highlight the findings presented in Table 4.2. Classification
and NER are the most represented tasks in our benchmark adaptation, each with
five and six datasets, respectively, and are likely the most popular tasks in the life
sciences field as it is used in various applications. Meanwhile, POS and STS are
each represented by two datasets. The table presents the main metrics for each
task which are the I} for POS, NER and CLS tasks and the R? score for STS
task.

Examining classification tasks, CamemBERT achieves the highest average main
metric across folds in three of the five datasets, whereas TransBERT excels in two.
However, evaluating from a fold-wise perspective, CamemBERT, DrBERT, and
TransBERT rank first in 6, 2, and 18 instances out of 25 folds, respectively, with a
tie in a DEFT-2020/Task 2 fold. For the NER task, the main metric averaged over
folds is led by TransBERT, while a tie is observed in the POS tagging datasets.
In the two STS datasets, while the average R? across folds seems dominated by
CamemBERT, an insight into fold-wise ranking shows a tie, with both models
achieving the best scores three and two times for one dataset each.

micro
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Task ‘ Dataset ‘ CamemBERT ‘ DrBERT | TransBERT
DEFT-2020/Task 2 98.91+0.48 97.55+1.09 98.8240.96

N DiaMed 65.9842.22 70.09+2.34 | 75.88+1.96
5 FrenchMedMCQA 60.22+2.54 56.48+0.53 59.38+1.57
MorFITT 73.55+1.04 73.30+£0.60 | 75.74+1.01
PxCorpus/Task 2 96.474+0.71 95.66+1.26 95.77+1.07
E3C/Clinical 74.91£1.39 75.46+1.16 | 76.83+1.25
E3C/Temporal 85.46+0.47 83.914+0.62 | 85.73+0.59

% MantraGSC/Merged 60.33+3.47 58.20+3.63 | 63.24+3.28
Z PxCorpus/Task 1 93.63+1.19 93.314+2.46 | 95.264+0.73
QUAERO/EMEA 84.87+0.90 84.86+0.50 | 85.72+0.59
QUAERO/Medline 62.38+0.84 60.97+0.86 | 64.294+0.95

8 CAS 97.69+0.23 97.58+0.08 | 97.76+0.22
A ESSAI 98.67+0.04 98.55+0.04 98.6540.03
Cﬁ CLISTER 82.80+1.86 75.44+1.24 82.6242.18
n DEFT-2020/Task 1 83.95+3.21 71.69+4.06 83.46+2.39

Table 4.2: Summary of Model/Dataset Results - The table shows the main metric

of each task averaged across for the 15 datasets. The main metrics are the F1,,, ,,., for

POS, NER and CLS tasks and the R? score for STS task. Bold and underline formatting
are used to highlight the best and second-best results, respectively.

4.3.1 Classification Task

In this section, each of the five classification tasks will be thoroughly examined.
For each task, after exploring the specifics of the data using tools such as Preci-
sion/Recall curves, confusion matrices, or class/label-specific performance, when
deemed necessary, a conclusion will be provided.

4.3.1.1 DEFT-2020/Task 2

As explained in Section 3.4.3.1.1, the current task involves determining which
of the three sentences is most similar to a given source sentence. The variable
that indicates the sentence number acts as a placeholder, making weighted and
macro-aggregations irrelevant. The key metric used is Fj, , _, which measures
accuracy in this multi-class setting. Table 4.3 outlines average fold accuracy, with
CamemBERT leading by 0.09 points. Across all folds, the models’” accuracy spanned
a narrow range between 95.91% and 100.00%, underscoring their competitiveness.
DrBERT shone in the third fold, achieving the highest performance, but was
the least effective in the other four folds, illustrating how tightly grouped model
performances make it possible to move from the lowest to the highest position.
In four folds, CamemBERT ranked second-best and shared the top position with
TransBERT, which held the top spot four times, despite finishing last in the third
fold. With such a small room for improvement, there were no space for statistical
significance. This dataset illustrates that poor performance in a single fold can
decrease the overall metric average. Indeed, even without achieving the top score
in any individual fold (once with a tie), CamemBERT attained the highest average
F

micro
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‘ CamemBERT ‘ DrBERT ‘ TransBERT ‘
‘ P R P ‘ P R 13 ‘ P R F ‘

Classes Support

Micro avg (Accuracy) «— 98.91 — ‘ — 97.55 — ‘ — 98.82 — ‘ 17100

Table 4.3: Detailed Model Evaluation for DEFT-2020/Task 2 - The table shows
model main metric averaged over all five folds. Bold and underline formatting are
employed to emphasize the best and second-best outcomes, respectively. Medals colors
indicate the rank of each metric at each fold, with gold denoting the top model. No
statistical significance in this dataset. For easy navigation, Table 4.2 shows the main
results.

As described in Section 3.4.3.1.1, given that the DEFT-2020 dataset is unique
in mixing life science content with encyclopedia source, a manual review uncovered
a substantial presence of non-life science data. Since the primary research goal
is assessing a life science DS LM, and the accuracy is fairly high on this 1,100
instances dataset, we manually curated all misclassified cases to either life science
or encyclopedia categories. Figure 4.1 depicts the number of instances where each
model made at least one error across all five training rounds. It is worth nothing
that because the total misclassifications are calculated over all five rounds, these
figures do not reflect overall accuracy, the selection as only been made in an effort
to see the life science proportion of misclassification. Taking a look at the figure,
it’s noteworthy that approximately 94% of CamemBERT’s errors pertain to life
science instances, while TransBERT and DrBERT exhibit lower rates of about 84%
and 82%, respectively. For illustration, an example of a misclassification outside
the life sciences domain is provided in Figure G.5.

In summary, the second task of DEFT-2020 does not reveal any model that is
definitively the best or worst in statistical terms. TransBERT achieves the highest
main metric in four folds, as opposed to only once for the other two models, but has
a marginally lower average main metric across folds. Conversely, DrBERT, which
has the lowest average metric, shows the poorest performance in four out of five
instances. However, since no statistical significance is found, no definitive differences
among the models for this dataset can be concluded, with the average performance
difference spanning 1.36 points. Additionally, for this specific dataset utilizing
non-life science data, around 17% of misclassifications are related to encyclopedia
topics. Examining misclassifications within models indicates that CamemBERT’s
misclassifications are 94% related to life sciences, whereas TransBERT and DrBERT
exhibit a significantly lower rate of about 83%.

4.3.1.2 DiaMed

DiaMed involves categorizing clinical cases into one of 15 possible classes. Table 4.4
presents the Precision, Recall, and Fj per class, along with micro, macro, and
weighted average aggregations.

Focusing on the class level, TransBERT consistently outperformed the other
models in most classes, achieving the top scores in Precision, Recall, and F} for
the majority of the categories, with statistical significance for ” Cong. Malform.” .
Achieving mostly second-place results across various classes, DrIBERT appears to
be the next best model, frequently providing strong performances, especially in
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Figure 4.1: DEFT-2020/Task 2 - Error Analysis Venn Diagram -
This figure illustrates the number of instances where each model made at
least one misclassification across all the five training iterations. The ratio
represents the proportion of life science misclassifications. As this dataset’s
source is blent with encyclopedic data, the highest the life science proportion
misclassification, the less effective a model is at classifying what is relevant for
this research.

the ” Neoplasms” and ” Musculoskeletal” categories. It was recognized for having
the highest Recall in several cases, highlighting its strength in identifying relevant
instances. In contrast, CamemBERT finishes last in the majority of the categories,
except for ” Infectious” where it secures the second position, while ranking first in
the final two folds.

Looking at the accuracy, CamemBERT typically underperformed compared to
the other two models. Although it never statistically ranked last at the label level,
it significantly achieved the lowest Fy . score in the first fold. In contrast, Trans-
BERT achieved the highest accuracy across all folds, with statistical significance
in the second fold, where it also had significance in classifying ” Cong. Malform.”.
It is important to note that some of the less supported classes had multiple folds
where the models failed to perform, resulting in an accuracy of 0.00.

Figure 4.2 displays the confusion matrix for the two best-performing models,
revealing that DrBERT’s predictions are heavily skewed towards the most common
class 7 Neoplasms”. This tendency explains the high Recall for this class, coupled
with poor Precision. On the other hand, TransBERT’s confusion matrix shows
that misclassifications are mainly restricted to the three least represented classes:
" Nervous”, ” Respiratory”, and ” Blood Disorders”, with 13, 10, and 7 instances,
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| CamemBERT | DrBERT | TransBERT ‘Support
/P R BR| P R F | P R F |

Classes

Neoplasms 85.41 90.12 87.50|84.62 91.36 87.83 | 89.34 91.09 90.10 | 242
Infectious 74.64 81.15 77.02|72.38 82.29 75.40 | 78.34 85.44 81.34 89
Injury 75.18 61.06 66.43|70.16 68.98 69.18| 78.40 83.86 80.32 74

Cong. Malform. 43.00 32.29 36.08|46.66 39.64 41.99|70.92 61.89 63.57 55
Musculoskeletal 57.71 64.01 60.00|58.66 70.53 63.79 | 67.74 68.68 65.86 52

Circulatory 47.64 46.15 46.36|64.89 56.31 58.32 | 73.81 58.27 62.16 | 43
Digestive 48.57 66.94 54.16|68.83 56.94 58.63 | 58.11 61.94 59.17| 34
Endocrine 43.33 31.33 33.71|51.67 32.67 38.70 | 65.95 72.67 66.39 | 24
Pregnancy 63.71 57.33 51.87|72.00 69.00 69.16|78.67 81.00 77.11| 23
Eye 51.24 60.33 54.34|54.50 63.67 57.71| 58.33 59.67 57.67 21
Genitourinary 41.90 46.57 38.33|48.00 38.43 41.67 | 79.33 70.57 70.78 | 20
Skin 41.33 47.00 40.76 | 56.67 49.67 50.85 | 66.00 51.33 55.97 | 19
Nervous 5.00 20.00 8.00 | 0.00 0.00 0.00 | 10.00 20.00 13.33 | 13
Respiratory 0.00 0.00 0.00 {20.00 10.00 13.33| 20.00 6.67 10.00 10

Blood Disorders 0.00 0.00 0.00 {20.00 10.00 13.33| 16.67 30.00 21.33 7

Weighted avg 66.17 65.98 64.70|69.87 70.09 68.86 |77.39* 75.88 75.31*| 726
Macro avg 45.25 46.95 43.64|52.60 49.30 49.33 |60.77* 60.21 58.34*| 726
Micro avg (Aceuacy) | « 6598 — | « 7009 - | « 175.88 — | 726

Table 4.4: Detailed Model Evaluation for DiaMed - The table shows model metrics
averaged over all five folds for the 15 classes. Bold and underline formatting are employed
to emphasize the best and second-best outcomes, respectively. Medals colors indicate
the rank of each metric at each fold, with gold denoting the top model. Red medals
denote that every model received a Null metric. Although pastel medal colors illustrate
an absolute ranking, vibrant colors indicate statistical significance using o = 0.05. For
each fold, micro average and individual class level statistical evaluations were carried
out using a McNemar test with Bonferroni correction (aonferroni = ﬁ = %). Macro
and weighted averages significance were evaluated using a Friedman test followed by a
Nemenyi test on labels metrics. For easy navigation, Table F.2 shows the task statistics
and Table 4.2 the main results.

respectively, across the entire dataset. As outlined in Table 4.4, these classes
amassed multiple 0.00 metrics, marking them as the lowest-performing classes across
models. The only non-diagonal entries for TransBERT indicate that the model tend
to confuse ” Respiratory” with ” Injury” and ” Nervous” with ” Musculuoskeletal” .

The analysis of the DiaMed results table reveals that TransBERT stands out as
the most effective model, demonstrating superior performance in various medical
categories and all aggregated measures of Precision, Recall, and F; metrics. It
persistently achieves the best results in each fold on the main metric, with one
instance of statistical significance. This consistency across multiple classes and
folds has been recognized with a statistically significant overall best performance, as
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Figure 4.2: DrBERT & TransBERT - Confusion Matrices for Di-
aMed - To plot this confusion matrix, the test sets from all folds were
combined, providing better insight into the overall class confusion for a given
model.

evidenced by the weighted and macro averages computed across all folds. In contrast,
CamemBERT frequently underperforms, often delivering the worst outcomes in
several classes and emerging as the least effective model four out of five times, once
with statistical significance. Summarizing, the comparison of models on this dataset
reveals a distinct overall best-performing model, and another that is notably worse
in performance. By inference, and without any statistical differentiation, DrBERT
consistently places in the middle, without notably excelling or underperforming in
any specific area.

4.3.1.3 FrenchMedMCQA

The FrenchMedMCQA dataset entails determining the count of correct responses
in a Multiple-Choice Question Answering (MCQA) dataset. As indicated by
Table 4.2, CambemBERT achieves the highest average score, being 0.84 points
ahead of TransBERT, which is in the second place, and also shows the largest CI
in the classification task. DrBERT, trailing 2.9 points behind the runner-up, falls
short in this overall average dataset metric.

Referring to Table 4.5, CamemBERT excels in predicting single correct answers,
achieving the highest Fj score for the most supported class across all five folds.
Although it attains the best Precision for identifying ” 2 Correct Answers” questions
with significance at one fold, it can also perform the worst in retrieving them,
displaying the lowest Recall and F; with statistical significance at one fold. More-
over, DrBERT yields the worst results among the top-3 most supported classes,
recording the lowest metric for predicting ” 2 Correct Answers” at the second fold
with statistical significance. TransBERT, on the other hand, performs moderately,
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securing the highest F} on four folds for 72 Correct Answers” while ranking second
for the other top-3 supported classes on the same folds. With an F} of 20.21,
DrBERT becomes the best 74 Correct Answers” classifier with significance on one
occasion. All models face difficulties in identifying "5 Correct Answers” except for
the fourth fold where DrBERT identified a few instances.

| CamemBERT | DrBERT | TransBERT \support
‘ P R 3 ‘ P R Fy ‘ P R Fy ‘

Classes

1 Correct Answer 97.09 89.59 93.17|93.02 89.62 91.28|93.19 90.46 91.79| 1,079
1] o
2 Correct Answers 37,77 26.53 28.39 [ 35.66 36.76 35.82|36.38 37.43 35.90| 670
1] 1] 1]
3 Correct Answers 45.98 74.02 56.33|42.99 50.76 46.47 |47.65 63.19 53.74| 929
° ] o
4 Correct Answers 19.05 8.47 11.52|25.61 17.29 20.21|21.49 9.25 12.64| 381
5 Correct Answers 0.00 0.00 0.00 [{10.00 2.00 3.33| 0.00 0.00 0.00 43

Weighted avg 58.11 60.22 56.94 | 56.37 56.48 56.01|57.24 59.38 57.25| 3,102
Macro avg 39.98 39.72 37.88|41.45 39.29 39.42|39.74 40.07 38.82| 3,102
Micro avg (Accuracy) — 60.22 — < 5%4§ — «— 59.38 — 37102

Table 4.5: Detailed Model Evaluation for FrenchMedMCQA - The table shows
model metrics averaged over all five folds for the 5 classes. Bold and underline formatting
are employed to emphasize the best and second-best outcomes, respectively. Medals
colors indicate the rank of each metric at each fold, with gold denoting the top model.
Red medals denote that every model received a Null metric. Although pastel medal colors
illustrate an absolute ranking, vibrant colors indicate statistical significance using o = 0.05.
For each fold, micro average and individual class level statistical evaluations were carried
out using a McNemar test with Bonferroni correction (aBonferroni = n:zst = %). Macro

and weighted averages significance were evaluated using a Friedman test followed by a
Nemenyi test on labels metrics. For easy navigation, Table 4.2 the main results.

The aggregated metrics reveal an interesting comparison, with each of the
three models excelling in different aspects. CamemBERT achieves the highest
average Precision and Recall when class weights are taken into account, whereas
TransBERT secures the best Fy,, .., If equal weight is assigned to each class,
DrBERT obtains the top £, twice. While perspectives may vary, it is crucial
to note that, for the main metric, , despite the absence of a definitive best model
on this dataset, TransBERT delivers the best accuracy across most folds, while
CamemBERT reaches that level twice with the highest average accuracy, finally,
DrBERT performs the worst in four out of five instances, twice with statistical
significance.

4.3.1.4 MorFITT

MorFITT is a dataset designed to categorize biomedical abstracts into 12 distinct
labels. As delineated in Table 4.2, a 2.19 points disparity is observed between Trans-
BERT and CamemBERT, identified as the highest and second-highest performing
models concerning the averaged F} _, ., respectively.

Table 4.6 provides a detailed comparison of the three models’ performance
across all 12 of MorFITT’s labels. Examining the bold metric by label, DrBERT
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has the highest Precision for most labels but also the lowest Recall for 10 of them.
CamemBERT exhibits the lowest Precision in 11 out of 12 labels, TransBERT
obtains the best Recall and Fj scores in 11 and 12 labels, respectively. In contrast
to earlier datasets, this consistency in label performance is partially due to the
substantial support, even for the less frequently occurring labels. Analyzing the F}
score for each label per fold, TransBERT achieved the highest score approximately
63% of the time, whereas DrBERT did so around 13%. This likely explains why
both macro and weighted averages are predominantly characterized by five top
rankings.

‘ CamemBERT ‘ DrBERT ‘ TransBERT ‘ Support

Labels
| P R F | P R F | P R F |

Veterinary 80.12 88.59 84.10(81.80 85.63 83.61|81.02 90.54 85.49 | 824
Etiology 63.95 70.71 67.05|67.26 63.63 65.34|69.38 68.75 68.90 | 741
Psychology 84.04 87.54 85.67|84.47 86.90 85.59 |85.60 87.67 86.58 | 608
Surgery 79.72 86.43 82.91|81.63 85.82 83.61|81.58 86.84 84.04 | 9549
Genetics 77.09 76.33 76.52|76.89 75.00 75.83|75.41 78.91 77.04| 9505
Physiology 67.12 51.83 58.27|64.28 47.95 54.89|68.57 54.10 60.36 | 490
Pharmacology 67.44 65.61 66.34(73.94 60.48 66.23|70.18 69.41 69.45| 299
Microbiology 69.18 70.63 69.31|71.87 72.29 71.44|71.36 76.24 73.53| 273
Immunology 64.86 63.62 62.94|69.96 60.40 64.49|68.09 67.43 67.21| 262
Chemistry 67.67 46.69 54.00|65.08 47.71 54.39|69.80 54.88 60.57 | 212
Virology 69.61 70.92 70.11|72.17 69.02 70.2969.95 73.59 71.25| 200
Parasitology 60.97 64.78 61.78|65.58 62.18 63.36 |69.21 75.71 72.27| 152
Weighted avg 7330 TAI1* 73.16| 7487 7148° 72.74|75.32 76.12° 75.36*| 5,115
Macro avg 70.%8* 70.31* 69.92 | 72.91 58%9* 69.92(73.35 73.67* 73.06*| 9,115
Micro avg 73.13 74.11 73.55|75.26 71.48 73.30(75.38 76.12 75.74| 95,115

Table 4.6: Detailed Model Evaluation for MorFITT - The table shows model
metrics averaged over all five folds for the 12 labels. Bold and underline formatting are
employed to emphasize the best and second-best outcomes, respectively. Medals colors
indicate the rank of each metric at each fold, with gold denoting the top model. Although
pastel medal colors illustrate an absolute ranking, vibrant colors indicate statistical
significance using o = 0.05. For each fold, micro average and individual class level
statistical evaluations were carried out using a McNemar test with Bonferroni correction
(Bonferroni = nist = %). Macro and weighted averages significance were evaluated
using a Friedman test followed by a Nemenyi test on labels metrics. For easy navigation,
Table F.7 shows the task statistics and Table 4.2 the main results.

Figure 4.3 presents the Precision/Recall curves of TransBERT for each label,
along with the micro and macro averages. The categories of Veterinary and Psychol-
ogy excel with high Area Under the Cruve (AUC) of 86.37 and 86.16 respectively,
demonstrating a strong balance between Precision and Recall. Conversely, cate-
gories such as Chemistry and Physiology exhibit lower performance, with AUC
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values of 56.78 and 60.63. The macro average and micro average, with respectively
AUC of 71.99 and 75.56 offer an overall view of performance, with the micro average
indicating slightly better performance when assessing all instances equally. Most of
the curves show that Precision is well-maintained as Recall increases, particularly
for the highest-performing categories. However, categories like Chemistry and
Physiology experience a quicker drop in Precision as Recall grows, highlighting
difficulties in sustaining accuracy while capturing all positive instances in these
fields. In contrast to previous tasks, the labels with fewer instances do not exhibit
the lowest performance results. It is, however, noteworthy that in absolute terms,
the label with the least support, ” Parasitology”, comprises 152 instances, whereas
DiaMed’s class ” Blood Disorders” is represented by a mere 7 instances.

mm Micro Avg (75.56)

1.0
X Macro Avg (71.99)
Veterinary (86.37)
0.8 1 Etiology (65.98)
Psychology (86.16)
_ 061 Surgery (82.87)
2 Genetics (76.71)
o2
o = = Physiology (60.63)
~
0.4 1 Pharmacology (66.24)
= = Microbiology (74.01)
0.2 Immunology (67.69)
Chemistry (56.78)
Virology (70.32)
0.0 1 = = Parasitology (70.09)
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4.3: TransBERT - Precision/Recall Curves for MorFITT - To
provide a broader perspective, the micro and macro averages are displayed as
solid lines, and individual labels are indicated with dashed lines. The numbers
in parentheses denote the area under each respective curve.

In summary, TransBERT achieves the highest weighted and macro averages
for Recall and F} scores across folds, with statistical significance, by obtaining the
highest averaged Recall and F} scores for 11 and 12 labels, respectively. Despite
being the most precise model on average and in three folds, it does not achieve
statistical significance for Precision. Conversely, it’s challenging to determine the
second-leading model between CamemBERT and DrBERT. CamemBERT statisti-
cally outperforms DrBERT in Recall averaged across folds, yet it is statistically the
least precise model with statistical significance aggregated and in one given fold.
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4.3.1.5 PxCorpus/Task 2

The PxCorpus’s second task includes a dataset of medical drug prescription tran-
scripts that were manually categorized into four classes, with a considerable imbal-
ance as the most prevalent class comprises roughly 91% of the dataset. Table 4.2
shows the main metric averaged across folds where CamemBERT, TransBERT,
and DrBERT rank in first, second, and third places, respectively. Nonetheless, the
narrow metric range of 0.81 points illustrates a very competitive dataset.

Table 4.7 presents the dataset outcomes. In the most supported class, ” Medical
Prescription”, CamemBERT achieves the highest Precision and F} scores on average
across folds, and it secures the top rank in Recall the most frequently. The ” None’
class highest ranks are shared by CamemBERT and DrBERT, while TransBERT
achieves the highest score only in the first fold. The second most supported class
is largely dominated by CamemBERT, which ranks first in at least three different
metrics and shows statistical significance in one of them. In the same fold, it
obtains the best Recall and F) in four and three classes, respectively. Additionally,
CamemBERT achieves the best performances in the two least supported classes,
where a few 0.00 values among models can be spotted.

9

| CamemBERT | DrBERT | TransBERT \support
| P R F | P R F | P R F |

Classes

Medical Prescription 97,87 99.05 98.45/97.49 98.67 98.07|97.02 99.24 98.11| 1,574
None 83.21 77.29 79.73|75.28 72.98 73.67|80.77 68.59 73.84| 115
Negate 66.00 45.00 51.55|65.00 41.67 50.48 |66.67 41.67 50.48| 21

Replace 60.00 40.00 47.67|41.67 34.67 35.24|36.67 18.67 24.43| 17

Weighted avg 96.39 96.47 96.31|95.28 95.66 95.35(95.28 95.77 95.34| 1,727
Macro avg 76.77 65.33 69.35(69.86 61.99 64.36|70.28 57.04 61.71| 1,727
Micro avg (Accuracy) +— 9647 — +— 95.66 — —  95.77 — 1,727

Table 4.7: Detailed Model Evaluation for PxCorpus/Task 2 - The table shows
model metrics averaged over all five folds for the 4 classes. Bold and underline formatting
are employed to emphasize the best and second-best outcomes, respectively. Medals
colors indicate the rank of each metric at each fold, with gold denoting the top model.
Red medals denote that every model received a Null metric. Although pastel medal colors
illustrate an absolute ranking, vibrant colors indicate statistical significance using a = 0.05.
For each fold, micro average and individual class level statistical evaluations were carried
out using a McNemar test with Bonferroni correction (aBonferroni = m‘:st = %). Macro
and weighted averages significance were evaluated using a Friedman test followed by a
Nemenyi test on labels metrics. For easy navigation, Table F.9 shows the task statistics

and Table 4.2 the main results.

Achieving the top scores on the majority of folds across all metrics and classes,
CamemBERT achieves three Recall and F; values for each aggregation method,
with statistical significance in one instance. In contrast, both DrBERT and
TransBERT secure the remaining top scores in a single fold across each metric’s
highest aggregation, lacking statistical significance.
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4.3.2 Named Entity Recognition Task

An examination of Table 4.2 reveals that the analysis exhibits a consistent pattern
with TransBERT demonstrating superior performance across all NER tasks. This
section will scrutinize each task result independently by assessing Precision, Recall,
and F metrics for each entity, taking into account the balance and origin of each
dataset.

4.3.2.1 E3C/Clinical

In this first NER dataset, which focuses on identifying a single entity called ” Clinical
Entity”, Table 4.2 shows that TransBERT leads in performance across four out of
five folds for all metrics while getting the highest metrics averaged across folds. No
statistical significance is noted at the entity level, and the singularity of the dataset
prevents testing at any aggregation level. CamemBERT appears to underperform
with the lowest F} score averaged across folds and ranking lowest in four out of
five folds. Once again, since no statistical significance is observed in the task, any
performance improvements could be attributed to random events.

Named ‘CamemBERT‘ DrBERT ‘ TransBERT ‘Su ort
Entities pp

| P R F | P R F | P R F |
Clinical Entity ‘74.75 75.08 74.91‘75.50 75.44 75.46‘76.80 76.89 76.83‘ 3,270

Table 4.8: Detailed Model Evaluation for E3C/Clinical - The table shows model
metrics averaged over all five folds for the only named entity. Bold and underline
formatting are employed to emphasize the best and second-best outcomes, respectively.
Medals colors indicate the rank of each metric at each fold, with gold denoting the
top model. Although pastel medal colors illustrate an absolute ranking, vibrant colors
indicate statistical significance using a = 0.05. For each fold, micro average and individual
class level statistical evaluations were carried out using a McNemar test with Bonferroni
correction (Bonferroni = nti‘st = @). Macro and weighted averages significance were
evaluated using a Friedman test followed by a Nemenyi test on labels metrics. For easy
navigation, Table F.3 shows the task statistics and Table 4.2 the main results.

4.3.2.2 E3C/Temporal

Originating from a clinical case as well, E3C/Temporal involves the identification
of five distinct time-related named entities. An initial examination of Table 4.2
reveals that TransBERT, CamemBERT, and DrBERT rank first, second, and third
when considering the primary metric averaged across folds, with a gap of 0.27
points separating the top two positions. In this dataset, the most represented entity
accounts for approximately 66% of the instances, with the remaining four entities
being comparatively uniformly distributed.

Analyzing Table 4.9, high performance appears to be divided among entities
between CamemBERT and TransBERT. Specifically, TransBERT achieves the best
outcomes in the two most prevalent entities and also in the ” Time FExpression’
category, whereas CamemBERT excels in ” Lab Result” and ” Actor”. Despite the
absence of a statistical test differentiating the two models best performing models,

Y
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DrBERT ranks among the lowest for almost each entity and fold, with statistical
significance at one instance on ” Body Part”.

Named ‘ CamemBERT ‘ DrBERT ‘ TransBERT ‘Support

Entities
| P R F | P R F, | P R F |
Event 86.13 88.27 87.18|85.91 87.13 86.50 |86.83 89.04 87.91| 3,336
k] k] k]
Body Part 75.60 76.22 75.80|70.74 T72.50 71.48 |75.87 76.66 76.14| 0654
Lab Result 80.19 85.44 82.70| 77.75 82.53 80.04 | 79.03 82.76 80.83| 9507
Actor 89.98 92.05 90.99| 88.64 89.20 88.92 | 88.94 91.45 90.13| 426

Time Expression 79.88 82.53 81.09| 76.10 79.43 77.68 | 79.00 84.07 81.43| 333

Weighted avg 84.39 86.60 85.45 |83.16* 84.79* 83.93*|84.63 86.94 85.74| 5,756
Macro avg 82.36 84.90 83.55|79.83* 82.16* 80.92* | 81.93 84.80 83.29 | 9,756
Micro avg 8436 86.60 85.46|83.06 84.79 83.91 |84.57 86.94 85.73| 5,756

Table 4.9: Detailed Model Evaluation for E3C/Temporal - The table shows
model metrics averaged over all five folds for the 5 named entities. Bold and underline
formatting are employed to emphasize the best and second-best outcomes, respectively.
Medals colors indicate the rank of each metric at each fold, with gold denoting the
top model. Although pastel medal colors illustrate an absolute ranking, vibrant colors
indicate statistical significance using o = 0.05. For each fold, micro average and individual
class level statistical evaluations were carried out using a McNemar test with Bonferroni
correction (Bonferroni = nto(:st = 0'3&). Macro and weighted averages significance were
evaluated using a Friedman test followed by a Nemenyi test on labels metrics. For easy

navigation, Table F.4 shows the task statistics and Table 4.2 the main results.

In conclusion, it appears that even though they distribute the best outcomes
between themselves, no model was consistent in any metric across all entities for a
single fold, thus, while being better than DrBERT, we can’t tell which is the best
among CamemBERT and TransBERT. On the other hand, by being consistent
with its ranking, DrBERT attains statistical significance in every aggregated metric
averaged across folds. Additionally, it achieves the poorest results in each fold for
each metric of the micro aggregation, once with statistical significance.

4.3.2.3 MantraGSC

MantraGSC/Merged represents a NER dataset that centers on biomedical abstract-
s/titles, drug labels, and patents. It possesses the smallest dataset size among
all others, which is probably why Table 4.2 CIs suggests the highest expected
variability. An overview of our summary results table indicates that TransBERT
outperforms CamemBERT by 2.91 points, with CamemBERT ahead of DrBERT
by 2.13 points.

Examining Table 4.10 at the entity level indicates that some metrics have
fluctuated significantly across folds. Specifically, in the cases of ” Disorder” and
" Chemical/Drugs”, the two most dominant classes, although CamemBERT fre-
quently achieves the top rank with statistical significance, TransBERT attains the
highest scores for all metrics averaged across folds. On the other hand, DrBERT is
ranked lowest for approximately half of the entities in each metric.
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ENririrtl;ie(;is ‘ CamemBERT ‘ DrBERT ‘ TransBERT ‘Supp ort
| P R F | P R F | P R F |
Disorders 66.06 61.29 63.36 | 63.04 64.18 63.57 [66.74 65.01 65.73| 288
Chemical/Drugs 63.00 66.93 63.78 [ 59.29 61.88 59.78 |64.36 69.78 66.52| 236
Procedures 49.46 59.15 53.48 | 54.59 56.17 54.46|54.84 53.29 53.44 | 129
Living Beings 74.64 74.82 74.39/69.13 65.76 66.58 | 70.93 71.27 70.71| 91
Anatomy 51.97 60.02 55.04 |46.25 38.21 41.40|69.57 61.90 65.18| 66
Physiology 30.78 32.67 31.35(46.42 22.44 26.86 | 290.27 24.44 26.22| 44
Objects 52.00 19.33 24.38 | 46.67 31.33 31.71|42.00 58.15 38.42| 25
Weighted avg 6155 G108 60.14|50.94 57.24° 57.38 |63.87 62.76 62.56| 879
Macro avg 55.42 53.46 52.25 | 55.05 4?.57* 49.19 |56.82 57.69 55.17| 879
Micro avg 59.70 61.08 60.33 | 59.24 57.24 58.20 |63.82 62.76 63.24| 879

Table 4.10: Detailed Model Evaluation for MantraGSC/Merged - The table
shows model metrics averaged over all five folds for the 7 named entities. Bold and
underline formatting are employed to emphasize the best and second-best outcomes,
respectively. Medals colors indicate the rank of each metric at each fold, with gold
denoting the top model. Although pastel medal colors illustrate an absolute ranking,
vibrant colors indicate statistical significance using o = 0.05. For each fold, micro average
and individual class level statistical evaluations were carried out using a McNemar test
with Bonferroni correction (aponferroni = nt(:st = 0‘3&). Macro and weighted averages
significance were evaluated using a Friedman test followed by a Nemenyi test on labels
metrics. For easy navigation, Table F.6 shows the task statistics and Table 4.2 the main
results.

