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3. Abstract (English) 
Since the development of the first hospital information systems in late 1960s, digitalization has 

become a major driver of all aspects pertaining to health, leading to major paradigm shifts in the field, 

notably towards data-driven personalized medicine, among others. Large initiatives, such as the 

Meaningful Use in the United states, promoted the wide adoption of Electronic Health Records (EHR) 

both in ambulatory and hospital settings. Today, the vast majority of hospitals have adopted some sort 

of EHR.  

With the growing production of data, in volume and coverage, expectations have raised sharply 

accompanied with new analytical means and approaches and an important need to promote data 

sharing and exchange. Consequently, data interoperability has become a major hurdle in all 

communities and for all usages, is it care, administrative support, research or public health, and 

especially in case of urgent public health needs such as experienced during the covid-19 pandemic.  

While the definition of interoperability can vary, it is commonly accepted to define it in three 

frequently overlapped layers: technical, semantic and process interoperability. Technical 

interoperability relates to the technological means used to structure, send and receive data. Semantic 

interoperability is needed to understand its meaning. Process interoperability allows the coordination 

of systems and workflows in a harmonized manner.  

The field of interoperability has been largely shaped by standardization organizations and the multiple 

standards they produce. Those standards have multiple purposes and granularities and cover almost 

every aspect of healthcare, from simple data transfer to the standardization of care processes in a 

hospital. They constitute the focus of industrial approaches as well as active research. Among them, 

controlled vocabularies, such as the Systematized Nomenclature of Medicine Clinical Terms (SNOMED 

CT) or the International Statistical Classification of Diseases and Related Health Problems (ICD), aim at 

representing the information contained in the data and, therefore, are key components of semantic 

interoperability.  

However, in this profusion of standards, interoperability remains an unresolved challenge. By 

restricting the scope of this work to clinical data interoperability, several observations can be made on 

its limitations.  

Firstly, a standard can only bring interoperability to the extent of its adoption. Secondly, regardless of 

their type (semantic, technical, process), standards are not neutral. They are developed by 

organizations with a purpose and their adoption depends on it. Thirdly as clinical care is composed of 

many actors, roles, cultural habits and needs, enforcing a unique standard is neither possible nor 

desirable. Finally, in a connected, digitalized world, data must be shareable and understandable across 

domains and standards. However, this would require the creation of mappings from each standard to 

all the other ones, which is, to date, not done and would represent enormous work to maintain. 

This work is based on three hypotheses: 

SNOMED CT in conjunction with a limited number of other formal knowledge representations can be 

used as a formal interlingua to represent clinical information properly. 

This hypothesis has been at the core of the Swiss Personalized Health Network (SPHN) initiative and is 

the focus of the first article of this thesis. It implies that a framework aiming to create interoperability 

for multiple communities such as research, healthcare and regulatory agencies needs to be strongly 

semantically driven. Hence, the first pillar of the strategy being a semantic framework represented by 

a set of compositional concepts encoded in SNOMED CT and other specifically relevant controlled 
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vocabularies. Then, to allow the storage and transfer of data, the second pillar proposes the usage of 

a formal language to describe the data without enforcing any data model. Finally, these semantically 

rich, formally described data can be transformed through conversion mechanics into various existing 

data models to be used by various communities without requiring mappings between every standard. 

The first article of this thesis describes the design of this strategy by the Clinical Data Semantics 

Interoperability Working Group of the SPHN and the results of its successful implementation in 

Switzerland which confirms this first hypothesis. 

The second hypothesis is based on the observation that the combinatorial power of such an interlingua 

exceeds the effective needs for clinical activities and assumes that it can be reduced to a meaningful 

and manageable size.   

This has been tested through the building and implementation of a common list to represent patients’ 

problems in the Geneva University Hospitals (HUG). This list was built and is constantly enriched by 

gathering and manually curating a list of expressions encountered in real clinical documents written 

by clinicians. This list was specifically targeted at imitating clinicians’ language and representing useful, 

clinically relevant concepts rather than being exhaustive in its coverage. In a second phase, each 

expression is encoded in a series of semantic dimensions, including SNOMED CT, to allow multiple uses 

of the data. After four years of usage and numerous updates and refinements, the use of the list has 

been evaluated and reported in the second article of this thesis. The results confirmed that the list has 

become in four years a central axis of the EHR. It proved to be usable, semantically interoperable and 

small enough to be manageable, proving the validity of this second hypothesis. 

Finally, the last hypothesis of this work states that the SNOMED CT interlingua can be used to represent 

the information contained in clinical narratives framing the challenge as an automatic translation task.  

This idea emerged from two observations: First, most concepts expressed in clinical settings cannot be 

expressed as single elements in a classification. As any language used by humans, there is a need to 

combine multiple concepts to fully express a meaning. Secondly, SNOMED CT presents similarities with 

a natural language. Indeed, with a compositional grammar, more than 350,000 concepts and 1,000,000 

relations, SNOMED CT can be used and combined into complex post-coordinated sentences in a similar 

way words are combined into sentences in a natural language like French or English. Therefore, the 

challenge of representing narratives into SNOMED CT could be framed as a translation from French to 

SNOMED CT as a target language.  

As a first step toward this goal, a scoping review has grounded the possibility to represent the content 

of clinical free text and narratives using SNOMED CT as a conceptual framework. However, the review 

showed that little work has been done at exploiting SNOMED CT’s combinatorial power, expressing a 

sentence in a specific language using a sentence in SNOMED CT. Thus, the last part of this work has 

been devoted to (a) investigating the translation of SNOMED CT concepts into English, French and 

German by participating in the translation of the starter kit for Switzerland and extracting SNOMED CT 

concepts from new subtypes of the English language, such as social media content, (b) manually 

representing complex medical expressions found in French narratives in SNOMED CT and (c) 

implementing an attempt of an automatic French to SNOMED CT translator.  

The experience gathered while translating concepts into multiple languages highlighted key 

specificities that were injected in the task of translating French medical text into SNOMED CT post-

coordinated sentences. Finally, in this work a multilingual automatic translation tool was adapted to 

translate text written in French (source language) to SNOMED CT as a target language with encouraging 

results. 
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In this thesis, a multi-dimensional approach for semantic interoperability on various types of data and 

for multiple use cases is presented. This approach emphasizes the challenges of bringing 

interoperability in a domain which covers multiple communities, types of data, standards and 

information systems. It confirms that no single solution exists and that targeted, semantically-centered 

approaches are necessary. From large national frameworks to very specific documents written in any 

natural language, interoperability must penetrate every layer of healthcare. The proposed solution is 

based firstly on strong semantics by using compositional controlled vocabularies to create a computer-

readable interlingua without enforcing a data model, it then restricts the representation complexity to 

a useful set of concepts encountered in practice and finally exploits the compositional capabilities of 

the SNOMED CT interlingua to represent complex narrative data into post-coordinated SNOMED CT 

sentences.  

Our approach defines a new, semantically interoperable landscape for clinical data that can leverage 

new opportunities proposed by the growth of personalized medicine.  
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4. Abstract (French) 
Depuis l’apparition des premiers systèmes d’information hospitaliers, à la fin des années soixante, la 

numérisation est devenue un moteur de développement majeur de la santé, menant à des 

changements de paradigme, notamment concernant la santé personnalisée. D’importantes initiatives 

nationales, telles que la Meaningful Use aux Etats-Unis, ont abouti à l’adoption massive de Dossiers 

Patients Informatisés (DPI) que ce soit dans le secteur hospitalier ou ambulatoire. De nos jours, la vaste 

majorité des hôpitaux disposent d’un DPI.  

Avec la production grandissante de données en variété comme en volume, les attentes ont grandi 

rapidement, accompagnées par de nouvelles approches analytiques et d’importants besoins de 

partage et d’échange. De ce fait, le manque d’interopérabilité des données est devenu un obstacle 

majeur pour toutes les communautés, que ce soit dans les soins, la gestion administrative, la recherche 

ou la santé publique, et d’autant plus dans des situations de crise telles que la pandémie qui a frappé 

le monde en 2019.   

Si la définition de ce qu’est l’interopérabilité peut varier selon les sources consultées, il est 

communément accepté de la séparer en trois couches qui se superposent : L’interopérabilité 

technique, qui couvre les moyens technologiques utilisés pour établir une connexion, structurer les 

données, les envoyer puis les recevoir ; l’interopérabilité sémantique, nécessaire à la compréhension 

et à l’utilisation de ces données une fois échangées ; l’interopérabilité des processus qui permet la 

coordination harmonieuse des activités des différents acteurs de la santé.  

Le domaine de l’interopérabilité a été, pour une grande partie, forgé par les organisations de 

standardisation et les nombreux standards qu’elles produisent. Ceux-ci ont des buts, des couvertures 

et des granularités multiples. Il en existe pour à peu près tous les aspects de la santé, du simple 

transfert des données à la standardisation des processus d’un hôpital. Ils sont à la fois un élément 

important pris en compte par l’industrie et le sujet de recherches actives dans le monde académique. 

Parmi eux, les vocabulaires contrôlés comme la Systematized Nomenclature of Medicine Clinical Terms 

(SNOMED CT) ou la Classification Internationale des Maladies (ICD) visent à représenter l’information 

contenue dans les données et sont donc des composants majeurs de l’interopérabilité sémantique. 

Cependant, malgré cette profusion de standards, l’interopérabilité reste un défi non résolu. En 

réduisant le champ de cette thèse à l’interopérabilité des données cliniques, plusieurs observations 

peuvent être faites.  

Premièrement, un standard ne peut créer de l’interopérabilité que s’il est adopté. Deuxièmement, 

indépendamment de son type, un standard n’est jamais neutre. Il est toujours développé par une 

organisation dans un but précis qui conditionnera son adoption. Troisièmement, comme le monde des 

soins est composé de multiples acteurs, rôles, habitudes, cultures et besoins, forcer l’utilisation d’un 

standard unique n’est ni possible ni désirable. Finalement, dans un monde connecté et digitalisé, les 

données doivent pouvoir être partagées et réutilisées qu’importe le domaine ou le standard. 

Cependant, cela requiert la création de ponts entre chaque standard, ce qui représente, à ce jour, une 

charge de travail et de maintenance irréalisable.  

Ce travail se base donc sur trois hypothèses :  

SNOMED CT combiné à un nombre limité d’autres représentations de l’information peut être utilisé 

comme une interlingua formelle pour représenter adéquatement l’information clinique.  

Cette première hypothèse est au cœur de l’approche de l’initiative Swiss Personalized Health Network 

(SPHN) et est le sujet du premier article de cette thèse. Elle postule que pour rendre interopérables les 
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données entre les multiples communautés que sont la santé, la recherche et les instances de 

régulation, il est nécessaire d’adopter une approche centrée sur la sémantique. De ce fait, le premier 

pilier de la stratégie est un cadre sémantique robuste, constitué d’un ensemble de concepts 

composables encodés en SNOMED CT et dans d’autres vocabulaires contrôlés pertinents. Dans un 

deuxième temps, afin de permettre le stockage et le transfert de ces données, le deuxième pilier 

propose l’utilisation d’un langage formel pour la description des données plutôt que de forcer 

l’adoption d’un modèle de données. Finalement, ces données sémantiquement définies et 

formellement décrites peuvent être transformées à travers des mécanismes de conversion pour 

correspondre à des modèles de données variés, afin de permettre leur utilisation par de multiples 

communautés. Le premier article de cette thèse décrit la création de cette approche par le Clinical 

Data Semantics Interoperability Working Group du SPHN et les premiers résultats de son 

implémentation en Suisse qui confirment cette première hypothèse. 

La seconde hypothèse est basée sur l’observation que la puissance combinatoire de l’interlingua, 

définie précédemment, dépasse largement les besoins liés à l’activité clinique. Elle postule qu’elle peut 

être réduite à une taille à la fois utile et appréhendable par des humains. 

La construction et implémentation d’une liste commune pour représenter les problèmes des patients 

au sein des Hôpitaux Universitaires de Genève (HUG) ont permis de tester cette hypothèse. Cette liste 

a été construite en réunissant et traitant manuellement une liste d’expressions rencontrées dans des 

documents écrits par des cliniciens. Elle cible spécifiquement leur langage et représente un ensemble 

de concepts utiles et cliniquement pertinents plutôt qu’une liste exhaustive de tous les possibles. Dans 

un second temps, chaque expression de la liste a été encodée dans une série de dimensions 

sémantiques, incluant SNOMED CT, pour permettre de multiples utilisations secondaires de ces 

données. Après quatre ans d’utilisation et de nombreuses mises à jour et ajustements, l’utilisation de 

la liste a fait l’objet d’une évaluation qui constitue le deuxième article de cette thèse. Les résultats ont 

confirmé qu’en quatre ans la liste s’est imposée comme un axe central du dossier patient. Elle s’est 

montrée utilisable et interopérable tout en conservant une taille limitée qui permet son maintien par 

une équipe relativement restreinte, démontrant de ce fait la validité de cette seconde hypothèse.  

Finalement, la dernière hypothèse de ce travail postule que l’interlingua définie précédemment peut 

être utilisée pour représenter l’information exprimée dans les documents cliniques narratifs, en 

concevant ce défi comme une tâche de traduction automatique du langage.  

Cette idée est née de deux observations principales : Premièrement, la plupart des concepts utilisés 

dans un environnement clinique ne peuvent pas être exprimés par un simple élément dans une 

classification. Comme dans tout langage utilisé par des humains, il est nécessaire de pouvoir exprimer 

des idées par l’association de concepts. Deuxièmement, SNOMED CT présente des similarités 

importantes avec un langage naturel. En effet, avec une grammaire compositionnelle, plus de 350,000 

concepts et 1,000,000 relations, cette terminologie peut être utilisée pour combiner des concepts en 

des structures complexes de la même manière que les mots, dans un texte écrit dans une langue 

naturelle comme le français, se combinent en phrases. De ce fait, le défi de représenter l’information 

contenue dans des documents en langage naturel peut être vu comme une tâche de traduction du 

français (langue source) dans une nouvelle langue (langue cible). 

Dans un premier temps, une scoping review a permis d’établir qu’il était possible de représenter 

l’information contenue dans les documents narratifs en utilisant SNOMED CT comme cadre 

conceptuel. Cependant, cette revue a également mis en évidence que peu avait été entrepris pour 

exploiter la puissance compositionnelle de SNOMED CT afin de représenter des phrases en langage 

naturel. C’est pourquoi la dernière partie de ce travail a été consacrée à (a) investiguer la possibilité 
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de traduction de concepts SNOMED CT en français, allemand et anglais en contribuant à la traduction 

du starter kit de SNOMED CT en Suisse et en extrayant des concepts SNOMED CT de différents types 

de langage tels que l’anglais utilisé sur les réseaux sociaux, (b) représenter des expressions médicales 

complexes contenues dans des documents narratifs en SNOMED CT d’abord manuellement puis (c) en 

implémentant une tentative de traduction automatique français (langue source) – SNOMED CT (langue 

cible).  

L’expérience accumulée grâce à la traduction de concepts dans de multiples langages a permis de 

mettre en évidence des spécificités qui ont été injectées directement dans la tâche de traduction du 

français en phrases SNOMED CT post-coordonnées. Ce travail a donné lieu à l’adaptation d’un outil de 

traduction automatique multilingue avec des résultats encourageants.  

En résumé, dans cette thèse, une approche multi-dimensionnelle est proposée pour rendre 

sémantiquement interopérables des types de données variés pour des cas d’utilisation multiples.  

