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Abstract

This thesis aims to explore and emphasise on the significant relativistic contributions
to observable galaxy number counts, and can be studied in two parts. The first two
chapters deal with the treatment of the total galaxy number counts, without focusing
on any particular relativistic contribution. We start by mathematically proving the
frame-invariance of galaxy number counts in Einstein and Jordan frames, and then
move on to computing the full-sky correlation function and power spectrum including
all relativistic effects. From the third chapter onwards, we narrow down our interest
to specific effects. The fourth chapter deals with modelling of the angular power
spectra in the redshift space and also accounts for the intermediately nonlinear
regime. In the fifth and sixth chapters, we establish the importance of including
lensing corrections to the main signal of probes such as galaxy-galaxy lensing, and
for measurements in case of tests of gravity like Eg statistics, respectively. Finally,
we also talk about the shape and size correlations of galaxies occurring as a part of
weak lensing data, arising out of the phenomenon of intrinsic alignment.
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Résumé

La cosmologie est l’étude de l’Univers dans son ensemble ainsi que des différentes
étapes de son évolution conduisant á la forme que nous observons aujourd’hui. Bien
que les philosophes et les scientifiques s’intéressent à la compréhension des propriétés
des corps célestes depuis l’Antiquité, la cosmologie s’est développée comme un do-
maine d’étude approprié et scientifique principalement aprés que Einstein a postulé
ses théories de la relativité au début des années 1900. Nous comprenons maintenant
l’Univers macroscopique et sa dynamique à travers la théorie générale de la rela-
tivité, ainsi que les entités au niveau microscopique via le modèle standard de la
physique des particules.

Dans le chapitre 1, nous introduisons le sujet général de la cosmologie et ex-
pliquons comment son étude a évolué au cours des siècles. Nous mentionnons de
manière chronologique les découvertes significatives dans ce domaine et introduisons
quelques concepts pertinents pour le reste de cette thèse. Nous discutons d’abord
la formation des structures (galaxies) et évoquons brièvement la fonction de cor-
rélation et le spectre de puissance (power spectrum). Nous expliquons ensuite la
signification du comptage de galaxies (Galaxy Number Count) et concentrons notre
attention sur deux contributions principales à cette quantité : les distorstions dues
au décalage vers le rouge (redshift space distorsion) ainsi que l’effet de lentille (weak
lensing). Nous introduison ensuite brièvement les théories dites Scalaire-Tenseur
(Scalar-Tensor theories), ces dernières étant pertinentes pour décrire l’invariance du
comptage des galaxies sous une transformation conforme de référentiel (invariance
under conformal change of frames).

Dans le chapitre 2, nous reproduisons la référence [109], et montrons de manière
mathématique cette invariance du comptage des galaxies sous une transformation
conforme de référentiel. L’importance de ce travail réside dans l’intérêt d’étudier
les théories dites de gravité modifiée qui vont au-delà de la théorie de la relativ-
ité générale. Dans les théories de type Scalaire-Tenseur, il est possible de passer
du référentiel de Einstein à celui de Jordan via une transfromation conforme de
la métrique. Nous calculons comment les quantités non-perturbées (background
quantities) et comment les perturbations changent sous ce type de transformations.
Nous trouvons que, bien que plusieurs sont soit indépendantes de la jauge (gauge-
independent) soit indépendantes du rérérentiel (frame-independent), l’observable
physique est bien le comptage des galaxies qui est à la fois indépendant de la jauge
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et du référentiel.
Dans le chapitre 3, nous reproduisons la référence [281] et calculons ainsi la

fonction de corrélation relativiste ciel plein (full-sky relativistic correlation function)
et le spectre de puissance, en y incluant tous les effets relativistes, dans une tentative
d’aller au-delà de l’approche d’approximation du ciel plat habituellement adoptée.
Nous le faisons via deux approches : l’une impliquant le calcul direct de la fonction
de corrélation, et l’autre via les spectres de puissance angulaire.

Dans le chapitre 4, nous reproduisons la référence [163], et cherchons une façon
de modéliser le spectre de puissance angulaire (angular power spectra) C` dans le
régime non-linéaire mais dans l’espace du décalage vers le rouge. Ce n’est pas chose
facile car les méthodes analytiques existantes ne reproduisent pas précisément les
résultats numériques qui sont, à ce jour, considérés comme la meilleure approche
pour traiter les situations où les non-linéarités sont pertinentes. Nous étudions
différentes méthodes perturbatives, en incluant par exemple une correction à une
boucle (one-loop correction) et comparons les résultats avec les simulations à N
corps (N -body simulations).

Dans le chapitre 5, nous reproduisons la référence [115], et portons notre atten-
tion sur l’effet de lentille en insistant sur l’importance des corrections dues à cet effet
dans les analyses de type galaxie-galaxie (galaxy-galaxy probes). Nous discutons les
contributions additionnelles au signal observé qui sont dues à la présence de matière
entre les galaxies et l’observateur, ce qui induit un effet de lentille aditionnel. Nous
ajoutons cette contribution au signal principal. Pour motiver nos résultats, nous
utilisons un catalogue oùtilisant les DES redshift bins avec une distribution gaussi-
enne, et répétons le même exercice pour des décalages vers le rouge plus élevés, qui
seront mesurés par Euclid.

Dans le chapitre 6, nous reproduisons la référence [113], et étudions à nouveau les
corrections dues à l’effet de lentille mais cette fois-ci pour le cas des statistiques Eg,
ce qui constitue un test de la gravité à des échelles cosmologiques. Ces statistiques
ne sont valables que dans le régime des perturbations linéaires, mais elles sont tout
de même très utiles car elles permettent d’obtenir des mesures qui ne dépendent
pas du biais (en supposant que la même population de galaxies est utilisée). Notre
travail consiste à implémenter une méthode dans laquelle l’effet de lentille peut
être incorporé dans les catalogues usuels et pour lesquels nous pouvons utiliser les
spectres observables.

Dans le chapitre 7, nous reproduisons la référence [114], dans laquelle nous avons
effectué un pas de plus et analysé les effets astrophysiques supplémentaires sur les
lentilles faibles, à savoir les effets d’alignement intrinséque. Ces effets, qui résultent
de l’interaction des galaxies avec leurs champs de cisaillement de marée (tidal shear
fields) sont en quelque sorte analogues à la lentille elle-même. En étudiant leur
contribution au signal total de lentille, décomposée en termes de corrélations de
forme et de taille, nous obtenons des informations sur la façon dont il est utile
de mesurer la forme, la taille ou les deux en même temps. Nous estimons aussi
l’erreur introduite dans de telles mesures. Nous constatons que ces corrélations
intrinséques ont les mêmes dépendances de paramétres, et ceci indépendamment du
fait que le mécanisme sous-jacent soit la lentille ou l’alignement intrisèque. Nous



avons également constaté que l’estimation de la forme a un meilleur rapport signal
sur bruit cumulé que l’estimation de la taille, bien qu’une combinaison des deux ne
puisse pas entraîner une amélioration signific des mesures.





Notations

List of symbols used in the thesis

a scale factor
H Hubble parameter (H0 denotes Hubble parameter to-

day)
H comoving Hubble parameter H = aH
h reduced Hubble parameter h = H0/100
η, η0 conformal time (today)
t ,t0 cosmic time (today)
χ comoving distance χ = η0 − η
z redshift
n,n̂ line-of-sight direction
r relative position of two objects r = x1 − x2

Φ,Ψ Bardeen potentials
δ, δm density/matter density contrast in longitudinal gauge
Dg gauge-invariant density fluctuation
∆g observable galaxy number counts
v(x) velocity perturbation in longitudinal gauge
v(x) velocity potential v = −∇v
V (k) defined as v(k) = k−1V (k)
D1(z) matter growth function
f(z) velocity growth rate
σv velocity divergence
P (k), Pm(k) redshift-space power spectrum, linear matter power

spectrum
PNL(k) non-linear redshift-space power spectrum
ξ(θ, z1, z2) two-point correlation function
C`(z1, z2) angular power spectrum
b galaxy bias
s magnification bias, change in size (only Chapter 7)
fevo evolution bias
ψ lensing potential
κ convergence
γ1 and γ2; γ shear components; complex shear
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ε ellipticity
qab second moments of brightness distribution
P`(X) Legendre polynomials
Y`m(θ, φ) Spherical harmonics
Jn(x) Bessel functions
j`(x) Spherical Bessel functions
δij, δD Kronecker and Dirac delta functions
εijk Levi-Civita tensor
Abbreviations
(Λ)CDM (Cosmological constant) Cold dark matter
FLRW Freidmann-Lemaître-Robertson-Walker
GR General relativity
CMB Cosmic microwave background
LSS Large-scale structures
BAO Baryon acoustic oscillations
RSD redshift-space distortion
iSW Integrated Sachs-Wolfe
SPT Standard perturbation theory
LPT Lagrangian perturbation theory
EFT Effective field theory
TNS Taruya-Nishimichi-Saito
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1

Introduction

Philosophy [nature] is written in
that great book which ever is
before our eyes – I mean the
universe – but we cannot
understand it if we do not first
learn the language and grasp the
symbols in which it is written.
The book is written in
mathematical language, and the
symbols are triangles, circles
and other geometrical figures,
without whose help it is
impossible to comprehend a
single word of it; without which
one wanders in vain through a
dark labyrinth.

Galileo Galilei

Since time immemorial, humankind has been curious in unraveling the mysteries
of the Universe. Cosmology as a subject of interest has always been of historical
relevance, and any student or researcher in the field today still looks back in awe
at the legacy of thinkers who propagated the study of cosmology. Around the 16th
century BCE in early Mesopotamia, people came up with the concept of a cosmic
ocean, whereby the main element of the universe was water on a flat circular surface,
covered and enclosed on the edges by a firmament. Religions have also mentioned
their own interpretation of how the Universe was formed. Interestingly, the ancient
Hindu text called the Rig Veda written around the 12th century BCE has a section
called the Nasadiya Sukta or the Hymn of Creation, which contemplates about the
creation of the Universe, but doesn’t provide any answers, through verses that imply
that these facts are still unknown to humankind, and even the gods were born later
than the universe itself. Although scientific cosmology occupied the centre stage

1



Chapter 1. Introduction 2

much later, it is exciting to see that cosmology has particularly been an area where
both science and religion were earnest in their quest for an answer.

While ancient philosophers and thinkers had no tools for verification of their the-
ories, over time we got lucky to have people who came up with intricately beautiful
mathematics and scientific inventions for carrying out experiments and observations,
that helped confirm or deny these theories. A hundred years before Isaac Newton
formulated his classical theory of gravitation, Giordano Bruno thought of something
that is central to the cosmological principle later devised in 1933 by Edward Milne,
the fact that there are multiple star systems throughout the universe, and the solar
system does not necessarily occupy the central position. Tycho Brahe and Johannes
Kepler later formulated groundbreaking theories about the orbital motion of planets,
which were later confirmed by Newton’s inverse-square law.

The dawn of the new century saw a revolution in the understanding of space
and time, through Einstein’s pathbreaking papers on the special theory of relativity
(1905) [99] and general theory of relativity (1915) [98]. Special relativity established
space and time as entities that should be treated on the same footing and as part
of the same continuum, and gave rise to the idea of a fourth intangible dimension
for time. It also postulated that no object can travel faster than the speed of
light, which has a finite value. General relativity traversed much more abstract
concepts and complicated mathematics as it attempted to explain the curvature of
this spacetime continuum brought about by gravity. The source of any gravitational
field which carries the information about matter and energy, was attributed the
energy-momentum tensor via an elegant formulation in the Einstein equation.

In 1922, Alexander Friedmann [110] and then Georges Lemaïtre [193] and Howard
Robertson [240] in subsequent years, suggested that Einstein’s equations can be used
to explain an expanding universe, but Einstein was sceptical, being a believer in the
staticness of the Universe. When Edwin Hubble demonstrated the distance-redshift
relation that proved the expansion of the Universe [148], Einstein said that adding
the cosmological constant to his equation to force a solution for a static universe
was his “biggest blunder”. However, contrary to Einstein’s interpretation, according
to Friedmann’s work on the original Einstein equations, the cosmological constant
was instrumental in explaining the expansion of the Universe.

In 1948, Alpher, Bethe and Gamow made a prediction [15] that the Universe in its
early days must have been dominated by a primordial radiation, which suggested the
existence of the cosmic microwave background (CMB). Some sixteen years after this,
Arno Penzias and Robert Wilson detected some signals [237] at Bell Labs purely by
accident that they thought to be a noise but could not be eliminated. Later people
like Dicke, Peebles, Roll and Wilkinson interpreted it as a thermal relic from the
Big Bang [90] (the term being coined by Fred Hoyle, who ironically was a believer
of the steady state model), which supported Gamow’s prediction. The CMB was
eventually confirmed by NASA’s COBE satellite [210] in 1990 to have a blackbody
radiation, and was later found to have very tiny temperature anisotropies. The CMB
portrays the Universe as it was 380,000 years after the Big Bang, and continues to
be one of the most important probes to understand early universe phenomena and
formation of structures. Over the years, surveys like WMAP [226] and Planck [102]
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have improved upon the resolution of CMB observation, and have provided results
in different areas of the electromagnetic spectrum.

Despite these revolutionary advancements, majority of the Universe still remains
beyond our comprehension. Discussions on the existence of dark matter took place as
early as 1933, when Fritz Zwicky showed that the Coma cluster of galaxies contained
a lot of dark matter [317]. Now of course we know that dark matter is a component
essential to the formation of galaxies, which in fact trace the underlying dark matter.
But after Zwicky’s discovery, there was a dry spell until the 1970s when Vera Rubin
and Kent Ford rekindled interest in the cosmology community by measuring spiral
galaxy rotation curves [255]. Subsequently, in the 1980s the abundance of cold dark
matter over baryonic matter was established by a group of cosmologists [45, 82], and
now we know that dark matter occupies ∼ 24% of the observable Universe while
baryons occupy a mere ∼ 5%. What about the remaining 71%? Well, that’s another
story.

The expansion of the Universe stands mysterious even a century after its propo-
sition, the reason being that we don’t really understand the force that drives it. It
was only in the late 1990s that observations by the Hubble Space Telescope pointed
at the accelerated expansion of the Universe, through a supernova called 1997ff ten
billion light years away [121]. It hinted at the fact that after a certain decelerating
phase in the Universe, accelerated expansion actually began, and can be attributed
to the dominance of the dark energy component. However, postulating the proper-
ties of dark energy is not so simple, and existing issues like the cosmological constant
problem render ΛCDM cosmology incapable of being hailed as the ultimate truth.
As a result, the study of alternate theories of gravity have come up to the fore-
front recently, with a lot of different approaches like scalar-tensor theories, massive
gravity, f(R) gravity, K-essence and others being proposed [76]. Here in this thesis,
we discuss scalar-tensor theory in some details (Chapter 2), and also talk about Eg
statistics as a test of gravity on large cosmological scales (Chapter 6).

In the upcoming subsections of this introduction, we will try to have a better
understanding of how structures are formed starting from primordial fluctuations,
how we can obtain statistical measurements of objects in the sky, what we actually
mean when we talk about “observable” quantities, and what general relativistic
effects contribute to these observations.

1.1 Structure formation

The inflationary phase of the Universe plays a very important role in the structure
formation later on, by planting the ‘seeds’ of initial inhomogeneities. The most
plausible hypothesis is that the tiny perturbations due to quantum mechanical pro-
cesses in the early universe stay quantum within the horizon (a conceptual bound-
ary defining the observable universe), but as soon as they leave the horizon, they
become classical and frozen, that is, the amplitude of the fluctuations remain unal-
tered although the they are stretched over large scales. This can be understood with
respect to the fundamental concept of quantum field theory that vacuum is never
completely empty, and virtual particles and antiparticles get created and annihilated
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continuously. Due to the gigantic expansion that the baby universe underwent dur-
ing inflation, some of such virtual particles might have gotten separated from their
antiparticles by distances larger than the horizon, and failed to annihilate. They are
understood to have remained as perturbations to the background. These quantum
fluctuations get stretched on the superhorizon scales, and as they get “frozen in”,
their amplitude remains the same while their wavelength scales proportional to the
scale factor a, a dimensionless quantity to parametrise the expansion of the uni-
verse. While we can say that the distance from our home to the grocery store is 200
metres, such measurements do not work for entities in the sky. What we observe via
our telescopes on the sky are angles and redshifts, which we can eventually convert
into metric distances that our brains can comprehend. These distances are mostly
denoted in terms of mega-parsecs (Mpc) in the study of large-scale structures where
1 Mpc = 3.26× 106 light years. But in order to know what the number is in Mpc,
we first need to measure the redshift z, which is obtained in terms of the emitted
and observed frequencies: 1 + z = fe/fo. The scale factor is related to the redshift
as a/a0 = 1/(1 + z), where a0 = a(t0) is the scale factor at present time t0.

Thus it can be said that structure formation occurs due to gravitational insta-
bilities and deviations from a homogeneous background FLRW metric. Considering
the Newtonian formalism of structure formation, we can assume that the Universe
is filled with an ideal fluid that is inhomogeneous and dissipationless, and describe
it by some Newtonian hydrodynamical equations, which are applicable only to non-
relativistic matter. However, a more correct treatment will be that using general
relativity. This is because with the advent of precision cosmology, a better analysis
of spacetime geometry is required, and we also need to study beyond ΛCDM models
for which the Newtonian approach is insufficient. Moreover, even though Newto-
nian simulations are effective in the linear regime, general relativity is more suited
to tackle nonlinearities. For this purpose, quite a few numerical codes have been
formulated, among which Gevolution uses the weak field expansion in relativistic
regime [8]. The usual Friedmann-Lemaître-Robertson-Walker metric is split into
background and perturbation, and assuming zero spatial curvature, in the Poisson
gauge looks like the following:

ds2 = a2(τ)[−(1 + 2Ψ)dτ 2 − 2Bidx
idτ + (1− 2Φ)δijdx

idxj + hijdx
idxj] (1.1)

where a is the scale factor of the background, xi the comoving coordinates, τ the
conformal time, Φ and Ψ the Bardeen potentials, and Bi and hij are functions
to be determined from the Einstein equations. We do not perform a perturbative
treatment of the stress-energy tensor, and include only the terms that are linear
in metric perturbation, and those that are quadratic with two spatial derivatives
operating on Φ and Ψ. In this weak field approximation, the ‘00’ part of the Einstein
equations is:

(1 + 4Φ)∆Φ− 3HΦ′ − 3H2Ψ +
3

2
(∇Φ)2 = −4πGa2δT 0

0 (1.2)

which is a generalised version of the Newtonian Poisson equation, and the ‘ij’ part
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is:(
δikδ

j
l −

1

3
δklδ

ij

)[
1

2
h′′ij +Hh′ij −

1

2
∆hij +B′(i,j) + 2HB(i,j)

+(Φ−Ψ),ij − 2(Φ−Ψ)Φ,ij + 2Φ,iΦ,j + 4ΦΦ,ij] = 8πGa2

(
δikT

i
i −

1

3
δklT

i
i

)
(1.3)

The metric can further be used to solve equations of motion for matter and study
the evolution of the stress-energy tensor. In the simplest construction, the equations
are solved at first or linear order, and the quantities in question (density, pressure,
velocity, potential and entropy) are usually expressed as the sum of a background
field plus a perturbed field, that is, we assume that the observed universe is not very
different from one which is homogeneous, and the perturbations are very small in
comparison to the background.

To have a simple picture, we can visualise galaxies as a system of particles in a
six-dimensional phase space, where we can describe them in terms of a distribution
function f(x,v). Using the equation of continuity, we can find the collisionless
Boltzmann equation, which is as follows:

∂f

∂t
+ v · ∇f −∇Φ · ∂f

∂v
= 0 (1.4)

Using this, we can obtain the Jeans equation for a collisionless fluid,

ν
∂v̄j
∂t

+ v̄iν
∂v̄j
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi
(νσ2

ij) (j = 1, 2, 3) (1.5)

where the acceleration and the kinematic viscosity on the left hand side and related
to the gravity and the pressure on the right hand side. ν is the number density, v̄j
are the mean velocity components, Φ is the gravitational potential, and σ2

ij is the
velocity dispersion tensor.

Now in order for certain modes or perturbations to grow, they need to satisfy
the Jeans criterion, whereby only the modes with wavelength larger than the Jeans
length λJ = cs

√
π
Gρ

can grow, and these are called ‘Jeans unstable’ modes. Here
cs is the speed of sound and ρ is the average density. The modes smaller than this
wavelength are ‘Jeans stable’ and merely show oscillatory behaviour. The fact that
the Jeans length is proportional to the speed of sound cs has important implications
on the propagation of baryonic perturbations. In the early universe, the baryons are
coupled with photons which are already constituted as a high pressure fluid, and
this combination has a very high sound speed around 1.7 ∗ 105 km/sec. Due to high
pressure, the baryon-proton fluid propagates as an expanding spherical sound wave
from an overdense region. This continues until the era of recombination, after which
the photons decouple from the baryons and travel outwards at the speed of light,
leaving the baryons behind, which remain in a spherical shell along with the excess
dark matter. This phenomenon gives rise to the baryon acoustic oscillations which
act as standard rulers to study the expansion history of the Universe.
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The perturbations which satisfy the Jeans criterion and are allowed to evolve,
have a growing and a decaying mode as follows (+ for growth and - for decay):

δ(t,k) = δ+(k)D+(t) + δ−(k)D−(t) (1.6)

δ being the overdensity. Here D+(t) is called the linear growth function, and grows
simply as a power law D+(t) ∝ a(t) ∝ t2/3 in a matter dominated universe, suggest-
ing that an expanding universe does not provide enough favourable environment for
structure formation. The decaying mode changes with time as D1(t) ∝ t−1. Since
we will mostly talk about the growth of structure, we will stick to the conventional
notation of D+ in literature, that goes by D1. Another quantity that we should
introduce here for the sake of completion is the dimensional linear growth rate

f =
d lnD1

d ln a
(1.7)

which we will encounter many times throughout the thesis.
There are primarily two kinds of fluctuation modes, depending on the behaviour

of entropy: the adiabatic one, where the fluctuations in matter and radiation com-
ponents are coupled but with no spatial variation in entropy, and the isocurvature
one, where entropy fluctuations exist but there is no net fluctuation in the energy
density. Apart from the Jeans criterion that we talked about earlier, there can be
other factors as well that suppress the growth of perturbations. For example, free
streaming of collisionless hot dark matter particles can cause a serious damping ef-
fect, and the growth of baryonic perturbations can be hampered by the imperfect
coupling between baryons and photons. The effect of these factors can be quantified
through the transfer function T (k), which can be defined in terms of the following
relation:

δ(t,k) = δ(tin,k)T (k)
D1(t)

D1(tin)
(1.8)

Thus the transfer function is essentially a measure of the deviations in the growth
of the primordial perturbations during the radiation domination era and for modes
inside the horizon. For early times, it is justified to assume very low overdensity
(δ << 1), which stands for linear approximations, but this fails when we enter late-
time eras where nonlinearities become important (δ . 1). Usually in such cases, we
break up the overdensity into linear and nonlinear parts:

δ(t,k) = δlin(t,k) + δnl(t,k) (1.9)

The way to deal with the nonlinear part is quite complicated and unfortunately
there are no general analytic solutions. The best method is to employ expensive
numerical simulations, and a large number of cosmologists are involved in finding
better, faster and more precise ways of carrying out such simulations. Nonlinearities
are fundamental to the formation of structures on the large scale, since the mixing
of k-modes results in the construction of the cosmic web, whose components are
sheets and filaments with nodes comprised of galaxy clusters.
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1.1.1 Correlation function and power spectrum

For a quantitative understanding of the measurement of structures in the universe,
we need to employ a stochastic treatment of the overdensity δ, the observable that
contains all the information about the distribution of matter.1 In order to measure
the degree of galaxy clustering, let us look at some functions which help to quantify
it deterministically. The two-point correlation function can be defined either for a
spatial (ξ(r)) or angular (w(θ)) distribution, and computes the excess probability
over the random distribution, for the occurrence of galaxies at a distance of r = |x−
x′|, where x and x′ are the locations of the two galaxies with respect to the observer.
In general, the two-point correlation function of an inhomogeneous universe can be
defined in terms of the ensemble average over all densities which act as random
fields:

ξ(r, t, t′) = ξ(x, t,x′, t′) = 〈δ(x, t)δ(x′, t′)〉 (1.10)

The Fourier transform of the correlation function, which is called the power spec-
trum, provides a spectral representation of the field via the superposition of various
modes of different amplitudes that constitute the density field.

〈δ(k, t)δ(k′∗, t′)〉 = (2π)3δD(k− k′)P (k, t, t′) (1.11)

where
P (k, t, t′) =

∫
ξ(r, t, t′)eik·rd3r (1.12)

The three-dimensional Dirac delta function δD(k− k′) in Eq. 1.11 is a direct result
of the assumed homogeneity and isotropy of the Universe. For a small difference in
t and t′, we can consider an average time dependence t̄ = t+t′

2
, which we continue

denoting here as t for simplicity. Since ξ(r, t) is a real function, we have P (k, t) =
P ∗(−k, t), and also due to the isotropic nature of ξ(r, t), P (k, t) = P (k, t), thus
making P (k, t) a real function.

Along the lines of Eq. 1.8, we can write for the power spectrum:

P (k, t) = P0(k)T 2(k)

(
D1(t)

D1(tin)

)2

(1.13)

Depending on the survey, observers can choose to use either the correlation func-
tion or the power spectrum to analyse cosmological information. However, both
of these approaches suffer from the shortcoming of not being directly observable,
which means that they are dependent on a fiducial cosmology. The distance r that
the correlation function depends on, is in turn defined in terms of the comoving
distances χ(z1) and χ(z2), which can be obtained only when we consider a partic-
ular set of cosmological parameters. Needless to say, the power spectrum P (k, t)
which is derived as a Fourier transform of ξ(r, t) is also affected by these param-
eters. Apart from this, these approaches are limited only to density and redshift

1A word of caution: we will soon explain in the next section why δ is not an actual observable
and there is more to the story.
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space distortions, and do not implicitly take into account lensing and other large-
scale relativistic effects. We will see in the next section how these extra effects come
into the picture. Another issue is that the usual domain of using the correlation
function and the power spectrum is that of the flat-sky approximation which will be
inadequate as large-scale surveys aiming to probe much higher redshifts (z ≥ 2) will
become functional. Thus, in Chapter 3, we make an attempt to calculate the full-sky
relativistic correlation function and power spectrum of galaxy number counts.

To counteract these problems, we can adopt a third mechanism using the angular
power spectrum. As all information about an observed galaxy is essentially obtained
from its subtended angle in the sky and its redshift, the correlation function depends
on the relative distance between the two galaxies, and the angle between their di-
rection in the sky (due to statistical isotropy), that is we have a function of the
form ξ(θ, z1, z2). When we express this in terms of the angular power spectrum, the
redshift information manifests in the angular power spectrum as C`(z1, z2), where `
denotes the multipoles (see Eq. 3.1). The advantages and disadvantages of using C`
over correlation function and power spectrum have been further discussed in Chap-
ter 3, while in Chapter 4 we work exclusively with the concept of angular power
spectrum with this idea in mind that it is more convenient to include relativistic
effects in its case.

1.2 Observable galaxy number counts

As stated earlier in Section 1.1, for measuring distances in the sky we need to take
the help of redshift z. The other relevant quantity is the angle that the object
subtends on our telescope, say, θ. This angle helps to determine the direction in
which the object is observed, and finally we can say that the number of galaxies
can be counted on a patch of the sky at a particular redshift z and direction n. Let
us denote this quantity as N(n, z)dΩndz (see Fig.1.1). The next step is to average
over the angles and get the redshift distribution of the galaxies, that is, 〈N〉(z)dz.
The redshift density perturbation can be obtained from this in terms of the number
density of galaxies and the physical survey volume density, both per redshift bin per
solid angle:

δz(n, z) =
N(n, z)− 〈N〉(z)

〈N〉(z)
− δV (n, z)

V (z)
(1.14)

The important point here is that volume perturbations also exist since there is a
distortion of the solid angle and the redshift bin as light propagates from the source
to the observer. Thus the truly observed galaxy number counts turn out to be

∆(n, z) ≡ N(n, z)− 〈N〉(z)

〈N〉(z)
= δz(n, z) +

δV (n, z)

V (z)
(1.15)

Following the detailed derivations of the right hand side as done in [46], we arrive
at an elaborate mathematical expression for the observable galaxy number counts,
which includes all the possible relativistic effects:

∆(n, z) = Dg + Φ + Ψ +
1

H

[
Φ̇ + ∂r(V · n)

]
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Figure 1.1: Left panel: Schematic diagram showing the number of galaxies in a
patch of the sky N(n, z)dΩndz. Right panel: The Sloan Digital Sky Survey (SDSS)
map of distribution of galaxies, where the Earth is at the central point, and each
point represents a galaxy.

