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Abstract

The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2
(cPLA2a) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane
phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1
expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the
abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of
eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2a. We first analyzed by plasmon
surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1
domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent
resistant membranes (DRM) induced by TNF-a. This was concomitant with increased IL-8 synthesis and cPLA2a activation,
ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-b-cyclodextrin induced
further cPLA2a activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short
exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production.
Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-a-induced relocalization to DRM.
These results show that (i) CFTR may form a complex with cPLA2a and ANXA1 via interaction with p11, (ii) CFTR inhibition
and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may
participate in the modulation of the TNF-a-induced production of eicosanoids, pointing to the importance of membrane
composition and CFTR function in the regulation of inflammation mediator synthesis.
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Introduction

Among the multisystemic clinical manifestations of cystic

fibrosis (CF), an abnormal inflammatory condition at the airways

represents one of the most prominent morbidity factors [1–3],

resulting in bronchiectasis and respiratory insufficiency. The origin

and nature of this response embodies a controversial subject. On

the one side, many authors consider it secondary to recurrent

infections and airway colonization by opportunistic pathogens

[4–6]. On the other side, a growing body of evidence indicates that

inflammation and infection in CF can be dissociated, and that a

basal inflammatory status preexists to pathogen infections [7–9].

Reduced macrophage phagosome acidification related to defective

Cl2 conduction has been reported as a potential cause of recurrent

infections associated with chronic inflammation in CF [10],

although this point has recently been contested [11]. It has also

been suggested that increased inflammation and Pseudomonas

aeruginosa colonization in CF could be secondary to intestinal

malnutrition and decreased production of the anti-inflammatory

cytokine IL-10 [12]. Conversely, there is evidence that proin-

flammatory cytokines can regulate CFTR expression [13,14].

The expression of annexin-A1 (ANXA1) is strongly diminished

in nasal cells from CF patients bearing codon stop and different

non-sense mutations, including F508del –the most frequent [15]-,

as well as in lung, intestine, and pancreas of CFTR knockout-mice

([15,16] and unpublished observations). ANXA1 has been long

known to be related to the regulation of inflammation, in

particular by inhibition of the cytosolic phospholipase A2a
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(cPLA2), a member of the IV-A group of phospholipases A2

[17,18]. Since cPLA2a releases the acyl chain at the sn-2 position

of phospholipids leading to a subsequent synthesis of eicosanoids,

the observed decrease in the expression of ANXA1 has been

suggested to be at the start point of this cascade [16,19]. The

latter constitutes a key pathway in the onset and regulation of

proinflammatory responses, including those altered in CF, as some

studies have reported increased levels of eicosanoids in broncho-

alveolar fluid from CF patients [20] and in the supernatant of

epithelial cells expressing the F508del mutation of CFTR [21].

The molecular nature of cPLA2a inhibition is not precisely

known. At least two proteins are candidates for regulation of this

activity: the already mentioned ANXA1 and the adaptor protein

S100A10 (p11), which forms a complex with another member of

the annexin family, ANXA2, and coimmunoprecipitates with

CFTR [22]. Moreover, annexins present a sequence homology

with 30 aminoacids of the NBD1 domain of CFTR [23] including

F508, suggesting that annexins and NBD1 may bind the same

partners. p11 has been found to interact in vitro with cPLA2a and

to inhibit its activity in both Beas 2B and MDCK cells [24,25].

The inhibitory effect of ANXA1, initially suggested to respond to

an enzyme inhibition-like process, was attributed to direct binding

to phospholipids, which would prevent access of cPLA2a to its

substrate [26]. Nevertheless, the high concentrations of Ca2+

required for inhibition suggested that the inhibitory mechanism

of cPLA2a is other than a substrate-depletion phenomenon

[27]. A recent work suggests a blockage by ANXA1 of cPLA2a
translocation to the membrane as the putative mechanism of

inhibition [28], most likely by direct specific binding to the cPLA2a-

C2 domain [29].

cPLA2a activity can also be regulated by modulation of

sphingolipids and cholesterol in CHO-2B cells [30]. This obser-

vation raises the potential role of detergent resistant membrane

microdomains (DRM or lipid rafts) in the signaling of some

innate immunity and inflammatory processes [31,32]. The

involvement of membrane microdomains in cPLA2a proin-

flammatory activity inflammation in the context of CF has never

been questioned. It has recently been demonstrated a differential

distribution of CFTR within membrane microdomains in

CFTR-transfected MDCK cells [33,34]. In basal conditions,

mature CFTR is mostly present in detergent soluble fractions

(non-DRM, non-rafts), with a minor proportion present in

detergent-insoluble microdomains (DRM, rafts). Conversely,

upon pathogen infection normal CFTR, unlike the mutated

protein, redistributes into DRMs triggering defense reactions

against the pathogen, including uptake and apoptosis of host cell

[34]. This is consistent with earlier reports indicating that the

response to pathogens would be associated with the presence of

CFTR in a ceramide-rich environment [35]. Recently, Dudez et

al, have demonstrated that wild-type CFTR, but not a truncated

form lacking the C-terminal region, is recruited along with

TNFR1 in DRM in response to TNF-a in MDCK transfected

cells [36]. This would ultimately lead, via NF-kB activation, to

the production of IL-8 [36]. In a recent report, it is claimed that

CFTR localization in DRM of CFTR-transfected cells is key in

limiting the activity of NF-kB and the synthesis of IL-8 [37].

However, the impact of the association of CFTR with DRM on

the regulation of the eicosanoid signalling pathway has never

been investigated. In this study we analyzed and confirmed

the DRM association of CFTR, ANXA1, cPLA2a and p11

under proinflammatory conditions as well as the importance of

membrane integrity in the synthesis and release of AA-derived

eicosanoids, in an endogenous CFTR-expressing airway cell

line.

Methods

Cell culture and treatments
Calu-3 cells (a human respiratory epithelial gland cell line from

ATCC) were grown in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% foetal bovine serum at 37uC,

and a 5% CO2 atmosphere as described previously [38]. In all

experiments cells were grown to 80% confluence. For specific

treatments, all chemicals were from Sigma except where indicated

otherwise. To inhibit CFTR function, cells were maintained in

serum-free medium for 24 hours and incubated with either 20 mM

Inh172 or 20 mM Gly-101 (Calbiochem, La Jolla, CA). To stimulate

the inflammatory response, cells were maintained in serum-free

medium for 24 hours and incubated with TNF-a (100 U/mL,

Alexis Biochemicals, Lausen, Switzerland) at different times. In

order to disrupt DRM by depletion of membrane cholesterol, cells

were preincubated for 24 h in serum-free DMEM followed by 1 h

in the presence of 10 mM methyl-b-cyclodextrin (mbCD) at 37uC.