Cette approche souligne les défis posés par un domaine qui regroupe de multiples communautés, 

types de données, standards et systèmes d’information. Elle confirme qu’il n’existe pas de solution 

unique et que des approches ciblées et centrées sur la sémantique sont nécessaires. Des grands projets 

nationaux aux documents en langage naturel ultra spécifiques, l’interopérabilité doit entrer dans 

chaque secteur de la santé. L’approche proposée est basée premièrement sur une sémantique forte, 

en utilisant des vocabulaires contrôlés compositionnels pour créer une interlingua formelle lisible par 

un ordinateur sans forcer l’utilisation d’un modèle de données ; elle restreint ensuite cette interlingua 

à un ensemble utile et nécessaire de concepts et finalement exploite sa compositionalité pour 

représenter l’information complexe contenue dans les documents narratifs. 

Cette approche dessine un nouveau paysage de l’interopérabilité des données cliniques qui tirera parti 

des nouvelles possibilités proposées par la santé personnalisée.  
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6. General Introduction 

6.1. Interoperability 
Interoperability is a concept used in every domain in which there is the need for two systems, people 

or institutions to work together. It boils down to the need for communication. In 2010, eight Global 

Health agencies called for action on health data and mentioned the improvement of interoperability 

between systems in  the required actions for meeting the Millennium Development Goals [1]. In 2017, 

during the first United Nations World Data Forum, a collaborative on Sustainable Development Goals’ 

(SDGs) data was founded [2]. A year later, a practitioner’s guide was published by the collaborative to 

inform about the best practice around data interoperability, recognizing the subject as a key factor for 

the achievement and monitoring of the SDGs [3]. 

In healthcare, interoperability is the conceptualization of what happens when a team of health 

professionals takes care of a patient. A patient entering the emergency ward of a hospital will usually 

first be seen by the triage nurse assessing priority and overall situation. Based on the initial assessment, 

the emergency clinician will proceed to a more detailed assessment. In parallel, according to the needs, 

investigations and early care will be carried on. If required, the patient will be transferred to an 

inpatients ward for further care. At discharge, a summary of the encounter will be made available to 

the usual general practitioner of this patient. Such history is characterized by different processes and 

transitions between people and structures. In a non-digitalized world, this transfer of information is 

accomplished through paper patient records, telephone calls and face to face meetings. These 

transitions are important and subject of many studies, especially in handoffs [4,5]. The complexity of 

natural communication channels is progressively replaced by digitalization and demonstrates the 

challenges of “analogic” interoperability emphasizing the need to improve interoperability of 

electronic systems (Figure 1).  

 

Figure 1 Interoperability needs for clinical data. 

The definitions of interoperability are various. According to the  Institute of Electrical and Electronics 

Engineers (IEEE) Standard Computer Dictionary, it is “the ability of two or more systems or components 
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to exchange information and to use the information that has been exchanged” [6]. In this definition, 

information exchange is the central goal with two different aspects of it, the ability to exchange the 

information followed by the ability to use it. According to the Healthcare Information and Management 

Systems Society’s (HIMSS) Dictionary of Health Information and Technology Terms, Acronyms and 

Organizations, interoperability is “the ability of different information systems, devices or applications 

to connect, in a coordinated manner, within and across organizational boundaries” [7]. This definition 

reduces the scope to the technical challenge of connecting systems or otherwise computerized 

elements. In this work, we will adopt a broader definition that goes from the exchange of information 

to its usage. 

Interoperability is commonly split into multiples layers or different types, but the number and nature 

of the split can vary. According to Braunstein et al. [8] three layers can be defined, the first being 

“transport interoperability”, meaning the ability to exchange information, which for example would 

be the technical possibility to make a phone call or to send signals over telegraph infrastructures. The 

second layer is “structured interoperability” which is defined as the ability to structure the sent 

message so it can be parsed into defined blocks on the other end and therefore allowing to share data 

with any level of structure from forms with fields and value set to simple blocks of text. The last layer 

is “semantic interoperability” which is about sharing data that will be used and understood in the same 

way by the sender and the recipient. This last layer can be linked to the second part of the IEEE’s 

definition. In healthcare, this could be exemplified by the ability to use the data to take clinical 

decisions about a patient.  

For Benson et al. [9], interoperability in healthcare can be split into four different parts. “technical 

interoperability” which is broader than in the previous definition since it covers technical and 

structured interoperability, “semantic interoperability” and two new parts that are “process 

interoperability” and “clinical interoperability” that are both instantiations of the semantic 

interoperability. They relate to a level of interoperability that allows the workflow, the people and the 

institutions to function in a coordinated manner and clinical work to be carried out seamlessly.  

Finally, for Blobel [10], there are five layers, first technical and structural which are similar to 

Braustein’s definition of technical and structured, with the specificity of adding a syntactic layer which 

is a refinement of the structural interoperability specifying that information is well structured, for 

example following an existing standard such as the Clinical Document Architecture (CDA) [11]. The 

fourth layer is semantic interoperability followed by organizational interoperability which is similar to 

the process and clinical interoperability for Benson and represents the ability of an organization to 

perform common business processes in a coordinated manner. Those different definitions are 

summarized in table 1:  

Global categories Braunstein Benson Blobel 

Technical 

Transport 

Technical 

Technical 

Structured 
Structural 

Syntactic 

Semantic Semantic 

Process  
Process 

Organizational 
Clinical 

Table 1 Definitions of interoperability layers. 
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Those layers can be categorized in three coarse categories. The first one being “technical 

interoperability” in its broader sense, meaning the technical ability to transfer information, structured 

or not. It is important to note that the information transmitted does not need to be meaningful 

providing that the information is transmitted without alteration. Since the democratization of the 

internet and even more in the era of the Internet of Things (IoT), connecting systems do not constitute 

a big challenge anymore [12]. Any device can access the network and once on it, connect to any other 

connected device. However, to successfully exchange data, a common communication protocol must 

be chosen and adopted by the systems. Only then a message can be efficiently emitted and received. 

One of the most common protocols used online is the hypertext transfer protocol (HTTP) [13]. While 

most of the internet is accessed and browsed using it, few are the users that can list its specifications. 

The same is true about communication protocols in healthcare. If the system works properly, users 

can communicate without any knowledge of how the information is transmitted. In healthcare, this 

layer has been at the center of numerous projects, research studies or regulations. Technical 

interoperability is only possible if a specific standard is adopted [9] and multiple standards exist in 

healthcare to tackle this layer.  

The second layer is “semantic interoperability”. Despite varying on other steps, the three definitions 

share this denomination. The ability to understand the shared information so that its meaning is the 

same for the recipient and the sender is crucial. A common medical term such as “shock” can have a 

different meaning depending on who receives the information (Figure 2). Any benefit from data 

sharing will come from the use of the shared data. For the semantics to be stable and usable by every 

recipient, the language used must be the same. It is easy to make a phone call to someone in China. 

The technical part is invisible to the user as he just needs to dial the number, and someone can answer 

at the other end of the world. But when it comes to understand and use the information transmitted, 

if both parties do not speak the same language (English or Mandarin in this case), it is not likely that 

the call will be fruitful. This analogy underscores the importance of being able to represent information 

correctly so that it can be used by everyone. It is usually achieved in healthcare using controlled 

vocabularies such as classifications, terminologies or ontologies. Those systems are designed to hold 

the semantics of the information in a non-ambiguous manner. They will be the focus of section 6.5. 

 

Figure 2 Semantic interoperability requires a communication language. 
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The last layer of this categorization is “process interoperability” in its broader sense: the ability to 

convert the shared data into actions or processes in an institution. If the two first layers are adequately 

implemented, it is then possible to build a workflow based on the shared information. It is worth noting 

that similarly to a controlled vocabulary for representing knowledge, languages exist to represent 

processes and reasoning over the data. For example, the Arden syntax [14] created in 1989 and 

currently maintained by Health Level 7 (HL7) is designed to allow computerized clinical reasoning using 

medical information.  

It is important to emphasize two key aspects of the technical and semantic layers of interoperability. 

The first is that two sources of data can exchange information while having internal representations 

that are different. The second is that the data exchanged can be used in a meaningful way. So, similarly 

to human communication, interoperability does not require everybody to speak the same language or 

to have the same internal representation, but to be able to adopt an additional communication 

language that is characterized by two properties: words that convey a clear meaning and a grammar 

to associate these words into complex sentences. 

6.2. Electronic Health Records (EHRs)  
HIMSS dictionary defines EHR as “a longitudinal electronic record of patient health information 

generated by one or more encounters in any care delivery setting” [7]. EHRs started as early as the 

‘60s [15]. The first computerized record systems were not the complete systems that exist today 

allowing processes such as prescription or complementary exam requests and centralizing patient’s 

data [16,17]. However, one of the first advocated roles of EHRs has been to give quick access to critical 

information needed for patient care [17]. This need remained at the center of the EHRs’ role and 

became broader with the need to share data across institutions and countries. With each digitalization 

progress, new possibilities to improve the quality of care, efficiency and costs were unveiled [18].  

In 2004 in the United States, a report written by the President’s Information Technology Advisory 

Committee (PITAC) highlighted key challenges in the digitalization of healthcare [19]. This report was 

the basis for the writing of the Health Information Technology for Economic and Clinical Health 

(HITECH) Act that was ratified in 2009 [20]. It contained what was later called “the meaningful use 

initiative” and proposed incentives for hospitals and practitioners that adopted an EHR system. This 

program that was set to promote the transition to a digitalized healthcare succeeded with an 

important increase in the percentage of hospitals using at least a basic electronic record. However, in 

2016, a report of the Office of the National Coordinator for Health Information Technology (ONC) on 

the state of adoption of health technology in the United States stated that while 97% of the hospitals 

and 75% of the physicians adopted an EHR, interoperability was still a challenge and that insufficient 

specificity regarding standards adoption was a key barrier to its development [21]. Moreover, it was 

shown that the meaningful use initiative had unintended consequences such as market saturation, 

innovation vacuum, physician burnout or data obfuscation [22]. 

Nowadays, in industrialized countries, EHRs are broadly deployed and used in various types of 

institutions, such as hospitals, ambulatory clinics, insurance companies, pharma companies or 

research agencies [23]. They have become the norm when working with patient data. However, 

challenges remain to fully harvest to possibilities offered by a fully integrated EHR. As it has recently 

been shown, information blocking is still a barrier to interoperability of EHRs [24]. Distributed 

architectures that allow simultaneous queries and computation on multiple sites are a growing field of 

research with solutions such as i2b2, i2b2-transmart or Medco [25–27], but they often remain limited 

to research data and struggle to enter healthcare institutions. 
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6.2.1. Types of data in EHRs 
EHRs are designed to store and allow access to patient information. The data contained are often 

divided into structured versus unstructured [28–33]. Structured data are usually understood as data 

that can be easily manipulated by computers for analytics, such as numbers, Booleans, categorical 

variables. Data such as gender, birthdate, date of death, laboratory results are examples of structured 

data. Unstructured data usually refers to signal data requiring complex analytics, such as texts, images, 

video and signals like audio, electrocardiographs or electroencephalographs. Documents and 

narratives (clinical notes, discharge letters, etc.) are thus considered as unstructured while containing 

most of the pertinent information. This work focuses on structured data and text data. 

It is important to note that while the terms “structured” and “unstructured” are used thoroughly in 

literature, they are not accurate nor stable in their meaning. Natural language is almost always 

categorized as unstructured, as software cannot interpret it for its lack of computer readability. 

However, natural languages are highly structured in that they comply with a specific grammar and use 

a finite value set of words arranged in sentences with punctuation marks to convey meaning. If natural 

languages were truly unstructured, it would be a lot harder for humans to communicate. But they are 

seen as totally unstructured when processed by a computer, even if recent advances have been made 

in language understanding, the field specifically aiming at tackling this issue [34,35]. Therefore, when 

labeling data as structured or unstructured, it should be only limited to computer processing. In this 

view, free text is, indeed, unstructured. Throughout this work, for simplicity, the terms “structured” 

and “unstructured” will be used in the same way as in the literature. 

When confronted to real data, the strict differentiation between structured and unstructured is 

impossible. The reality is a continuum that spans from totally structured data, such as lab values 

encoded in a classification with a result value that is represented by a specific data type and 

representing the result of the test, to a totally unstructured progress note written by a tired resident 

at 3 a.m. using in-house acronyms with multiple typographic errors. Narratives can be structured [36] 

and a structured variable can contain unstructured free text. Figure 3 displays a non-exhaustive list of 

data commonly found in EHRs classified according to their degree of structuring. 

 

Figure 3 Examples of structured and unstructured data in EHR classified according to their degree of structuring. 
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While structured data is preferable for allowing efficient computer processing, in EHRs, the largest part 

of the information stored is in the form of free text [32,37,38]. Free text is notably rich in clinical 

information [32] and is the main manner in which clinicians express their reasoning about the patient’s 

condition. Crucial data for surveillance such as adverse drug effects are often only documented in the 

post-event progress note [39] and therefore difficult to use in decision support or automated 

surveillance systems [40]. 

On the other hand, diagnoses, commonly stored as codes from the International Statistical 

Classification of Diseases and Related Health Problems (ICD), ninth or tenth revision [41], are broadly 

used for billing and therefore easily available and well structured. However, multiple studies reported 

challenges and issues reusing these data [42–44]. It has been shown that they are not always fit for 

purpose as the assignation of codes for billing is not performed with a clinical intention and therefore 

does not necessarily represent the clinical truth which prevents their usage in research [43,45]. The 

PITAC report already highlighted in 2004 that the classification systems historically used to code 

medical diagnoses and procedures for reimbursement and population statistics are not adequate for 

research purposes [19]. Moreover, even when the coding is made for clinical purpose and uses a 

standard terminology, such as the Logical Observation Identifiers, Names, and Codes (LOINC), it has 

been shown that there is often some disagreement and that research on coded information compared 

to research on textual sources can yield different results [38,46].  

6.2.2. Secondary use of data 
Secondary use of data is the use of data for additional purposes than the primary reason for their 

creation [7]. In an EHR, the data is generated by the clinician, the patient or by devices, but its main 

goal is to provide care. Therefore, any use of the generated data for another purpose is considered as 

secondary use. Common goals of secondary data use are surveillance, quality assurance, 

pharmacovigilance, public health and research [47]. 

6.3. Standardization organizations 
The field of interoperability has been largely shaped by standardization organizations and the multiple 

standards they produce. Those organizations can be global as the International Organization for 

Standardization (ISO), or domain specific such as the World Health Organization (WHO), HL7 and the 

Clinical Data Interchange Consortium. As interoperability is a broad domain and this work focuses on 

the specific field of clinical data interoperability, only organizations dedicated to the standardization 

of clinical data will be described. However, it must be acknowledged that numerous other 

organizations exist. Interoperability in the biomedical domain is rich and rapidly evolving thanks to 

organizations such as the Global Alliance for Genomics and Health which aims at providing guidelines 

for the use of standards in genomic data sharing [48], the Open Biological and Biomedical Ontologies 

Foundry which develops ontologies for the biomedical domain [49], or the Gene Ontology Consortium 

[50] whose goal is to build computational models of biological systems and centralize information on 

the function of genes. The following non-exhaustive inventory aims at describing key stakeholders in 

clinical data standardization. This review focuses on describing organizations related to clinical data 

from three different communities: healthcare, research and industry. 

6.3.1. International Organization for Standardization (ISO) 
ISO is a global standard-setting organization with a membership of 165 national standards bodies. 

