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Abstract-Optimal operation of network based multimedia 
applications requires a precise specification of the under lying 
network parameters. Different models have been used in the 
past in calculating the behavior  of the network and defining 
parameters like throughput and delays of packets, using among 
others fluid analogy. In this paper  we extend the bundled packet 
level perspective towards the macroscopic level of propagation 
dynamics focusing on the impedance that observed packets 
exper ienced dur ing propagation using the analogy of par ticles 
propagating in a wave-guide. By defining notions like packet 
pressure, packet velocity and stream impedance, we define the 
required frame that allows us to directly use existing methods 
and equations for  the study of streaming networks.  

Keywords: multimedia streaming, traffic shaping, performance 
estimation, quality of service. 

I. INTRODUCTION 

In multimedia applications like audio-visual tele-
conferencing systems or streaming media applications, 
multimedia packets have to be delivered regularly at a 
receiving peer for a timely presentation. In the 
underlying network, however, a stream of packetized 
multimedia undergoes impeding disturbances due to the 
sharing of network resources by traffic of other 
applications. An estimate of the throughput bottleneck 
in a stream channel can be used to prevent throttle down 
of the stream, for example by timely re-reservation of 
resources. The bottleneck estimate may also be used to 
control the settings of the multimedia encoder such that 
the generated packet stream better matches to the 
bottleneck of the channel.  

In this paper, we propose a traffic-shaping model of 
an end-to-end stream channel based on continuous, one 
dimensional and lossless wave equations. The model is 
defined by the dynamics of the propagation of packets 
at a macroscopic level, which is an abstraction of packet 
forwarding behaviour at packet level. From the packet 
propagation dynamics we derive an iterative algorithm 
that contains internal recursions to compute the 
propagation of the packets in terms of waves in the 
stream channel. These wave computations require as 
boundary values the observed (e.g. measured) streams 
of packets at the inlet and the outlet of the channel. 
Using these computed waves, we can estimate the 
course of the throughput of links of the stream channel. 
On the other hand, the iterative part of the algorithm 
computes refined estimates of the channel 

characterizing function that represents a measure of the 
amount of backpressure that propagating packets 
experienced. These estimates can also be used to 
identify the bottlenecks of the stream channel. 

Methods for the estimation of throughput bottlenecks 
in networks that apply the packet pair principle, which 
uses a fluid analogy but at packet level, are well known 
[1, 2, 3]. In [4], bottleneck estimation uses a ‘bunch’  of 
packets to improve the stability of the estimation, 
among others to overcome multi transport channel 
problems when using only two consecutive packets. For 
the same reason, trains of packets have been used for 
these estimations in [5]. The proposed stream channel 
model extends the bundled packet level perspective 
towards the macroscopic level of propagation dynamics. 
Despite the discrete property of today’s networks due to 
the discrete number of switches and routers along the 
propagation path of packets, we apply an analogy of a 
continuous wave guide. Therefore, we do not 
distinguish between the network performance concepts 
“ transmission (delay)”  and “propagation (delay)”  
because they are intertwined in continuous models. 
Continuous models are only able to approximate the 
discrete stream channel characteristics, but this is 
sufficient for most cases (e.g. throughput and 
bottlenecks estimations). The advantage of a continuous 
model is that the corresponding computational 
algorithms are less sensitive to the (precise) locations of 
these switches or routers.  

We address packetized media streams from a user-
oriented end-to-end perspective and consider networks 
that internally apply backpressure mechanisms (e.g. 
sliding window protocols) and mechanisms that enable 
fluent propagation of packets, such as token-buffer fluid 
mechanisms or other fair queue based mechanisms that 
ensure fluent, possibly dripping, packet forwarding. In 
this perspective, we do not directly address utilization of 
network resources, for example dynamics of fluid 
buffers in networks. Instead, we focus on the impedance 
that observed packets experienced during propagation. 
Packets of a stream in this context will therefore 
propagate as if they propagate in a virtual channel from 
an inlet to an outlet of the network and experience the 
same forwarding dynamics as other packets of other 
streams that may share the virtual channel link-wisely.  