The analogue aCD was used in the same conditions as mbCD. To

inhibit cholesterol synthesis, cells were incubated for 48 h in the

presence of 10 mM mevastatin. To inhibit sphingolipid synthesis,

cells were incubated for 24 h with 20 mM fumonisin. Short

incubations (10 min) with 10 or 50 mM exogenous arachidonic

acid (AA) and 1-palmitoyl-sn-lysophosphatidylcholine (LPC) were

performed in the presence of 0.2% (v/v) fatty acid-free bovine

serum albumin. To inhibit cPLA2a activity cells were incubated

with 15 mM N-{(2S, 4R)-4-(Biphenyl-2-ylmethyl-isobutyl-amino)-1-

[2-(2, 4-difluorobenzoyl)-benzoyl]-pyrrolidin-2-ylmethyl}-3-[4-(2,

4-dioxothiazolidin-5-ylidenemethyl)-phenyl] acrylamide (pyrrol-

idine or PYR) (Calbiochem, San Diego, CA) for 45 min.

Protein purification and preparation
Purified mouse NBD1 was generously provided by Dr. Philip

Thomas (Southwestern University, Dallas, TX). Purification was

performed as follows. A 70 mL inoculum of BL21-DE3 cells

containing the SMT-3 fusion in the pET 28 expression system was

grown overnight in LB medium at 37uC with kanamycin (50 ug/

mL working concentration) present. Cells were induced with

0.179 g of IPTG, cooled to 15uC overnight, then harvested and

pelleted at 4000 RPM at 4uC for 30 minutes. Each pellet was

resuspended in 15 mL of lysis buffer (50 mM Tris, 100 mM L-

Arginine, 50 mM NaCl, 5 mM MgCl2 hexahydrate, 12.5%

Glycerol, 0.25 IGEPAL CA630, 2 mM 2-Mercaptoethanol,

2 mM ATP, pH 7.6). Suspensions were combined into 50 mL

conical vials and lysed by sonication after adding lysozyme and

incubating on ice for 30 minutes. The lysate was centrifuged at

40,000 g for 45 minutes to separate the soluble and insoluble

fractions, and loaded into a pre-equilibrated 5 mL bed of Ni

Sepharose 6 Fast Flow resin (GE Amersham). The column was

equilibrated with 5 column volumes (CV) of Loading Buffer.

During this step the elution tubes were prepared with 2 mM ATP

and 2 mM 2-mercapto ethanol. The sample was loaded and

bound to the column, and washed with 5 CV of washing buffer

(20 mM Tris, 500 mM NaCl, 60 mM Imidazole, 12.5% Glycerol,

pH 7.6). The sample was eluted in 5 CV of elution buffer (20 mM

Tris, 250 mM NaCl, 400 mM Imidazole, 12.5% Glycerol,

pH 7.6). Samples were taken for SDS PAGE analysis, and pooled

together for concentration in a Beckman Coulter Allegra 6R

centrifuge with a swinging bucket rotor, using the Amicon Ultra

15 30,000 MWCO centrifugal filters (Millipore). The protein was

concentrated using 10-minute spins at 4000 rpm at 4uC. The

SMT-3 fusion was cleaved off of NBD1 by using a 1:1000 dilution

of ubiquitin-like protease on ice for 1 hour. The protein was

filtered using a Nalgene 0.22-micron syringe filter and injected
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onto a Hi Load 16/60 Superdex S200 prep grade gel filtration

column (GE Amersham), and ran in S200 buffer (50 mM Tris,

150 mM NaCl, 5 mM MgCl2 hexahydrate, 2 mM ATP, 2 mM 2-

mercapto ethanol, 12.5% glycerol, pH 7.6). The void volume

fractions were rejected and the protein was loaded back onto the

Ni Affinity column to remove the his-tagged SMT-3. The flow

through was collected and concentrated in the same manner as

before, except in a 10,000 MWCO Amicon Ultra 15 (Millipore).

The protein was filtered again and injected onto the Superdex gel

filtration column for buffer exchange. The flow through was

collected and analyzed in a 10% SDS polyacrylamide gel to check

for purity The sample was prepared by making a dilution of

protein in S200 buffer into phosphate buffer (20 mM Na2PO4,

150 mM NaCl, 12.5%, Glycerol, 1 mM DTT pH 7.4) to give a

5 mM final concentration.

Purification of p11 protein was performed as previously published

[39]. The p11 expression vector derived from pET-23a was kindly

provided by Dr. Volker Gerke (Münster, Germany). Briefly, B834

(DE3) Escherichia coli cells were cultured in LB medium containing

100 mg/mL of ampicilin at an optical density of 0.6, measured at

600 nm, and then expression of p11 was induced by addition of

1 mM IPTG for 4 h at 37uC. Cells were pelleted and resuspended in

lysis buffer (100 mM Tris pH 7.5, 200 mM NaCl, 10 mM MgCl2,

2 mM DTT) with protease inhibitors. Then they were lysed by

sonication. After centrifugation for 15 min at 10 000 rpm in a SS34

Sorvall rotor, the supernatant was precipitated by (NH4)2SO4 at 50%

saturation. The mixture was centrifuged at 15 000 rpm for 20 min,

and the supernatant was applied onto a Butyl-Sepharose column

equilibrated with the same buffer. p11 was eluted by a linear gradient

of (NH4)2SO4 from 50% to 0% and recovered in the last fractions.

After dialysis against 10 mM imidazole, pH 7.4, 1 mM EGTA,

0.1 mM EDTA, and 1 mM DTT buffer, the protein was applied onto

a DEAE cellulose column equilibrated in the same buffer. The flow

through containing p11 was dialyzed against PBS containing 1 mM

DTT and concentrated with Centricon 3 (Amicon), and stored at

220uC in aliquots. At the end of purification, the p11 protein was

more than 98% pure as judged by SDS2PAGE.

Purified human cPLA2a were generously provided by Dr.

Michael H Gelb (University of Washington). Bovine ANXA1 was

purchased from GenWay (San Diego, CA).