Created in 1947, it acts as a network of the world's leading standardizers and develops and publishes 

standards, technical specifications or guides [51]. As a global organization, ISO is not focused on a 

specific field and is involved in domains as various as quality management, energy management, 

environmental management, food safety or online security. One of these domains being health and 



18 
 

safety standards, it is one of the actors of healthcare interoperability. Since 1998, ISO includes a 

technical committee on health informatics that was involved in the creation of standards such as the 

ISO 13606-1 on electronic health record communication [52].  

6.3.2. World Health Organization (WHO) 
The WHO was created in 1948 as a specialized agency of the United Nations with the mandate to 

coordinate authority on international health issues. It includes employees from 150 countries and 

operates on a wide range of issues. One of the many products released by WHO is the WHO Family of 

International Classifications, a set of integrated classifications used to represent and classify health 

information across the world [53]. The most renowned member of this family is the International 

Statistical Classification of Diseases and Related Health Problems (ICD) which is described in the next 

section. Other classifications released by WHO include the International Classifications of Functioning 

or the Disability and Health, and the International Classification of Health Interventions.  

6.3.3. Integrating the Healthcare Enterprise (IHE) 
The IHE initiative was launched in 1998 by the Radiological Society of North America and the HIMSS. 

Coming from the healthcare and the industry, it was based on the hypothesis, later confirmed by the 

2016 ONC report [21], that even if standards, such as HL7 and Digital Imaging and Communications in 

Medicine (DICOM), exist, interoperability was still not easily achieved as each vendor and healthcare 

facility implemented them in a specific manner that often prevented data sharing [54]. To solve this 

issue, IHE defined a technical framework that could be used by vendors and users to implement 

existing standards in a way that ensures specific functionalities. This was done by creating a common 

vocabulary to describe implementation needs and IHE Profiles that state how to use existing standards 

to meet those needs [55]. The process to produce and implement those profiles is described in Figure 

4 and includes connectathons to make vendors, users and IHE members meet and connect real 

systems. 

 

 

Figure 4 The IHE process [56]. 
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6.3.4. Health Level 7 (HL7) International 
Created in 1987, HL7 International is a nonprofit organization dedicated to interoperability. It aims at 

creating standards that allow the implementation of the seventh layer of the Open Systems 

Interconnection model (OSI model) [57]. The OSI model, initiated by ISO in 1977, describes the seven 

layers needed to build network communication, from the physical devices and cables that compose 

the system to the high-level application that will be accessed by the end user. This last layer is the focus 

of HL7 since its creation. Standards produced by HL7 include transactional messaging standards, such 

as HL7 Version 1, 2 and 3 and its last version called the Fast Healthcare Interoperability Resource (FHIR) 

[9,58]. HL7 also created the Reference Information Model (RIM), a data model on which is based HL7 

version 3 and the Clinical Document Architecture (CDA), and exchange model for clinical documents 

[11,59]. It also maintains and develops the Arden Syntax, a markup language used to represent and 

share medical knowledge in an actionable format for decision support systems [14].  

6.3.5. The Clinical Data Interchange Standards Consortium (CDISC) 
CDISC, formed as a volunteer group in 1997 and a non-profit organization since 2000, is creating 

standards to support clinical and non-clinical research. These standards cover all steps of research from 

Protocol Representation Model [60] to Study Data Tabulation Model [61] and Analysis Data Model 

(ADaM) [62]. Some of the CDISC standards, such as the Biomedical Research Integrated Domain Group 

(BRIDG) Model, are recognized by ISO as international standards [63]. Since 2010, CDISC’s standards 

are required to submit to the Food and Drug Association (FDA) in the United States and by the 

Pharmaceutical and Medical Devices Agency in Japan [64].  

CDISC also provides a Controlled Terminology that can be used in its standards to encode variables 

[65]. This terminology is maintained and distributed by the National Cancer Institute (NCI) as part of 

the NCI thesaurus. On the possibility of using an existing terminology, such as the Systematized 

Nomenclature of Medicine Clinical Terms (SNOMED CT), CDISC state on their website that it requires 

a paying license and that their controlled terminology should not depend on a non-free terminology. 

Moreover, SNOMED CT is lacking definitions which their controlled terminology has. On the other 

hand, other terminologies are mandatory in CDISC such as the Medical Dictionary for Regulatory 

Activities (MedDRA) for encoding adverse events [66]. 

6.3.6. The Observational Health Data Sciences and Informatics (OHDSI) 
The OHDSI (pronounced odyssey) is a project born from the Observational Medical Outcomes 

Partnership (OMOP), a 5-year initiative that ran between 2008 and 2013 [67]. Its primary goal was to 

unify partners from the public and private sector (mainly pharmaceutical companies) to develop 

secondary use of observational medical data for pharmaceutical research by proposing a shared 

analytic platform based on a common data model. This partnership launched by the FDA was 

transferred in 2013 to the Reagan-Udall foundation and gave birth to OHDSI. The main contribution of 

OMOP was the creation of the OMOP Common Data Model (OMOP CDM) [68,69] which aims to 

propose a model in which a center could extract, transform and load (ETL) its data. In 2019, the OHDSI 

project spanned over 20 countries and more than 100 different healthcare facilities [70]. 

6.4. Technical standards 
While this work focuses mainly on semantic interoperability, it is important to mention some of the 

standards focusing on technical interoperability, since they usually include a mention or a pathway to 

allow semantic interoperability and because any approach dedicated to solving semantic 

interoperability needs to interact with the technical layer. The described systems have been chosen 

empirically based on the relevance of the standards in the literature and with the aim of giving a picture 

of the available standards.  
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6.4.1. HL7 standards 

6.4.1.1. HL7 version 1 (HL7 v1) 

HL7 version 1 was the first standard released by the organization. While it was more of a proof of 

concept to define what would be the structure and content of such standard, it was allowing exchange 

of data related to patient admission, discharge and transfers in structured messages.  

6.4.1.2. HL7 version 2 (HL7 v2) 

This first version was soon replaced by HL7 v2 which improves considerably the range of information 

covered by adding messages to exchange orders, laboratory tests and treatments [71]. This version 

progressively became the most widely used healthcare standard in the world with more than 95% of 

the United States healthcare organizations using some variation of the version 2 and more than 35 

countries having implementations of it [58]. HL7 v2 is being constantly enriched since its creation with 

its 2.9 version released in 2019 [72]. Part of its wide adoption is due to the backward compatibility of 

each of these versions. Adopting a standard is an important investment and the perspective to be able 

to keep a version for a long time without suffering compatibility issues is a strong incentive. Another 

advantage of HL7 v2 is that while its complete specification is enormous, the messages’ syntax is simple 

to grasp. An HL7 message is composed of segments that are separated in fields. The fields are 

composed of components. A message starts with the message header component that specifies 

metadata like the sender, the type of separator used or the datetime of the message. Then, other 

components can be used to define the event that triggered the message, the patient identification, the 

encounter, the requested observation or the result of an observation. The complete specification of 

HL7 v2 messages is extraordinarily rich and cannot be summarized in a few words, but the general 

structure remains the same. Importantly, it is possible to exchange data encoded in a classification 

which is of utmost importance for semantic interoperability.    

6.4.1.3. HL7 version 3 (HL7 v3) 

In 1992, HL7 started to work on the successor of HL7 v2. The third version of the well-known standard 

called HL7 v3 was focused on solving the main pitfalls of the version 2 [73]. By design, this third version 

is strongly linked to the RIM [59], an object model designed to be the backbone of HL7 version 3 and 

a unique reference for the healthcare domain (Figure 5). Its classes and their relations are the building 

blocks of HL7 v3 messages and define what can be exchanged. It was designed with an object-oriented 

paradigm around three main classes: Act, Roles and Entities.  “Act” represents something that 

happened or will happen, “Entity” represents any living or nonliving thing and “Role” can be 

understood as a competency that is expressed by an Entity. Those classes can have specializations, 

attributes and relationships with other classes. For example, the class “Patient” is a specialization of 

the Role class and linked to a spatialization of an Entity which is a living human and can be the subject 

of a Procedure which is a specialization of Act. Some attributes are present in multiple classes such as 

classCode which indicate the name of an Act, Role or entity. While classCode is supposed to define 

what the class is by giving it a name and is purely internal to HL7 v3, the code attribute is there to hold 

an external code from a classification such as ICD-10. Other attributes such as negationId or statusCode 

allow to respectfully negate the class or specify its state as active, inactive, cancelled, etc. As the RIM 

is designed to be the unique model for all information in healthcare, it is not usually used in its entirety. 

Constrained information models, also called profiles, can be defined to specify what classes and 

attributes can be used, what value-set, etc. HL7 v3 messages derived directly from the constrained 

models used and are rendered in Extensible Markup Language (XML) structures. Importantly, to enable 

interoperability between two systems the profiles used must be shared. Figure 5 displays the 

normative content of the RIM: 
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Figure 5 Normative content of the RIM [74]. 

6.4.1.4. Clinical Document Architecture (CDA) 

In 2000, HL7 released the first version of a new implementation of HL7 v3, called the Clinical Document 

Architecture. This new specification aimed at proposing an interoperable solution for exchanging 

clinical documents. On many aspects, documents are different from rows of data in a database. 

According to HL7, documents in this architecture must express six characteristics: Persistence, 

Stewardship, Potential for authentication, Context, Wholeness and Human readability [75]. As a 

document can contain large parts of free-text data, the CDA is designed to be able to encapsulate the 

content of a document in an HL7 compliant structure with three different structure levels of increasing 

complexity [11]. The level 1 is only an XML header that contains the document’s metadata and a body 

which contains the document itself. CDA level 2 contains the header and a body composed of sections. 

Each section covers a part of the content of the document and contains specific metadata. The third 

level, the most complex, has each section linked to a set of entries, called Clinical Statements, which 

represents the content of the section in a fully structured manner. Clinical Statements can be 

Observations, Procedures, etc. They can be linked to other nested entries and coded in any external 

encoding system required [76]. In the years following its release, CDA was widely adopted as a standard 

to store and exchange documents, with national implementations in the United Kingdom [77], 

Australia [78] and the United States through the Continuity of Care Document specification [79,80]. 

This wide adoption is partly due to the fact that the only mandatory part of a CDA document is the 

narrative part, allowing for early adoption even if structured data are unavailable in the system [81]. 

6.4.1.5. Fast Healthcare Interoperability Resource (FHIR) 

In 2009, after more than 10 years since the beginning of the development of the third version of HL7, 

it appeared that it did not meet its goal of becoming the successor of HL7 v2. The broad RIM 

specification, while being successful in reducing the inconsistencies of v2, proved to be too complex 

for easy implementation. The investment required to successfully deploy HL7 v3 was only possible in 

national programs and the required knowledge of the specification was only present in people 

participating to the specification design [82]. Moreover, the specification was criticized for the design 

of the RIM that could be interpreted as incoherent from a semantic point of view [83].  
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The same year, a working group was created to explore new paths for the future of HL7. In August 

2011, a proposal was published on the blog of Grahame Grieve, head of the working group and future 

founder of HL7 FHIR [84]. FHIR was first released as a Draft Standard for Trial Use in February 2014 and 

is now in its fourth release. FHIR proposes a new approach for interoperability. Since the beginning, it 

aims at simplifying implementations while preserving data integrity [85]. It is based on a given set of 

resources that define all exchangeable content. Every resource contains the same metadata and a 

hierarchical set of elements. The resources can be represented in multiple formats such as JSON, XML, 

UML or RDF languages like Turtle. Like in HL7 v3, it is possible to define FHIR profiles to constrain the 

usage of a resources.  

On the implementation side, FHIR draws its inspiration on Application Programming Interfaces (APIs) 

commonly found on the web. More specifically, it is based on a Representational State Transfer API, 

also called RESTful API, meaning that every resource in FHIR has a predictable address. They can be 

accessed and managed through a set of HTTP services. The fact that FHIR is designed as a RESTful API 

means that a FHIR server is an external interface accessible by clients. Therefore, the internal design 

behind the API, the type of architecture, the databases or the data model are irrelevant. This results in 

the possibility to implement it on legacy systems with limited cost. Since its first release, FHIR has been 

built in contact with the community through regular connectathons [86]. Those events usually last two 

days and aim at connecting systems together.   

Since its release, it has been widely adopted. Large healthcare entities in the United States, such as 

Medicare and the Veterans Associations, adopted it as their interoperability layer to give patients 

access to their data [8]. 

6.4.1.6. Substitutable Medical Applications and Reusable Technologies (SMART) on FHIR 

In 2010, an interoperability project began in the United States with the goal of developing a platform 

that would allow medical application to be developed once and run in multiple facilities, providing they 

implemented the platform. In 2013, this initiative, called Substitutable Medical Applications and 

Reusable Technologies (SMART), decided to focus on the FHIR standard to achieve its goal. Among 

other features, SMART on FHIR allows authentication and authorization of users to access resources 

[87].  

6.4.2. Digital Imaging and Communications in Medicine (DICOM) 
DICOM was created in 1983 by the American College of Radiology and the National Electrical 

Manufacturers Association. Although not called DICOM at that time, it was an early effort to bring 

technical interoperability to digital imaging. The overall goal was to make medical imaging (Magnetic 

Resonance Imaging, Computed tomography, X-rays, etc.) independent of the manufacturer of the 

device that produced the image. This standard was an impressive effort at a time where no standards 

existed in the rest of the healthcare domain. The last iteration of the standard DICOM 3.0 release in 

1993 is still the basis of most -if not all- Picture Archiving and Communication Systems (PACS) [88]. It 

allows production, storage and sharing of digital images along with their metadata. All current medical 

imaging devices produce DICOM formatted images and thanks to the backward compatibility of the 

standards with previous versions, it is possible to connect old devices in modern PACS with the 

necessary tweaking [89]. DICOM is one of the most striking examples of a successful standard 

introduction and adoption. 

6.4.3. OMOP Common Data Model (CDM) 
The OMOP CDM is patient centric and focused on drugs and their effects. The proposition of the OMOP 

CDM is different from HL7 standards. The overall goal of the OHDSI project is to give access to the 

common medical knowledge of multiple centers from a single-entry point and propose a galaxy of 
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software services to analyze those data. While its main focus is not interoperability, to provide such 

multicentric analytics, it had to include a specific approach for it. OHDSI proposes that each 

participating center maps its information into the OMOP CDM and performs an ETL procedure to load 

the data. Once in the common data model, it is possible to benefit from the multiple tools developed 

by OHDSI [90]. ATLAS is defined as a unified interface to patient level data and analytics. It allows 

cohort definition and analytics. The Health Analytics Data-to-Evidence Suite (HADES) is a set of open 

source R packages for large scale analytics [91]. Each of those software is open source and can be 

installed and used on an OMOP CDM database.  

6.4.4. OpenEHR 
The openEHR project was born in 1998 from the Good European Health Record Project. It is currently 

managed by openEHR international, a nonprofit organization created in 2003 by the openEHR 

Foundation. OpenEHR defines itself as a “technology for e-health, consisting of open specifications, 

clinical models and software that can be used to create standards and build information and 

interoperability solutions for healthcare.” [92] All of its releases are open source. It proposes a method 

for designing and implementing health information systems. It is based on the idea that single level 

approaches creating entities directly in the system’s data model have too much shortcomings and that 

a two-level approach (also known as “dual model approach”) is both more robust and flexible [93]. 