Since the proposed channel model is an analogy of a 
wave-guide in which particles propagate, we reuse 



earlier results in signal processing, in particular, results 
from the area of inverse scattering in acoustic or seismic 
media and signal estimation [6, 7]. In wave-guides, 
backpressure can be easily measured. This will be 
different for streaming packets, but packets also 
experience backpressure caused by the sliding window 
mechanisms, for example.  

We also peek into one-lane highway traffic models 
that have similar Lagrangian’s propagation dynamics, 
but particles are intelligent in these models [8]. That is, 
the drivers of cars have a more autonomous behaviour 
but they typically keep a larger safe-gap to ahead cars. 
In these models, traffic jams of dense and slowly 
moving cars often occur, even in the absence of 
externally impeding road conditions. However, both 
highway traffic and stream channel models may posses 
the so-called instantaneous adaptation property, i.e. 
particles adapt instantaneously to their surrounding. 

The structure of this paper is as follows. In the next 
section, we heuristically associate required packet 
propagation behaviour in networks to the proposed 
particle dynamics and derive the wave equations 
induced by the packet propagation. That section also 
describes the stream channel model that embodies the 
wave equations and it shows the lossless property of the 
model. Section III describes the numerical algorithm 
derived from the wave equations to compute the 
reflection function, which is a stream channel 
characteristic that defines the backpressure ratio along 
the channel. Finally, Section IV presents our 
conclusions. 

II. STREAM SHAPING MODEL 

In this section, we elaborate our key idea to view a 
stream of data packets that are flowing in a network as 
particles propagating in a wave-guide. As described 
earlier, the proposed stream channel model is an 
analogy of a continuous one-dimensional lossless wave-
guide in which particles propagate. Accordingly, the 
stream channel does not loss packets and is continuous. 
This means that its characteristics, like bandwidth 
capacity, are real or complex valued functions with 
some continuity constraint along the real valued length 
coordinate of the channel. In this paper, we focus on 
stream channels which characteristics are real valued 
and time-invariant. The model is therefore suitable for 
circuit switched networks, networks that apply some 
kind of reservation of resources or networks that use 
some kind of rate control (e.g. sliding windows) and fair 
queue mechanisms. If, however, variation of channel 
characteristics is infrequent, it is expected that iterative 
algorithms, like the one derived in Section III, can cope 
with these network load variations.  

In the next section, we explore the required 
behaviour of streaming packets at microscopic packet 
level. In Section II-B, we discuss the dynamics of 
packetized media that abstract the microscopic 
behaviour of propagating packets to a macroscopic 

level. In that section, we therefore introduce macro-
level terms like packet pressure, packet velocity and 
stream impedance. Section II-C and Section II-D 
describe the differential and the corresponding integral 
equations of the waves induced by the packet 
propagation. In Section II-E, we discuss the stream 
channel that embodies the wave dynamics. 

A. Requirements on the stream channel model 

The packet propagation behaviour that we need at 
microscopic level will be the following: 

• Absence of background traffic: In the absence of 
external influences on an end-to-end stream, packets 
in the stream should propagate in accordance with 
the packet pair principle ([1, 2, 3]).  

Fig. 1 shows a 1-dimensional stream channel 
conveying packets of the same size (the gray boxes 
in the figure). The channel has capacity C0 at the 
left and C1 (> C0) at the right part, respectively. In 
this microscopic perspective, the packet pair 
distance d0 of packets propagating from left to right 
is invariant in absence of external influences. 

Fig. 1  Packet pair principle in a 1-D stream channel 

• Influence of background traffic: The streaming of 
packetized media in networks will usually be 
influenced by external elements, such as control on 
links of the observed end-to-end stream by sliding 
window protocols or server utilization consumed by 
joining packets from other streams in links of the 
observed stream. These influences may impede the 
propagation of the packets of the observed stream. 
To cope with these influences, we therefore require 
the following additional behaviour of packet 
propagation: 

o Since the right side of the channel in Fig. 1 can 
convey more packets, we introduce the notion 
of slots in the microscopic model (Fig. 2). Slot 
distances depend on the channel capacity, i.e. 
the notion introduces packet pair distances 
relative to the channel capacity along the 
channel length coordinate. Slots may be empty, 
carry packets from the observed stream, or 
carry packets from other streams that join the 
observed stream at a particular channel link. 
Since the proposed stream channel model will 
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be based on wave propagation, the joining 
strategy (i.e. the servers’  scheduling strategy in 
networked queue models) should be fair, in the 
sense that the packets propagate sufficiently 
fluent, when viewed from a macroscopic point 
of view. After joining, these packets will be 
treated similarly to the packets of the observed 
stream, i.e. they will undergo the same packet 
propagation dynamics. This will yield a per hop 
based behaviour, because the joining packets 
will eventually leave the observed end-to-end 
stream;  