+

(
Ḣ
H2

+
2

rSH

)(
Ψ + V · n +

∫ χ

0

dλ(Φ̇ + Ψ̇)

)
+

1

χ

∫ χ

0

dλ

[
2− χ− χ′

χ′
∆Ω

]
(Φ + Ψ) (1.16)

Let us have an overall idea of what these terms stand for:

• Dg: It is a gauge-invariant density fluctuation, which has been introduced and
elaborately explained in [94].

• 1
H∂r(V · n): This is the redshift space distortion that we will discuss in more
details in Section 1.2.1.

•
(
Ḣ
H2 + 2

χH

)
V: The Doppler term is essentially an effect explained by the

special theory of relativity, which should not be confused with the simple
cosmological redshift. While redshift arises due to the expansion of space and
does not depend on the motion of the object emitting photons, in case of
Doppler shift, the wavelength of the emitted photons changes depending on
the position of the source in motion.

•
(
Ḣ
H2 + 2

χH

)(
Ψ +

∫ χ
0
dλ(Φ̇ + Ψ̇)

)
: The Sachs-Wolfe like terms (ordinary and

integrated) determine the strength of the gravitational field that affects the
energy of photons reaching from a source to the observer. The ordinary
Sachs-Wolfe effect describes the effect of gravitational potential at the last
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scattering surface and is directly related to the primordial CMB, and the inte-
grated Sachs-Wolfe effect deals with time-dependent potentials that photons
encounter during their propagation from the last scattering surface to the ob-
server.

• 1
χ

∫ χ
0
dλ
[
−χ−χ′

χ′
∆Ω

]
(Φ + Ψ): The lensing distortion term will be elaborately

discussed in Section 1.2.2.

• 2
χ

∫ χ
0
dλ(Φ + Ψ): This term corresponds to the Shapiro time delay, also called

gravitational time delay. As the name suggests, it is simply the fact that
gravitational potentials might inhibit the travelling photons, causing them to
arrive at the observer point with a delay compared to the expected time of
arrival. This acts as a test of general relativity in the solar system, and has
been performed using radar signals sent from the Earth to Venus and back,
leading to the observation of time delay due to the presence of the massive
body that is the Sun.

The redshift space distortions (RSD), along with the density contrast, are called
the standard terms, since they are manifest in the observed number counts even if
large-scale relativistic effects are not relevant at the smaller scales we are interested
in. The effects that are direct results of Einstein’s theory of general relativity are
represented by the subsequent terms denoting gravitational lensing, Doppler effect,
integrated Sachs-Wolfe effect and Shapiro time delay. In this thesis, we will mainly
focus on weak gravitational lensing, and RSD to certain extent.

1.2.1 Redshift space distortions

The most intuitive way to find the location of a galaxy cluster based on its redshift
information is via its Hubble expansion factor (χ = z/H0, for z << 1). However,
this argument fails at larger redshifts, and along with that, peculiar velocities of the
galaxies within the cluster also need to be taken into account. This additional con-
tribution results in something called the redshift space distortion, which manifests
as an alteration of the observed overdensity. In an overdense region, the galaxies
that are closer to us along the line of sight appear to be moving closer to the central
overdensity and thus away from us. Similarly, those that are away from us appear
to be moving towards the central overdensity, and thus effectively towards us. This
leads to the impression of an overall squashing along the line-of-sight direction, giv-
ing rise to a quadrupole moment. What we seem to see then is an increase in the
density of the cluster along the line of sight, accounted for in the extra term that
appears on the right hand side of Eq. 1.17. This is called the Kaiser effect. Thus
the power spectrum in the redshift space including the Kaiser term is as follows:

P (k, µ, z̄) = D2
1(z̄)

[
b(z̄) + f(z̄)µ2

]2
Pm(k) (1.17)

where D1 and f are the growth functions as defined in Section 1.1, µ = cos(k,n) and
Pm(k) is the linear matter power spectrum. While this might seem straightforward,
as we enter nonlinear regimes, where the collapse of overdense regions has already



Chapter 1. Introduction 11

Figure 1.2: A simple illustration to show how the Kaiser effect and the FoG effect
cause distortions in observed galaxy clusters along the line-of-sight direction.

taken place, the peculiar velocities are not so well-behaved anymore, and redshift
space distortions do not behave in the conventional manner. The more collapsed
the object is, the stronger is the velocity dispersion and the effect of nonlinearities.
In this case, the quadrupole moment and the linear overdensity have opposite signs,
and the object appears to be elongated along the line of sight. This is called a
Finger of God (FoG) effect, and needs to be dealt with caution when one looks at
structures in the quasi-linear regime, where the Kaiser effect also coexists. In the
nonlinear regime, the Kaiser power spectrum is a sum of the auto-correlations of
the density (δ) and the velocity divergence (θ = ∇ · v/H(z) = f(z)δ(k, z)) power
spectra, and also the cross-correlations between them.

PNL(k, µ, z̄) = Pδδ(k, z̄) + 2µ2Pδθ(k, z̄) + µ4Pθθ(k, z̄) (1.18)

For taking into account the FoG effect, one needs to add a damping factor to the
nonlinear power spectrum, which is conventionally of a Gaussian or a Lorentzian
form:

DFoG[x] =

{
exp(−x2), : Gaussian
1/(1 + x2), : Lorentzian

(1.19)

where x = kµσv. The velocity dispersion σv is a free parameter that can be deter-
mined by fitting with simulations and observations.
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1.2.2 Weak gravitational lensing

Gravitational lensing has been strongly attracting the attention of the cosmology
community, because of the plethora of information it holds about the large-scale
structure. It has also proved to be a test of general relativity since it is a direct
consequence of the curvature of spacetime as postulated by Einstein. The first official
test of general relativity was carried out in 1919 by Arthur Eddington who teamed
up with Frank Watson Dyson to measure the deflection of starlight during total solar
eclipse on the 29th of May. The deflection angle was found to be closer in agreement
to the value predicted by Einstein’s theory, which was twice the expected Newtonian
value. Lensing is also one of the most useful cosmological probes and helps to have a
better understanding of the underlying matter distribution, especially dark matter
tracers like galaxies. It manifests in primarily three different ways as follows:

• Strong lensing: When the lens is very massive and compact, and the source is
lying very close to the lens, the bending of light can be extreme, due to which
it takes different paths while reaching the observer. This results in multiple
images of the same source being observed. If the source, lens and the observer
are exactly aligned, it gives rise to a unique image called the Einstein ring.

• Weak lensing: As the name suggests, weak lensing is less stronger than strong
lensing, and apparently does nothing too fancy except for stretching and dis-
torting the source image (shear), or magnifying it (convergence). However, it
has wide applications in the study of the statistical properties of the large-scale
structure of the universe, and we will talk about it in more details.

• Microlensing: This kind of lensing is useful for observing objects that emit
little to no light, for example, exoplanets. The lens involved has a very low
mass, and passes by the source in a small amount of time, which can help
us detect the change in brightness of the source. In the case of exoplanets,
the amount of light visible from an object changes periodically, and hence
microlensing is essentially a transient phenomenon.

In case of weak lensing, when light from an object passes through a gravitational
field, the resulting image formed on our telescope undergoes certain changes. In
Fig. 1.3 photons travel from the source plane to the observer plane, but also pass
through the lens plane along the way. If the lens plane was not present, the angular
position η of the extended source would have appeared at the angular position β.
But the lens plane deflects the position of the source by an deflection angle α, due
to which the position of the lens is seen to be at an angle θ. Thus, the lens equation
turns out to be:

β = θ − α(θ) (1.20)

If we map the lens plane to the source plane, we can construct the following Jacobian
matrix:

Aab =
∂βa
∂θb

= δab −
∂αa
∂θb

(1.21)
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Figure 1.3: Schematic diagram to demonstrate the phenomenon of weak lensing,
inspired from [26]

where a and b denote angular coordinates. We can also define a lensing potential
ψ that characterises an extended distribution of matter. Here, χ and χ′ are the
comoving distances of the observer to the source plane and to the lens plane re-
spectively. The deflection angle along a particular coordinate is the gradient of the
lensing potential transverse to the photon direction:

αa = ∂aψ(~θ, χ) = ∂a
2

c2

∫ χ

0

dχ′
χ− χ′

χχ′
Φ(χ′~θ, χ′) (1.22)

where Φ is the gravitational potential. We can define a matrix A, whose elements
are in terms of the convergence κ and shear elements γ1 and γ2.

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.23)

The convergence can be expressed as the Laplacian of the lensing potential:

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ (1.24)

The shear components are given as follows:

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ, γ2 = ∂1∂2ψ (1.25)

and the complex shear is a helicity-2 object:

γ = γ1 + iγ2 (1.26)
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Figure 1.4: The pink sphere is the original image of a galaxy, which appears mag-
nified and distorted after being subjected to weak lensing. The blue dotted circle
represents the magnification expressed through convergence κ, and the green dotted
ellipse is for the change in shape given by the shear γ.

• Magnification: The quantity associated with the magnification caused by weak
lensing is the convergence κ. As seen in Eq. 1.23, κ is included in the diagonal
part of the matrix, and thus corresponds to an isotropic change in the size of
the image.

• Shape distortion: The trace-free part of the matrix A quantifies the anisotropic
amount of stretching or distortion via the complex quantity called shear (Eq. 1.26).

As intriguing the phenomenon of weak lensing is, there is more to the story. Lensing
signals also include some systematic effects that are often neglected due to their small
magnitude, but are important nonetheless if we want to use lensing as an accurate
probe of cosmological scales. These effects which are called intrinsic alignments, are
mainly astrophysical effects that arise due to nearby galaxies being subjected to the
same tidal field. As a result of such environmental effects, galaxies close to each
other get aligned in a particular direction, which adds some extra information to
the observed lensing signal. As such, if we correlate the ellipticities of two galaxies
εi and εj, we actually get a resultant sum of the following correlations:

〈εiεj〉 = 〈γiγj〉+ 〈εsi εsj〉+ 〈γiεsj〉+ 〈εsiγj〉 (1.27)

where εsi and εsj are the intrinsic ellipticities. This arises due to the fact that in-
trinsically galaxies are not perfectly circular, their non-negligible ellipticities being
related to the observed ellipticity after weak lensing as follows:

ε =
εs + g

1 + εsg∗
≈ εs + γ (1.28)

g being the reduced shear, g = κ/1−γ. While the left hand side of Eq. 1.27 denotes
the observed ellipticity, the right hand side can be decomposed in three different
kind of contributions:
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Figure 1.5: A schematic diagram showing the intrinsic alignment contamination of
a gravitational lensing signal (courtesy: [171]). The topmost plane is that of the
source, the middle one of the lens and the bottom one of the observer. The blue
discs are the background source galaxies, and the green ellipsoid is the intermediate
matter structure that deflects the light from the source. The alignment of the galaxy
images tangentially with respect to the lens gives rise to the GG signal. The red
ellipsoids show galaxies that are close to the lens structure and get pointed towards
it, causing another kind of alignment that results in the II signal. Finally the GI
signal arises out of the anti-alignment of images of galaxies close to the lens, with
the images of background galaxies that are gravitationally sheared.

• the GG signal (〈γiγj〉)is the pure shear correlation necessary for analysis of
data.

• the II signal (〈εsi εsj〉) is the intrinsic ellipticity correlation, and

• the GI+IG signal (〈γiεsj〉+ 〈εsiγj〉) is the correlation between the shear acting
on one galaxy and the intrinsic ellipticity of another.

Depending on the type of galaxy (spiral or elliptical), the response of their shape
and alignment to the tidal shear can be studied through two different types of
model (quadratic or linear). While in case of spiral galaxies, the shape of galaxies is
determined by the orientation of the angular momentum which can be traced back
to the effects of tidal torquing, elliptical galaxies respond more directly to the tidal
shear by undergoing anisotropic deformations due to the second derivative of the
gravitational potential. A detailed review of this can be found in [171]. We study
about intrinsic alignments and their contribution in weak lensing observations in
Chapter 7.

1.3 Scalar-tensor theory

Although most of the discussions in this thesis have been done in the context of gen-
eral relativity, we also study some other dark energy models like scalar-tensor theory.
This is because the cosmological observations are true not only in the Einsteinian
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theory but for all theories where photons follow the null geodesic. Apart from the
fact that physical observables are gauge-independent, we also need to establish their
frame-independence, something that we can explore in the context of scalar-tensor
theory, where the usual Einstein frame can be made to undergo a conformal trans-
formation into the Jordan frame. This is the subject of Chapter 2. Let us try to
develop an understanding of this, for which we follow the approach of [111].

In a scalar-tensor theory, we can write the Lagrangian of a scalar field in a
four-dimensional curved space-time, where it enters the picture non-trivially via
a nonminimal coupling with the tensor gravitational fields, whereby it also gets
included in the matter sector of the Lagrangian.

LJ =
√
−g
[
ϕγJ

(
R− ωJ

1

ϕ2
J

gµν∂µϕJ∂µϕJ

)
+ Lmatter(ϕJ ,Ψ)

]
(1.29)

Here the subscript J refers to quantities in the Jordan frame. ϕγJ is Jordan’s scalar
field, γ and ωJ are constants, and Ψ represents a matter field. We can show that
the choice of γ doesn’t affect the fact that the first two terms on the right hand
side contain no dimensional constant, and thus a simplified version of this in the
prototype Brans-Dicke [54] formalism can be written:

LBD =
√
−g
(
ϕR− ω 1

ϕ
gµν∂µϕ∂µϕ+ Lmatter(Ψ)

)
(1.30)

The first term on the right hand side of Eq.(1.30) is the nonminimal coupling term,
which is analogous to the usual Einstein-Hilbert term:

L =
√
−g 1

16πG
R (1.31)

We can redefine the scalar field in Eq.(1.30) to express the Lagrangian into a canon-
ical form, such that the apparent singularity due ϕ and the multiplicativity of ω can
be bypassed. For this we introduce a scalar field φ and a dimensionless constant ζ
such that

ϕ =
1

2
ζφ2, ϕ > 0 (1.32)

and
εζ−1 = 4ω (1.33)

Then the new and simplified Brans-Dicke form becomes:

LBD =
√
−g
(

1

2
ζφ2R− 1

2
εgµν∂µϕ∂µϕ+ Lmatter

)
(1.34)

A non-minimal coupling can be removed by subjecting the metric gµν to a conformal
transformation, as follows:

gµν → g∗µν = Ω2(x)gµν
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where Ω2(x) is a spacetime dependent function of the scalar field φ, and can be
expressed as a function F such that Ω2(x) = F (φ). The Lagrangian of Eq.(1.29)
undergoes a conformal transformation to give us the usual Einstein-Hilbert action
in the Einstein frame, where the matter part of the Lagrangian does not contain
any scalar field.

The rest of the thesis is structured as follows. Chapter 2 is based on a recent
work where we have studied the frame invariance of the number counts in Einstein
and Jordan frames, and found that it holds true in the case of scalar-tensor theory of
gravity. Chapter 3 will talk in detail about the calculation of the full-sky relativistic
correlation function and power spectrum. Chapter 4 is based on our computations
of nonlinear contributions to angular power spectra in the redshift space, where we
have used a flat-sky approximation and compared different perturbation theory ap-
proaches with simulations, to assess their reliability in modelling the angular power
spectrum with better accuracy. In the chapters after this, we focus our attention
to weak lensing. In Chapter 5, we look at the general relativistic corrections on the
correlation between tangential shear and galaxy number counts, which is also called
galaxy-galaxy lensing. In Chapter 6, we test the contribution of the lensing correc-
tions in case of Eg statistics, which is a test of gravity at large scales, as explained
previously in this introduction. Chapter 7 is based on a work that aims to forecast
the measurement of intrinsic and extrinsic shape-size correlations of galaxies in weak
lensing measurements.





2

Cosmological Number Counts in Einstein and

Jordan frames

Based on:
[109] J. Francfort, B. Ghosh, & R. Durrer, Cosmological Number Counts in Einstein
and Jordan frames, JCAP 1909 (2019) 071, [arXiv: 1907.03606]

In Section 1.2, we introduced the concept of observable galaxy number counts, and
stressed on the fact that the matter density power spectrum is not a directly observ-
able quantity. It is important to note that, by definition, a physical observable is
supposed to be gauge-invariant and frame-invariant. While we intuitively say that
this will be true for the number counts ∆g (denoted in this work as ∆ for sim-
plicity), we want to show explicitly how this happens. We adopt two descriptions
using two different models - general relativity, and scalar tensor theory (introduced
in Section 1.3) - and check if the physics of cosmological observables remains the
same in the Einstein and Jordan frames. For this, our aim is to describe the cosmol-
ogy along with perturbations in both the frames. Testing for different background
quantities like density, pressure and redshift, and perturbed quantities like matter
density, velocity, Bardeen and lensing potentials, redshift-space density and volume
perturbations, we find that many of these are either gauge-independent or frame-
independent but not both. As expected, we find that the galaxy number counts
do turn out to be both gauge and frame-independent and are proved to be good
observables.

19
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Abstract: Even though we know that physical observations are frame indepen-
dent, the frame dependence of cosmological perturbations is relatively subtle and
has led to confusion in the past. In this paper we show that while the (unobservable)
matter power spectrum is frame dependent, the observable number counts are not.
We also determine how the frame dependence of the power spectrum depends on
scale.

2.1 Introduction

From the point of view of fundamental physics the problem of dark energy is very
puzzling. Cosmological data, especially the accelerated expansion of the Universe,
can be fit relatively well with the standard ΛCDM cosmological model. However,
the value of the cosmological constant Λ corresponds to a vacuum energy density

ρΛ =
Λ

8πG
'
(
3× 10−3eV

)4 (2.1)

which cannot be explained by any fundamental theory. Assuming that the vacuum
energy scale should be of the order of the cutoff scale of the theory and setting this
scale to the Planck scale, one finds that the cosmological constant proposed in the
ΛCDM model is about 120 orders of magnitude smaller than this naively guessed
value. Probably the worst guess in the history of physics.

Of course the cosmological constant cannot be computed in quantum field theory
and it acquires very large corrections at each order in perturbation theory, but the
fact that the measured value is so much smaller than any naive guess, is suggestive
of the fact that there might be a theoretical reason (maybe coming from quantum
gravity) which requests it to vanish. In this case, the observed cosmic acceleration
which has led to its introduction must have another origin.

This and similar ideas have prompted many workers in the field to consider the-
ories of gravity which modify Einstein gravity in the infrared regime. The simplest
modifications are the so-called scalar-tensor theories which allow, in addition to the
metric, for a scalar field with a universal coupling to matter. These theories can be
formulated equivalently in the so-called Einstein or Jordan frame.

It is clear that theories which can be transformed into each other by a pure con-
formal frame transformation describe the same physics and therefore the predicted
outcome for every experiment must be equal. However, the interpretation of the
experiment might be very different: for example, in the ‘Einstein frame’, we can
interpret the scale factor as a scalar field which is coupled to matter. In this case,
the redshift of spectral lines of far away sources is no longer interpreted as an effect
due to the expansion of the Universe, but due to a growth of coupling constants
such that the present transition energies are higher than those in the past which
reach us from far away sources. Hence the Einstein frame physicist does not see
an expanding Universe, as in the case of a ‘Jordan frame’ physicist, but growing
coupling constants. Nevertheless, the measured redshift of spectral lines is the same
for both, the Einstein frame physicist and the Jordan frame physicist.



Chapter 2. Cosmological Number Counts in Einstein and Jordan frames 21

This difference of the interpretation of the physics at work in the two frames
has led to considerable confusion in the literature. In the present paper we want
to contribute hopefully not to the confusion but to the elucidation of the issue. An
important point is the fact that one may only consider truly measurable or observ-
able quantities. By laying down a dictionary which translates between background
quantities and perturbation variables in both frames, we shall show that the custom-
ary density fluctuations or the matter power spectrum are not observables and are
actually frame dependent. However, the galaxy number counts which are the true
observables, which on small scales, reduce to the density fluctuations and redshift
space distortions, are frame independent. We shall also show that, a bit like gauge
dependence, frame dependence becomes negligible on small scales.

The rest of this paper is structured as follows. In Section 2.2 we present our
dictionary. Most of what we say there can be found in previous literature, see,
e.g. [66, 69, 273, 85, 111]. For this reason we shall defer most derivations to an
Appendix. The original part of this section is our discussion of the scale dependence
of the frame effects in different variables. In Section 2.3 we apply our findings to
the number counts. This section is novel and is the main point of the present work.
In Section 2.4 we conclude.

Conventions and notations:
We work with the (−,+,+,+) convention.
The coordinates are (t,x) with t being the conformal time and x the conformal
distance, and H the conformal Hubble factor.
Quantities in Einstein frame are given without indication, e.g. H, while quantities
in Jordan frame are marked by a tilde, e.g. H̃.
The index 0 means at the background level, and is not related to any value today
(this avoids having a too cluttered notation like ¯̃X).
The scalar field is denoted as φ and the Bardeen potentials are Ψ and Φ, while ϕ is
the lensing potential.
The letter k is used for the kinetic term of the scalar field. In order to avoid
confusion, we use q for the momentum.

2.2 Einstein and Jordan frame - A dictionary

2.2.1 Conformal relationships

We want to consider conformally related metrics1,

ds2 = Fds̃2 , (2.2)

where F is a positive function which may depend on spacetime position.
Length scales in these metrics are related by ` =

√
F ˜̀. This means that a given

spacetime interval will measure ` units in Einstein frame, but ˜̀ units in Jordan
frame. Using units with c = ~ = kBoltzmann = 1, this relation also holds for times

1Recall quantities without/with tilde are in Einstein/Jordan frame.
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while masses and temperatures are related via m = m̃/
√
F and T = T̃ /

√
F . In

these units a mass is given by the inverse of the corresponding Compton wavelength
and is also equal to the energymc2, while a temperature is given by the mean kinetic
energy of one degree of freedom at this temperature.

If F is a constant, the two metrics are related by a change of units. The important
remark then is that measurements are always comparisons, i.e., we only can measure
ratios between quantities. Usually a measurement is the ratio between the quantity
we are interested in and some reference length scale `R or its inverse.

The interesting case is a dynamical F , which may, e.g., depend on a scalar field,
F (φ). In this case, the two conformally related metrics describe the same physics
only if we correctly adjust the kinetic term of the scalar field φ and its coupling
to matter. In this case the frame dependence of energies and frequencies, at first
sight, seems to imply a frame dependence of the redshift, the ratio of the frequency
a photon emitted at x1 and the one received at x2. The relation between these fre-
quencies in the two frames is ν = ν̃/

√
F , so that one might naively infer the redshift

(1 + z) = ν(x1)/ν(x2) = ν̃(x1)
√
F (x1)/

(
ν̃(x2)

√
F (x2)

)
= (1 + z̃)

√
F (x2)/F (x2).

However, when ’measuring’ a frequency at the source we ’compare’ it with a standard
frequency or standard length `R(x1) so that what we truly measure is

(1 + z) =
ν(x1)`R(x1)

ν(x2)`R(x2)
=
ν̃(x1)˜̀

R(x1)

ν̃(x2)˜̀
R(x2)

, (2.3)

which is frame independent. Some more intuitive explanations are given in the Ap-
pendix 2.A. The important point again is that measuring means comparing. Hence
the frame dependence of quantities is very subtle and it is sometimes not suffi-
cient to compare dimensionless quantities if they involve measurements at different
spacetime points. More details on this point are given in Appendix 2.C.

We want to describe cosmology with perturbations in both Jordan and Einstein
frame. We consider General Relativity with a scalar field and matter. The actions
in the two frames are given by

S =

∫ √
−g
(

R

16πG
− 1

2
k(φ)(∇φ)2 − V + Lm(ψ, φ)

)
d4x, (2.4)

and

S̃ =

∫ √
−g̃

(
F (φ)R̃

16πG
− 1

2
k̃(φ)(∇̃φ)2 − Ṽ + L̃m(ψ, φ)

)
d4x. (2.5)

Here Lm is the matter Lagrangian and ψ stands collectively for all matter fields. In
order to describe the same theory, the variables in Jordan frame (with tilde) and
Einstein frame have to be related by

gµν = F g̃µν , g̃µν = Fgµν , g = F 4g̃, (2.6)
V = F−2Ṽ , (2.7)

k =
3

16πG

(
F ′

F

)2

+
k̃

F
, and (2.8)
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Lm = F−2L̃m. (2.9)

A derivation of the only non-trivial relation, Eq (2.8), can be found e.g., in [300].
The energy momentum tensor in Jordan frame is given by

T̃µν =
2√
g̃

∂(
√
g̃L̃m)

∂g̃µν
. (2.10)

The quantity in the numerator is frame-independent, while
√
g̃ adds a factor of F−2

and ∂g̃µν adds a factor of F when converting to Einstein frame so that the whole
fraction is multiplied by F . The energy-momentum tensors are therefore related as

T̃µν = FTµν , T̃ µν = F 2T µν , T̃ µν = F 3T µν . (2.11)

This is coherent as ρ ∼ T 0
0 and we then obtain ρ̃ = F 2ρ, which we expect since ρ

has dimension 4 when counting energy and inverse length dimensions as positive.
Important remark: In what follows, we will define the Jordan frame as the

frame where `R is constant and we choose units such that its value is unity. This
implies `R =

√
F in Einstein frame and ˜̀

R = 1 in Jordan frame. From now on, we
will only write `(x) ≡

√
F to refer to the reference length in Einstein frame.

2.2.2 Background variables

We now consider a Friedmann-Lemaître Universe with metrics

ds2 = a2(−dt2 + γijdx
idxj) and (2.12)

ds̃2 = ã2(−dt2 + γijdx
idxj) with a =

√
F0ã (2.13)

in Einstein and Jordan frame respectively. Here t is conformal time and a and ã
are the scale factors in Einstein and Jordan frame respectively, while F0 ≡ F (φ0(t)),
where φ0 is the background value of the scalar field. Note that we do not put the
subscript 0 on V and k, and the subscript will be also omitted on ρ and P when
there is no possible confusion. Moreover, F ′0 ≡ dF0/dφ0 in what follows. Similarly,
we define `0(t) as the background value for the reference length. The comoving
Hubble parameters are related by

H̃ =
˙̃a

ã
=

1√
F0a

d(
√
F0a)

dt
=
ȧ

a
− φ̇0F

′
0

2F0

= H− φ̇0F
′
0

2F0

= H−
˙̀
0

`0

. (2.14)

The above relation can be understood easily as follows. Let’s suppose that the
Universe is static in Jordan frame, hence H̃ = 0, but that ˙̀ > 0. This means that
all lengths appear to be expanding in Einstein frame, or said differently, that the
standard ruler in Einstein frame is shrinking. In Einstein frame, the Universe seems
to be expanding, hence H > 0.

The matter content in a Friedmann universe is (for symmetry reasons) of the
perfect-fluid form,

(T µν ) = diag(−ρ0, P0, P0, P0), (2.15)
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and the same form holds in Jordan frame. Density and pressure of the two frames
are related as

ρ = F−2ρ̃ , P = F−2P̃ , (2.16)

which is a simple consequence of (2.11) (this relationship holds at the background
and at the perturbation level).

For energy momentum ‘conservation’ we shall assume that the fluid in Jordan
frame does not interact with φ. This is equivalent to assuming that L̃m is inde-
pendent of φ, i.e. L̃m(ψ, φ) ≡ L̃m(ψ). In this case Jordan frame fluid satisfies the
ordinary conservation equation,

∇µT̃µν = 0, (2.17)

while in Einstein frame, the coupling to φ via the factor F leads to (see e.g. [300])

∇µTµν = −∇νφ
F ′

2F
T, (2.18)

where T is the trace of the energy-momentum tensor in Einstein frame. At the back-
ground level, as usual, only energy ‘conservation’ is relevant and the conservation
Eq. (2.17) and (2.18) yield

˙̃ρ = −
(
ρ̃+ P̃

)
3H̃, (2.19)

ρ̇ = −3H(ρ+ P )− ρφ̇F
′

2F
+ P

3φ̇F ′

2F
. (2.20)

The background Einstein equations in Einstein frame read

3H2 = 8πGN

(
a2ρ+

φ̇0
2
k

2
+ a2V

)
, (2.21)

H2 − 2
aä

ȧ2
= 8πGN

(
a2P +

φ̇0
2
k

2
− a2V

)
. (2.22)

They correspond to the usual Friedmann equations, with the energy density and the
pressure of matter and a scalar field, as measured in Einstein frame.