In conclusion, the analysis of the most supported entities’ results presents a
perplexing picture. On one hand, CamemBERT achieves the best results with statis-
tical significance on three separate occasions, while on the other hand, TransBERT
consistently scores higher on the same metrics, although without any statistical
significance. However, when examining the micro aggregation, the story becomes
clearer. Specifically, while CamemBERT achieves the top Recall score twice, with
statistical significance on one occasion, its performance in terms of aggregated F}
scores is less impressive, achieving significance only twice when considering macro
aggregation on this highly unbalanced dataset. In contrast, considering entity
distribution shows that TransBERT achieves the highest F} scores four times across
both micro and weighted averages, with statistical significance achieved in one fold.
DrBERT lags behind in most folds, metrics, and aggregations, suffering notably
from poor Recall, evidenced by the worst results in one fold for both weighted and
macro aggregations. This consistency renders it the worst in aggregated Recall
across folds, with statistical significance.

4.3.2.4 PxCorpus/Task 1

Comprising 30 named entities, PxCorpus/Task 1 is probably the most unbalanced
dataset, with one-third of the entities representing close to 90% of the total
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instances. In Table 4.2, the primary metric is led by TransBERT at 1.63 points
above CamemBERT, the second best. DrBERT lags behind CamemBERT, with a
0.32 point difference and high Cls compared to the other two models.

With its 30 entities, Table 4.11 is quite extensive, but a few key points can
effectively summarize each model’s performance. TransBERT stands out with a
clear majority of top scores across all metrics and folds, achieving the best results
for most entities. Identifying the second best per entity is more complex. When
looking at the F-1 score, which combines Precision and Recall, DrBERT exhibits
high variability, with some of the lowest and highest statistically significant scores.
However, CamemBERT shows strong results in several of the most supported
entities when considering the aggregate performance across folds.

In conclusion, both CamemBERT and DrBERT exhibit a mix of statistically
significant high and low results, making it challenging to assess their performance
without aggregating the entities. Conversely, TransBERT consistently performs
well, frequently achieving top rankings, though statistical significance is noted only
twice. Aggregating results provides a clearer evaluation: TransBERT attains the
best scores for both weighted and macro averages across all metrics and folds, with
statistical significance. It also outperforms in micro metrics, securing the top spot
three out of five times with statistical significance. DrBERT secures second place
in weighted and macro average Precision across folds with statistical significance
and tends to perform better in less supported entities compared to CamemBERT,
showing an average over folds five-point higher F; __  score. On a fold level, both
models are the worst performers at least once per metric with statistical significance,
but DrBERT ranks first twice, with one instance being statistically significant.

4.3.2.5 QUAERO/EMEA

QUAERO/EMEA is a NER dataset comprising 10 entities derived from texts related
to marketed drugs. Table 4.2 shows that TransBERT outperforms CamemBERT,
the second-best model, by 0.85 points and is just 0.01 point ahead of DrBERT.

Table 4.12 demonstrates the performance of models for each entity, with Trans-
BERT achieving the highest F} score for 8 out of 10 entities. It is notably consistent
in entities with low support, obtaining the best results in 53%, 93%, and 73% of
the folds for Precision, Recall, and Fj, respectively. In contrast, both Camem-
BERT and DrBERT have diverse competitive results, with CamemBERT excelling
in classifying ” Disorders” and DrBERT in ” Physiology”, with one fold showing
statistical significance.

TransBERT attains the highest values for all aggregated metrics averaged across
folds. By achieving top Precision in 8 out of 10 entities, it achieves statistical sig-
nificance in both aggregated averages. More importantly, by consistently attaining
high F) scores across the entities, it reaches statistical significance with the highest
weighted and macro averages averaged across folds. Without any statistical signifi-
cance in any aggregation metric, there is not much difference between DrBERT
and CamemBERT. However, it is noteworthy that DrBERT achieves substantially
better F} .., indicating more consistent Fj scores across entities, being awarded
four second places and one first place compared to five last ranks for CamemBERT
in this specific metric.
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Nar_n_ed CamemBERT | DrBERT TransBERT | Support
Entities
P R F, | P R Fy P R F |
¥ 88 Y
dos_val 3.40 96.14 94.73 | 95.08 96.77 95.91 | 96.08 97.07 96.56 | 1,600
v v 8 s S
dos_uf 93.32 94.76 94.03 | 94.50 94.65 94.57 | 96.24 96.24 96.24 | 1,513
rhythm_tdte 99.05 99.79 99.42 | 98.72 99.73 99.22 | 99.22 99.93 99.57 | 1,320
R R
dur_val 96.86 99.67 98.24 | 95.70 99.67 97.59 | 98.13 99.58 98.85 | 1,208
© ¥ |8 8 v
dur_ut 96.61 99.75 98.14 | 95.80 99.75 97.76 | 98.06 99.67 98.85 | 1,205
LRI R R
drug 89.10 91.38 90.20 | 86.62 88.15 87.36 | 90.62 88.81 89.67 935
d-dos_val 05.52 96.68 96.09 | 95.56 95.90 95.72 | 96.05 97.03 96.53 | 849
d-dos_up 97.10 98.79 97.92| 96.76 97.60 97.18 | 96.96 98.78 97.86 822
. BUBsy ¥UeiY Wee
inn 82.60 77.70 79.67 | 76.15 77.40 76.54 | 79.03 85.84 82.07 | 380
k] k] k]
cma-event 82.46 81.46 81.90 | 77.59 76.73 77.13 | 78.42 82.44 80.33 313
¥ ¥ ¥
d_dos_form 85.33  92.00 88.47 | 85.61 92.12 88.63 | 90.21 93.90 92.00 280
VY B8 ©vE
rhythm_perday 88.86 97.10 92.41 | 90.29 91.96 91.02 | 95.02 97.15 95.91 241
dos_cond 80.26 87.24 83.26 | 89.13 81.53 84.45 | 82.92 86.79 84.51 134
IR - T o
rhythm_hour 89.56 96.40 92.69 | 89.01 87.27 88.00 | 95.20 98.00 96.46 112
4] )+ )+
freq-ut 83.30 89.49 84.55 | 91.96 86.77 89.14 | 94.53 98.22 96.30 109
¥ ¥ o ¥ ¥ ¥
d_dos_form_ext 72.77 61.57 64.49 | 52.64 51.13 51.85 | 92.60 81.60 85.69 66
A 76.18 63.96 6821 |95.32 76.08 82.52 | 85.18 80.99 79.81 52
¥ ¥YY ©U¥
roa 64.44 72.89 67.62 | 75.00 57.36 59.79 | 82.78 91.57 85.28 46
. |+ ] o
freq-int_v1 44.29 45.00 43.38 | 60.00 54.44 57.01 | 87.78 88.33 87.42 31
¥ ¥ ¥
gsp-val 57.50 53.78 55.27 | 60.00 60.00 60.00 [{100.00 100.00 100.00| 29
rhythm rec_ut 41.00 56.00 46.48 | 54.44 52.78 53.10 | 90.00 89.44 89.00 29
max_unit_val 0.00 0.00 0.00 | 40.00 33.33 36.00 | 80.00 62.67 69.29 28
¥ ¥ ¥
gsp-ut 35.56 35.56 35.00 | 60.00 60.00 60.00 | 96.00 100.00 97.78 28
freq-int_v1_ut 51.67 60.00 55.32 | 80.00 51.11 58.82 | 83.43 84.44 80.41 26
rhythm rec_val 45.09 56.00 48.06 | 75.00 58.29 60.48 | 87.67 96.00 90.88 24
freq-int_v2 60.00 53.33 56.00 | 80.00 63.33 68.18 [100.00 90.00 94.18 20
freq-val 20.00 13.33 16.00 | 53.33 46.67 49.33 | 93.33 76.67 82.67 19
fasting 60.00 60.00 60.00 | 56.67 56.67 56.36 |100.00 80.67 84.85 18
max_unit_uf 0.00 0.00 0.00 | 36.00 32.00 32.78 | 66.00 56.67 59.11 18
freq-int_v2_ut 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.00 0.00 10
. \00 e e \00 AY IR V2 A\ R V2
weighted avg 02.08* 93.94 92.88 |92.26* 93.26 92.62 |94.82* 95.72* 95.17*| 11,465
s v ¥ |8 ¥ ¥o ¥oe
macro avg 66.06* 67.66 66.25 | 74.57* 70.64 71.55 |87.72* 86.62* 86.27*| 11,465
. BOUs YOUes YUUes | YUY Bovs BuY
micro avg 3.33 93.94 93.63 | 93.36 93.26 93.31 | 94.82 95.72 95.26 | 11,465

Table 4.11: Detailed Model Evaluation for PxCorpus/Task 1 - The table presents model metrics averaged
across five folds for 30 entities. Bold and underline highlight the best and second-best outcomes. Medals show
metric ranks per fold, with gold for the top model and red for the Null metric. Pastel medals depict absolute
ranking, and vibrant medals indicate statistical significance at o = 0.05. Micro average and class-level evaluations
used the McNemar test with Bonferroni correction. Macro and weighted averages’ significance were assessed using
the Friedman test followed by the Nemenyi test. For easy navigation, Table F.8 shows the task statistics and

Table 4.2 the main results.

4.3.2.6 QUAERO/Medline

Just like its EMFEA equivalent, QUAERO/Medline includes the same 10 entities, but
this time it centers on the titles of research articles indexed in the Medline database.
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ENriﬁ?i ‘ CamemBERT ‘ DrBERT ‘ TransBERT ‘Support
| P R F | P R F | P R F |
Chemical/Drugs 91.37 92.53 91.93[90.92 92.43 91.67 |91.58 92.61 92.08 | 2,167
Disorders 82.59 83.03 82.80|80.25 81.59 80.90 | 81.02 82.88 81.93 | 1,286
Procedures 82.38 81.57 81.95(81.99 81.58 81.76 [84.64 82.65 83.61 | 839
Living Beings 90.58 91.36 90.95|90.21 91.53 90.86 |91.92 93.51 92.70 | 722
Physiology 60.17 67.33 63.08 |71.66 68.11 69.52|67.19 67.79 67.41 | 300
Anatomy 75.11 72.95 73.72|74.80 70.16 72.22 |76.36 72.18 73.79| 265
Objects 65.92 74.06 69.52|70.08 69.74 69.54 |69.94 70.19 69.83 | 162
Devices 88.30 80.38 84.01|85.25 81.67 83.15[86.99 83.04 84.91| 144
Geo. Areas 77.66 83.67 80.48|87.73 84.45 85.94 |88.52 87.67 87.95| 04
Phenomena 38.57 18.17 24.52|67.29 47.22 54.99|70.68 54.63 61.34 | 96
Weighted avg 84.56 85.09 84.71|84.77 84.89 84.75|85.61 85.85 85.67*| 6,001
Macro avg 75.27 74.51 74.30|80.02 76.85 78.05|80.88 78.72 79.55*| 6,001
Micro avg 84.65 85.09 84.87 |84.84 84.89 84.86 |85.59 85.85 85.72 | 6,001

Table 4.12: Detailed Model Evaluation for QUAERO/EMEA - The table shows
model metrics averaged over all five folds for the 10 named entities. Bold and underline
formatting are employed to emphasize the best and second-best outcomes, respectively.
Medals colors indicate the rank of each metric at each fold, with gold denoting the
top model. Although pastel medal colors illustrate an absolute ranking, vibrant colors
indicate statistical significance using a = 0.05. For each fold, micro average and individual
class level statistical evaluations were carried out using a McNemar test with Bonferroni
correction (Bonferroni = nist = 0'3&). Macro and weighted averages significance were

evaluated using a Friedman test followed by a Nemenyi test on labels metrics. For easy
navigation, Table F.10 shows the task statistics and Table 4.2 the main results.

It’s essential to highlight that this source of data is primarily what TransBERT
was pre-trained on. Table 4.2 shows TransBERT outperforming CamemBERT, the
second-best model, by 1.91 points, which in turn is 1.41 points ahead of DrBERT.

A glance at the averaged results across folds at the entity level in Table 4.13
reveals that TransBERT holds the top value for the majority of the entities for
each metric, particularly excelling at the top-3 supported entities, with statistical
significance in two cases. Conversely, CamemBERT excels in identifying ” Living
Beings”, ” Geo. Areas” and ” Objects” for Precision, Recall, and Fj. This result
aligns with expectations from a non-DS LM; namely, the DS model excels in
DS-related named entities, while the general model outperforms in broader entities.
Having the lowest F} four times in the most supported entity, twice with statistical
significance, DrBERT shows the lowest metrics overall, with a few instances of
being the runner-up.

When evaluating the micro averages, TransBERT achieves the highest value
five, four, and five times for Precision, Recall, and Fj respectively, with statistical
significance on two folds. It also excels in the entity aggregation, especially in
the weighted Precision where it obtains the highest score each time, once with
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Named CamemBERT DrBERT TransBERT
Entities | | | | Support

/P R F | P R F | P R F |

N

’

Disorders 66.21 62.87 64.49 |63.25 62.60 62.91 |67.31 64.85 66.04| 2.115
Procedures 61.68 64.53 63.06 |61.56 64.82 63.11 [65.12 67.57 66.28| 1,528
Chemical/Drugs 68.48 71.17 69.70 |66.98 70.21 68.47 |72.48 72.17 72.27| 819
Living Beings 75.03 74.31 74.64|71.37 70.61 70.96 | 74.42 73.87 74.11| 777
Anatomy 55.62 50.48 52.8453.89 52.40 53.09 [58.84 53.55 55.97| 744
Physiology 37.64 39.74 38.53|40.33 35.28 37.46 (41.11 39.45 40.17| 353
Geo. Areas 81.99 82.90 82.33(70.99 67.77 69.18 | 77.63 78.88 77.97| 126
Phenomena 33.20 22.46 25.35[32.63 21.02 25.23 |33.08 23.01 26.56| 123
Devices 36.38 34.84 35.26|35.90 29.83 32.32 |45.00 38.95 41.07| 97
Objects 47.20 34.22 37.92(29.60 26.06 26.08 |36.80 32.46 33.10| 83
Weighted avg 62.89 61.87 62.22 |60.87 60.78* 60.70* |64.87 63.50 64.05| 6,765
Macro avg 56.34 53.75 54.41 [52.65 50.06* 50.88*|57.18 54.47 55.35| 0,765
Micro avg 62.90 6187 62.38 6116 60.78 60.97 |65.10 63.50 64.29| 6.765

Table 4.13: Detailed Model Evaluation for QUAERO /Medline - The table
shows model metrics averaged over all five folds for the 10 named entities. Bold and
underline formatting are employed to emphasize the best and second-best outcomes,
respectively. Medals colors indicate the rank of each metric at each fold, with gold
denoting the top model. Although pastel medal colors illustrate an absolute ranking,
vibrant colors indicate statistical significance using « = 0.05. For each fold, micro average
and individual class level statistical evaluations were carried out using a McNemar test
with Bonferroni correction (aponferroni = = 0'3&). Macro and weighted averages
significance were evaluated using a Friedman test followed by a Nemenyi test on labels
metrics. For easy navigation, Table F.11 shows the task statistics and Table 4.2 the main

results.

statistical significance. At the bottom of the table, all averaged aggregated metrics
ranks appear to be segregated by model. While CamemBERT shows no significant
difference from the others, DrBERT ranks last in the majority of aggregated
metrics, with one fold featuring the worst F} _ _ with statistical significance.
Being consistent across entities, DFBERT also shows the worst macro and weighted
average Recall and F) with statistical significance.

4.3.3 Part-of-Speech Tagging Task

POS tagging is a key task in NLP that entails identifying the grammatical categories
(e.g., nouns, verbs, adjectives) for each word within a sentence. This task is crucial
for revealing the linguistic structure of a text, assisting in the comprehension of
syntactic relationships among words. The findings shown in Table 4.2 indicate
that the models have already reached near-perfect Fy .  scores, with the lowest
averaged score being above 97% and with relatively small CI. This outstanding
performance showcases the models’ proficiency in identifying these grammatical
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categories, regardless of whether the lexical content is medical. With minimal
room for improvement, determining the most outstanding model overall becomes
challenging.

4.3.3.1 CAS

CAS is a POS tagging dataset centered on clinical cases, comprising a total of
86,805 words spread across 30 tags. As depicted in Table 4.2, all three models
attain fairly high F_, = scores with relatively tight CI. TransBERT secures the
highest score, surpassing CamemBERT by just 0.07 points. Due to its notably low
variance, DrBERT lags by 0.15 points, making it the poorest performing model.

Table 4.14 presents a detailed performance analysis of each POS tag across
all models. Due to high support, each tag has a significant number of instances
in training, leading to average metrics reaching up to 99.66% in ” Pers. Pr.”
Recall, which ranks the lowest. With regard to the Fj score averaged across labels,
CamemBERT, and DrBERT and TransBERT achieve the highest values for 13, 6,
and 11 tags, respectively. While the best metrics of CamemBERT and DrBERT
tend to be found in tags with lower support, TransBERT achieves its best results in
tags with the highest support. A few zeroes appear in the ” Subjunctive Imperfect
Verb”, the least supported tag, with DrBERT achieving favorable results in three
folds.

Although the average metric across folds is marginally higher for TransBERT,
it excels in four instances compared to one for CamemBERT. For the weighted and
macro aggregation, perspective is crucial; a statistical test based on the F} rank
across all tags and folds highlighted DrBERT’s significance. However, DrBERT
tends to achieve the worst results on the most supported metric and the best on
the least supported ones. This gives it the lowest overall Fy_, .., but the highest
Fi,.....- While the statistical results mirror DrBERT’s dataset performance, the
narrow competitiveness makes the situation quite paradoxical. Looking at the
micro aggregation, CamemBERT and TransBERT both obtain the top results
with statistical significance in two distinct folds each, while DrBERT achieves the
lowest outcomes with the same significance in two. This aligns with our previous
observations that stated that DrBERT had poor results for well-supported tags,
whereas TransBERT frequently had the best results.

4.3.3.2 ESSAI

ESSAT is a POS tagging dataset focused on clinical trial protocols. It represents
the largest dataset, containing 150,269 words divided into 29 tags. As shown in
Table 4.2, on average, CamemBERT leads TransBERT by 0.02 points, which in
turn leads DrBERT by 0.10 points. All models achieve over 98% in this metric,
with low variability across folds, evidenced by ClIs of up to 0.04 points. The tag
distribution is highly skewed, with the top-3 tags accounting for more than 50% of
the instances.

Referencing Table 4.15, the competition is intense as evidenced by the lowest
mean F; score for 7 Subjunctive Imperfect Verb” at 99.72%. The figures start to
become intriguing midway through the table, where despite an average exceeding
98%, many tags see CamemBERT securing the highest F} scores. Notably, some
tags exhibit perfect ties in terms of metrics and folds, including ” Sentence”, ” Poss.
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Ez?gi | CamemBERT | DrBERT | TransBERT | Support
| P R F | P R | P R o
Noun 97.34 96.63 96.98 96.9410' @d 96.82;0' 97.30 96.88 97.09 | 20,052
Pers. Pr. 99.38 99.71 99.54 | 99.43 99.71 99.57 | 99.61 99.66 99.64 | 11,049
Adjective 95.47 95.20 95.33 95.1(‘)0’ 94.61‘6 94.85:6 95.35 95.23 95.29 | 9,179
Article 99.64 99.89 99.77 | 99.55 99.91 99.73 | 99.72 99.90 99.81 | 9,085
Punctuation 99.95 99.86 99.90 | 99.91 99.86 99.88 | 99.94 99.75 99.84 | 7,500
Number 98.01 99.05 98.53 | 98.06 99.00 98.53 | 98.43 99.02 98.72| 4,298
Sentence 99.95 99.92 99.94 (100.00 99.90 99.95 | 99.97 99.87 99.92 | 3,883
PastP Verb 95.54 97.20 96.35 5%.13 S;%.58 a;%.85 95?14 96‘(."56 95‘(."84 3,114
Conjunction 98.12 98.33 98.22 | 98.09 98.20 98.14 | 98.04 98.40 98.21 | 2,655
Present Verb 96.96 96.97 96.96 | 96.22 96.93 96.57 | 96.60 97.45 97.02 | 2,485
Adverb 97.90 96.99 97.44 | 97.85 96.82 97.33 | 97.64 97.66 97.65 | 2,468
Poss. Pr. 99.77 99.87 99.82 | 99.63 99.91 99.77 | 99.78 99.91 99.84 | 2,233
Imperfect Verb 99.71 99.80 99.76 | 99.39 99.61 99.50 | 99.53 99.71 99.62 | 2,117
Pers. Pr. 98.94 98.74 98.84 | 98.94 9841 98.67 | 99.32 98.30 98.80 | 1,583
Proper Noun 81.35 86.88 83.95 | 83.47 83.30 83.37 | 82.42 85.72 84.02| 1,446
Inf. Verb 98.33 97.74 98.02 | 97.81 97.35 97.56 | 97.93 98.06 97.97 | 567
PresP Verb 95.94 96.17 96.04 | 94.26 9540 94.78 | 95.33 94.79 95.00 | 512
Abbreviation 74“.563 68‘(.;84 712.;20 81.16 73.22 76.79 | 82.30 73.02 77.09| 471
Poss. Det. 99.04 99.57 99.30 | 98.82 99.57 99.18 | 99.36 99.57 99.46 | 428
Demon. Pr. 98.98 100.00 99.49 | 99.25 100.00 99.62 | 99.48 99.75 99.61 | 397
Relative Pr. 97.82 94.87 96.29 | 97.80 96.67 97.22 | 98.08 95.64 96.81 | 320
Indef. Pr. 97.78 100.00 98.87 | 97.93 98.52 98.21 | 98.35 98.46 98.40 | 263
Quot. Punct. 99.69 99.58 99.63 | 98.92 97.07 97.93 |100.00 98.13 99.05 232
Symbol 99.55 99.30 99.41 | 95.39 96.16 95.56 | 95.09 99.26 97.02 | 210
Past Verb 75.71 64.?;; 67.(‘?;1 83.04 69.48 75.43 | 80.04 70.11 74.53 130
Future Verb 87.52 50.22 62.47 | 79.33 49.98 60.38 | 79.68 51.65 61.11 46
Cond. Verb 90.29 83.33 85.93 | 89.33 70.00 76.77 | 81.07 83.33 81.44 26
SubjP Verb 52.00 35.00 38.91 | 89.29 67.62 73.29 | 81.67 60.95 61.72 22
Interjection 60.00 32.00 41.67 | 90.00 65.33 75.29 |100.00 70.33 81.48 18
SubjI Verb 0.00  0.00 0.00 |40.00 24.67 30.00| 13.33 8.00 10.00 16
Weighted avg 97.70 97.66 97.66 | 97.60 97.55 97.56‘*' 97.78 97.73 97.74 | 86,805
Macro avg 89.51 86.19 87.19 | 93.00 88.68 90.22* 92.02 88.84 89.73 | 36,805
Micro avg 97.73 97.66 97.69 s;°%.61" 9;;.556 z;%.sé' 97.79 97.73 97.76 | 86,805

Table 4.14: Detailed Model Evaluation for CAS - The table shows metrics averaged over five folds for 30
POS tags. Bold and underline highlight the best and second-best outcomes. Medal colors rank each fold: gold for
the top model, red for Null metrics, pastel for absolute ranking, and vibrant for statistical significance (o = 0.05).
Micro average and individual class levels were evaluated using a McNemar test with Bonferroni correction. Macro
and weighted averages used a Friedman test followed by a Nemenyi test. For easy navigation, Table F.1 shows the
task statistics and Table 4.2 the main results.

Pr.” 7 Demon. Pr.”,” Quot. Punct.” and Symbol”. For these tags, the F} scores
averaged across folds reach up to 100.00%. However, the tag " Symbol”, being
among the least supported, has four tied folds where no model accurately predicted
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any instance.

?aogi | CamemBERT | DrBERT | TransBERT ‘Support
| P R F | P R F | P R P
Noun 98.55 98.34 98.45 | 98.43 98.32 98.37 | 98.56 98.42 98.49 | 39,279
Pers. Pr. 99.66 99.83 99.74 | 99.55 99.89 99.72 | 99.66 99.86 99.76 | 22,261
Article 99.79 99.89 99.84 | 99.79 99.90 99.85|99.81 99.88 99.84 | 18,404
Adjective 96.65 95.77 96.21 96.?3 95.5021 95.6‘?8 96.69 95.75 96.21 | 11,056
Punctuation 99.99 100.00 99.99 | 99.98 100.00 99.99 (100.00 99.92 99.96 | 9,272
Sentence 99.98 99.98 99.98 |99.98 99.98 99.98 | 99.98 99.98 99.98 | 6,016
Conjunction 98.83 98.78 98.81 | 98.54 98.87 98.70 | 98.78 98.82 98.80 | 9,653
Number 99.01 99.30 99.15 | 99.06 99.26 99.16 | 99.06 99.33 99.20 | 5,530
Poss. Pr. 99.93 99.91 99.92 |99.93 99.91 99.92| 99.93 99.91 99.92 | 5,480
PastP Verb 97.12 97.86 97.49 | 96.59 97.57 97.07 | 96.86 97.67 97.26 | 4,821
Present Verb 98.83 97.81 98.32|98.47 97.53 97.99 | 98.72 97.58 98.15 | 3,556
Adverb 98.16 98.55 98.36 |98.35 97.81 98.08 | 98.06 98.19 98.12 | 3,490
Proper Noun 88.46 91.58 89.97 86.;?0 91.1‘?7 88.%‘53 88.02 91.99 89.93 | 2,622
Future Verb 99.54 99.57 99.55 | 99.54 99.49 99.52 | 99.53 99.53 99.53 | 2,562
Inf. Verb 99.22 99.51 99.36 | 99.18 99.51 99.35 [ 99.10 99.51 99.30 | 2,442
Demon. Pr. 99.83 100.00 99.92 |99.83 100.00 99.92 | 99.83 100.00 99.92 | 1,796
PresP Verb 98.26 98.68 98.47 | 98.14 98.56 98.35 | 98.32 98.62 98.47 | 1,661
Indef. Pr. 99.32 99.66 99.49 | 99.00 99.34 99.17 | 99.07 99.34 99.20 | 1,210
Pers. Pr. 98.35 97.31 97.82|98.76 96.30 97.52 | 98.32 96.84 97.57 | 1,089
Relative Pr. 99.27 99.24 99.25 |99.56 98.22 98.88 | 99.27 98.18 98.71 | 672
Abbreviation 62.91 65.93 64.17 | 64.27 56.56 59.75 | 64.72 61.39 62.72 | 325
Poss. Det. 99.69 99.67 99.68 | 99.72 99.67 99.69(100.00 99.35 99.67 | 312
Quot. Punct. 100.00 100.00 100.00| 99.27 97.89 98.52 |100.00 100.00 100.00| 212
Noun Sing./Mass 94.71 97.61 96.07 | 95.66 98.86 97.21|95.66 98.75 97.14 | 161
Symbol 100.00 98.75 99.35 | 93.92 97.70 95.70 [100.00 98.75 99.35 | 156
Cond. Verb 100.00 92.61 96.05 | 98.82 90.52 94.33 | 96.72 90.52 93.39 90
SubjP Verb 85.32 59.17 68.98 |87.50 50.79 63.47 | 76.67 52.05 60.33 53
Past Verb 0.00 0.00 0.00 {20.00 2.00 3.64 | 0.00 0.00 0.00 46
Imperfect Verb 97.78 89.84 93.27 | 93.50 81.62 86.56 | 96.36 83.21 87.84 42
Weighted avg 98.67 98.66* 98.66" 9‘%.55 98.54 9‘86.53* 98.65 98.63 98.64* | 150,269
Macro avg 93.42 92.25* 92.68*|93.73 91.13 91.90*| 93.02 91.49 92.03* | 150,269
Micro avg 98.68 98.66 98.67 98.?6 98.5"?;1 98.?5 98.66 98.63 98.65 | 150,269

Table 4.15: Detailed Model Evaluation for ESSAI - The table presents average model metrics across five
folds for 29 POS tags. Bold and underline highlight the best and second-best results. Medal colors indicate ranking
per fold: gold for top model, red for Null metrics, pastel for absolute ranking, and vibrant colors for significant
metrics (o = 0.05). Micro and class-level evaluations used McNemar test with Bonferroni correction. Macro and
weighted averages were assessed with Friedman and Nemenyi tests. For easy navigation, Table F.5 shows the task
statistics and Table 4.2 the main results.

In conclusion, CamemBERT achieves the highest rank for the micro aggregation
averaged across fold for all metrics, with statistical significance noted in one
instance. In the same aggregation, TransBERT attains the top rank in two folds,
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while DrBERT consistently ranks lowest, once with statistical significance. For
both weighted and macro aggregations, CamemBERT demonstrates the best Recall
and F} scores, securing the top rank in most folds and twice achieving statistical
significance, once in first place and once in second. DrBERT displays a more
complex performance, showing the lowest weighted average across all metrics and
folds, although it yields the best weighted average Recall and second-best F}
with significance in the same fold where it had the worst average. TransBERT’s
performance is intermediate, showing improved results in aggregations that consider
support distribution. Despite slight differences in macro and weighted Fi averaged
across folds for all models, the high sparsity rank across tags and folds allows
CamemBERT, TransBERT, and DrBERT to secure first, second, and third places,
respectively, with statistical significance. CamemBERT also achieves the best
Recall averaged across folds with statistical significance.

4.3.4 Semantic Textual Similarity Task

STS involves performing a regression task to determine the similarity or dissimilarity
between two given sentences. For this task, DrBenchmark provides two datasets.
As observed in Table 4.2, there is a slight difference between CamemBERT and
TransBERT, while DrBERT shows significantly lower results when considering the
average R? over the folds. The subsequent sections will delve into the analysis of
both datasets.

4.3.4.1 CLISTER

CLISTER is a STS dataset that deals with sentence pairs derived from clinical
cases. Table 4.2 illustrates that CamemBERT and TransBERT occupy the first and
second positions respectively, with a difference of 0.18 points on the R? averaged
across folds.

Figure 4.4 shows how the model predictions correlate with the actual scores.
Even though the similarity scores are shown as floating-point numbers, three
vertical lines are placed between each integer to show the level of detail possible
when averaging annotations from two annotators. Therefore, to make the plots
clearer, each model is plotted individually with the predictions of other models in
the background. Larger deviations from the dashed line imply worse predictions,
whereas points on this line represent perfect classification.

Examining the actual labels reveals an evident pattern along the lines with
reduced variability at both ends, likely due to the predicted scores being restricted
between 0 and 5. When inspecting the graphs of CamemBERT and TransBERT,
traces of DrBERT’s model predictions are noticeable in the background, aligning
with its performance. It is worth noting that DrBERT seems to struggle more at
the extremes, displaying smaller dots at the corner points (0, 0) and (5, 5), and
showing slightly more outliers in various areas. There are no significant differences
between CamemBERT and TransBERT; when analyzing their graphs, only a few
dots appear to spill over into the background of the other.