o In cruise control cases of highway traffic 
models [8], cars drive at cruise speed unless the 
free slots ahead drops below a safe car-gap 
threshold. Similarly, packets simultaneously 
move forward to next free slots at previous 
value of packet pair distances (which are not 
necessarily equal to the slot distances at the 
particular spatial coordinates) if, while moving, 
ahead slots are also free. In this way, packet 
pair distance remains invariant in the absence of 
external influences.  

On the other hand, if some of the slots ahead 
are not free, e.g. due to newly joining packets, 
packets may only move to available slots at 
closer distance. More specifically, the proposed 
model needs to cope immediately with changes 
in the density of ahead packets. That is, the 
model will adopt the so-called instantaneous 
adaptation property (see also [8]);  

o Buffers in queuing network models that may 
contain packets awaiting to be served will be 
viewed as dense channel links with slowly 
moving packets in the proposed model. As 
mentioned earlier, the relativity of the packet 
pair distance to the channel capacity introduces 
empty slots. These slots enable packets in front 
of buffers to be moved to a next channel link 
and to be scheduled immediately in the empty 
slots. Furthermore, the stream channel model 
has to be able to accelerate these packets in case 
they leave the buffer and experience a decrease 
in packet density while moving.  

Fig. 2 Slotted 1-D stream channel  

 

B. Dynamics of packetized media in the stream channel 

This section addresses packet propagation at 
macroscopic level that abstracts from individual packet 
forwarding behaviour at microscopic level, discussed in 
the previous section. First, we introduce two wave-
guide variables, i.e. packet pressure and packet velocity. 

Definition: 
We define the packet pressure p(x,t) and packet velocity 
v(x,t) as follows: 

p(x,t) = the number of packets per unit channel length; 

v(x,t) = displacement of a packet per unit time,  

with ℜ∈  t x, , x corresponds with the length coordinate 
of the 1-D channel and t the time dimension. 
 

Let model the dynamics of packetized media that 
streams in a network by the following set of coupled 
first order partial differential equations: 

t
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∂−−=
∂
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with ρ(x) denoting the channel density characteristic 
and µ(x) the channel elasticity characteristic. Let further 
ρ(x) and µ(x) be positive and differentiable.  

In the field of acoustics, these equations describe the 
dynamics of pressure waves propagating in an isotropic 
heterogeneous acoustic medium [9]. They are also 
analogous to the Maxwell equations for cylindrical 
wave-guides with perfectly conducting surface and 
filled with passive dielectrical material [10].  

The first Newtonian equation prescribes invariant 
packet velocity in absence of pressure changes along the 
path of propagation; therefore satisfying the packet pair 
distance principle described earlier. On the other hand, 
if packet pressure increases along the stream channel, 
packet propagation will be impeded. The second 
equation is the continuum Hooke’s equation.  

Next, we define a new variable that combines the 
channel characteristics �(x) and � (x) into a single 
characteristic. This will suit our case better, because we 
are only interested in a single channel characteristic that 
can be used to indicate transmission bottlenecks along 
the channel. Furthermore, we transform the spatial 
coordinate x onto a channel length coordinate that has 
the dimensionality of (propagation) time. This better 
suits performance studies, which usually are more 
interested in delays rather than distances. 
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Definitions: 
We define the stream impedance Z(x) as  

(x)(x)Z(x) µρ=   (2) 

and we transform the spatial channel length coordinate 
onto a length coordinate of time dimensionality, 

ξξµξρ d
x

0
)(1)(  T(x) �

−=   (3) 

Proposition 1 
The coupled first order differential equations (1a) and 
(1b) are equivalent to the following system of coupled 
differential equations in the Laplacian domain: 
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with P(T,s) and V(T,s) the Laplace transforms of p(T,t) 
and v(T,t), respectively, and s the Laplace variable. 
Proof: 
Straightforward, by calculating the uncoupled second 
order equations derived from (1a) and (1b) and 
substituting the new variables defined in (2) and (3).  