In Jordan frame, these equations become

3H̃2 =
8πGN

F0

(
ã2ρ̃+

φ̇0
2
k̃

2
+ ã2Ṽ

)
− 3H̃ φ̇0F

′
0

F0

, (2.23)

H̃2 − 2
ã¨̃a
˙̃a2

=
8πGN

F0

(
ã2P̃ +

φ̇0
2
k̃

2
− ã2Ṽ

)
+ H̃ φ̇0F

′
0

F
+
φ̈0F

′
0

F0

+
φ̇0

2
F ′′0
F0

.(2.24)

We note that Newton’s constant appears with a scaling factor F−1
0 which is expected,

as it has dimension of a length square. The first terms on the right are the density
and the pressure as measured in Jordan frame. Moreover, the additional terms are
the signature of the non-minimal coupling between the scalar field and gravity.

It is straightforward to check that these two sets of equations are equivalent if
one makes use of the dictionary.
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2.2.3 Perturbations

We will now consider scalar perturbations at first order. First, note that, if we work
in a gauge where the metric is diagonal, this feature will hold in both frames thanks
to the conformal relationship (2.2). Hence, we consider only scalar perturbations,
since a scalar field only generates scalar perturbations at first order. Therefore vector
and tensor perturbations are not affected by a conformal transformation if properly
normalized. We use the Newtonian (or longitudinal) gauge, where the perturbed
metrics are given by

(gµν) = a2 diag(−1− 2Ψ, 1− 2Φ, 1− 2Φ, 1− 2Φ), (2.25)
(g̃µν) = ã2 diag(−1− 2Ψ̃, 1− 2Φ̃, 1− 2Φ̃, 1− 2Φ̃), , (2.26)

where Φ, Ψ and Φ̃, Ψ̃ respectively are the Bardeen potentials in Einstein and Jordan
frames. Second, the scalar field is also perturbed, φ(t,x) = φ0(t)+δφ(t,x), while the
conformal factor is now F (t,x) = F0(t) + F ′δφ(t,x) (a prime indicates a derivative
with respect to the scalar field). We also have for the reference length

`(x) = `0(t) + δ`(x) =
√
F0

(
1 +

δφF ′0
2F0

)
. (2.27)

The dictionary for the Bardeen potentials is

Ψ = Ψ̃ +
F ′0δφ

2F0

= Ψ̃ +
δ`

`
, Φ = Φ̃− F ′0δφ

2F0

= Φ̃− δ`

`
. (2.28)

The denominator containing ` can be evaluated at the background or at the per-
turbed level, the difference is of second order. Note that the sum of the Bardeen
potentials is frame invariant. This is very satisfactory as they are actually the po-
tential for the Weyl tensor from scalar perturbations which is conformally invariant,
see, e.g. [96]. This also means that the lensing potential, given by

ϕ(n, z) =

∫ r(z)

0

dr
r(z)− r
r(z)r

[Φ(rn, tnow − r) + Ψ(rn, tnow − r)] , (2.29)

is frame independent. This confirms the naive expectation that gravitational lensing
which describes the deflection of light is conformally invariant.

The difference of the Bardeen potentials, however is the anisotropic stress tensor
which is not frame invariant.

Note that even though the Bardeen potentials are gauge invariant, i.e. invari-
ant under linearized coordinate transformation, they are not frame invariant and
therefore not directly observable.

Let us now turn to the energy-momentum tensors. For simplicity we consider
only perfect fluid matter, without anisotropic stress, such that the perturbed tensors
are of the form

T µν = (ρ0 + δρ)uµuν + (P0 + δP ) (uµuν + δµν) , (2.30)
T̃ µν = (ρ̃0 + δρ̃)ũµũν + (P̃0 + δP̃ ) (ũµũν + δµν) . (2.31)
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The dictionary relating the perturbations in both frames is given by

δ(x) =
ρ(x)− ρ0(t)

ρ0(t)
=
F 2ρ̃(x)− F−2

0 ρ̃0(t)

F−2
0 ρ̃0(t)

(2.32)

=
F−2

0 ρ̃(x)
(

1− 2
F ′0δφ

F0

)
− F−2

0 ρ̃(t)

F−2
0 ρ̃(t)

(2.33)

= δ̃(x)− 2δφ
F ′0
F0

= δ̃(x)− 4
δ`

`
. (2.34)

The same holds for the pressure perturbation, namely

δP (x)

P0

=
δP̃ (x)

P̃0

− 4
δ`

`
. (2.35)

Eq. (2.34) can be understood as follows: if δ̃ = 0 (Jordan frame), then matter is
distributed uniformly on a given time slice. However, at a given spatial position, `
may be slightly larger than on the rest of the time slice (then the standard ruler is
smaller). Lengths appear larger, and hence energies smaller. The minus sign is then
in agreement with the fact that, at this particular position, the energy density will
appear smaller in Einstein frame.

Let us finally express the velocity of the fluid. This needs some care. We use
that the velocity is normalized in either frame, ũ2 = ũµũν g̃µν = u2 = uµuνgµν = −1,
so that one has

ũµ =
√
Fuµ = `uµ =

1

ã

(
1− Ψ̃, ṽ

)
, (2.36)

Here the ũ0 term is fixed by the normalization and we have defined the velocity
perturbation in Jordan frame, ṽ. In Einstein frame we obtain

uµ = `−1ũµ (2.37)

= `−1
0

(
1− δ`

`

)
ã−1(1− Ψ̃, ṽ) (2.38)

= a−1

(
1−

(
Ψ̃ +

δ`

`

)
, ṽ

)
= a−1(1−Ψ,v). (2.39)

where we have used Eq. (2.28) relating Ψ and Ψ̃ and the fact that v is already first
order. Hence the peculiar velocity is not modified (at first order), which is quite
intuitive for a dimensionless local quantity.

We also want to compute the redshift perturbation in Einstein frame. This is
possible by taking the usual formula, see e.g. [46], and taking into account that the
measured frequency is (k · u)` we obtain in longitudinal gauge

δz(n, z0) = −(1 + z0)

(
Ψ + n · v +

∫ r(z0)

0

dr(Ψ̇ + Φ̇) − δ`

`

)
, (2.40)

where r(z) denotes the conformal distance at the background redshift z0. Here all
the terms are evaluated at emission, (t(z0), r(z0)n) (we assume the observer to be
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situated at x = 0). As usual, we omit terms at the observer which add only a
monopole or a dipole contribution to the final results. Note that the terms with Ψ
and δφ add up, and accordingly to the relation between the Bardeen potentials in
both frames (2.28), they simply give Ψ̃ which makes this relation frame invariant.
The sum in the integral is, as mentioned, frame invariant, hence the redshift pertur-
bation is frame independent. Interestingly it is not gauge invariant, see [46]. This
comes from the fact that the split into z = z0 + δz depends on the time slice i.e. on
the chosen gauge.

The density perturbation and therefore also the matter power spectrum, P (q) =
|δ(q)|2 is frame dependent. Note also that in cosmology q is the comoving wave
number which is frame independent, hence Fourier transforms do not affect the
frame dependence of first order perturbation variables.

2.2.4 Perturbed conservation equations

Let us determine the perturbed ‘conservation’ equations. We have seen that already
at the background level, matter in Einstein frame is interacting with the scalar field
and ∇µTµ

ν 6= 0. We now perturb these equations at first order (see appendix for
more details). Here, we follow the idea presented in [273].

In Einstein frame, the conservation equations read2

δ̇ + 3H
(
c2
s − ω

)
δ + (1 + ω)∇ · v − 3(1 + ω)Φ̇ = (3ω − 1)

(
F ′0
2F0

δφ

)•
+

3F ′0φ̇

2F0

(
c2
s − ω

)
δ

= (3ω − 1)

(
δ`

`

)•
+ 3

˙̀

`

(
c2
s − ω

)
δ, (2.41)

v̇ +H(1− 3ω)v + ∇Ψ +
c2
s

(1 + ω)
∇δ =

1− 3ω

1 + ω

∇δ`

`0

+ (1− 3ω)
˙̀
0

`0

v. (2.42)

Considering the same equations in Jordan frame, one can use the various equations
in the dictionary to obtain the usual relations

˙̃δ + 3H̃δ̃
(
c2
s − ω

)
+∇ · v − 3 ˙̃Φ(1 + ω) = 0, (2.43)

v̇ + H̃v(1− 3ω) +∇Ψ̃ + c2
s

∇δ̃
(1 + ω)

= 0. (2.44)

Note that, as expected, these equations are the usual ones without coupling to
the scalar field φ, see e.g. [96]. In Einstein frame, the right hand side is the effect of
the coupling between matter and the scalar field. In the second equation, they can be
interpreted as the fifth force, which refers to any force modifying the usual geodesic
equation. In the case of a Universe filled with radiation only (ω = c2

s = 1/3), the
equations are not modified. This is simply a consequence of the fact that massless
particles are invariant under conformal transformations.

2We use the usual notation P0 = ωρ0 and δP = c2sδρ, with ω and c2s frame invariant.
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2.2.5 Perturbed Einstein equations

Regarding the perturbations, in Einstein frame, one has Φ = Ψ if the anisotropic
stress can be neglected. From now on, we will also assume vanishing pressure,
since we are mainly interested in a ΛCDM Universe with a scalar field at redshifts
0 < z < 6 where the fluid matter is pressureless 3. The perturbed Poisson equation
(00 constraint) is4

∆Φ− 4πGa2ρ (δ − 3Hv) = 4πG

((
3Hkφ̇+

k′

2
φ̇2 +

a2V ′

2

)
δφ+ kφ̇ ˙δφ− kφ̇2Φ

)
(2.45)

The perturbed scalar (0i) constraint is

Φ̇ +HΦ + 4πGa2ρv = 4πGkφ̇δφ. (2.46)

The scalar dynamical equation is

Φ̈ + 3HΦ̇−H2Φ + 2
ä

a
Φ = 4πG

(
1

2
k′φ̇2δφ− a2V ′δφ+ kφ̇ ˙δφ− kφ̇2Φ

)
. (2.47)

In Jordan frame, the equations are quite long. We give the full expressions in Ap-
pendix 2.B. Here we just state that the off diagonal part of the dynamical equations
in Jordan frame yield

Φ̃− Ψ̃ = 2
δ`

`
, (2.48)

which is in agreement with Eqs. (2.28).

2.2.6 Scaling of the frame dependence

In this section, we investigate the frame dependence of different quantities depends
on the considered wavelength. As shown by the dictionary for the density pertur-
bation (2.34), the difference is given by the quantity δ`/`. We estimate its order of
magnitude. We will assume that we work on subhorizon scales such that q � H,
and for example (q2 +H2)Φ ∼ q2Φ. The power spectrum of the matter perturbation
is P(q) ∼ δ2. Hence, the power spectra P , P̃ in both frames are related as

P̃ ∼ P + 8δ · δ`
`

+ 16

(
δ`

`

)2

. (2.49)

In order to evaluate the last terms, we will use the Einstein equations and make
several assumptions. We work now in Einstein frame. We have at our disposal two
scales: a time/length scale given by H−1, and a momentum given by q. Assuming
there is no other scale governing the evolution of the scalar field, we can estimate
that

φ̇ ∼ Hφ, ˙δφ ∼ Hδφ. (2.50)
3Adding it does not lead to any principal difficulties, but the equations become just more

cumbersome.
4As usual for scalar perturbations, we introduce the velocity potential v with v = ∇v.
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Moreover, we will suppose that F is a polynomial function in φ such that F ′ ∼ F/φ,
and the same for k (the coefficient of the kinetic term).
Taking the dynamical perturbed Einstein’s equation (2.47), we can estimate

H2Φ ∼ H2 δφ

φ
, (2.51)

where we used the first Friedmann equation (2.23) to evaluate 4πGkφ̇2 ∼ 4πGa2V ∼
H2.
The conclusion is that the relative perturbation of the scalar field scales roughly as
the Bardeen potentials

Φ ∼ δφ

φ
. (2.52)

This implies that the difference between the two density perturbations, δ and δ̃
scales in the same way:

δ`

`
∼ δφF ′

F
∼ δφ

F

F

φ
∼ Φ. (2.53)

Performing the same order of magnitude evaluation on the perturbed Poisson equa-
tion (2.45), we can estimate the relation between the Bardeen potential and the
density perturbations on subhorizon scales,

q2Φ ∼ H2δ. (2.54)

By combining the three previous relationships, we find

δ`

`
∼
(
H
q

)2

δ. (2.55)

If we now turn our attention to the relation between the two power spectra in
equation (2.50), we obtain the order of magnitude relation

P̃ ∼ P

(
1 +O

([
H
q

]2
))

. (2.56)

This shows that, even if the power spectrum is frame dependent, hence not an
observable, the difference at small scales is negligible. In galaxy surveys, on small,
widely subhorizon scales frame effects can therefore be neglected. It is also on these
scales that thew number counts can be expressed in terms of the power spectrum.
On large scales, q ∼ H, however frame effects are as important as other relativistic
effects. We shall now show that, as it must be for a true observable, in the galaxy
number counts all frame effects cancel.
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2.3 Cosmological number counts

2.3.1 Number count in Jordan frame

In this section, we will follow the notation of [46]. See Appendix for more details.
In Jordan frame, as the value of ` is constant, the same formula holds, namely

∆̃(n, z) = δ̃z(n, z) +
δṼ (n, z)

Ṽ (z)
(2.57)

Here ∆̃ is the number count, which is actually observed in galaxy survey, δz is the
density perturbation in redshift space, and is not the usual density perturbation
of the energy-momentum tensor and δV is the volume perturbation. We will show
that both these terms are not frame invariant, but all the frame dependent terms
cancel, and we shall find that the number counts are frame invariant.

2.3.2 Number counts in Einstein frame

The main issue in Einstein frame is the variation of the ruler. Recall that, in this
frame, we have a function `(x) defining the size of our ruler at a given spacetime
point. The computations need to be modified to take this into account. Regarding
density perturbations in redshift space, we need to take into account that density
is related to N and V by ρ = mN/V . Here, for simplicity we assume a Universe
made out of particles (galaxies) of fixed mass m of which we find N in the volume
V . In Jordan frame, or in the usual formulation of General Relativity, this mass is
constant and it cancels in all expressions. However, this is not true in our Einstein
frame where the ruler is not constant5. We can then compute the redshift density
perturbations taking into account that the mass scales like m ∝ `−1:

δz(n, z) =
ρ(n, z)− ρ0(z)

ρ0(z)
=

N(n,z)`(n,z)−1

V (n,z)
− N0(z)`0(z)−1

V0(z)

N0(z)`0(z)−1

V0(z)

(2.58)

= ∆(n, z) +
δz

`0

d`0

dz0

− δ`

`0

− δV

V0

. (2.59)

More details are given in Appendix 2.C. The important point is that, in the second
equality, we use that ρ = mN/V , and the mass in Einstein frame scales as `−1,
hence the appearance of this factor. Moreover, note that here we want to isolate
the number count, hence we only need to convert the masses m to the number of
galaxies N , which brings exactly one factor of `−1. The volume V is still measured
in Einstein frame, hence we do not have factors of `3 appearing which would convert
it to Jordan frame.

5Note that for dimensional reasons, one should actually take the ratio with the reference length
in Jordan frame lJ . As this value is constant, we can simply omit it, because it cancels in all the
ratios.
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The formula for the number counts in Einstein frame is then given by

∆(n, z) = δz(n, z) +
δV (n, z)

V (z)
− δz

`0

d`0

dz0

+
δ`

`0

. (2.60)

To relate it to the number count in Jordan frame, we need to relate the corresponding
density perturbation in the redshift space, δz and the volume fluctuation δV . We
can perform this computation in two ways.

We first present a naive and quick version, before giving the detailed derivation
in the next two sections. Consider a physical quantity f in Einstein frame whose
energy dimension is n. We can relate the perturbation in Einstein and in Jordan
frame as (see derivation in Appendix

δf

f
≡ δf(n, z)

f0(z)
=
δf̃

f̃
+ n

δz

`0

d`0

dz0

− nδ`
`
. (2.61)

We know that δρ and V have energy dimensions 4 and −3 respectively. Hence,
their sum for the number count in Eq. (2.60) gives

δz(n, z) +
δV (n, z)

V (z)
= ∆̃(n, z) +

δz

`0

d`0

dz0

− δ`

`0

, (2.62)

where we have used the definition of ∆̃ (2.57). This precisely cancels the remaining
last term of Eq. (2.60) .

This derivation is somewhat dangerous as e.g. conformal time t and distance r
even though they usually do have dimensions do not transform in this way while the
dimensionless Bardeen potentials do transform. However, considering the metrics
(2.25) and (2.26) we realize that Ψ and Ψ̃ correspond to changes in physical time
intervals while Φ and Φ̃ correspond to changes in the inverse physical distance (at
first order) this explains their behavior under conformal transformations given in
(2.28). Because of this subtlety we now present a more formal derivation of the
same result.

Density perturbation

We want to show how we can obtain the relation (2.61), but this time by following
the approach of [46]. As shown, the density in redshift space is given by

δz(n, z) =
δρ(n, z)

ρ̄(z0)
− dρ0

dz0

δz(n, z)

ρ0(z0)
. (2.63)

The first term is simply the relative energy perturbation given by the dictionary
equation for δ (2.34).

The second term of (2.63) is more tricky. As both z and z0 are frame independent,
δz must to be so as well. Considering the definition in (2.3) including the ruler-
dependence, the redshift in Einstein term picks up a factor `. The second term
can be evaluated using the conservation equation (2.20) (with P = 0) and the time
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derivative of z0. This last quantity is obtained directly from the definition of z, (2.3)
and we find6

dz0

dt
= −(1 + z0)

(
H− F ′0φ̇0

2F0

)
= −(1 + z0)H̃. (2.64)

The last equality uses the dictionary between H and H̃. As z0 and t are frame-
invariant, so is this derivative. Combining the previous results yields

δz = δ̃z − 4
δ`

`0

+ 4
d`0

dz0

δz

`0

, (2.65)

where we use the chain rule to go from one derivative to another (recall `0 =
√
F0),

and
δ̃z = δ̃ − 3δz

1 + z0

. (2.66)

Note that Eq. (2.65) is in agreement with (2.61), with n = 4.

Volume perturbation

We will briefly present the relation of the volume perturbations and mention which
corrections need to be taken into account in Einstein frame. The most important
point is that, in this frame, we do not have that a−1 = 1 + z0 (where a is the scale
factor at the emission). Recall the time derivative of z0 given by Eq. (2.64). Then,
Eq. (14) of [46] contains a prefactor of the form

a3

1 + z

1

H− φ̇0F ′0
2F0

=
`3

(1 + z)4

1

H− φ̇0F ′0
2F0

. (2.67)

The remaining steps are as in Ref. [46], provided we include this correction. Hence
we find

δṼ

Ṽ0

=
δV

V0

+ 3
δ`

`0

− 3
d`0

dz0

δz

`0

. (2.68)

Note that the factor `3 exactly brings the factors predicted by Eq. (2.61) with n = 3.

2.4 Conclusions

In this paper we have studied the frame dependence of cosmological perturbation
variables. We have shown that gauge invariance does not guarantee frame invariance
(consider, e.g., the Bardeen potentials) and that, on the other hand, there are gauge
dependent quantities (e.g. redshift, velocities) which are frame invariant. We have
finally shown that the physical, observable number counts are frame invariant, while
the density power spectrum is not. This remains true when adding redshift space
distortions since velocities are frame independent. However, the frame dependence
is relevant only on large scales, comparable to the Hubble scale, where density

6Recall that both a and ` are time dependent.
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fluctuations are not directly observable but acquire relativistic corrections. We have
also shown that the lensing potential, which is a weighted integral of the sum of the
Bardeen potentials is frame independent.

We summarize the gauge and frame dependence of the interesting variables in
the final table below. While we do not spell out the gauge dependence which can
be found e.g. in [96], we explicitly give the relation between the corresponding
quantities in Einstein and Jordan frame.

Table 2.1: Gauge and frame dependence of various quantities.

Quantity Gauge dependent Frame dependent
Background
Density ρ0 Yes Yes ρ0 = F−2

0 ρ̃0

Pressure P0 Yes Yes P0 = F−2
0 P̃0

Redshift z0 Yes No
Observed redshift z No No

Perturbations
Density δ Yes Yes δ = δ̃ − 4δ`/`
Velocity v Yes No

Bardeen pot. Ψ No Yes Ψ = Ψ̃ + δ`/`

Bardeen pot. Φ No Yes Φ = Φ̃− δ`/`
Lensing potential ϕ No No
Redshift density δz No Yes δz = δ̃z − 4 δ`

`
+ 4 d`

dz
δz
`

Volume perturbation δV/V No Yes δV/V = δṼ /Ṽ + 3 δ`
`
− 3 d`

dz
δz
`

Number counts ∆(n, z) No No
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APPENDIX

2.A Some explanations

We give here further intuitive explanations for some of the equations of the paper.
Let us recall the new definition of the redshift given by (2.3). We consider a

photon emitted at position e and received at position r:

(1 + z) =
νe`e
νr`r

=
λr`e
λe`r

. (2.A69)

Here ` represents the measured length of a given, fixed physical process, i.e. our
ruler. Let’s consider two examples.

• First, suppose that λr = λe but `e > `r. With the usual definition of z, this
would mean there is no redshift, because both wavelengths are measured equal.
However, in the framework of conformal frames, we have

1 + z =
`e
`r

(2.A70)

which implies that z > 0. This is due to the fact that the ruler which is
used is expanding with the considered wave, hence its wavelentgh is seen to be
constant. Because the ruler is expanding, the reference length, which is itself
not being stretched, appears smaller and smaller hence `e > `r.

• On the other hand, one can consider a process where λe < λr and `e < `r such
that both ratios cancel and give z = 0. This means that the ruler is expanding,
hence the measured reference length appears smaller, but the wavelength of
the travelling photon also appears to be decreasing. In fact, nothing is being
redshifted, the only modification is that the ruler is being stretched.

The second point illustrates the following interesting fact: If the physical process
which is used to define ` is also undergoing the same ‘redshift’, we would naively
think that z = 0. This is why it is important that the comparisons are made locally :
at each spacetime point, one has to reproduce the reference physical process in their
laboratory, and calibrate in this way the values for `(x).

Let us now turn our attention to the conservation equations in Einstein frame
(2.20). Consider a box filled with matter only. We assume for simplicity that H̃ = 0
in Jordan frame, and suppose that ˙̀ > 0, which means that the standard ruler in
Einstein frame is shrinking. We can have in mind a fixed box of a given size, and
inside a ruler that is getting smaller over time.

By using the dictionary for the Hubble factors (2.14), we find H = (φ̇F ′)/(2F ) =
˙̀/` and Eq. (2.20) reads

ρ̇ = −ρ

(
3 ˙̀

`
+

˙̀

`

)
− P

(
3 ˙̀

`
− 3 ˙̀

`

)
= −ρ

(
3 ˙̀

`
+

˙̀

`

)
< 0 (2.A71)
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First, we note that we have two contributions: the first one is the usual term cor-
responding to the (apparent) volume expansion of the box, while the second term
corresponds to the (apparent) decreasing masses: ˙̀ > 0 and m ∝ `−1, the masses
appear to get smaller in Einstein frame. Regarding the pressure, it is interesting to
note that both terms cancel. This should not be a surprise, since the contribution of
the pressure to the variation of the energy is given by W = −PδV . But in this case,
the true volume (the volume of the box, measured in Jordan frame) is not varying.

2.B Perturbed Einstein equations in Jordan frame

In Jordan frame, the perturbed Poisson equation (00 eqn.) reads

∆Φ̃− 4πGã2ρ

F

(
δ̃ − 3H̃v

)
=

4πG

F0

((
3H̃k̃φ̇+

k̃′

2
φ̇2 +

a2Ṽ ′

2

)
δφ+

3

2
k̃φ̇ ˙δφ− k̃φ̇2Φ̃

)

− 4πG

F0

(
ã2ρ̃0

F ′0
F0

δφ− k̃

2
φ̇2F ′0δφ+ ã2Ṽ

F ′0
F0

δφ

)

+
F ′0
2F0

(
∆δφ− 3H̃2δφ+ 3H̃φ̇Φ̃ + 3φ ˙̃Φ

)
+
φ̇F ′′0
2F0

˙δφ.(2.B72)

The perturbed scalar (0i) constraint is

˙̃Φ + H̃Φ̃ +
4πGã2ρ̃

F0

v =
4πGkφ̇

F0

δφ+
F ′0
2F0

(
H̃δφ+

F ′0
F0

φ̇δφ− φ̇Φ̃ + ˙δφ

)
+
F ′′0
2F0

φ̇δφ.(2.B73)

The trace of the dynamical equation is

Φ̈ + 3H̃Φ̇− H̃2Φ + 2
ä

a
Φ =

4πG

F0

(
k

2
φ̇ ˙δφ− kφ̇2Φ− a2V ′δφ+

1

2
k′φ̇2δφ

)
+

4πG

F0

(
ã2Ṽ

(
F ′0
F0

)2

δφ+
k̃

2
φ̇2 F

′
0

F 2
0

)

− F ′0
2F0

(
2H̃2 − 4

ä

a
+ H̃F

′
0

F0

φ̇+

(
F ′0
F0

)2

φ̇2

)
δφ

+
F ′0
2F0

(
3H̃ + φ̇

)
˙δφ+

F ′0
2F0

δ̈φ

− F ′0
2F0

(
2H̃φ̇Φ + 2φ̈Φ + 3φ̇Φ̇

)
+

F ′′0
2F0

(
3H̃φ̇δφ+ φ̈δφ+

F ′0
F0

φ̇2δφ+ φ̈δ̇φ− φ̇2Φ

)
+

F
(3)
0

2F0

φ̇2δφ , (2.B74)

while its traceless part simply yields

Φ̃− Ψ̃ = 2
δ`

`
. (2.B75)
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2.C Some derivations

We present the derivation of Eq. (2.61). Consider a physical quantity f with energy
dimension n.

δf

f
≡ δf(n, z)

f0(z)
=
f(n, z)− f0(z)

f0(z)
(2.C76)

=
f̃(n, z)`(n, z)−n − f̃0(z)`0(z)−n

f0(z)`0(z)−n
(2.C77)

=
f̃(n, z)`0(z)−n

(
1 + n δz

`0

d`0
dz0
− n δ`

`

)
− f̃0(z)`0(z)−n

f0(z)`0(z)−n
(2.C78)

=
δf̃

f̃
+ n

δz

`0

d`0

dz0

− nδ`
`
. (2.C79)

The first and second equality are definitions. To go to the second line, we use
the dictionary to go from Einstein to Jordan frame. To go to the third line, we use
that `(n, z) = `0(z0) + δ`(n, z) and z = z0 + δz to get both contributions. This can
be understood by observing Fig. 2.1. The point A is at the observed coordinate
(n, z), but is located on the time slice corresponding to z0. Hence, the perturbation
δf is given with respect to f0(z0).
We can understand the two corrections as follows: suppose that δz > 0, as shown in
the figure, and that the derivative in the last term is positive, namely `0 decreases
over time, which is equivalent to saying that the standard ruler is getting larger over
time. This implies that length will appear smaller and energies bigger in Einstein
frame. Hence the +n in the first term to take into account this correction. Now
suppose that δ` > 0, which means that lengths appear larger and energy smaller at
the considered point that on the time slice, hence the −n of the second term.