Surface Plasmon Resonance (SPR)
Protein-protein interactions were studied in real time using a SPR

Biacore 2000 system and CM5 sensor chips (Biacore AB, Uppsala,

Sweden). NBD1 was covalently immobilized via primary amino

groups onto the sensor chip surface as follows; the carboxymethy-

lated dextran matrix was activated with 35 ml of EDC/NHS (1/1)

mixture, 10 ml of NBD1 at a concentration of 50 mg/ml in 10 mM

sodium acetate, pH 5.0, was injected and unreacted groups were

blocked with 35 ml of ethanolamine (pH 8.5). A separate flow

channel on the same sensor chip, reserved for control runs, was

subjected to a blank immobilization by preparing it in the same way

but without NBD1. The running and dilution buffer had the

following composition: 50 mM Tris, 150 mM NaCl, 5 mM MgCl2
(pH 7.6), 0.005% P20, 1 mM DTT and 0.1 mM CaCl2. The

interaction between either p11, ANXA1 or cPLA2/ANXA1

complex and the immobilized NBD1 was monitored by injecting

different concentrations (30 mg/ml, 121 mg/ml and 243 mg/ml) of

the mentioned purified proteins at 25uC with a flow rate of 30 ml/

min, and following the refractive index changes at the sensor

surface. The subsequent dissociation phase was followed after each

association run by injecting the running buffer alone. In between

injections, surfaces were regenerated by three washes with 20 ml of

5 mM NaOH followed by two washes with 20 ml of 1 M NaCl. For

all SPR measurements, the recombinant domain was dialysed in the

buffer with the desired NaCl concentration and pH, and centrifuged

immediately before the runs to minimize possible effects from non-

specific aggregation. All association and dissociation curves were

corrected for non-specific binding by subtraction of control curves

obtained from injection of the different analyte concentrations

through the blank flow channel. The kinetic constants, kon and koff,

were calculated using the Biacore BIAEVALUATION 3.1 soft-

ware (Biacore AB) assuming a simple two-component model of

interaction. Experiments were performed 3 times.

Preparation of membrane microdomains
The method was based on a previously described procedure [36].

Cells were cultured in 75 cm2 flasks, washed with ice cold PBS and

scraped to obtain a cell pellet. Cell pellets were then lysed in 400 mL

of ice-cold TEN buffer (25 mM Tris-HCl, 1 mM EDTA, 150 mM

NaCl supplemented with 2 phosphatase inhibitors (1 mM NaVO4

and 1 mM NaF), and 1 tablet/10 mL of Complete-Mini protease

inhibitor mixture (Roche Diagnostics), containing 1% Triton-X100,

at 4uC for 20 min with agitation. Cell lysates were passed 10 times

through a 21-gauge needle, and 400 ml of lysate were mixed with

800 ml of a 60% OptiPrep solution (Axis-Shield, Oslo, Norway)

(40% final concentration). A three-step discontinuous OptiPrep

gradient was prepared by layering 1.5 ml of 30% OptiPrep in

detergent free lysis buffer and 500 ml of 5% OptiPrep on top.

Gradients were centrifuged at 55,000 rpm for 2 h at 4uC in a

Beckman XL-70 ultracentrifuge, using a swinging 55-Ti rotor. The

top 1.2 ml were recovered and marked as DRM, as these reach

their isopycnic point at the interphase 5/30% OptiPrep. The

remaining 2 ml were collected and marked as non-DRM. Gradient

fractions were subjected to protein concentration analysis by the DC

method (Bio-Rad, Hercules, CA).

Immunoblotting detection
An aliquot of each gradient fraction or pool was mixed with 1

volume of 5x Laemmli buffer. Samples were processed as

previously described [40]. Briefly, they were heated at 37uC for

15 min, resolved by 8% SDS-PAGE, transferred onto PVDF

membranes and blocked for 1 h with 5% non-fat milk diluted in

TBS/Tween (0.1%). Blot membranes were hybridized using the

following primary antibodies: monoclonal anti-CFTR 24.1

(1:1000) (R&D Systems, Lille, France), monoclonal anti-CFTR

MM13-4 (1:1000) (Upstate Biotechnology, Guyancourt, France),

monoclonal anti-CFTR M3A7 (1:1000) (Abcam, Cambridge,

UK), polyclonal anti-ANXA1 (1:10000) (Zymed, San Francisco,

USA), polyclonal anti-cPLA2a (1:1000) (Santa-Cruz, Heidelberg,

Germany), monoclonal anti-S100A10 (1:5000) (BD Transduction,

Erembodegem, Belgium), polyclonal anti-Caveolin-1 (1:500)

(Santa Cruz), monoclonal anti-Flotillin1 (1:1000) (BD Transduc-

tion) and monoclonal anti-transferrin receptor (Zymed, 1:1000).

CFTR was detected by a horseradish peroxidase-coupled

secondary antibody (AbCys, Paris, France) and incubation with

the ECL-Plus solution (Amersham, Little Chalfont, UK). The rest

of proteins were visualized by incubation with IRdye-coupled

secondary antibodies and analysis by Odissey infrared imager (LI-

COR Biosciences, Cambridge, UK). Densitometric quantification

of bands corresponding was performed by the Quantity One

software (Bio-Rad).

cPLA2a activity
cPLA2a activity was estimated as the release of AA based on a

method described elsewhere [41], cells were incubated for 18 h at

37uC with 0.5 mCi/mL [3H]-AA (Amersham) in DMEM contain-

ing foetal calf serum. Cells were then washed twice with PBS

Eicosanoids, Membrane and CFTR
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containing 0.2% fatty acid free BSA. Cells were subjected to the

different treatments. At the end of incubation, cell supernatants

were harvested and centrifuged at 10,000 g for 3 min at room

temperature to eliminate cells and debris. The supernatants were

counted for radioactivity by liquid scintillation.

Eicosanoid production
For eicosanoid production assessment, cells were preincubated

for 24 h in serum-free DMEM followed by specific treatments. At

the end of incubation periods, supernatants were collected for

analysis. The presence of PGE2 and LTB4 in supernatants was

quantified using an enzymo-immunoassay analysis kit (Cayman

Chemicals, Ann Harbor, MI). The assay is based on the competition

between PGE2 (respectively LTB4) and PGE2 acetylcholinesterase

conjugate (PGE2-tracer, respectively LTB4-tracer) for a limited

amount of monoclonal PGE2 antibody (respectively LTB4

antibody). Because the concentration of the tracer is held constant

while the concentration of eicosanoid varies, the amount of tracer

that is able to bind to the monoclonal antibody is inversely

proportional to the concentration of eicosanoid in the well. The

eicosanoid-antibody complex binds to a goat polyclonal anti-mouse

IgG that has been previously attached to the well. Then an

acetylcholinesterase substrate (Ellman’s Reagent) is added and the

product of the reaction is read at 412 nm. The intensity is

proportional to the amount of PGE2 (or LTB4). The assays were

carried out according to the manufacturer’s protocol, in triplicate.