OpenEHR proposes a stable reference model which will be the first level of the architecture. All data 

are stored in the reference model. Then, small domain models aimed at a specific piece of information 

and called archetypes can be defined and will constrain the reference model. For example, the 

heartbeat archetype contains information about the observation itself (rate, regularity, clinical 

description, etc.), the protocol (method, body site, device, etc.) and other elements. Figure 6 displays 

the Blood Pressure archetype: 

 

Figure 6 Blood pressure archetype as available in the openEHR Clinical Knowledge Manager [94]. 
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Elements in archetypes can be linked to terminologies or classification systems. The archetypes are 

defined with an abstract syntax called Archetype Definition Language (ADL) and can be managed using 

different open source software published by openEHR International. They can be combined and 

constraint in templates that will be used to represent more complex sets of clinical information, such 

as health risk assessment, triage assessment, etc. The openEHR architecture does not enforce any 

controlled vocabularies. By providing mechanisms to design new archetypes and templates for 

everyone, there is a separation of the conceptual model which is represented by the archetype layer 

and can change continuously and the reference model that will stay the same and should contain a 

“relatively small number of non-volatile concepts” [93]. Figure 7 expands on the blood pressure 

archetype by displaying the link between elements of the archetype and SNOMED CT concepts.  

 

Figure 7 Data definition of the Blood pressure archetype with terminology mappings as available in the openEHR Clinical 
Knowledge Manager [94]. 

Archetypes and templates can be modeled using the Clinical Knowledge Manager (CKM) [94], an online 

and local tool that unifies more than 2600 users around more than 80 projects and incubators. 

Archetypes and templates defined by the users can be made available for everyone to reuse and 

modify. At the time of writing, 983 active archetypes and 166 active templates are available on CKM. 

6.4.5. ISO 13606-1 
The ISO 13606 standard created by the European Committee for Standardization and first published in 

2008 has a similar approach to openEHR. Aimed at proposing a stable architecture for electronic health 

records, it is based on a dual model architecture by proposing a reference model as the building blocks 

of archetypes that will be meaningful combinations of those blocks [52]. In 2019, ISO released a new 

version of its standard, ISO 13606:2019 [95], based on the same principles. Archetypes can be 

described using the same ADL as openEHR. The reference model defined by ISO 13606-1 contains six 

clinical classes: folder, composition, section, entry, cluster and element (Figure 8). Those classes can 

be instantiated and linked to archetypes.  
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Figure 8: Classes of ISO 12606-1 reference model [52] 

6.4.6. CDISC Operational Data Model (CDISC ODM) 
Although not specifically aimed at interoperability for healthcare data, CDISC ODM needs to be 

presented as part of this landscape. First released for review in 1999, CDISC ODM is an XML-based data 

exchange standard designed to exchange information in Case Report Forms and their metadata [96]. 

Data in CDISC ODM is broken down into three blocks: study, administrative and clinical. Study data 

describe global variables, definitions as well as every case report form and every field. Administrative 

cover data about users of the system, investigators, centers included, etc. Finally, clinical data will store 

the actual instantiation of the data.   

6.5. Controlled vocabularies 
Semantic interoperability relates to the ability to use exchanged data meaningfully. As in every other 

field in which more than one person need to work together, people are sharing data, orally, or in 

written language. We usually do not refer to semantic interoperability when a clinician is presenting a 

case to its team, but it is a perfect display of what it must be accomplished: the transfer of information 

that will influence actions of people who did not gather it themselves. The difference in the medical 

informatics domain is the addition of computers to the equation (the word “computer” designates any 

computerized device or server that is processing information in a computerized manner). Medical 

informatics relies on the belief that there is a gain to obtain using computers for tasks that usually 

required people, pen and paper. Therefore, with this new actor generating, processing and sharing 

information, it must be ensured that the process keeps the meaning of the information unmodified 

and that it can be used by a machine that does not comprehend it. Grahame Grieve, the project lead 

of HL7 FHIR, wrote that while developing a standard such as FHIR, what is pursued is not semantic 

interoperability but “un-semantic” interoperability [97]. Indeed, technical standards are built in the 

aim to process information automatically without any interest for its meaning but keeping it intact. 

Therefore, while it is currently illusory to build computers that understand the meaning of a health 
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record, it is crucial to ensure that the semantics of the data is sufficiently consistent and unambiguous 

so that it can sustain processing, comparison and transfer without being altered.  

The barriers to semantic interoperability are various. Some relate to person-to-person interactions and 

some to person-to-computer or computer-to-computer interactions. When free-text data is 

transmitted from a clinician to another through a computerized process, the major barrier preventing 

data from being usable is the language. Clinicians need to share the same language (e.g. English, 

French, etc.) to understand each other. They also need to share some knowledge about the topic or 

medical specialty to which the data relates. In medical practice, words and abbreviations can have 

multiple meanings -as it has been shown by the study of polysemy in large classifications such as the 

Unified Medical Language System (UMLS)- and their usage can hinder semantic interoperability [98]. 

Those barriers are not specific to computers and existed before them.   

Moreover, when data must be processed by the computer itself, for example to trigger an alert, new 

challenges arise. First, data should be structured in order to be processed (as stated in the structured 

interoperability layer), but structure does not convey meaning. To bind data to a stable meaning, a 

common approach is to use a controlled vocabulary. By binding data to specific labels or codes in a 

classification, semantics is transferred from the data itself to an external system specifically targeted 

at organizing meaning (Figure 9).  

 

Figure 9 Effect of encoding the meaning of data into a controlled vocabulary. 

6.5.1. The uncontrolled vocabulary of controlled vocabularies 
It is interesting to note that the vocabulary used to describe what can be generally addressed as 

controlled vocabularies can be unclear and require definitions. This issue is best exemplified by 

SNOMED CT being named a nomenclature in its acronym, referred as a terminology in its 

documentation and often called an ontology in articles about it [99,100].  

This problem can be approached by classifying controlled vocabularies according to their general goal 

or by their coverage. Controlled vocabularies can be built to gather every existing expression and to 

group them according to their meaning. This approach produces what is commonly called a thesaurus, 

or a dictionary [101], the most known thesaurus in the biomedical domain being the UMLS 

Metathesaurus which regroups more than 200 controlled vocabularies in a unified list [102]. 
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Classifications, as defined by the Cambridge dictionary are “the division of things into groups by type” 

[103]. This division is materialized as a finite set of boxes in which every covered element can be placed. 

Classifications define the exhaustive list of what can be used when speaking about a domain. When 

using ICD, every disease and mortality cause should be expressed using a code contained in it and no 

meaning can be expressed if it is not contained in a code. Finally, combinatorial ontologies (or concept 

systems) provide a list of concepts, and rules describing how to combine them to express meaning. 

The concepts composing them include descriptive relationships with other concepts that define their 

essence [104–106]. What such a system contains is not a closed list of expressible meanings, but a list 

of the possible words available in a language to build sentences that will convey a much wider set of 

meanings. Although referred frequently as a terminology, SNOMED CT is currently the most prominent 

member of medical combinatorial ontologies.  

Taking another angle, each of these types of controlled vocabularies can have different coverage. They 

can target specific activities such as ICD for diseases and mortality causes, the NANDA International 

Nursing Diagnoses [107] for nursing diagnosis or the International Primary Care Classification [108] for 

consultations motives. Controlled vocabularies can also target a domain, like the International 

Classification of Diseases for Oncology, third edition (ICD-O-3) which aims at representing the site and 

the histology of neoplasms [109], the Anatomical Therapeutic Chemical Classification System which is 

used to classify drugs or the Diagnostic and Statistical Manual of Mental Disorders published by the 

American Psychiatric association and aimed at mental disorders [110]. Finally, large transdomain 

controlled vocabularies such as SNOMED CT, LOINC or the UMLS Metathesaurus cover even broader 

parts of the biomedical domain.  

It is worth noting that hyper specific clinical scales and scores, such as the Glasgow Coma Scale (GCS) 

[111] or the Apgar score [112], are also numerous in medicine. Scores and scales are an integral part 

of medical practice and clinical data. They are used every day by clinicians and are so pervasive that 

applications exist to provide easy access to them [113]. However, those small classification systems 

are not the focus of this work as they can be considered as small sets of specialized concepts and are 

sometimes already included in large controlled vocabularies (for example, Apgar score is included in 

SNOMED CT and LOINC).   

Other words can be encountered in the literature about controlled vocabularies. They will be briefly 

defined for exhaustiveness but do not enter in the scope of this work. A taxonomy can be considered 

as a synonym of classification but use of this term in healthcare is less frequent and usually bond to 

the field of biology [114–116]. A nomenclature represents a list of words commonly recognized and 

validated in a specific domain to name elements of this domain. Finally, the most frequent term used 

when reading about controlled vocabularies in healthcare is “terminology”. The meaning of 

terminology is close to a nomenclature. It is a collection of special words or expressions used in relation 

to a particular subject or activity [117]. This profusion of terms and their sometimes fuzzy use 

underscore the challenges of semantic interoperability. Throughout this work, the term “controlled 

vocabulary” is used to cover all types described before and, for coherence with other works, the word 

“terminology” is used for SNOMED CT. 

6.5.2. Usage of controlled vocabularies in healthcare 
While there exist probably several hundreds of controlled vocabularies in the biomedical domain, it is 

difficult to find an exhaustive list. However, some insights can be drawn from organizations or projects 

aiming at regrouping them. The UMLS Metathesaurus (described in 6.5.7) contains more than 200 

controlled vocabularies. The Health Terminology/Ontology Portal [118,119], a French platform that 

allows search of concepts in multiple languages, covers 70 terminologies and ontologies. Finally, the 



28 
 

HIMSS terminology standards list 11 major common terminology standards on its website, including 

SNOMED CT, LOINC and ICD-10 which will be described in section 6.5 [120]. 

Integration of controlled vocabularies vary in technical standard specifications. Standards published 

by HL7, CDISC, OMOP or openEHR include different solutions to encode or represent meaning. FHIR 

resources can contain elements with the data type “CodeableConcept” which specifies that this 

element will be represented by a code in a value set of codes, internal or from an external classification 

[121]. CDISC’s Controlled Terminology is mandatory to encode CDISC compliant datasets [65]. 

OpenEHR allows to integrate external controlled vocabularies to archetypes or templates to define 

value sets or encode a concept without many restrictions. Finally, the Standardized Vocabularies 

released by OMOP are mandatory to encode data in the OMOP CDM. Those vocabularies can be 

created internally or adopted from existing standards such as SNOMED CT [122].  

However, each of those solutions have limitations: either inconsistencies highlighted in the design of 

FHIR resources [123,124], the mandatory data model at the center of openEHR, or the way OHDSI 

integrates external vocabularies by assigning new unique identifiers to concepts and therefore 

imposing a controlled terminology instead of proposing the liberty of using existing ones. 

6.5.3. Properties of controlled vocabularies 
The properties that a controlled vocabulary should express to be widely used and future proof have 

been summarized by Cimino et al. in 1998 [125]. Such a vocabulary should be concept oriented; it 

should provide concept permanence to avoid that data encoded in the past becomes unusable in the 

future. This forbids the use of residual aggregation since a concept that is defined by exclusion such as 

“pneumonia not elsewhere classified” is bound to a semantic drift as new knowledge reduces its scope 

by adding new types of pneumonia. It should be built around a polyhierarchy to allow efficient 

navigation and avoid choices such as classifying the concept “pneumonia” in the lung disease category 

over the infectious disease category. In the same aim, the identifier of the concept should carry no 

meaning to avoid modification when new knowledge appears or limitation in the addition of new 

codes. Indeed, many classification systems, such as ICD or Clinical Terms Version 3, use position-

dependent codes where the structure of the code specifies part of its meaning and can limit evolution 

possibilities [126]. It should include formal definitions materialized as typed relationships between 

concepts and all granularities should coexist in it. Finally, it should be updated regularly and in a 

consistent manner without creating any break in compatibility. The SNOMED CT documentation 

includes a page where desiderata of Cimino are listed with an explanation of how SNOMED CT meets 

each one of those requirements [127]. 

6.5.4. International Statistical Classification of Diseases and Related Health Problems (ICD) 
While the first attempt to classify diseases is traced back in the 18th century, the precursor of ICD was 

born in 1853 with the International List of Causes of Death. This classification created after the first 

International Statistical Congress aimed at a statistical study of causes of death around the world [128]. 

This list first released in 1893 was adopted by multiple countries including the United States and 

Canada. It was updated multiple times during the first half of the 20th century. Its sixth revision in 1949 

was marked by the transfer of the custody of the list to the World Health Organization (WHO) and its 

modification into the International Statistical Classification of Diseases which included new elements 

for the coding of morbidity data. In 1989, the tenth revision of the classification, ICD-10, was released 

and is still to this day the most used version of ICD with 117 countries using it for reporting mortality 

data [129]. ICD-11, for which the work started more than a decade ago, was released for the members 

of WHO in May 2019 and should start to be used for health reporting in January 2022 [130–132].  
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The ICD structure changed across its revisions and will change again with its eleventh revision. ICD-10 

is composed of twenty-one chapters (from A00 to Z99). Every ICD-10 code is composed of a letter 

followed by up to three digits. The U chapter is reserved for the provisional assignment of new codes 

as new diseases are discovered. Starting with the tenth revision, ICD is updated annually by WHO to 

include new diseases or refine existing codes.  

Multiple countries have developed their own adaption of the ICD classification. Examples of such local 

adaptations are the German modification, ICD-10 GM [133], the Australian Modification ICD-10 AM 

[134] or the United States clinical modification ICD-10 CM [135]. The latter succeeded in 2015 to ICD-

9 CM as the mandatory classification system for mortality and morbidity [136,137].  

As stated in its name, ICD is a statistical classification. Its role is to provide a common language for 

reporting and monitoring diseases. Its primary use is summarizing data about mortality and morbidity. 

ICD is best used when aggregating data from a large set of patients in order to gain knowledge about 

the evolution of a disease or the evolutions of the causes of death in a population. Due to its ability to 

classify and express what disease or pathology the patient suffered from with common codes across a 

country, it has been largely used for billing and reimbursement. For example, in the United States, ICD 

codes are required in health care claims. In Switzerland, a translated version of ICD-10 GM is the basis 

for billing of inpatient stays. Each stay is coded using ICD codes that must be assigned according to a 

rulebook edited by the public health administration [138]. While coding was first made by clinicians in 

Switzerland, it is currently performed by coding experts that follow a specific training and must hold a 

certification. The ICD codes assigned to an inpatient stay are combined with procedure codes from the 

“Classification Suisse des interventions chirurgicales” (CHOP) and additional data. That information is 

then grouped and mapped to Diagnoses Related Groups (DRGs), a system created in the United States 

to classify inpatient stays according to their cost in resources.  

ICD codes are broadly used and available healthcare data. Therefore, the incentive to use them for 

research is high. However, it has been shown that they are not a reliable source of information for 

research or clinical care as they are biased by the rules applied during coding.  

6.5.5. Logical Observation Identifiers, Names, and Codes (LOINC) 
LOINC has been created in 1994 by the Regenstrief Institute, a United States non-profit organization 

[9,139]. Its goal was to solve the problem of internal, idiosyncratic coding of observations and 

laboratory values [140]. It is designed to provide a unique identifier for the observation and not its 

result. LOINC describes the question that is asked; for example “glycemia level in plasma”, and not the 

answer that would be “4.2mmol/L”. This distinction is crucial as terminologies such as SNOMED CT can 

express both the question (Glucose measurement, blood (procedure)) and its answer (Random blood 

sugar raised (finding)).  