The relationship involving the number count in Jordan frame goes as follows:

δz(n, z) =
ρ(n, z)− ρ0(z)

ρ0(z)
(2.C80)

=

N(n,z)`(n,z)−1

V (n,z)
− N0(z)`0(z)−1

V0(z)

N0(z)`0(z)−1

V0(z)

(2.C81)

=

N(n,z)`0(z0)−1
(

1− δ`
`0

)
V0(z)+δV (n,z)

− N0(z)`0(z)−1

V0(z)

N0(z)`0(z)−1

V0(z)

(2.C82)

=
N(n, z)`0(z)−1

(
1 + δz

`0

d`0
dz0

)(
1− δ`

`0

)
1

V0(z)

(
1− δV

V0

)
− N0(z)`0(z)−1

V0(z)

N0(z)`0(z)−1

V0(z)

(2.C83)

= ∆(n, z) +
δz

`0

d`0

dz0

− δ`

`0

− δV

V
. (2.C84)



Chapter 2. Cosmological Number Counts in Einstein and Jordan frames 37

z

z0
δz

(n,z)

A: l(n,z)

B: l0(z)

O

r

t

Figure 2.1: Schematic view of the photon trajectory. The distance is displayed
horizontally and the time vertically. The photon is emitted at A, on the timeslice
corresponding to z0, and is received at O.

The first equality is the definition of the density perturbation. For the second
equality, we use that ρ = mN/V and use the fact that the measured mass of N
particles in Einstein frame is proportional to `−1. Note that we only convert the
mass, because at the end we would like to obtain the number count, which involves
N . We do not want to convert the volume here. In the third equality, we use that
`(n, z) = `(z0) + δ`(n, z) (the logic is the same as in the previous derivation). In the
fourth equality, we use z = z0 + δz. In the final equality we simplify the expression.

By using the definition for the redshift density perturbation given in (2.63), we
can finally write the number counts as

∆(n, z) =
δρ

ρ̄(z0)
− dρ0

dz0

δz

ρ0(z0)
+
δV

V
− δz

`0

d`0

dz0

+
δ`

`0

. (2.C85)

Let us present an intuitive explanation for each of these terms. Keep in mind that
all the perturbed quantities are evaluated at the point with observed coordinates
(n, z), which is physically located at B in Fig. 2.1. The question we ask is: Why
is the number count not equal to the density perturbation? Let’s consider one term
after another. In what follows, we will consider that δz > 0, as shown for example
in the Fig. 2.1.

• The first term is due to the fact the galaxy is located at z0 but we compare it
with the background value at the observed redshift, namely ρ0(z) to obtain the
number count. However, δρ is computed from the background value ρ0(z0).
We have in our example ρ0(z0) < ρ0(z), so the number count will be slightly
smaller than the density perturbation. This can be mathematically understood
because the derivative of ρ0 in the first term is positive, and we choose δz > 0
for our example, hence the term is positive but contributes negatively because
of the minus sign.
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• The second term is due to the volume perturbation. Let’s suppose that δV > 0,
namely the physical volume at the point of the emission is slightly larger than
on the rest of the time slice. The number count is not affected by any volume
distortion, but the density is reduced. Hence, the number count should be
bigger than the density perturbation.

• The third and the fourth term are the two corrections to the first two terms,
their interpretation being given above.
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The full-sky relativistic correlation function and

power spectrum of galaxy number counts

Based on:
[281] V. Tansella, C. Bonvin, R. Durrer, B. Ghosh, & E. Sellentin, The full-sky rel-
ativistic correlation function and power spectrum of galaxy number counts. Part I:
theoretical aspects, JCAP 1803 (2018) 019, [arXiv: 1708.00492]

Now that we have established that the galaxy number counts are good observables
and are frame-independent, it is necessary for us to have a clear understanding of
what we are observing and measuring in the sky. However, simulating the observed
data is often computationally expensive, and we resort to reasonable approxima-
tions. One such approximation is the flat-sky approximation (also called the distant
observer approximation) which provides us with a simplified version of the two-point
statistics like the correlation function and power spectrum. In this approximation
we assume that we are effectively looking at only one direction in the sky while
correlating two objects, and that the directions n1 and n2 for two objects can es-
sentially be treated as a single direction n (n1 = n2 = n). But we need to explore
scenarios beyond approximations in order to get a more accurate picture, and that
is what we do here. We derive a full-sky correlation function inclusive of all possible
relativistic effects, using two different methods - one via the angular power spectra
or C`’s, and the other without using them, which is computationally much faster.
This is useful for obtaining a three-dimensional information of the large-scale struc-
ture, which isn’t provided by the C`’s. From the correlation function, we obtain the
power spectrum by taking the Fourier transform. We study how different relativistic
effects contribute at different redshifts, and find that while large-scale effects such
as Sachs-Wolfe terms are more significant at smaller redshifts, the lensing term is
more important at higher redshifts. We also compute the correlation function and
power spectrum multipoles, whereby we find that the correction due to lensing in-
creases with redshift for both the monopole and the quadrupole, and eventually for
the hexadecapole as well. This suggests that the lensing contribution is absolutely
in need of being considered for current and upcoming surveys which aim to probe
higher redshifts, and this issue has been taken up further in Chapters 5 and 6.
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Abstract: We derive an exact expression for the correlation function in red-
shift shells including all the relativistic contributions. This expression, which does
not rely on the distant-observer or flat-sky approximation, is valid at all scales and
includes both local relativistic corrections and integrated contributions, like gravi-
tational lensing. We present two methods to calculate this correlation function, one
which makes use of the angular power spectrum C`(z1, z2) and a second method
which evades the costly calculations of the angular power spectra. The correlation
function is then used to define the power spectrum as its Fourier transform. In this
work theoretical aspects of this procedure are presented, together with quantitative
examples. In particular, we show that gravitational lensing modifies the multipoles
of the correlation function and of the power spectrum by a few percent at redshift
z = 1 and by up to 30% and more at z = 2. We also point out that large-scale rel-
ativistic effects and wide-angle corrections generate contributions of the same order
of magnitude and have consequently to be treated in conjunction. These corrections
are particularly important at small redshift, z = 0.1, where they can reach 10%.
This means in particular that a flat-sky treatment of relativistic effects, using for
example the power spectrum, is not consistent.

3.1 Introduction

Upcoming redshift surveys of the distribution of galaxies [189, 19, 201, 3, 13, 60]
are going to probe the large-scale structure of the universe at high redshift and for
wide patches of the sky with unprecedented precision. To exploit the information
delivered by these surveys in an optimal way, it is crucial to have reliable theoretical
predictions of the signal. Redshift surveys generally associate two quantities to each
galaxy they detect: the direction from which photons are received, n, and the red-
shift z. It has therefore been argued in the past [130, 131, 275, 276, 245, 46], that
galaxy correlation functions are truly functions of two redshifts and an angle. The
angular-redshift power spectrum is then given by C`(z1, z2). This quantity has been
introduced in [46, 67], where it has also been shown that due to relativistic projection
effects, the linear power spectrum is not simply given by density fluctuations and
redshift-space distortions, but it acquires several additional terms from lensing, or-
dinary and integrated Sachs Wolfe terms, gravitational redshift, Doppler terms, and
Shapiro time delay. These projection effects had been previously identified in [310,
309].

Subsequently, linear Boltzmann codes like camb [197] and class [41] have been
generalized to calculate this galaxy count angular power spectrum [88, 86]. To
determine the C`(z1, z2) observationally, one correlates the number of galaxies in a
redshift bin around z1 and in a small solid angle around direction n1 with those
in a redshift bin around z2 and in a small solid angle around direction n2. Due to
statistical isotropy, the resulting correlation function only depends on the angle θ
between n1 and n2, cos θ = n1 ·n2 and is related to the angular power spectrum in
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the well known way,

ξ(θ, z1, z2) =
1

4π

∑
`

(2`+ 1)C`(z1, z2)L`(cos θ) , (3.1)

where L` denotes the Legendre polynomial of degree `.
Before the introduction of the C`(z1, z2)’s, cosmologists have mainly concentrated

on determining the correlation function and the power spectrum in Fourier space.
In comoving gauge, on sub-horizon scales the latter is given by [175]

Pg(k, ν, z̄) = D2
1(z̄)

[
b(z̄) + f(z̄)(k̂ · n)2

]2

Pm(k) (3.2)

= D2
1(z̄)

[
b2 +

2bf

3
+
f 2

5
+

(
4bf

3
+

4f 2

7

)
L2(ν) +

8f 2

35
L4(ν)

]
Pm(k) .

Here z̄ is the mean redshift or the survey, Pm(k) is the matter density power spectrum
today, D1(z̄) is the growth factor normalized to D1(0) = 1, b(z̄) is the galaxy bias
and

f(z̄) = −D
′
1

D1

(1 + z̄) =
d lnD1

d ln(a)
, (3.3)

is the growth rate, where the prime denotes the derivative with respect to the redshift
z̄. The direction cosine ν is the cosine of the angle between k and the observation
direction n (in the literature this direction cosine is often denoted as µ but here we
reserve µ for the corresponding angle in real space and in order to avoid confusion
we denote it by ν in Fourier space).

Equation (3.2) has an interesting property: projecting out the monopole, quadrupole
and hexadecapole in ν, one can directly measure the bias b and the growth rate f .
This has been exploited in previous observations and has led to the best determina-
tions of f so far (see [77, 230, 6, 9, 14, 258] and refs. therein). It is clear that the
form (3.2) of the power spectrum can only be valid if the bins are not too far apart
in the sky. Eq. (3.2) indeed implicitly assumes that the galaxies are observed in one
single direction n so that a ’flat-sky approximation’ with a well defined angle ν is a
reasonably good approximation.

An observable alternative to the power spectrum, which is routinely used in
galaxy surveys is the correlation function ξ(r, µ, z̄), where r denotes the separation
between the galaxies, µ is the orientation of the pair with respect to the direction of
observation n and z̄ is the mean redshift of the survey. The correlation function is
observed in terms of z1, z2 and θ. To express it in terms of r, µ and z̄, the redshifts
z1 and z2 have to be converted into comoving distances and a direction cosine µ has
to be defined.

Neglecting spatial curvature we can use the cosine law to express r in terms of
the comoving distances to z1 and z2,

r(z1, z2, θ) =
√
χ(z1)2 + χ(z2)2 − 2χ(z1)χ(z2) cos θ , (3.4)

where
χ(z) =

1

H0

∫ z

0

dz√
Ωm(1 + z)3 + ΩXgX(z)

. (3.5)
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Here Ωm is the matter density parameter and ΩXgX(z) is the dark energy density in
units of the critical density today; gX is normalized to gX(0) = 1. Hence the corre-
lation function ξ(r, µ, z̄), as well as the power spectrum, are not directly observable:
they both require the use of a fiducial cosmology to calculate r and χ(z). If the
redshift is small, z � 1, we can write χ(z) ' z/H0, and the dependence on H0 is
taken into account by measuring cosmological distances in units of Mpc/h, where
Mpc denotes a megaparsec (' 3.1 × 106 light years) and h = H0/100 km/s/Mpc.
However, in present and upcoming catalogues which go out to z = 2 and more, this
is no longer sufficient and r depends in a non-trivial way on the dark matter and
dark energy density, on the dark energy equation of state and on curvature (which
is set to zero in this work for simplicity). Fortunately this dependence can be ac-
counted for by introducing correction parameters, which allow for deviations from
the fiducial cosmology, see e.g. [303]. In the flat-sky approximation, the standard
correlation function takes the simple form [128]

ξst(r, µ, z̄) = D2
1(z̄)

[(
b2 +

2bf

3
+
f 2

5

)
c0(r)−

(
4bf

3
+

4f 2

7

)
c2(r)L2(µ)

+
8f 2

35
L4(µ)c4(r)

]
, (3.6)

with
c`(r) =

1

2π2

∫
dk k2Pm(k)j`(rk) . (3.7)

Note that the terms containing the growth factor f come from the Jacobian trans-
forming real space positions x into redshifts 1.

In Appendix 3.D we derive the general relation between the c`(r) and the corre-
sponding pre-factors of the Legendre polynomials in the power spectrum.

Expressions (3.2) and (3.6) are currently used to analyse redshift surveys 2. These
expressions are sufficiently accurate to place meaningful constraints on cosmologi-
cal parameters with current data. They may however not be sufficient to analyse
future surveys since they suffer from two important limitations: first they are based
on the flat-sky (sometimes also called distant-observer) approximation. And sec-
ond they take into account only density fluctuations and redshift-space distortions.
They neglect lensing which is relevant especially when the redshifts z1 and z2 are
significantly different. They also neglect all the relativistic projection effects which
are relevant on large scales (close to horizon scale). These expressions are therefore

1We point out that the original derivation of redshift-space distortion from [175] contains a
contribution proportional to n·v = vr. This term does contribute to the monopole and quadrupole
and it consequently modifies (3.6). It is however neglected in most redshift-space distortion analysis
and therefore we do not consider it as ’standard’ and we do not include it in (3.6). We include it
however in the relativistic corrections, along with the other Doppler corrections, which are of the
same order of magnitude (see Eq. (3.12)). Note that, as discussed in more detail in Section 3.2.2,
this specific contribution has been studied in detail in [275, 276, 234, 245] and its impact on the
correlation function was found to be important at small redshift and large separation.

2Note that these expressions are valid in the linear regime only. Theoretical models accounting
for non-linearities have been developed and are used to extend the constraints to non-linear scales,
see e.g. [106].
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only an approximate description of what we are observing, which is also reflected
by the fact that they are gauge-dependent.

Due to these limitations, one would be tempted to use the angular power spec-
trum instead of Eqs. (3.2) and (3.6) to analyse future redshift surveys. The gauge-
invariant C`(z1, z2)’s account indeed for all observable effects. They are directly
observable and do not rely on the flat-sky approximation. And they can be deter-
mined numerically within a few seconds with sub-percent accuracy. Unfortunately
they are not fully satisfactory for several reasons:

• If we want to profit optimally from spectroscopic redshift information from a
survey like the one that will be generated by Euclid [189], DESI [13] or the
SKA [60], we need several thousand redshift slices leading to several million
C`(z, z

′) spectra. For an MCMC parameter estimation this is simply pro-
hibitive. Even if one spectrum is calculated within a few seconds, calculating
the millions of spectra ∼ 105 times would take months even if highly paral-
lelized.

• In each spectroscopic redshift bin we then only have a few 1000 galaxies, less
than one per square degree, and the observed spectra would have very large
shot noise ∝ 1/N , allowing only computation up to very low `.

• One of the big advantages of ξ(r, µ) and P (k, ν) is that the growth rate f(z) can
be simply determined by isolating the monopole, quadrupole and hexadecapole
components in an expansion of P and ξ in Legendre polynomials in µ and ν
respectively. With the C`’s on the other hand there is no simple way to isolate
redshift-space distortions since each multipole ` is a non-trivial combination
of density and velocity.

Hence even though the C`’s are very convenient theoretically, they are not fully
satisfactory from an observational point of view. In this paper we therefore derive
general expressions for the correlation function and the power spectrum, that can
be used as theoretical models for future surveys. Our work builds on the result of
several papers, which have studied the impact of some of the relativistic effects on
the correlation function and on the power spectrum. In [165, 312], expressions for
the flat-sky power spectrum including all non-integrated relativistic effects have been
derived. In [151, 200, 150] the lensing contribution to the flat-sky power spectrum
and the flat-sky correlation function has been studied in detail. Refs. [275, 276, 234]
have derived full-sky expressions for density and redshift-space (RSD) contributions
to the correlation function, which have then be further developed in [245, 256, 34,
311]. These expressions have been re-derived using an alternative method in [57].
Ref. [252] has studied in detail the relation between the full-sky and flat-sky density
and RSD for both the correlation function and the power spectrum. In [48] the full-
sky calculation of [275, 276, 234] has been extended to include gravitational redshift
and Doppler terms, which are especially relevant in the case of multiple populations
of galaxies. Ref. [34] further expands the formalism introduced in [275] by computing
theoretical expressions for the wide-angle corrections including also the integrated
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terms and Ref. [248] numerically evaluates all the non-integrated relativistic terms
in the full-sky. In [249] the integrated terms in the correlation function are plotted
for the first time for two values of the angle θ. The theoretical expressions in
these works rely on an expansion of the correlation function in Tripolar Spherical
Harmonics which on the one hand is a powerful tool to obtain simple expressions in
the full-sky but on the other hand hides some properties of the correlation function
enforced by isotropy.3

Here we generalise and complete these results. We first derive a full-sky expres-
sion for the correlation function including all local and integrated contributions, in
which isotropy of the perturbations is explicit. In particular, we provide a detailed
study of the gravitational lensing contribution to the correlation function which does
not rely on the flat-sky or Limber approximation. We discuss how these full-sky con-
tributions modify the simple multipole expansion of Eq. (3.6). This represents the
first analysis of the full-sky lensing contributions to the multipoles of the correlation
function, which is most relevant when extracting the growth factor. In this aspect
as in several other ways, this analysis goes beyond the pioneering work of [249].

In the second part of this work we use the correlation function to calculate the
power spectrum, which we define as the Fourier transform of the full-sky correlation
function. In this way the power spectrum does not rely explicitly on the flat-sky
approximation. However, it has an unambiguous interpretation only in this limit.
Comparing the full-sky and flat-sky derivations, we find that relativistic effects and
wide-angle corrections 4 are of the same order of magnitude and they have therefore
to be treated in conjunction. This leads us to the conclusion that relativistic effects
cannot be consistently studied in the flat-sky and that the correlation function is
therefore more adapted than the power spectrum to investigate these effects.

This paper is the first part of this study where we present the theoretical deriva-
tion and some numerical results. An exhaustive numerical study, including also
the effects of the new terms on cosmological parameter estimation, is deferred to a
future publication [95]. Of course, there are many studies estimating cosmological
parameters using the C`(z1, z2), see for example [86, 246, 221, 59, 87]. However as
argued above, these can mainly be used for large, photometric redshift bins while
within such bins, in order to profit optically from spectroscopic redshift information,
a correlation function or power spectrum analysis is required.

The remainder of the present work is structured as follows: in the next section
we describe how we obtain the redshift-space correlation function from the angular
correlation function. As already discussed above, the procedure of course depends
on the cosmological model. We shall describe two possibilities: to go either over
the C`(z1, z2) spectra or to obtain ξ(r, µ, z̄) directly from the density fluctuations,
velocity fluctuations and the Bardeen potentials in Fourier space. In Section 3.3 we
study the power spectrum. In Section 3.4 we discuss the implications of our findings

3Whether in flat-sky or full-sky the correlation function depends on three variables: two dis-
tances and one angle (ξ(χ1, χ2, θ) or ξ(χ̄, r, cosα) in this work), one distance and two angles
(ξ(θ, γ, r) in [275], ξ(χ2, θ, φ) in [248]) or three distances (ξ(χ1, χ2, r)). When ξ is expanded in
Tripolar Spherical Harmonics one obtains a function ξ(x1,x2) and the three physical variables are
in general not directly inferred.

4Here we call wide-angle corrections the difference between the flat-sky and full-sky expressions.
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for future surveys and we conclude. Several technical derivations are relegated to 5
appendices.

3.2 The correlation function

The galaxy number counts including relativistic corrections have been derived in [46,
67] with the following result

∆g(n, z) = ∆den + ∆rsd + ∆len + ∆d1 + ∆d2 + ∆g1 + ∆g2 + ∆g3 + ∆g4 + ∆g5 , (3.8)

where

∆den = bδc(χ(z)n, z) , (3.9)
∆rsd = −H−1∂rvr , (3.10)

∆len =
5s− 2

2χ

∫ χ(z)

0

dλ
χ− λ
λ

∆Ω(Φ + Ψ), (3.11)

∆d1 = −

(
Ḣ
H2

+
2− 5s

Hχ
+ 5s− fevo

)
vr , (3.12)

∆d2 = −(3− fevo)Hv , (3.13)

∆g1 =

(
1 +
Ḣ
H2

+
2− 5s

Hχ
+ 5s− fevo

)
Ψ , (3.14)

∆g2 = (5s− 2)Φ , (3.15)
∆g3 = H−1Φ̇ (3.16)

∆g4 =
2− 5s

χ

∫ χ(z)

0

dλ(Φ + Ψ) , (3.17)

∆g5 =

(
Ḣ
H2

+
2− 5s

Hχ
+ 5s− fevo

)∫ χ(z)

0

dλ(Φ̇ + Ψ̇) . (3.18)

Here δc is the matter density fluctuation in comoving gauge, vr is the radial com-
ponent of the velocity in longitudinal gauge, v is the velocity potential such that
v = −∇v, vr = −∂rv; hence v has the dimension of a length (we later define V via
its Fourier transform, v̂ = k−1V (k), so that V (x) is dimensionless). Φ and Ψ are the
Bardeen potentials and ∆Ω denotes the Lapacian on the sphere of directions n. The
galaxy bias is denoted by b, s is the magnification bias and fevo is the evolution bias.
These biases generally depend on redshift. The magnification bias s comes from the
fact that in general we do not observe all galaxies but only those which are brighter
than the flux limit of our instrument. Due to lensing and to some relativistic effects,
some fainter galaxies may make it into our surveys. This is taken into account by s
which is proportional to the logarithmic derivative of the galaxy luminosity function
at the flux limit of our survey, see [67, 88] for more details.

The terms ∆den and ∆rsd are the density and redshift-space distortion terms
usually taken into account. In the following we call the sum of these two terms the
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’standard terms’. ∆len represents the lensing term, also often called magnification.
This term has already been measured with quasars at large redshift, see e.g. [216],
but it is usually neglected in galaxy surveys, since it is subdominant at low redshift.
∆d1 is the Doppler contribution. Note that here we have used Euler’s equation to de-
rive this term. In all generality this term contains a contribution from gravitational
redshift, proportional to ∂rΨ/H, which can be rewritten in terms of the velocity vr
using Euler equation, see e.g. [48]. ∆d2 is a velocity term which comes from trans-
forming the longitudinal gauge density into the comoving density. ∆g1,∆g2 and ∆g3

are relativistic effects, given by the gravitational potentials at the source. As such
they are sometimes called ’Sachs-Wolfe’ terms. ∆g4 denotes the so-called Shapiro
time-delay contribution and ∆g5 is the integrated Sachs-Wolfe term.

In the following we will sometimes group together the relativistic non-integrated
terms (d1, d2, g1, g2, g3). The lensing term is treated separately since its calcula-
tion is different. The relativistic integrated terms (g4 and g5) are neglected in our
numerical results since their contribution is largely subdominant with respect to the
lensing term.

3.2.1 Using C`’s

We start by deriving the correlation function of (3.8), using the angular power
spectrum C`. Using Eqs. (3.1) and (3.4) we can write

ξ(r, z̄, θ) =
1

4π

∑
`

(2`+ 1)C`(z̄ −∆z, z̄ + ∆z)L`(cos θ) , (3.19)

where ∆z is given by (H̄ = H(z̄), χ̄ = χ(z̄))

∆z(r, z̄, θ) =
H̄
√
r2 − 2χ̄2(1− cos θ)√

2(1 + cos θ)
∈
[
0, rH̄/2

]
. (3.20)

This is a simple consequence of (3.4) setting z1,2 = z̄ ± ∆z and approximating
χ1,2 = χ(z̄ ± ∆z) ' χ(z̄) ± ∆z/H(z̄). This function is the same full correlation
function as the one given in Eq. (3.1), but now expressed in terms of the variables
r, z̄ and θ instead of z1, z2 and θ. We shall use the same symbol ξ to denote it.

Usually, the correlation function is not considered as a function of r, z̄ and the
opening angle θ between the two directions which are correlated, but as a function of
r, z̄ and the angle with a fictitious but fixed line-of-sight between the two directions
of observation. If θ is small enough, redshift-space distortions are proportional to the
cos2 of the angle with this fictitious direction. To mimic this situation we introduce

r‖ = χ2 − χ1 ' 2∆z/H(z̄) ≤ r , (3.21)

µ =
r‖
r
, −1 ≤ µ ≤ 1 and r⊥ =

√
r2 − r2

‖ . (3.22)

Writing χ̄ = (χ1 + χ2)/2 and using Eq. (3.21) we obtain

cos θ =
2χ̄2 − r2 + 1

2
µ2r2

2χ̄2 − 1
2
µ2r2

=
2χ̄2 − r2

⊥ − 1
2
r2
‖

2χ̄2 − 1
2
r2
‖
≡ c(z̄, r, µ) . (3.23)
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Note that χ̄ and χ(z̄) are not exactly the same but in what follows we neglect
this difference which is of order (∆z)2/H(z̄). With this, the correlation function,
ξ(r, z̄, θ) can be written as a function of z̄, r‖ and r⊥ (or, equivalently, z̄, r and µ)

ξ(r‖, r⊥, z̄) =
1

4π

∑
`

(2`+ 1)C

(̀
z̄ −

r‖H̄

2
, z̄ +

r‖H̄

2

)
L` (c(z̄, r, µ)) (3.24)

= 〈∆(x1, z̄ −∆z)∆(x2, z̄ + ∆z)〉 . (3.25)

Note that, again, we have re-expressed ξ in different variables.
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Figure 3.1: The definitions of the angles α (left panel, r‖ = χ2 − χ1), γ (middle
panel) and β (right panel) as discussed in the text.

Expression (3.24) is valid as long as ∆z is small so that ∆z ' r‖H(z̄)/2 =
(χ2−χ1)H(z̄)/2 is a good approximation. Expression (3.25) however, is valid for all
possible values of r‖ = χ(z̄+ ∆z)−χ(z̄−∆z) and r =

√
(x1 − x2)2, r⊥ =

√
r2 − r2

‖

where x1 = χ(z̄ − ∆z)n1, x2 = χ(z̄ + ∆z)n2 such that c(z̄, r, µ) = n1 · n2. For
a given cosmology, fixing r‖ and z̄ is therefore equivalent to fixing z1 and z2 while
r⊥ then fixes cos θ. Given a cosmological background model, there is a one-to-one
correspondence between the model-independent angular correlation function (3.1)
and the model-dependent correlation function (3.25).

The angle α, given by µ = cosα defined by Eq. (3.22), is the angle between the
line r connecting x1 and x2 and the line connecting the intersection of the circle
around x2 with radius r‖ = µr and the Thales circle over r (see Fig. 3.1, left panel).
This angle is not very intuitive and it is not what observers use. In practice the
angles used are either β, the angle between r and the line dividing r into two equal
halves (see Fig. 3.1, right panel) or γ, the angle between the line bisecting the angle
θ and r (see Fig. 3.1, middle panel). Using elementary geometry we can express the
angles β and γ in terms of θ, χ1 and χ2 (see Appendix 3.A for a derivation):

cos β = µfβ(θ, χ1, χ2) , cos γ = µfγ(θ, χ1, χ2) , (3.26)

fβ =
χ1 + χ2√

χ2
1 + χ2

2 + 2χ1χ2 cos θ
, fγ =

√
1 + cos θ√

2
. (3.27)
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In the small angle approximation, θ → 0, both functions behave as

fβ,γ = 1 +O(θ2) .

If r‖ 6= 0, i.e. χ1 6= χ2, we can express c(z̄, r, µ) in terms of z̄, r, cos β as

c(z̄, r, cos β) =
1

2χ1χ2

[
(χ2

1 − χ2
2)2

r2 cos2 β
− χ2

1 − χ2
2

]
. (3.28)

Here χ1,2 are given in terms of χ̄ and r by solving the equations

χ̄ = (χ1 + χ2)/2 and r2 = χ2
1 + χ2

2 − 2χ1χ2 cos θ . (3.29)

If we want to express the correlation function in terms of z̄, r and cos β, we have to
solve the system (3.28,3.29). A short calculation gives

cos θ = 1− 8r2χ̄2(1− cos2 β)

16χ̄4 − r2 cos2 β(8χ̄2 − r2)
, χ1,2 = χ̄±

√
χ̄2 − 4χ̄2 − r2

2(1 + cos θ)
,(3.30)

r‖ = χ2 − χ1 = 2

√
χ̄2 − 4χ̄2 − r2

2(1 + cos θ)
. (3.31)

Inserting cos θ from (3.30) and r‖ from (3.31) in (3.24), we can express the correlation
function as a function of r, z̄ and cos β. In terms of γ we find

cos θ = 1− r2

2χ̄2
(1− cos2 γ) . (3.32)

In the small angle limit, all three angles, α, β and γ coincide. In Section 3.2.2 we
will see that the angle which gives the result closest to the flat-sky limit is the angle
µ. For this reason and due to its simplicity in what follows we express both, the
correlation function and the power spectrum in terms of the projection along and
transverse to the line-of-sight using the angle α with cosα = µ = (χ2−χ1)/r = r‖/r.
As explained above, for small angles this is equivalent to choosing β or γ, but for
large angles, the expressions in terms of µ are simpler.