�  

C. Wave dynamics in the stream channel 

Instead of exploring the dynamics of packet 
propagation in terms of pressure and velocity, it is more 
convenient to describe these dynamics from the point of 
view of the waves that are induced by the packet 
propagation. This approach is also used in areas like 
signal estimation and geophysics [11, 12]. 

Definition: 
We define the incident and reflected waves, A(T,s) 

and B(T,s) respectively, as follows: 
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The time domain representation of A(T,s), i.e. 
A(T,t), propagates along the positive channel length ‘T’  
direction, while B(T,t) propagates in the opposite 
direction (see also (8a) and (8b)). A comprehensive 
representation of (5a) and (5b) is: 
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Proposition 2: 
The waves A(T,s) and B(T,s) satisfy the following 
system of equations: 
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with reflection function Z(T)ln
T

  (T) 2
1

∂
∂=κ ,  (7) 

which represents the channel backpressure ratio1 at 
location T. 
Proof: 
By straightforward calculations. 

�  

In [14], the equations (6) have been called the Krein-
Schur equations, because Schur [15] has inspired the 
work and Krein [16] has extended the work of Schur 
from the discrete domain to the continuous domain. 

D. Incident and reflected waves in the stream channel 

This section discusses the incident and reflected 
waves A(T,s) and B(T,s), respectively. These waves 
will be expressed by integral equations derived from the 
differential wave equations (6). Although the reflected 
wave B(T,s) propagates in the opposite direction, both 
incident and reflected waves will be expressed in terms 
of the waves at the channel inlet, i.e. A(0,s) and B(0,s). 

Proposition 3:  
The waves A(T,s) and B(T,s) satisfy the following 
integral equations: 

 d e s) ,B( )( - s)A(0,e  s)A(T,
T

0

)--s(T-sT
�= τττκ τ  (8a) 

 d e s) ,A( )( - s)B(0,e  s)B(T,
T

0

)-s(TsT
�= τττκ τ  (8b) 

Proof: 
An alternative presentation of the Krein Schur equations 
(6) is  

                                                      
1 In a discrete case analogy, say at a router at location T1, where the 

impedance Z shows a jump, we deal with a reflection coefficient of the form 
ρ(T1)=(Z(T1

+)-Z(T1
-))/(Z(T1

+)+Z(T1
-)) instead of a reflection function value. 

Moreover, we may relaxed our differentiability constraint on the propagation 
characteristics in equations (1a) and (1b) to differentiability almost 
everywhere [13] to cope with jumps in Z(T). 
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The first parts of the expressions on the right hand side 
of the equations characterize a homogeneous channel 
and the second parts represent the perturbation. 
Therefore, the left parts of the solutions ((8a) and (8b)) 
represent the solutions of the homogeneous channel for 
which the inlet waves travel undisturbed. The second 
parts are the sums of the perturbation contributions 
along the channel ( T][0,  ∈τ ) that for the case of the 
incident wave A(T,s) are delayed until T. The case for 
the reflected wave B(T,s) is similar but in the opposite 
direction.  

�  

Corollary 4: 
The time domain representations of (8a) and (8b) are the 
following: 
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E. Stream channel characteristics and representations 

The solution of the earlier described Krein-Schur 
equations models the stream channel that shapes the 
A(T,s) and B(T,s) waves along the channel. The 
solution is presented in the next proposition and is 
characterized by the reflection function κ(T), which 
represents the channel backpressure at T. The rest of 
this section addresses the properties of the stream 
channel model with a focus on the lossless property, 
meaning that the model excludes cases with packet 
losses.  

Proposition 5: 
Let Θ(T,s) be the solution of the Krein-Schur equations, 
i.e.  
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with initial condition Θ(0,s) = I. �  

The matrix Θ(T,s), also shown in Fig. 3, is a so-
called chain scattering matrix [11]. It can be expressed 
as a multiplicative integral [17] as follows: 
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The following proposition and its corollary show that 
the stream channel model does neither generate packets 
nor loss packets. 

Proposition 6: 
The matrix Θ(T,s) is J-lossless, i.e. 

• in the open right half plane ( 0  (s)e >ℜ ) 

J - Θ
~
 (T,s) J Θ (T,s)  ≥ 0,    (13a) 

the passive property for any T along the channel. 