Eicosanoid quantification was performed using the software

supplied by the kit manufacturer.

IL-8 production
IL-8 was measured using an ELISA kit (CLB, Amsterdam, The

Netherlands) in supernatants of Calu-3 cell cultures collected 3-

hours following or not a 10 min pre-treatment with 100 U/ml

TNF-a. Only assays having standard curves with a calculated

regression line value .0.95 were accepted for analysis.

Iodide efflux test
To assess CFTR Cl2 channel activity, iodide efflux was

measured. from Calu-3 cells treated either with 10 mM forskolin

plus 50 mM genistein or 20 mM CFTR Inh172, according to the

protocol described by Hughes et al. [42]. Briefly, Calu-3 cells were

cultured in 60 mm dishes until reaching 80–90% confluence. Cells

were washed five times with 4 ml of loading buffer (136 mM NaI,

3 mM KNO3, 2 mM Ca(NO3)2, 20 mM Hepes, 11 mM glucose,

pH 7,4) and incubated with this buffer for one hour at room

temperature. Cells were gently washed fifteen times by adding

4 ml of efflux buffer (136 mM NaNO3, 3 mM KNO3, 2 mM

Ca(NO3)2, 20 mM Hepes, 11 mM glucose, pH 7,4). Then, cells

were incubated with 4 ml of fresh efflux buffer (drug-free or not)

and at one-minute intervals it was collected and replaced by 4 ml

of fresh efflux buffer, taking care not to expose cells to air. A

iodide-selective electrode (ISE251, Radiometer Analytical SAS,

France) connected to a pH meter (PHM250, Ion Analyzer,

Radiometer Analytical SAS, France) were used to measure the

amount of iodide released by cells at one minute intervals.

Cholesterol and phospholipid analysis
Cholesterol and phospholipid content were monitored by thin-

layer chromatography. The lipid-containing organic phase was

obtained from gradient fractions by liquid-liquid extraction with

six volumes of chloroform-methanol (2:1, v/v), centrifuged at

800 g for 3 min, and the resulting lower phase aspirated. For

cholesterol analysis, aliquots of 4 ml of the different samples and

cholesterol standard were applied to HP-K plates (Whatman,

Clifton, NJ), developed in chloroform-acetone (95:5v/v), stained

with the CuSO4 reagent, and developed by charring at 170uC. For

phospholipid analysis, two sequential mobile phases were utilized:

chloroform-triethylamine-ethanol-water (30:30:34:8) and hexane-

diethyl ether (100:4.5). Images were captured by infrared detection

in an Odissey apparatus (LI-COR Biosciences).

Statistical analysis
Data are represented as percent of control values unless stated

differently in the text. In all cases they are expressed as means 6 SEM.

Statistical significance was established by comparing original data by

paired T-test when expressed as percent of control values, or by non-

paired T-test in the other cases. p,0.05 was considered statistically

significant. In all figures asterisks denote p,0.05 with respect to

control, and unless indicated otherwise, n$3.

Results

NBD1 fragment of CFTR interacts in vitro with S100A10
(p11)

Considering that cPLA2a interacts physically with ANXA1 and

p11, we hypothesized that CFTR may be part of a putative

complex including these proteins. Consequently, we aimed to

establish a physical link between CFTR and any of the other

components. In order to search for a direct interaction we

performed SPR tests by immobilization of the NBD1 domain of

CFTR and using the other three proteins as analytes. NBD1

domain was chosen as it possesses a structural homology with

ANXA1 and may compete for the same protein partners, it

contains the F508del mutation and it participates in channel

opening by ATP binding. Our results indicate that only p11 shows

a significant binding to NBD1 (Fig. 1A). Binding was dose-

dependent and already significant at 30 mg/mL of analyte, which

confirms a physical interaction in vitro. The association, dissocia-

tion, and apparent constants were respectively: kon(M21s21) =

(1.460.2)6103; koff(s
21) = (1.160.4)61022; Kd

app = 7.8 mM.

Injection of the cPLA2/ANXA1 complex before dissociation of

p11 showed a significant binding (Fig. 1B), in contrast to the direct

injection of cPLA2/ANXA1 on NBD1 in the absence of p11

(Fig. 1C). The drop in the baseline right after injection of cPLA2/

ANXA1 reflects an artefactual effect of the buffer containing

cPLA2 due to a pH change. Finally, as a negative control, ANXA1

fails to bind to NBD1 (Fig. 1D). These results suggest p11 as the

link between CFTR and the cPLA2/ANXA1 complex.

TNF-a stimulation of Calu-3 cells recruits CFTR complex
in DRM

As we have previously reported on Calu-3 cells, CFTR is mostly

present in detergent soluble cell membrane fractions, but it is

significantly recruited in DRM upon TNF-a stimulation [36]. We

wanted to establish the DRM distribution of ANXA1, cPLA2a
and p11 in basal conditions in this cell line, which expresses

endogenously CFTR. DRM and non-DRM fractions were

characterized by the localization of positive and negative markers

(Fig. 2A). Caveolin-1 was mainly present in DRM, like cholesterol,

sphingomyelin and phosphatidylinositol. Transferrin receptor, a

known negative marker of DRM, was mostly present in non-

DRM, like phosphatidylcholine, phosphatidylethanolamine and

phosphatidylserine (Fig. 2A).

By immunoblotting detection (see Method Section, Immunoblot-

ting detection for details), all four proteins (CFTR, ANXA1, cPLA2a,

and p11) showed an essential distribution in non-DRM in basal

conditions, with a minor but significant fraction localized to DRM

Eicosanoids, Membrane and CFTR
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(Fig. 2B and 2C). Following a short TNF-a stimulation (10 min), a

significant recruitment of all four proteins in DRM was observed.