Beyond this superficial analysis, the graph does not provide much information
about why there is such a wide variance around the dashed line. However, both
the R? and the clustering around that line indicate that the models have learned
something, which is crucial. An examination of the worst prediction errors for
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Figure 4.4: CLISTER Semantic Textual Similarity Scatter Plot - The
figure illustrates scatter plots where each model’s prediction is represented
by a dot in relation to the actual values. All folds and rounds have been
included, with larger dots indicating a higher concentration of observations.

two similar and dissimilar sentences is presented in Figure 4.5. In both instances,
DrBERT is the model that deviates substantially. For the 0.0 similarity score case,
while the outcome is clear to a human, even the two best models found it difficult
to differentiate the sentences. On the other hand, the 5.0 similarity case appears
to be predicted quite accurately by both CamemBERT and TransBERT, as the
sentences use almost identical wording. Here, it is unexpected to observe DrBERT
making such an inaccurate prediction.

Figure 4.4 also shows results per fold along with statistical testing. Although
it was previously evident that DrBERT received the lowest scores, it is now
indisputable as it ranked last in each fold with significance in four out of five cases.
CamemBERT achieves the highest R? averaged across the folds, securing the first
place twice, once with significance. TransBERT obtained the best results in three
out of five folds; however, once with significance too.
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CamemBERT: 2.16 / DrBERT: 3.95 / TransBERT: 2.13
Similarity Score: 0.0
Sentence 1: Le testicule gauche est normal.

Sentence 2: Le toucher rectal est normal.

CamemBERT: 4.71 / DrBERT: 1.0 / TransBERT: 4.37
Similarity Score: 5.0

Sentence 1: 'On réalisait une urétérotomie sur la sténose permettant de
placer un endoprothese double J Ch.7 siliconée.

Sentence 2: te. Une urétérotomie sur la sténose fut réalisée permettant de
met tre en place une endoprothese double J Ch. 7 silic

Figure 4.5: CLISTER - Highest Error Prediction Sample - Highest error for
both extremities of the graph.

4.3.4.2 DEFT-2020/Task 1

The last STS dataset is the first task of the DEFT-2020 competition, with similarity
scores now determined by averaging ratings from five annotators, rather than
two. Similar to the classification task in this competition, the dataset comprises
encyclopedic information. As seen with the CLISTER results, Table 4.2 shows that
CamemBERT is leading by 0.49 points of the R? averaged across folds.

Figure 4.6 depicts the similarity scores in relation to the model predictions. By
averaging across five annotators, we observe a dispersed vertical line effect. Despite
having the same width as Figure 4.4, the absence of vertical alignment gives the
impression that the models fit better. Nevertheless, the conclusions are similar to
the CLISTER case. Notably, DrBERT is remarkably wider than the other two
models, and its predictions at both extremes deviate compared to the others. When
contrasting CamemBERT and TransBERT, there are a few instances where one
model’s data appears in the background of the other’s, but the frequency seems
balanced.

Across folds, DrBERT consistently delivers the lowest results with statistical
significance. However, CamemBERT and TransBERT alternate between the first
and second positions with the highest R? values, three for CamemBERT and two
for TransBERT, neither of which demonstrates statistical significance.
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Figure 4.6: DEFT-2020 Semantic Textual Similarity Scatter Plot

- The figure depicts a scatter plot showing each model’s prediction as a dot
against the actual value. Since the actual labels are not continuous, a sys-
tematic shift has been introduced to distinguish each model’s predictions,
CamemBERT to the left, TransBERT to the right. All folds/rounds have
been taken into account, the bigger the dot, the more concentration of obser-
vation there are.

4.4 Performance Analysis Aggregation

In Section 4.2.3, we demonstrated that any form of abstraction could be utilized
to conduct a statistical evaluation of our performance. We previously illustrated
the usefulness of this approach across various datasets by testing models on labels
metrics ranking, both by fold and across folds, which consists of a weighted mean
of both macro and weighted averages. These tests provided us with valuable
insights, enabling us to complete our dataset analysis with more robust metrics and
knowledge. While identifying the best model for a specific dataset was significant,
applying this method at the task level would yield even more informative results.

To conduct this testing, we must adhere to the schema used so far. This
involves considering any class/label, entity, and tag metric, respectively, for any
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classification, NER, POS, dataset. The next section will provide insightful metrics
for each model across all datasets task by task. It is important to note that the
statistical testing will rank each metric, potentially leading to different conclusions
when examining overall aggregated metrics.

Our task analysis will be founded on (1) the weighted average of each task
metric by the support of each label/dataset/fold, (2) a macro average of the same
values, which inherently does not account for support, (3) an assessment of the
rankings per metric across label/dataset/fold (4) a Normalized Ranking Average
(NRA) serving as a ranking score, and (5) results of statistical significance derived
from the rankings of the evaluated metrics.

The Nemenyi test has provided the rankings for each metric. To calculate the
NRA, it is essential to consider that the rankings’ average spans from 1 to the
total number of models minus one, with the lowest metric assigned the top rank.
Consequently, after normalization, a higher score is more favorable. Once the
average ranking for a particular model is computed, the NRA can be calculated as
follows:

NRA — ATL (4.1)

Nmodel — 1

Nimodel TE€Presents the number of models under comparison and RA denotes the
Ranking Average, ranging from 1 to N4 With 1 being the worst rank.

4.4.1 Classification Task Analysis

For the classification task, 185 class/labels across five datasets and folds are
analyzed. For DEFT-2020/Task 2, it is worth nothing that the micro average will
be used since classes serve as placeholders in this dataset. Prior to delving into
Table 4.16, let us briefly revisit the conclusions from our task-by-task analysis. For
DEFT-2020/Task 2, no definitive conclusion was reached as all models demonstrated
competitive performance. In DiaMed, the analysis indicated TransBERT as the most
effective model, showing statistical significance. In FrenchMedMCQA, DrBERT
underperformed with statistical significance noted for accuracy on two folds. For
MorFITT, TransBERT achieved the highest weighted and macro averages for
Recall and F1 scores across folds, also with statistical significance, achieving the
highest average Recall and F1 scores for 11 and 12 labels, respectively. Lastly,
in PxCorpus/Task 2, CamemBERT showed statistical significance in one fold for
accuracy, while achieving the highest accuracy in three folds.

Table 4.16 presents the main aggregated statistics for the classification task.
Firstly, an overview of the ranking indicates that TransBERT secures the highest
Precision, Recall, and F} scores by a substantial margin, achieving almost twice
as many wins as the other two models. Examining both the weighted and macro
averages, TransBERT attains the highest scores across all metrics. The Friedman
and Nemenyi tests demonstrated that its average ranking is significantly different,
even with an o = 0.01 threshold. The NRA highlights the disparity in rankings,
which is unsurprising given the ranking distribution. On the other hand, both
CamemBERT and DrBERT exhibit similar performance, with CamemBERT show-
ing considerably better weighted Recall and DrBERT being competitive in macro
Precision.
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‘ CamemBERT ‘ ‘ TransBERT
| P R F, | P R F, | P R Fy
74.65 75.54 7417 | 74.81 73.42 73.73 |75.82" 76.69"" 75.71""

Weighted Avg
Macro Avg

57.74 56.94 55.66 | 60.76 56.71 57.60 |64.06"" 62.55 " 61.93""
/ 2/57 1/82 1/61 | 1/68 1/65 1/52 | 1/107 1/124 1/113

0/51 0/53 0/58 | 0/65 0/62 0/65 | 0/55 0/40 0/50
1 1/50 1/56 1/66 | 0/22 0/20 0/21

46.76  39.32  39.05 |65.547" 64.86"" 68.38"

¢/ 1/74  2/471  2/63
NRA | 37.70 4581 42,57

Table 4.16: Model Evaluation for the Classification Task - This table presents
the weighted and macro aggregations for Precision, Recall, and F; across different
classes/labels for each dataset and fold. It also illustrates the ranking distribution through
the medals system and the Normalized Ranking Average, whose statistical significance
for difference has been evaluated using the Friedman test followed by Nemenyi post-hoc
tests. (*) and (**) indicate statistical significance at o = 0.05 and « = 0.01, respectively.

4.4.2 Named Entity Recognition Task Analysis

Within the NER task, our benchmark covers 315 entities distributed over six datasets
and five folds. Summarizing our task by task analysis findings, in E3C/Clinical,
TransBERT secured 80% of the highest metrics, yet with only one entity, no
statistical significance was achieved. For E3C/Temporal, DrBERT reached statis-
tical significance by getting the lowest performance in a consistent manner. For
MantraGSC, DrBERT consistently had the lowest results, making it the worst in
aggregated Recall across folds, with statistical significance. In PxCorpus/Task 1,
TransBERT recorded the highest scores averaged across folds for both weighted and
macro averages across and gets statistical significance for that. In QUAERO/E-
MEA, TransBERT consistently achieved high Fj scores across entities, resulting in
statistical significance. In QUAERO/Medline, DrBERT demonstrated the lowest
macro and weighted average Recall and F) averaged across folds, resulting in
statistical significance for its overall ranking.

Referring to Table 4.17, the ranking distributions align with our previous analysis
summary. DrBERT generally achieves the lowest results, whereas TransBERT
consistently attains the highest metrics. While TransBERT shows the highest
averages overall, it outperforms the other two models in the macro aggregation by
quite a substantial amount that goes up to approximately 11 points. TransBERT
demonstrates statistical significance with a p-value < 0.01 for Precision, Recall, and
Fi. While there is only a minor difference in Precision between CamemBERT and
DrBERT, they notably differ in Recall, with CamemBERT showing statistically
significant results based on the metric ranking. The increase in Recall enhances its
Fi considerably, although not sufficiently to be deemed significant.

4.4.3 Part-of-Speech Tagging Task Analysis

With two datasets and five folds, POS tagging was tested on 295 tags, showing
substantially high scores. Synthesizing the conclusions derived from the datasets,
within the CAS dataset, DrBERT recorded the lowest F} scores across tags, thereby
achieving statistical significance with the lowest weighted averages. On the other
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‘ CamemBERT DrBERT TransBERT
‘ P R ) 3 P R F P R F

Weighted Avg

81.23 82.13"" 81.55 | 80.74 81.27"" 80.88 |83.03™" 83.46™" 83.15™"

Macro Avg 66.23 66.45" 65.60 | 70.22 66.90"" 67.62 |77.72" 76.75"" 76.45"
/ 2/90 5/141  4/89 | 4/113 7/98  3/92 | 4/177 4/210 4/179

/ 2/107 0/94 0/113| 0/77 0/80 0/84 | 0/95 0/78 0/97

o/ 7/107  6/69  7/102 | 22/99 19/111 23/113| 0/39  0/23  0/35
NRA | 41.35 48.89" 43.17 | 42.62 34.44" 38.17 |66.03™" 66.67" " 68.65

Table 4.17: Model Evaluation for the Named Entity Recognition Task -
This table presents the weighted and macro aggregations for Precision, Recall, and
Fy across different entities for each dataset and fold. It also illustrates the ranking
distribution through the medals system and the Normalized Ranking Average, whose
statistical significance for difference has been evaluated using the Friedman test followed
by Nemenyi post-hoc tests. (*) and (**) indicate statistical significance at o = 0.05 and
a = 0.01, respectively.

hand, in the ESSAI dataset, CamemBERT achieved the highest Recall and Fj
averaged across folds, reaching statistical significance. However, TransBERT and
DrBERT also showed statistical significance, ranking second and third, respectively,
at the macro level for the F; metric.

Table 4.18 shows the results for the POS task. Upon validating our analy-
sis across datasets, TransBERT achieves the highest Precision, Recall, and F;
scores although almost identical to CamemBERT, whereas DrBERT exhibits the
lowest weighted metrics. The NRA reveals a substantial ranking difference be-
tween CamemBERT and TransBERT however, this distinction lacks statistical
significance. On the other hand, DrBERT Precision and F} show statistically
significant differences concerning their ranking. In terms of Precision, although
the macro value is the highest among all, the weighted value is the lowest.This
paradox underscores the complexity of statistical tests based on ranks. Although
the tests identify DrBERT’s ranks as the most inferior on average and corroborate
this statistically, DrIBERT achieves high results in critical tags, where other models
score near zero. This high performance in isolated cases contributes to DrBERT’s
statistical significance. Therefore, the test, while directional, also aims to eliminate
randomness. Essentially, our testing methodology concludes that a model achieving
its metrics in a non-random manner, which indicates both exceptional performance
in one scenario and poor performance in another. In other words, the metrics we
deemed non-random are the input of the linear combination that constructs both
weighted and macro averages.

4.4.4 Semantic Textual Similarity Task Analysis

The analysis of the STS task is straightforward. It involves two datasets, each
divided into five folds with roughly equal data allocation. Table 4.19 shows that both
CamemBERT and TransBERT achieved the highest R? in five occurrences, resulting
in a tie in NRA while CamemBERT gets a slightly higher R?. However, DrBERT

consistently produced the poorest performance, with statistical significance.
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‘ CamemBERT ‘ DrBERT ‘ TransBERT
‘ P R 3 ‘ P R F ‘ P R F

Weighted Avg| 98.31 98.29 98.29 [98.20"" 98.18 98.18""| 98.33 98.30 98.31
Macro Avg 91.43 89.17 89.89 [93.36™" 89.88 91.04| 92.51 90.14 90.86

/ 0/171 0/209 0/181 | 0/131 0/147 0/103 | 2/164 2/165 2/144
/ 1/65 0/41 0/66 | 0/63 0/72 0/7L | 0/74 0/83 0/89
T/ 1/57 2/43 2/46 | 5/96 5/71 5/116 | 1/54  1/44  1/59
NRA | 54.49 58.47 60.76 [41.53"" 41.78 3627 | 53.98 49.75  52.97

Table 4.18: Model Evaluation for the Part-of-Speech Tagging Task - This
table presents the weighted and macro aggregations for Precision, Recall, and F} across
different tags for each dataset and fold. It also illustrates the ranking distribution through
the medals system and the Normalized Ranking Average, whose statistical significance
for difference has been evaluated using the Friedman test followed by Nemenyi post-hoc
tests. (*) and (**) indicate statistical significance at o = 0.05 and « = 0.01, respectively.

4.4.5 Overall Aggregation

Upon reflection, aggregating everything into a single overall assessment seemed
overly simplistic. Indeed, even before beginning, questions arise: How can class/la-
bel, entities, and tags be combined into one ranking? How does the POS Precision
compare with classification Precision? Is the current task distribution representa-
tive of typical user experiences? These considerations led to the realization that
creating a single aggregation was impractical. Therefore, readers are encouraged to
examine results per task and create their own linear combinations to explore the
outcomes.



CHAPTER 4. TRANSBERT: A SYNTHETICALLY TRANSLATED

104 LANGUAGE MODEL
‘ CamemBERT ‘ DrBERT ‘ TransBERT
| R? | R | R
Weighted Avg 83.38 73.56"" 83.04
Macro Avg 83.38 73.57" 83.04
/ 1/4 0/0 1/4
1/4 0/0 0/5
o/ 0/0 9/1 0/0
NRA | 75.00 | 0.00™ | 75.00

Table 4.19: Model Evaluation for the Semantic Textual Similarity Task - This
table presents the weighted and macro aggregations for R? for each dataset and fold. It
also illustrates the ranking distribution through the medals system and the Normalized
Ranking Average, whose statistical significance for difference has been evaluated using
the Friedman test followed by Nemenyi post-hoc tests. (*) and (**) indicate statistical
significance at o = 0.05 and o = 0.01, respectively.

4.5 Conclusion & Discussion

This chapter covered a significant amount of information. To begin with, we intro-
duced a framework for conducting experiments at the dataset level and developed
a specialized reporting system that effectively presents the data relevant to our
analysis. The results of each dataset were then thoroughly examined using our new
reporting system, and the pre-established framework helped to identify various
conclusions of the dataset through different statistical tests. Finally, according
to (Demsar, 2006), a novel setup was subsequently created for testing the model
across datasets, enabling us to draw some task related conclusions.

This chapter initially started with the statement of our first hypothesis, which
is:

The current state of Machine Translation (MT) enables the
development of a Language Model (LM) trained entirely on an

automatically translated corpus, maintaining competitiveness
with State-of-the-Art (SOTA) models in the field.

In Chapter 2, we explored the current state of NLP by evaluating the latest
SOTA models. We reviewed recent advancements in Machine Translation (MT),
which informed our methodology in Chapter 3 in which we translated an extensive
corpus from English to French and pre-trained a LM on the newly created large
corpus. This chapter addressed the final step, which involved integrating our
PLM with two French SOTA models in a modified version of DrBenchmark and
proceeding to fine-tuning before analyzing their results.

From this chapter’s experiment, we can derive several intriguing insights, though
it is essential to begin with some of its limitations. Firstly, our hypothesis centers
on comparing a model which derives from the previously defined methods across
the largest possible number of tasks and datasets. However, as already discussed,
sourcing non-English DS datasets within the life science domain can be difficult.
Although adapting DrBenchmark offers a sound representation of typical tasks
for life science models, there are countless ways and perspectives to compare
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models. We chose this benchmark because it aligns with the common practices
of the community, as discussed in the literature review with benchmarks such as
General Language Understanding Evaluation (GLUE). In addition, there are various
approaches to statistical testing; our methods were selected based on perceived
effectiveness given the amount of datasets. Although there are numerous ways to
aggregate results, we opted for the most straightforward and transparent choices
to minimize arbitrariness.

Common LM benchmarks in life sciences are predominantly biomedical or
clinical, such as the already mentioned Biomedical Language Understanding &
Reasoning Benchmark (BLURB) and Biomedical Language Understanding Evalua-
tion (BLUE). To compare our adaptation, BLUE comprises 10 datasets categorized
into four tasks, including two classification tasks, three NER, two STS, and three
Relation Extraction (RE). BLURB includes 13 datasets spread over six tasks,
including one classification, five NER, one STS, a PICO, which is a framework
for extracting evidence-based medical information, three RE, and two Question
Answering (QA). Consequently, both benchmarks share classification, NER, STS,
and RE tasks, while neither includes POS tagging. It is worth noting that QA can
be somewhat related to NER as it is addressed with similar token representations.
While it would indeed be intriguing to compare TransBERT in both RE and
QA, our benchmark encompasses a substantial number of datasets for most tasks,
including the addition of POS.

The DrBenchmark paper (Labrak et al., 2024) included an experiment that
evaluated performance using training subsets of varying sizes: 25%, 50%, 75%, and
100%. This exploration provides important insights into a model’s ability to utilize
limited data and assess its scalability when increasing the training set size. Although
exploring different number of total folds within a cross-validation setting could have
yielded interesting insights, it was not conducted due to the high computational
resources this side experiment would have required. However, the chosen setting
mirrors real-world scenarios and standard machine learning methodologies, with
models being typically trained on a fixed dataset and evaluated on a test set that
usually consists of approximately 20% of the data. This is the same ratio used in
several datasets within the DrBenchmark, including PxCorpus, MantraGSC, CAS,
and ESSAL

In the field, it is common to perform statistical tests over multiple training
iterations using the same test set. Although performing a 5-folds cross-validation
is a significant improvement, it can be argued that sharing parts of the training
data among different folds introduces a degree of dependence, violating one of the
assumptions of the statistical testing. Upon reviewing rankings categorized by class,
label, entity, or tag within a data table, it is not unusual for models that usually
perform poorly to sometimes secure the top scores. This actually underscores the
metric variability across different folds, which reflects the disparity between folds
of the dataset. Among the numerous metrics across folds, datasets, tasks, ups and
downs, it is impossible to visually disociate which model is effectively better or
worse. In that context, statistical testing highlights consistency. Although the
independence assumption is somewhat violated, possibly increasing the likelihood
of a Type I error, hypothesis testing functions as an autonomous component linked
to the experiment. It remains uninvolved with the aggregation metrics per dataset
or task, whose results still lead to the same conclusions.
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As we initially aimed for our experiment to compete with SOTA models, our
final section presented substantial improvement validating our hypothesis. We
discovered that our model not only competes with the widely-used general French
LM but also considerably outperforms it, along with the recently introduced French
DS PLM. Our analysis of the classification task indicates that TransBERT achieved
the highest aggregated Precision, Recall, and F} scores using two of the most
common aggregation methods, ranking on average significantly better across all
classification datasets. In the NER task, which is also highly regarded in the
community, results on the tested dataset showed that TransBERT outperformed
by a substantial margin of about 10 points when taking a macro average of all
tested entities. It also showed a statistically significant higher average ranking
compared to both DrBERT and CamemBERT. In the POS task, although there
was no improvement compared to CamemBERT, it was statistically significantly
better than DrBERT in ranking, achieving the best weighted Precision, Recall, and
F) scores. Lastly, in STS, TransBERT obtained a better R? and ranked statistically
better than DrBERT while being on par with CamemBERT.

Although each of the models were similarly fine-tuned, their primary distinc-
tion lay in their pre-training. A detailed examination of their respective papers
reveals that the three models differ mainly in their corpora, which vary in several
respects. CamemBERT utilizes a General-Domain corpus, whereas DrBERT and
TransCorpus draw from life sciences corpora. In terms of corpus size, CamemBERT,
DrBERT, and TransCorpus comprise 138GB, 7.5GB, and 36GB, respectively. Ad-
ditionally, both CamemBERT and DrBERT are composed of native French data,
while TransCorpus consists solely of data synthetically translated from English
to French. By comparing CamemBERT to TransBERT, our experiments have
indirectly demonstrated that having 138GB of native General-Domain data can
be less advantageous than 36GB of DS data. Lastly, when comparing DrBERT
with TransBERT, our results indicate that pre-training a model on a 7.5GB of
native DS corpus does not exceed the performance of LM pre-trained on a 36GB
of synthetically translated DS corpus.

It is crucial to note that our hypothesis was tested under specific conditions with
respect to corpus size and translation quality. Although computational constraints
prevented us from deeper exploration, future studies could benefit from examining
the two core elements of the corpus: (1) corpus size and (2) translation quality.
Evaluating the corpus size would involve pre-training several LMs and tokenizers
with only a subset of the abstracts, which would reveal the data quantity necessary,
for a given translation quality, to develop a life science LM and could serve as
a cost-effective baseline for testing another DS domain. In addition, for a given
corpus size, altering the quality of the translation would provide insight into how
factors, such as the BLEU score of a translation model, influence the performance
of the downstream task. This inquiry would clarify the repercussions of decreased
translation quality, especially when tackling more challenging language pairs or low-
resource languages. Although important, both research paths necessitate substantial
computational resources, which can make them extremely costly, especially based
on the experiment’s granularity, e.g., each experiment would require about three
months of training.



Chapter 5

The Impact of Domain-Specific
Tokenization on Pre-trained
Language Models Performance

This chapter expands upon the experiment from the previous chapter to evaluate
TransBERT against ¢TransBERT. The primary objective of this evaluation is
to verify whether the community’s belief that training a Domain-Specific (DS)
tokenization improves the performance of Pre-trained Language Models (PLMs) on
specific downstream tasks holds. The significant adjustments in the experimental
setup consist of altering the statistical tests, as the tests required for comparing
two models differ from those used for comparing three models. To minimize
redundancy with the last chapter’s dataset-based results analysis, we will directly
review aggregated results per task, enabling us to focus on tokenization when
necessary. Detailed results tables for each dataset can be found in Appendix H for
reference.

5.1 Introduction

This section outlines the research context, motivation, and hypothesis, preparing the
reader for the experimental framework that follows. It emphasizes the importance
of this study in addressing a gap in current research and potentially challenging
a widely held assumption in the field of Natural Language Processing (NLP) for
Domain-Specific (DS) tasks.

5.1.1 Motivation

Despite the scarcity of research that compares the effectiveness of tokenizers in
DS tasks, the belief that DS tokenizer is more efficient is widely accepted within
the community. This agreement probably stems from the observation that DS
Language Models (LMs) built from scratch frequently outperform those fine-tuned
from a Pre-trained Language Model (PLM) on a DS corpus. An example of this
is the claim made by PubMedBERT in contrast to BioBERT (Gu et al., 2021) or
even this sentence in the Limitation Section of DrBERT’s paper, which mentions
this hypothesis: ”it would be wise to evaluate the impact of the tokenizer on
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the performance of the models to ensure that this is not the main reason for the
observed performance gains”.

One approach to mitigating the impact of tokenizers on downstream applications
is to conduct the same experiment twice from scratch. This entails replicating
the pre-training process with different tokenizers. To our knowledge, no studies
of this nature exist yet, since pre-training two PLMs on the same corpus is quite
labor-intensive. Typically, researchers pre-train a model for comparison with others
to evaluate the overall method’s improvement. As mentioned earlier in Chapter 3,
to achieve this goal, a LM has been pre-trained on the same machine-translated
corpus using the CamemBERT tokenizer, which was trained on a non-DS corpus.

5.1.2 Hypothesis

Given the lack of rigorous evidence proving that the use of a DS tokenizer affects
the measurement of downstream task performance, the hypothesis of this chapter
is articulated as follows:

Domain-Specific (DS) tokenization enhances the performance
of Pre-trained Language Models (PLMs) on specialized down-
stream tasks.

The next section describes the experimental setup carefully crafted to thoroughly
test our hypothesis. It is important to note that this setup mainly mirrors the
methods and datasets in the previous chapter.

5.2 Experimental Setting

This section outlines the experimental framework designed to test the second
hypothesis, comparing the performance of TransBERT and c¢TransBERT models.

5.2.1 Model Comparison

To address our second hypothesis, this experiment will compare TransBERT with
cTransBERT. The latter is named after the combination of TransBERT and
CamemBERT as it is methodologically identical to TransBERT but utilizes the
CamemBERT tokenizer instead.

5.2.2 Mirrored Experiment

This chapter replicates the previous experiment by using the same datasets. The
folds, model training procedures, and aggregation are executed exactly in the same
way. Only two aspects will change (1) as there is a change related to the number
of models to be tested, some testing procedures will require an adjustment, details
will be discussed in the subsequent section. (2) In order to avoid redundancy and
lengthy analysis and as we already have an in-depth understanding of TransBERT’s
performance across all datasets, the analysis of the results will be presented at the
task level directly for conclusion. However, all datasets comparison tables can be
found in Appendix H.
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5.2.3 Statistical Testing

In Chapter 4, all statistical tests involved comparing three models, which implied
considering the variance between groups through an adhoc test or by applying the
Bonferroni correction to pairwise tests. Now that we are comparing only two models,
a single test per comparison will be sufficient, necessitating changes to some tests
and rendering the Bonferroni correction unnecessary. In essence, all previous rank-
based tests that used the Friedman test to account for variability between groups
will be replaced by the Wilcoxon signed-ranks test, as recommended by (Demsar,
2006). In summary, rank-based tests that were formerly used to evaluate macro and
weighted averages at both the fold and dataset levels will now be performed using
the Wilcoxon signed-ranks test. In the Semantic Textual Similarity (STS) task,
should both normality and sphericity be validated through prior testing methods,
the paired t-test will be conducted, otherwise, the Wilcoxon test will be utilized to
determine significance.

5.3 Performance Analysis Aggregation

This section presents a comprehensive analysis of the performance comparison
between TransBERT and c¢TransBERT across the four tasks: Classification, Named
Entity Recognition (NER), Part-Of-Speech (POS), STS.

5.3.1 Classification Task Analysis

Starting with the classification task, Table 5.1 presents an aggregated summary of
the main results of the task’s datasets. TransBERT achieved for both aggregation
methods the highest Precision, Recall, and F}. While being small in general, the
Precision difference between TransBERT and c¢TransBERT is slightly larger when
considering the macro average, indicating a greater disparity for labels with lower
support. Even though TransBERT exhibits a considerably increased Normalized
Ranking Average (NRA), the difference lacks statistical significance. Therefore, we
cannot assert that pre-training a LM with an adhoc tokenizer enhances classification
performance.

‘ TransBERT ‘ cTransBERT
| P R F, | P R Fy
Weighted Avg| 75.82 76.69 75.71 75.10 76.05 74.70
Macro Avg 64.06 62.55 61.93 60.58 61.08 59.31
/ 9/113 5/128 6/114 2/98 6/105 5/91
/ 2/61 6/46 5/60 9/76 5/69 6/83
NRA | 55.95 55.95 56.49 |  44.05 44.05 43.51

Table 5.1: Model Evaluation for the Classification Task (Tokenizer Analysis) -
This table presents the weighted and macro aggregations for Precision, Recall, and F}
across different classes/labels for each dataset and fold. It also illustrates the ranking
distribution through the medals system and the Normalized Ranking Average, whose
statistical significance for difference has been evaluated using the Wilcoxon test. (*) and
(**) indicate statistical significance at a = 0.05 and a = 0.01, respectively.
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5.3.2 Named Entity Recognition Task Analysis

In the NER task, Table 5.2 shows that TransBERT achieves better weighted and
macro averages for Precision, Recall, and F;. While it used to be only about
Precision in the classification task, once again, there is a notable difference in the
macro average this time across all metrics, indicating that TransBERT performs
even better on entities with low support.

‘ TransBERT ‘ cTransBERT
| P R F | P R F
Weighted Avg| 83.03™ 83.46™" 83.15™" 81.02"" 82.13" 81.44™
Macro Avg 7772 76.75"" 76.45"" 67.16"" 67.13" 66.51""
/ 38/184 38/196 40/185 10/133 17/159 8/125
/ 10/83 10/71 8/82 38/134 31/108 40/142
NRA | 62547  59.217°  64.60 | 37.46" 40.79" 35.40"

Table 5.2: Model Evaluation for the Named Entity Recognition Task (Tok-
enizer Analysis) - This table presents the weighted and macro aggregations for Precision,
Recall, and F; across different entities for each dataset and fold. It also illustrates the
ranking distribution through the medals system and the Normalized Ranking Average,
whose statistical significance for difference has been evaluated using the Wilcoxon test.
(*) and (**) indicate statistical significance at & = 0.05 and o = 0.01, respectively.

Observations on the NRA show a larger disparity, now confirmed with statistical
significance. Moreover, the frequency in which TransBERT significantly outper-
forms c¢TransBERT is approximately ten times more than the previous and futur
comparisons. Specifically, TransBERT achieved a statistically significant higher F}
in 40 cases, which represents about 13% of the tested entities/folds. It is worth
noting that more than half of these results were obtained in the same dataset,
as shown in Table H.11. This table also highlights the significant performance
disparity among entities with low support.

There is indeed an increase in performance in NER this time validated by a
statistical test. As the only difference in the methodology is linked to the choice of
tokenizer, we can conclude that for NER choosing an adhoc tokenizer to pre-train
a model, at least for the life science domain, has an significant impact in the
downstream task performance.

Now that the performance improvement in NER has been confirmed by a statis-
tical test. Given that the only variation in methodology is the selection of tokenizer,
it can be concluded that choosing a specialized tokenizer to pre-train a model,
particularly in the life sciences field, significantly influences the downstream task
performance. As our hypothesis statement is only about performance enhancement,
we could move on to the next task, however, it might seem superficial to overlook
the crucial step of tokenizing the named entity in this downstream task.

In summary, NER leverages token vector representations to determine entity
detection, considering the context of surrounding words. The tokenizer is the only
difference between TransBERT and c¢TransBERT, making it worthwhile to examine
tokenization differences in real examples. Table 5.3 aims to provide insight into
the entity length before tokenization, measured in words, and after tokenization,
measured in tokens, for both TransTokenizer and CamemBERT’s tokenizers. For
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each cell, the first number indicates the average number of words per entity, which
points with an arrow to the number of tokens each tokenizer produces per entity.
The transformation rate is displayed above the arrow.