• and on the imaginary axis ( tje  s ω= ) 

J - Θ
~
 (T,s) J Θ (T,s)  = 0  (lossless property)   (13b) 

with ~ the conjugate transposition operator and 
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Proof: 
A heuristic proof can be found in [14], proof in its 
details can be found in [18]. 

�  

Corollary 7: 
The matrix Θ(T,s) is a model for a stream channel that 
does not generate nor loss packets. 

Fig. 3 the chain scattering matrix Θ(T,s) 

Proof: 
On the imaginary axis, we have for any T along the 
channel 
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for any T within the channel. 
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By applying Parseval’s isometry on the energy 
equations (14a) and (14b) and because the packet 
pressure-velocity product represents the throughput, we 
get the lossless property of the stream channel as given 
below:  
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That is, the total number of packets passing at any T 
along the channel is eventually equal to the total number 
of packets entering at the inlet. 
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Corollary 8: 
Associated to the chain scattering matrix Θ(T,s), we 
have a lossless scattering matrix Σ(T,s) satisfying: 
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with the property: 

• in the open right half plane ( 0  (s)e >ℜ ) 

 I - Σ
~
(T,s) Σ(T,s)  ≥ 0    (15b) 

• and on the imaginary axis ( tje  s ω= ) it is unitair (or 
orthogonal, in our real valued case), i.e. 

 I - Σ
~
(T,s) Σ(T,s)  = 0    (15c) 
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In a scatterer like Σ(T,s), reflected waves flow in its 
natural direction as indicated by (15a) and shown in  
Fig. 4. 

Fig. 4 the scattering matrix Σ(T,s). 

The unitair property of the matrix Σ(T,s) makes this 
scatterer an excellent starting point for algorithms to 
compute the A(T,t) and B(T,t) waves, because of its 
numerical stability. In Section III, we develop a 
computational schema in accordance with wave 
propagation in Σ(T,s). 

III. NUMERICAL ALGORITHMS 

In this section, we derive an algorithm to compute 
the reflection function κ in an iterative way, given (e.g. 
measured) packet pressures at both the inlet and the 
outlet of an observed end-to-end stream channel. The 
RTCP [19] protocol may for example be used to transfer 
these inlet or outlet values to the computing peer. On 
the other hand, the initial guess of the reflection 
function may for example be calculated from RSVP 
[19] conveyed resource reservation parameters during 
channel establishment.  

Nested within an iteration that refines the reflection 
function κ, recursive procedures compute the waves 
A(T,t) and B(T,t) in accordance with a scatterer Σ(T,t) 
setting.  

Section III-B explains these wave computations that 
use (a refined) estimate of the reflection function. In 
Section III-C, we discuss the iteration procedure that 
refines the estimates of the reflection function. First, we 
discuss the boundary conditions of the computations.  

A. Boundary conditions of the computations 

The packets injected into the stream channel at the 
inlet obey the applied rate control or sliding window 
mechanism, these packets therefore undergo 
backpressure at the left boundary (Fig. 5). The next 
proposition and corollary specify the boundary 
conditions at the channel outlet and at the incident 
wave-front before it reaches the outlet. 

Proposition 9: 
At the wave-front of the incident wave, the reflected 
wave B(T,T) ≡ 0, if all packets are absorbed 
immediately at the channel outlet (i.e. B(L,t) ≡ 0 with L 
representing the channel length). 
Proof: 
This comes from the passivity of the scatterer Σ(T,t) 
given in (15b), see also the wave propagation in (8a) 
and (8b). 

�  

Remark_1: in the previous proposition we have assumed 
that the incident wave A(T,t) (resp. p(T,t)) is not peaked 
in the sense that A(T,T) (resp. p(T,T)) is not some order 
of magnitude higher than other local maximum values 
of A(T,t). However, if A(T,t) is peaked, for example 
containing a Dirac function in its extreme, the value 
B(T,T+) = κ(T), see e.g. [14]. In peaked cases, the 
algorithms to compute A(T,T) along the channel may 
need perturbation contributions of B(T,T+). An 
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interpretation of peaked cases is that a packet pressure 
peak will overflow network buffers instantaneously 
causing immediate backpressure (i.e. B(T,T) ≠ 0). 