This was partially prevented by the DRM-destabilizing agent

mbCD (Fig. 2B). As positive and negative controls respectively,

flotillin-1 and the transferrin receptor were not relocalized after

treatment (Fig. 2B). Longer exposure to the stimulus (3 h) did not

change substantially DRM localization (not shown), suggesting

that the observed changes are rapid and independent from

putative transcriptional effects of TNF-a, which are known to

occur after longer stimulation periods [43]. These results indicate

that the four proteins present a similar distribution pattern and

response to TNF-a, and suggest that they may form a functional

complex.

TNF-a induces eicosanoid release
Given the partial recruitment of the protein complex in DRM

under the effect of TNF-a stimulation, we assessed eicosanoid and

cytokine synthesis in the same conditions. Cells were treated with

100 U/mL of TNF-a for 10 min, and the release of PGE2 and

LTB4 to incubation medium for 3 h was estimated. As shown in

Figure 3, both lipid mediators were increased about 3-fold by

TNF-a treatment (Fig. 3A). This effect was prevented by

preincubation of cells with the cPLA2a inhibitor pyrrolidine,

strongly suggesting that TNF-a induces eicosanoid release via

cPLA2a activation. This was confirmed as Calu-3 cells released a

significantly greater amount of radiolabelled arachidonic acid (AA)

after TNF-a treatment than in control conditions, which was

equally prevented by pyrrolidine (Fig. 4). AA release was an early

event, as it was detected 10 min after TNF-a addition to the

medium.

TNF-a has previously been shown to recruit CFTR along with

TNFR1 to DRMs, which may be critical to regulate IL-8 release

[36]. In a separate series of experiments we tested the effect of

TNF-a treatment on IL-8 release in the same conditions as

eicosanoid analysis. IL-8 was increased by more than 3-fold and

prevented by incubation of cells with the cholesterol depleting

agent mbCD (Fig. 5). These results suggest that DRM integrity is

necessary to initiate the signaling events leading to NF-kB

activation and IL-8 synthesis in Calu-3 cells.

DRM destabilization inhibits TNF-a-evoked IL-8
production and induces eicosanoid release

Like TNFR1, cPLA2a activation by TNF-a could be a

consequence of its relocalization to DRM. To address this point,

we examined whether inhibition of cPLA2a recruitment by DRM

destabilization has an impact on cPLA2a activity. For this purpose,

we measured the release of eicosanoids in the medium after mbCD

treatment. As shown in Figure 3, secreted LTB4 and PGE2 levels

were increased by 2-fold after 1 h of mbCD treatment. This effect

was not sustained in time, as the concentration of both eicosanoids

in the culture medium 3 h after mbCD removal was significantly

decreased (‘‘post mbCD removal’’ in Fig. 3). Interestingly,

pyrrolidine inhibited the release of LTB4 under these conditions,

but not that of PGE2 (Fig. 3) suggesting that two different

mechanisms are involved. When cells were treated by both mbCD

and TNF-a, the increase in both eicosanoids was greater than in the

presence of mbCD alone, but not greater than TNF-a alone (Fig. 3).

We evaluated the release of radiolabelled AA in the same

conditions, and observed a significant increase by mbCD and

again a greater release when mbCD and TNF-a were combined

(Fig. 4). This confirms the involvement of cPLA2a activity in mbCD

effect, and suggests different mechanisms of activation by mbCD

and TNF-a. This also indicates that DRM integrity is not necessary

for cPLA2a activation.

Figure 1. The direct interaction between NBD1 and p11 may
connect CFTR to the cPLA2a/ANXA1 complex. A: SPR association
curves of NBD1 and p11 (analyte) at serial concentrations of the latter.
B: SPR association of NBD1 with p11 and cPLA2a/ANXA1 complex. p11
(400 mg/ml) and a preincubated cPLA2a/ANXA1 (100 mg/ml each)
complex were sequentially co-injected as analytes (cPLA2a/ANXA1
was injected before dissociation of p11). C: Negative SPR association of
NBD1 with a preincubated cPLA2a/ANXA1 complex (injected as analyte
at 100 mg/ml each). D: Negative SPR association of NBD1 with ANXA1
(injected as analyte at 100 mg/ml).
doi:10.1371/journal.pone.0007116.g001
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Figure 2. CFTR, ANXA1, cPLA2a and p11 are partially recruited in DRM by TNF-a. A: Characterization of detergent resistant and non-resistant
fractions from Calu-3 cells. Cells were incubated in 1% Triton X-100 and subjected to OptiPrep gradient separation. DRM and non-DRM fractions were
collected separately and subjected to western blotting analysis for Caveolin-1, transferrin receptor, and to cholesterol and phospholipid analysis (PE:
phosphatidylethanolamine, PI: posphatidylinositol, PS: phosphatidylserine, PC: phosphatidylcholine, SM: sphingomyelin). Results are representative of at
least 3 experiments. B: TNF-a recruits CFTR, ANXA1, cPLA2a and p11 in DRM. Calu-3 cells were treated with or without 100 U/mL TNF-a for 10 min, in the
presence and absence of 10 mM mbCD, processed as in A and subjected to western blotting analysis of CFTR, ANXA1, cPLA2a and p11. Results are
representative of at least 3 experiments. C: Densitometric quantification of DRM localization of CFTR, ANXA1 and cPLA2a. Western blot bands
corresponding to DRM and non-DRM were quantified. Data are expressed as the percent of each protein present in DRM (means 6SEM, n$3).
doi:10.1371/journal.pone.0007116.g002
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In order to test whether the stimulatory effect of mbCD is

exclusive of eicosanoid synthesis, we verified whether this drug

alone has an impact on a different inflammatory mediator

pathway. We chose to assess IL-8 synthesis, as DRM play a role

in its regulation [36]. As shown in Figure 5, mbCD treatment did

not change IL-8 release, which is consistent with its inhibiting

effect on TNF-a-induced stimulation (Fig. 5), supporting the view

that DRM integrity may be a rate limiting factor for IL-8

production (Fig. 5).

To discard a potential non-specific effect of mbCD, we treated

cells with its non sterol-extracting analog aCD. In addition, we

induced DRM destabilization by several alternative mechanisms.

These included both the decrease in membrane cholesterol content

by the sterol synthesis inhibitor mevastatin, and the decrease in

membrane sphingolipid content by the sphingolipid synthesis

inhibitor fumonisin. Eicosanoid release levels were measured. As

shown in Figure 6, eicosanoid production of cells treated with aCD

was not significantly different from that of control cells. Conversely,

the two alternative DRM-disrupting treatments led to a significant

increase in LTB4 and PGE2 secretion.