‘ TransTokenizer ‘ CamemBERT
| set(T)  set(T)Nset(cT) set(cT) | set(T)  set(T)Nset(cT) set(cT)
x1.8 xXL.7 x1.6 x2.2 x2.0 x2.0
FN| 157 —-2.85 183 —3.07 157—258 | 1.57 —+3.50 183 — 3.63 157 — 3.17
x1.8 x1.6 x1.8 x2.1 x2.0 x2.1
FP| 157 —288 1.55—247 152—=26 1.57 — 3.33 1.55—3.13 1.52 — 3.18

x1.6 x1.5

1.5 x1.8 x2.0 x1.8 x2.2
TP| 157 —258 127 — 191 1.57— 285 | 1.57 -+ 3.17 1.27—2.30 1.57 — 3.50

Table 5.3: Tokenization Difference Statistics - The table shows, along the column
axis, the sets of TransBERT, cTransBERT, and their intersections for FN, FP, and TP.
The initial number denotes the quantity of words per entity in a set, followed by an arrow
pointing to the number of tokens per entity generated by each tokenizer. The figure
above the arrow indicates the multiplication rate involved in the tokenization process.

For each model, predictions are compared to the true entities to form three
sets: FN, FP, and TP. These sets are then compared across models to identify each
possible set. Specifically, FN within set(T) represents the FN uniquely identified
by TransBERT, while FN within the intersection set(T)Nset(cT) represents FN
entities for both models. This division aims to highlight differences in tokenization
rates between the sets as the prevailing hypothesis is that fewer tokens needed to
represent an entity lead to more accurate results. Nevertheless, for any specific
tokenizer, Table 5.3 does not reveal a significant difference across the sets. The
only minor variance is in the overlapping TPs for both models, where they exhibit
the lowest transformation rate among all, supporting the hypothesis that smaller
entities tend to be classified more accurately.

The main takeaway from this table is that CamemBERT generally requires
more tokens to represent the same entities, which may lead to incorrect entity
classifications. An overall analysis indicates that, although CamemBERT requires
approximately 21% more tokens, its ratio is 37% more variable than TransTokenizer,
suggesting higher unpredictability when encountering unfamiliar words. Further
examination of ¢TransBERT’s misclassifications shows that the CamemBERT
tokenizer may need up to 32 additional tokens compared to TransTokenizer for
identical chemical compounds. As illustrated in Figure 5.1, this specific scenario
is demonstrated, but there are additional instances involving similar chemical
structures.

Given the extensive list of tokenizations that could be reviewed, Appendix I
illustrates some of them by highlighting the key differences in tokenization length
between TransTokenizer and CamemBERT. For this study, all cTransBERT FN and
FP instances were analyzed. The computed ratio was obtained using both tokenizer
ratios. Examples are presented in descending order of this ratio to emphasize
the most notable cases. To keep the list concise, only 10 examples per ratio were
randomly chosen.
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Entity: [’3-][6-[4-[(1,2,3,4,5,6-hexahydro-2-pyrimidinyl)iminocarbonyl]-
1-pipéridinyl]-5-méthyl-4-pyrimidinyl]amino]-N-
[(phénylméthoxy)carbonyl]alanine’] (1 word)

. ) ) ) ) D) 'R ) ) by ) ) ) ) ) ) ) 7 ) ) ) )
TransBERT: [__3", -[', ’[', 6", -[, 4", -[(’, ’1,2,3’, ), 4,5, °, 6", "hexa’,
"hydro’, ’-2-, 'pyrimidin’, ’yI’, ’)’, ’imino’, ’carbonyl’, ", -1-’, 'pi’, 'péri’,
’d’, ,il’lyl’, 7]7, 7_5_7’ ’méthyl’, 7_4_7’ ’pyrimidin’, ’yl’, 7]7’ aamin()a, 7]_77 7N7, 7_[(77
‘phényl’, ‘'méthoxy’, ’)’, "carbonyl’, ’]’, "alanine’] (43 tokens)

. ) ) ’ D 1 1R ’ 0 D) by 2 a2 (9 ) ) 7 ) ) ) ? )
CamemBERT'[_37'7[7[76a'a[?47'7[7(717?2773747?7
’57677 7_7, ’h77 7eX77 ’a’, 7hydr077 ’_277 7_77 7py)7 ’I'i’, 7midi7’ 7ny77 7177 7)7, ’im7’ 7in07’
’Car” "bOI,]-77 7y17’ 7]7’ 7_177 7_77 ’p:'l?, 7péri77 7d-i1,l77 7y1’, ’]’7 ’_577 7_7’ 7m7’ ’éthy:l?, 7_477
99 99 sy 9t 3s9 99 I1) 919 Igand i~ 90 0 9 ONTY 0 0 [0 (9 I T A) Igns)
_7PY7r17mldlanyala]7am71noa]7_7Na_a[7(7phe7HY7
T, 'méth’; "oxy’, ’)’, ’car’, 'bon’, 'y, |, ’a’, "lan’, 'ine’] (A+32)

Figure 5.1: CamemBERT Vs TransTokenizer for Chemical Compounds - An
example of tokenization shows that TransTokenizer requires 43 tokens to represent this
entity, whereas CamemBERT needs 75 tokens.

5.3.3 Part-of-Speech Tagging Task Analysis

Table 5.4 demonstrates that TransBERT achieves higher scores across all metrics
and aggregation methods. Predictably, the results are very close with no significant
differences. TransBERT achieves a marginally higher number of wins across all
metrics but falls short by one statistically significant positive result. Consequently,
even with a higher NRA, the difference between the two models in this task is
minimal.

‘ TransBERT ‘ cTransBERT
‘ P R 3 ‘ P R Fy
Weighted Avg 98.33 98.30 98.31 98.31 98.29 98.29
Macro Avg 92.51 90.14 90.86 92.29 89.43 90.23
/ 6/200  6/209 6/191 6/185 7/205 6/174
/ 5/84 5/75 5/93 5/99 4/79 5/110
NRA ‘ 52.54 50.51 52.88 ‘ 47.46 49.49 47.12

Table 5.4: Model Evaluation for the Part-of-Speech Tagging Task (Tokenizer
Analysis) - This table presents the weighted and macro aggregations for Precision,
Recall, and F; across different tags for each dataset and fold. It also illustrates the
ranking distribution through the medals system and the Normalized Ranking Average,
whose statistical significance for difference has been evaluated using the Wilcoxon test.
(*) and (**) indicate statistical significance at & = 0.05 and o = 0.01, respectively.

5.3.4 Semantic Textual Similarity Task Analysis

Results in Table 5.4 indicate that ¢TransBERT achieves a higher R? averaged
across folds by a narrow margin. It also secures relatively more wins, attaining
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statistical significance twice, compared to once for TransBERT. Nevertheless, due
to the limited number of experiments conducted in this task, this performance does
not establish statistical significance.

‘ TransBERT ‘ cTransBERT
\ R? \ R?
Weighted Avg 83.04 84.36
Macro Avg 83.04 84.36
/ 1/2 2/5
/ 2/5 1/2
NRA | 30.00 | 70.00

Table 5.5: Model Evaluation for the Semantic Textual Similarity Task (To-
kenizer Analysis) - This table presents the weighted and macro aggregations for R?
for each dataset and fold. It also illustrates the ranking distribution through the medals
system and the Normalized Ranking Average, whose statistical significance for difference
has been evaluated using the Wilcoxon test. (*) and (**) indicate statistical significance
at a = 0.05 and a = 0.01, respectively.

5.4 Conclusion & Future Works

Initially, the plan for this chapter was to compare both models on a dataset-by-
dataset basis. However, after performing several comparisons, it became evident
that there were overlaps with Chapter 4, which had already examined each dataset
individually. As a result, the focus shifted to conducting only aggregated analysis.
With a focus on a tokenizer analysis when significance was detected.

As outlined in the description of the experimental setup, this chapter employs
the same methodology as the previous one, which implies it shares the same
limitations. Although there is no distinct difference between TransBERT and
c¢TransBERT in classification tasks, the observed disparity in NER is remarkable in
both metrics and statistical significance. As a reminder, the only difference which
stand between both models was the use of a tokenizer, which was trained on a
mainstream French corpus. From a broader perspective, there is approximately
a 10-point difference in the £y, .., which aligns with the previously observed
performance of CamemBERT and DrBERT. For the remaining two tasks, there
are no noteworthy significant differences to report.

Even in a brief chapter, it’s essential to recall the research hypothesis formulated
earlier:

Domain-Specific (DS) tokenization enhances the performance
of Pre-trained Language Models (PLMs) on specialized down-
stream tasks.

Even though enhancements were noted in just one of the four tasks reviewed,
there’s a notable enhancement in NER performance, with no reduction in other
areas, supporting the hypothesis of our chapter. While a segmentation analysis
has been performed, a comprehensive investigation into the reasons behind such
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an enhancement in a token representation-based task could still be carried out by
examining the signal at the token level.

It is essential to highlight the particular configuration of our experiment. Al-
though integrating a DS tokenizer prior to pre-training with a DS corpus shows
improvements, it does not ensure the same enhancement when training on a non-DS
corpus, despite evidence suggesting this potential. Indeed, although no experiment
directly supports this hypothesis, it can be deduced from the fact that Trans-
BERT significantly outperforms CamemBERT (Chapter 4) in the NER task while
cTransBERT performs only on the same level as CamemBERT (Table J.2). In
other words, it implies that tokenization has a significant impact in NER task as
TransBERT significantly outperforms cTransBERT. Therefore, examining a model
pre-trained on the CamemBERT corpus with the TransTokenizer would likely yield
better results in at least DS NER datasets. The question remains if it would be
competitive with a model pre-trained on a DS corpus as it could be a compound
effect. Although this might seem a bit trivial, the data and computational power
required to train a tokenizer are very low, and these findings could allow better
pre-training of DS LM by only pre-training a LM on a generic corpus using the DS
tokenizer.



Chapter 6

Discussion & Conclusion

While Chapter 3 was mainly devoted to the development of modules that, despite
requiring a significant investment of time and delivering few immediate metrics,
played a pivotal role in underpinning our research, Chapter 4 and 5 ultimately
provided crucial insights fundamental to this thesis. This chapter synthesizes the
primary findings of the research, examines their limitations, and proposes directions
for future study, concluding with a recap of this thesis’s contributions.

6.1 TransBERT: A Synthetically Translated Lan-
guage Model

Although having multiple chapters that address parallel research questions is often
standard in the field, it is essential to acknowledge that Chapter 3 serves as
a foundation for upcoming research issues where substantial work was reviewed,
although it did not produce directly exploitable results, such as sentence-by-sentence
translation evaluations through abstracts. This groundwork significantly contributes
to pre-training the first Language Model (LM) utilizing exclusively artificially
translated data. In effect, Chapter 4 represents the culmination of a sequence of
modules, integrating all previous efforts, detailed choices, and comparative analyses.

In order to validate the hypothesis that the current state of Machine Translation
(MT) supports the development of a LM trained on a machine-translated corpus,
we created a rigorous experimental framework. This setup provided a uniform
treatment for all the models that were compared, with the Pre-trained Language
Model (PLM) being the sole variable change across the datasets and folds tested. We
also improved the benchmark by adding 5-folds cross-validation, Hyperparameter
Optimization (HPO), and other adjustments to increase its robustness. Furthermore,
we set up an in-depth statistical testing procedure, which was meticulously applied
at multiple levels. This approach allowed us not only to discern minor differences
between models, but also to pinpoint statistically significant variations from smaller
ones in an ad hoc reporting system.

A detailed benchmark analysis with its English counterpart shows that Dr-
Benchmark is quite representative of the two main life science benchmarks, covering
a wide array of tasks and including a significant number of datasets. The findings
strongly support our hypothesis, especially in classification and Named Entity
Recognition (NER) tasks, which are crucial in the life science sector. More specifi-
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cally, TransBERT exhibited statistically significant superiority over DrBERT in
all tasks. Furthermore, it surpassed CamemBERT with statistical significance
in classification and NER tasks, while achieving similar performance in Part-Of-
Speech (POS) tagging and Semantic Textual Similarity (STS) tasks. Remarkably,
TransBERT’s performance consistently remained strong, never being statistically
outperformed by any other model in any task. These results highlight the robustness
and adaptability of TransBERT in managing diverse linguistic challenges within
the life science field.

The key takeaway message from Chapter 4 is that a BERT-like LM can indeed
be pre-trained using entirely synthetically translated data, and when matched in
size and translation quality, the resulting PLM can outperform the performance
of a general-domain native PLM. As mentioned in Chapter 4, while it would be
insightful to specify the exact amount of data or quality of translation necessary,
the cost of exploring this research question is beyond the scope of this thesis.

6.2 The Impact of Domain-Specific Tokeniza-
tion on Pre-trained Language Models Per-
formance

In order to confirm the hypothesis that Domain-Specific (DS) tokenization improves
the effectiveness of PLMs on specialized downstream tasks, we used a rigorous
experimental approach to compare two models: TransBERT and cTransBERT. This
comparative study employed the framework laid out in Chapter 4, with a significant
adjustment in the statistical testing procedure to allow for pairwise comparisons.
The experimental setup relied on the principle that the only difference between
TransBERT and c¢TransBERT lies in the use of a domain-specific tokenizer.

By controlling this variable, it becomes possible to isolate and evaluate how
tokenization uniquely impacts model performance across various life science appli-
cations. Upon reviewing the results for each task, it was discovered that the DS
tokenizer resulted in significant improvements in the NER task, reaching statistical
significance. Although other tasks exhibited slight performance differences, these
were not statistically significant. This comprehensive analysis suggests that the
impact of DS tokenization differs according to the task.

A deeper analysis of the tokenizers’ outputs showed that CamemBERT regularly
needed a significantly greater number of tokens compared to TransTokenizer to
encode similar sequences. This finding affects computational efficiency and may
influence the model’s capacity to grasp DS subtleties in the text. This outcome is
consistent with the common beliefs that the tokenizer DS is crucial to improving
the efficiency of PLMs, particularly in niche fields such as life sciences.

6.3 Limitations & Discussion

This section covers the limitations concerning the interpretation of the findings,
whereas limitations associated with the experimental design are addressed in the
conclusion of each chapter.
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6.3.1 In-Domain/Language Generalization

While our benchmark study presents strong evidence for the effectiveness of our
proposed model across various datasets, it is important to note the limitations in
generalizing these findings. Although our benchmark was meticulously designed to
cover a wide array of tasks within the life sciences domain, it cannot comprehensively
represent every possible scenario or use case.

One major limitation lies in the wide variety of Natural Language Processing
(NLP) tasks and the continually evolving nature of scientific language. Even though
our benchmark includes a broad range of datasets and tasks, it is impossible to cover
every potential application or future development in the field. The performance of
our model, while impressive within the scope of our study, may not necessarily be
consistent across all possible tasks or datasets in the life sciences domain.

Additionally, the idea of a universally ’best’ model is inherently flawed in the
realm of NLP. Different models might excel in particular contexts or specific types
of tasks, and their performance can be affected by factors such as domain specificity,
data distribution, and the nuances of individual use cases. What works optimally
in one scenario may not be the best choice in another, emphasizing the need for
context-specific model evaluation and selection.

It is also important to recognize that the fast-paced advancements in NLP
research could lead to new architectures, pre-training techniques, or fine-tuning
strategies that may surpass our current model in certain aspects. The dynamic
nature of the field requires ongoing evaluation and comparison against new innova-
tions.

Moreover, although we aim for representativeness in our benchmark, it may
unintentionally include biases or limitations in dataset selection or task formulation.
These potential biases could affect the generalizability of our findings to real-world
applications or to datasets significantly different from those in our benchmark.

In light of these factors, a nuanced interpretation of our results is essential.
Although our model shows considerable promise and outperforms existing State-
of-the-Art (SOTA) models in several datasets or tasks, it should be seen as a
competitive option rather than an absolute universal solution. We recommend
further testing in various real-world scenarios and continuous evaluation against
emerging models and methodologies.

Ultimately, the choice of an appropriate model should be driven by the specific
requirements of the task at hand, the nature of the available data, and a thorough
understanding of the strengths and limitations of the model. Our study offers
valuable information to aid in this decision-making process, but should be considered
along with other relevant factors and ongoing research in the field.

6.3.2 Other Domains Generalization

Although our model, which was trained on translated synthetic data within the
life sciences corpus, shows encouraging generalization towards other domains, it is
important to recognize the constraints when extrapolating these results to other
areas. The success of our method in addressing the lack of native language data
in life sciences should not be automatically expected to apply to other specialized
sectors such as finance, law, or engineering. Each field presents its own unique
linguistic hurdles, specialized terminologies, and DS conceptual frameworks that
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general-purpose machine translation systems might not handle effectively. The
quality and relevance of translated synthetic data can differ greatly between
domains, possibly affecting the model’s performance and dependability. Moreover,
the subtleties of DS language use, such as idiomatic phrases, technical lingo, and
context-dependent meanings, may not be accurately preserved in translated data,
which could lead to misunderstandings or errors in other fields. Additionally, the
success of our approach may depend on the degree to which translatable concepts
are within a given domain, which can vary greatly. For example, concepts that are
highly specific to a culture or legally bound in sectors like law or social sciences
might pose particular difficulties for this approach. Hence, while our results suggest
a promising avenue for mitigating language resource shortages in specialized fields,
further research is essential to confirm the broad applicability of this method across
various domains, each with its own distinct linguistic and conceptual challenges.

6.3.3 Other Languages Generalization

Although our study highlights the effectiveness of employing synthetic translated
data for training LMs in the field of life sciences in French, caution is warranted
when applying these findings to other languages, especially those with limited
resources. We believe that the success of our method is highly dependent on the
quality and availability of machine translation systems for the target language,
which can differ greatly among various language pairs. Even if M2M-100 has a
great potential to secure relatively great results in low-resource languages compared
to other models, some language pairs often lack strong machine translation models,
which can undermine the quality of the translated synthetic data. Additionally, the
linguistic gap between the source language and the target language can greatly affect
the effectiveness of the approach. Languages with different syntactic frameworks,
morphological structures, or writing systems might pose additional difficulties in
maintaining semantic subtleties and DS language during translation. Furthermore,
the cultural and scientific context embedded in the original material might not
always have direct counterparts in the target language or culture, which could result
in meaning loss or the introduction of biases. The degree of standardization in
scientific terminology across languages may also play a role in the consistency and
accuracy of the translated corpus. Moreover, the success of this technique could
be influenced by the target language’s scientific literature environment and how
well it integrates with global scientific discourse. Therefore, although our findings
indicate a potential solution for addressing the deficit of scientific corpora in some
languages, the method’s suitability across different linguistic contexts, especially for
low-resource languages, requires thorough evaluation and additional investigation.

6.3.4 Generative Language Models

Although generative Large Language Models (LLMs) exhibit exceptional abilities
in various NLP tasks, it is essential to account for the considerable costs associated
with their creation and use when assessing their practical value. These models
achieve outstanding performance, often outperforming task-specific models in fields
such as NER and classification. However, the economic implications of employing
generative LLMs for such tasks are significant and complex. The fixed expenses for
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training these models are enormous, frequently amounting to millions of dollars
due to the vast computational resources required. Moreover, the variable costs of
inference, such as energy consumption and cloud computing fees, can be excessively
high for many organizations, particularly for large-scale or real-time applications.
The significant disparity in resource requirements between generative and Natural
Language Understanding (NLU) models raises crucial questions about sustainability
and accessibility.

Although generative models provide exceptional versatility, the economic and
environmental costs of using them for relatively simple tasks like binary classification
might be disproportionate to the slight improvements in performance they deliver.
This imbalance in cost versus benefit highlights the need for a more refined approach
to model selection that considers not only raw performance metrics but also
economic efficiency, environmental impact, and long-term sustainability. As the
field advances, it is increasingly vital to create strategies that capitalize on the
strengths of generative models while reducing their resource-intensive nature,
possibly through methods such as model distillation or task-specific fine-tuning of
smaller and more efficient models.

6.4 Future Works

Although our work has provided important information on the use of translated
synthetic data for training LMs within the field of life sciences, it has generated more
research questions than definitive answers. This result emphasizes the intricate and
dynamic nature of NLP in specialized areas. The issues prompted by our study
span several aspects of machine translation, domain adaptation, and the interaction
between artificial and natural language data. These emerging research paths
underline the necessity for ongoing exploration into the subtleties of cross-lingual
and cross-domain knowledge transfer in language models.

One encouraging direction for future research is to expand our approach to
encompass a wider array of languages, especially those that are underrepresented in
the life sciences field. Applying our methodology across various linguistic settings
will help us better understand its generalizability and any possible constraints.
Additionally, creating multilingual models capable of managing several languages
within the life sciences sector poses an intriguing challenge. These models might
exploit cross-lingual knowledge transfer, allowing for a more efficient use of scarce
data resources and promoting a more inclusive global scientific community.

Another path for future research is an extensive comparison between our method
and the latest generative LLMs on identical datasets. Such a comparison would yield
valuable understanding of the trade-offs between specialized, domain-focused models
and more general, resource-heavy models LLMs. Assessing performance, efficiency,
and cost-effectiveness across different life science tasks would help researchers
and practitioners in making informed decisions. Furthermore, this analysis could
highlight the possibility of integrating the strengths of both approaches.

A promising direction for upcoming research involves exploring the use of
generative LLMs to create synthetic data for training DS models, as an alternative
to our translation-based method. This approach could yield more varied and
nuanced datasets, encapsulating intricate domain-specific knowledge and linguistic
patterns. Assessing the quality, reliability, and possible biases of LMs-generated
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synthetic data in comparison to translated data could offer valuable insights into
data augmentation strategies for low-resource domains and languages. Furthermore,
this method could be expanded to explore the potential of LMs in generating
multilingual synthetic data, potentially addressing some of the challenges related
to cross-lingual knowledge transfer.

6.5 Thesis Contribution

This thesis presents several groundbreaking contributions to the field of NLP in the
life sciences, with a specific emphasis on the French language. At the core of this
research lies TransCorpus, an innovative 30GB corpus composed of 22M abstracts
automatically translated from English to French. It stands as a leading large-scale
DS corpus of its kind, created entirely through machine translation. On top of
it stands TransBERT and its corresponding TransTokenizer, a LM /tokenizer duo
solely trained on TransCorpus. To our knowledge, this is the first occurrence of
a LM being trained entirely on automatically translated data in the life sciences
domain of this scale. The creation of TransBERT highlights the potential of
machine translation to address the shortage of resources in languages with limited
DS corpus. Furthermore, a forthcoming paper will provide detailed information
on the performance and implications of TransBERT, offering valuable information
to the scientific community. These resources, TransCorpus, TransBERT and
TransTokenizer, will be made available to the public, providing researchers and
practitioners with powerful tools to advance NLP in the field of life sciences in
French. This work addresses a significant gap in language resources and facilitates
further exploration in cross-lingual knowledge transfer and DS language modeling.
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Appendix A
Example of a Raw JSON File

{
"title": "The origin of the alkaline inactivation of pepsinogen.",
"abstract": "Above pH 8.5, pepsinogen is converted into a form which
— cannot be activated to pepsin on exposure to low pH. Intermediate
< exposure to neutral pH, however, returns the protein to a form
— which can be activated. Evidence is presented for a reversible,
— small conformational change in the molecule, distinct from the
— unfolding of the protein. At the same time, the molecule is
— converted to a form of limited solubility, which is precipitated
— at low pH, where activation is normally seen. The results are
< 1interpreted in terms of the peculiar structure of the pepsinogen
< molecule. Titration of the basic NH2-terminal region produced an
— open form, which can return to the native form at neutral pH, but
— which is maintained at low pH by neutralization of carboxylate
< groups in the pepsin portion.",
"journal": "Biochemistry",
"authors": ["McPhie P"],
"affiliations": [],
"pubyear": "1975",
"entrez_date": "1975-12-02",
"pmid": "44",
n idll . "44",
"mesh_terms": ["D006454:Hemoglobins", "D006863:Hydrogen-Ion
< Concentration", "DO07700:Kinetics", "D010434:Pepsin A",
< "D010435:Pepsinogens", "D011487:Protein Conformation",
< "D013056:Spectrophotometry, Ultraviolet"],
"sup_mesh_terms": [],
"chemicals": ["RN O, D006454:Hemoglobins", "RN O,
< D010435:Pepsinogens", "RN EC 3.4.23.1, D010434:Pepsin A"],
"publication_types": ["Journal Article"],
"keywords": [],
"comments": {
"comments_in": [],
"comments_on": []
1,
llpmcidll . nn s
"doi": "10.1021/bi00695a003",
"medline_ta": "Biochemistry"
I

Figure A.1: RAW Abstract from MBR Dataset - Example of a citation in JSON
directly drawn from the MBR database.



Appendix B

Examples of Translation with
repetition

Model Size: 418M
Translation Approach: By sentence

Abstract: Changements structurels et fonctionnels dans les ovaires des souris
adultes traités avec diétylstilboestrol au cours de la période néonatale. Les
ovaires des souris NMRI féminins agés de 8 semaines a différentes étapes du
cycle estroide, ou des femelles néonatales traitées avec I'estrogene synthétique
diethylstilboestrol (DES; 5-10(-6) microgrammes par jour pendant 5 jours),
ont été étudiés histologiquement et pour la capacité de synthétiser les stéroides
de [3H]pregnenolone in vitro. Les doses quotidiennes de 10(-4) microgrammes
DES ou plus ont entrainé ’absence de corpora lutea. Dans les ovaries
qui manquaient de corpora lutea, le tissu interstitial était dominé et les
cellules dans ce compartiment étaient grandes avec un cytoplasme clair. Les
stéroides synthétisés dans les homogenes ovariens ont été séparés par la
chromatographie de la couche mince. L’homogénéité des stéroides a été
vérifiée dans les expériences de recrystalisation. Les doses quotidiennes de
5-10(-4) microgrammes DES au cours de la période néonatale ont entrainé des
déviations prononcées dans le modele des stéroides ovariens synthétisés par
rapport aux ovaries de controle. Dans les ovaries exposées a DES, la synthese
d’androstenedione et, surtout, de la progestérone était élevée tandis que la
synthese de 17 alpha-hydroxyprogesterone et de testostérone a été réduite par
rapport aux controles. Ces résultats pourraient argumenter une différence
dans l'activité de 17 alpha-hydroxylase et 17 beta-ol-dehydrogénase dans
les ovaries des femmes traitées par DES par rapport aux controles. Apres
la transplantation des ovaires exposés a DES a des femelles ovarectomées
de controle, le modele stéroide a changé a celui typique pour les ovaires de
controle. Les ovaries de controle transplantées aux femmes traitées par DES
avaient un modele stéroide similaire a celui des ovaries exposées par DES.

Figure B.1: Example of a Translation: 418M, Sentence-by-Sentence
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Model Size: 418M
Translation Approach: By abstract

Abstract: Des modifications structurelles et fonctionnelles dans les ovaries
de Povaire de controle des ovaries des ovaries de controle des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries
des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries
des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries
des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries
des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries
des ovaries des ovaries des ovaries des ovaries.

Figure B.2: Example of a Translation: 418M, By Abstract (With Repetition)

APPENDIX B. EXAMPLES OF TRANSLATION WITH REPETITION
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Model Size: 1.2B
Translation Approach: By sentence

Abstract: Changements structurels et fonctionnels des ovaires chez les souris
adultes traitées avec du diéthylstilboestrol pendant la période néonatale. Les
ovaires de souris NMRI femelles agées de 8 semaines a différents stades du cy-
cle estropique, ou de femelles néonatales traitées avec ’cestrogene synthétique
diéthylstilboestrol (DES; 5-10(-6) microgrammes par jour pendant 5 jours),
ont été étudiés histologiquement et pour la capacité de synthétiser des
stéroides de [3H|pregnenolone in vitro. Des doses quotidiennes de 10(-4)
microgrammes de DES ou plus ont entrainé ’absence de corpora lutea.
Dans les ovaires manquant de corpora lutea, le tissu interstitiel a dominé
et les cellules dans ce compartiment étaient grandes avec un cytoplasme
clair. Les stéroides synthétisés dans les homogénates ovariens ont été séparés
par la chromatographie a couche mince. L’homogénéité des stéroides a été
vérifiée dans les expériences de recrystallisation. Des doses quotidiennes
de 5-10(-4) microgrammes de DES dans la période néonatale ont entrainé
des écarts prononcés dans le schéma des stéroides ovariens synthétisés par
rapport aux ovaires de controle. Dans les ovaires exposés au DES, la synthese
d’androstenedione et, surtout, de progestérone était élevée tandis que la
synthese de 17 alpha-hydroxyprogesterone et de testostérone était réduite
par rapport aux controles. Ces résultats pourraient soutenir une différence
d’activité de 17 alpha-hydroxylase et 17 béta-ol-déhydrogénase dans les
ovaires des femmes traitées par DES par rapport aux controles. Apres la
transplantation des ovaires exposés au DES aux femelles ovariectomées de
controle, le modele de stéroide a changé a celui typique pour les ovaires de
controle. Les ovaires de controle transplantés chez les femelles traitées par le
DES avaient un schéma stéroidien similaire a celui des ovaires exposés par le

DES.

Figure B.3: Example of a Translation: 1.2B, Sentence-by-Sentence
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Model Size: 1.2B
Translation Approach: By abstract

Abstract: Ces ovocytes ont controlé les modifications stéroidiennes et
fonctionnelles ovocytes controlés stéroides ovocytes de souris adultes traitées
avec diethylstilboestrol dans la période néonatale. Les ovocytes de souris
NMRI féminines agées de 8 semaines ont été étudiés histologiquement et
pour la capacité de synthétiser des stéroides de la synthese de la synthese de
la synthese de la synthese de la synthese de la synthese de la synthese de la
synthese de la synthese de la synthese de la synthese de la synthese de la
synthese, ou de la synthese de la synthese de la synthese de la synthese de la
synthese de la synthese de la synthese de la synthese de la synthese de la
synthese de la synthese de la synthese de la synthese de la synthese de la
synthese de la synthese de la synthese de la synthese de la synthéraxtrale.
Les stéroides synthéraux synthéraux synthéraux synthéraux synthéraux de la
synthéraux synthéraux de synthéraux ont été séparés par jour par thermés
par thermologiques synthéraux synthéraidiques synthéraiques synthéraiques
synthéraides.

Figure B.4: Example of a Translation: 1.2B, by Abstract (With Repetition)
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Example of Sentence & Word
Tokenization

PMID: 44

Sentence 1: The origin of the alkaline inactivation of pepsinogen.

9 89

[The’, *_origin’, ’_of’, ’_the’, ’_alkal’, ’ine’, ’_in’, ’activ’, ’ation’, ’_of’, ’

_pep’, ’sin’, ogen’, ’.’]

Sentence 2: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin on
exposure to low pH.

[-Ab’, ove’, "_pH’, "8, ’5,’, ’_pep’, ’sin’, ’ogen’, ’_is’, ’_convert’, ’ed’, ’_into’, '_a’, '_form’, '_which’,
"_cannot’, ’_be’, *_activ’, ’ated’, '_to’, '_pep’, ’sin’, "_on’, ’_expos’, 'ure’, '_to’, "_low’, "_pH’, .|

Sentence 3: Intermediate exposure to neutral pH, however, returns the protein to a form which can be
activated.
[Inter’, 'medi’, ’ate’, _expos’, 'ure’, ’_to’, "_neutral’, *_pH’, ’,’, "_however’, ’,’, ’_retur’, 'ns’, ’_the’, ’_protein’,

9

"_to’, "_a’, '_form’, ’_which’, ’_can’, "_be’, "_activ’, 'ated’, ’.’]

Sentence 4: Evidence is presented for a reversible, small conformational change in the molecule, distinct
from the unfolding of the protein.

P-Ev’, ’idence’, ’_is’, _present’, 'ed’, ’_for’, ’_a’, ’_re’, 'vers’, ’ible’, ’’, *_small’, ’_conform’, ’ational’, ’_change’,

) ’

_in’, ’_the’, *_mol’, ’ec’, ’ule’, ’,’, "_distin’, ’ct’, ’_from’, '_the’, "_un’, ’fold’, ’ing’, ’_of’, ’_the’, ’_protein’, .|
Sentence 5: At the same time, the molecule is converted to a form of limited solubility, which is
precipitated at low pH, where activation is normally seen.