Corollary 10: 
If B(L,t) ≡ 0 with L denoting the stream channel length, 
A(L,t) = p’ (L,t), the normalized (by the square-root of 
the channel impedance at L) packet pressure at the 
outlet of the stream channel. 

�  

B. Σ-algorithm to compute incident and reflected waves 

The next proposition describes the elementary 
computational element of a Σ−scatterer to compute 
numerically and recursively the incident and reflected 
waves in the stream channel. In this work, we apply the 
trapezoidal integration rule, similar algorithms may 
however be derived for other numerical integration 
rules.  

Proposition 11:  
Let h > 0 be the numerical integration step-size. By 
applying the trapezoidal rule on pieces of length h of the 
integral equations (9a) and (9b), we have 
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Proof: 
Compute the difference between A(T,t) and A(T-h, t-h) 
using (9a) and apply the trapezoidal rule, which has �

(h3) accuracy. Equation (16b) can be derived in a 
similar way. 

�  

In the following, we discuss the length first Σ-
algorithm to compute the incident and reflected waves 
in the stream channel. This algorithm contains two 
recursions; a secondary recursion is nested in a primary 
(Fig. 5). An alternative algorithm is indicated in the 
Remark_3. We start the discussion with the boundary 
conditions of this Σ-algorithm. 

Left boundary waves at T = 0: 
Associated to this algorithm, the incident and reflected 
waves at the boundaries satisfy the following 
expressions: 
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which comes from (17b) and the reflected wave 
expression (16b) but at T = 0: 
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Moreover, from (5c) we also have the reflected wave 
expression at T = 0: 

2n) A(0,- 2n) (0,p'  B(0,2n) =   (17b) 

with p’ (0,2n) the (measured) packet pressure 
normalized by the square root of the channel impedance 
at T = 0. 

Remark_2: for the odd values of the discretized time t 
values, we may interpolate some right boundary values 
to compute the waves at all points in Fig. 5.  

 

1st recursion 

2nd recursion 

L = channel end 

B(L,t) = 0;  
A(L,t) = p’(L,t) measured 

B(T,T) = 0 

p’(0,t) measured 

time t 

length T 

computation of B-wave at tip of arrow 

computation of A-wave at tip of arrow 

Fig. 5  Σ-based length-first recursive procedure & the boundary conditions 

Remark_3:  

Another alternative is to base the left boundary incident 
and reflected waves on both packet pressure and packet 
velocity measured at T = 0. For example, we may 
measure p(0,t) from the incoming packets into the 
output buffer of the encoder that await for transmission 
(but experienced backpressure from the stream channel 
rate control) and measure the throughput p(0,t).v(0,t) at 
the inlet to derive v(0,t). Given these two 
measurements, the incident and reflected wave can be 
computed using (5c) and a normalized value for the 
impedance Z(0) value.  

Instead of the proposed Σ-algorithm, we may also 
use another algorithm to compute the waves inside the 
channel, for example, an algorithm that is based on the 
chain scatterer Θ, which computes both incident and 



reflected waves from T = 0 towards T = L, with L 
denoting the channel length. 

Right boundary waves at channel length L for t �  L or at 
the wave front coordinate (T,T): 
For T < L, A(T,T) and B(T,T) can be determined using 
Proposition 9 or Remark_1 given immediately after this 
proposition. 

At the right outlet of the stream channel, for t ≥ L, 
B(L,t) = 0 if all packets are well absorbed by the 
receiver. Accordingly, A(L,t) = p’ (L,t),  the normalized 
packet pressure measured at the outlet of the stream 
channel.  

Wave computations inside the stream channel: 
The incident and reflected waves in the channel can be 
computed recursively by the following Σ-based length-
first procedure: 

for i = 1, 2, .. , M/2, with M denoting the end of the 
observation time (primary recursions); 

for j = 1, 2, . , L-1, with L denoting the channel length 
(secondary recursions); 

• at boundaries: apply the left boundary equations 
(17a), (17b) and the right boundary conditions 
discussed earlier; and 

• inside the channel: apply the expressions (18a) and 
(18b), which are results from some elimination 
process applied on (16a) and (16b): 
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C. Iterative algorithm to refine the reflection function: 

In this section, we propose an iterative algorithm to 
refine the reflection function κ given a first guess. As 
mentioned earlier, this guess can be based on the 

reservation of resources during the stream channel set-
up. In each iteration, the innovation information needed 
as a seed to generate an update of κ(T), with L][0,  T∈  
and L the channel length, comes from the discrepancy 
between the given (e.g. measured) packet pressure at the 
outlet and  the waves along the stream channel that have 
been computed using a preceding iteration of the 
reflection function.  