In Fig. 3.2 we show the correlation function at z̄ = 1 as a function of r‖ and
r⊥. In all figures, we use the cosmological parameters: h2Ωm = 0.14, h2Ωb = 0.022,
h = 0.676, As = 2.215 × 10−9 at k∗ = 0.05 Mpc−1, ns = 0.961, b(z) = 1, fevo = 0
and s = 0 unless otherwise stated. In the left panel of Fig. 3.2 we include only
the density, in the middle panel we also consider redshift-space distortions (RSD)
and in the right panel we include also the lensing term. While the pure density
term is spherically symmetric with a well visible baryon acoustic oscillation (BAO)
feature at r ∼ 100Mpc, the RSD removes power for small r⊥ and adds power at
large r⊥. Also the maximal amplitude has more than doubled due to RSD 5. Finally
the lensing term adds a very significant amount of power for large r‖ and small r⊥.

5Note that we have chosen b = 1. For larger values of b, the importance of redshift-space
distortion with respect to the density contribution is reduced.



Chapter 3. The full-sky relativistic correlation function and power spectrum of
galaxy number counts 49

Figure 3.2: The correlation function at redshift z̄ = 1 as a function of r‖ and r⊥.
The left panel contains only the density contribution, ξden, the middle panel contains
also RSD, ξst, and the right panel contains also the lensing term, ξst+len.

This is the case when a foreground density fluctuations lenses a structure at higher
redshift along its line of sight. The additional relativistic contributions are very
small and become visible only on very large scales, as we shall see in the rest of this
paper and as has already been anticipated in several papers, e.g. Refs. [46, 67].

In Fig. 3.3 we show fractional differences for µ = 0 (left) and µ = 1 (right)

∆ξA ≡ ξA − ξst

ξst
, (3.33)

where
ξA =

〈(
∆st + ∆A

)
(n1, z1)

(
∆st + ∆A

)
(n2, z2)

〉
. (3.34)

In this way we show separately the contribution of each correction A with respect
to the standard term, including its correlation with density and redshift-space dis-
tortion. The middle panel shows ∆ξA for A = lensing and the lower panel for all
the non-integrated relativistic effects, namely the terms d1, d2, g1, g2 and g3 (see
Eqs. (3.8) to (3.18) for a definition of the various relativistic terms). Finally, as
reference, we plot in the top panel the fractional difference due to redshift-space
distortion, namely ∆ξrsd = (ξst − ξden)/ξden.

Not surprisingly, for µ = 0 the lensing term is very small apart from a small
effect on the acoustic peaks. For µ = 1 however, at large scales r > 150Mpc,
lensing becomes the dominant term. As also noted in [200], it increases linearly
with distance. Comparing our full-sky calculation of the lensing (orange) with the
flat-sky expression (blue) derived in [200] and in Appendix 3.E (see Eq. (3.E132))
we see that for µ = 1 the two expressions agree very well, which is not surprising
because in this case n1 = n2 and flat-sky is a good approximation. The only source
of difference in this case comes from the fact that the flat-sky result uses Limber
approximation whereas the full-sky result is exact. This difference is very small,
showing that Limber approximation for µ = 1 is very good. For µ = 0 on the other
hand we see a non-negligible difference between the flat-sky and full-sky result. We
will discuss this in more detail in Section 3.2.2.

From the bottom panel, we see that the non-integrated relativistic terms gen-
erate a correction of the order of the percent at large separation r ∼ 350Mpc/h.
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Figure 3.3: The relative difference ∆ξ at redshift z̄ = 1 for µ = 0 (left panels)
and µ = 1 (right panels). Top panels: ∆ξrsd = (ξst − ξden)/ξden. Middle panels:
fractional difference induced by lensing ∆ξlensing (full-sky in orange and flat-sky in
blue). Bottom panels: ∆ξA where A =: d1 (blue), d2 (orange), g1 (green) and g2
(red). The contribution g3 is subdominant (see Eqs. (3.8) to (3.18) for a definition
of the various relativistic terms). Negative contributions are dashed.

Naively we would expect the Doppler term (d1: blue) to dominate over the other
relativistic effects because it is proportional to the peculiar velocity and contains
therefore one more factor k/H than the terms proportional to the potentials (see
e.g. Eqs. (3.36) to (3.45) below). However, as shown in [48] (see also Appendix 3.B),
the correlation of this term with the standard term 〈∆d1∆st〉 exactly vanishes in the
flat-sky because it is totally anti-symmetric. The contribution that we see in Fig. 3.3
is therefore due to the correlation 〈∆d1∆d1〉, which is a factor H/k smaller, hence
∼ 〈∆stΨ〉 and to the full-sky contributions to 〈∆d1∆st〉, which are of the order
r/χ〈∆d1∆st〉 ∼ 〈∆d1∆d1〉 ∼ 〈∆stΨ〉. Consequently, with one population of galaxies
the Doppler contribution to the correlation function is of the same order of mag-
nitude as the gravitational potential contributions (d2, g1 and g2). Only in the
case where one cross-correlates two populations of galaxies, the Doppler contribu-
tion strongly dominates over the other relativistic contributions, because in this case
〈∆d1∆st〉 does not vanish in the flat-sky.

For µ = 0, the Sachs-Wolfe like term (g1) dominates over the other correc-
tions at all scales. For µ = 1 this term still dominates at small separation, but
at large separation the full-sky corrections to the Doppler term become important
and dominates over g1. Interestingly the second Sachs-Wolfe like term (g2) and the
second Doppler term (d2) are nearly equal for both values of µ. It is easy to derive
from the continuity and the Poisson equations that in a matter dominated Universe
(H/k)V = −(2/3)Φ, hence ∆d2

` = ∆g2
` if s = 0, see Eqs. (3.40) and (3.42). At lower

redshifts, when Λ-domination sets in, we expect this equality to be less precise. The
relativistic terms not shown in Fig. 3.3 are the Shapiro time delay (g4) and the
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integrated Sachs-Wolfe term (g5). These integrated terms are always subdominant
with respect to the lensing term.

Let us also note that the difference between the flat-sky standard term and the
full-sky standard term is of the same order of magnitude as the relativistic terms
depicted in the bottom panel of Fig. 3.3. It is therefore not consistent to use the
flat-sky approximation for the standard terms when investigating relativistic effects.

Finally we should point out that in this work we present the theoretical contribu-
tions of relativistic effects on the correlation function and the power spectrum (see
Figs. 3.3, 3.8, 3.11, 3.16 and 3.17). To estimate the observational impact of these
terms one should build a realistic estimator and proceed with signal-to-noise analy-
sis, forecasts and constraints for a specific survey. Such studies have been performed
for the angular power spectrum C` in [86, 246, 247, 59, 87, 199] and for the anti-
symmetric part of the correlation function ξg in [49]. In a future work [95], we will
develop this for the multipoles of the correlation function and the power spectrum.
This will allow us to compare the observational impact of the relativistic effects on
the angular power spectrum with their impact on the multipoles of the correlation
function and power spectrum, which are the standard observables currently used in
large-scale structure surveys to measure the growth rate f .

3.2.2 Direct determination of the correlation function

In the calculation of the correlation function presented in the previous section, we
still need all the C`(z1, z2) for an accurate calculation. Hence the reason (1) given
in the introduction for the use of the correlation function and the power spectrum is
not satisfied: the calculation is not simplified. To compute the correlation function
for thousands of spectroscopic redshifts in an MCMC would still take months even
if very highly parallelised. In this section we show how to improve this. The method
explained in this section reduces the calculation of several thousand C`(z1, z2)’s into
just several terms. This results in a very significant speed up so that the computation
becomes feasible.

We expand on a method introduced in [57] which avoids the computation of
C`(z1, z2) but requires integrations in k-space and over the line-of-sight, as we shall
see. In this method, no flat-sky approximation is performed, and the correlation
function is therefore exact, within linear perturbation theory. We start from expres-
sion (3.1) for the correlation function and use that the C`(z1, z2) are of the form
(see [88]),

C`(z1, z2) =
∑
A,B

CAB
` (z1, z2) , CAB

` (z1, z2) = 4π

∫
dk

k
PR(k)∆A

` (k, z1)∆B
` (k, z2) .(3.35)

Here PR denotes the primordial power spectrum, determined by the amplitude As
and the primordial spectral index ns:

PR(k) =
1

2π2
As

(
k

k∗

)ns−1

,
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and ∆A
` , ∆B

` are the Fourier-Bessel transforms of the terms defined in (3.9) to (3.18).
More precisely

∆den
` = b(z)SDj`(kχ) , (3.36)

∆rsd
` =

k

H
SV j

′′
` (kχ) , (3.37)

∆len
` =

(
2− 5s

2

)
`(`+ 1)

χ

∫ χ

0

∂λ
χ− λ
λ

(Sφ + Sψ)j`(kλ) , (3.38)

∆d1
` =

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV j

′
`(kχ) , (3.39)

∆d2
` = −(3− fevo)

H
k
SV j`(kχ) = ∆d2(z, k)j`(kχ) , (3.40)

∆g1
` =

(
1 +
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
Sψj`(kχ) = ∆g1(z, k)j`(kχ) , (3.41)

∆g2
` = (−2 + 5s)Sφj`(kχ) = ∆g2(z, k)j`(kχ) , (3.42)

∆g3
` =

1

H
Ṡφj`(kχ) = ∆g3(z, k)j`(kχ) , (3.43)

∆g4
` =

2− 5s

χ

∫ χ

0

∂λ(Sφ + Sψ)j`(kλ) , (3.44)

∆g5
` =

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)∫ χ

0

∂λ(Ṡφ + Ṡψ)j`(kλ) . (3.45)

Here j` are the spherical Bessel functions and the functions SX(z, k) are the transfer
functions for the variable X which we specify in Appendix 3.B. Over-dots indicate
derivatives with respect to conformal time. For the evolution bias fevo, the magni-
fication bias s and the galaxy bias b we follow the conventions of [88]. From these
expressions one also infers the scaling of the different terms with respect to the
density term. On sub-Hubble scales, k > H, the scaling of these terms with pow-
ers of H/k is a simple consequence of Newtonian physics. The continuity equation
implies SV ∼ (H/k)SD and the Poisson equation yields Sφ ∼ Sψ ∼ (H/k)2SD, we
see that the density, RSD and lensing terms dominate, while the Doppler term d1
is suppressed by one factor of (H/k), and all other terms are suppressed by (H/k)2.
For this reason all relativistic terms apart from lensing are strongly suppressed on
sub-horizon scales and we call them ’large-scale contributions’. Most of them are
relevant only on very large scales close to H(z)−1. Exceptions to this rule are ∆d1

`

and ∆g1
` which contain a pre-factor 1/(χH) which becomes large at very low redshift

where χ is small. On super horizon scales all the transfer functions SX are typically
of the same order but they become gauge dependent.

Using these expressions, the correlation function ξ can be written as

ξ =
∑
A,B

ξAB with ξAB(θ, z1, z2) =

∫
dk

k
PR QAB

k (θ, z1, z2) , (3.46)
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where we define

QAB
k (θ, z1, z2) ≡

∑
`

(2`+ 1)∆A
` (k, z1)∆B

` (k, z2)L`(cos θ) . (3.47)

In most of the terms QAB
k we have a sum of the form∑

`

(2`+ 1)L`(cos θ)j`(kχ1)j`(kχ2) = j0(kr) , (3.48)

where r =
√
χ2

1 + χ2
2 − 2χ1χ2 cos θ (see e.g. [4] (10.1.45)). Inserting (3.48) into (3.46)

we can easily calculate the correlation function for these terms avoiding the numer-
ically costly sum over the C`’s. The redshift-space distortion and the Doppler term
give rise to contributions that are slightly different because they contain first and
second derivatives of the spherical Bessel functions with respect to kχ1 and kχ2.
These terms can however be treated in a very similar way using recurrence relations
for the spherical Bessel function. For this we define

ζ ij ≡
∑
`

(2`+ 1)j
(i)
` (kχ1)j

(j)
` (kχ2)L`(cos θ) =

∑
`

(2`+ 1)j
(i)
` (x1)j

(j)
` (x2)L`(cos θ) ,

(3.49)
where we have set xi = kχi and j

(i)
` (x) = ∂i

∂xi
j`(x). Using

ζ ij(x1, x2) = ζji(x2, x1) and
∂n+m

∂xn1∂x
m
2

ζ ij = ζ i+n,j+m,

we can determine explicit expressions for the ζ ij for i, j ∈ {0, 1, 2}. They are all
given in Appendix 3.B.

The only coefficients that do not fall into this category are the ones in ∆len
` which

contain additional factors ` and (` + 1) (see Eq. (3.38)). These terms can however
be computed using the identity

4ΩL`(cos θ) = −`(`+ 1)L`(cos θ) .

They are given by

ζLL ≡
∑
`

(2`+ 1)`2(`+ 1)2j`(x1)j`(x2)L`(cos θ) = 42
Ω ζ

00 , (3.50)

ζ iL ≡
∑
`

(2`+ 1)`(`+ 1)j
(i)
` (x1)j`(x2)L`(cos θ) = −4Ω ζ

i0 , (3.51)

where LL denotes the correlation of lensing with itself and iL the cross-correlation
of lensing with one of the other terms. With this we can build all the functions
QAB
k and hence, with Eq. (3.46), the correlation function. The complete list of QAB

k

is given in Appendix 3.B. Here we just report the dominant contributions, i.e. the
contributions which are not suppressed with additional powers of H/k with respect
to the density term:

Qden(θ, z1, z2) = b(z1)b(z2)SD(z1)SD(z2) ζ00(kχ1, kχ2) ,
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Qrsd(θ, z1, z2) =
k2

H1H2

SV (z1)SV (z2) ζ22(kχ1, kχ2) ,

Qlen(θ, z1, z2) =
(2− 5s)2

4χ1χ2

∫ χ1

0

∫ χ2

0

∂λ∂λ′
[

(χ1 − λ)(χ2 − λ′)
λλ′

Sφ+ψ(λ)Sφ+ψ(λ′)ζLL(kλ, kλ′)

]
,

Qden-rsd(θ, z1, z2) =
kb(z1)

H2

SD(z1)SV (z2) ζ02(kχ1, kχ2) ,

Qden-len(θ, z1, z2) = b(z1)SD(z1)

(
2− 5s

2χ2

)∫ χ2

0

∂λ

[
χ2 − λ
λ

(
Sφ(λ) + Sψ(λ)

)
ζ0L(kχ1, kλ)

]
,

Qrsd-len(θ, z1, z2) =
k

H1

SV (z1)

(
2− 5s

2χ2

)∫ χ2

0

∂λ

[
χ2 − λ
λ

(
Sφ(λ) + Sψ(λ)

)
ζ2L(kχ1, kλ)

]
.

Note that here and in the following we suppress the argument θ in the functions
ζAB(kχ1, kχ2, θ) for simplicity. The correlation function is then given by Eq. (3.46).
For example, the correlation function including only the standard terms is given by

ξst =

∫
dk

k
PR
[
Qden(θ, z1, z2) +Qden-rsd(θ, z1, z2) +Qrsd-den(θ, z1, z2) +Qrsd(θ, z1, z2)

]
=

2As
9π2Ω2

m

D1(z1)D1z2)

∫
dk

k

[
b(z1)b(z2)ζ00(kχ1, kχ2)− b(z1)f(z2)ζ02(kχ1, kχ2)

− b(z2)f(z1)ζ02(kχ2, kχ1) + f(z1)f(z2)ζ22(kχ1, kχ2)

](
k

H0

)4(
k

k∗

)ns−1

T 2(k) .

(3.52)

For the second equal sign we made use of the transfer functions given in Ap-
pendix 3.B. Eq. (3.52) is expressed in terms of the redshift z1 and z2 and the angle
θ. It can however easily be written in terms of a mean redshift z̄, the separation of
the galaxies r and the orientation of the pair using Eqs. (3.21),(3.22),(3.23).

The correlation function obtained in this way agrees with the full-sky expres-
sions derived in [275, 276, 234] for the standard terms and in [48] for the Doppler
term. This method has however the advantage that it can be used to calculate also
expressions for the integrated terms valid in the full-sky. Since the lensing is the
dominant correction, it is important to have an accurate expression for this term
valid at all scales and not relying on the Limber approximation.

µ and r dependence of the correlation function

Let us first discuss the full-sky correlation function as a function of µ and r. In
Fig. 3.4 we show the lensing contribution

ξlensing =
〈(

∆st + ∆lensing
)
(n1, z1)

(
∆st + ∆lensing

)
(n2, z2)

〉
−
〈
∆st(n1, z1)∆st(n2, z2)

〉
,

(3.53)
as a function of µ and r. We compare the full-sky result (solid lines) with the
flat-sky result (dashed lines) derived in [151] and given in Eq. (3.E132). In the
top left panel we show the cross-correlation between density and lensing, whereas
in the top right panel we show the lensing-lensing correlation. We see that the
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flat-sky expression for the lensing-lensing agrees extremely well with the full-sky
expression. The density-lensing cross-correlation is however significantly different in
the flat-sky and full-sky, even at small separation. This can be understood in the
following way. The flat-sky result assumes not only that n1 = n2, but it also uses
the Limber approximation, which implies that only correlations at the same redshift
contribute to the correlation function. Hence instead of integrating the lensing
along the line-of-sight as is done in the full-sky expression, the flat-sky expression
correlates the density at position z2 with the lensing from the same redshift. This
can be seen by looking at Eq. (3.E123), where the integral along the line-of-sight
has been replaced by the function δ(χ2 − λ). This approximation is quite good for
values of µ close to 1, i.e. when the galaxies are behind each other, but it is very
bad when µ becomes small and for small separations r. In such cases, the density
δ is correlated with the gravitational potentials generated by that same density Φ
and Ψ and therefore the correlation is non-negligible even when the two redshifts
are not exactly the same. As a result the flat-sky expression, which ignores this
direct correlation, strongly underestimates the density-lensing correlation. Since the
density-lensing cross-correlation is negative whereas the lensing-lensing is positive,
this means that the flat-sky result overestimates the total correlation function, as
shown in the bottom left panel of Fig. 3.4. The bottom right panel shows the total
lensing contribution as a function of separation for various values of µ. In general
we find that the relative difference between the flat-sky and full-sky result is of the
order of 20 percents and it can become much larger in some configurations.

In all these plots we do not calculate the lensing contribution when µ is exactly
equal to 1. This value is indeed not physical since it would correspond to a galaxy
situated exactly behind the other, which we can of course not see. Numerically
this value is also problematic because it requires the computation of the correlation
function between points that are exactly at the same position. This correlation
function diverges if one uses the linear power spectrum and it has to be regularised
by non-linear effects which suppress the power spectrum on very small scales, where
fluctuations are damped. The largest value that we take is therefore µ = 0.9997895.
This value ensures us that the line-of-sight from the most distant galaxy passes
sufficiently far away from the closest galaxy to avoid being absorbed by it. In the
following when we discuss about the parallel correlation function or when we show
plots for µ = 1, this has to be understood as µ = 0.9997895. Finally let us mention
that we do not include the correlation between redshift-space distortion and lensing.
This correlation is exactly zero in the flat-sky approximation and we do expect it to
remain very small in the full-sky 6.

So far we have calculated all the flat-sky and full-sky correlation functions using
the linear power spectrum. Since we are mainly interested in correlations at large
separations, this is a very well motivated approximation for all the non-integrated
terms. We have indeed checked that all the large-scale relativistic contributions
change by at most 2-3 percents at small scales if we use the halo-fit power spectrum
instead of the linear one to calculate the correlation function. For the lensing con-

6We have checked numerically that at z̄ ∼ 1 the RSD-lens contribution to the angular power
spectrum is 3 to 4 orders of magnitude smaller than the δ-lens term.
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Figure 3.4: Top panels: correlation between density and lensing (left) and lensing-
lensing (right) at z̄ = 1, as a function of µ and for fixed separation r = 8Mpc/h
(orange), r = 100Mpc/h (blue) and r = 420Mpc/h (green). Solid lines show
the full-sky result and dashed lines the flat-sky result using Limber approximation.
Bottom panels: total lensing contribution as a function of µ (left) and r (right) at
z̄ = 1.

tribution on the other hand, non-linearities are important even at large separation,
as already pointed out in [151, 200, 150]. This is due to the fact that lensing is sen-
sitive not only to correlations between the two positions of the galaxy, but also to
all correlations between the two lines-of-sight from these galaxies. When µ is large,
these two lines-of-sight are close to each other at least in the vicinity of the observer,
even when r is large, and consequently non-linear effects are important. Lensing has
the property to mix large and small separations and a full-sky non-linear treatment
is therefore necessary.

The simplest way to calculate the full-sky lensing non-linearly is to use the
Poisson equation to relate the gravitational potentials along the line-of-sight to the
density (this equation is indeed valid also in the non-linear regime) and to use halo-
fit to calculate the non-linear density power spectrum. This procedure can however
not be implemented exactly because the full-sky lensing requires the density power
spectrum at different redshifts along the two lines-of-sight Pm(k, z, z′) where z and
z′ can take any values between 0 and z1 and z2. Halo-fit gives an expression for
the power spectrum only when z = z′. Note that this problem does not arise in the
calculation of the flat-sky expression which uses Limber approximation and therefore
neglects correlations coming from z 6= z′. In order to overcome this problem we use
the following approximate procedure: we calculate the non-linear power spectrum at
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Figure 3.5: Fractional differences ∆ξlensing at redshift z̄ = 1 using the full-sky
formalism. The solid lines show the fractional difference using the linear transfer
function and the dashed line is using halofit. In the left panel we show ∆ξlensing

as a function of separation r for fixed values of µ: µ = 1 (green), µ = 0.98 (blue)
and µ = 0.8 (orange), and in the right panel we show it as a function of µ for fixed
separation: r = 8Mpc/h (orange), r = 100Mpc/h (blue) and r = 420Mpc/h (green).

a middle redshift along the line-of-sight z∗ and then evolve it using the linear growth
rate D1(z) along the photon trajectory. This is of course not completely correct
because in the non-linear regime density does not evolve with the linear growth rate,
but it gives us a good approximation of the true non-linear lensing contribution. To
determine which z∗ is the most appropriate, we use the flat-sky approximation 7.
We checked that our result behaves in a consistent way when we vary z∗, which gives
us confidence in this approximation (see Fig. 3.19 in Appendix 3.C for more detail).

In Fig. 3.5 we show the fractional difference with respect to the standard term
due to the full-sky lensing in the linear and non-linear regime ∆ξlensing. Contrary to
Fig. 3.3 where the fractional difference of all the terms was calculated with respect
to the full-sky standard term, here we show the fractional difference with respect to
the flat-sky standard term given in Eq. (3.6). In this way Fig. 3.5 can be directly
interpreted as the fractional error that one makes when using the standard flat-sky
correlation function instead of the full-sky observable correlation function containing
lensing 8. Clearly, lensing becomes very important at large separation and large µ.
Neglecting it in this regime can therefore impact the determination of cosmological

7More precisely we do the following: we calculate the flat-sky contribution using the correct
non-linear power spectrum integrated along the line-of-sight (remember that in the flat-sky we can
do that since we have only one line-of-sight). Then we use the same approximation as in the full-
sky to calculate also the flat-sky and we compare the correct flat-sky result with the approximate
flat-sky result for various values of z∗. This allows us to find the best z∗. For z = 1 we find
z∗ = 0.42 and for z = 2, z∗ = 0.73.

8Note that to calculate the flat-sky standard expression in the non-linear regime we use the
linear continuity equation to relate the velocity to the density and then we use halo-fit for the
density power spectrum. This procedure is not completely correct as the continuity equation is
also modified in the non-linear regime. Current data analyses use a more sophisticated procedure
to calculate the non-linear redshift-space distortions, based on [106]. Our procedure is however
conservative since it tends to overestimate the impact of non-linearities on redshift-space distortions
and therefore to underestimate the relative importance of lensing.
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parameters in a significant way. We defer a detailed study of this impact to a future
work [95]. Comparing linear and non-linear results, we find that for µ = 1, the non-
linear result is very different from the linear one at all separations up to 250 Mpc/h.
For r ≤ 150Mpc/h, the non-linear lensing is significantly enhanced with respect
to the linear regime. At larger separation however, the tendency is reversed. This
reflects the fact that non-linearities move power from small to large k. On the
right panel we see that at small separation, r = 8Mpc/h, the non-linear lensing is
significantly larger than the linear one for all µ. In summary, Fig. 3.5 shows that
lensing cannot be neglected at redshift 1 and that it has to be calculated in the
full-sky non-linear regime, because it mixes small scales (where non-linearities are
important) and large scales (where full-sky effects are important).

Multipole expansion of the correlation function

The correlation function is in general a function of separation r and orientation
µ. However, the dependence in µ of the standard flat-sky expression (3.6) is very
simple, since it is given by L2(µ) and L4(µ) only. This simple dependence has been
exploited to measure directly the growth rate f . In practice this means that each
pair of galaxies is weighted either by L0(µ) = 1, L2(µ) or L4(µ). The average over
all orientations is then performed, allowing one to measure the coefficient in front
of each of the L`, i.e. the monopole, quadrupole and hexadecapole.

In the full-sky regime the dependence of redshift-space distortions on µ becomes
more complicated, first due to the fact that n1 and n2 are not parallel (wide-angle
effects) and second because the growth rate and bias are evolving with time f(z1) 6=
f(z2). In addition, the large-scale relativistic effects and the integrated effects have
their own µ-dependence, which cannot be simply expressed in terms of L2(µ) and
L4(µ) as we saw in Fig. 3.4. As a consequence the multipole expansion of the
full-sky observable correlation function differs from the flat-sky standard expansion.
Firstly the monopole, quadrupole and hexadecapole of the full-sky standard term
differ from the flat-sky ones. Secondly, these multipoles get corrections from the
relativistic and lensing contributions. And finally, due to wide-angle effects and
lensing, the multipoles beyond ` = 4 no longer vanish.

In Fig. 3.6 we show the impact of wide-angle effects on the monopole, quadrupole
and hexadecapole. Since the standard terms are almost not affected by non-linearities
above 20Mpc/h, we calculate these multipoles using the linear power spectrum. In
black we show the flat-sky multipoles from density and redshift-space distortions,
that are simply given by the coefficients in front of L`(µ) in Eq. (3.6). In blue,
purple and green we show the full-sky multipoles from density and redshift-space
distortions obtained from expression (3.52), which we multiply by the appropriate
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z = 1

Figure 3.6: The multipoles from density and redshift-space distortions, ξst, at
redshift z̄ = 0.1 (left) and z̄ = 1 (right). We show the monopole (top) quadrupole
(middle) and hexadecapole (bottom) for different definitions of the angle in the full-
sky: µ (blue, solid), cos γ (purple, dash-dotted) and cos β (green, dashed) and we
compare this with the flat-sky multipoles obtained from (3.6) (black, dotted).

Legendre polynomial and numerically integrate over directions 9

ξ`(r, z̄) =
1

2`+ 1

∫ 1

−1

ξ(r, z̄, σ)L`(σ)dσ . (3.54)

As discussed in Section 3.2.1, in the full-sky there is no unique way to define the
orientation of the pairs of galaxies. We therefore calculate the multipoles for different
choices: σ = cos β, σ = cos γ and σ = µ. The amplitude of the multipoles depends
on this choice, as can be seen from the different colours in Fig. 3.6. At redshift
z̄ = 1 (right), we find that the monopole differs only at very large scales by a few
percent, while the quadrupole also differs at intermediate scales by a few percent.
The hexadecapole is significantly different at most scales. At redshift z̄ = 0.1 (left)
the difference is much more important, up to 10% on the quadrupole at intermediate
scales already. And the hexadecapole is very different at most scales. As already
pointed out in [275, 276, 234, 245, 256, 34, 311] it is therefore important to account
for wide-angle effects when interpreting the multipoles. We also see in Fig 3.6 that
the angle which is closest to the flat-sky result is nearly always µ and especially it

9Note that the multipoles defined in Eq. (3.54) completely differ from the multipoles defined
in [249] (see their Eq. (17)). The multipoles in (3.54) are defined at fixed galaxy separation r and
they correspond to what observers are measuring in redshift surveys. The multipoles in [249] are
on the contrary defined at fixed angular separation θ (see their Fig. 1). As a consequence they
mix different separations r and have completely different properties.
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Figure 3.7: We show the multipoles of different contributions to the full-sky corre-
lations function at z̄ = 1. The monopole (blue), quadrupole (orange), hexadecopole
(green) and ` = 6 purple.

is always µ for z̄ = 1. Note that in [252], expressions for the dominant wide-angle
corrections to the monopole, quadrupole and hexadecapole have been derived for
various choices of angles.