LOINC is mainly composed of two large categories of codes, clinical terms and laboratory terms. The 

first includes all types of observations that can be made about a patient such as “Left ventricular 

Cardiac index by US” or “History of Kidney disorders”. It also includes a document ontology which 

describes types of documents in compliance with HL7 CDA and codes for radiologic observations, 

patient-reported outcomes measures or nursing assessments [139]. The laboratory terms category 

covers laboratory tests such as “Sodium [Moles/volume] in Blood”. Panels are elements in LOINC that 

regroup multiple observations. “Sodium and Potassium panel [Moles/volume] – Blood” regroups two 

laboratory exams. The documents in the document ontology are also panels and are linked to a set of 

codes that are recommended or optional to be part of the document.  
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The concept model of LOINC defines six mandatory properties for a code: Component or Analyte 

describes what is the focus of the observation (e.g. glucose), Property defines what is observed about 

the component (e.g. substance concentration), Time-Aspect describes if the observation is over time 

or punctual, System is related to the sample or system in which the observation is made (e.g. blood), 

Scale differentiates if the observation is qualitative or quantitative and, if relevant, the Method used 

for the observation is filled (e.g. Glucometer).  

LOINC is updated twice a year and is distributed freely. The current 2.69 version contains 94,895 codes 

[140]. Since its creation, it has been widely adopted for encoding laboratory measures around the 

world with 88,647 users representing 176 countries in 2019 with 20 translations [141]. However, issues 

have been raised on its usage, specifically about the comparability of aggregated results due to 

different devices and references ranges encoded with the same LOINC codes. The task of mapping 

internal coding to LOINC codes is time consuming, requires interdisciplinary teams and can result in 

different codes for the same analysis depending on the person performing the mapping. Finally, the 

unit of the laboratory test can vary and the absence of a systematic unit conversion system inside 

LOINC can hinder interoperability [142–144].  

6.5.6. Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) 
SNOMED CT was first released in 2002 from the merger of two existing healthcare classifications, 

SNOMED Reference Terminology (SNOMED RT) and Clinical Terms Version 3 (CTV3) [145].  

SNOMED RT was the latest version of a classification created in 1965 by the College of American 

Pathologists and called Systematized Nomenclature of Pathology (SNOP). In 1975, its scope was 

broadened to include concepts relative to medicine and therefore was renamed “Systematized 

Nomenclature of Medicine (SNOMED)”. Three different versions of SNOMED were released until the 

end of the nineties when the building of SNOMED RT began. While the third version of SNOMED 

already included 10 different taxonomies such as diagnoses, procedures, topography or living 

organisms, and a mechanism to combine concepts to create a composed statement, it lacked a proper 

syntax to do so and typed relationships between concepts [146]. SNOMED RT aimed to fill this gap by 

adding formal description logic-based definitions to the system. It was released in early 2001 when the 

development of SNOMED CT had already begun. Therefore, it was never updated and represented 

more as a transition step to SNOMED CT. 

CTV3, on the other hand, was created in 1985 in the United Kingdom by Dr James Read as a set of 

clinical terms for use in EHRs in primary care settings. The so-called Read Codes were updated and 

renamed Clinical Terms when their license was purchased by the United Kingdom government and the 

updates were put under the responsibility of the National Health Service [147,148]. The third version 

of CTV3 also included features to post-coordinate codes and further specify a concept.  

In 1999, the College of American Pathologist and the National Health Service agreed to merge CTV3 

with SNOMED RT. After mapping common concepts and working on concept modelling, this merger 

gave birth to SNOMED CT [147]. 

SNOMED CT is currently considered as the most comprehensive, multilingual clinical healthcare 

terminology in the world [99]. It contains more than 350,000 concepts and a million relationships. It is 

maintained and published by SNOMED International [149], a non-profit organization composed of 39 

member countries [150]. Each member country contributes a license fee to SNOMED International 

related to its gross domestic product. The license gives access to SNOMED CT for the entire country as 

well as the possibility to contribute, suggest modifications, define specific reference sets for local usage 

and benefit from training provided by SNOMED International.  
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SNOMED CT is organized in three main components: Concepts, Descriptions and Relationships [99]. 

Concepts are the only component in which the meaning resides. Descriptions are a natural language 

representation of the concept. Relationships are specific concepts used to link concepts together. Each 

concept has a unique formal logic-based definition that is materialized as relationships to other 

concepts and complies to rules defined in the SNOMED CT Concept model (Figure 10) [151]. As stated 

before, while named a “systematized nomenclature”, SNOMED International designates SNOMED CT 

as a terminology. However, from its concept-based structure including typed relationships, synonyms 

and preferred term, it is closer to a formal ontology or to a group of ontologies (Figure 11). However, 

it cannot be defined completely as an ontology as issues with its concept model have been raised, such 

as the possibility to violate axioms of the SNOMED CT concept model based on the intuitive meaning 

of synonyms or the usage of relationship groups [152–154]. 

 

Figure 10 The diagram of the concept Pneumonia in SNOMED CT [155].. 

 

Figure 11 The 19 top hierarchies of SNOMED CT [156]. 

The highly connected structure contained in SNOMED CT allows complex queries under the form of 

expression constraint queries. This formalism can be used to retrieve concepts following a set of 

constraints that can be simple like “being a child of a specific concept” or more complex like “having a 

specific relationship with a set of other concepts”. Information retrieval through expression constraint 
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language cannot be accomplished with other health terminologies due to their lack of formal logic-

based definition [157]. 

SNOMED CT allows post-coordination. When a concept is not present as a single code in the 

terminology, it can be created by composing existing codes and relations. By following the 

compositional grammar edited by SNOMED International, anyone can create new post-coordinated 

concepts [158]. This has multiple advantages. It avoids the combinatorial explosion that comes with 

every terminology aiming at exhaustiveness and it allows users to accurately encode the information 

with the needed granularity. This is the reason why SNOMED CT is described as the universal language 

of healthcare [159]. 

With 39 member countries and more than 5’000 affiliate licenses distributed [150], SNOMED CT is 

widely used in both healthcare and research settings. The use cases are various and can range from 

purely theoretical analysis of the properties of SNOMED CT [154,160] to pragmatic usage of a subset 

of concepts to encode a specific information [161,162]. Among those use cases, the ability of SNOMED 

CT to be used as a language to represent complex concepts expressed in unstructured data is very 

promising.  

6.5.7. Unified Medical Language System (UMLS) 
The building of the UMLS began in 1986 by the National Library of Medicine with the goal of improving 

the capability of computer programs to behave as if they understood the biomedical languages 

[102,163]. This national and international long-term effort resulted in the creation of three knowledge 

sources: the Metathesaurus, the Semantic Network and the SPECIALIST Lexicon & Lexical Tools (Figure 

12).  

 

Figure 12 Knowledge sources of the UMLS [102]. 

The Metathesaurus is a unification of more than two-hundred controlled vocabularies relevant to the 

biomedical domains into more than one million biomedical concepts and five million terms. Each term 

is linked to a unique identifier specific to the UMLS. Although it includes many classifications and 

terminologies already widely used in the clinical domain and research, it does not aim to replace them. 

However, it can be used to organize concepts from multiple sources and facilitate the creation of 

mappings between them. Examples of included vocabularies are SNOMED CT, LOINC, MeSH or ICD-10-

CM. The Semantic Network is composed of 133 semantic types and 64 relationships. They are used to 

categorize each concept in the Metathesaurus, therefore reducing the complexity of navigating 

through many concepts. Finally, the SPECIALIST Lexicon is an English lexicon of more than 200,000 

terms with syntactic, morphological and orthographic information aimed at Natural Language 
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Processing (NLP) applications. Lexical tools such as a lexical variant generator or a normalized string 

generator are also available.  

6.6. Projects related to clinical data sharing for research 

6.6.1. I2b2 tranSMART foundation 
I2b2 is a clinical research platform aiming at combining data emerging from research (biology) with 

clinical data coming from patient records (bedside). It has been created in the framework of the NIH 

Roadmap National Centers for Biomedical Computing initiative (46, 47). Its first version was released 

in 2007. This platform includes a database model, an application layer and core APIs. Each module of 

the application is called a cell and is integrated in a hive. The cells communicate with each other via 

web services.  

At the center of the system is the data repository cell, also called Clinical Research Chart, which 

contains phenotypic and genomic data. It is accessed by most of the other cells to produce analytics. 

Data in i2b2 is stored using a star schema. This data model is built around a central table called 

observation facts and a finite set of dimensions linked to it (Figure 13). Each piece of data is a fact 

linked to a patient, an encounter, a provider and a concept. Even though the model has changed along 

the years, it remains based on the same axioms. The concept dimension is especially important 

because it holds the link between the data and its semantics. It is designed to contain any classification 

or coding system needed to encode the data. Therefore, each observation fact can be linked to a set 

of concepts. It is important to note that no such link is available for the other dimensions and therefore 

their semantic needs to be documented elsewhere. The modular design allows i2b2 to be improved by 

new cells when needed. Cells have been developed both by the i2b2 foundation and by the research 

community for various tasks such as managing ontologies and patient identities [166,167] or providing 

FHIR compatibility [87,168]. I2b2 also includes a cell dedicated to NLP. The Health Information Text 

Extraction (HITEx) tool combines a set of language processing modules that can be selected to build an 

NLP pipeline and perform extraction from narrative documents. Its components are derived from the 

open source General Architecture for Text Engineering (GATE) [169] and are integrated in the NLP cell 

of the i2b2 Hive [170]. This cell can perform various information extraction tasks and contains a UMLS 

concept mapper that can find and link concepts to text. The NLP cell has been used and evaluated to 

extract principal diagnosis, co-morbidities and smoking status [170–172]. 

In 2017, the i2b2 foundation completed its merger with the tranSMART foundation. TranSMART is 

described as knowledge management and high content analytics platform [26]. It is aimed at providing 

reusability to research data. It uses parts of the i2b2 platform and provides search capabilities based 

on Apache Lucene Solr [173], a well-known search engine. TranSMART was first released in 2010 and 

was put in open source in 2012. The i2b2TranSMART foundation currently manages multiple software 

with the two core products being i2b2 and tranSMART. Since the merge, the integration and 

compatibility of the two platforms have been improved and different use cases using the two platforms 

are described and additional software proposed by the foundation [174].   
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Figure 13 i2b2 star schema [165] 

6.6.2. Strategic Health IT Advanced Research Projects consortium (SHARPn) project 
The SHARPn project emerged from a set of projects called SHARP and piloted by the ONC in 2012. It is 

a framework aimed at secondary use of EHR data and is designed to be scalable and standard driven 

[175]. It can take as an input data in HL7 messages and normalize them using an Unstructured 

Information Management Architecture (UIMA) pipeline which is an architecture designed by IBM and 

maintained by the Apache Software Foundation. The pipeline includes different normalization steps 

depending on the type of data (HL7 messages, tabular data or free text). The data is then persisted in 

an SQL database according to a set of data models named Clinical Element Models (CEMs) [176]. CEMs 

are small data models designed according to a common abstract structure. They can be expanded or 

modified according to a specific need. Specifically, for the SHARPn project, 28 CEMs were used. They 

are like openEHR archetypes as they are small domain models and can be constraints and linked to 

terminology codes for semantic purposes. The goal of SHARPn is to propose a framework for high 

throughput phenotyping by rapid harmonization of various data from standardized HL7 messages to 

free text using NLP.  

6.7. Natural Language Processing (NLP) 
NLP can be defined as the field of computer sciences that takes natural language as an input. It is an 

active research branch in the biomedical field and has been broadly applied on scientific literature and 

clinical text [177] for automatic information extraction, automatic document classification and 

sentiment analysis [178–180]. NLP tools used in clinical text mining are often seen as a way to improve 

healthcare [181]. Scientific literature represents convenient datasets for NLP tools as these documents 

are freely available and usually well-structured [182–184]. However, NLP applications on clinical 

documents are less frequent. Among the reasons explaining this disparity, the limited access to corpora 

of clinical documents and the lack of publicly available annotated corpora are mentioned [185]. Limited 

access to data is partly due to the difficulty of defining the appropriate method to enhance the privacy 

of data as well as setting a threshold above which the data is shareable [186]. These barriers slow down 

the development of large-scale solutions for NLP and information extraction on clinical documents. 
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Moreover, while there exist freely available corpora of clinical documents (among which, MIMIC III 

[187] and CLEF [188]) written in English, such datasets in other languages are scarce.  

One interesting application of NLP in connection with clinical data interoperability are the challenges 

organized in the framework of the i2b2 project. Those challenges were designed as shared tasks, 

meaning that each participating team was given the same annotated data set and their results were 

evaluated against each other. Those tasks aimed at tackling challenges met by the i2b2 projects. From 

2006 to 2014, seven challenges were organized by the i2b2 foundation and produced numerous results 

for tasks such as de-identification [189], medication extraction [190], temporal relation extraction 

[191] etc. Since 2018, those challenges are organized by the National NLP Clinical Challenges (n2c2) 

under the stewardship of the Department of Biomedical Informatics at the Harvard Medical School 

[192]. The last challenge organized by n2c2 was focusing on medical concept normalization [193]. 

Those challenges are an important source of annotated datasets since all datasets used in challenges 

are available for research under registration. Beside those tasks, NLP can be used to provide 

automation of mandatory steps for interoperability such as structuring documents or mapping of text 

to controlled vocabularies [194]. 

6.8. Research questions 
Despite a profusion of technical standards and controlled vocabularies and important investments, 

interoperability of clinical data remains a challenge. Several observations can be made on these 

barriers and limitations.  

A standard can only bring interoperability if it is adopted. The wide implementation of DICOM in PACS 

or the broad usage of ICD for the billing of inpatient stays and for public health statistics are good 

examples of successful standards. Unfortunately, such unity in the adoption is not common in 

healthcare. The 2016 ONC report [21] mentioned that the reluctancy of the stakeholders to adopt 

standards that would support collaborative work and meaningful engagement from the patients 

resulted in poor adoption of standards or even information blocking, an issue still present in 2020 [24]. 

Elements such as calls for action by large EHR companies to hospitals, urging them to oppose to 

regulations promoting interoperability are a strong sign that the industry has a responsibility in the 

slow progress of semantic interoperability in healthcare [195,196].  

Regardless of their type, standards are not neutral. The intention that drove their creation influences 

their structure and their adoption depends on this intention. The three main classes of the HL7 v3 

model, Act, Role and Entity, are designed to be able to represent actions taken and their associated 

metadata describing what, where and to whom it happened. OMOP CDM is constructed to identify 

and evaluate associations between interventions and outcomes. While both approaches are person 

centered, harmonization between the two models have proven to be non-trivial, underscoring the 

fundamental differences of the two models [197]. Similarly, the resources proposed by FHIR were 

primarily targeted at EHR interoperability, OMOP CDM specifically targets clinical research and the 

CDISC ODM is the model used for submissions made to the FDA. Each of these standards is different 

and answers different needs but standards overlap to some extent. As for controlled vocabularies, ICD-

10 is designed as a statistical classification of diseases, LOINC aims at representing observations and 

laboratory tests and SNOMED CT targets the complete medical domain. SNOMED CT contains a 

hierarchy named “disorders” that covers most of the elements of ICD-10, and LOINC includes concepts 

related to observations and laboratory values that also appear in SNOMED CT.  

While there are overlaps in the coverage of major controlled vocabularies, it is not reasonable to 

enforce a single standard, whether technical or semantic, in every community and for all purposes. 