[-At’, ’_the’, ’_same’, ’_time’, ’,’, ’_the’, _mol’, ’ec’, ’ule’, ’_is’, ’_convert’, ’ed’, ’_to’, '_a’, '_form’, ’_of’,
’_limited’, "_sol’, ub’, ’ility’, ’,’, *-which’, ’_is’, '_precip’, ’itat’, ’ed’, '_at’, '_low’, "_pH’, ’)’, ’_where’, ’_activ’,
‘ation’, ’_is’, *_norm’, ’ally’, ’_seen’, ’.’|

Sentence 6: The results are interpreted in terms of the peculiar structure of the pepsinogen molecule.
[_The’, ’_results’, "_are’, ’_interpret’, ’ed’, ’_in’, ’_terms’, ’_of’, ’_the’, ’_pec’, 'uliar’, ’_structure’, ’_of’, ’_the’,
"_pep’, ’sin’, 'ogen’, *_mol’, ’ec’, 'ule’, *.’]

Sentence 7: Titration of the basic NH2-terminal region produced an open form, which can return to the
native form at neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in
the pepsin portion.

[T, ’itr’, ’ation’, *_of’, ’_the’, "_basic’, *.NH’, ’2-’, ’termin’, ’al’, ’_region’, ’_produc’, ’ed’, "_an’, ’_open’,
’_form’, ’,’, ’_which’, ’_can’, ’_return’, ’_to’, ’_the’, '_n’, ’ative’, '_form’, '_at’, *_neutral’, ’_pH’, ’,’, '_but’,
’_which’, ’_is’, *_mainta’, ’ined’, ’_at’, ’_low’, *_pH’, ’_by’, *_neutr’, ’aliz’, ’ation’, '_of’, ’_car’, ’box’, ’yI’, ate’,
’_groups’, ’_in’, "_the’, ’_pep’, ’sin’, '_por’, ’tion’, ’.’]

Figure C.1: Example of Sentence & Word Tokenization






Appendix D

Translation Examples

Original (PMID:33739270)

Le foie assure une grande partie du métabolisme des xénobiotiques. Ses partic-
ularités en font pourtant une cible privilégiée pour des composés toxiques. Les
hépatotoxicités des xénobiotiques, ces molécules étrangeres a notre organisme,
constituent un vrai défi pour les cliniciens, 'industrie pharmaceutique, et les
agences de santé. a la différence des hépatotoxicités intrinseques, prévisibles et
reproductibles, les hépatotoxicités idiosyncrasiques surviennent de maniere non
prévisible. La physiopathologie des hépatotoxicités idiosyncrasiques a médiation
immune reste la moins bien connue. Le développement d’outils qui permettent
désormais d’améliorer la prédiction et la compréhension de ces atteintes hépatiques
parailt etre une approche prometteuse pour identifier des facteurs de risque, et de
nouveaux mécanismes de toxicité.

Translated (PMID:33739270)

Le foie assure une grande partie du métabolisme des xénobiotiques grace a
son équipement enzymatique considérable, a sa localisation anatomique et a
sa vascularisation abondante. Cependant, ces différentes caractéristiques en
font également une cible privilégiée pour les composés toxiques, en particulier
dans le cas d’'un métabolisme toxique. L’hépatotoxicité induite par les
xénobiotiques est une cause majeure de lésions hépatiques et un véritable
défi pour les cliniciens, 'industrie pharmaceutique et les agences de santé.
Les hépatotoxicités intrinseques, c’est-a-dire les hépatotoxicités prévisibles
et reproductibles qui se produisent a des doses limites, sont distinguées des
hépatotoxicités idiosyncratiques, qui se produisent de maniere imprévisible
chez les personnes présentant des sensibilités individuelles. Parmi eux, la
pathophysiologie de I’hépatotoxicité immunomédiée idiosyncratique n’est
toujours pas claire. Cependant, le développement d’outils visant a améliorer
la prévision et la compréhension de ces troubles peut ouvrir des voies pour
I'identification de facteurs de risque et de nouveaux mécanismes de toxicité.
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Original (PMID:32334967)

La tuberculose est due au complexe M. tuberculosis, dont la croissance lente
entraine un long délai de rendu des tests phénotypiques utilisés pour le
diagnostic bactériologique. La biologie moléculaire a réduit considérablement
ce délai, notamment grace au déploiement de la méthode Xpert@® MTB/RIF
(Cepheid) qui permet de détecter le complexe M. tuberculosis et la résistance
a la rifampicine en 2 heures. D’autres tests détectant en plus la résistance
a l'isoniazide et aux antituberculeux de seconde ligne ont été développés.
Cependant, les performances de ces tests sont nettement moins bonnes
si 'examen microscopique est négatif. Il est donc crucial de restreindre
leur indication aux fortes suspicions cliniques. Les tests de détection de la
résistance n’explorent que certaines positions caractérisées ; or, toutes les
mutations responsables de 'acquisition de résistance ne sont pas connues.
De plus, les performances sont variables pour les différents antituberculeux.
L’avenement du séquencage génomique est une perspective prometteuse. La
faisabilité en routine doit encore étre évaluée et 'analyse des données reste a
standardiser. L’essor des techniques de biologie moléculaire a révolutionné le
diagnostic de la tuberculose et de la résistance. Cependant, elles restent des
tests de dépistage dont les résultats doivent étre confrontés aux méthodes
phénotypiques de référence.

Translated (PMID:32334967)

La tuberculose est causée par le complexe M. tuberculosis. Sa croissance lente
retarde le diagnostic bactériologique basé sur des tests phénotypiques. La
biologie moléculaire a considérablement réduit ce retard, notamment grace au
déploiement du test Xpert@® MTB/RIF (Cepheid), qui détecte le complexe
de M. tuberculose et la résistance a la rifampicine en 2 heures. D’autres
tests détectant la résistance a l’isoniazide et aux médicaments antituber-
culeux de deuxieme ligne ont été développés. Cependant, les performances
des tests moléculaires sont considérablement réduites si le dépistage de la
microscopie de bacille acide rapide est négatif. Il est donc crucial de limiter
leur indication a de fortes suspicions cliniques. Les tests de détection de
la résistance n’explorent que certaines positions caractérisées; cependant,
toutes les mutations de résistance aux médicaments ne sont pas connues. En
outre, les performances varient pour différents médicaments antituberculeux.
L’avenement de la séquencage génomique est prometteur. Son intégration
dans le flux de travail de routine doit encore étre évaluée et 1’analyse des
données doit encore étre normalisée. La montée des techniques de biologie
moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance
aux médicaments. Cependant, ils restent des tests de dépistage; les résultats
doivent encore étre confirmés par des méthodes de référence phénotypiques.
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Original (PMID: 33742585)

Dans un souci d’amélioration de la qualité de vie des personnes atteintes
de maladie chronique, les pratiques de soins se sont enrichies de I’éducation
thérapeutique du patient (ETP). Celle-ci vise I’acquisition de savoirs et de
compétences plurielles par les malades pour favoriser une gestion optimale de
la pathologie au quotidien et des changements qui en découlent, en limitant
les répercussions négatives sur leur autonomie et leur bien-étre. Le sujet est
placé au cceur de son dispositif, en position de décision et de responsabilité,
et collabore activement avec les différents acteurs de soins. L’ETP implique
donc la prise en compte de la dimension psychique du patient, en s’appuyant
sur la psychologie et des concepts fondamentaux pour sa mise en ceuvre.

Translated (PMID: 33742585)

Dans un effort pour améliorer la qualité de vie des personnes atteintes de
maladies chroniques, les pratiques de soins ont été enrichis par I’éducation
thérapeutique des patients (TPE). Cela vise a I’acquisition de connaissances et
de compétences plurielles par les patients, ce qui favorise une gestion optimale
de la maladie sur une base quotidienne et des changements qui en découlent,
en limitant leurs répercussions négatives sur leur autonomie et leur bien-étre.
Le sujet est placé au coeur du systeme, dans une position de décision et de
responsabilité, et collabore activement avec les différents acteurs de la santé.
Le TPE implique donc la prise en compte de la dimension psychologique
du patient, en utilisant la psychologie et les concepts fondamentaux pour sa
mise en ceuvre.






Appendix E

Hyperparameter Optimization
Range

per_device_train_batch_size: tune.qrandint(8, 16, 8) # batch size from 8
— to 16 with stride of 8

metrics: "fl1" # Main metric used for optimization

direction: ["max","maximize"] # Direction of the optimization (minimize
< or mazimize)

learning_rate: tune.loguniform(le-6, le-4) # Learning rate
num_train_epochs: tune.qrandint(10, 20, 10) # Number of epochs from 10 to
— 20 with stride of 10

weight_decay: tune.uniform(0, .5) # Weight decay (Adam Optimizer)
warmup_ratio: tune.uniform(O, .5) # Warmup ratio (Adam Optimizer)
dropout: tune.uniform(O, .5) # Dropout

reduction_factor: 2 # Reduction factor, rTatio of the trials to terminate
— early

grace_period: 2 # Grace period, number of epoch at least a trial is

< trained

max_t: 100 # Trials will be stopped after maz_t training iterations
n_trials: 10 # Number of trials conducted during the hyperparameter

— tuning process

Figure E.1: Hyperparameter Optimization Range: CAS
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per_device_train_batch_size: 16

metrics: "rmse"

direction: ["min","minimize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 50, 10)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(0, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 4

max_t: 100

n_trials: 20

Figure E.2: Hyperparameter Optimization Range: CLISTER

per_device_train_batch_size: 16

metrics: "f1"

direction: ["max","maximize"]

learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 50, 10)
gradient_accumulation_steps: tune.randint(l, 5) # Gradient accumulation
— which multiply the batch size from 1 to 5
weight_decay: tune.uniform(O, .5)
warmup_ratio: tune.uniform(O, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 4

max_t: 100

n_trials: 20

Figure E.3: Hyperparameter Optimization Range: DiaMed

per_device_train_batch_size: tune.qrandint(8, 16, 8)
metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 50, 5)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(O, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 2

max_t: 100

n_trials: 10

Figure E.4: Hyperparameter Optimization Range: E3C
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per_device_train_batch_size: 16

metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 30, 10)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(0, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 2

max_t: 100

n_trials: 10

Figure E.5: Hyperparameter Optimization Range: ESSAI

per_device_train_batch_size: 16

metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint (10, 40, 10)
gradient_accumulation_steps: tune.randint(1l, 5)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(0, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 3

max_t: 100

n_trials: 10

Figure E.6: Hyperparameter Optimization Range: FrenchMedMCQA

per_device_train_batch_size: tune.qrandint(8, 16, 4)
metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint (10, 50, 10)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(0, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 4

max_t: 100

n_trials: 40

Figure E.7: Hyperparameter Optimization Range: Mantra-GSC
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per_device_train_batch_size: 16

metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 40, 10)
gradient_accumulation_steps: tune.randint(1l, 5)
weight_decay: tune.uniform(O, .5)
warmup_ratio: tune.uniform(O, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 3

max_t: 100

n_trials: 10

Figure E.8: Hyperparameter Optimization Range: MorFITT

per_device_train_batch_size: tune.qrandint(8, 16, 8)
metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 30, 10)
weight_decay: tune.uniform(O, .5)
warmup_ratio: tune.uniform(0, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 4

max_t: 100

n_trials: 20

Figure E.9: Hyperparameter Optimization Range: PxCorpus

per_device_train_batch_size: 16

metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 30, 10)
gradient_accumulation_steps: tune.randint(1l, 5)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(O, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 4

max_t: 100

n_trials: 20

Figure E.10: Hyperparameter Optimization Range: PxCorpus
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per_device_train_batch_size: tune.qrandint(8, 16, 8)
metrics: "f1"

direction: ["max","maximize"]
learning_rate: tune.loguniform(le-6, le-4)
num_train_epochs: tune.qrandint(10, 40, 10)
weight_decay: tune.uniform(0, .5)
warmup_ratio: tune.uniform(0, .5)

dropout: tune.uniform(0, .5)
reduction_factor: 2

grace_period: 4

max_t: 100

n_trials: 20

Figure E.11: Hyperparameter Optimization Range: QUAERO






Appendix F

Fine-Tuning: Dataset Statistics

POS Tags Count |Percentage (%) Piy;ﬁ;l;zg‘z?%)
Noun 20,052 23.1 23.1
Personal Pronoun 11,049 12.73 35.83
Adjective 9,179 10.57 46.4
Article 9,085 10.47 56.87
Punctuation 7,500 8.64 65.51
Number 4,298 4.95 70.46
Sentence 3,883 4.47 74.93
Past Participle Verb 3,114 3.59 78.52
Conjunction 2,655 3.06 81.58
Present Tense Verb 2,485 2.86 84.44
Adverb 2,468 2.84 87.29
Possessive Determiner 2,233 2.57 89.86
Imperfect Tense Verb 2,117 2.44 92.3
Personal Pronoun 1,583 1.82 94.12
Proper Noun 1,446 1.67 95.79
Infinitive Verb 567 0.65 96.44
Present Participle Verb 512 0.59 97.03
Abbreviation 471 0.54 97.57
Possessive Determiner 428 0.49 98.06
Demonstrative Pronoun 397 0.46 98.52
Relative Pronoun 320 0.37 98.89
Indefinite Pronoun 263 0.3 99.19
Quotation Punctuation 232 0.27 99.46
Symbol 210 0.24 99.7
Simple Past Verb 130 0.15 99.85
Future Tense Verb 46 0.05 99.91
Conditional Verb 26 0.03 99.94
Subjunctive Present Verb 22 0.03 99.96
Interjection 18 0.02 99.98
Subjunctive Imperfect Verb 16 0.02 100.0
Total | 86,805 | 100 | 100

Table F.1: CAS POS Tags Distribution - CAS is a POS Tagging task containing a
total of 86,805 instances distributed across 30 POS tags. For easy navigation, dataset is
presented in Section 3.4.3.3.1 and Table 4.14 shows the tasks results.
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Classes Count| (%) C(l(%)r;l
Neoplasms 242 133.33| 33.33
Certain infectious and parasitic diseases 89 [12.26|45.59
Injury, poisoning and certain other consequences of external causes 74 110.19|55.79
Congenital malformations, deformations and chromosomal abnormalities 55 | 7.58|63.36
Diseases of the musculoskeletal system and connective tissue 52 | 7.16|70.52
Diseases of the circulatory system 43 15.92|76.45
Diseases of the digestive system 34 |4.68|81.13
Endocrine, nutritional and metabolic diseases 24 13.31|84.44
Pregnancy, childbirth and the puerperium 23 |3.17| 87.6

Diseases of the eye and adnexa 21 12.89] 90.5

Diseases of the genitourinary system 20 [2.75(93.25
Diseases of the skin and subcutaneous tissue 19 [2.62|95.87
Diseases of the nervous system 13 [1.79]97.66
Diseases of the respiratory system 10 | 1.38(99.04
Diseases of the blood and blood-forming organs and certain disorders involv{ 7 0.96 | 100.0
ing the immune mechanism

Total | 726 | 100 | 100

Table F.2: DiaMed Classes Distribution - DiaMed is a multi-class classification
task containing a total of 726 instances distributed across 15 classes. For easy navigation,
dataset is presented in Section 3.4.3.1.2 and Table 4.4 shows the tasks results.
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. Cumulative
Named Entity Count|Percentage (%) Percentage (%)
Clinical Entity | 3,270 | 100.0 100.0
Total | 3,270 | 100 100

Table F.3: E3C/Clinical Named Entity Distribution - E3C/Clinical is a NER
task containing a total of 3,270 instances with a single named entity. For easy navigation,
dataset is presented in Section 3.4.3.2.1 and Table 4.8 shows the tasks results.

Named Entities Count |Percentage (%) P:ﬁggﬁ;ﬁ;i“?;)

(3}
Event 3,836 66.64 66.64
Body Part 654 11.36 78.01
Lab Result 507 8.81 86.81
Actor 426 7.4 94.21
Time Expression 333 5.79 100.0
| 5,756 | 100 | 100

Total
Table F.4: E3C/Temporal Named Entities Distribution - E3C/Temporal is a
NER task containing a total of 5,756 instances distributed across 5 named entities. For
easy navigation, dataset is presented in Section 3.4.3.2.1 and Table 4.9 shows the tasks

results.
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POS Tags Count | Percentage (%) Pe(i(lzl;ﬁ::lall:e“z?%)
Noun 39,279 26.14 26.14
Personal Pronoun 22,261 14.81 40.95
Article 18,404 12.25 53.2
Adjective 11,056 7.36 60.56
Punctuation 9,272 6.17 66.73
Sentence 6,016 4.0 70.73
Conjunction 5,653 3.76 74.49
Number 5,530 3.68 78.17
Possessive Determiner 5,480 3.65 81.82
Past Participle Verb 4,821 3.21 85.03
Present Tense Verb 3,556 2.37 87.4
Adverb 3,490 2.32 89.72
Proper Noun 2,622 1.74 91.46
Future Tense Verb 2,562 1.7 93.17
Infinitive Verb 2,442 1.63 94.79
Demonstrative Pronoun 1,796 1.2 95.99
Present Participle Verb 1,661 1.11 97.09
Indefinite Pronoun 1,210 0.81 97.9
Personal Pronoun 1,089 0.72 98.62
Relative Pronoun 672 0.45 99.07
Abbreviation 325 0.22 99.29
Possessive Determiner 312 0.21 99.49
Quotation Punctuation 212 0.14 99.64
Singular or Mass Noun 161 0.11 99.74
Symbol 156 0.1 99.85
Conditional Verb 90 0.06 99.91
Subjunctive Present Verb 53 0.04 99.94
Simple Past Verb 46 0.03 99.97
Imperfect Tense Verb 42 0.03 100.0
Total ‘ 150,269 ‘ 100 ‘ 100

Table F.5: ESSAI POS Tags Distribution - ESSAI is a POS Tagging task containing
a total of 150,269 instances distributed across 29 POS tags. For easy navigation, dataset
is presented in Section 3.4.3.3.2 and Table 4.15 shows the tasks results.
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. Cumulative
Named Entities Count|Percentage (%) Percentage (%)
Disorders 288 32.76 32.76
Chemical /Drugs 236 26.85 59.61
Procedures 129 14.68 74.29
Living Beings 91 10.35 84.64
Anatomy 66 7.51 92.15
Physiology 44 5.01 97.16
Objects 25 2.84 100.0
Total | 879 | 100 100
Table F.6: MantraGSC/Merged Named Entities Distribution -

MantraGSC/Merged is a NER task containing a total of 879 instances distributed across
7 named entities. For easy navigation, dataset is presented in Section 3.4.3.2.2 and
Table 4.10 shows the tasks results.
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Labels Count |Percentage (%) Pe(i(lzl;ﬁ::lall:e“z?%)
Veterinary 824 16.11 16.11
Etiology 741 14.49 30.6
Psychology 608 11.89 42.48
Surgery 549 10.73 53.22
Genetics 505 9.87 63.09
Physiology 490 9.58 72.67
Pharmacology 299 5.85 78.51
Microbiology 273 5.34 83.85
Immunology 262 5.12 88.97
Chemistry 212 4.14 93.12
Virology 200 3.91 97.03
Parasitology 152 2.97 100.0
Total | 5,115 | 100 | 100

Table F.7: MorFITT Labels Distribution - MorFITT is a multi-label classification
task containing a total of 5,115 instances distributed across 12 labels. For easy navigation,
dataset is presented in Section 3.4.3.1.4 and Table 4.6 shows the tasks results.
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NE ID Deduced Entity Count|Percentage (%) PS:;EEQZZ“:%)
dos_val Dosage Value 1,600 13.96 13.96
dos_uf Dosage Unit Factor 1,513 13.2 27.15
rhythm_tdte |Rhythm To Date 1,320 11.51 38.67
dur_val Duration Value 1,208 10.54 49.2
dur_ut Duration Unit 1,205 10.51 59.71
drug Drug Name 935 8.16 67.87
d_dos_val Daily Dosage Value 849 7.41 75.27
d_dos_up Daily Dosage Upper Limit 822 7.17 82.44
inn INN 380 3.31 85.76
cma_event CMA Event 313 2.73 88.49
d_dos_form Daily Dosage Form 280 2.44 90.93
rhythm_perday|Rhythm Per Day 241 2.1 93.03
dos_cond Dosage Condition 134 1.17 94.2
rhythm_hour |Rhythm Hour 112 0.98 95.18
freq_ut Frequency Unit 109 0.95 96.13
d_dos_form_ext | Daily Dosage Form Extended 66 0.58 96.7
A A 52 0.45 97.16
roa ROA 46 0.4 97.56
freq_int_v1 Frequency Interval V1 31 0.27 97.83
gsp-val Quantity Sufficient Value 29 0.25 98.08
rhythm rec_ut |Rhythm Record Unit 29 0.25 98.33
max_unit_val |Maximum Unit Value 28 0.24 98.58
gsp-ut Quantity Sufficient Unit 28 0.24 98.82
freq_int_vl_ut |Frequency Interval V1 Unit 26 0.23 99.05
rhythm_rec_val | Rhythm Record Value 24 0.21 99.26
freq_int_v2 Frequency Interval V2 20 0.17 99.43
freq_val Frequency Value 19 0.17 99.6
fasting Fasting 18 0.16 99.76
max_unit_uf Maximum Unit Factor 18 0.16 99.91
freq_int_v2_ut |Frequency Interval V2 Unit 10 0.09 100.0
Total \ | 11,465 | 100 \ 100

Table F.8: PxCorpus/Task 1 Named Entities Distribution - PxCorpus/Task 1 is
a NER task containing a total of 11,465 instances distributed across 30 named entities.
For easy navigation, dataset is presented in Section 3.4.3.2.3 and Table 4.11 shows the
tasks results.

Classes Count |Percentage (%) Piyg}ﬁ;ﬁ;‘;‘:’%)
Medical prescription 1,574 91.14 91.14
None 115 6.66 97.8
Negate 21 1.22 99.02
Replace 17 0.98 100.0
Total | 1,727 | 100 | 100

Table F.9: PxCorpus/Task 2 Classes Distribution - PxCorpus/Task 2 is a multi-
class classification task containing a total of 1,727 instances distributed across 4 classes.
For easy navigation, dataset is presented in Section 3.4.3.1.5 and Table 4.7 shows the
tasks results.
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Named Entities Count |Percentage (%) Pe(i(lzl;ﬁ::lall:e“z?%)
Chemical /Drugs 2,167 36.11 36.11
Disorders 1,286 21.43 57.54
Procedures 835 13.91 71.45
Living Beings 722 12.03 83.49
Physiology 300 5.0 88.49
Anatomy 265 4.42 92.9
Objects 162 2.7 95.6
Devices 144 2.4 98.0
Geo. Areas 64 1.07 99.07
Phenomena 56 0.93 100.0
Total | 6,001 | 100 | 100

Table F.10: QUAERO/EMEA Named Entities Distribution - QUAERO/EMEA
is a NER task containing a total of 6,001 instances distributed across 10 named entities.
For easy navigation, dataset is presented in Section 3.4.3.2.4 and Table 4.12 shows the
tasks results.

Named Entities Count |Percentage (%) PSESEE;ZZ“E?%)
Disorders 2,115 31.26 31.26
Procedures 1,528 22.59 53.85
Chemical/Drugs 819 12.11 65.96
Living Beings et 11.49 77.44
Anatomy 744 11.0 88.44
Physiology 353 5.22 93.66
Geo. Areas 126 1.86 95.52
Phenomena 123 1.82 97.34
Devices 97 1.43 98.77
Objects 83 1.23 100.0
Total | 6,765 | 100 | 100

Table F.11: QUAERO/Medline Named Entities Distribution - QUAERO (Med-
line) is a NER task containing a total of 6,765 instances distributed across 10 named
entities. For easy navigation, dataset is presented in Section 3.4.3.2.4 and Table 4.13
shows the tasks results.
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Task Data Samples

i W : iarrhé Stai ié J uleur
List of words: [’la’, 'diarrhée’, ’était’, ’associée’, ’a’, 'des’, ’douleurs’,
"hypogastriques’, .|

POS Tags: B-DET:ART’, 'B-NOM’, 'B-VER:impf’, 'B-VER:pper’, 'B-
PRP’, 'B-PRP:det’, 'B-NOM’, 'B-ADJ’, 'B-SENT"]

Figure G.1: Data Sample - CAS - Example of a sequence of words with POS Tags.
The CAS task focuses on detecting grammatical features in clinical cases. For easy
navigation, dataset is presented in Section 3.4.3.3.1 and Table F.1 shows the dataset
statistics.
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Similarity Score (average): 3

Sentence 1: L’UIV a objectivé un retard de sécrétion avec importante
dilatation pyélo-calicielle et de 1'uretere lombaire en amont d'un énorme
calcul de l'uretere iliaque et pelvien droit (Figure 2).

Sentence 2: L’UIV a montré une importante dilatation urétéro-pyélo-
calicielle en amont d'un énorme calcul de I'uretere gauche, le coté droit était
sans anomalies (Figure 6).

Figure G.2: Data Sample - CLISTER - Example of a pair of sentences a global
similarity score computed using the mean of the multiple curators scores. For easy
navigation, dataset is presented in Section 3.4.3.4.1.
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Scores: [4.0, 4.5, 2.0, 4.0, 4.0]
Similarity Score (average): 3.7

Sentence 1: - En I'absence d’amélioration comme en cas de persistance des
symptomes, prendre un avis médical.

Sentence 2: En ’absence d’amélioration comme en cas de persistance des
symptomes au-dela de 7 jours de traitement, prenez un avis médical.

Figure G.3: Data Sample - DEFT-2020/Task 1 - Example of a pair of sentences
with score per curator and a global similarity score computed using the mean of the
scores. For easy navigation, dataset is presented in Section 3.4.3.4.2.

Source: une amnésie antérograde ainsi que des altérations des fonctions
psychomotrices sont susceptibles d’ apparaitre dans les heures qui suivent la
prise

Target 1: des troubles de mémoire ainsi que des altérations des fonctions
psychomotrices sont susceptibles d’ apparaitre dans les heures qui suivent la
prise du médicament

Target 2: ce médicament se présente sous forme de comprimé

Target 3: celui-ci se caractérise par 1’ apparition , en quelques heures ou en
quelques jours , de signes tels que anxiété importante , insomnie , douleurs
musculaires , mais on peut observer également une agitation , une irritabilité
, des maux de tete , un engourdissement ou des picotements des extrémités ,
une sensibilité anormale au bruit , a la lumiere ou aux contacts physiques ,
etc. les modalités de I’ arrét du traitement doivent étre définies avec votre
médecin

Correct target: Target 1
Figure G.4: Data Sample - DEFT-2020/Task 2 - Example of a source sentence

related to three target sentences. For easy navigation, dataset is presented in Sec-
tion 3.4.3.1.1.



164 APPENDIX G. TASK DATA SAMPLES

Source: 7 et 8 juillet : sommet du G20 & Hambourg (Allemagne).

Target 1: Abduction
Target 2: Les sept péchés capitaux.
Target 3: sommet du G20 a Hambourg, en Allemagne.

Correct target: Target 3

Figure G.5: DEFT-2020/Task 2: Illustration of Misclassification in Non-Life
Science Instance
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Title: Des Furoncles résistants aux antibiotiques: penser a la myiase!!

Clinical Case: Il s’agit d’'un militaire tunisien, agé de 37 ans, de sexe
masculin, en détachement onusien au contingent tunisien en République
Démocratique du Congo durant ’année 2008. Dans ses antécédents, il y a
un diabete non insulinodépendant bien équilibré sous antidiabétiques oraux
depuis cing ans et une obésité (Indice de Masse Corporelle =37 kg/m?2)
associée a une dyslipidémie. En octobre 2008, ce militaire était déployé
pendant 10 semaines dans une zone périphérique de Kinshasa. Un mois apres,
il s est présenté a la consultation, souffrant de deux papules prurigineuses
isolées apparues depuis 6 jours au niveau du thorax et de I'épaule. L’examen
clinique a trouvé deux lésions furonculoides, de 5 mm de diametre chacune,
avec un petit orifice ne laissant pas sourdre du pus, entouré d’un liseré
érythémateux légerement tuméfié, sans chaleur locale (Figure 1). Le reste
de I'examen était sans particularité notamment pas de fievre et le bilan
biologique standard n apportait pas d“élément d  orientation. Devant le
terrain de débilité (diabete type II), un traitement a base d’oxacycline a la
dose de 2 g/jour pendant 7 jours per os avec des soins locaux a été instauré
mais s’est avéré inefficace. Le retard de guérison fut d’abord rattaché a
son diabete et les lésions ont été traitées par une pommade antibiotique a
base de cyclines (pommade hydrophobe). Apres deux jours de traitement
par la pommade grasse, deux larves blanchatres de dimensions 10x5mm ont
sailli de chaque lésion a la suite d’une compression bidigitale. Ces larves ont
été retirées facilement a I'aide d’une pince, laissant derriere elles un orifice
propre sans pus. L’aspect furonculoide de la 1ésion cutanée, la chronologie
des événements, la notion de séjour en république Démocratique du Congo,
confrontés a la morphologie de la larve ont permis de conclure au diagnostic
de myiase furonculoide et les larves étaient identifiées comme appartenant a
Cordylobia anthropophaga.

ICD-10: L00-L99 Diseases of the skin and subcutaneous tissue

Figure G.6: Data Sample - Diamed - In this clinical case classification example,
two insights are noted: (1) the title is highly informative and succinct, (2) the clinical
case description is extensive, containing 303 words, which suggests that the length of
the sequence could approach the model’s input limit when tokenized into subwords. For
easy navigation, dataset is presented in Section 3.4.3.1.2 and Table F.2 shows the dataset
statistics.
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List of words: [L’, ”’examen”, ’'retrouvait’, 'par’, ’ailleurs’, 'une’,
‘tuméfaction’, 'médio’; claviculaire’, ‘gauche’; suggestive’, 'de’, 'cal’, 'osseux’,
‘sur’, 'une’; ‘fracture’, ’antérieure’, ’;’; 'des’, 'bourrelets’, ’épiphysaires’, "aux’,
'poignets’, ’)’, 'un’, ‘chapelet’, 'costal’, ’.’]

NER Tags: [0, ’0’, 0", 0", °0’, *0’, 'B-CLINENTITY", '0’, 0", ’0’, 0",
707, 707’ 707, 7()77 707’ 7B_CLINENTITY7’ 707, 7()?7 707, 7077 7077 707’ 707, 707’
'0’, 'B-CLINENTITY’, 'I-CLINENTITY", *O’]

Figure G.7: Data Sample - E3C/Clinical Illustration of NER tagging, where words
in color denote CLINENTITY for improved clarity. For easy navigation, dataset is
presented in Section 3.4.3.2.1 and Table F.3 shows the dataset statistics.

List of words: [La’, 'patiente’, ’a’; ’eu’, 'sept’, ’accouchements’, ’par’,
'voie’, ’basse’, ’sans’, ‘complications’, 'notables’; 'et’; 'une’, ’ligature’, 'des’,
‘trompes’, "il’; ’ya’; ’35’, ’ans’, *.’]