In Fig. 3.7 we show the multipoles from all the non-integrated contributions in
the full-sky linear regime. We use the angle µ for this figure. Each plot represents
a different relativistic contribution (see Eqs. (3.9) to (3.18) for a definition of the
terms). As in Figs. 3.3 and 3.5, this encompasses the correlation of the term with it-
self as well as its cross-correlation with the standard term (density and redshift-space
distortion). One would naively expect that the dominant contribution would come
from the Doppler term d1 correlated with the standard term. However, as discussed
in Section 3.2.1, this contribution exactly vanishes in the flat-sky approximation.
It would contribute only to a dipole, which cannot be seen with one population of
galaxies, due to its anti-symmetry (indeed only even multipoles exist in this case).
As a consequence to measure the dominant dipole one needs to cross-correlate two
populations of galaxies, as discussed in [48, 49, 112, 125].

However, as discussed in Section 3.2.1, in the full-sky the Doppler-standard cor-
relation does not exactly vanish and it contributes to the even multipoles. The
amplitude of this term is then of the same order of magnitude as the d1-d1 corre-
lation and as the other relativistic terms (for example g1 correlated with density).
This is evident from the various panels in Fig. 3.7, where we see that all the non-
integrated relativistic terms generate multipoles of the same order of magnitude.
The only exception is g3 which is much smaller. This is not surprising since at
z = 1 the universe is still matter dominated and the gravitational potential is nearly
constant. For the same reason also d2 and g2 are very similar.

The Doppler contribution is the only one which generates a non-negligible hex-
adecapole. This comes from the correlation of d1 with redshift-space distortions
which contains 3 gradient of the potential. In the flat-sky this gives rise to a µ3-
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Figure 3.8: Fractional difference generated by the sum of the non-integrated rel-
ativistic effects on the monopole (blue), quadrupole (orange) and hexadecapole
(green). The relativistic multipoles are calculated in the full-sky linear regime,
whereas the standard multipoles are calculated in the flat-sky linear regime, to re-
produce the theoretical prediction currently used.

dependence, which again vanishes for symmetry reason, but in the full-sky one
obtains an additional factor µ · r/χ which leads to an hexadecapole 10. In the flat-
sky the other relativistic terms (d2, g1, g2 and g3) generate only a monopole and
quadrupole, due to their correlation with redshift-space distortion. In the full-sky
they do generate higher multipoles, but again those are suppressed by powers of r/χ
and are consequently negligible.

In Fig. 3.8 we plot the fractional difference due to all non-integrated effects with
respect to the standard flat-sky multipoles

∆ξrel
` =

ξrel
`

ξst,flat−sky
`

, (3.55)

where ξrel
` contains the correlation of all the non-integrated relativistic terms with

themselves as well as their correlation with the standard term, i.e. they come from

〈∆st∆rel〉+ 〈∆rel∆st〉+ 〈∆rel∆rel〉 = 〈∆st+rel∆st+rel〉 − 〈∆st∆st〉 . (3.56)

At z̄ = 1 (right panel), the relativistic terms modify the monopole by a few
percent at separations ≥ 300Mpc/h. The impact of these terms on parameter
estimation is therefore probably negligible at high redshift. At z̄ = 0.1 however (left
panel) the relativistic contribution to the multipoles is non-negligible at most scales.
The contributions to the monopole and quadrupole are already of a few percent at
50Mpc/h. At 100Mpc/h these contributions reach 10% and they quickly increase
with separation.

The large amplitude of the relativistic terms at small redshift is due to one
specific term in the Doppler contribution, namely the one proportional to 1/(Hχ)

10This can been seen for example by expanding α1 − α2 in powers of r/χ in the expression ζ12
in Appendix 3.B.
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(see Eq. (3.12)). The correlation of the Doppler term with itself has roughly the
following amplitude:

1/(Hχ)2(H/k)2〈∆den∆den〉 ∼ (r/χ)2〈∆den∆den〉 ,

where we have used that k corresponds to 1/r. At small redshift and large separa-
tion, this suppression is not very strong. For example at z̄ = 0.1, χ = 433Mpc/h
and therefore the amplitude of the Doppler term at r = 200Mpc/h is roughly
(r/χ)2〈∆den∆den〉 ∼ 0.2〈∆den∆den〉, i.e. 20% of the standard term. The same ar-
gument applies to the full-sky Doppler-standard correlation which contributes at
the same level. The other relativistic terms on the other hand are more strongly
suppressed. For example, the correlation g1-standard has the following amplitude:
1/(Hχ)(H/k)2〈∆den∆den〉 ∼ (r/χ)rH〈∆den∆den〉. At z̄ = 1, H ∼ 1/χ and the
Doppler contribution is similar to the g1 contribution, as already discussed. At
z̄ = 0.1 however, H is significantly smaller than 1/χ and therefore the Doppler
contribution is enhanced with respect to the g1 contribution. Note that the impor-
tance of this Doppler effect on the correlation function has already been studied in
detail in [234] and further discussed in [245, 256]. These references, however, do not
include the other Doppler terms or lensing.

This result is especially relevant for a survey like the SKA that will cover wide
parts of the sky from z = 0 to 2 and will therefore be strongly affected by the
Doppler term at low redshift. In a forthcoming publication we will study the impact
of this effect on the measurement of cosmological parameters, in particular on the
measurement of the growth rate f from the monopole and quadrupole. Note that,
as discussed above, such a study has to be performed using the full-sky formalism,
since full-sky effects (from the Doppler-density correlation) contribute at the same
level.
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Figure 3.9: Multipoles of the lensing contribution (including its correlation with
the standard term) at z̄ = 1. In the left panel we show the linear full-sky (solid) and
linear flat-sky (dashed) result and in the right panel the non-linear full-sky (solid)
and flat-sky (dashed) result. The monopole is shown in blue, the quadrupole in
orange, the hexadecapole in green and the ` = 6 in purple.
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Figure 3.11: Fractional difference generated by lensing on the monopole (blue),
quadrupole (orange) and hexadecapole (green). The lensing multipoles are calcu-
lated in the full-sky non-linear regime, whereas the standard multipoles are cal-
culated in the flat-sky non-linear regime, to reproduce the theoretical prediction
currently used. The left panel is for z̄ = 1 and the right panel for z̄ = 2.

In Fig. 3.9 we show the lensing contribution to the multipoles at z̄ = 1. In the
left panel we show the linear result, using the flat-sky and Limber approximation
(dashed) and the full-sky calculation (solid); and in the right panel we show the non-
linear result. The flat-sky systematically overestimates the lensing contribution. As
explained in Section 3.2.2 this is due to the fact that the Limber approximation
underestimates the correlation between density and lensing, which is negative, and
consequently it overestimates the total in most configurations. Above r ∼ 50h−1Mpc
the lensing contribution is 10% and more. Hence it has to be included for an accurate
estimation of the growth rate f . Contrary to the non-integrated relativistic effects,
lensing generates non-negligible ` = 4 and ` = 6. Actually, as is shown in Fig. 3.10
the amplitude of the multipoles remains large for large values of `. Measuring ` > 4
will therefore provide a way of isolating the lensing contribution from the standard
terms.

In Fig. 3.11 we show the fractional difference of the monopole, quadrupole and
hexadecapole generated by lensing at z̄ = 1 and z̄ = 2. At z̄ = 1 we see that lensing
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modifies the monopole by a few percent at intermediate scales. The quadrupole is
less affected, apart from at very large scales r ∼ 350Mpc/h where lensing contributes
by 5%. The hexadecapole is the one that is the most affected by lensing, up to
10-20% above 250Mpc/h. At z̄ = 2 the lensing contribution is significant for all
multipoles. The monopole is modified by 30% already at a 150Mpc/h and this
increases to 50% at 300Mpc/h. The contribution to the quadrupole is slightly
smaller, but it still reaches 10% at 150Mpc/h and 40% at 300Mpc/h. And the
hexadecapole is strongly affected at all scales. Surveys like Euclid and the SKA, that
will observe up to high redshift should therefore include lensing in their modelling
of the multipoles of the correlation function.

In this Section we have only discussed the contribution from even multipoles
to the correlation function. As stated before, in the flat-sky approximation only
even multipoles exist, even in the presence of relativistic effects and lensing 11. This
follows directly from the fact that the correlation function is symmetric ξ(r) = ξ(−r)
and that the flat-sky angle goes from µ to −µ when r goes to −r. In the full-sky, the
existence of odd multipoles depend on the choice of angle used to measure them. If
the cosine of the angle simply changes sign when r goes to −r, then odd multipoles
exactly vanish also in the full-sky. This is the case for the angles β, γ and α defined
in Fig. 3.1. However if one uses instead the angle α1 (see Fig. 3.18) to measure
the multipoles, then the correlation function contains odd multipoles in the full-sky
because α1 goes to π + α1 − θ when r goes to −r. Hence even if the correlation
function is symmetric, its expansion in terms of α1 contains odd multipoles due to the
fact that the angle itself breaks the symmetry of the configuration [252]. Note that
the dipole of the correlation function using the angle α1 has been measured in [112].
Finally let us stress that if we cross-correlate different populations of galaxies, then
the correlation function is not symmetric anymore ξAB(r) 6= ξBA(−r) (where A and
B denote the two populations under considerations) and it contains therefore odd
multipoles already in the flat-sky approximation, as demonstrated in [48].

3.3 From the correlation function to the power spec-
trum

As discussed in the introduction, an alternative observable which is routinely used
to analyse redshift surveys is the power spectrum. Here we discuss the impact of
the large-scale relativistic effects and of the lensing on this observable.

Of course, since galaxies are seen on our background light-cone and not in 3D
physical space, a galaxy position is fixed by a redshift z and a direction n. But we
can split the distance vector between two galaxies, r (which is the argument of the
galaxy correlation function ξ(r, z̄)) in a sufficiently small redshift bin into a radial,
r‖ and a transverse, r⊥ component and express ξ in the variables ξ(r‖, r⊥, z̄). We can
then define the power spectrum simply as the Fourier transform of the correlation

11Note that this is not the case with the alternative definition of multipoles used in [248] which
mixes different scales.
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function,

P (k‖, k⊥, z̄) =

∫
d3rξ(r‖, r⊥, z̄)ei(r‖k‖+r⊥k⊥ cosφ) (3.57)

= 2π

∫ ∞
−∞

dr‖

∫ ∞
0

dr⊥ξ(r‖, r⊥, z̄)ei(r‖k‖)J0(k⊥r⊥) . (3.58)

In this expression r‖ = rσ and r⊥ = r
√

1− σ2 where

[−1, 1] 3 σ =


µ = cosα

cos β
cos γ
cosα2

(3.59)

depending on the angle used to split the survey into a radial and a transversal
component. Note that r⊥ = r⊥(cosφ, sinφ) is a 2D vector in the plane normal to
the parallel direction and we have performed the φ integration choosing the x-axis
in the r⊥ plane parallel to k⊥. For the case σ = µ, r‖ = χ2 − χ1 the expression for
the correlation function is given in Appendix 3.B and Section 3.2, (3.46). For the
other angles, one has to use the relations given in Appendix 3.A.

However, we must consider that while the correlation function as given e.g. in
Eq. (3.24) can be defined for all values r‖ ∈ [0, χ(∞)] ' [0, 14h−1Gpc] and r⊥ ∈
[0, 2χ(∞)], and is correct for |r‖H(z̄)| � 1, this is no longer so for its Fourier
transform12. To compute it we have to integrate the correlation function over all
space, but as we just said, we cannot observe the correlation function outside of our
horizon and the result is not reliable if |r‖H(z̄)| & 1. It is well defined only for a
range of (r‖, r⊥). This situation is further complicated by the fact that this range
depends on redshift. Therefore, the simple Fourier transform given above gives a
physically sensible result only for

k‖ �
1

χ(z̄ + ∆z)− χ(z̄ −∆z)
∼ 2∆zH(z̄) =

1

r‖max(z̄,∆z)
, ∆z � 1.

For these values of k‖, contributions from radial distances such that the two galaxies
are not in a thin shell around χ̄ = χ(z̄) are cancelled by the rapid oscillations of the
exponential in the Fourier transform.

With this word of caution we now simply Fourier transform the correlation func-
tion to obtain the power spectrum. We can either use the correlation function ob-
tained via the C`(z1, z2)’s or the one from the direct computation. Here we present
the details for the latter.

As stated above, for the ’true’ power spectrum, the integral over r‖ should extend
from −∞ to +∞ and the integral over r⊥ should extend from 0 to +∞. The
correlation function is however not observable outside the horizon and the integral
must therefore be truncated by a window function which removes these scales. In
practice galaxy surveys do not observe the whole horizon but only part of it and

12Here χ(∞) ' 14h−1Gpc represents the comoving size of our horizon today.
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therefore the range of integration is even more reduced. The true window function of
the observation patch leads to a convolution in the correlation function and therefore
to a multiplication of the Fourier transform of the window in the power spectrum

From Eq. (3.58) we see that there is another reason to truncate the integral. The
arguments k‖ and k⊥ (or equivalently k and ν = k̂ · n̂) of the power spectrum are
parallel to r‖ and r⊥ respectively. Now the direction of r‖, for example, depends
on the direction of the pair of galaxies we consider. If the domain of integration
in (3.58) is sufficiently small, then a mean direction n can be introduced and this
splitting is well defined: one can identify one line-of-sight for the whole patch of
sky we are observing and split parallel and transverse directions with respect to
this line-of-sight. If the patch is too large however, this procedure is no longer
valid 13. The integral (3.58) can still be done mathematically, but its physical
interpretation becomes unclear. This illustrates the fact that the power spectrum is
truly well defined only in the flat-sky. In practice this means that we can consider
the Fourier transform of the correlation function in a sphere of radius ∆z/H(z̄) for
values k � H(z̄)/∆z.

Similar to what is done for the correlation function, in the standard analysis, the
ν dependence of P (k, ν, z̄) is used to extract the growth rate f(z̄). Indeed as seen
in Eq. (3.2), the standard power spectrum takes the simple form

P (k, ν, z̄) = p0(k, z̄) + p2(k, z̄)L2(ν) + p4(k, z̄)L4(ν) , (3.60)

where the coefficients pn are given by:

p0(k, z̄) = D2
1(z̄)Pm(k)

[
b2 +

2bf

3
+
f 2

5

]
, (3.61)

p2(k, z̄) = D2
1(z̄)Pm(k)

[
4bf

3
+

4f 2

7

]
, (3.62)

p4(k, z̄) = D2
1(z̄)Pm(k)

8f 2

35
. (3.63)

The multipoles p0 and p2 contain different combinations of the bias and of the growth
rate f(z̄) and can be used to measure these two quantities. If p4 can be measured as
well it can be used as an additional consistency check. Furthermore, this quantity
is independent of galaxy bias which renders it especially valuable.

The large-scale relativistic effects and the gravitational lensing are however ex-
pected to modify this simple multipole expansion. In principle to calculate the con-
tribution of these effects to the multipoles, one would need to calculate Eq. (3.58)
for all values of k‖ and k⊥ and then integrate over all directions, weighting by the
appropriate Legendre polynomial

p`(k, z̄) =
1

2`+ 1

∫ 1

−1

dνP (k, ν, z̄)L`(ν) . (3.64)

As the correlation function is a symmetric function of µ, ξ(x1,x2) = ξ(x2,x1), the
power spectrum will be symmetric in ν so that only even `’s are non-zero. This

13Note however the work of [304] which proposes methods to account for different lines-of-sight
in the measurement of the power spectrum.
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is no longer the case when one correlates different tracers, e.g. bright and faint
galaxies [214, 312].

The procedure to obtain the multipoles of the power spectrum can however
be simplified by using directly the multipoles of the correlation function ξ`(r) (see
Appendix 3.D for a proof of this relation)

p`(k) = 4πi`
∫ ∞

0

drr2j`(kr)ξn(r) . (3.65)

As discussed before, the integral over r cannot run until infinity because the corre-
lation function (and consequently its multipoles) is not observable over the whole
space. For simplicity we assume that we observe galaxies within a sphere of radius
rmax, centred at redshift z̄. This corresponds to introducing a window function in
Eq. (3.65) which removes scales larger than rmax. For the standard terms, the multi-
poles p`(k) are relatively insensitive to the choice of rmax since r2ξst → 0 as r →∞.
The large-scale relativistic effects scale however as r2ξrel → constant as r →∞ and
consequently their multipoles depend on the choice of rmax. This reflects the fact
that these terms diverge when k → 0 as we will see in section 3.3.1. The situation
for the lensing term is even worse: the correlation function scales as r2ξlen →∞ and
the dependence in rmax is even stronger. The lensing power spectrum is therefore
strongly dependent on the geometry of the survey, as already noticed in [200].

3.3.1 The flat-sky approximation

In the previous section we obtained the power spectrum by integrating over the
full-sky correlation function, weighted by a window function to restrict the range of
integration to the observed patch of the sky. Here we would like to compare this
procedure with a flat-sky direct calculation of the power spectrum 14. The power
spectrum for the non-integrated terms has been derived previously in [165, 312]. It
can be easily obtained by Fourier transforming the non-integrated relativistic con-
tributions to the number counts, namely ∆d1,∆d2,∆g1,∆g2 and ∆g3 (see Eqs. (3.12)
to (3.16)). Note that in principle this procedure does not generate an observable,
because the Fourier transform of a function f(k, η) at a given conformal time η
requires the knowledge of the function over the whole hypersurface of constant η 15.
An observer cannot observe this hypersurface, but only its intersection with her
past light-cone. However, due to the statistical homogeneity and isotropy of our
Universe, the properties of the function are the same everywhere, and the Fourier
transform can be performed. We obtain (in agreement with [165] where only the
non-integrated terms are considered)

P flat, non−int
∆ (k, ν, z) =

∣∣∣∣∣A+B
H
k

+ C

(
H
k

)2
∣∣∣∣∣
2

D2
1(z)Pm(k) , (3.66)

14Note that the relation between the flat-sky and full-sky power spectrum of density and RSD
has been studied in detail in [252].

15In principle we do not observe at constant conformal time η but rather at constant redshift z.
However the difference between η and z has been consistently included in the derivation of ∆ so
that a constant z can now be seen as a constant η.
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x
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Past light-cone

hypersurface of 
constant time

Figure 3.12: To calculate the Fourier transform of the lensing term ∆lens(k, η),
one needs to know the value of ∆lens(x, η) for all x on the hypersurface of constant
time η. However for a given observer, ∆lens(x, η) is well defined only on her past
light-cone. Calculating ∆lens(x, η) outside of the past light-cone, like for example at
the position of the cross would require to integrate the gravitational potential along
the dashed trajectory, which is not physical, and would lead to wrong results.

where

A(ν, z) = (b− ν2f) , (3.67)

B(ν, z) = −iν

(
Ḣ
H2

+
2− 5s

Hχ
+ 5s− fevo

)
, (3.68)

C(z) =

[
3f +

3

2
Ωm(1 + z)

H2
0

H2

(
1− 5s− Ḣ

H2
− 2− 5s

Hχ
− 5s+ fevo

)]
.(3.69)

A represents the standard terms, density and redshift space distortions. B is the
Doppler term which is suppressed by a factor H/k and C represents the additional
relativistic contributions which are suppressed by (H/k)2. To arrive at this result
we have set Ψ = Φ and we have neglected the term containing the time derivative of
the potential, since it is relevant only at late time and at very large angular scales
where the flat sky approximation is not valid.

The contribution of the integrated terms to the flat-sky power spectrum are
more complicated to calculate and have been neglected in [165, 312]. The reason
is that integrated terms, like for example the lensing ∆lens(n, η), depend on the
value of the gravitational potential along the photon trajectory in direction n. As a
consequence ∆lens(n, η) is well defined only on the past light-cone of the observer and
not on the whole hypersurface of constant conformal time η. Calculating ∆lens(n, η)
for a point which is not on the past light-cone of the observer would require to
calculate the lensing signal along arbitrary trajectories that have nothing to do with
the trajectories followed by photons, as depicted in Fig. 3.12.

To calculate the power spectrum of the integrated terms, we need therefore to
go through the correlation function.
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In Appendix 3.E we show how this can be done in the flat-sky approximation. To
calculate the integrated terms in the flat sky approximation, we define a sky direction
n∗ and split the observation directions as n1 = n∗ + ∆n/2, n2 = n∗ −∆n/2. We
also split r = r⊥ + n∗r‖ with r⊥ = χ(z)∆n. Representing the correlation function
as the Fourier transform of the power spectrum, we can then perform the integral
over k‖ by neglecting the slow dependence of the power spectrum and taking into
account only the fast oscillations of the exponential. This leads to the δ(k‖) and
δP (k‖) defined below. All details are given in Appendix 3.E. We obtain

P flat,int
∆ (k, ν, z)

= −3π
ΩmH

2
0 (1 + z)D1(z)(2− 5s(z))

χ
Pm(k⊥)α(k⊥, 0, z)

[
χδP (k‖) +

2

k2
⊥
δ(k‖)

]
+
π

2

(
3ΩmH

2
0 (2− 5s(z))

χ

)2

δ(k‖)

∫ χ

0

dλPm(kχ/λ)

[
(χ− λ)χ2

λ
+

2

k2

]2

D2
1(z(λ))(1+z(λ))2 .

(3.70)

The first line comes from the correlation of the integrated terms with density and
the second line is the correlation of the integrated terms with themselves. The
distribution δP is defined by (see Appendix 3.E for more detail)

δP (k) =
1

2π

∫ ∞
−∞

dx|x|eikx . (3.71)

The lensing terms are proportional to the distributions δ(k‖) and δP (k‖). They have
to be understood as formal expressions. Physical power spectra are obtained by
smoothing the signal with a longitudinal window function. Let us briefly explain this:
we assume that our galaxies are all inside a radial window, W (r‖), with which the
correlation function has to be convolved. Its Fourier transform, the power spectrum
is then multiplied by the Fourier transform of the window, Ŵ (k‖). As an example,
for the cross term involving δP (k‖), denoting the pre-factor of δP (k‖) by P× and the
result by P× obs, we obtain an integral of the form

P× obs(k, z) = P×(k⊥, z)
1

2π

∫
dr‖dk‖|r‖|eik‖r‖ |Ŵ (k‖)|2 . (3.72)

More details with examples of Gaussian and top hat windows can be found in [150].

3.3.2 Numerical results: comparison of the flat-sky and full-
sky expressions

In Figs. 3.13 and 3.14 we show the multipoles of the power spectrum at z̄ = 1 as
a function of k for all the non-integrated terms. We compare the results obtained
from the full-sky correlation (3.65) (coloured lines) with the flat-sky results given
in (3.66) (black lines). In principle, one could use a sharp cut-off in (3.65) to reflect
the fact that the correlation function outside of the observed patch of the sky is
zero. However, it is well-known that such a cut-off introduces spurious oscillations
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Figure 3.13: The multipoles of the power spectrum p`(k) at redshift z̄ = 1. The
coloured lines show the multipoles obtained from Eq. (3.65): blue for the monopole
(` = 0), orange for the quadrupole (` = 2) and green for the hexadecapole (` = 4).
The black lines show the flat-sky result from Eqs. (3.61)-(3.63) and (3.66): solid
for the monopole, dashed for the quadrupole and dot-dashed for the hexadecapole.
The grey vertical line shows the smoothing scale of the window function. In the left
panel we plot the well known density and redshift-space distortions, and in the right
panel we plot the Doppler contribution d1.
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Figure 3.14: The monopole (blue) and quadrupole (orange) for the other non-
integrated relativistic terms, d2 to g3 at z̄ = 1. The flat-sky results are indistin-
guishable from the full-sky ones and are therefore not indicated.
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to the power spectrum. We therefore use the following window function to smoothly
remove scales outside of the observed patch of the sky

W (r) =
1

2

(
1− tanh

[
r − λ1 + 3λ2

λ2

])
(3.73)

with λ1 = 1000Mpc/h and λ2 = 50Mpc/h which gives λsmooth ' 700Mpc/h or
ksmooth ' 0.005h/Mpc.

The multipoles of the standard terms are shown in the left panel of Fig. 3.13.
We see that for k larger than the smoothing scale (depicted by the grey vertical
line), the full-sky multipoles agree extremely well with the flat-sky expression. For
k smaller than the smoothing scale, the full-sky multipoles differ from the flat-sky
ones, due to the presence of the window function which removes large scales.

The right panel of Fig. 3.13 shows the multipoles of the Doppler term d1. The
full-sky quadrupole (orange) is significantly larger than the flat-sky quadrupole
(black dashed). This is due to the fact that in the flat-sky, the contribution coming
from the correlation of the Doppler term with the standard terms exactly vanishes,
as it gives rise only to odd multipoles, which are exactly zero if one has only one
population of galaxies. As a consequence the only contribution to the quadrupole
comes from the correlation of the Doppler term with itself. In the full-sky, this is no
longer the case. A quadrupole is induced from the correlation of the Doppler term
with the density. This contribution is suppressed by a power r/χ ∼ H/k and be-
comes therefore of the same order of magnitude as the Doppler-Doppler correlation
function. This situation again reflects the fact that to properly evaluate the impact
of relativistic effects it is not consistent to use the flat-sky approximation, because
full-sky corrections generate effects that are of the same order of magnitude as the
relativistic terms.

In Fig. 3.14 we show the other non-integrated relativistic effects. In this case the
full-sky and flat-sky multipoles agree very well. This is due to the fact in this case
the difference between the flat-sky and full-sky result is of the order of (r/χ)2 and
not r/χ and is therefore not visible at z̄ = 1 16.

In Fig. 3.15 we show the multipoles of the lensing contribution. Here we only cal-
culate the full-sky multipoles given by Eq. (3.65) since the flat-sky expression (3.70)
is not well defined for k‖ 6= 0. As discussed before, the lensing power spectrum is ex-
tremely sensitive to the cut-off because the correlation function increases with r. As
a consequence the window function defined in (3.73) and used for the non-integrated
terms is too sharp and not well adapted for the lensing term. It gives rise to large
unphysical oscillations in the power spectrum. We therefore use instead a Gaussian
window function which is smoother

W (r) = exp−r
2/a2

, (3.74)
16This can be understood by noting that full-sky corrections to the correlation function bring

terms of the form r/χ ·µ. Since the cross-correlation between the standard terms and the Doppler
term d1 contains a contribution proportional to µ in the flat-sky, the first non-zero even multipole
in the full-sky will be given by µ× r/χ ·µ. On the other hand the flat-sky expression for the other
relativistic effects contains even powers of µ and their full-sky correction must therefore contain at
least two powers of µ, i.e. two powers of r/χ.
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Figure 3.15: The lensing multipoles in the linear regime at z̄ = 1, calculated
from Eq. (3.65) with the window function (3.74), with a = 300Mpc/h (dashed
lines) and a = 500Mpc/h (solid lines). The left panel shows the monopole (blue)
and quadrupole (orange). The right panel shows the hexadecapole (green) and the
` = 6 multipole (purple). In the lower panels the hexadecapole contributions from
density×lensing and lensing× lensing are shown separately for clarity.

where we consider two different values for a: a = 300Mpc/h (dashed lines) and
a = 500Mpc/h (solid lines). All multipoles from the lensing term, monopole and
quadrupole (left panel) as well as the hexadecapole and ` = 6 multipole (right
panel) are of the same order of magnitude. This is very different from the standard
expression which is dominated by the monopole and quadrupole. The hexadecapole
and the ` = 6 multipole depend more strongly on the value of a than the monopole
and quadrupole, which differ only for k ≤ 0.03h/Mpc. Nevertheless, the passage
through zero is independent of the window size. This zero of the hexadecapole and
of the ` = 6 multipole is due to the competition between the positive lensing-lensing
correlation which dominates at large k and the negative density-lensing correlation
which dominates at small k, as can be seen from the bottom panels of Fig. 3.15.

The standard monopole, quadrupole and hexadecapole of the power spectrum are
used to measure the growth rate and constrain cosmological parameters. Since large-
scale relativistic effects and gravitational lensing contribute to these multipoles, they
can in principle contaminate this estimation. In Fig. 3.16 we show the fractional
difference between the full-sky non-integrated relativistic multipoles and the flat-sky
standard multipoles at z̄ = 1

∆prel
` =

prel
`

pst
`

, (3.75)
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Figure 3.16: Fractional difference at z̄ = 1 generated by the large-scale relativistic
effects on the monopole (blue), quadrupole (orange) and hexadecapole (green) of
the power spectrum.

where prel
` denotes the multipoles from all the non-integrated relativistic effects and

their correlation with the standard terms, similar to (3.56). We see that the correc-
tion generated by the relativistic effects is less than a percent at all scales and can
therefore be neglected. At small redshift z̄ = 0.1 we expect a larger contribution,
similar to the one that affects the multipoles of the correlation function, see Fig. 3.8.
However we found that this contribution strongly depends on the window function
and we defer therefore a careful study of this effect to a future publication [95].