In the earlier described recursive procedures, the 
incident wave A(L,t) was not included in the 
computation (therefore, not used). The discrepancy 
between this computed wave and the measured packet 
pressure at the outlet may therefore be used to refine 
κ(T), for example, using a minimum least squares errors 
method together with an extended observation period 
(L,M], with M sufficiently large. Essentially, we may 
enforce the normalized packet pressure at the outlet to 
satisfy the following integral equation for the 
computation of the (i+1)th iteration of κ(Τ), given the 
(i)th calculations of the incident and reflective waves: 

 d )L- t,(B )( - L)-t(0,A  t)(L,p'  t)A(L,
L

0

(i))1i((i)
� +=≅ + ττττκ

 for L ≤ t ≤ L+M  (19) 

If we use the trapezoidal rule with step-size h, we 
may represent (19) by the following system of (over-
determined) equations: 

)1i(  - A  P' 0
+= κ�   (20) 

with the (measured) normalized packet pressure vector 
at the outlet: 

P’= [p’ (L,L) p’ (L,L+h) p’ (L,L+2h) … p’(L,L+M)]
T
,  

the incident wave vector at the inlet of the (i)th iteration: 

A0  = [A(0,0) A(0,h) A(0,2h) … A(0,M)]
T
, 

the rectangular (M+1) x (L+1) matrix of reflected waves 
of the (i)th iteration: 
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and the (i+1)th iteration of κ(Τ), i.e. the vector: 

κ(i+1)
  =  [κ(0) κ(h) ... κ(L) ]

T
 

 

We may solve this set of equations using SVD 
(Singular Value Decomposition) or a Householder-



based method [20] and we may iterate the reflection 
function κ(T) until the iterated estimates do not 
converge further or their difference, e.g. in terms of 
their L2 energy, becomes smaller than a specified 
threshold.  

Since κ(T) represents the backpressure ratio in the 
stream channel, we may use the computed estimate of κ 
to identify channel bottlenecks. Moreover, we may also 
compute the throughput (i.e. the product p(T,t).v(T,t)) at 
any T and any time t, using (5c) and the computed 
incident and reflected waves at T.  

IV. CONCLUSIONS 

Multimedia applications using data streaming, like 
audio and video, require a timely and consistent 
delivery of the streamed packets. However, the ever-
increasing complexity of the underlying networks 
makes it difficult to estimate in advance the actual 
network parameters allowing a correct calculation of the 
different quality of service parameters, like available 
bandwidth, delays, etc. that are required for an optimal 
operation of the applications. In this paper, we have 
presented a traffic-shaping model of an end-to-end 
stream channel based on continuous, one dimensional 
and lossless wave equations. We have used these 
equations to derive an algorithm that can be used to 
track the throughput of links of the stream channel by 
feeding a packetized media stream at the inlet (e.g. 
instead of probes) and measuring the shaped stream at 
the outlet of the channel. We therefore have developed a 
kind of passive probing mechanism based on packet 
pressure that is able to track throughput of channel links 
over the whole period of streaming the users data. In 
this perspective, we have extended the packet pair based 
bottleneck throughput estimation methods.  

Further research is needed to validate our results. We 
will verify the results with simulations and on a longer 
term, we will validate the results using streaming media 
over networks. For the computations, we first need to 
investigate some practical issues like the influence of 
interval length in the calculation of packet pressure, the 
influence of network load changes and the observation 
length of the iterative algorithm to the accuracy of the 
estimations. Other relevant research topics are the 
comparison of the different alternative algorithms (the 
scatterer-based and the chain-scatterer-based algorithms 
mentioned in Remark_3 of the previous section), the 
relaxations of the constraints of the model to cope with 
packet losses in the stream channel, packet reordering or 
interleaving multi-paths in the underlying networks, and 
large delays on routers or gateways. 
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