NER Tags: [B-ACTOR’, 'T-ACTOR/, ’O’, ’Q’, 'B-TIMEX3’, 'B-EVENT’,
'0’,’0’,’0’, ’O’, 'B-EVENT’, ’0O’, ’O’, ’0O’, 'B-EVENT’, 'B-BODYPART”,
‘- BODYPART", 'O’, ’0’, 'B-TIMEX3’, "I-TIMEX3’, *O’]

Figure G.8: Data Sample - E3C/Temporal Illustration of NER tagging, where

words in color denote a Named Entity for improved clarity. For easy navigation, dataset

is presented in Section 3.4.3.2.1 and Table F.4 shows the dataset statistics.
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List of words: [‘Cancer’, 'du’, 'rein’, 'métastatique’, ’,’, ’a’, ’cellules’,

‘claires’, "]

POS Tags: [NOM’, 'PRP:det’, 'NOM’, "ADJ’, 'PUN’, "PRP’, 'NOM’, 'ADJ’,
'SENT’|

Figure G.9: Data Sample - ESSAI [llustration of POS tagging in a sequence extracted
from a clinical trial. For easy navigation, dataset is presented in Section 3.4.3.3.2 and
Table F.5 shows the dataset statistics.
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Question: Parmi les affirmations suivantes, une seule est fausse, indiquer
laquelle: les particules alpha

Answer a: Sont formées de noyaux d’hélium
Answer b: Sont peu pénétrantes

Answer c: Sont arrétées par une feuille de papier
Answer d: Sont arrétées par une feuille de papier

Answer e: Sont peu ionisantes

Correct answers: [¢]

Number of correct answers: 1

Figure G.10: Data Sample - FrenchMedMCQA - Illustration of a question with
five answer options, where only one is correct in this instance. For easy navigation,
dataset is presented in Section 3.4.3.1.3 and Figure 3.8 shows the dataset statistics.
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List of words (EMEA): ['En’, 'cas’, ’de’, 'surdosage’, 'possible,’, ’contactez’,
‘immédiatement’, 'votre’, 'médecin.’]

NER Tags (EMEA): [0, '0’, 'O’, 'B-DISO’, ’0’, ’0", ’0’, ’O’, 'B-LIVB/]

Figure G.11: Data Sample - MantraGSC/EMEA TIllustration of NER tagging,
one example per sub-dataset, where words in color denote a Named Entity for improved
clarity. For easy navigation, dataset is presented in Section 3.4.3.2.2 and Table F.6 shows
the dataset statistics.

b )l

List of words (Medline): ['L’obésité.” | 'Quelques’, ‘remarques’, ’sur’,
"Papproche”, 'psychosomatique.’]

NER Tags (Medline): [B-DISO’, 0", 0", '0’, '0’, *0’]

Figure G.12: Data Sample - MantraGSC/Medline Illustration of NER tagging,
one example per sub-dataset, where words in color denote a Named Entity for improved
clarity. For easy navigation, dataset is presented in Section 3.4.3.2.2 and Table F.6 shows
the dataset statistics.
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List of words (Patents): [’L’utilisation”, ’selon’, ’la’, 'revendication’, '3’
'), o, le’, laxatif’, ‘osmotique’, ’est’; 'du’, ‘glycol’, 'de’; 'polyéthylene’,

3350, °.]

NER Tags (Patents): [O’, ’O’, 'O’, ’0O’, 'O, ’0’, 'O’, ’0O’, 'B-CHEM’,
'.CHEM, ’0Q?, ’Q?, 'B-CHEM’, 'L-.CHEM’, 'I-CHEM’, "I-CHEM’, ’0’]

Figure G.13: Data Sample - MantraGSC /Patents Illustration of NER tagging,
one example per sub-dataset, where words in color denote a Named Entity for improved
clarity. For easy navigation, dataset is presented in Section 3.4.3.2.2 and Table F.6 shows
the dataset statistics.
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Abstract: Prévalence et nouveaux génotypes d’Enterocytozoon bieneusi
chez les chiens et chats de refuges dans la province du Sichuan, dans le
sud-ouest de la Chine. Enterocytozoon bieneusi est un parasite intracellulaire
commun qui infecte un large éventail d’hotes, y compris les humains et
les animaux de compagnie, ce qui souleve des problemes de transmission
zoonotique. Cependant, il existe peu d’informations épidémiologiques sur
la prévalence et les génotypes d’E. bieneusi chez les chiens et les chats des
refuges dans la province du Sichuan, au sud-ouest de la Chine. Au total,
880 échantillons de matieres fécales ont été prélevés dans des refuges dans
différentes villes de la province du Sichuan, dont 724 échantillons de chiens
et 156 échantillons de chats. Enterocytozoon bieneusi a été déterminé par
analyse de séquence de I'espaceur transcrit interne ribosomique (ITS). Dans
I'ensemble, la prévalence d’E. bieneusi était de 18 % (158/880) et le parasite
a 6té détecté chez 18,8 % (136/724) et 14,1 % (22/156) des chiens et des
chats examinés, respectivement. L’analyse des séquences a révélé la présence
de cinq génotypes chez le chien, dont trois génotypes connus CD9 (n = 92),
PtEb IX (n = 41) et type IV (n = 1), et deux nouveaux génotypes SCD-1 (n
= 1) et SCD-2 (n = 1). De méme, quatre génotypes ont été identifiés chez
les chats, dont CD9 (n = 11), Type IV (n = 6), D (n = 4) et PtEb IX (n
= 1). Les génotypes D et de type IV ont été précédemment identifiés chez
I’homme et sont rapportés chez des chiens et des chats des refuges dans la
présente étude, ce qui indique que ces animaux pourraient étre des sources
potentielles d’infections par microsporidiose chez les humains.

Speciality: [Genetics, Veterinary]

Figure G.14: Data Sample - MorFITT - Example of an abstract annotated with
two labels. For easy navigation, dataset is presented in Section 3.4.3.1.4 and Table F.7
shows the dataset statistics.
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List of words: [‘antacapone’, '200’, 'milligrammes’; '2’) ’comprimés’, ’le’,

‘matin’, '17,’a’, ‘'midi’, ’et’, '2°; ’le’, 'soir’, 'traitement’, 'pour’, "4’; 'semaines’|

NER Tags: ['B-drug’, 'B-d_dos_val’, 'B-d_dos up’, 'B-dos_val’, ’'B-dos_uf’,
'Q’, 'B-rhythm tdte’, 'B-dos_val’, ’O’, ’B-rhythm_hour’, ’O’, 'B-dos_val’, ’O’,
‘B-rhythm_tdte’, ’O’, ’0’, 'B-dur_val’, 'B-dur_ut’]

Labels: Medical Prescription

Figure G.15: Data Sample - PxCorpus/Task 1 & 2: Named Entity Recognition
& Classification Illustration of NER tagging, where words in color denote named
entities for improved clarity. For easy navigation, dataset is presented in Section 3.4.3.2.3,
Table F.8 and Table F.9 shows the datasets statistics.
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List of words: [Prialt’, 'ne’, ’doit’, 'pas’, ’étre’, "utilisé’, 'chez’, 'I’, 7’
‘enfant’, *.’|

NER Tags: [B-CHEM’, 'O, '0’, 0", °0", 0", 'O, ’0’, ’0’, 'B-LIVB’, 'O’]

Figure G.16: Data Sample - QUAERO/EMEA) Illustration of NER tagging,
where words in color denote names entities for improved clarity. For easy navigation,
dataset is presented in Section 3.4.3.2.4 and Table F.10 shows the dataset statistics.

List of words: [Traitement’, ’des’, 'métastases’, "hépatiques’, 'des’, ’cancers’,

’ 9.0 »

‘colorectaux’, ’:’; "jusqu””’, 'ow’, ’aller’, ’ 7’|

NER Tags: [[B-PROC’,’0O’, 'B-DISO’, 'I-DISO’, ’O’, 'B-DISO’, ’I-DISO’,
707, 707, 7()77 aoa’ 707]

Figure G.17: Data Sample - QUAERO/Medline Illustration of NER tagging,
where words in color denote names entities for improved clarity. For easy navigation,
dataset is presented in Section 3.4.3.2.4 and Table F.11 shows the dataset statistics.






Appendix H

TransBERT Vs cTransBERT: All
results by datasets

| TransBERT | cTransBERT |[g .0 .

Labels
| P R F | P R F |

Veterinary 81.02 90.54 85.49|82.45 88.25 85.24 | 824
Etiology 69.38 63.75 68.90|67.84 69.12 68.24| 741
Psychology 85.60 87.67 86.58|85.28 87.51 86.33| 608
Surgery 81.58 86.84 84.04|80.74 87.81 84.10| 9549
Genetics 75.41 78.91 77.04|75.11 77.61 76.22| 9505
Physiology 68.57 54.10 60.36| 67.11 53.68 59.56 | 490
Pharmacology 70.18 69.41 69.45|71.33 68.78 69.41 299
Microbiology 71.36 76.24 73.53|74.14 75.27 74.41| 273
Immunology 68.09 67.43 67.21|67.72 67.32 67.16| 262
Chemistry 69.80 54.88 60.57|68.48 49.11 55.73| 212
Virology 69.95 73.59 71.25|72.16 69.84 70.40| 200
Parasitology 69.21 75.71 72.27|69.34 67.06 67.95| 152
Weighted avg 75.32 76.12 75.36| 75.31 75.03 74.76| 5115
Macro avg 73.35 73.67 73.06|73.48 71.78 72.06 | 9,115
Micro avg 75.38 76.12 75.74|75.34 75.03 75.15| 9,115

Table H.1: Detailed Model Evaluation for MorFITT (Tokenizer Analysis) -
The table shows model metrics averaged over all five folds for the 12 labels. Bold and
underline formatting are employed to emphasize the best and second-best outcomes,
respectively. Medals colors indicate the rank of each metric at each fold, with gold
denoting the top model. Although pastel medal colors illustrate an absolute ranking,
vibrant colors indicate statistical significance using o = 0.05. For each fold, micro average
and individual class level statistical evaluations were carried out using the McNemar test.
Macro and weighted averages significance were evaluated using the Wilcoxon test on
labels metrics. For easy navigation, tokenizers main analysis is in Section 5.3.
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176 DATASETS
Classes TransBERT cTransBERT ‘ Support
| P R F | P R F |

1 Correct Answer 93.19 90.46 91.79 |96.32 88.68 92.33| 1,079
2 Correct Answers 36.38 37.43 35.90|33.54 20.80 23.90| 670

3 Correct Answers 47.65 63.19 53.74 | 44.51 77.32 56.17| 929

4 Correct Answers 21.49 9.25 12.64| 9.65 5.29 6.75 | 381

5 Correct Answers 0.00 0.00 0.00 | 0.00 0.00 0.00 43
Weighted avg 57.24 59.38 57.25|55.26 59.12 54.86| 3,102
Macro avg 39.74 40.07 38.82|36.81 38.42 35.83| 3,102
Micro avg (Accuracy) — 59.38 — <— w — 37102

Table H.2: Detailed Model Evaluation for FrenchMedMCQA (Tokenizer
Analysis) - The table shows model metrics averaged over all five folds for the 5 classes.
Bold and underline formatting are employed to emphasize the best and second-best
outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Red medals denote that every model received a Null metric.
Although pastel medal colors illustrate an absolute ranking, vibrant colors indicate
statistical significance using o = 0.05. For each fold, micro average and individual class
level statistical evaluations were carried out using the McNemar test. Macro and weighted
averages significance were evaluated using the Wilcoxon test on labels metrics. For easy
navigation, tokenizers main analysis is in Section 5.3.

| TransBERT | cTransBERT | Support
P R _F|P R _F |

Classes

Micro avg (Aceuracy) ‘<— 98.82 — ‘<— 99.27 — ‘ 1,100

Table H.3: Detailed Model Evaluation for DEFT-2020/Task 2 (Tokenizer
Analysis) - The table shows model metrics averaged over all five folds for the 3 classes.
Bold and underline formatting are employed to emphasize the best and second-best
outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Although pastel medal colors illustrate an absolute ranking,
vibrant colors indicate statistical significance using o = 0.05. For each fold, micro average
and individual class level statistical evaluations were carried out using the McNemar test.
Macro and weighted averages significance were evaluated using the Wilcoxon test on
labels metrics. For easy navigation, tokenizers main analysis is in Section 5.3.
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|  TransBERT | cTransBERT \Support

Classes
P R F, | P R F |

Medical Prescription 97.02 99.24 98.11 [97.31 98.79 98.04 | 1,574
None 80.77 68.59 73.84 |75.94 72.10 73.63| 115
Negate 66.67 41.67 50.48 | 39.76 41.67 38.91 21
Replace 36.67 18.67 24.43 | 0.00 0.00 0.00 17
Weighted avg 95.28* 95.77 95.34%|94.34* 95.37 94.79*| 1,727
Macro avg 70.28* 57.04 61.71%|53.25* 53.14 52.64*| 1,727
Micro avg (Accuracy) «— 95.77 — «— 95.37 — 17727

Table H.4: Detailed Model Evaluation for PxCorpus/Task 2 (Tokenizer
Analysis) - The table shows model metrics averaged over all five folds for the 4 classes.
Bold and underline formatting are employed to emphasize the best and second-best
outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Red medals denote that every model received a Null metric.
Although pastel medal colors illustrate an absolute ranking, vibrant colors indicate
statistical significance using @ = 0.05. For each fold, micro average and individual class
level statistical evaluations were carried out using the McNemar test. Macro and weighted
averages significance were evaluated using the Wilcoxon test on labels metrics. For easy
navigation, tokenizers main analysis is in Section 5.3.
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178 DATASETS
Classes ‘ TransBERT ‘ cTransBERT ‘Supp ort
| P R F | P R F |
Neoplasms 89.34 91.09 90.10(91.20 87.88 89.42 | 242
Infectious 78.34 85.44 81.34 [81.90 84.67 82.94| 89
Injury 78.40 83.86 80.32|78.81 81.03 79.39| 74
Cong. Malform. 70.92 61.89 63.57|64.60 63.17 63.29| 59
Musculoskeletal 67.74 68.68 65.86|62.39 70.50 64.77 52
Circulatory 73.81 58.27 62.16|72.19 54.69 57.76 | 43
Digestive 58.11 61.94 59.17 [61.56 66.94 63.72| 34
Endocrine 65.95 72.67 66.39/68.94 72.00 61.90| 24
Pregnancy 78.67 81.00 77.11|69.33 60.33 60.69 | 23
Eye 58.33 59.67 57.67|54.00 53.67 53.43| 21
Genitourinary 79.33 70.57 70.78|58.17 76.29 63.87| 20
Skin 66.00 51.33 55.97|53.00 60.33 51.69| 19
Nervous 10.00 20.00 13.33| 6.67 13.33 8.89 13
Respiratory 20.00 6.67 10.00|10.67 30.00 15.71| 10
Blood Disorders 16.67 30.00 21.33(30.00 20.00 23.33 7
Weighted avg 77.39 75.88 75.31|75.99 74.23 73.91| 726
Macro avg 60.77 60.21 58.34|57.56 59.66 56.05| 726
— 175.88 — 726

Micro avg (Accuracy)

— 7423 —

Table H.5: Detailed Model Evaluation for DiaMed (Tokenizer Analysis) -
The table shows model metrics averaged over all five folds for the 15 classes. Bold and
underline formatting are employed to emphasize the best and second-best outcomes,
respectively. Medals colors indicate the rank of each metric at each fold, with gold
denoting the top model. Red medals denote that every model received a Null metric.
Although pastel medal colors illustrate an absolute ranking, vibrant colors indicate
statistical significance using o = 0.05. For each fold, micro average and individual class
level statistical evaluations were carried out using the McNemar test. Macro and weighted
averages significance were evaluated using the Wilcoxon test on labels metrics. For easy
navigation, tokenizers main analysis is in Section 5.3.
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Named ‘ TransBERT ‘ cTransBERT

Entities Support

| P R F | P R F |

Clinical Entity ‘76.80 76.89 76.83‘74.50 76.94 75.70‘ 3,270

Table H.6: Detailed Model Evaluation for E3C/Clinical (Tokenizer Analysis)
- The table shows model metrics averaged over all five folds for the only named entity.
Bold and underline formatting are employed to emphasize the best and second-best
outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Although pastel medal colors illustrate an absolute ranking,
vibrant colors indicate statistical significance using a = 0.05. For each fold, micro average
and individual class level statistical evaluations were carried out using the McNemar test.
Macro and weighted averages significance were evaluated using the Wilcoxon test on
labels metrics. For easy navigation, tokenizers main analysis is in Section 5.3.

ENIiltrirzigs ‘ TransBERT ‘ cTransBERT ‘Supp ort
| P R FK | P R F |
Event 86.83 89.04 87.91 |86.23 88.86 87.52| 3,836
Body Part 75.87 76.66 76.14 |71.11 73.08 72.01 | 654
Lab Result 79.03 82.76 80.83 | 78.27 83.19 80.62 | 507
Actor 88.94 91.45 90.13 [88.00 90.96 89.44 | 426
Time Expression 79.00 84.07 81.43 |80.08 83.49 81.65 333
Weighted avg 84.63 86.94 85.74"|83.60 86.39 84.95%| 9,756
Macro avg 81.93 84.80 83.29%|80.74 83.92 82.25%| 9,756
Micro avg 84.57 86.94 85.73 | 83.55 86.39 84.95 | 9,756

Table H.7: Detailed Model Evaluation for E3C/Temporal (Tokenizer Analysis)
- The table shows model metrics averaged over all five folds for the 5 named entities.
Bold and underline formatting are employed to emphasize the best and second-best
outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Although pastel medal colors illustrate an absolute ranking,
vibrant colors indicate statistical significance using a = 0.05. For each fold, micro average
and individual class level statistical evaluations were carried out using the McNemar test.
Macro and weighted averages significance were evaluated using the Wilcoxon test on
labels metrics. For easy navigation, tokenizers main analysis is in Section 5.3.
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180 DATASETS
ENIZIE'?; TransBERT cTransBERT [g o0
| P R F | P R F |
Disorders 66.74 65.01 65.73|65.28 60.46 62.68| 288
Chemical/Drugs 64.36 69.78 66.52 |68.12 71.55 69.76| 243
Procedures 54.84 53.29 53.44 | 54.55 60.92 56.75 129
Living Beings 70.93 71.27 70.71|66.80 72.06 68.42| 91
Anatomy 69.57 61.90 65.18|49.12 53.52 50.80 | 06
Physiology 29.27 24.44 26.22|23.49 30.44 25.92| 44
Objects 42.00 58.15 38.42|36.33 35.33 30.10| 26
Weighted avg 63.87 62.76 62.56|61.41 61.71 60.93| 887
Macro avg 56.82 57.69 55.17|51.96 54.90 52.06 | 887
Micro avg 63.82 62.76 63.24|60.45 61.71 61.03| 887

Table H.8: Detailed Model Evaluation for MantraGSC/Merged (Tokenizer
Analysis) - The table shows model metrics averaged over all five folds for the 7 named
entities. Bold and underline formatting are employed to emphasize the best and second-
best outcomes, respectively. Medals colors indicate the rank of each metric at each
fold, with gold denoting the top model. Red medals denote that every model received
a Null metric. Although pastel medal colors illustrate an absolute ranking, vibrant
colors indicate statistical significance using o = 0.05. For each fold, micro average and
individual class level statistical evaluations were carried out using the McNemar test.
Macro and weighted averages significance were evaluated using the Wilcoxon test on
labels metrics. For easy navigation, tokenizers main analysis is in Section 5.3.
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Named

‘ TransBERT

cTransBERT

‘ Support

Entities ‘ P R F ‘ p R F ‘

Chemical /Drugs 91.58 92.61 92.08 |91.84 93.08 92.44| 2,167
Disorders 81.02 82.88 81.93|83.33 83.49 83.41| 1,286
Procedures 84.64 82.65 83.61|83.84 83.39 83.57| 835
Living Beings 91.92 93.51 92.70 [92.82 92.67 92.74| 722
Physiology 67.19 67.79 67.41|66.23 68.44 67.09| 300
Anatomy 76.36 72.18 73.79|76.02 73.91 74.88| 265
Objects 69.94 70.19 69.83|67.93 75.11 71.07| 162
Devices 86.99 83.04 84.91|85.59 79.81 82.48| 144
Geo. Areas 88.52 87.67 87.95(89.70 86.45 87.91 64
Phenomena 70.68 54.63 61.34|68.99 56.42 59.55| 96
Weighted avg 85.61 85.85 85.67 |86.03 86.27 86.08| 6,001
Macro avg 80.88 78.72 79.55|80.63 79.28 79.51 | 6,001
Micro avg 85.59 85.85 85.72|85.97 86.27 86.12| 6,001

Table H.9: Detailed Model Evaluation for QUAERO/EMEA (Tokenizer
Analysis) - The table shows model metrics averaged over all five folds for the 10 named
entities. Bold and underline formatting are employed to emphasize the best and second-
best outcomes, respectively. Medals colors indicate the rank of each metric at each fold,
with gold denoting the top model. Although pastel medal colors illustrate an absolute
ranking, vibrant colors indicate statistical significance using o = 0.05. For each fold,
micro average and individual class level statistical evaluations were carried out using
the McNemar test. Macro and weighted averages significance were evaluated using the
Wilcoxon test on labels metrics. For easy navigation, tokenizers main analysis is in

Section 5.3.
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ENI?tIiIEfSS ‘ TransBERT ‘ cTransBERT ‘Support
| P R F | P R F |
Disorders 67.31 64.85 66.04|64.64 62.46 63.52| 2,115
Procedures 65.12 67.57 66.28|65.16 65.27 65.18 | 1,528
Chemical /Drugs 72.48 72.17 72.27|71.39 72.62 71.94| 819
Living Beings 74.42 73.87 74.11|74.73 72.58 73.60| 777
Anatomy 58.84 53.55 55.97 [59.89 54.08 56.63| 744
Physiology 41.11 39.45 40.17 |44.56 38.67 41.29| 353
Geo. Areas 77.63 78.88 77.97|75.65 79.79 77.51| 126
Phenomena 33.08 23.01 26.56|31.14 21.55 25.03| 123
Devices 45.00 38.95 41.07 |43.86 39.28 41.27| 97
Objects 36.80 32.46 33.10 |43.09 39.77 39.19| 83
Weighted avg 64.87 63.50 64.05|64.31 62.26 63.13| 6,765
Macro avg 57.18 54.47 55.35 |57.41 54.61 55.52| 6,765
Micro avg 65.10 63.50 64.29| 64.58 62.26 63.39 | 6,765

Table H.10: Detailed Model Evaluation for QUAERO /Medline (Tokenizer
Analysis) - The table shows model metrics averaged over all five folds for the 10 named
entities. Bold and underline formatting are employed to emphasize the best and second-
best outcomes, respectively. Medals colors indicate the rank of each metric at each fold,
with gold denoting the top model. Although pastel medal colors illustrate an absolute
ranking, vibrant colors indicate statistical significance using o = 0.05. For each fold,
micro average and individual class level statistical evaluations were carried out using
the McNemar test. Macro and weighted averages significance were evaluated using the
Wilcoxon test on labels metrics. For easy navigation, tokenizers main analysis is in
Section 5.3.
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llglrla‘;riré;e‘;is P Trans}]z?)ERT - PcTran;BERTF1 Support
dos_val 96.08 97.07 96.56 | 93.07 95.50 94.26 | 1,600
dos_uf 96.24 96.24 96.24 | 94.32 95.14 94.73 | 1,513
rhythm_tdte 99.22 99.93 99.57 | 98.43 99.79 99.10 | 1,320
dur_val 98.13 99.58 98.85 | 96.21 99.67 97.89 | 1,208
dur_ut 98.06 99.67 98.85 | 95.61 99.83 97.66 | 1,205
drug 90.62 88.81 89.67 | 85.23 89.25 86.77 | 935
d_dos_val 96.05 97.03 96.53 | 95.26 97.03 96.13 | 849
d_dos_up 96.96 98.78 97.86 | 97.30 98.18 97.73 | 822
inn 79.03 85.84 82.07 | 60.26 63.82 61.90 | 380
cma_event 78.42 82.44 80.33 | 77.35 7590 76.60 | 313
d_dos_form 90.21 93.90 92.00 | 80.02 92.32 85.27 | 280
rhythm_perday 95.02 97.15 95.91 | 86.78 96.45 90.82 | 241
dos_cond 82.92 86.79 84.51 | 68.71 65.37 66.60 | 134
rhythm_hour 95.20 98.00 96.46 | 91.33 79.82 77.33 112
freq-ut 94.53 98.22 96.30 | 75.11 78.18 76.48 109
d_dos_form_ext 92.60 81.60 85.69 | 52.51 53.46 52.91 66
A 85.18 80.99 79.81 | 55.14 50.00 50.74 52
roa 82.78 91.57 85.28 | 56.25 54.57 55.18 46
freq-int_v1 87.78 88.33 87.42 | 55.00 50.56 52.50 31
gsp-val 100.00 100.00 100.00| 57.78 57.78 57.78 29
rhythm_rec_ut 90.00 89.44 89.00 | 46.98 55.56 50.68 29
max_unit_val 80.00 62.67 69.29 | 40.00 32.00 35.00 28
gsp-ut 96.00 100.00 97.78 | 60.00 57.78 58.82 28
freq-int_v1_ut 83.43 84.44 80.41 | 55.00 53.33 53.14 26
rhythm_rec_val 87.67 96.00 90.88 | 48.50 53.14 49.85 24
freq-int_v2 100.00 90.00 94.18 | 60.00 53.33 56.00 20
freq-val 93.33 76.67 82.67 | 53.33 41.90 45.33 19
fasting 100.00 80.67 84.85 | 60.00 56.67 58.18 18
max_unit_uf 66.00 56.67 59.11 | 13.33 13.33 13.33 18
freq-int_v2_ut 0.00 0.00 0.00 | 0.00 0.00 0.00 10
weighted avg 94.82* 95.72* 95.17*(90.22* 92.51* 91.15* | 11,465
macro avg 87.72* 86.62* 86.27*|66.96* 66.99* 66.29* | 11,465
micro avg 94.82 95.72 95.26 | 92.33 92.51 92.42 | 11,465

Table H.11: Detailed Model Evaluation for PxCorpus/Task 1 (Tokenizer Analysis) - The table shows
model metrics averaged over all five folds for the 30 named entities. Bold and underline formatting are employed to
emphasize the best and second-best outcomes, respectively. Medals colors indicate the rank of each metric at each
fold, with gold denoting the top model. Red medals denote that every model received a Null metric. Although
pastel medal colors illustrate an absolute ranking, vibrant colors indicate statistical significance using oo = 0.05.
For each fold, micro average and individual class level statistical evaluations were carried out using the McNemar
test. Macro and weighted averages significance were evaluated using the Wilcoxon test on labels metrics. For easy
navigation, tokenizers main analysis is in Section 5.3.
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iig)gi ‘ TransBERT ‘ cTransBERT ‘ Support
| P R | P R o
Noun 97.30 96.88 97.09 | 97.30 96.94 97.12 | 20,052
Pers. Pr. 99.61 99.66 99.64 | 99.64 99.69 99.66 | 11,049
Adjective 95.35 95.23 9529 | 95.75 95.15 95.45 | 9,179
Article 99.72 99.90 99.81 | 99.71 99.90 99.80 | 9,085
Punctuation 99.94 99.75 99.84 | 99.93 99.86 99.90 | 7,500
Number 98.43 99.02 98.72 | 98.33 98.81 98.57 | 4,298
Sentence 99.97 99.87 99.92 [100.00 99.95 99.97 | 3,883
PastP Verb 95.14 96.56 95.84 | 95.25 96.91 96.06 | 3,114
Conjunction 98.04 98.40 98.21 | 97.90 98.77 98.33| 2,655
Present Verb 96.60 97.45 97.02 | 97.00 97.25 97.12| 2,485
Adverb 97.64 97.66 97.65 | 97.91 97.58 97.74 | 2,468
Poss. Pr. 99.78 99.91 99.84 | 99.73 99.91 99.82 | 2,233
Imperfect Verb 99.53 99.71 99.62 | 99.24 99.71 99.47 | 2,117
Pers. Pr. 99.32 98.30 98.80 | 99.12 98.61 98.86| 1,583
Proper Noun 82.42 85.72 84.02 | 83.41 84.72 84.03| 1,446
Inf. Verb 97.93 98.06 97.97 | 98.14 97.43 97.75 | 567
PresP Verb 95.33 94.79 95.00 | 94.43 94.87 94.60 | 512
Abbreviation 82.30 73.02 77.09 | 7815 76.98 77.51| 471
Poss. Det. 99.36 99.57 99.46 | 99.32 99.57 99.43 | 428
Demon. Pr. 99.48 99.75 99.61 | 99.02 100.00 99.50 | 397
Relative Pr. 98.08 95.64 96.81 | 98.75 96.17 97.41 | 320
Indef. Pr. 98.35 98.46 98.40 | 97.68 98.52 98.08 | 263
Quot. Punct. 100.00 98.13 99.05 | 99.69 99.58 99.63 | 232
Symbol 95.09 99.26 97.02 | 98.72 99.61 99.15| 210
Past Verb 80.04 70.11 74.53 | 79.29 6848 73.29 | 130
Future Verb 79.68 51.65 61.11 | 75.40 57.87 65.05 46
Cond. Verb 81.07 83.33 81.44 | 91.00 73.33 79.88 26
SubjP Verb 81.67 60.95 61.72 | 81.67 64.29 65.05 22
Interjection 100.00 70.33 81.48 | 85.00 53.67 63.81 18
SubjI Verb 13.33 8.00 10.00| 10.00 6.67  8.00 16
Weighted avg 97.78 97.73 97.74 | 97.81 97.76 97.78 | 86,805
Macro avg 92.02 88.84 89.73 | 91.55 88.36 89.34 | 86,805
Micro avg 97.79 97.73 97.76 | 97.83 97.76 97.79 | 86,805

Table H.12: Detailed Model Evaluation for CAS (Tokenizer Analysis) - The table shows model metrics
averaged over all five folds for the 30 POS tags. Bold and underline formatting are employed to emphasize the
best and second-best outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Red medals denote that every model received a Null metric. Although pastel medal
colors illustrate an absolute ranking, vibrant colors indicate statistical significance using o« = 0.05. For each fold,
micro average and individual class level statistical evaluations were carried out using the McNemar test. Macro
and weighted averages significance were evaluated using the Wilcoxon test on labels metrics. For easy navigation,
tokenizers main analysis is in Section 5.3.
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i(l)gz | TransBERT | cTransBERT  [support
| P R F | P R P
Noun 98.56 98.42 98.49 | 98.48 98.39 98.44 | 39,279
Pers. Pr. 99.66 99.86 99.76 | 99.62 99.87 99.74 | 22,261
Article 99.81 99.88 99.84 | 99.79 99.86 99.83 | 18,404
Adjective 96.69 95.75 96.21 | 96.64 95.62 96.12 | 11,056
Punctuation 100.00 99.92 99.96 | 99.96 100.00 99.98 | 9,272
Sentence 99.98 99.98 99.98 | 99.98 99.95 99.97 | 6,016
Conjunction 98.78 98.82 98.80 | 98.66 98.89 98.77 | 9,653
Number 99.06 99.33 99.20 | 98.94 99.37 99.15 | 5,530
Poss. Pr. 99.93 99.91 99.92 | 99.93 99.89 99.91 | 5,480
PastP Verb 96.86 97.67 97.26 | 96.96 97.74 97.34 | 4,821
Present Verb 98.72 97.58 98.15 [ 98.81 97.86 98.33| 3,556
Adverb 98.06 98.19 98.12|98.22 98.01 98.11 | 3,490
Proper Noun 88.02 91.99 89.93 | 86.99 91.58 89.19 | 2,622
Future Verb 99.53 99.53 99.53 | 99.42 99.34 99.38 | 2,562
Inf. Verb 99.10 99.51 99.30 | 99.05 99.35 99.20 | 2,442
Demon. Pr. 99.83 100.00 99.92 | 99.83 100.00 99.92 | 1,796
PresP Verb 98.32 98.62 98.47 | 98.25 98.62 98.43 | 1,661
Indef. Pr. 99.07 99.34 99.20 | 99.01 99.44 99.22 | 1,210
Pers. Pr. 98.32 96.84 97.57 | 98.35 96.85 97.59 | 1,089
Relative Pr. 99.27 98.18 98.71 | 98.85 98.78 98.81| 672
Abbreviation 64.72 61.39 62.72|65.55 55.15 59.21 | 325
Poss. Det. 100.00 99.35 99.67 | 99.38 99.35 99.37 | 312
Quot. Punct. 100.00 100.00 100.00(100.00 100.00 100.00| 212
Noun Sing./Mass 95.66 98.75 97.14| 95.18 98.24 96.64 | 161
Symbol 100.00 98.75 99.35| 99.41 98.75 99.06 | 156
Cond. Verb 96.72 90.52 93.39 | 87.47 86.80 86.76 90
SubjP Verb 76.67 52.05 60.33 | 86.00 41.56 52.24 53
Past Verb 0.00 0.00 0.00 | 0.00 0.00 0.00 46
Imperfect Verb 96.36 83.21 87.84 |100.00 76.51 82.76 42
Weighted avg 98.65 98.63 98.64 | 98.59 98.59 98.58 |150,269
Macro avg 93.02 91.49 92.03 | 93.06 90.54 91.15 | 150,269
Micro avg 98.66 98.63 98.65 | 98.61 98.59 98.60 | 150,269

Table H.13: Detailed Model Evaluation for ESSAI (Tokenizer Analysis) - The table shows model metrics
averaged over all five folds for the 29 POS tags. Bold and underline formatting are employed to emphasize the
best and second-best outcomes, respectively. Medals colors indicate the rank of each metric at each fold, with
gold denoting the top model. Red medals denote that every model received a Null metric. Although pastel medal
colors illustrate an absolute ranking, vibrant colors indicate statistical significance using oo = 0.05. For each fold,
micro average and individual class level statistical evaluations were carried out using the McNemar test. Macro
and weighted averages significance were evaluated using the Wilcoxon test on labels metrics. For easy navigation,
tokenizers main analysis is in Section 5.3.