In Fig. 3.17 we show the fractional difference between the lensing multipoles and
the flat-sky standard multipoles at z̄ = 1 and z̄ = 2

∆plens
` =

plens
`

pst
`

, (3.76)

where plens
` denotes the multipoles from the lensing and its correlation with the

standard terms. We see that above 0.01h/Mpc the lensing contribution to the
monopole and quadrupole is less than a percent. Only on very small k does it
reach a few percents. The hexadecapole is more strongly affected at all scales. At
z̄ = 2, the monopole and quadrupole get corrections of 10-20% at small k and the
corrections remain above 1% at all scales. These numbers seem to be in broad
agreement with the flat-sky results of [150] 17. Again the hexadecapole is strongly
affected by lensing at all scales.

Note that as mentioned previously, the multipoles of the power spectrum strongly
depend on the window function chosen to integrate (3.65), especially for the lensing
contribution which grows with separation. In addition the multipoles of the power
spectrum depend on the minimal separation we use in the integral (3.65), which in
practice is given by the size of the pixels in which we measure the number counts. In
particular, we have found that a window function which is too sharp leads to strong

17Note that the fractional differences in [150] are with respect to the BBKS power spectrum
which contains no baryons and no redshift-space distortions and is linear, whereas our result is
with respect to the non-linear standard power spectrum which contains density and redshift-space
distortions. It is therefore expected that our fractional difference be smaller.
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Figure 3.17: Fractional difference generated by the non-linear full-sky lensing on
the monopole (blue), quadrupole (orange) and hexadecapole (green) of the power
spectrum. Here a Gaussian window with a = 300Mpc/h has been used. The left
panel is for z̄ = 1 and the right panel for z̄ = 2.

oscillations in the power spectrum. Similarly, the lower cutoff leads to oscillations
for k > π/rmin. In our case we choose rmin = 8Mpc/h leading to oscillations around
k ∼ 0.2h/Mpc. The results shown in Figs. 3.15, 3.16 and 3.17 should therefore
be taken with some caution as they will depend on the form of the window, the
smoothing scale and the minimum separation used in the Fourier transform. We
defer a more detailed study of these parameters to a future publication, where we
will also analyse the impact of the large-scale relativistic effects and of the lensing
on the determination of cosmological parameters [95].

3.4 Discussion and Conclusions

In this paper we have studied the redshift-space correlation function and the power
spectrum of galaxy number counts. Even though these functions depend on the
cosmological model used to convert angles and redshifts into distances 18, they are
useful for several reasons. First they are well adapted to describe the 3-dimensional
information present in large-scale structure. This is not the case for the observable
C`(z1, z2) angular-redshift power spectrum for which we cannot employ very fine
redshift binning due to under-sampling. Second, the multipoles of the correlation
function and of the power spectrum contain important information about the growth
of perturbations which is difficult to isolate in the angular-redshift power spectrum.
We therefore propose to use the redshift-space correlation function to analyse thin
shells in redshift space, ∆z ∼ 0.2 and the power spectrum to analyse small (a few
100 Mpc) patches of sky.

Computing these quantities within linear perturbation theory and with the halofit
approximation, we have shown how they are affected by large-scale relativistic effects
and by lensing. The large-scale relativistic effects are important mainly at small red-
shifts. At z = 0.1 they introduce corrections to the monopole and quadrupole of

18Note that deviations from the fiducial model can be accounted for in a consistent way by
introducing correction parameters that rescale the correlation function, see e.g. [303].
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the correlation function of the order of 10% at a separation of 100Mpc/h and they
quickly increase with separation. The hexadecapole is less affected at intermediate
scales, but at large scales the correction becomes similar to the other multipoles.
We have seen that this large correction is due to the Doppler effect, which contains
a term proportional to 1/(Hχ) which is enhanced at small redshift. This term has
previously been identified in [234, 245, 256]. At large redshift however, this Doppler
term contributes to the multipoles at the same level as the other relativistic effects
and generates corrections that are never larger than about 1%. We have also seen
that full-sky corrections to the correlation function are of the same order as rela-
tivistic corrections. It is hence inconsistent to take onto account only one or the
other. They have to be discussed together as we do it in this work.

At large redshift the lensing term becomes much more relevant than the large-
scale relativistic contributions. Furthermore, the importance of lensing strongly
depends on the orientation of the pair of galaxies. In particular it is most important
along the line-of-sight, when µ ∼ 1. In this case on large scales, r > 200Mpc/h,
the lensing term even dominates over the standard terms (see Fig. 3.3). We have
also studied the contribution of lensing to the multipoles of the correlation function
and of the power spectrum and we have seen that at z = 1 lensing modifies the
monopole and quadrupole of the correlation function and of the power spectrum
by a few percents. At larger redshift z = 2 these corrections amount to 10-30% at
intermediate scales and quickly increase with separation. This clearly shows that
lensing cannot be neglected in the analysis of future galaxy surveys at high redshift.
Moreover we have seen that the hexadecapole of the correlation function and of the
power spectrum are strongly affected by lensing at z = 1 and z = 2. This comes from
the fact that the hexadecapole from the standard terms is significantly smaller than
the monopole and quadrupole, whereas the hexadecapole of lensing is of the same
order as the monopole and quadrupole (as can be seen from Fig. 3.10). Measuring
the hexadecapole is expected to provide a clean way of measuring the growth rate f
since it is independent of bias. Here we see however that such a measurement would
require a careful modelling of the lensing contribution. Furthermore, we have found
that lensing generates significant higher multipoles ` > 4 in the correlation function
and in the power spectrum, see Figs. 3.9, 3.10, 3.11 and 3.15.

In our work, contrary to previous studies on the subject, we have derived an
expression for the lensing correlation function which is exact, i.e. which does not
rely on the flat-sky and Limber approximation. By comparing our result with the
flat-sky result, we have found that the flat-sky approximation is only good in forward
direction, µ = 1, see Fig. 3.4. The full-sky lensing multipoles differ from the flat-sky
one by 20-40%, see Fig. 3.9. Finally, we have seen that due to the mixing of scales,
non-linearities in the matter power spectrum are relevant for lensing even for large
separations out to r > 200Mpc/h for µ ∼ 1 where lensing is most relevant, see
Fig. 3.5. A correct treatment of lensing requires therefore the use of the full-sky
non-linear expressions.

The presence of higher multipoles in both, the correlation function and the power
spectrum, might represent an ideal observational target to identify the lensing term.
As it has been discussed previously [221], measuring the convergence κ via the
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lensing of number counts is a promising alternative to shear measurements. On
the other hand, it has been shown that neglecting lensing in the analysis of future
surveys, at least for photometric surveys induces significant errors in parameter
estimation [59]. It will be important to investigate whether this is also the case when
precise spectroscopic redshifts are available. We shall study this in a forthcoming
paper [95] using the methods outlined in this work.
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APPENDIX

3.A Relations between the angles

In this appendix we derive in detail the relation between the angles θ, α, β and γ,
see Fig. 3.18. More precisely, we give expressions for cosα, cos β and cos γ in terms
of r, cos θ and z̄ = (z1 + z2)/2 or rather χ̄ = χ(z̄). Note that (χ1 + χ2)/2 and χ(z̄)
differ by a term of order (∆z)2/H((̄z) which we neglect.

As defined in the main text, α is the angle between the line of length r connecting
the two positions at redshifts z1 and z2 which span an angle θ at the observer and
the line connecting z2 and the intersection or the circle or radius r‖ around z2 with
the Thales circle over r (see Fig. 3.1, left panel). Evidently α is given by

cosα = r‖/r =
2

r

√
χ̄2 − 4χ̄2 − r2

2(1 + cos θ)
. (3.A77)

Here we have used eq. (3.31) to express r‖ in terms of (r, χ̄, cos θ).
The angle β is obtained as follows: We denote by s the length of the line from

the observer O to the middle of r and by α2 the angle of the triangle (O, z2, z1) at
z2, see Fig. 3.18. The cosine law gives the following relations

s t

↵1

↵2

��
↵2

↵1

Figure 3.18: The angles α1, α2, β, γ and the lengths s and t used to determine
respectively β and γ are indicated.

χ2
2 = s2 + (r/2)2 + rs cos β , s2 = (r/2)2 + χ2

2 − rχ2 cosα2 (3.A78)

Eliminating s and solving for cos β we find

cos β =
−r2/2 + rχ2 cosα2

r
√

(r/2)2 + χ2
2 − rχ2 cosα2

(3.A79)
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Using furthermore

cosα2 =
χ2 − χ1 cos θ

r

we obtain after some simplifications

cos β =
χ2

2 − χ2
1

r
√
χ2

1 + χ2
2 + 2χ1χ2 cos θ

=
2χ̄

r

√
2r2 − 4(1− cos θ)χ̄2

8χ̄2 cos θ2 + (1 cos θ)r2
. (3.A80)

For the second line we used expressions (3.30) for χ1,2.
Considering the angle γ and using t as indicated in Fig. 3.18 and α2 as before

we see that γ = θ/2 + α2 hence

cos γ = cos(θ/2) cosα2 − (1− cos2 θ/2)1/2(1− cos2 α2)1/2

Inserting

cos θ/2 =

(
1 + cos θ

2

)1/2

and the expressions for cosα2 we obtain

cos γ =
(1 + cos θ)1/2(χ2 − χ1)√

2r
=

√
r2 − 2(1− cos θ)χ̄2

r
. (3.A81)

Again we have inserted the expressions (3.30) for χ1,2 in the last equal sign.
We shall also use the expressions for cosαi which are easily derived from the

cosine theorem:

cosα2 = r̂ · n2 =
χ2 − χ1 cos θ

r
, cosα1 = r̂ · n1 = − χ1 − χ2 cos θ

r
(3.A82)

3.B The full angular–redshift correlation function

The ’full angular redshift correlation function’ is ξ(θ, z1, z2) when we include all the
relativistic terms. It can be computed as follows.
We first write down derivatives of Eq. (3.48) wrt χ1 and χ2 which are encoded in
the functions ζ ij(kχ1, kχ2). Using r =

√
χ2

1 + χ2
2 − 2χ1χ2 cos θ and the recurrence

relations for derivatives of spherical Bessel functions

j′` =
1

2`+ 1
(`j`−1 − (`+ 1)j`) and

j`(x)

x
=

1

2`+ 1
(j`−1 + j`) (x)

we find

ζ00 = j0(kr) (3.B83)

ζ01 =
χ1 cos θ − χ2

r
j1(kr) = −j1(kr) cosα2 (3.B84)
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ζ11 =

(
2

kr
j1(kr)− j0(kr)

)(
χ1 − χ2 cos θ

r

)(
χ2 − χ1 cos θ

r

)
+j1(kr)

χ1χ2 sin2 θ

kr3

= −(χ2 − χ1 cos θ)(χ1 − χ2 cos θ)

r2
j2(kr) +

cos θ

3
(j0(kr)− j2(kr))

= j2(kr) cosα2 cosα1 +
cos(α2 − α1)

3
[j0(kr)− j2(kr)] (3.B85)

ζ02 =

(
2

kr
j1(kr)− j0(kr)

)(
χ2 − χ1 cos θ

r

)2

− j1(kr)
χ2

1 sin2 θ

kr3

=

(
2

3
− (1− cos2 θ)

χ2
1

r2

)
j2(kr)− 1

3
j0(kr)

=

(
2

3
− sin2 α2

)
j2(kr)− 1

3
j0(kr) (3.B86)

ζ12 =
(1 + 2 cos2 θ)χ1 − 3χ2 cos θ

5r
j1(kr) +

(1− 3 cos2 θ)χ3
1 + cos θ(5 + cos2 θ)χ2

1χ2 − 2(2 + cos θ2)χ1χ
2
2 + 2χ3

2 cos θ

5r3
j3(kr)

= − [2 cos(α2 − α1) cosα2 + cosα1]

5
j1(kr)

+
[

cosα1 sin2 α2 −
2

5
cosα2 cos(α1 − α2)

]
j3(kr)

(3.B87)

ζ22 =
1 + 2 cos2 θ

15
j0(kr)− 1

21

[
1 + 11 cos2 θ +

18 cos θ(cos2 θ − 1)χ1χ2

r2

]
j2(kr) +[

4(3 cos2 θ − 1)(χ4
1 + χ4

2)

35r4

+ χ1χ2(3 + cos2 θ)
3(3 + cos2 θ)χ1χ2 − 8(χ2

1 + χ2
2) cos θ

35r4

]
j4(kr)

=
1 + 2 cos2(α1 − α2)

15
j0(kr)

− 1

42
[4 + 9 cos(2α1) + 9 cos(2α2) + 2 cos(2(α1 − α2))] j2(kr) +

[3 cos(2(α1 − α2)) + 35 cos(2(α1 + α2)) + 10 cos(2α1) + 10 cos(2α2) + 6]

280
j4(kr)

(3.B88)

The coefficients ζ21(x1, x2) etc. are obtained from ζ12 etc. via the symmetry relation

ζ ij(x, y) = ζji(y, x) .

The flat sky limit of the above function is obtained by setting α1 = α2 ≡ α. In
this case all the terms in front of a j` are a multiple of the Legendre polynomial
L`(cosα). More precisely, denoting the flat sky limit of ζ ij by ζ̄ ij we obtain

ζ̄00 = j0(kr) , (3.B89)
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ζ̄01 = −L1(cosα)j1(kr) , ζ̄11 =
2

3
L2(cosα)j2(kr) +

1

3
j0(kr) , (3.B90)

ζ̄02 =
2

3
L2(cosα)j2(kr)− 1

3
j0(kr) , (3.B91)

ζ̄12 = −3L1(cosα)j1(kr)− 2

5
L3(cosα) , (3.B92)

ζ̄22 =
8

35
L4(cosα)j4(kr) +

4

7
L2(cosα)j2(kr) +

1

5
j0(kr) . (3.B93)

The terms ζ̄00, ζ̄02 and ζ̄22 give rise to the standard flat sky result (3.61) to (3.63).
The flat sky results ζ̄01 and ζ̄12 are more subtle. Since we always have to add ζ̄ ij+ ζ̄ji
and ζ̄ ij(cosα) = ζ̄ji(cos(π−α)) = ζ̄ji(− cosα) these odd terms actually cancel and
do not contribute in the case of a single population of galaxies. They do contribute
to a multi tracer signal, see [48].

The only coefficients that do not fall into this category, as explained in the main
text, are the lensing terms which are computed using the identity

−`(`+ 1)L`(cos θ) = 4ΩL`(cos θ) =
1

sin θ
∂θ (sin θ∂θL`(cos θ)) .

They are given explicitly by

ζ0L = 2
kχ1χ2 cos θ

r
j1(kr)−

(
k2χ

2
1χ

2
2 sin2 θ

r2

)
j2(kr)

= k2

[
2

3
χ1χ2 cos θj0(kr) +

χ1χ2

3

(
2 cos θ − 3χ1χ2

sin2 θ

r2

)
j2(kr)

]
(3.B94)

=
(kr)2

3

[
2

sinα1 sinα2 cos(α1 − α2)

sin2(α1 − α2)
j0(kr) +

sinα1 sinα2

sin2(α1 − α2)
×

[cos(α1 − α2) + cosα1 cosα2)] j2(kr)

]
(3.B95)

ζ1L = k2

[
2

3
χ2r cos θj−1 (kr) +

2χ2(χ1 cos θ − χ2)(χ1 − 2χ2 cos θ)

5r
j1(kr)−

1

15r3

(
χ2(4χ4

1 cos θ − (9 + cos2 θ)χ3
1χ2 + cos θ

(
cos2 θ + 5

)
χ2

1χ
2
2 +

2(3− 2 cos2 θ)χ1χ
3
2 − 2χ4

2 cos θ)
)
j3 (kr)

]
, (3.B96)

= (kr)2

[
2

3

cos(α1 − α2) sinα1

sin(α1 − α2)
j−1 (kr)

−2

5

(2 sinα1 − sinα2)(sinα1 − cos(α1−α2) sinα2)

sin3(α1 − α2)
×

j1(kr)− 1

120

sinα1 [6 sin(2α1) + sin(2(α1 − α2))− 15 sin(2(α1 + α2))]

sin2(α1 − α2)
j3(kr)

]
(3.B97)

ζ2L = −k2

{
2

15
χ2

(
3χ1 cos θ + (1− 3 cos2 θ)χ2

)
j0 (kr) +
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[
6χ3

1χ2 cos θ − (9 cos2 θ + 11)χ2
1χ

2
2

21r2
+

2 cos θ (3 cos2 θ + 8)χ1χ
3
2 + 4 (1− 3 cos2 θ)χ4

2

21r2

]
j2 (kr)

+

[
χ2 (2 (1− 3 cos2 θ)χ5

2 + 6 cos θ(3− cos2 θ)χ1χ
4
2 + (cos4 θ + 12 cos2 θ − 21)χ2

1χ
3
2)

35r4

− χ2 (2 cos θ (cos2 θ + 3)χ3
1χ

2
2 − 12χ4

1χ2 + 4χ5
1 cos θ)

35r4

]
j4(kr)

}
(3.B98)

= −(kr)2

{
1

15

sinα1(2 sinα1 − 3 sin(2(α1 − α2)) cosα1)

sin2(α1 − α2)
j0(kr) +

sin(α1)

84 sin4(α1 − α2)
×[

3 sin(3α1)(cos(2α2) + 3)− 12 cos3 α1 sin(2α2)− sinα1(3 cos(2α2) + 1)
]
j2(kr)

+
sinα1

560 sin2(α1 − α2)

[
5 sin(α1+2α2)− 35 sin(3α1+2α2)

+ sin(α1−2α2) + sin(3α1−2α2) + 2 sinα1 + 10 sin(3α1)

]
j4(kr)

}
(3.B99)

ζLL = − sin2 θ(k2χ1χ2)2

[(
6(r2 + 5χ1χ2 cos θ)

35r2
− χ2

1χ
2
2 sin2θ

r4

)
j4 (kr)

+
2 (2r2 + 3χ1χ2 cos θ)

7r2
j2(kr) +

2

5
j0 (kr)

]
+4 cos θk3χ1χ2

[(
r2 + 6χ1χ2 cos θ

15r
− χ2

1χ
2
2 sin2 θ

2r3

)
j3 (kr)

+
2 (r2 + χ1χ2 cos θ)

5r
j1 (kr) +

r

3
j−1 (kr)

]
(3.B100)

= (kr)3

{
4

3

sinα1 sinα2 cos(α1 − α2)

sin2(α1 − α2)
j−1(kr)

−2

5

sinα1 sinα2 cot(α1 − α2)[cos(2(α1 − α2)) + cos(2α1) + cos(2α2)− 3]

sin3(α1 − α2)
j1(kr) +

sinα1 sinα2 cos(α1−α2)

60 sin4(α1−α2)
[2 + 6 cos(2α1) + cos(2(α1−α2)) + 6 cos(2α2)

−15 cos(2(α1+α2))] j3(kr)

}
+ (kr)4

{
− 2

5

sin2 α1 sin2 α2

sin2(α1 − α2)
j0(kr)− 2 sin2 α1 sin2 α2

7 sin4(α1 − α2)
×

[
2 sin2(α1 − α2) + 3 cos(α1 − α2) sinα1 sinα2

]
j2(kr) +

sin2 α1 sin2 α2

280 sin4(α1 − α2)
×[

35 cos(2(α1 + α2))− 10 cos(2α2)− cos(2(α1 − α2))− 10 cos(2α1)− 14

]
j4(kr)

}
.

(3.B101)

For the lensing terms the flat sky limit cannot be obtained by setting α1 = α2

since the terms ξiL diverge in this limit. We discuss the flat sky approximation of
lensing in Appendix 3.E. We now give explicit expressions for the QAB

k in terms of
the ζ ij, to be inserted in eq. (3.46) to build the correlation function:
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Qden(θ, z1, z2) = b(z1)b(z2)SD(z1)SD(z2) ζ00(kχ1, kχ2, θ) ,

Qrsd(θ, z1, z2) =
k2

H1H2

SV (z1)SV (z2) ζ22(kχ1, kχ2, θ) ,

Qlen(θ, z1, z2) =
(2− 5s)2

4χ1χ2

∫ χ1

0

∫ χ2

0

∂λ∂λ′
(χ1−λ)(χ2−λ′)

λλ′
Sφ+ψ(λ)Sφ+ψ(λ′)ζLL(kλ, kλ′, θ) ,

Qden-rsd(θ, z1, z2) =
kb(z1)

H2

SD(z1)SV (z2) ζ02(kχ1, kχ2, θ) ,

Qden-len(θ, z1, z2) = b(z1)SD(z1)

(
2− 5s

2χ2

)∫ χ2

0

∂λ
χ2 − λ
λ

Sφ+ψ(λ) ζ0L(kχ1, kλ, θ) ,

Qrsd-len(θ, z1, z2) =
k

H1

SV (z1)

(
2− 5s

2χ2

)∫ χ2

0

∂λ
χ2 − λ
λ

Sφ+ψ(λ) ζ2L(kχ1, kλ, θ) ,

Qd1(θ, z1, z2) =

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z1)

×

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z2) ζ11(kχ1, kχ2, θ) ,

QX(θ, z1, z2) = ∆X(z1, k)∆X(z2, k)ζ00(kχ1, kχ2, θ) X ∈ {d2, g1, g2, g3} ,

Qg4(θ, z1, z2) =
(2− 5s)2

χ1χ2

∫ χ1

0

∂λ

∫ χ2

0

∂λ′Sφ+ψ(λ, k)Sφ+ψ(λ′, k)ζ00(kλ, kλ′, θ) ,

Qg5(θ, z1, z2) =

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z1)

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

×
∫ χ1

0

∂λ

∫ χ2

0

∂λ′ Ṡφ+ψ(λ, k)Ṡφ+ψ(λ′, k)ζ00(kλ, kλ′, θ) ,

Qden-d1(θ, z1, z2) = b(z1)SD(z1)

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z2)ζ01(kχ1, kχ2, θ) ,

Qden-X(θ, z1, z2) = b(z1)SD(z1)∆X(z2, k)ζ00(kχ1, kχ2, θ) ,

Qden-g4(θ, z1, z2) = b(z1)SD(z1)
2− 5s

χ2

∫ χ2

0

∂λSφ+ψ(λ, k)ζ00(kχ1, kλ, θ) ,

Qden-g5(θ, z1, z2) = b(z1)SD(z1)

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

×
∫ χ2

0

∂λṠφ+ψ(λ, k)ζ00(kχ1, kλ, θ) ,

Qrsd-d1(θ, z1, z2) =
k

H1

SV (z1)

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z2)ζ21(kχ1, kχ2, θ) ,

Qrsd-X(θ, z1, z2) =
k

H1

SV (z1)∆X(z2, k)ζ20(kχ1, kχ2, θ) ,

Qrsd-g4(θ, z1, z2) =
k

H1

SV (z1)
2− 5s

χ2

∫ χ2

0

∂λSφ+ψ(λ, k)ζ20(kχ1, kλ, θ) ,
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Qrsd-g5(θ, z1, z2) =
k

H1

SV (z1)

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

×
∫ χ2

0

∂λṠφ+ψ(λ, k)ζ20(kχ1, kλ, θ) ,

Qlen-d1(θ, z1, z2) =

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z2)

× 2− 5s

2χ1

∫ χ1

0

∂λ
χ1−λ
λ

Sφ+ψ(λ)ζL1(kλ, kχ2, θ) ,

Qlen-X(θ, z1, z2) =∆X(z2, k)
2− 5s

2χ1

∫ χ1

0

∂λ
χ1−λ
λ

Sφ+ψ(λ)ζL0(kλ, kχ2, θ) ,

Qlen-g4(θ, z1, z2) =
(2− 5s)2

2χ1χ2

∫ χ1

0

∂λ
χ1−λ
λ

∫ χ2

0

∂λ′Sφ+ψ(λ, k)Sφ+ψ(λ′, k)ζL0(kλ, kλ′, θ) ,

Qlen-g5(θ, z1, z2) =

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

2− 5s

2χ1

×
∫ χ1

0

∂λ

∫ χ2

0

∂λ′
χ1−λ
λ

Sφ+ψ(λ)Ṡφ+ψ(λ′, k)ζL0(kλ, kλ′, θ) ,

Qd1-X(θ, z1, z2) =

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z1)∆X(z2, k)ζ10(kχ1, kχ2, θ) ,

Qd1-g4(θ, z1, z2) =

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z1)

× 2− 5s

χ2

∫ χ2

0

∂λSφ+ψ(λ, k)ζ10(kχ1, kλ, θ) ,

Qd1-g5(θ, z1, z2) =

[(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
SV

]
(z1)

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

×
∫ χ2

0

∂λṠφ+ψ(λ, k)ζ20(kχ1, kλ, θ) ,

QX-Y(θ, z1, z2) = ∆X(z1, k)∆Y(z2, k)ζ00(kχ1, kχ2, θ) X , Y ∈ {d2, g1, g2, g3} ,

QX-g4(θ, z1, z2) = ∆X(z1, k)
2− 5s

χ2

∫ χ2

0

∂λSφ+ψ(λ, k)ζ00(kχ1, kλ, θ) ,

QX-g5(θ, z1, z2) = ∆X(z1, k)

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

×
∫ χ2

0

∂λṠφ+ψ(λ, k)ζ10(kχ1, kλ, θ) ,

Qg4-g5(θ, z1, z2) =

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
(z2)

2− 5s

χ1

×
∫ χ1

0

∂λ

∫ χ2

0

∂λ′Sφ+ψ(λ, k)Ṡφ+ψ(λ, k)ζ00(kλ, kλ′, θ) .
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The correlators QBA(z1, z2) are obtained from QAB(z1, z2) using the identity
QBA(z1, z2) = QAB(z2, z1). The functions SX and ∆X are given in terms of the
transfer function T (k) and the density growth function D1(a) as

SD = −3

5

k2

ΩmH2
0

D1(a)

a
T (k) , (3.B102)

SV =
3

5

kH
ΩmH2

0

dD1(a)

da
T (k) = −fH

k
SD , (3.B103)

Sφ =
9

10

D1(a)

a
T (k) , Sφ+ψ = 2Sφ , (3.B104)

∆d2 = −9

5

H2

ΩmH2
0

dD1(a)

da
T (k) , (3.B105)

∆g1 =

(
Ḣ
H2

+
2− 5s

χH
+ 5s− fevo

)
Sφ , (3.B106)

∆g2 = −(2− 5s)Sφ , ∆g3 = H−1Ṡφ . (3.B107)

Here we have set Φ = Ψ and the transfer function T (k) as well as the growth function
D1(a) have to be determined either with a Boltzmann solver like class or using
an analytic approximation like the one derived in Ref. [100]. We have normalized
the growth function as well as the scale factor to unity today, D1(1) = 1. For the
numerical results shown in our figures we used the Boltzmann solver class. We have
checked analytically and numerically that our correlation functions for the standard
and (d1)-terms agrees with the full sky results of [48].

3.C Approximation for the non-linear full-sky lens-
ing

As discussed in Section 3.2.2, to calculate the non-linear full-sky lensing we calculate
the halo-fit power spectrum at a fixed redshift z∗ and then evolve it along the line-
of-sight using the linear growth rate. To choose z∗ we use the flat-sky non-linear
result, that we calculate first without approximation and second with the same
approximation as in the full-sky. We find that when z∗ = 0.42 the approximate
solution is in extremely good agreement with the correct solution. We use therefore
the same z∗ to calculate the full-sky result, for which it is not possible to do an exact
integration (see discussion in Section 3.2.2).