These results confirm that DRM recruitment of CFTR, ANXA1,

cPLA2a and p11 is not a necessary event in PGE2 and LTB4

release. Conversely, they suggest that membrane composition may

play a role in the regulation of eicosanoid production.

Short term Inh172 treatment of Calu-3 cells increases
PGE2 and LTB4 release

To examine the question of whether TNF-a-stimulated

recruitment of CFTR, ANXA1 and cPLA2a in DRM, and

eicosanoid production are associated with CFTR activity, Calu-3

cells were incubated for 20 min with two inhibitors of the chloride

Figure 3. Effect of TNF-a and DRM destabilization on eicosanoid
production. Calu-3 cells were treated with either 100 U/mL TNF-a for
10 min, 10 mM mbCD for 1 h, with or without preincubation with 15 mM
pyrrolidine for 45 min, or with a combination of the different treatments.
For combined treatments, TNF-a was added for the last 10 min of
incubation. After incubation the supernatant was collected, either
immediately or after 3 h of incubation in fresh medium, and subjected to
ELISA for LTB4 and PGE2 determination. Results are expressed as percent of
control values. Asterisks denote p,0.05 with respect to control, n$3.
doi:10.1371/journal.pone.0007116.g003

Figure 4. Effect of TNF-a and DRM destabilization on AA
release. Calu-3 cells were incubated overnight with either 3H-labelled
AA, treated with 100 U/mL TNF-a for 10 min, 10 mM mbCD for 1 h,
with or without preincubation with 15 mM pyrrolidine for 45 min, or
with a combination of the different treatments. For combined
treatments, TNF-a was added for the last 10 min of incubation. After
incubation, supernatants were collected and radioactivity measured by
a scintillation counter. Results are expressed as percent increment with
respect to control. Asterisks denote p,0.05 with respect to control
unless indicated otherwise, n = 3.
doi:10.1371/journal.pone.0007116.g004

Figure 5. Impact of TNF-a and DRM destabilization on IL-8
release. IL-8 production by Calu-3 cells after proinflammatory
stimulation, functional inhibition of CFTR and DRM disruption. Calu-3
cells were incubated with either 100 U/mL TNF-a for 10 min, 10 mM
mbCD for 1 h, or with a combination of both treatments. After
incubation, supernatants were removed and fresh DMEM medium
containing fetal calf serum was added. After 3 h of incubation,
supernatants were harvested for IL-8 determination. Results are
expressed as percent of control values. Asterisks denote p,0.05 with
respect to control, n$3.
doi:10.1371/journal.pone.0007116.g005
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channel function of CFTR: Inh172 and Gly-101. Firstly, we

verified whether CFTR is active in Calu-3 in our experimental

conditions. Inh172 inhibited iodide efflux by 38% on average

(Fig. 7A), indicating a significant basal activity of the channel. This

activity was stimulated by forskolin (not shown). These results are

in agreement to previous reports of CFTR activity in Calu-3 cells

in non-stimulating conditions [44,45].

Both inhibitors increased about 2-fold the secretion of LTB4 and

PGE2 with respect to control (Fig. 7B) suggesting the involvement of

CFTR function in eicosanoid synthesis and a relatively rapid effect

of its inhibition. In a single control experiment, the non CFTR-

expressing HeLa cells were treated with Inh172 in the same

conditions as Calu-3, and no stimulation of eicosanoid release was

obtained (Fig. 7B). Inh172 had no effect on basal and TNF-a-

induced IL-8 secretion (Fig. 7C), which is consistent with the non-

interference of CFTR inhibition with TNF-a-induced relocalization

of ANXA1 and cPLA2a in DRM, as it is shown by western blot in

Figure 8A and by densitometry in Fig. 8C, while Inh172 alone had

no effect on DRM localization (not shown).

TNF-a-induced DRM recruitment of ANXA1 and cPLA2a is
inhibited by long exposure to Inh172

Longer exposure of Calu-3 cells to Inh172 has been associated

with increased levels of IL-8 [46]. We tested whether a long

inhibition of CFTR (12 h) had an effect on DRM recruitment. As

shown in Figures 8B and 8C, significantly less ANXA1 and

cPLA2a were found in DRM in these conditions, after TNF-a
treatment, as compared to TNF-a treatment alone. It must be

noted that CFTR levels were too weak to be detected, even in non-

DRM, after long term incubation with Inh172 (not shown),

suggesting that CFTR expression was diminished. This raised the

question of whether long-term Inh172 was able to modify

eicosanoid production. We analyzed the time-dependent release

of LTB4 in inhibiting conditions (Fig. 8D). The maximum release

was reached at 1 h, similar to that at 20 min, indicating that no

further eicosanoid synthesis occurs beyond this point. These results

suggest that the two reported effects of Inh172 -stimulation of

eicosanoid release and inhibition of DRM recruitment- respond to

dissociated mechanisms.

Discussion

The aim of this work was to examine the hypothesis that CFTR

interacts with major protein(s) of the cPLA2a /eicosanoid pathway and

Figure 6. Effect of DRM disruption agents on eicosanoid
production. Calu-3 cells were incubated with either, 10 mM aCD for
60 min, 10 mM mevastatin for 48 h, or 20 mM fumonisin for 24 h. After
incubation the supernatant was collected and subjected to ELISA for LTB4
and PGE2 determination. Data are expressed as percent of control values.
doi:10.1371/journal.pone.0007116.g006

Figure 7. Effect of CFTR inhibition on eicosanoid, AA and IL-8
release. A: Iodide efflux (CFTR activity) measurements on Calu-3 cells.
Effect of 10 min incubation with 10 mM Inh172 in Calu-3 cells (left). Effect of
forskolin activation (right). Results are representative of three experiments.
B: Calu-3 cells were treated with either 20 mM Inh172 or Gly-101 for 20 min.
In a separate experiment, HeLa cells were treated with 20 mM Inh172 for
20 min. The supernatant was collected right after treatment and subjected
to ELISA for LTB4 and PGE2 determination. C: Calu-3 cells were incubated
with or without 20 mM Inh172 for 20 min. After incubation, supernatants
were removed and fresh DMEM medium containing fetal calf serum was
added. After 3 h supernatants were harvested for IL-8 determination. All
results are expressed as percent of control values.
doi:10.1371/journal.pone.0007116.g007
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that it may function as a modulator of eicosanoid production. For this

purpose, the potential role of a putative CFTR/cPLA2a /ANXA1/

p11 complex in the context of DRM and eicosanoid and cytokine

synthesis was investigated. The results show that the connection

between membrane microdomains and CFTR/cPLA2a/ANXA1/

p11 is complicated but fundamental for eicosanoid and IL-8

production during the acute phase of TNFa-induced inflammation

(10–20 min). Interestingly, the chloride channel function of CFTR

seems to regulate eicosanoid synthesis in basal conditions.