Appendix 1

TransBERT Vs cTransBERT:
Tokenization Examples

Ratio: 7.0 (1 entity)

Entity: [1évofloxacine’] (1 word)

TransBERT: ['__lévofloxacine’] (1 token)
CamemBERT: [__I’, ¢, 'vo’, 'flo’, 'x’, ’a’, 'cine’] (A+6)
DrBERT: [__lévofloxacine’] (A0)

Ratio: 6.0 (1 entity)

Entity: ['dexaméthasone’] (1 word)

TransBERT: [__dexaméthasone’] (1 token)
CamemBERT: [__de’, 'x’, 'a’, 'méth’, 'as’, ’one’] (A+5)
DrBERT: [__dexaméthasone’] (A0)

Ratio: 5.0 (46 entities)

Entity: [thyroidite’] (1 word)

TransBERT: ['__thyroidite’] (1 token)
CamemBERT: [_, ’thy’, ', oid’, "ite’] (A+4)
DrBERT: [__thyrot’, 'd’, "ite’] (A+2)

Entity: [lymphoblastique’] (1 word)

TransBERT: [__lymphoblastique’] (1 token)
CamemBERT: [__ 1", 'ymph’, ’0’, "blast’, ique’] (A+4)
DrBERT: [__lymph’, ’oblastique’] (A+1)
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Entity: ["Massachusetts’] (1 word)

TransBERT: [__Massachusetts’] (1 token)
CamemBERT: ['_ Massa’, 'chu’; ’s’, ett’, ’s’] (A+4)
DrBERT: [__Mass’, 'ach’, 'us’, 'et’, 'ts’] (A+4)

Entity: ['méthotrexate’] (1 word)

TransBERT: ['__méthotrexate’] (1 token)
CamemBERT: ['__mé’, 'tho’, 'tre’, 'x’, ’ate’] (A+4)
DrBERT: [__méthotrexate’] (A0)

Entity: [antirétroviral’] (1 word)

TransBERT: [__antirétroviral’] (1 token)
CamemBERT: [__anti’, 'té’, 'tro’, 'vir’, al’] (A+4)
DrBERT: [__antirétroviral’] (A0)

Entity: ["Absorption’] (1 word)

TransBERT: ['__Absorption’] (1 token)
CamemBERT: ['__Ab’, ’s’, 'or’, 'p’, 'tion’] (A+4)
DrBERT: ['__Absorption’] (A0)

Entity: [‘céphalosporine’] (1 word)

TransBERT: [__céphalosporine’] (1 token)
CamemBERT: [__¢’, épha’, 'los’, 'por’; ’ine’] (A+4)
DrBERT: ['__céphal’, ’osporine’] (A+1)

Entity: ['antécédents’] (1 word)

TransBERT: [__antécédents’] (1 token)
CamemBERT: [__an’, 'té’, 'cé’, 'dent’, 's’] (A+4)
DrBERT: ['__antécédents’] (A0)

Entity: [antirétroviraux’] (1 word)

TransBERT: [__antirétroviraux’] (1 token)
CamemBERT: [__anti’, 'ré, 'tro’, 'vir’, 'aux’] (A+4)
DrBERT: [__antirétroviraux’] (A0)
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Entity: ['phosphatases’] (1 word)

TransBERT: [__phosphatases’] (1 token)
CamemBERT: [__pho’, ’s’, 'pha’, 'tas’, ’es’] (A+4)
DrBERT: ['__phosphatases’] (A0)

Ratio: 4.5 (1 entity)

Entity: ['adénocarcinome’, kystique’] (2 words

TransBERT: [__adénocarcinome’, ’__kystique’] (2 tokens)
CamemBERT: [__ad’, éno’, 'car’, 'ci’, 'nome’, '__’, 'ky’, ’s’, "tique’] (A+T7)
DrBERT: [__adénocarcinome’, ’__kys’, 'tique’] (A+1)

Ratio: 4.0 (128 entities)

Entity: ['convulsions’] (1 word)

TransBERT: ['__convulsions’] (1 token)
CamemBERT: [__con’, 'vul’, s’ "ions’] (A+3)
DrBERT: ['__convulsions’] (A0)

Entity: ['myocardite’, "fulminante’] (2 words)

TransBERT: ['__myocardite’, '__fulminante’] (2 tokens)
CamemBERT: [__m’, ’yo’, ’car’, ’dite’, '__’, 'ful’, 'min’, ’ante’] (A+6)
DrBERT: [__myoc’, ’ardite’, ’__fulmin’, ’ante’] (A+2)

Entity: [1évodopa’] (1 word)

TransBERT: ['__lévodopa’] (1 token)
CamemBERT: [__T’, év’, ’odo’, 'pa’] (A+3)
DrBERT: ['__lévodopa’] (A0)

Entity: ['médullaire’] (1 word)

TransBERT: [__médullaire’] (1 token)
CamemBERT: [[__m’, ’éd’, 'ul’, 'laire’] (A+3)
DrBERT: ['__médullaire’] (A0)

Entity: ['myocardique’] (1 word)

TransBERT: ['__myocardique’] (1 token)
CamemBERT: [__m’, yo’, "card’, "ique’] (A+3)
DrBERT: ['__myocardique’] (A0)
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Entity: ['vésicules’] (1 word)

TransBERT: ['__vésicules’] (1 token)
CamemBERT: ['__vé’, ’s’, ’icule’, ’s’] (A+3)
DrBERT: [__vésicules’] (A0)

Entity: [cholestéatome’] (1 word)

TransBERT: ['__cholestéatome’] (1 token)
CamemBERT: [__cho’, 'les’, 't¢’, atome’] (A+3)
DrBERT: [__ch’, ‘oles’, 'té’, at’, ome’] (A+4)

Entity: ['prolapsus’] (1 word)

TransBERT: [__prolapsus’] (1 token)
CamemBERT: [__pro’, ’la’, 'ps’, 'us’] (A+3)
DrBERT: ['__prolapsus’] (A0)

Entity: ['métastase’] (1 word)

TransBERT: [__métastase’] (1 token)
CamemBERT: ['__méta’, 'sta’, ’s’, ¢’ (A+3)
DrBERT: ['__métastase’] (A0)

Entity: ['microsomes’] (1 word)

TransBERT: ['__microsomes’] (1 token)
CamemBERT: [__micro’, ’s’, 'ome’; ’s’] (A+3)
DrBERT: [__micros’, 'omes’] (A+1)

Ratio: 3.5 (25 entities)

Entity: [fistule’, ’cholécysto’] (2 words)
TransBERT: ['__fistule’, ’__cholécysto’] (2 tokens)
CamemBERT: [__fist’, 'ule’, ’__cho’, 'I&’, 'cy’, ’s’, 'to’] (A+5)

DrBERT: [__fistule’, ’__cholécys’, 'to’] (A+1)

Entity: [‘cardiomyopathie’, ’dilatée’] (2 words)

TransBERT: [__cardiomyopathie’, ’__dilatée’] (2 tokens)
CamemBERT: [__cardio’, 'my’, ’opathie’, ’__d’, "il’, ’a’, 'tée’] (A+5)
DrBERT: [__cardiomyopathie’, ’__dila’, 'tée’] (A+1)
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Entity: [‘épaississement’, 'péritonéal’] (2 words)

TransBERT: ['__épaississement’, __péritonéal’] (2 tokens)
CamemBERT: [__épais’, ’s’, ’issement’, '__péri’, ton’, 'é’, 'al’] (A+5)
DrBERT: [__épaississement’, ’__péritoné’, 'al’] (A+1)

Entity: [adénomes’, 'parathyroidiens’, ’ectopiques’] (3 words)
TransBERT: [__adénomes’, ’_ parathyroidien’, ’s’, ’__ectopiques’] (4
tokens)

CamemBERT: [__a’, ’dé’, 'nome’, ’s’, °__par’, 'ath’, 'y’, 1, 'oid’, ’iens’,
) ect’, Jop’, Tiques’] (A+10)

DrBERT: ['__adénomes’, '__parathyrol’, 'diens’, '__ect’, 'opiques’] (A+1)

Entity: ["Anatomie’, 'stéréotaxique’] (2 words

TransBERT: ['__Anatomie’, '__stéréotaxique’] (2 tokens)
CamemBERT: [__Ana’, 'tom’, ’ie’, ’__stéréo’, 'ta’, 'x’, 'ique’] (A+5)
DrBERT: [__Anatomie’, ’__stéréotax’, 'ique’] (A+1)

Entity: ['paucisymptomatique’] (1 word)
TransBERT: [__pauci’, ’'symptomatique’] (2 tokens)

CamemBERT: [__pa’, 'uci’, ’s’, 'y’, 'mp’, 'to’, ‘'matique’] (A+5)
DrBERT: [__p’, 'auc’, 'is’, 'ymptom’, "atique’] (A+3)

Entity: [acétylsalicylique’] (1 word)

TransBERT: [__a’, cétylsalicylique’] (2 tokens)
CamemBERT: [__ac’, ’ét’, 'yI’, ’s’, ali’, "cy’, "lique’] (A+5)
DrBERT: [__acétyl’, 'salicylique’] (AO)

Entity: ['protéinurie’, 'néphrotique’] (2 words)

TransBERT: [__protéinurie’, '__néphrotique’] (2 tokens)
CamemBERT: [__’, 'proté’, ’in’, 'urie’, ’__né’, 'phro’, "tique’] (A+75)
DrBERT: [__protéinurie’, ’__néphrotique’] (A0)

Entity: [‘convulsions’, 'fébriles’] (2 words

TransBERT: [__convulsions’, '__fébriles’] (2 tokens)
CamemBERT: [__con’, 'vul’, ’s’; ’ions’, ’__fé’, 'bri’, 'les’] (A+5)
DrBERT: ['__convulsions’, ’__fébriles’] (A0)
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Entity: ["Plasmodium’, 'vivax’| (2 words)

TransBERT: [__Plasmodium’, ’__vivax’] (2 tokens)
CamemBERT: ['__Pla’, ’s’, 'mo’, 'dium’, '__’, "viv’, 'ax’] (A+5)
DrBERT: [__Plasmodium’, '__viv’, 'ax’] (A+1)

Ratio: 3.3 (5 entities)

Entity: [‘cardiomyopathie’, dilatée’, "hypertensive’] (3 words)
TransBERT: [__cardiomyopathie’, ’__dilatée’, °__hypertensive’] (3 tokens)
CamemBERT: [__cardio’, 'my’, ’opathie’, ’__d’, 'il’, 'a’, "tée’, °__hyper’,
‘tens’, 'ive’] (A+47)

DrBERT: [__cardiomyopathie’, ’__dila’, 'tée’, ’__hypertensive’] (A+1)

Entity: ['spasme’, coronarien’; ’occlusif’] (3 words)

TransBERT: ['__spasme’, ’__coronarien’, ’__occlusif’] (3 tokens)
CamemBERT: [__spa’, 's’, 'me’, '__cor’, ’on’, ’arien’, '__’, ’oc’, 'clus’, ’if’]
(A+T7)

DrBERT: [__spasme’, '__coronarien’, '__occl’, "usif’] (A+1)

Entity: ['adénomes’, 'parathyroidiens’] (2 words)

TransBERT: ['__adénomes’, '__parathyroidien’, ’s’] (3 tokens)
CamemBERT: [__a’, ’dé’, 'nome’, 's’, '__par’, ’ath’, 'y’, 1’, 'oid’, ’iens’|
(A+T7)

DrBERT: [__adénomes’, '__parathyrot’, 'diens’] (A0)

I

Entity: [fistule’, ’cholécysto’, "duodénale’] (3 words)

TransBERT: ['__fistule’, ’__cholécysto’, ’__duodénale’] (3 tokens)
CamemBERT: ['__fist’, "ule’, ’__cho’, ’1&’, 'cy’, ’s’, 'to’, '__duo’, ’dé’, 'nale’|
(A+T)

DrBERT: [_ fistule’, ’__cholécys’, 'to’, ’__duodén’, ’ale’] (A+2)

Entity: [lympho-histiocytose’] (1 word)

TransBERT: [__lympho’, -, "histiocytose’] (3 tokens)

CamemBERT: [__I’, 'ymph’, ’0’, ™, "hi’, ’s’, ’tio’, 'cy’, 'tos’, e’] (A+7)
DrBERT: [__lymph’, '0’, =", 'h’, ’isti’, 'ocytose’] (A+3)

Ratio: 3.0 (330 entities)
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Entity: ['infectieux’] (1 word)
TransBERT: [__infectieux’] (1 token)
CamemBERT: [__’, ’infect’, "ieux’] (A+2)
DrBERT: [__infectieux’] (A0)

Entity: [fongicides’, "topiques’] (2 words)

TransBERT: [__fongicides’, '__topiques’] (2 tokens)
CamemBERT: [__{’, 'ong’, ’icide’, ’s’, '__top’, "iques’] (A+4)
DrBERT: ['__fong’, ’icides’, '__topiques’] (A+1)

Entity: ['des’, ’ostéoblastes’] (2 words)

TransBERT: ['__des’, ’__ostéoblastes’] (2 tokens)
CamemBERT: [__des’, '__’ ’ost’, "éo’, 'blast’, ’es’] (A+4)
DrBERT: ['__des’, ’__ostéoblastes’] (A0)

Entity: ['positivité’] (1 word)
TransBERT: [__positivité’] (1 token)
CamemBERT: [__’, 'posit’, 'ivité’] (A+2)
DrBERT: ['__positivité’] (A0)

Entity: ['perforation’, intestinale’] (2 words)

TransBERT: [__perforation’, '__intestinale’] (2 tokens)
CamemBERT: [__perf’, 'or’, "ation’, ’__’, ’intestin’, ’ale’] (A+4)
DrBERT: [_ perforation’, ’__intestinale’] (AO0)

Entity: ['puberté’] (1 word)
TransBERT: [__puberté’] (1 token)
CamemBERT: [__pu’, 'bert’, 'é’] (A+2)
DrBERT: ['__puberté’] (A0)

Entity: ['stéroides’, ’génitaux’] (2 words)

TransBERT: ['__stéroides’, __génitaux’] (2 tokens)
CamemBERT: [__st’, 'ér’, 'oides’, '__gén’, ’it’, ’aux’] (A+4)
DrBERT: [__stéroides’, ’__génitaux’] (A0)
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APPENDIX I. TRANSBERT VS CTRANSBERT: TOKENIZATION
EXAMPLES

Entity: ['antibiotiques’] (1 word)
TransBERT: ['__antibiotiques’] (1 token)
CamemBERT: [__anti’, biotique’, 's’] (A+2)
DrBERT: [’_antlblothues] (A0)

Entity: [aortique’] (1 word)
TransBERT: [__aortique’] (1 token)
CamemBERT: ['__a’, 'or’, 'tique’] (A+2)
DrBERT: [__aortique’] (A0)

Entity: ['convexe’] (1 word)
TransBERT: [__convexe’] (1 token)
CamemBERT: [__con’, 'vex’, 'e¢’] (A+2)
DrBERT: ['__con’, Vexe] (A—i—l)

Ratio: 2.8 (4 entities)

Entity: ['méningo’, ’encéphalite’, "tuberculeuse’] (3 words)

TransBERT: ['__méningo’, ’__’, ’encéphalite’, ’__tuberculeuse’] (4 tokens)
CamemBERT: ['__mé’, 'ning’, ’0’, ’__en’, ’c’, ’épha’, ’lite’, __tube’, 1’
‘cule’, 'use’] (A+7)

DrBERT: [__méning’, ’0’, '__encéphal’, ’ite’, ’__tubercule’, "use’] (A+2)

Entity: [lympho-histiocytose’, 'familiale’] (2 words)

TransBERT: [__lympho’, -’ ’hlstlocytose’ '__familiale’] (4 tokens)
CamemBERT: [_I', 'ymph’, ’o’, *-, *hi’, '®, ’io’, ‘oy’, ’tos’, ¢,
'__familiale’] (A+T7)

DrBERT: [__lymph’, ’0’, ™', "h’, "isti’, ’ocytose’, ’__familiale’] (A+3)

Entity: ['polyvinylpyrrolidone’; iodée’] (2 words)

TransBERT: ['__poly’, 'vinylpyrrolidone’, °__iodé’, ’e’] (4 tokens)
CamemBERT: ['__poly’, 'vin’, 'yl’, 'py’, 'rro’, ’li’, ’don’, ’e’, ’__’", ’io’, 'dée’]
(A+T)

DrBERT: [__poly’, 'vin’, 'yI’, 'py’, 't’, 'rol’, ’idone’, '__i’, ’odée’] (A+5)
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Entity: ['méningite’, ’a’, 'Listeria’, 'monocytogenes’| (4 words)
TransBERT: [__méningite’, ’__a’, ’__ Listeria’, ’__monocytogenes’| (4
tokens)

CamemBERT: [__mé’, 'ning’, ’ite
'to’, 'gene’, ’s’] (A7)

DrBERT: [__méningite’, °__a’, ’__ Listeria’, *__monocytogenes’] (A0)

) ) )

a’, '__Liste’, 'ria’, ’ ey’

__mono’, 'cy’,

PR

Ratio: 2.7 (11 entities)

Entity: ['glomérulonéphrites’] (1 word)

TransBERT: [__g’, lomérulonéphrite’, ’s’| (3 tokens)
CamemBERT: [__g’, 'lom’, "ér’, 'ulo’, 'né’, 'ph’, rite’, ’s’| (A+5)
DrBERT: [__glomérul’, ’onéph’; 'rites’] (AO0)

) 94)

)

Entity: [infarctus’, 'de’, 'myocarde’] (3 words)

TransBERT: [__infarctus’, ’__de’, ’__myocarde’] (3 tokens)
CamemBERT: [__inf’, ’arc’, 'tu’, ’s’, ’__de’, '_my’, ’oc¢’, 'arde’] (A+5)
DrBERT: [__infarctus’, '__de’, ’__myocarde’] (A0)

Entity: ['néphropathie’, 'interstitielle’, ’chronique’] (3 words)
TransBERT: [__néphropathie’, ’__interstitielle’, ’__chronique’] (3 tokens)
CamemBERT: [__né’, ’phro’, ’pathie’, ’__inter’, ’s’, ’titi’, ’elle’,
'__chronique’] (A+5)

DrBERT: ['__néphropathie’, '__interstitielle’, ’__chronique’] (A0)

Entity: [acide’, ’acétylsalicylique’] (2 words)

TransBERT: [__acide’, ’__a’; ’cétylsalicylique’] (3 tokens)
CamemBERT: [__acide’, ’__ac’, ’ét’, 'yl’, ’s’, "ali’, 'cy’, "lique’] (A+5)
DrBERT: ['__acide’, '__acétyl’, ’salicylique’] (AO)

Entity: ['masse’, 'ovarienne’, kystique’] (3 words)

TransBERT: ['__masse’, '__ovarienne’, ’__kystique’] (3 tokens)
CamemBERT: [__masse’, '__’, ’ova’, 'rienne’, ’__’, 'ky’, ’s’, "tique’] (A+5)
DrBERT: [__masse’, ’__ovarienne’, '__kys’, "tique’] (A+1)
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Entity: [thrombose’, 'veineuse’, "iliaque’] (3 words)

TransBERT: ['__thrombose’, ’__veineuse’, ’__iliaque’] (3 tokens)
CamemBERT: ['__thrombo’, ’s’, ’e’, ’__veine’, 'use’, ’__il’; ’ia’, 'que’|
(A+5)

DrBERT: [__thrombose’, ’__veineuse’, ’__iliaque’] (A0)

Entity: ["alkylsulfonyle’] (1 word)

TransBERT: [__alkyl’, ’sulfonyl’, ’e’] (3 tokens)
CamemBERT: [__a’, "Ik, 'y, ’s’, "ulf’, "on’, y’, "le’] (A+5)
DrBERT: [_ alkyl’, 'sulf’, ’on’, 'yle’] (A+1)

Entity: ['chondrolyse’, 'dégénérative’] (2 words)

TransBERT: ['__chondro’, 'lyse’, ’__dégénérative’] (3 tokens)
CamemBERT: ['__’, 'chon’, ’dro’, ’lyse’, '__dé’, 'géné’, 'r’, 'ative’] (A+D5)
DrBERT: [__chondro’, 'lyse’, ’__dé’, 'générative’] (A+1)

Entity: ['néphropathies’, ’interstitielles’] (2 words)

TransBERT: ['__néphropathie’, 's’, ’__interstitielles’] (3 tokens)
CamemBERT: ['_ né’, 'phro’, 'pathie’, ’s’, '__inter’, ’s’, "titi’, ’elles’] (A+5)
DrBERT: ['__néph’, 'ropathies’, ’__interstiti’, 'elles’] (A+1)

?

Entity: [affections’, tumorales’, 'malignes’] (3 words)

TransBERT: ['__affections’, ’__tumorales’, ’__malignes’] (3 tokens)
CamemBERT: ['__affection’, ’s’, '__tu’, 'mor’, ’ales’, '__ma’, 'ligne’; ’s’]
(A+5)

DrBERT: [__affections’, ’__tumorales’, ’__malignes’] (AO)

Ratio: 2.5 (135 entities)

Entity: ['méthode’, 'chromogénique’] (2 words)

TransBERT: ['__méthode’, ’__chromogénique’] (2 tokens)
CamemBERT: ['__méthode’, '__ch’, ', ’'omo’, ’génique’] (A+3)
DrBERT: ['__méthode’, ’__chrom’, ogénique’] (A+1)

Entity: ['polyester’, 'sulfurique’] (2 words)

TransBERT: ['__polyester’, ’__sulfurique’] (2 tokens)
CamemBERT: ['__polyester’, ’__s’, "ulf’, "ur’, ’ique’] (A+3)
DrBERT: ['__poly’, ’ester’, '__sulf’, 'urique’] (A+2)
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Entity: ['manifestations’, 'hypoglycémiques’] (2 words)

TransBERT: [__manifestations’, ’__hypoglycémiques’] (2 tokens)
CamemBERT: [__manifestations’, ’__hypo’, 'glyc’, ’émique’, ’s’] (A+3)
DrBERT: [__manifestations’, '__hypoglyc’, "émiques’] (A+1)

Entity: ['saignements’, ’intracraniens’] (2 words)

TransBERT: [__saignements’, ’__intracraniens’] (2 tokens)
CamemBERT: [__saignement’, ’s’, ’__intra’, 'cranien’, ’s’] (A+3)
DrBERT: [__saignements’, ’__intracran’, 'iens’] (A+1)

Entity: ['capsulotomie’] (1 word)

TransBERT: [__capsul’, ’otomie’] (2 tokens)
CamemBERT: [__cap’, ’s’, 'ulo’, 'tom’, ie’] (A+3)
DrBERT: [__caps’, 'ul’, 'otomie’] (A+1)

Entity: ['niveau’, ’abdominal’] (2 words)

TransBERT: [__niveau’, '__abdominal’] (2 tokens)
CamemBERT: [__niveau’, ’__ab’, "dom’, ’in’, 'al’] (A+3)
DrBERT: ['__niveau’, '__abdominal’] (A0)

Entity: ['du’, 'parenchyme’] (2 words)

TransBERT: [__du’, ’__parenchyme’] (2 tokens)
CamemBERT: [__du’, ’__par’, ’en’, ’chy’, 'me’] (A+3)
DrBERT: [__du’, ’__parenchyme’] (A0)

Entity: [claudication’, ’intermittente’] (2 words)

TransBERT: [__claudication’, ’__intermittente’] (2 tokens)
CamemBERT: [__cl’, ’au’, ’dication’, '__intermittent’, ’e’] (A+3)
DrBERT: [__cl’, ’audication’, ’__intermittente’] (A+1)

Entity: [lymphocytaires’] (1 word

TransBERT: [__lymphocytaire’, ’s’] (2 tokens)
CamemBERT: [__I’, 'ymph’, ’oc’; ’y’, 'taires’] (A+3)
DrBERT: [__lymph’, ’ocytaires’] (A0)
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APPENDIX I. TRANSBERT VS CTRANSBERT: TOKENIZATION
EXAMPLES

Entity: [‘coma’, "hypercapnique’] (2 words)

TransBERT: ['__coma’, ’__hypercapnique’] (2 tokens)
CamemBERT: ['__ Com’ al, hyper’ ‘cap’, ‘nique’] (A+3)
DrBERT: [__coma’,’ hyperc ‘ap’, 'n’, 'ique’] (A+3)

Ratio: 2.4 (2 entities)

Entity: [kystique’, 'congénitale’, 'des’, "voies’, ’biliaires’] (5 words)
TransBERT: ['__kystique’, '__congénitale’, °__des’, ’__voies’, '__biliaires’]
(5 tokens)

CamemBERT: [__’, ky’, ’s’, 'tique’, '__con’, 'génital’, 'e’, ’__des’, ’__voies’,
") bili’) Caires’] (A+7)

DrBERT: [__kys’, 'tique’, '__congénitale’, °__des’, ’__voies’, '__biliaires’|
(A+1)

Entity: ['Déficit’, ’en’, 'glutathion-peroxydase’] (3 words)

TransBERT: [__Déficit’, '__en’,’ glutathlon’ -’ 'peroxydase’] (5 tokens)
CamemBERT: [__Défi’, ’Cit’,’ T glu’, 't ’ath’ ‘ion’, -7, 'per’, 'oxy’,
'das’, 'e’] (A+7)

DrBERT: ['__Déficit’, ’__en’, ’__glutathion’, ’-’, "per’, ’oxydase’] (A+1)

Ratio: 2.3 (61 entities)

Entity: ["hématome’, 'sous’, capsulaire’] (3 words)

TransBERT: [__ hematome’ '__sous’, __capsulaire’] (3 tokens)
CamemBERT: [’ ’hemat’ 0 e’,’ sous’, '__cap’, 's’, "ulaire’] (A+4)
DrBERT: [__ hematome’ ’ sous’ "__caps’, ula,lre] (A+1)

Entity: [lymphoplasmocytes’] (1 word)

TransBERT: [__lympho’, 'plasm’, "ocytes’] (3 tokens)
CamemBERT: ['__I’, 'ymph’, 'op’, 'las’, 'mo’, ‘cy’, "tes’] (A+4)
DrBERT: ['__lymph’, 'oplasm’, ’ocytes’] (A0)

Entity: [‘cardioversion’, ou’, 'défibrillation’] (3 words)

TransBERT: ['__ cardloversmn’ '__ou’, ’__défibrillation’] (3 tokens)
CamemBERT: [__cardio’, version’, __ow’, '__défi’; br’, ’il’; ’lation’]
(A+4)

DrBERT: [__cardio’, 'version’, '__ou’, ’__défib’, 'rillation’] (A+2)
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Entity: ['antithrombotique’, ’injectable’] (2 words)
TransBERT: [__’, "antithrombotique’, ’__injectable’] (3 tokens)
CamemBERT: [__anti’, 'thro’, 'mbo’, "tique’, '__in’, ’ject’, 'able’] (A+4)

DrBERT: [__anti’, thrombo’, ’tique’, ’__injectable’] (A+1)

Entity: [arylsulfonamides’] (1 word)

TransBERT: [__aryl’, 'sulfonamide’, ’s’] (3 tokens)
CamemBERT: [__ar’, 'yl’, ’s’, "ulf’, ’on’, "ami’, 'des’] (A+4)
DrBERT: [__ar’, 'yl’, ’sulf’, 'on’, "amides’] (A+2)

J

Entity: ['dilatation’, 'des’, 'bronches’] (3 words)

TransBERT: ['__dilatation’, ’__des’, ’__bronches’] (3 tokens)
CamemBERT: [__d’, ’il’, 'a’, 'tation’, ’__des’, ’__bron’, ches’|] (A+4)
DrBERT: ['__dilatation’, '__des’, ’__bronches’] (A0)

Entity: ['spondylodiscite’] (1 word)

TransBERT: ['__spondylo’, 'disc’, ’ite’] (3 tokens)
CamemBERT: ['__s’, 'pond’, ’y’, ’lo’, ’dis’, ’ci’, 'te’] (A+4)
DrBERT: ['__spondyl’, 'odis’, ’c’, "ite’] (A+1)

Entity: [Complications’, 'laryngées’] (2 words)

TransBERT: [__Complications’, ’__laryngée’, ’s’] (3 tokens)
CamemBERT: [__Com’, ’plication’; ’s’, ’__la’, 'ry’, 'ng’, ’ées’] (A+4)
DrBERT: ['__Complications’, '__laryng’, ées’] (AO0)

Entity: ['ostéocalcine’, ’sérique’] (2 words)
TransBERT: [__’, 'ostéocalcine’, ’__sérique’] (3 tokens)
CamemBERT: [__’, ’ost’, "é0’, 'cal’, 'cine’, ’__g’, "érique’] (A+4)

DrBERT: [__osté’, 'oc’, ’alc’; 'ine’, '__sérique’] (A+2)

Entity: ['bilirubine’, 'conjuguée’, ’augmentée’] (3 words)
TransBERT: ['__bilirubine’, '__conjuguée’, ’__augmentée’] (3 tokens)
CamemBERT: |
(A+4)
DrBERT: [__bilirubine’, ’__conjug’, 'uée’, '__augmentée’] (A+1)

", ’bili’, 'rub’; 'ine’, '__conjugué’, 'e’, ’__augmentée’]

bl

Ratio: 2.2 (26 entities)



APPENDIX I. TRANSBERT VS CTRANSBERT: TOKENIZATION
200 EXAMPLES

Entity: ["Méthylhydroxypropylcellulose’] (1 word)

TransBERT: ['__M’, ’éthyl’, "hydroxypropyl’, ’cellulose’] (4 tokens)
CamemBERT: [|__M’, "éthyl’, "hydr’, ’oxy’, "prop’, 'yI’, 'cell’, "ul’, 'ose’|
(A+5)

DrBERT: [__Méth’, 'yI’, "hydrox’, "ypropylcellulose’] (A0)

Entity: [atrophie’, ’cérébrale’, ’et’, 'médullaire’] (4 words)

TransBERT: ['__atrophie’, ’__cérébrale’, ’__et’, '__médullaire’] (4 tokens)
CamemBERT: ['__a’, ’trophi’, e’, '__cérébrale’, ’__et’, '__m’, ’éd’, "ul’,
laire’] (A+5)

DrBERT: [__atrophie’, ’__cérébrale’, '__et’, ’__médullaire’] (A0)

b

Entity: [‘convulsions’, "hypocalcémiques’] (2 words)

TransBERT: ['__convulsions’, ’__hypo’, ’calc’, ’émiques’] (4 tokens)
CamemBERT: [__con’, 'vul’; ’s’, ’ions’, °__hypo’, ’cal’, ’c’, émique’, 's’|
(A+5)