Clinical care is composed of many actors, roles, cultural habits and needs, and enforcing a unique 
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standard is neither possible nor desirable. As an example, the identification of a drug by its active 

substances may be meaningful for a clinician but classifying it by its therapeutic indications is 

preferable for a patient and logistic identification is needed to handle supplies and orders in the 

hospital’s pharmacy. Each of these views on the drug concept are equally correct, needed and 

different. Moreover, if an international standard can be used to represent a drug dose, the analytical 

method of a laboratory test or the specific type of cells observed in a pathological specimen, concepts 

such as the expression of the complaint of a patient are strongly linked to his/her language and cultural 

background. Finally, controlled vocabularies have limitations. They can be too comprehensive for 

specific usages (the 71,000 LOINC codes can be useful for a large laboratory provider but are difficult 

to use for a researcher) or lack specific features (SNOMED CT is able to represent close to any medical 

concept, but lacks solution when expressing concrete values [198]). Concerning statistical 

classifications, such as ICD-10, that are widely used and available, they have shown their limits in terms 

of semantic representation outside of the billing process [42,43,45]. Therefore, it does not seem 

desirable or even applicable to enforce a single standard for every use case.  

Finally, in a connected digitalized world, data must be shareable and understandable across domains 

and standards. Since it is not realistic to enforce a single technical standard and a single controlled 

vocabulary to represent, store and share clinical data, conversion mechanisms are needed. However, 

they would require mapping from each standard to every other one which is, to date, not done and 

would represent unreasonable maintenance costs.  

 

Textbox 1 Summary of the observations made about interoperability in healthcare. 

 To resolve this issue, three hypotheses are made. 

6.8.1. Hypothesis 1 

 

Most of the existing controlled vocabularies in healthcare, such as ICD-10 or LOINC, do not include 

mechanisms to combine their elements to create concepts absent from the classification. But SNOMED 

CT is published with a compositional grammar allowing the post-coordination of concepts. This 

highlights an important difference in the philosophy behind those systems. The list of ICD-10 codes can 

be considered as the list of “what is expressible in ICD-10”. Therefore, any concept that is not present 

in the classification cannot be represented with it. This partly explains why residual aggregation is 

needed in ICD-10: to provide a way of expressing diseases not yet encoded in a proper ICD-10 code. In 

a compositional system, the list of its concepts is no more “what is expressible” but “the set of concepts 

that can be used and combined to express something in this classification”. This simple perspective 

➢ Standards do not create interoperability; their adoption creates it. 

➢ Standards are not neutral; their specificities depend on the community that created 

them and their goal.  

➢ It is not possible to enforce a single standard in every community for every purpose 

because of the differences in needs, purposes and cultural habits of the communities 

that use them. 

➢ The multiplicity of standards requires many-to-many mappings from each standard to 

every other for the data to be shareable and understandable by everyone. 

SNOMED CT in conjunction with a limited number of other knowledge representations can 

be used as a formal interlingua to represent clinical information properly.  
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shift differentiates SNOMED CT from the classification realm and brings it closer to a natural language. 

This is exemplified by the fact that it is possible to create a syntactically correct but totally nonsensical 

post-coordinated SNOMED CT sentence. As the famous sentence from Noam Chomsky, “Colorless 

green ideas sleep furiously”, created to highlight the difference between syntax and semantics, the 

syntactic correctness of a SNOMED CT sentence does not guarantee anything regarding its meaning 

[199]. Textbox 2 displays an attempt at representing Noam Chomsky’s sentence using the SNOMED CT 

compositional grammar.  

 

Textbox 2 SNOMED CT representation of the sentence: Colorless green ideas sleep furiously. 

The coverage of SNOMED CT has been the focus of a growing number of publications [200,201], 

including a large European project named ASSESS CT and aimed at evaluating the terminology as a 

standard for semantic interoperability for European eHealth deployments [202]. This project stated in 

its final recommendations that the content coverage of SNOMED CT was superior to any other single 

terminology [203].  

The complexity of semantic interoperability in healthcare can be summarized as the interface between 

two realms. On one side, the humans have a common understanding of health-related concepts. Those 

conceptual frames hold the meaning of things as understood by humans. When communicating with 

each other, humans create representations of those concepts using natural language. Natural 

languages are numerous and overlapping. General languages such as English or French are large 

distinct representational systems. But smaller, domain related languages can be defined such as the 

“medical language”, or even smaller jargons used in specific professions such as nurses, surgeons, etc. 

The language used by a hematologist and a laboratory worker will overlap but still be distinct in 

representing some concepts.  

On the other side, computers do not strictly understand medical concepts but still manipulate and 

store them. Those machine-readable concepts are the pendant of the conceptual frames for humans. 

As for humans, multiple machine-readable languages are used to store and share concepts between 

machines. ICD-10, LOINC for large systems, and APGAR or GCS for smaller ones.   

In this setting, it is hypothesized that it is possible to bridge human conceptual frames with machine 

readable concepts by using a restricted set of controlled vocabularies to represent health concepts. 

Figure 14 summarizes this approach.  

247623004 |Exciting ideas (finding)|: 

{ 

103366001 |With color (attribute)|:371246006 |Green color (qualifier value)|: 

 { 

 103366001 |With color (attribute)|:263716002 |Colorless (qualifier value)| 

 }, 

246090004 |Associated finding (attribute)|:248220008 |Asleep (finding)|, 

246090004 |Associated finding (attribute)|:75408008 |Feeling angry (finding)| 

} 



38 
 

 

Figure 14 Schema of the semantic convergence proposed in hypothesis 1. 

The follow-up of this first hypothesis is rooted in the observation explained before that no single 

standard should be enforced for all purposes. Therefore, once concepts are adequately represented in 

selected controlled vocabularies, the storage of the data should not be made by constraining the data 

into a data model. Instead, a descriptive formalism should be used to describe the data without an a 

priori definition of a model. 

Descriptive formalisms, such as the Resource Description Framework (RDF) [204], are based on the 

building of statements composed of a subject linked by a predicate to an object. The repetition of this 

pattern, called a triple, becomes a graph with nodes and edges (Figure 15). By using such a formalism, 

it is possible to describe and store data into databases named Triplestore in the case of RDF [205]. 

From this common representation, ad hoc conversions to any data model are possible, reducing the 

number of mappings needed (Figure 16). 

 

Figure 15 Triple representation as describe in descriptive formalisms such as RDF. 
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Figure 16 The benefit of a single central standard on the number of mappings needed (adapted from [206]). 

6.8.2. Hypothesis 2 

 

The expressivity of natural languages or combinatorial controlled vocabularies is enormous. While ICD-

10 has a finite set of codes of around 14’000, the post-coordination possibilities of SNOMED CT 

concepts or the number of possible sentences in French are almost limitless. This extreme expressivity 

brings new challenges when managing semantic representations of information. However, when 

focusing on the use of a language in a particular setting, only a small set of what is expressible in this 

language is used regularly. As a travel guide will gather a set of simple words or sentences that are 

specifically useful when in a foreign country, it should be possible to define a set of useful expressions 

extensively used in clinical settings. This set would be arguably smaller than the expressivity domain 

of a language such as medical French.  

The situation is the same with the controlled vocabularies relevant to a certain use of the data. As 

explained previously, multiple views of the same concepts are relevant to different stakeholders in the 

hospital and beyond. Those different views can be called semantic dimensions as they represent a 

dimension in which a part of the semantic of the expressions can be represented. For example, the 

term “appendicectomy” means something totally different whether it is read by an internal medicine 

clinician, a surgeon, a nurse or the billing department. Therefore, from all the possible semantic 

dimensions in which an expression can be represented, we believe that it is possible to define a closed 

subset of relevant dimensions.  

Based on those two assumptions, it should be possible to define a set of relevant expressions and to 

represent them in a set of relevant semantic dimensions. This would transform the impossible task of 

representing every expression in every dimension into a human-sized list of interoperable expressions 

and would bridge the gap between the expressions used by clinicians and the various representations 

of information needed in a hospital (Figure 17). 

The combinatorial power of such an interlingua exceeds the effective needs for clinical 

activities and can be reduced to a meaningful and manageable size.   
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Figure 17 Structure of a possible common list of expressions enriched with semantic dimensions. 

6.8.3. Hypothesis 3 

 

In hypothesis 1, it is assumed that a formalization of clinical data into a healthcare interlingua is a 

solution to the semantic challenge of interoperability. However, the method to attain this convergence 

is not defined. The problem can be split in two different approaches for two different types of data.  

For what is commonly described as structured data, the conversion to the chosen interlingua can be 

made by binding the structured variables to concepts. For example, SNOMED CT has been mapped to 

multiple other controlled vocabularies and implemented for multiple types of structured data such as 

problem lists, chief complaints for emergency department, wound assessments or procedure codes 

[207–209]. For representing such data, it is possible to link a SNOMED CT representation to the variable 

as well as to the set of its possible values.  

On the other hand, a major part of the EHR information is still hidden in free text or narratives [47,210]. 

Representing these “unstructured” data using SNOMED CT is not trivial. While it is possible to link a 

set of SNOMED CT concepts to a free-text document or, to be more specific, to annotate a document 

linking concepts to expressions [211], we propose a new approach based on two observations. 

Most concepts expressed in clinical settings cannot be expressed as single elements in a classification. 

As any language used by humans, there is a need to be able to express a meaning with an association 

of concepts. For example, “acute myocardial infarction” can be found in single concept-based 

classifications such as ICD-10. However, clinical activity requires to express many additional 

information that will specialize this concept, such as uncertainty, severity, probability, extent, precise 

location or timing. “Acute myocardial infarction” can then become “images compatible with sequalae 

of probably repeated small antero-lateral myocardial infarction in the past”.  

SNOMED CT presents similarities with a natural language. Indeed, with a compositional grammar, more 

than 350,000 concepts and 1,000,000 relations, SNOMED CT concepts can be used and combined into 

complex post-coordinated sentences in a similar way words are combined into sentences in French or 

English.  

Considering SNOMED CT as a language with words (concepts) that can be combined in sentences (post-

coordinations), it is possible to consider the challenge of representing narrative data in SNOMED CT as 

a translation task. To confirm the innovative potential of this approach and to review previous work in 

The interlingua can be used to represent the information expressed in clinical narratives, 

framing the challenge as an automatic translation task. 



41 
 

this domain, a literature review was needed. Based on this knowledge, it should then be possible to 

develop a method to translate narrative data into SNOMED CT concepts, first manually, then 

automatically using NLP.  

7. Publications 

7.1. Methodological contributions 

7.1.1. Contributions to hypothesis 1 
Targeting the first hypothesis, the first article focuses on a large framework for national 

interoperability of structured variables. The crucial axiom of this work is that a framework aiming at 

creating interoperability for multiple communities, such as research healthcare and regulatory 

agencies, needs to be strongly semantically driven but agnostic of any data model. 

In Switzerland, the Swiss Personalized Health Network (SPHN), an initiative started in 2017 and funded 

up to the amount of 137 million CHF until 2024, aims at leveraging research in the field of personalized 

health by building a nationally coordinated infrastructure that supports exchange and reuse of health 

data produced by the healthcare system [212,213]. The SPHN implemented a new approach to solve 

the interoperability challenge based on three pillars: a semantically robust framework, an agnostic 

descriptive formalism and ad hoc conversions to data-models. This approach was defined by the 

Clinical Semantic Interoperability working group (CSI) of the SPHN’s Data Coordination Center (DCC) 

and has been implemented in every University Hospital and every Polytechnical School in Switzerland 

for sharing of clinical data.  

During the first phase of the SPHN, the author of this thesis, Christophe Gaudet-Blavignac (CGB), was 

involved in multiple projects funded by the initiative. As a member of the Division of Medical 

Information Sciences (SIMED) of the Geneva University Hospitals (HUG), he participated to the LOINC 

for Swiss Laboratories infrastructure project in which he unified and aligned the LOINC coding of the 

five Swiss university hospitals [214]. He performed data extraction and annotation for the De-

Identification of clinical narrative data in French, German and Italian infrastructure project [214]. He 

participated to the Swiss Frailty Network Repository driver project in which he encoded and mapped 

the project’s codebook to the HUG’s data warehouse [215] and he participated in the mapping and 

extraction of the data for the Swiss Personalized Oncology driver project [215].  

The SPHN’s three pillar approach was largely defined and driven by the CSI through monthly meetings 

and publication of datasets and strategic papers [216,217]. As an active member of this group, CGB 

participated to the creation and dissemination of the strategy. He was involved in the building of the 

core and extended datasets that were released by the SPHN. To scientifically formalize the strategy 

and to report on its implementation, CGB, Jean-Louis Raisaro (JLR) and Christian Lovis (CL) wrote a 

scientific article that was submitted to the Journal of Medical Internet Research (JMIR), (cf. 7.1.1.1). 

This article confirms the first hypothesis by reporting on the successful implementation of the SPHN 

three-pillar strategy. The first pillar consists in the definition of a set of concepts encoded in SNOMED 

CT and a set of controlled vocabularies. They can later be combined to create new concepts fitting the 

needs of the driver projects. This confirms that it is possible to only use a restricted set of relevant 

information representations as an interlingua to represent clinical data. 

The main contribution of this work is the description of a strategy for clinical data interoperability at 

the national level and the report on the successful implementation of this approach in Switzerland.  
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7.1.1.1. Article 1: A National, Semantic-Driven, Three-Pillar Strategy to Enable Health Data Secondary 

Usage Interoperability for Research Within the Swiss Personalized Health Network: Methodological 

Study. 

The outline of this article presenting the SPHN three pillar strategy, was created conjointly by CGB, JLR 

and CL. Then, CGB did the literature research and wrote the first draft of the article with the help of 

JLR for implementation parts, then CL reviewed it and the feedbacks were integrated by CGB. The 

article was then sent to Katrin Crameri, head of the Personalized Health Informatics Group responsible 

for the Data Coordination Center of SPHN for official endorsement and review. Finally, Vasundra Touré 

and Sabine Österle, also members of the SPHN DCC reviewed and provided feedbacks on the article. 

Once CGB integrated final feedbacks, the article was submitted to JMIR for peer review and publication 

in January 2021. In February 2021 the article came back with a request for revision. CGB JLR and CL 

made the revisions and the article was resubmitted and accepted for publication in May 2021. 

7.1.2. Contribution to Hypothesis 2 
The common problems list implemented in HUG since 2017 constituted a use case to confirm the 

second hypothesis of this work. When clinicians list the problems of their patients, they use natural 

language and create an expression. The complete set of possible expressions is not closed. Therefore, 

creating a list of all possible French expressions representing a problem is impossible. On the other 

hand, existing controlled vocabularies, such as the ICD-10, are not fit for a problem list due to various 

reasons such as residual aggregation or their lack of synonyms. Finally, a problems list contains 

information that could be useful beyond the medical domain. However, each profession or division of 

a hospital has its own vocabulary in which they are used to communicate. There is therefore a need 

for a problems list that fits the expressions the clinicians desire to enter and can represent them in 

multiple semantic dimensions.  

This could only be achieved by reducing the list of possible expressions to a subset used in practice 

small enough to be manually represented into multiple semantic dimensions chosen based on specific 

use cases. The problems list presented in this article represents an attempt at creating a central source 

of useful information representations articulated around a restricted set of useful expressions, wide 

enough to represent the richness of clinicians’ language. 