We confirm in Calu-3 cells the previous observations obtained

in other models that short TNF-a stimulation induces CFTR

recruitment at DRM [34,36]. In addition, we show for the first

time a synchronous dynamics of the AA-releasing enzyme

cPLA2a, and the cPLA2a-regulatory proteins ANXA1 and p11

(S100A10), and prove that membrane integrity participates in the

regulation of eicosanoid synthesis and release. We demonstrate

that CFTR interacts in vitro with the cPLA2a/ANXA1 complex via

NBD1/p11 binding. The pathway examined in our study,

involving AA release and subsequent eicosanoid production, could

play a fundamental role in the homeostasis of inflammation in

epithelial cells, both by the direct bioactive properties of LTB4 and

PGE2 on the surrounding cells and tissues, and by representing a

regulatory circuit of the NF-kB and cytokine expression path, as in

two different models ANXA1 has been shown to regulate the

synthesis of proinflammatory cytokines TNF-a and IL-1b [47,48].

Our central premise was the fact that TNF-a induces, at a short

incubation time, both recruitment of certain proteins in DRM [36]

and activation of cPLA2a [49]. It is tempting to hypothesize that

one of the phospholipid cleavage products, namely AA, LPC or

their downstream derivatives, might be responsible for CFTR,

ANXA1, cPLA2a and p11 recruitment into DRM. We tested the

effect of exogenous AA and LPC, and in both cases the result was

negative; conversely, preliminary tests with the cPLA2 inhibitor

pyrrolidine gave similar results (not shown). It must be considered

that TNF-a-induced DRM recruitment is a fast event (10 min)

and it is unlikely that downstream products, such as eicosanoids,

participate in the mechanism. DRM recruitment could also be

explained from an alternative hypothesis. As cPLA2a activity

participates in the turnover of membrane phospholipids, a sudden

activation would result in a rapid lipid remodeling, leading to a

change in the affinity of certain proteins for the surrounding

environment and subsequent relocalization to cholesterol-contain-

ing DRM domains. Whether this phenomenon can happen in cell

membranes and within 10 min remains to be elucidated.

Concerning TNF-a stimulation of cPLA2a activity, several

studies show that two different pathways could be involved [49].

The first entails the activation of MAPK and subsequent

phosphorylation of cPLA2a, and occurs via activation of TNFR1.

The second pathway would be independent from phosphorylation

and would involve a raise in intracellular Ca2+, leading to

translocation of cPLA2a to the activation sites, mainly the

endoplasmic reticulum, the Golgi apparatus and the nuclear

envelope. An early work [50] indicates that the first pathway

would be activated by default. Our results suggest that both events

triggered by short exposure to TNF-a, i.e. cPLA2a activation and

DRM recruitment of CFTR, ANXA1, cPLA2a and p11, may

occur independently of one another, as DRM destabilization does

not inhibit AA release induced by the cytokine (Fig. 5).

A logical question prompted by our observations on DRM

relocalization of proteins was that of the impact of DRM

disruption on cPLA2a activity and eicosanoid synthesis. This led

to the remarkable and surprising finding that all the treatments

tested involving depletion of either cholesterol or sphingolipids –

two lipid classes enriched in DRM- result in increased LTB4 and

PGE2 synthesis. Interestingly, long term treatments (mevastatin

and fumonisin) have a greater effect on PGE2 than on LTB4, as

compared to mbCD. The former may have an impact on COX-2

expression, leading to increased PGE2 production. This has

already been evaluated in macrophages, but while fumonisin

Figure 8. Effect of CFTR inhibition on DRM localization of
ANXA1, cPLA2a and CFTR. A: Calu-3 cells were treated with 100 U/
mL TNF-a for 10 min alone or after preincubation with 20 mM Inh172
for 20 min. After treatment, cells were incubated in 1% Triton X-100 and
subjected to OptiPrep gradient separation. DRM and non-DRM fractions
were pooled separately and subjected to western blotting analysis of
CFTR, ANXA1, and cPLA2a. Results are representative of at least 3
experiments. B: Same as in A, except preincubation time with 20 mM
Inh172 for 12 h. Western blot for CFTR is not shown. C: Densitometric
quantification of DRM localization of CFTR, ANXA1 and cPLA2a. Western
blot bands corresponding to DRM and non-DRM were quantified. Data
are expressed as the percent of each protein present in DRM
(means6SEM, n$3). D: Calu-3 cells were incubated with 20 mM
Inh172 for either 1 h, 6 h or 24 h. After incubation the supernatant
was collected and subjected to ELISA for LTB4 determination.
doi:10.1371/journal.pone.0007116.g008
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enhances COX-2 expression in the presence of LPS [51], statins

are mainly inhibitory [52]. Our results support the hypothesis that

the presence of CFTR, ANXA1, cPLA2a and p11 –all four altered

in terms of function or expression in CF [16]- in DRM would limit

eicosanoid synthesis. Nevertheless, even though the increased AA

release after mbCD treatment would suggest the regulation of this

synthetic mechanism to take place at the cPLA2a checkpoint, our

findings do not discard the possibility that mbCD has a direct

impact on cyclooxygenase and lipooxygenase activities. In

particular, the non-inhibition by pyrrolidine of mbCD-induced

PGE2 release, strongly suggests a direct activation of cyclooxy-

genase function. In fact, it has been reported that mbCD induces

COX-2 epression and activation in a macrophage cell line, but at

a much longer incubation time [53]. An alternative hypothesis for

the shorter term effect of cholesterol depletion could involve PKC

and Src triggering and subsequent activation of COX-2, as both

events have been shown independently in other cell types [54,55].

Exploration of these or other hypotheses is warranted in order to

understand the effects of DRM disruption. The fact that TNF-a
and mbCD together seem to exert a greater effect than each

stimulus alone, which is especially clear in terms of AA release,

suggests a deregulation of the system, probably due to changes in

membrane composition that could alter protein-protein interac-

tions. Nonetheless, it is noteworthy to remark that DRM

destabilization by mbCD, mevastatin and fumonisin, and the

parallel increase in eicosanoid production points to the importance

of membrane composition in the inflammatory response.