DrBERT: ['__convulsions’, ’__hyp’, ’oc’, ’al¢’, ’émiques’] (A+1)

Entity: ["Actinomycose’, 'cervico-faciale’] (2 words)

TransBERT: ['__Actin’, ’omycose’, '__cervico’, -’ "faciale’] (5 tokens)
CamemBERT: [__Act’, ’ino’, 'my’, ’cos’, 'e’, ’__ce’, '1v’, ’ico’, -’ 'facial’,
'e’] (A+6)

DrBERT: [__Actin’, omyc’, ’ose’, '__cervico’, -, 'faciale’] (A+1)

Entity: [‘carcinomes’, ’épidermoides’, ’cutanés’] (3 words)

TransBERT: |’ carcinomes’, ’_ épidermoide’, ’s’, °_ cutanés’| (4 tokens
—_— ) — ) Y

CamemBERT: [__car’, 'ci’, 'nome’, ’s’, '__épi’, ’derm’, ’oides’, ’__cutané’,

's’] (A+5)

DrBERT: [__carcinomes’, ’__épiderm’, ’oides’, ’__cutanés’] (A0)

Entity: ['glutamine’, ‘gamma-glutamyl’, ‘transferase’] (3 words)
TransBERT: [__glutamine’, ’__gamma’, ’-’, "glutamyl’, ’__’, 'transferase’]
(6 tokens)

CamemBERT: [__glu’, 't’, ’amine’,
'__trans’, 'fer’; ’ase’] (A+7)

DrBERT: [__glutamine’, ’__gamma’, -’, 'glut’, ’amyl’, '__transfer’, ’ase’|
(A+1)

Y )

_ga’ aamma’ 7 ) a7 ’lut’, 7ama7 >y17,
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Entity: [hernie’, ’diaphragmatiques’, ’congénitales’] (3 words)
TransBERT: [__hernie’, ’__diaphragmatique’, ’s’, ’__congénitales’] (4
tokens)

CamemBERT: [__her’, 'nie’, ’__dia’, 'ph’, 'rag’, 'matiques’, ’__con’,
‘génital’, ’es’] (A+5)

DrBERT: [__hernie’, ’__diaphrag’, 'matiques’, '__congénitales’] (A0)

Entity: ['goitre’, 'multihétéronodulaire’] (2 words)

TransBERT: [__goitre’, ’__multi’, "hétéro’, 'nodulaire’] (4 tokens)
CamemBERT: [__go’, ’it’, 're’, '__multi’, 'h’, *été’, 'ron’, ’od’, 'ulaire’]
(A+5)

DrBERT: [__g’, ’oit’, 're’, '__multi’, 'hé’, 'téron’, 'od’, "ulaire’] (A+4)

bl

N

Entity: [rétinites’, 'a’, 'cytomégalovirus’] (3 words)

TransBERT: [__rétinite’, 's’, '__a’, '__cytomégalovirus’] (4 tokens)
CamemBERT: [__ré’, ’tin’, ’ites’, __a’, '__cyto’, 'm’, ’égal’, ’0’, "virus’]
(A+5)

DrBERT: [__rétin’, 'ites’, '__a’, '__cyt’, 'omégalovirus’] (A+1)

b

Entity: ['obstructions’, 'biliaires’, "tumorales’] (3 words)

TransBERT: [__obstruction’, ’s’, ’__biliaires’, ’__tumorales’] (4 tokens)
CamemBERT: [__’, ’obstruction’, ’s’, '__’, ’bili’, ’aires’, '__tu’, 'mor’,
‘ales’] (A+5)

DrBERT: ['__obs’, 'tructions’, ’__biliaires’, ’__tumorales’] (A0)

9
— _

Ratio: 2.1 (1 entity)

Entity: [analogues’, 'nucléosidiques’, ’inhibiteurs’, 'de’, ’la’, "transcriptase’,
'inverse’] (7 words)
TransBERT: [__analogues’, '__nucléosidique’, ’s’, ’__inhibiteurs’, '__de’,

'__la’,’__transcriptase’, '__inverse’| (8 tokens)

CamemBERT: [__analogue’, ’s’, ’__’) 'nuclé’, ’os’, ’idique’, ’s’, ’__in’,
'hibi’, "teurs’, '__de’, ’__la’, ’__’, ’tran’, 'script’, 'ase’, '__inverse’] (A+9)
DrBERT: [__analogues’, ’_ nucléosi’, ’diques’, ’__inhibiteurs’, '__de’,
'__la’, ’__transcriptase’, ’__inverse’] (A0)

Ratio: 2.0 (740 entities)

Entity: [nasal’] (1 word)
TransBERT: [__nasal’] (1 token)
CamemBERT: [__na’, ’sal’] (A+1)
DrBERT: ['__nasal’] (A0)



APPENDIX I. TRANSBERT VS CTRANSBERT: TOKENIZATION
202 EXAMPLES

Entity: ['allergiques’] (1 word)
TransBERT: [__allergiques’] (1 token)
CamemBERT: [__allergique’, ’s’] (A+1)
DrBERT: [__allergiques’] (A0)

Entity: [HDL’] (1 word)
TransBERT: ['__HDL’] (1 token)
CamemBERT: [__HD’, 'L’] (A+1)
DrBERT: [__HDL] (A0)

Entity: ['particule’] (1 word)
TransBERT: ['__particule’] (1 token)
CamemBERT: [__part’, ’icule’] (A+1)
DrBERT: [__particule’] (A0)

Entity: ["Hémophiles’] (1 word)

TransBERT: ['__Hémo’, 'philes’] (2 tokens)
CamemBERT: ['__H’, "émo’, 'phile’; ’s’] (A+2)
DrBERT: [__Hém’, 'ophiles’] (A0)

Entity: [fluctuations’] (1 word)
TransBERT: [__fluctuations’] (1 token)
CamemBERT: [__fluctuation’, ’s’] (A+1)
DrBERT: [__fluctuations’] (A0)

Entity: ["étoposide’] (1 word)

TransBERT: [__’, ’étoposide’] (2 tokens)
CamemBERT: [__¢’, 'top’, '0’, ’side’] (A+2)
DrBERT: ['__ét’, ’oposide’] (A0)

)

Entity: [‘coagulation’] (1 word)
TransBERT: ['__coagulation’] (1 token)
CamemBERT: [__coagul’, 'ation’] (A+1)
DrBERT: ['__coagulation’] (A0)
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Entity: ["hamster’, "doré’] (2 words

TransBERT: ['__hamster’, ’__doré’] (2 tokens)
CamemBERT: [__’, 'ham’, 'ster’, ’__doré’] (A+2)
DrBERT: [__hams’, ter’, ’__d’, ’oré’] (A+2)

Entity: [translocation’] (1 word)
TransBERT: ['__translocation’] (1 token)
CamemBERT: [__trans’, "location’] (A+1)
DrBERT: [__translocation’] (A0)

Ratio: 1.9 (4 entities)

Entity: [drépanocytose’, "hétérozygote’, ’composite’, ’SC’| (4 words)
TransBERT: ['__d’, 'ré’, 'pan’, 'ocytose’, '__hétérozygote’, '__composite’,
'__SC’] (7 tokens)

CamemBERT: ['__d’, ré’, 'pan’, ’oc’, ’y’, 'tos’, 'e’, ’__hétéro’, 'zy’, 'got’,
'e’, '__composite’, '__SC’] (A+6)

DrBERT: ['__drépanocytose’, __hétérozygote’, ’__composite’, '__SC’] (A-3)

Entity: [infarctus’, ’de’, 'myocarde’, ’antéro’, 'septal’] (5 words)

TransBERT: [__infarctus’, ’__de’, ’__myocarde’, '__’, 'ant’, "éro’, ’__septal’]
(7 tokens)
CamemBERT: [__inf’ ’arc’, 'tu’, ’s’, ’__de’, '__my’, ’oc’, ’arde’, '__’, ’ant’,

‘éro’, ’__sept’, ’al’] (A+6)
DrBERT: [__infarctus’, '__de’, ’__myocarde’, ’__antéro’, "__sept’, 'al’] (A-1)

Entity: ['processus’, 'tumoral’, 'pariéto’, ‘occipital’, ’droit’] (5 words)

TransBERT: ['__processus’, ’__tumoral’, ’__par’, ’i’; éto’, '__occipital’,
'__droit’] (7 tokens)

CamemBERT: [__processus’, '__tu’, 'm’, ’oral’, '__par’, "ié’, 'to’, ’__’, ’oc’,
‘cip’, it’, "al’, ’__droit’] (A+6)

DrBERT: [__processus’, ’'__tumoral’, ’__pariét’, ’o’, ’__occip’, ’ital’,

' droit’] (A0)



APPENDIX I. TRANSBERT VS CTRANSBERT: TOKENIZATION
204 EXAMPLES

Entity: ['Staphylococcus’, ’aureus’, 'résistant’, ’a’; ’la

words)

", 'méticilline’] (6

TransBERT: [__Staphylococcus’, ’__aureus’, '__résistant’, '__a’, ’'__la’,
__mét’, 1, ‘cilline’] (8 tokens)

CamemBERT: ['__Sta’, 'phyl’, 'oco’, ’c’, 'cus’, '__au’, 're’, 'us’, '__résistant’,
_al’_la))’__mé’ tic’, il line’] (A7)

DrBERT: [__Staphylococcus’, ’__aureus’, ’_ résistant’, ’__a’, ’_ la’,

"__méticilline’] (A-2)

Ratio: 1.8 (88 entities)

Entity: ["Test’, 'de’, ’freinage’, 'a’, ’la’, ’"dexaméthasone’] (6 words)
TransBERT: [__Test’, ’__de’, '__freinage’, '__a’, '__la’, ’__dexaméthasone’]
(6 tokens)

CamemBERT: [_ Test’, ’__de’, '__freinage’, ’__a’, ’__la’, '__de’, 'x’, 'a’,
'méth’; ’as’, ‘one’] (A+5)

DrBERT: [__Test’, ’__de’, ’__frein’, ’age’, ’__a’, '__la’, ’__dexaméthasone’|
(A+1)

Entity: ['drépanocytose’] (1 word)

TransBERT: ['__d’, 'ré’, 'pan’, 'ocytose’] (4 tokens)
CamemBERT: [__d’, 'ré’, 'pan’, ’oc’, y’, 'tos’, e’] (A+3)
DrBERT: [__drépanocytose’] (A-3)

Entity: ['Enquéte’, ’séro-immunologique’] (2 words)

TransBERT: ['__Enquéte’, ’__séro’, -’, 'immunologique’] (4 tokens)
CamemBERT: [__Enquéte’, ’__g’, "éro’, -, 'imm’, 'un’, ’ologique’] (A+3)
DrBERT: [__Enquéte’, '__séro’, -, 'immun’, ’ologique’] (A+1)

Entity: ['mégalérytheme’, ’infectieux’] (2 words)

TransBERT: ['__méga’, 'I’, "érytheme’, ’__infectieux’] (4 tokens)
CamemBERT: [__m’, ’égal’, éry’, 'theme’, ’__’, ’infect’, ’ieux’] (A+3)
DrBERT: [__mé’, 'gal’, "éryth’, ’eme’, '__infectieux’] (A+1)

Entity: ['oesophage’, ’embryonnaire’] (2 words)

TransBERT: ['__0’, es’, ’ophage’, '__embryonnaire’] (4 tokens)
CamemBERT: ['__0’, 'es’, 'oph’, ’age’, ’__’, ’embryon’, naire’| (A+3)
DrBERT: ['__oes’, 'ophage’, ’__embryonnaire’] (A-1)

J
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Entity: ['inclusions’, "érythrocytaires’] (2 words)

TransBERT: ['__inclusions’, ’__’, "érythrocyt’, ’aires’] (4 tokens)
CamemBERT: [__inclus’, "ions’, ’__’, ’éry’, 'thro’, ’cy’, ’taires’] (A+3)
DrBERT: [__inclusions’, '__érythrocyt’, ’aires’] (A-1)

Entity: ['probléemes’; 'urinaires’, ’et’; ’intestinaux’] (4 words)

TransBERT: ['__problemes’, __urinaires’, '__et’, ’__intestinaux’] (4 tokens)
CamemBERT: ["__problemes’, ’__urinaire’, ’s’, ’__et’, ’__’, ’intestin’, ’aux’|
(A+3)

DrBERT: ['__problemes’, ’__urinaires’, '__et’, ’__intestinaux’] (A0)

Entity: ['Dysplasie’, 'vasculaire’, ’complexe’] (3 words)

TransBERT: ['__Dys’, 'plasie’, ’__vasculaire’, ’__complexe’] (4 tokens)
CamemBERT: [_D’, ’y’, ’s’, 'pla’, ’sie’, ’__vasculaire’, '__complexe’]
(A+3)

DrBERT: ['__Dys’, 'plasie’, '__vasculaire’, ’__complexe’] (A0)

Entity: ['maladie’, 'thromboembolique’, 'veineuse’] (3 words)
TransBERT: [__maladie’, '__’, ’thromboembolique’, ’__veineuse’] (4
tokens)

CamemBERT: ['__maladie’, ’__thrombo’, ’e¢’, 'mbo’, ’lique’,
'use’] (A+3)

DrBERT: ['__maladie’, ’__thrombo’, ’embolique’, ’__veineuse’] (A0)

)

__veine’,

Entity: ['glomérulaire’, ™’ ’dans’, "le’, 'rein’] (5 words)

TransBERT: [__glomérulaire’, ’__ "’ ’__dans’, ’__le’, ’__rein’] (5 tokens)

CamemBERT: [__g¢’, 'lom’, ’ér’, "ulaire’, ’__"’,’__dans’, '__le’, '__re’, ’in’|
(A+4)

DrBERT: [__glomérulaire’, ’__’, ’junk;’, '__dans’, ’__le’, ’__rein’] (A+1)

Ratio: 1.7 (168 entities)

Entity: ['sensibilité’, ’aux’, 'mutagenes’] (3 words)

TransBERT: ['__sensibilité’, '__aux’, ’__mutagenes’] (3 tokens)
CamemBERT: [__sensibilité’, ’__aux’, '__mu’, ta’, ’génes’] (A+2)
DrBERT: [__sensibilité’, ’__aux’, '__mutag’, énes’] (A+1)
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APPENDIX I. TRANSBERT VS CTRANSBERT: TOKENIZATION
EXAMPLES

Entity: [‘erythrocytaire’] (1 word)

TransBERT: ['__erythr’, ’0’, ’cytaire’] (3 tokens)
CamemBERT: [__’, ’ery’, 'thro’, 'cy’, 'taire’] (A+2)
DrBERT: [__eryth’, 'rocyt’, "aire’] (AO)

Entity: ['protéine’, "Hsp70’] (2 words)

TransBERT: ['__protéine’, '__Hsp’, '70’] (3 tokens)
CamemBERT: ['__protéine’, '__H’, ’s’, 'p’, '70°] (A+2)
DrBERT: ['__protéine’, ’__Hsp’, '70’] (A0)

Entity: ['téte’, 'du’, 'pancréas’] (3 words)

TransBERT: ['__téte’, '__du’, ’__pancréas’] (3 tokens)
CamemBERT: [__téte’, '__du’, ’__pan’, 'cré’, 'as’] (A+2)
DrBERT: [__téte’, '__du’, ’__pancréas’] (A0)

Entity: [scolioses’, 'graves’] (2 words)
TransBERT: ['__scoliose’, ’s’, ’__graves’] (3 tokens)
CamemBERT: ['_s’, 'col’, "ios’, ’es’, '__graves’] (A+2)

DrBERT: [__scoli’, ’oses’, '__graves’] (A0)

Entity: [tractus’, 'génital’, 'femelle’] (3 words)

TransBERT: ['__tractus’, '__génital’, ’__femelle’] (3 tokens)
CamemBERT: [__tract’, 'us’, '__’, ’génital’, '__femelle’] (A+2)
DrBERT: [__tractus’, ’__génital’, '__femelle’] (A0)

Entity: [Hypophosphatasie’, 'congénitale’] (2 words)

TransBERT: [__Hypo’, 'phosph’, ’ata’, ’s’, ’ie’, '__congénitale’] (6 tokens)
CamemBERT: [__Hy’, 'po’, 'pho’, ’s’, 'pha’; ’tas’, ’ie’, '__con’, ’génital’,
e’ (A+4)

DrBERT: ['__Hyp’, 'ophosph’, ’at’, "asie’, '__congénitale’] (A-1)

Entity: ['ostéomalacies’] (1 word)

TransBERT: [__ostéo’, 'malacie’, ’s’] (3 tokens)
CamemBERT: ['__os’, 'té’, 'oma’, ’lac’, ’ies’] (A+2)
DrBERT: [__osté’, 'omal’, ’ac’, ’ies’] (A+1)
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Entity: [formation’, 'lipomateuse’] (2 words)

TransBERT: [__formation’, '__lipo’, 'mateuse’] (3 tokens)
CamemBERT: [__formation’, ’__I’, ’ip’, omat’, 'euse’] (A+2)
DrBERT: ['__formation’, ’__lip’, omateuse’] (AO)

Entity: [cholangio-wirsungographie’; ’endoscopique’] (2 words)
TransBERT: ['__cholangio’, -’, 'wi’, 'rs’, 'ung’, ‘ographie’, ’__endoscopique’]

(7 tokens)

CamemBERT: ['__cho’, ’lang’, "i0’, ™-’, 'wi’, 't’, ’s’, 'ung’, ’ographie’, ’__en’,
'do’, ’scopique’] (A+5)

DrBERT: [__chol’, 'angio’, -’, 'w’, ’irs’, 'ung’, 'ographie’, ’__endoscopique’|
(A+1)

Ratio: 1.6 (60 entities)

Entity: ['staphylococcus’, 'aureus’] (2 words)

TransBERT: [__’, 'sta’, 'phyl’, ’ococcus’, '__aureus’] (5 tokens)
CamemBERT: [__sta’, 'phyl’, ’oco’, ’c’, ’cus’, ’__au’, 're’, 'us’] (A+3)
DrBERT: [__staphyl’, 'ococcus’, '__aureus’] (A-2)

Entity: ['barriere’, hémato-encéphalique’] (2 words)

TransBERT: [__barriere’, '__hémato’, -’, ’en’, ’céphalique’] (5 tokens)
CamemBERT: ['__barriere’, '__’, "hémat’, ’o’, -, ’enc’, ’épha’, 'lique’]
(A+3)

DrBERT: [__barriere’, °__hémato’, -, ’encéphalique’] (A-1)

Entity: ['infiltrat’, 'polymorphe’; ’de’; ’cellules’] (4 words)

TransBERT: [__’ ’infiltrat’, ’__polymorphe’, ’__de’, ’__cellules’] (5 tokens)
CamemBERT: [__’ ’infiltr’, ’at’, ’__poly’, 'morph’, ’e’, ’__de’, ’__cellules’|
(A+3)

DrBERT: ['__infiltra’, 't’, ’__polymorphe’, °__de’, ’__ cellules’] (A0)

9

I

Entity: ['veine’, 'porte’, 'pré-duodénale’] (3 words)

TransBERT: [__veine’, ’__porte’, '__pré’, -’, ’"duodénale’] (5 tokens)
CamemBERT: [__veine’, '__porte’, '__pré’, -, 'du’, ’0’, ’dé’, 'nale’] (A+3)
DrBERT: [__veine’, ’__porte’, ’__pré’, ’-’, ’"duodénale’] (A0)
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Entity: [[Endométriome’; 'ovarien’] (2 words)

TransBERT: [__Endo’, 'mé’, ’tri’, ome’, '__ovarien’] (5 tokens)
CamemBERT: [_En’, ’dom’, ¢, tri’, Jome’, 77, Jova’, ‘rien’] (A+3)
DrBERT: [__En’, ’dom’, ’ét’; 'ri’, ’ome’, '__ovarien’] (A+1)

Entity: ['Cholestases’, 'intrahépatiques’] (2 words)

TransBERT: ['__Chol’, ’est’, 'ases’, __intra’, "hépatiques’] (5 tokens)
CamemBERT: [__Cho’, "les’, 'tas’, 'es’, '__intra’, 'hé’, 'pa’, "tiques’] (A+3)
DrBERT: ['__Chol’, ’est’, ’ases’, ’__intra’, "hép’, "atiques’] (A+1)

Entity: [‘crise’, ’d’, "’éclampsie”] (3 words)

TransBERT: [__ crlse’ A, 77 Yéclampsie’] (5 tokens)
CamemBERT: [__crise’, '__d’,’_ ", 7", ¢ ’cl’, ’amp’, 'sie’] (A+3)
DrBERT: [__crise’, ’ d’, v ’eclampsw] (A-1)

Entity: ['spectre’, 7d””, ’amplitudes’, 'de’, ”1"”, ’électroencéphalogramme’]
(6 words)

TransBERT: [__spectre’, '__d’, 7”7, '__amplitudes’, ’__de’, '_ 1", 777,
'__électro’, ’encéphalogramme’] (9 tokens)

CamemBERT: [__spectre’, __d’, 77”7, ’__’ ’amplitude’, 's’, °__de’, '__1’,
70 électro’, 'enc’, 'épha’, T, ’ogramme] (A+5)

DrBERT: [’_spectre, _d’, 77 7 _amplitudes’, '__de’, '_1, 77,

Y

__électro’, 'encéphal’, ’ogramme’] (A+1)

Entity: [lamyotrophie’, ’spinale’, 'infantile’] (3 words)

TransBERT: [__la’, 'myo’, 'trophie’, ’__spinale’, ’__infantile’] (5 tokens)
CamemBERT: [__la’, 'my’, ’0’, "trophi’, ’e’, ’__spin’, ’ale’, ’__infantile’|
(A+3)

DrBERT: [__lam’, 'yotroph’, 'ie’, ’__sp’, ’inale’, ’__infantile’] (A+1)

Entity: 5, -, "hydroxytryptamine’] (3 words)

TransBERT: [__5",’__-’,’_’, "hydroxytryptamin’, ’e’] (5 tokens)
CamemBERT: [_ 5", - ’_hydro’, X',y try’, 'pt’, "amine’] (A+3)
DrBERT: [__5’,’__ -’ ’__hydroxy’, 'tr’, 'ypt’, ’amine’] (A+1)

Ratio: 1.5 (511 entities)
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Entity: ['discarthrose’] (1 word)
TransBERT: ['__disc’, 'arthrose’] (2 tokens)
CamemBERT: [__dis’, ’c¢’, ’arthrose’] (A+1)
DrBERT: [__disc’, ’arthrose’] (A0)

Entity: [cliniques’, 'vétérinaires’] (2 words)
TransBERT: ['__cliniques’, '__vétérinaires’] (2 tokens)
CamemBERT: [__cliniques’, '__vétérinaire’, ’s’] (A+1)
DrBERT: [__cliniques’, ’__vétérinaires’] (AO)

Entity: [filarienne’] (1 word)
TransBERT: [__fil’, ’arienne’] (2 tokens)
CamemBERT: ['__fil’, ’a’, 'rienne’] (A+1)
DrBERT: [__fil’, ’arienne’] (A0)

Entity: ['ganglionnaire’] (1 word)
TransBERT: [__ganglion’, 'naire’] (2 tokens)
CamemBERT: [__gang’, 'lion’, 'naire’] (A+1)
DrBERT: [__ganglionnaire’] (A-1)

Entity: ['symptomes’, ’cognitifs’] (2 words)
TransBERT: [__symptomes’, ’__cognitifs’] (2 tokens)
CamemBERT: [__symptomes’, '__cognitif’, ’s’] (A+1)
DrBERT: [__symptomes’, ’__cognitifs’] (A0)

Entity: [infestation’] (1 word)
TransBERT: [__’, ’infestation’] (2 tokens)

CamemBERT: [__inf’, ’est’, "ation’] (A+1)
DrBERT: [__inf’, ’estation’] (AO)

Entity: ['pharmacologiques’] (1 word)
TransBERT: ['__pharmacologique’; ’s’] (2 tokens)
CamemBERT: [__pharmaco’, "logique’, ’s’] (A+1)
DrBERT: ['__pharmac’, ’ologiques’] (A0)
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Entity: ['bloqueur’, ’adrénergique’, 'beta’] (3 words)

TransBERT: ['__bloqueur’, ’__’, "adrénergique’, '__b’, ’¢’, "ta’] (6 tokens)
CamemBERT: [__bloque’, "ur’, ’__ad’, ré’, 'ner’, ’gique’, __b’, '&’, 'ta’|
(A+3)

DrBERT: [__bloque’, "ur’, '__ad’, 'rénergique’, '__b’, &’ 'ta’] (A+1)

Entity: [équilibre’, "acido-basique’] (2 words)

TransBERT: [__équilibre’, '__acido’, ’-’, 'basique’] (4 tokens)
CamemBERT: [__équilibre’, '__ac’, ’ido’, -’, ’bas’, "ique’] (A+2)
DrBERT: [__équilibre’, ’__acid’, ’0’, -, 'b’, "asique’] (A+2)

Entity: [oestrus’] (1 word)
TransBERT: ['__0’, ’estrus’| (2 tokens)
CamemBERT: [__0’, ’est’, 'rus’] (A+1)

DrBERT: [__oest’, rus’] (A0)



Appendix J

CamemBERT Vs cTransBERT:
Results aggregated by task

| CamemBERT | cTransBERT
P R | P R Fy
Weighted Avg| 74.65"" 75.54 7417 75.10"" 76.05 74.70""
Macro Avg 57.74" 56.94 55.66" " 60.58"" 61.08 59.31""
/ 7/73 6/101 5/83 10/121 13/110 12/110
/ 10/95 11/67 12/85 7/47 4/58 5/58
NRA | 36.22" 45.68 40817 | 63.78" 54.32 59.19"

Table J.1: Model Evaluation for the Classification Task (Tokenizer Analysis) -
This table presents the weighted and macro aggregations for Precision, Recall, and F}
across different classes/labels for each dataset and fold. It also illustrates the ranking
distribution through the medals system and the Normalized Ranking Average, whose
statistical significance for difference has been evaluated using the Wilcoxon test. (*) and
(**) indicate statistical significance at o = 0.05 and o = 0.01, respectively.

CamemBERT ‘ cTransBERT
‘ P R Fy ‘ P R F
Weighted Avg 81.23 82.13 81.55 81.02 82.13 81.44
Macro Avg 66.23 66.45 65.60 67.16 67.13 66.51
/ 27/140 27/170 27/132 19/174 27/190 19/177
/ 19/129 19/99 19/137 27/95 19/79 27/92
NRA 45.87 46.83 44.13 ‘ 54.13 53.17 55.87

Table J.2: Model Evaluation for the Named Entity Recognition Task (Tok-
enizer Analysis) - This table presents the weighted and macro aggregations for Precision,
Recall, and F; across different entities for each dataset and fold. It also illustrates the
ranking distribution through the medals system and the Normalized Ranking Average,
whose statistical significance for difference has been evaluated using the Wilcoxon test.
(*) and (**) indicate statistical significance at a = 0.05 and « = 0.01, respectively.
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212 BY TASK
‘ CamemBERT ‘ cTransBERT
‘ P R 3 ‘ P R I
Weighted Avg 98.31 98.29 98.29 98.31 98.29 98.29
Macro Avg 91.43 89.17 89.89 92.29 89.43 90.23
/ 13/187 14/207 12/187 7/179 7/193 8/166
/ 7/88 6/68 8/88 13/96 13/82 12/109
NRA 52.37 53.56 54.24 ‘ 47.63 46.44 45.76

Table J.3: Model Evaluation for the Part-of-Speech Tagging Task (Tokenizer
Analysis) - This table presents the weighted and macro aggregations for Precision,
Recall, and F} across different tags for each dataset and fold. It also illustrates the
ranking distribution through the medals system and the Normalized Ranking Average,
whose statistical significance for difference has been evaluated using the Wilcoxon test.
(*) and (**) indicate statistical significance at & = 0.05 and o = 0.01, respectively.

| CamemBERT | cTransBERT
| R | Lis
Weighted Avg 83.38 84.36
Macro Avg 83.38 84.36
/ 1/2 3/4
/ 3/4 1/2
NRA | 30.00 | 70.00

Table J.4: Model Evaluation for the Semantic Textual Similarity Task (To-
kenizer Analysis) - This table presents the weighted and macro aggregations for R?
for each dataset and fold. It also illustrates the ranking distribution through the medals
system and the Normalized Ranking Average, whose statistical significance for difference
has been evaluated using the Wilcoxon test. (*) and (**) indicate statistical significance
at a = 0.05 and a = 0.01, respectively.



	Abstract
	Résumé
	Table of Content
	List of Figures
	List of Tables
	List of Equations
	List of Acronyms
	Introduction
	Motivation
	Model Scope
	Hypothesis
	Manuscript Overview

	Literature Review
	Natural Language Processing tools
	Natural Language Understanding
	General Language Understanding Evaluation: a Benchmark for Natural Language Understanding

	Natural Language Processing in Life Sciences
	Biomedical Language Understanding & Reasoning Benchmark

	Introduction to Modern Natural Language Processing Approaches
	Raw Text Tokenization
	The Fundamentals of Transformer

	Language Models
	Prelude to Modern Language Models
	Bidirectional Encoder Representations from Transformers
	BERT Variations

	Machine Translation
	Machine Translation Evaluation
	Statistical Machine Translation
	Neural Machine Translation
	Many-to-Many Multilingual Translation Model

	Synthetic Translated Data in Natural Language Understanding
	Synthetic Translated Data at the Downstream Task Level
	Synthetic Translated Data for Language Model Pre-Training in Low-Resource Languages
	Synthetic Translated Data for Pre-Training Domain-Specific Generative Language Model in Low-Resource Languages


	Methods
	Biomedical & Life Sciences Literature Corpus
	PubMed & MEDLINE & PubMed Central
	Corpus Compilation

	Corpus Translation in French
	Translation Approach
	Large Scale Translation Process
	Intermediate Results

	Language Model Training
	Tokenizer Training
	Language Model Training Settings
	Intermediary Results

	Language Model Fine-Tuning
	DrBenchmark: An Adaptation
	Downstream Tasks & Metrics
	Datasets


	TransBERT: A Synthetically Translated Language Model
	Introduction
	Motivation
	Hypothesis

	Experimental Setting
	Model Comparison
	From Fine-Tuning to Results
	Statistical Testing
	Reporting

	Model Performance Overview
	Classification Task
	Named Entity Recognition Task
	Part-of-Speech Tagging Task
	Semantic Textual Similarity Task

	Performance Analysis Aggregation
	Classification Task Analysis
	Named Entity Recognition Task Analysis
	Part-of-Speech Tagging Task Analysis
	Semantic Textual Similarity Task Analysis
	Overall Aggregation

	Conclusion & Discussion

	The Impact of Domain-Specific Tokenization on Pre-trained Language Models Performance
	Introduction
	Motivation
	Hypothesis

	Experimental Setting
	Model Comparison
	Mirrored Experiment
	Statistical Testing

	Performance Analysis Aggregation
	Classification Task Analysis
	Named Entity Recognition Task Analysis
	Part-of-Speech Tagging Task Analysis
	Semantic Textual Similarity Task Analysis

	Conclusion & Future Works

	Discussion & Conclusion
	TransBERT: A Synthetically Translated Language Model
	The Impact of Domain-Specific Tokenization on Pre-trained Language Models Performance
	Limitations & Discussion
	In-Domain/Language Generalization
	Other Domains Generalization
	Other Languages Generalization
	Generative Language Models

	Future Works
	Thesis Contribution

	Bibliography
	Example of a Raw JSON File
	Examples of Translation with repetition
	Example of Sentence & Word Tokenization
	Translation Examples
	Hyperparameter Optimization Range
	Fine-Tuning: Dataset Statistics
	Task Data Samples
	TransBERT Vs cTransBERT: All results by datasets
	TransBERT Vs cTransBERT: Tokenization Examples 
	CamemBERT Vs cTransBERT: Results aggregated by task