Since 2016, CGB has overseen the development, deployment and maintenance of this manually 

created problems list. This list of more than 40,000 labels manually extracted from clinical documents 

was chosen to become the HUG’s common problems list under the responsibility of CGB. The list 

required curation, additions and encoding into SNOMED CT and multiple other controlled vocabularies 

called semantic dimensions. Those tasks were accomplished by CGB directly or by the training and 

supervision of a multidisciplinary team of clinicians, nurses, medical students and semantic experts 

shifting the burden of encoding the information from the responsibility of the working clinicians. Once 

this first phase of curation ended, in January 2017, the list was deployed into the production 

environment of the HUG to be used as the common problem list of the hospital. After the first 

deployment, the list needed to be completed, improved and additional semantic dimensions needed 

to be mapped to the expressions. For four years and to this day, CGB pilots the development of this 

list, he supervises a team of two to five people working on different aspects of the list, has been 

creating verification and security checks and delivering regular production releases to the HUG, in 

collaboration with the Information Systems Directorate and the Medical and Quality Directorate of the 

HUG. After four years of implementation, CGB extracted usage data of the list from the data warehouse 

and described this work in a scientific article to report on the creation and deployment of this list as 

well as on its use and adoption by the users. 
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In four years, the list has become a central axis of the EHR.  Usage data showed that it was the most 

used source of expressions for entering problems, that the number of created problems was rising and 

that the proportion of problem entered as free text, not using the list, was decreasing. Those results 

are indicators of the list’s success in representing the language of the clinicians. After four years, the 

20,120 expressions of the list seem to adequately cover more than 80% of the clinicians needs in term 

of expressions. Moreover, the various semantic dimensions added to the list allowed its usage for 

numerous other goals such as surgical theater planning, dietetic and nutrition diagnosis, decision 

support or clinical research.  

These results confirmed the second hypothesis by showing the successful convergence to a restricted 

list of manually curated expressions mapped into SNOMED CT and useful semantic dimensions to 

answer multiple interoperability needs in the hospital.  

7.1.2.1. Article 2: One list to rule them all and many semantics to bind them: Building a shared, scalable 

and sustainable source for the problem oriented medical record. 

This article reporting on the building and evaluation of the common problem list was written by CGB, 

then reviewed and corrected by CL and Andrea Rudaz, the clinician in charge of the development and 

deployment of the problem module in HUG (the software used by clinicians to access the list). CGB 

then included the feedbacks and the article was submitted to JMIR in March 2021.  

7.1.3. Contribution to Hypothesis 3 
The last goal of this thesis is to develop a method to bring semantic interoperability to the notoriously 

complex narrative data. The third hypothesis of this work suggests that representing narrative data in 

the proposed interlingua can be framed as an automatic translation task. To validate this approach, a 

review of the actual uses of SNOMED CT for narratives was needed. This article was framed as a scoping 

review on the use of SNOMED CT to process or represent clinical free text. The results showed that if 

SNOMED CT had been widely used to process this type of data, it was often with rule-based systems, 

in English and without taking advantage of its compositional capabilities. Specifically, no article 

mentioned an approach framing the problem as a translation task. This review grounded the possibility 

to represent narratives using SNOMED CT as a conceptual framework and confirmed that the 

translation approach had not been attempted before.  

When shifting the approach from an encoding task to a translation task, new insights about automatic 

translation had to be considered. Automatic translation approaches can be classified in three 

categories: rule-based, corpus-based and hybrid [218]. Rule-based approaches can be summarized 

using the Vauquois’ triangle of automatic translation [219] (Figure 18). This triangle considers that 

automatic translation should be made by abstracting the meaning of the input text into a theoretical 

pivotal language or “interlingua” that represents the semantic content of the text. Then, the 

generation of the target language representation is the reverse task of generating language from the 

abstracted interlingua form. The transfer could occur at a different level with different expected 

quality. The direct transfer from the source to the target, meaning a direct replacement of the words, 

requires no syntactic processing but an important morphological analysis. The syntactic transfer occurs 

after the syntax has been abstracted to the interlingua and requires syntactic processing. Finally, the 

semantic transfer requires the complete abstraction of the source into the interlingua and generation 

into the targeted language.  
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Figure 18 Summarization of the Vauquois' triangle [219]. 

It is assumed in this thesis that SNOMED CT can be the interlingua acting as a bridge between human 

conceptual frames and machine representation. The parallel with the first half of the Vauquois’ triangle 

seems obvious. Therefore, the translation task should be only the abstraction process that will lead 

from French medical text to the SNOMED CT representation. Unfortunately, the reality was not as 

simple, due to the creation process of SNOMED CT and its primitive concepts.  

The influence of a language on the thoughts of its speaker, a concept known as linguistic relativity, has 

been thoroughly discussed in the linguistic domain [220–222]. If the extent of this influence is subject 

to debate and beyond the scope of this work, it is commonly accepted that the language of a speaker 

can facilitate some conceptualizations or distinctions over others [221]. In other words and as a 

reference to the language philosopher Ludwig Josef Johann Wittgenstein, it is the words we choose 

that give meaning to the world [223]. While SNOMED CT is supposedly language independent [224], 

meaning that the information contained in a concept is not linked to its natural language 

representation, it was however designed by English speakers, in the United Kingdom for the CTV3 

terminology and in the United States for SNOMED RT. Therefore, since SNOMED CT has been designed 

and first represented in English, its concepts are more likely to represent an English-speaking way of 

representing the reality.  

Moreover, SNOMED CT contains primitive concepts [225]. A concept is named “primitive” if its formal 

definition, the set of relationships linking it to other concepts, is not sufficient to distinguish it from 

every other concept. In such concepts, the description in natural language is the only way of capturing 

its complete meaning. Since this description is in English for the International version of SNOMED CT, 

it is arguable that SNOMED CT is not language independent, but strongly linked to English. 

Therefore, the process of translating French medical text into SNOMED CT cannot be reduced to the 

abstraction side of the Vauquois’ triangle but should be seen as a translation between French and an 

entity that is an English-influenced interlingua.  
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To confirm this insight concerning the link between SNOMED CT and natural languages, several tasks 

were started. First, to investigate the translation of SNOMED CT concepts into French and German, the 

author of this thesis participated in the translation of the starter kit of SNOMED CT concepts for 

Switzerland. This starter kit was composed of a set of 6,393 concepts translated in French and German 

and was supervised by eHealth Suisse [226]. CGB piloted the work to validate this translation, 

managing a team of two experts and acting as a negotiator for difficult items. This mandate helped 

gather experience on the translation of SNOMED CT concepts in two languages and was a first step 

toward the final goal of translating French medical language into SNOMED CT.  

Secondly, building on a collaboration with a group from the Yonsei University in Seoul, a dictionary-

based NLP tool named PKDE4J was adapted to extract biomedical entities and relations from user-

generated text on a social media platform. The objectives of this work were first to evaluate the 

adaptability of the tool to a new type of text, differing from scientific publications, to evaluate if a 

dictionary created using expressions directly extracted from SNOMED CT was able to capture 

biomedical entities represented in social media content and finally to analyze how people express 

themselves about chronic diseases on social media.  

The dictionaries used for the entity extraction covered the following categories: drugs, anatomy, 

procedures, symptoms, findings and side effects. Among those, the Finding and Procedure dictionaries 

were built by extracting specific sets of SNOMED CT concepts based on semantic tags. Semantic tags 

are notation at the end of a SNOMED CT description indicating its relevant domain. All concepts with 

a “finding” or “procedure” semantic tag were extracted from the complete list of SNOMED CT 

concepts. Concepts of more than two words were filtered out to simplify the task on the ground that 

the probability of a long concept to appear in user generated content was low. The final dictionaries 

contained 7,800 procedures and 7,620 findings. 

Focusing on the SNOMED CT dictionaries, on a corpus of 17,580 user messages and 2,137,115 tokens, 

11,549 entities representing 296 different procedures and 8,741 entities covering 483 different 

findings were extracted. An evaluation of the entity extraction was made over 1,000 random messages 

and showed a performance of 78.48% (3,682/5,151 entities correctly extracted).  

This work showed that, for the English language, the English description of SNOMED CT concepts could 

be used to automatically extract concepts from a natural language outside of the realm of scientific 

publications and medical writing. However, the number of different concepts was arguably low with 

679 different entities over dictionaries of 15,420 concepts.  

Then, CGB started to work on the representation of complex medical French sentences in post-

coordinated SNOMED CT sentences. This started with the manual translation of sentences found in 

discharge letters of the HUG. CGB used an annotating tool named Brat [227] to annotate portions of 

text with SNOMED CT concepts, then adding attributes as relations between those annotated entities. 

After a first set of letters manually translated, CGB wrote guidelines to perform the translation and 

trained four annotators for this task. A set of 60 discharge letter discussions was selected and fully 

translated into SNOMED CT sentences. Each letter was translated conjointly by a group of two 

annotators and a set of 20 letters was annotated by both groups. This work has not yet been the 

subject of a publication but allowed to gather significant insight on the common difficulties 

encountered when performing this translation.  

Then, CGB started a collaboration with Vasiliki Foufi (VF) and Professor Eric Wehrli (EW) to adapt Fips, 

a syntactico-semantic parser developed at the University of Geneva (UNIGE) by EW [228,229] to 

automatize the translation of medical French into SNOMED CT post-coordinated sentences. This work 

required that the compositional grammar of SNOMED CT be integrated in the tool, that the description 
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model rules of SNOMED CT be converted in rules applicable by the tool, which was made by EW and 

CGB, and an important work on lexico-semantic resources. The French translation of 170,000 SNOMED 

CT concepts were provided by the Professor Stefan Darmoni. 80,000 of those translations were then 

curated manually by CGB, VF and trained students. The curation was accomplished according to 

translating rules published by SNOMED International and adapted by CGB to French.  

A selection of those verified translations was then made by lexical analysis of a large corpus of 

discharge summaries, and around 15,000 terms were manually selected and inserted by CGB and VF 

in the electronic dictionary of Fips, along with lexical and grammatical information. Then, the tool 

processed multiple corpora of clinical text, allowing fine tuning of the parameters. 

The post-coordination capability of the software was implemented for three different SNOMED CT 

relationships. To provide preliminary results on automatic post-coordination, the method was applied 

to a new corpus of discharge letters. The results were then manually validated by CGB for semantic 

correctness. The validation was split in two parts: the correctness of the annotation of simple concepts 

and the correctness of post-coordinated triplets composed of a concept linked to another concept by 

a relation. Only when the three elements were correct, the triplet was considered correct. 

7.1.3.1. Article 3: Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for 

Processing Free Text in Health Care: Systematic Scoping Review. 

The protocol for this scoping review was created by CGB, CL, VF and Mina Bjelogrlic (MB) based on 

similar work in the field [186,230]. The selection and reading of the papers were made by CGB and VF 

and disagreements were discussed and resolved. The results of the review were documented and 

analyzed in an excel sheet. CGB wrote a first version of the article that was reviewed by MB, VF and 

ultimately CL. Comments and modifications were gathered and included by CGB. When a stable version 

of the article was finalized, it was submitted to JMIR. The peer review requested some modifications. 

CGB included them and the article was resubmitted and accepted for publication.  

7.1.3.2. Article 4: Mining of Textual Health Information from Reddit: Analysis of Chronic Diseases with 

Extracted Entities and their Relations 

The research and writing of this article was performed by three researchers collaborating equally. 

Tatsawan Timakum (TT) from the Yonsei University helped in the tuning of the NLP tool, VF focused on 

the processing of the data and CGB on the dictionary creation and the evaluation. A draft of the article 

was written conjointly, TT writing the description of the tool, VF the method and results and CGB the 

discussion. Then feedback was gathered from the two Professors CL and Min Song from the Yonsei 

University. The feedbacks were included by the three authors and the article was submitted to JMIR. 

After a round of revisions, the article was accepted for publication.   

7.1.3.3. Conference article 1: Automatic Annotation of French Medical Narratives with SNOMED CT 

Concepts 

An evaluation of the annotation was performed by CGB by manually annotating free text with SNOMED 

CT concepts and comparing with the output of the tool on the same documents. Precision, recall and 

F-score were then computed. CGB wrote the first version of the article that was then reviewed by CL, 

EW and VF. The feedbacks were added to the manuscript and it was submitted, revised and presented 

by CGB at the Medical Informatics Europe Conference 2018 in Gothenburg.  

7.1.3.4. Conference article 2: Reconnaissance et représentation automatiques de concepts médicaux 

français en SNOMED CT 

This work on the automatic recognition and representation of SNOMED CT concepts and the evaluation 

of the automatic post-coordination was accomplished by the author of this thesis. The article written 

by the author of this thesis was then reviewed by CL, EW and VF. Feedbacks were included by CGB and 
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the article was submitted and presented by CGB during “TALMED 2019: Symposium satellite 

francophone sur le traitement automatique des langues dans le domaine biomédical” [231]. This 

symposium took place during MEDINFO 2019 in Lyon.  

7.1.4. Other publications made during the thesis period 
The results presented in this dissertation are a relevant subset of multiple years of work. However, 

multiple other publications have been made by the author during this time, around the same thematic, 

without strictly entering the scope of this thesis. They are listed and briefly summarized in the following 

section.  

7.1.4.1. Vishnyakova D, Gaudet-Blavignac C, Baumann P, Lovis C. Clinical Data Models at University 

Hospitals of Geneva. Stud Health Technol Inform. 2016;221:97-101.  

This work is a brief report evaluating the advantages and disadvantages of different data models 

commonly used in healthcare. It was based on existing projects: the Swiss Transplant Cohort Study for 

which CGB was in charge of the IT during five years [232], the European FP7 DebugIT project [233] and 

the EHR4CR project [234]. The comparison shows that the described data models are strongly 

dependent on the objectives of the projects which underscores again the observation made about the 

non-neutrality of data models. 

7.1.4.2. Walpoth BH, Meyer M, Gaudet-Blavignac C, Baumann P, Gilquin P, Lovis C. The International 

Hypothermia Registry (IHR): Dieter's ESAO Winter Schools and Beat's International Hypothermia 

Registry. Int J Artif Organs. 2017 Jan 1;40(1):40-42 

In the frame of his work in the SIMED, CGB piloted the IT maintenance of five web-applications used 

for national and international cohort projects. The International Hypothermia Registry was one of 

them. This application allowed the gathering of clinical data about hypothermia patients by multiple 

centers around the globe through specifically designed forms. This publication reports on the creation 

of this registry. 

7.1.4.3. Foufi V, Gaudet-Blavignac C, Chevrier R, Lovis C. De-Identification of Medical Narrative Data. 

Stud Health Technol Inform. 2017;244:23-27. 

This publication reports on the development of a rule-based method for the de-identification of French 

medical narratives. The work on de-identification of natural language is an ongoing project in the 

SIMED. When starting to work on the automatic French to SNOMED CT translation tool, the need for 

a solution to de-identify documents became obvious. A set of finite state automata was developed by 

VF and CGB to process documents and remove personal health information. An evaluation on 20 

random discharge summaries showed a 0.98 total recall and 1.0 precision. This project is still ongoing 

combining three approaches, knowledge based, rule-based and machine learning based.   

7.1.4.4. Lovis C, Gaudet-Blavignac C, Chevrier R, Robert A, Issom D, Foufi V. BigData, intelligence 

artificielle, blockchain : guide pratique [Bigdata, artificial intelligence and blockchain for dummies]. Rev 

Med Suisse. 2018 Sep 5;14(617):1559-1563. French. PMID: 30226672. 

This publication was a collective effort in the SIMED to propose a simple introduction to common 

subjects in the field of medical informatics such as NLP, artificial intelligence, and graph databases.  

7.1.4.5. Chevrier R, Foufi V, Gaudet-Blavignac C, Robert A, Lovis C. Use and Understanding of 

Anonymization and De-Identification in the Biomedical Literature: Scoping Review. J Med Internet Res. 