It could also be hypothesized that DRM localization would

reduce the availability of cPLA2a substrate, since polysunsaturated

fatty acid-containing phosphatidylcholine is mostly present in non-

DRM (Fig. 2A and [56]). Another possibility is that DRM

recruitment leads to the formation of a functional complex in

response to the inflammatory stimulus that would limit the catalytic

activity of cPLA2a by direct binding of ANXA1 and/or p11. The

synchronous recruitment in DRM of the four proteins seems to be in

agreement with this hypothesis. However, the small proportion of

cPLA2a that is relocalized to DRM does not seem to account for a

major reduction in its catalytic activity in any of the two cases.

An alternative possibility could be that the putative complex

triggers an unknown regulatory mechanism. The answer may

reside in the identification of the other partners that compose the

complex. An obvious question that could be raised is if the

integrity of the putative complex would depend on CFTR function

and/or on TNF-a stimulation. In this study we demonstrate for

the first time the direct interaction in vitro of NBD1 and p11, which

could constitute the link between CFTR and ANXA1/cPLA2a.

Ongoing studies in our laboratory pursue the identification of

additional partners of CFTR. To this respect it cannot be excluded

the existence of a functional short-lived dynamic complex which

we have already hypothesized [15,57].

An unexpected finding was the stimulatory effect of CFTR

inhibition on eicosanoid production in basal conditions, especially

considering that LTB4 and PGE2 were found already increased

after 20 min of treatment, as compared to the longer period of

time (3 h) necessary for their accumulation in the medium after

TNF-a stimulation. The fact that a similar effect was obtained

with two independent inhibitors (Inh172 and Gly-101), and that

no stimulation was found in the non-CFTR expressing cells HeLa

(Fig. 7B), give credence to the results and strongly suggests a

mechanism involving the chloride channel function of CFTR.

Nevertheless, these results must be taken cautiously, as in our

experiments cells were not treated with the CFTR activation

cocktail. Although Calu-3 cells show a modest but significant

CFTR activity in basal conditions (Fig. 7A), in agreement with

previous reports[44,45], we cannot exclude an effect of Inh172

and Gly-101 independent of CFTR inhibition. Longer exposure

(up to 24 h) of cells to Inh172 did not change the extent of LTB4

release (see Fig. 8D). This suggests that no further synthesis of

LTB4 occurs beyond 20 min of incubation. However, one would

expect that LTB4 would be taken up and metabolized by cells

within 24 h. The fact that LTB4 levels do not return to control

values could be due to a raise in the background production as a

consequence of CFTR inhibition. Hence, the link between CFTR

function, cytokine and lipid mediator production opens an exciting

field for future research.

We also tested whether CFTR function would be necessary for

recruitment. This hypothesis was based on our recent results

reporting an absence of TNF-a-triggered recruitment of a TRLdel

non-functional mutant of CFTR in MDCK cells [36]. Short

incubation (20 min) of cells with Inh172 did not show any effect on

relocalization (see Fig. 8A and 8C). The experimental conditions

used –incubation time and inhibitor concentration-, should be

sufficient to assure total inhibition of CFTR chloride channel

activity [58]. As we show the presence of a significant basal activity

of CFTR in Calu-3 cells, it can be concluded that CFTR function

as a chloride channel is not linked to DRM relocalization of

cPLA2a and ANXA1. In fact, we have addressed this point by

testing protein recruitment in DRM in conditions of CFTR

activation with forskolin, IBMX and cAMP, and no differences

were observed as compared to basal settings (data not shown).

These results are in agreement with a recent report suggesting no

relationship between CFTR chloride channel activity and DRM

localization [36,59], and suggest that an alternative function of

CFTR may be involved. However, long term (12 hours) inhibition

of CFTR significantly decreased the recruitment in DRM of both

cPLA2a and ANXA1 (Fig. 8B and 8C). This may be due to an

insufficient amount of CFTR at the plasma membrane, since we

found that long exposure of Calu-3 cells to Inh172 leads to

decreased detection of CFTR. This might obey to decreased

expression of CFTR, as our preliminary results show that the

amount of CFTR transcripts is diminished after 18 h of treatment

of Calu-3 cells by Inh172. Alternatively, the long term effect of

Inh172 treatment points towards a scenario in which other

functions of CFTR, distinct from the chloride channel activity

[15,36], may play a role in TNF-a-induced DRM relocalization.

In both MDCK and CFBE41o cells, it has been demonstrated a

link between this relocalization in DRM and the regulation of the

TNF-a-induced signaling pathway leading to NF-kB activation and

cytokine synthesis [36,37]. In Calu-3 cells, we have found an

equivalent function, as TNF-a stimulates IL-8 secretion, which is

inhibited by mbCD. In epithelial cell lines and primary cultures,

longer inhibition of CFTR by Inh172 (3 to 5 days) results in

increased production of IL-8 [46]. This appears to be in

disagreement with our observation that long term Inh172 prevented

DRM recruitment, though the conditions and models were different.

In conclusion, as summarized in Figure 9, acute TNF-a
stimulation of Calu-3 cells leads to increased eicosanoid and IL-8

release, the latter relying on the integrity of DRM, which may

contain a putative CFTR/cPLA2a/ANXA1/p11 complex. Both

membrane destabilization by mbCD and CFTR inhibition, also

favor eicosanoid synthesis independently of TNF-a, but tend to

counteract the effect of this cytokine on DRM recruitment in certain

conditions (Fig. 9). Our results show that the signaling events leading

to eicosanoid and cytokine production are likely to take very

different regulation routes, rendering inflammation treatment in CF

especially complex. Considering our results and those of others,

several questions await to be answered: (i) the nature of the sensing

mechanism responsible for DRM recruitment, (ii) the role of CFTR
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function in recruitment, (iii) how DRM disruption and CFTR

inhibition –without the participation of TNF-a- can activate the

eicosanoid pathway, and (iv) the functional dynamics of the

putative CFTR/ANXA1/cPLA2a/p11 complex, maybe including

TNFR1/Src (Fig. 9). Our findings may contribute to a better

understanding of membrane integrity and inflammation in CF, and

a better knowledge of the CFTR interactome.
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