2019 May 31;21(5):e13484.  

Along with the work on de-identification of French medical narratives, a scoping review was conducted 

to explore the understanding of the concepts of anonymization and de-identification in healthcare. 

This review was mainly conducted by Raphaël Chevrier, in close collaboration with the rest of the team. 
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This review concluded that there was a need for clearer definitions as well as for better education and 

dissemination of information on the subject.  

7.1.4.6. Rochat J, Gaudet-Blavignac C, Del Zotto M, Ruiz Garretas V, Foufi V, Issom D, Samer C, Hurst S, 

Lovis C. Citizens' Participation in Health and Scientific Research in Switzerland. Stud Health Technol 

Inform. 2020 Jun 16;270:1098-1102.  

This work reports on a survey conducted by the SIMED team named Evalab. This team is dedicated to 

human factors, man-machine interactions and user-centered design. In this frame, a survey about the 

factors motivating Swiss citizens to participate to research was made highlighting the lack of 

opportunity as the main factor blocking participation.  

7.1.4.7. Foufi V, Ing Lorenzini K, Goldman JP, Gaudet-Blavignac C, Lovis C, Samer C. Automatic 

Classification of Discharge Letters to Detect Adverse Drug Reactions. Stud Health Technol Inform. 2020 

Jun 16;270:48-52.  

One of the applications of the multiple tools developed in the SIMED for processing clinical documents 

is the detection of adverse drug events. Using manual annotations of discharge letters and three 

different machine learning based classification methods, we managed to obtain an F1 score of 0.95 on 

classifying letters containing an adverse drug event and 0.91 on letters without adverse drug event.  

7.1.4.8. Turbé H, Bjelogrlic M, Robert A, Gaudet-Blavignac C, Goldman JP, Lovis C. Adaptive Time-

Dependent Priors and Bayesian Inference to Evaluate SARS-CoV-2 Public Health Measures Validated on 

31 Countries. Front Public Health. 2021 Jan 21;8:583401.  

This work is a direct product of the effort made by the SIMED to support the HUG during the first wave 

of the pandemic. With a new rapidly evolving situation, it became crucial to be able to foresee the 

impact of health measures on the reproduction number of the epidemic. This method estimates the 

reproduction number using Bayesian inference with time-dependent priors enhancing previous 

approaches by considering a dynamic prior continuously updated as restrictive measures and 

comportments within the society evolve. The main work was accomplished by Hugues Turbé, helped 

by the rest of the team in gathering, annotating and analyzing the data. 
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7.2. Publication manuscripts 

7.2.1. Article 1 
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8. Conclusions and perspectives 
Throughout this work, a new approach for the semantic interoperability of clinical data built around 

three main hypotheses was developed and evaluated. 

8.1. An interlingua for clinical data 
The first part of this work focused on solving the common barriers encountered when trying to 

implement nationwide interoperability for structured data. To overcome the constraints that result 

from the choice of a single standard, data model or controlled vocabulary, we propose to use a 

compositional approach centered around semantics, with the usage of SNOMED CT primarily and other 

relevant controlled vocabularies when necessary. Hence the creation of a set of SNOMED CT encoded 

variables that can be reused, combined and linked to as many other controlled vocabularies as needed. 

Doing so, the semantics of the data is ensured and additional variables or controlled vocabulary 

bindings can be added to fit new use cases. This approach, while raising several challenges such as the 

choice of the correct granularity for the variables, solves the issue of the multiplicity of controlled 

vocabularies in healthcare. Moreover, it allows the usage of a descriptive formalism to store the data 

instead of enforcing a data model. This choice is radical in the sense that it does not answer the usual 

question of the storage and transfer of the data by providing a constraining definition of a container 

which would hold the data, but by defining a language that will be used to describe it. It brings the 

possibility of purpose-specific conversions into data models. The ETL procedures only need to be 

created from the formalism chosen to each data model, rather than from each data model to every 

other one.  

The SPHN initiative and its three-pillars strategy provided a real-life implementation of this approach. 

By being successfully adopted by all university hospitals and polytechnical schools in Switzerland, it 

brought unprecedented possibilities such as the creation of a meta catalog of the variables used by 

multiple projects across multiple institutions, a follow-up of the compliance of each center with the 

strategy along with the amount of data shared and used. In the long run, it will leverage the capacity 

of Switzerland to reuse healthcare data further in secondary or tertiary applications. Its wide adoption 

lays the foundations for the creation of FAIR (findable, accessible, interoperable, reusable) data 

endpoints which could replace legacy data warehousing solutions based on relational data models, 

thus facilitating multicenter research for precision medicine in Switzerland.  

Additionally, the work accomplished in this first part had multiple other outcomes. Firstly, it drew the 

attention of large institutions in Switzerland to the importance of semantics by shifting the 

interoperability debate from “choosing a standard and enforcing it” to “encoding the semantics of the 

data, then describing it for storage and transfer”. Indeed, while SNOMED CT is recommended by 

ehealth Suisse at the national level (226), the knowledge of this terminology was limited in the SPHN 

realm and this strategy helped to disseminate the idea that semantics were crucial for interoperability 

and that SNOMED CT was among the best candidates to address the issue.  

Secondly, it influenced multiple projects in the SIMED and in the HUG. As an example, as the covid-19 

pandemic hit the world, the activity of the SIMED was shut down entirely and redirected to support 

the effort of the HUG to fight the growing number of hospitalizations and the surging demand for 

resources. Suddenly, the ability to understand clinical data became crucial to evaluate the situation 

and predict its evolution. To give an overview of the situation and produce predictions, the SIMED 

team applied methods directly inherited of the three-pillars strategy, mapping the raw data to 

variables encoded in SNOMED CT.  
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Finally, after the first wave of the pandemic, the SIMED was mandated by the Medical Director of the 

HUG to gather covid-19-related data into a single database for research use. This database named 

CovidDB was created by a team managed by CL and CGB and designed to be semantically driven, 

without constraining the data in a specific model but enriching it with SNOMED CT encoding and other 

controlled vocabularies when relevant. This database is available for any research group of the HUG 

for feasibility studies and analysis of covid-19-related data.  

Overall, this first hypothesis was largely confirmed. Firstly, by the success of the SPHN strategy in 

bringing a solution for multi-center, multi-community interoperability, then by the changes it triggered 

at the national, institutional and division level. It is now clear that SNOMED CT, along with a restricted 

set of relevant information representations can act as the universal semantic bridge for clinical data 

that we called interlingua. 

8.2. A restricted set of useful concepts 
The second part of this thesis assumed that while the proposed interlingua allowed a near limitless 

expressivity, only a small subset of those expressions was useful in practice. Therefore, it should be 

possible to target them, reducing the set of relevant concepts and semantic dimensions to a useful and 

manageable size. 

The problems list created in the SIMED and deployed in production in 2017 was a perfect use case to 

test this hypothesis. Limiting the list to expressions found in clinical documents and further refining it 

according to its usage in the hospital allowed us to converge to a list of 20,120 expressions, encoded 

in SNOMED CT and multiple other semantic dimensions, that were all used at least once by a clinician 

or in a project and for which every semantic dimension was used for at least one secondary goal.  

The results presented in Article 2 show that this approach was able to bring interoperability to this 

specific type of data without constraining clinicians to use a controlled vocabulary that does not fit 

their expectations but keeping only useful expressions. The common list allowed multiple projects that 

would not have been possible otherwise, creating a virtuous circle in which the more projects used the 

list and added value to it by proposing new semantic dimensions, the easier it was to use it for new 

purposes since the information graph created by the expressions and their metadata were rich.  

Currently, there are two axes of evolution for this project. Firstly, the common list will continue to 

grow with each deployment, with new expressions and semantic dimensions. Secondly, the approach 

taken to build the list could be applied to other use cases beyond the patients’ problems where 

information is commonly entered as short sections of free text in order to broaden the semantic 

interoperability of clinical data.  

Overall, this second part confirms the second hypothesis and completes the approach described in the 

first part by showing that the expressivity of medical natural language can be reduced to a manageable 

set of useful semantically enriched expressions. Additionally, this project allowed to bridge the gap 

between clinicians’ language and controlled vocabularies by only proposing expressions used in 

practice, releasing the clinicians from the task of encoding the information.  

8.3. An automatic interlingua translation for clinical narratives 
Finally, the last contribution of this thesis, detailed in the third article along with the two conference 

articles, focused on medical narratives, a type of data notoriously challenging for semantic 

interoperability. The hypothesis that representing the meaning of natural language in a machine-

readable format could be framed as an automatic translation challenge needed multiple steps to be 

confirmed.   
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The first observation drawn from the scoping review was that if SNOMED CT had been widely used to 

process clinical free text, it was, in most cases, without using its advanced features. Indeed, it seems 

that post-coordinating concepts to better represent free text was seldom if ever attempted and never 

framing it as a translation task. This first step confirmed that the approach was innovative.  

Exploratory experiments such as extracting SNOMED CT concepts from social media content, 

translating SNOMED CT concepts in French and German and manually translating French medical text 

into post-coordinated SNOMED CT sentences were essential steps to build knowledge of SNOMED CT 

and the translation task. This work gave sufficient insights to start the adaptation of an existing 

syntactico-semantic parser in the aim of creating an French-SNOMED CT automatic translator. The 

parser being largely rule-based with elements of statistical approach, it was in accordance with the 

results of the review. While the evaluation of post-coordination with conventional f-score metrics was 

not performed, the results in Conference Article 1 and 2 were promising with an f-score of 0.61 on the 

annotation of single concepts and a precision of 0.71 on the post-coordination with three defined 

SNOMED CT relationships. However, the complexity of converting SNOMED CT description model rules 

into French syntactic rules and implementing them in a large legacy codebase added to the fact that 

this tool was not finally applied on large corpora. Finally, the fact that the tool’s code is not open source 

hinders necessary modifications and possible future updates from the end users. Therefore, a more 

sustainable in the long term tool is being considered. 

This third part proved that approaching the problem of narrative clinical data as an automatic 

translation task into the interlingua could yield encouraging results. It highlighted key issues in the 

structure and semantic content of SNOMED CT and gave insights on how to resolve them. This work 

will be instrumental to multiple future projects at HUG and beyond. First, on the automatic translation 

task, the knowledge gathered during the parser adaptation will be extracted and transferred to a new 

NLP system to create a more robust solution for automatic SNOMED CT translation. Secondly, the 

experience gathered translating SNOMED CT in French and French into SNOMED CT is directly used in 

the frame of the official French translation group of SNOMED International of which the author of this 

thesis is an active member. This group recently released a new version of the common French 

translation as well as validated guidelines (238).  

This work confirmed the last hypothesis and lays the ground for new progress in the semantic 

representation of clinical narratives.  

8.4. General conclusions 
The work presented in this thesis is the result of six years of work in a stimulating environment at the 

crossroads between healthcare, computer sciences and semantics. This uniquely interdisciplinary 

setting allowed the development and validation of a multi-dimensional approach to bring semantic 

interoperability to clinical data.  

This approach emphasizes the challenges of bringing interoperability in a domain which covers 

multiple communities, types of data, standards and information systems. It confirms that no single 

solution exists and that targeted, semantically-centered approaches are necessary. From large national 

frameworks to very specific documents written in any natural language, interoperability must 

penetrate every layer of healthcare. The proposed solution is based firstly on strong semantics, by 

using compositional controlled vocabularies to create a computer readable interlingua without 

enforcing a data model, it then restricts the representation complexity to a useful set of concepts 

encountered in practice and finally exploits the compositional capabilities of the interlingua to 

represent complex narrative data by translating natural language in post-coordinated SNOMED CT 

sentences.  
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This approach defines a new, semantically interoperable landscape for clinical data that could leverage 

new opportunities proposed by the growth of personalized medicine and, in the long run, improve 

global interoperability. 
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9. Abbreviations 
ADaM Analysis Data Model 

ADL Archetype Definition Language 

API Application Programming Interface 

BRIDG Biomedical Research Integrated Domain Group 

CDA Clinical Document Architecture 

CDISC Clinical Data Interchange Standards Consortium 

CDISC ODM CDISC Operational Data Model 

CEMs Clinical Element Models 

CHOP Classification Suisse des interventions chirurgicales 

CKM Clinical Knowledge Manager 

CRF Case Report Form 

CSI Clinical Semantic Interoperability working group 

CTV3 Clinical Terms Version 3 

DCC Data Coordination Center 

DICOM Digital Imaging and Communications in Medicine 

DRG Diagnoses Related Groups 

EHR Electronic Health Record 

ETL Extract, Transform and Load 

FAIR Findable, Accessible, Interoperable, Reusable 

FHIR Fast Healthcare Interoperability Resource 

GATE General Architecture for Text Engineering 

GCS Glasgow Coma Scale 

HADES Health Analytics Data-to-Evidence Suite 

HIMSS Healthcare Information and Management Systems Society 

HITECH Health Information Technology for Economic and Clinical Health 

HITEx Health Information Text Extraction 

HL7 Health Level 7 

HL7 v1 HL7 version 1 

HL7 v2 HL7 version 2 

HL7 v3 HL7 version 3 

HTTP Hypertext Transfer Protocol 

HUG University Hospital of Geneva 

ICD International Statistical Classification of Diseases and Related Health Problems  

ICD-10 International Statistical Classification of Diseases and Related Health Problems 
tenth revision 

ICD-10 AM International Statistical Classification of Diseases and Related Health Problems 
tenth revision, Australian Modification 

ICD-10 CM International Statistical Classification of Diseases and Related Health Problems 
tenth revision, Clinical Modification 

ICD-10 GM International Statistical Classification of Diseases and Related Health Problems 
tenth revision, German Modification 

ICD-11 International Statistical Classification of Diseases and Related Health Problems 
eleventh revision 

ICD-9 International Statistical Classification of Diseases and Related Health Problems 
ninth revision 

ICD-9 CM International Statistical Classification of Diseases and Related Health Problems 
ninth revision, Clinical Modification 

ICD-O-3 International Classification of Diseases for Oncology, 3rd edition 
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IEEE Institute of Electrical and Electronics Engineers 

IHE Integrating the Healthcare Enterprise 

ISO International Organization for Standardization 

JMIR Journal of Medical Internet Research 

LOINC Logical Observation Identifiers, Names, and Codes 

MedDRA Medical Dictionary for Regulatory Activities 

NCI National Cancer Institute 

NHS National Health Service 

NLP Natural Language Processing 

OHDSI Observational Health Data Sciences and Informatics 

OMOP Observational Medical Outcomes Partnership 

OMOP CDM OMOP Common Data Model 

ONC Office of the National Coordinator for Health Information Technology 

OSI Open Systems Interconnection 

PACS Picture Archiving and Communication Systems 

PITAC President’s Information Technology Advisory Committee 

RDF Resource Description Framework 

RIM Reference Information Model 

SDG Sustainable Development Goals 

SHARPn Strategic Health IT Advanced Research Projects consortium 

SIMED Division of Medical information Sciences 

SMART Substitutable Medical Applications and Reusable Technologies 

SNOMED Systematized Nomenclature of Medicine 

SNOMED CT Systematized Nomenclature of Medicine Clinical Terms 

SNOMED RT Systematized Nomenclature of Medicine Reference Terminology 

SNOP Systematized Nomenclature of Pathology 

SPHN Swiss Personalized Health Network 

UIMA Unstructured Information Management Architecture 

UMLS Unified Medical Language System 

WHO World Health Organization 
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