In Fig. 3.19 we compare the non-linear full-sky lensing calculated with different
values for z∗. In red we show the result for z∗ = 0.42 (best fit from the flat-sky),
and in black and blue we show the two extreme cases: z∗ = 1 (black) and z∗ = 0
(blue). We see that the lensing terms behave as expected: a smaller z∗ gives rise
to a larger result, since in this case we overestimate the power spectrum along the
line-of-sight. The curve z∗ = 0.42 is well situated between the two extreme cases, as
was the case in the flat-sky. This gives us confidence that the approximation works
well also for the full-sky lensing.
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Figure 3.19: We show the full-sky non-linear density-lensing correlation function
(left) and lensing-lensing correlation function (right) at z̄ = 1 as a function of
separation, for µ = 1. The black solid line shows the calculation with z∗ = 1, the
blue line with z∗ = 0 and the red line with z∗ = 0.42.

3.D Direction dependent power spectra

In this appendix we prove a simple property of direction dependent power spectra
which is often used. This result is of course not new but it is usually used without
derivation and mainly in special cases. Here we prove it in full generality.

Theorem ξ(r) is a correlation function which depends on the orientation of r only
via its scalar product with one fixed given direction n (e.g. the line of sight). Denot-
ing the corresponding direction cosine by µ and expanding ξ in Legendre polynomials,
we have

ξ(r) =
∑
n

ξn(r)Ln(µ) , µ = r̂ · n . (3.D108)

In this situation the Fourier transform of ξ, the power spectrum, is of the form

P (k) =
∑
n

pn(k)Ln(ν) , ν = k̂ · n where (3.D109)

pn(k) = 4πin
∫ ∞

0

drr2jn(kr)ξn(r) , and (3.D110)

ξn(r) =
(−i)n

2π2

∫ ∞
0

dkk2jn(kr)pn(k) . (3.D111)

Proof The Fourier transform of ξ is defined as

P (k) =

∫
d3reir·kξ(r) . (3.D112)

We use that
eir·k =

∑
`

i`(2`+ 1)j`(kr)L`(k̂ · r̂)

and

L`(k̂ · r̂) =
4π

2`+ 1

∑̀
m=−`

Y`m(k̂)Y ∗`m(r̂) =
4π

2`+ 1

∑̀
m=−`

Y`m(r̂)Y ∗`m(k̂) .
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Here Y`m are the spherical harmonics as given e.g. in [94]. Inserting these identities
in (3.D112) using the ansatz (3.D108) for the correlation function, we obtain

P (k) =
∑
`m

∑
nm′

(4π)2i`

2`+ 1

∫
d3rξn(r)j`(kr)Y`m(k̂)Y ∗`m(r̂)Ynm′(r̂)Y

∗
nm′(n)

. (3.D113)

Using the orthogonality relation of spherical harmonics, the integration over direc-
tions gives

P (k) = 4π
∑
n

in
∫ ∞

0

drr2ξn(r)jn(kr)Ln(ν) . (3.D114)

Identification of the expansion coefficients yields (3.D110). Eq. (3.D111) is obtained
in the same way using the inverse Fourier transform,

ξ(r) =
1

(2π)3

∫
d3ke−ik·rP (k) .

Clearly, if ξ(r) = 〈∆(x)∆(x+r)〉 is independent of x (∆ is statistically homoge-
neous), ξ does not depend on the sign of r and in the sum above only ξn with even
n’s can contribute so that P (k) is real.

Inserting the expressions for the QAB in (3.46) to obtain the correlation func-
tion, we realize that in the flat sky limit (n1 → n2), all our terms ξAB where the
corresponding QAB do not contain integrated terms, are actually of this form. This
also shows that in this limit ζ01 + ζ10 and ζ12 + ζ21 must vanish since they contain
j1(kr) and j3(kr) and would yield imaginary contributions to the power spectrum.

For wide angles n1 6= n2 the correlation function depends on two directions.
Furthermore, for large r it is not translation invariant as it depends on the redshift
on our background light-cone at which r is placed. In this case, the Fourier transform
of the correlation function is no longer simply given by the power spectrum of the
fluctuations.

The theorem proven above has a simple but useful corollary which is sometimes
called the closure relation of spherical Bessel functions [21]. Inserting the expression
(3.D110) into (3.D111) and using that it holds for arbitrary functions pn(k), we find

2

π

∫ ∞
0

jn(rk)jn(rk′)r2dr = δ(k − k′)k−2 , (3.D115)

for positive k and k′. Using

jn(x) =

√
π

2x
Jn+1/2(x)

we can convert (3.D115) into an equation for ordinary Bessel functions Jm:∫ ∞
0

Jn+1/2(rk)Jn+1/2(rk′)rdr = k−1δ(k − k′) , (3.D116)

This identity also holds for Jm with integer m, see [122], No 6.512-8.
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3.E The flat sky approximation

To derive expression (3.70) we consider the observed galaxy density fluctuation in
real space given in Eq. (3.8). We neglect the integrated Sachs Wolfe term and the Φ̇
term in the first line; they are very small and relevant mainly on very large angular
scales where the flat sky approximation breaks down. The remaining integrated term
is then only the lensing term and the subdominant Shapiro time delay. Furthermore,
we set Ψ = Φ which is a very good approximation in ΛCDM at late times. Denoting
the power spectrum of the comoving density contrast δc at redshift z = 0 by Pδ and
using the perturbed Einstein and continuity equations we find

Φ = Ψ = − 3

2

ΩmH
2
0 (1 + z)D1(z)

k2
δc (3.E117)

V = −H
k
f(z)D1(z)δc , (3.E118)

where f(z) is the growth rate as given in (4.2), D1(z) is the growth function such
that δc(k, z) = D1(z)δc(k) ≡ D1(z)δc(k, 0) and Ωm is the matter density parameter
today.

Neglecting first the integrated terms we can simply Fourier transform this ex-
pression from χ(z)n ≡ x to k and use that the power spectrum is the square of the
Fourier transform amplitude. This yields

Pn.i =
∣∣A+B/(kH) + C/(kH)2

∣∣2 Pδ(k) , (3.E119)

where A, B and C are given in (3.67) and (3.69).
To derive the cross term of the non-integrated with the integrated terms, it is

more useful to start with the correlation function. Let us denote A + B/(kH) +
C/(kH)2 = α(k, ν, z) and F̂ (k, ν, z) = α(k, ν, z)δc(k) with Fourier transform F (x, z)
. Denoting

I(χ(z)n, z) =
2

χ(z)

∫ χ(z)

0

dλ

[
2− χ(z)− λ

λ
∆Ω

]
Φ , (3.E120)

we have

ξ∆∆(r, z) = 〈F (χ1n1, z1)F (χ2n2, z2)〉+ 〈I(χ1n1, z1)F (χ2n2, z2)〉
+〈F (χ1n1, z1)I(χ2n2, z2)〉+ 〈I(χ1n1, z1)I(χ2n2, z2)〉 ,(3.E121)

where χi = χ(zi) and r = χ2n2−χ1n1, z = (z1 + z2)/2 and we assume both χi � r
and the zi should not be very different. Using the relation between Φ and δc, the
contribution of the cross term to the correlation function is then given by

ξIF (r, z) = − 3

(2π)3

ΩmH
2
0 (2− 5s(z))

2χ1

∫
d3k

k2
Pδ(k)e−ikn2χ2α(k, ν, z2)×∫ χ1

0

dλ
[
λ(χ1 − λ)k2

⊥ + 2
]
D1(z(λ))(1 + z(λ))eikn1λ .(3.E122)
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In the spirit of the flat sky approximation we now set n1 = n∗+∆n/2 and n2 = n∗−
∆n/2 assuming that ∆n is very small. Splitting r = r⊥ + n∗r‖ with r⊥ = χ(z)∆n
and r‖ = r cosα2, see Fig. 3.18, we then perform the k-integral in the direction
parallel to n∗, dk‖ exp(−ik‖(χ2−λ)). We neglect the slow dependence of the power
spectrum on k‖ and only consider the rapidly oscillating exponential which gives
2πδ(χ2 − λ). Hence the integral over λ does not contribute if χ2 > χ1, otherwise it
reduces to the integrand at χ2,

ξIF (r, z) = − 3

(2π)2

ΩmH
2
0 (2− 5s(z))Θ(χ1 − χ2)

2χ1

D1(z2)(1 + z2)∫
d2k⊥
k2
⊥
Pδ(k⊥)e−ik⊥·r⊥α(k⊥, 0, z2)

[
χ2(χ1−χ2)k2

⊥+2
]
,

(3.E123)

where Θ is the Heaviside Θ-function.
Using polar coordinates, d2k⊥ = dk⊥k⊥dϕ we can perform the ϕ integration

which yields a Bessel function, 2πJ0(k⊥r⊥) = 2πJ0(k⊥r sinα2). The term ξFI(r, z̄)
contributes in the same way with z1 and z2 exchanged. Setting χ1 − χ2 = r‖ = rµ
and neglecting the difference of χ1 and χ2 (z1 and z2) in all other places, we find for
the sum of both mixed terms

ξIF+FI(r, z) = − 3

2π

ΩmH
2
0 (2− 5s(z))

2χ
D1(z)(1 + z)∫

dk⊥
k⊥

Pδ(k⊥)J0(k⊥r
√

1− µ2)α(k⊥, 0, z)
[
χ|µ|rk2

⊥+2
]
.

(3.E124)

Here we have also neglected the difference between cosα2 and µ. In the flat sky
approximation all these angles are equal. (If we would want to be precise, actually
in the case z1 ≡ z2, hence µ = 0 the Shapiro time delay would obtain a factor 4, not
2, but we neglect this in the flat sky approximation.)

To obtain the Fourier transform of (3.E124) which is the contribution n.i.-I to
the power spectrum we first multiply the equation with

∫
dk‖ exp(−ik‖r‖)δ(k‖) = 1.

We then write the factor |χ2 − χ1| = |r‖| = |µ|r inside the integral,∫
dk‖ exp(−ik‖r‖)|r‖|δ(k‖) = |r‖|

is the Fourier transform of

δP (k‖) ≡
1

2π

∫
dr‖ exp(ik‖r‖)|r‖| . (3.E125)

Note that without the absolute value δP would become −iδ′. This distribution is
purely imaginary while δP is real. However, like δ or δ′ its support is on k‖ = 0,
i.e. for a function f which vanishes in a small neighborhood around k‖ = 0 we have
δP · f ≡ 0.
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Inserting (3.E125), we can write the correlation function ξIF+FI as the Fourier
transform of

Pn.i.−I(k, z) = −3π
ΩmH

2
0 (2− 5s(z))

χ
D1(z)(1+z)Pδ(k⊥)α(k⊥, 0, z)

[
δP (k‖) +

2

k2
⊥
δ(k‖)

]
.

(3.E126)

Note also that since k‖ = 0, in the flat sky limit, the integrated term is not correlated
with redshift space distortions.

Let us finally compute the double integrated term,

ξII(r, z) =
(3ΩmH

2
0 (2− 5s(z)))2

(2π)34χ2

∫
d3k

k4
Pδ(k)

∫ χ1

0

dλ

∫ χ2

0

dλ′
[
λ(χ1 − λ)k2

⊥ + 2
]
×[

λ′(χ2 − λ′)k2
⊥ + 2

]
D1(z(λ))(1 + z(λ))D1(z(λ′))(1 + z(λ′))e−ik(n1λ−n2λ′)

(3.E127)

Via the same procedure as above, the integration over k‖ leads to 2πδ(λ − λ′) and
we find

ξII(r, z) =
(3ΩmH

2
0 (2− 5s(z)))2

(2π)24χ2

∫
d2k⊥
k4
⊥
Pδ(k⊥)∫ χ

0

dλ
[
λ(χ− λ)k2

⊥ + 2
]2
D2(z(λ))(1 + z(λ))2e−ik⊥r⊥(λ/χ)) .

(3.E128)

We now perform a change of variables, k⊥ 7→ (λ/χ)k⊥. In terms of this new variable,
the integral contribution to the correlation function becomes

ξII(r, z) =
(3ΩmH

2
0 (2− 5s(z)))2

(2π)24χ2

∫ χ

0

dλ

∫
d2k⊥
k4
⊥
Pδ(k⊥χ/λ)e−ik⊥r⊥ ×(

λ

χ

)2 [
(χ− λ)χ2

λ
k2
⊥ + 2

]2

D2(z(λ))(1 + z(λ))2 . (3.E129)

Again, performing the ϕ integration we end up with

ξII(r, z) =
(3ΩmH

2
0 (2− 5s(z)))2

8πχ2

∫ χ

0

dλ

∫
dk⊥k⊥Pδ(k⊥χ/λ)J0(k⊥r

√
1− µ2)×(

λ

χ

)2 [
(χ− λ)χ2

λ
+

2

k2
⊥

]2

D2(z(λ))(1 + z(λ))2 . (3.E130)

Inserting the same factor 1 as for the mixed term above, we can read off the flat sky
power spectrum of the integrated contribution,

PII(k, z) =
π(3ΩmH

2
0 (2− 5s(z)))2

2χ2∫ χ

0

dλPδ(kχ/λ)δ(k‖)

(
λ

χ

)2[
(χ− λ)χ2

λ
+

2

k2

]2

D2(z(λ))(1+z(λ))2 .
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(3.E131)

Adding (3.E119, 3.E126, 3.E131) we obtain the result (3.70). For completeness, and
since we use it for some of our results, we also write down the flat sky correlation
function,

ξ∆(r, z) =

∫
dk⊥kk⊥Pδ(k)J0(k⊥r

√
1− µ2)

∫ 1

−1

dν|α(k, ν, z)|2e−ikνµr

−3ΩmH
2
0 (2− 5s(z))

4πχ
D1(z)(1 + z)∫

dk⊥
k⊥

Pδ(k⊥)J0(k⊥r
√

1− µ2)α(k⊥, 0, z)
[
χ|µ|rk2

⊥+2
]

+

(3ΩmH
2
0 (2− 5s(z)))2

8πχ2

∫ χ

0

dλ

∫
dk⊥
k3
⊥
Pδ(k⊥χ/λ)J0(k⊥r

√
1− µ2)×(

λ

χ

)2 [
(χ− λ)χ2

λ
k2
⊥ + 2

]2

D2(z(λ))(1 + z(λ))2 . (3.E132)

Since α only contains terms which are constant, linear or quadratic in ν, the ν-
integration is easily performed analytically.





4

Nonlinear contributions to angular power

spectra

Based on:
[163] M. Jalilvand, B. Ghosh, E. Majerotto, B. Bose, R. Durrer,& M. Kunz, Non-
linear contributions to angular power spectra, Phys.Rev.D 101 (2020), [arXiv:
1907.13109]

From the previous chapter, we got an idea of the limitations of working with the
angular power spectra C`’s, but it still remains very significant as an observational
tool for incorporating the relativistic contributions. Here we take an initiative to
model the nonlinear C`’s for studying cosmological structure formation in inter-
mediate to small scales. We find that using a clever flat-sky approximation that
agrees very well with a full-sky treatment done in CAMB [196], we can perform fast
computations to obtain these nonlinear C`’s. The novelty of this work lies in the
fact that we have computed the C`’s in the redshift space, and not merely in the
real space, where the overdensity that we theoretically consider is definitely not an
observable one. We provide the first step for analysing nonlinearities, which does
not yet include lensing contributions, but should indeed be extended to do that in
the near future. We first compute the one-loop corrections to the redshift-space
power spectrum from the standard perturbation theory, which is eventually used to
compute the redshift-space power spectrum from the Lagrangian perturbation the-
ory (LPT), effective field theory (EFT) and Taruya-Nishimichi-Saito (TNS) model
as well. Using the above-mentioned flat-sky approximation, we then calculate the
nonlinear C`’s in redshift-space. In order to gauge the accuracy of our results, we
compare them with the COLA simulations that provide the first three even multi-
poles from which we can construct the full anisotropic power spectrum. It is to be
noted that at much smaller scales it is more sensible to use a full N-body simulation
approach. We find that the most reliable way to model the redshift-space nonlinear-
ities is via the TNS model, which performs very well in case of narrow redshift bins
which enhance the impact of nonlinear RSD. However, for larger bin widths, where
RSD effects are much less prominent, we observe that the most accurate approach
is that using Halofit combined with the Kaiser factor.
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Abstract: Future galaxy clustering surveys will probe small scales where non-
linearities become important. Since the number of modes accessible on intermediate
to small scales is very high, having a precise model at these scales is important
especially in the context of discriminating alternative cosmological models from the
standard one. In the mildly nonlinear regime, such models typically differ from each
other, and galaxy clustering data will become very precise on these scales in the
near future. As the observable quantity is the angular power spectrum in redshift
space, it is important to study the effects of nonlinear density and redshift space dis-
tortion (RSD) in the angular power spectrum. We compute nonlinear contributions
to the angular power spectrum using a flat-sky approximation, and compare the
results of different perturbative and nonperturbative approaches. We find that the
Taruya-Nishimichi-Saito (TNS) perturbative approach is significantly closer to the
comoving Lagrangian acceleration (COLA) approximation than Eulerian or partially
resummed-Lagrangian one-loop approximations, effective field theory of large scale
structure or a halofit-inspired model. However, none of these prescriptions agree
with each other in the nonlinear regime. A surprising and new result of the present
analysis is that for narrow redshift bins, ∆z . 0.01, the angular power spectrum
acquires nonlinear contributions on all scales, right down to ` = 2, and is hence not
a reliable tool at this time. To overcome this problem, we need to model nonlinear
RSD terms, for example as TNS does, but for a matter power spectrum that remains
reasonably accurate well into the deeply nonlinear regime, such as halofit.

4.1 Introduction

After the tremendous success of Cosmic Microwave Background (CMB) observa-
tions [12], presently major efforts in cosmology are going into the observation and
modelling of the distribution of galaxies [20, 272, 35, 39, 251, 204, 36, 119, 271]. As
this data set is three dimensional, it is potentially much richer and may allow us to
study the evolution of cosmic structure formation.

However, on small scales the fluctuations in the matter density can become large
at the present time. Therefore, first order cosmological perturbation theory is not
sufficient to describe structure formation on these scales and numerical N-body
simulations, in principle including also hydrodynamic effects, are needed. This is a
very complicated process and usually many phenomenological parameters have to
be used to describe the highly nonlinear hydrodynamic processes which are affected
by star formation, AGN (active galactic nuclei) feedback and more [244, 262, 229].

On intermediate scales, higher order perturbation theory and phenomenological
modelling of the galaxy power spectrum can be used [175, 265, 283, 231, 50]. This
is the topic of the present work. In the past, people have mainly looked at the
power spectrum in Fourier space [36, 35]. Within linear perturbation theory this is
approximated by the so-called Kaiser formula [175], which includes redshift space
distortions (RSD) i.e. the fact that the observed redshift is affected by peculiar
velocities which are in turn correlated with matter overdensities,

P (k, µ, z̄) = D2
1(z̄)

[
b(z̄) + f(z̄)µ2

]2
Pm(k), (4.1)
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where µ = k̂ ·n is the cosine of the angle between the unit vector in direction k, k̂,
and the observation direction n, which is a unit vector. Here z̄ is a mean redshift of
the survey under consideration, Pm(k) is the linear matter density power spectrum
today, D1(z̄) is the linear growth factor normalized to D1(0) = 1, b(z̄) is the galaxy
bias and

f(z̄) = −D
′
1

D1

(1 + z̄) =
d lnD1

d ln(a)
, (4.2)

is the growth rate, where the prime denotes the derivative with respect to the redshift
z̄. This formula has been generalized in the literature to include nonlinearities in
the matter power spectrum, usually by replacing D2

1(z̄)Pm(k) by a one-loop or two-
loop power spectrum [265] or by a phenomenological approximation like halofit [280,
283]. Workers in the field have also corrected the ‘Kaiser relation’ f(z̄)(k̂·n)2 for the
peculiar velocity with a nonlinear and phenomenological description [208]. With the
increasing precision of the data available from galaxy surveys such as Euclid1 [189,
19], WFIRST 2 [274], 4MOST [299] and (DESI)3[13], and with the upcoming HI
surveys (e.g. [24, 227, 22]) that have a very high redshift resolution, it is important
to model the theoretical galaxy power spectrum as accurately as possible. Even at
scales as large as those of baryon acoustic oscillations, we need to go beyond linear
perturbation theory [36, 52].

Eq. (4.1) is a good approximation to cosmological observations only if we have
a small, far away galaxy survey in a fixed direction n at nearly fixed redshift z̄. A
true galaxy survey lives on our background lightcone and the radial distance between
galaxies is related to their redshift difference. The correlation function therefore is
truly a function of two directions, n1, n2 and two redshifts, z1, z2. Assuming
statistical isotropy it depends only on cos θ = n1 · n2, z1 and z2. A harmonic
transform in cos θ yields the spherical power spectrum C`(z1, z2). This has been
derived at first order in perturbation theory in [46, 67]. Apart from density and
RSD, the complete formula includes several relativistic effects like the integrated
Sachs Wolfe effect, the Shapiro time delay, the gravitational potential at the source
and gravitational lensing convergence (also termed ‘magnification bias’). Apart from
the last term, all relativistic contributions are relevant only on very large scales
corresponding to ` . 10. The gravitational lensing contribution is relevant in wide
redshift bins, at relatively high redshifts, z & 1, or in widely separated redshift
bins [46, 221, 59]. For the redshift bin widths used in this work, we discuss briefly
in Appendix 4.D the importance of lensing in angular power spectra, relative to the
RSD contribution.

Here, we consider spectroscopic surveys which have a very precise redshift dis-
tribution and we shall neglect lensing. We want to determine the effect of loop
corrections in Eulerian and Lagrangian perturbation theory as well as other phe-
nomenological approaches to the nonlinear matter power spectrum. We study how
these corrections affect the observable angular power spectrum, C`, when consider-
ing density and redshift space distortions, and we compare them with results from

1www.euclid-ec.org
2https://wfirst.gsfc.nasa.gov/
3www.desi.lbl.gov

www.euclid-ec.org
https://wfirst.gsfc.nasa.gov/
www.desi.lbl.gov
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the more accurate COmoving Lagrangian Acceleration (COLA)[285, 143, 295, 302]
simulations. The density and RSD contributions are dominant at relatively low red-
shifts and for spectroscopic surveys like Euclid; furthermore, it is these terms which
are most affected by nonlinearities. The main point of this paper is not to make
precise forecasts for which certainly the lensing term should not be neglected, but
to study the effect of nonlinear corrections in the C`’s coming from clustering and
RSD.

In the next section, we derive a ‘flat sky approximation’ for density and RSD
which is surprisingly accurate even at low `. In section 4.3 we describe and compare
four different nonlinear prescriptions for the power spectrum in redshift space, which
can be found in the literature. This section is not new but we spell out these
approximations for completeness. In Section 4.4 we compute the C`’s from the
different approximations and compare them with the linear and halofit results. This
section contains our main findings. We also compare our theoretical predictions to
measurements made from a set of COLA N -body simulations. In Section 4.5 we
discuss our findings and conclude.

4.2 The flat sky approximation

In this section, we discuss a flat-sky approximation [37, 81, 64] using which we
want to compute the angular power spectrum C`(z1, z2) for galaxy number counts
from the 3-dimensional power spectrum, where z1 and z2 are two (relatively close)
redshifts. We start from the correlation function in configuration space which in
principle depends on two spatial positions and two redshifts, ξ(x1, z1;x2, z2) where
(x1, z1) and (x2, z2) are constrained to lie on our background lightcone. We assume
that the redshifts are relatively close so that the time evolution between z1 and z2

can be neglected. Then the correlation function depends only on r = x2 − x1 and
z̄ = (z1 + z2)/2 (see Fig. 4.1). This correlation function in real space, ξ(r, z̄), is the
Fourier transform of the power spectrum

ξ(r, z̄) =
1

(2π)3

∫
d3kP (k, z̄)e−ik·r. (4.3)

Let us now consider the flat sky approximation, which amounts to assuming that the
direction from the observer to the points x1 and x2 are nearly equal, n1 ' n2 = n,
i.e. the survey covers a relatively small patch of the sky in a fixed direction n. This
is the situation Eq. (4.1) can be used as an approximation for the power spectrum.
In this case we can also decompose the separation vector r into components per-
pendicular and parallel to the line of sight direction n, as shown in Fig. 4.1, so we
have:

r = r⊥ + r‖n,
r‖ = rν ' χ(z2)− χ(z1) ' ∆z

H(z̄)
, (4.4)

where χ(z) is the comoving distance to redshift z, ν = r̂ · n̂ as shown in Fig. 4.1.
Similarly in k-space we define

k = k⊥ + k‖n,
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Figure 4.1: We show the positions (x1, z1) and (x2, z2) on the background lightcone
of an observer situated at X and their flat sky approximations.

k‖ = kµ = k k̂ · n . (4.5)

We now introduce the dimensionless two dimensional vector ` by k⊥ ≡ `/χ(z̄).
Therefore by using Eqs. (4.4) and (4.5) we can rewrite Eq. (4.3) as:

ξ(r, z̄) =
1

(2π)3

∫
d2`

χ2(z̄)
dk‖P (k, z̄)e

−i
(

`·r⊥
χ(z̄)

+k‖
(z2−z1)
H(z̄)

)
. (4.6)

On the other hand, we know how to compute ξ(r, z) from the angular power spec-
trum. In the flat-sky approximation this yields (see e.g. [94])

ξ(r⊥, z1, z2) =
1

(2π)2

∫
d2`C`(z1, z2)e−i`·r⊥/χ(z̄). (4.7)

By comparing Eqs. (4.6) and (4.7), we find the relation between the angular power
spectrum and the three dimensional power spectrum in Fourier space as

C`(z1, z2) =
1

2πχ2(z̄)

∫ +∞

−∞
dk‖P (k, z̄) e−ik‖(z2−z1)/H(z̄) , (4.8)

for k =
√
k2
‖ + (`/χ)2. Note that this approximation is not equivalent to the Limber

approximation [198] which is often used for weak lensing calculations where k '
(` + 1/2)/χ(z) is used instead of an integration of the power spectrum times the
Bessel function. In this flat sky approximation we identify the flat sky vectors

k⊥ ≡ `/χ(z̄), (4.9)

and integrate over k‖. More details about this approximation are discussed in a
forthcoming paper [213]. Contrary to Limber’s approximation, which is bad for the
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Figure 4.2: The left panel shows the comparison between the flat-sky approxima-
tion of Eq. (4.8) and the angular power spectrum computed by CAMB that uses
Eq. (4.10) at z = 1, using a top hat window function with ∆z = 0.1. The right
panel shows the relative difference between the two.

density and RSD contributions to number counts (see, e.g. [89]), this approximation
turns out to be excellent for close redshifts z1 ' z2, when compared to the exact
definition of C`(z1, z2) which, at low `, is given by (see Appendix B of [46], where
we have added the bias dependence)

C`(z1, z2) =
2

π
b(z1)b(z2)

∫
dk k2Pm(k, z1, z2)

[
j`(k χ(z1))j`(k χ(z2))

−f(z2)

b(z2)
j`(k χ(z1))j′′` (k χ(z2))−f(z1)

b(z1)
j′′` (k χ(z1))j`(k χ(z2)) +

+
f(z1)

b(z1)

f(z2)

b(z2)
j′′` (k χ(z1))j′′` (k χ(z2))

]
. (4.10)

Here Pm(k, z1, z2) is the matter power spectrum and b(z1), b(z2) are the linear tracer
biases at z1 and z2. For large redshift separations the flat sky approximation gets
worse. This is because this approximation corresponds to replacing the spherical
Bessel function by their lowest frequency modes, assuming that |χ(z1) − χ(z2)| �
χ(z1), χ(z2) which is no longer valid when the redshift difference becomes large
(see [213] for a detailed derivation – for large redshift differences we additionally
need to model the decoherence in P (k, z1, z2) correctly, e.g. with the fitting function
of [71]). In Fig. 4.2 we compare the angular power spectrum for z1 = z2 = 1
computed in the flat sky approximation Eq. (4.8) with the one computed with the
exact formula of Eq. (4.10). The differences are at most 1%.

4.3 Nonlinear corrections to the power spectrum in
redshift space

In this section we give a summary of different nonlinear corrections to the power spec-
trum that can be found in the literature. More precisely we consider four different
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approaches: one-loop corrections from standard Newtonian (Eulerian) perturbation
theory which we shall term SPT, one-loop partially resummed Lagrangian perturba-
tion theory (pr-LPT) , corrections from effective field theory of large scale structure
(EFT) and the Taruya-Nishimichi-Saito (TNS) model. Some important references
for each of these approaches are [129, 212, 29, 283] respectively. We perform all per-
turbative calculations at the one-loop level (see Appendix 4.A for details). We also
make use of a set of measurements of the redshift power spectrum from COLA sim-
ulations. These represent our most accurate prediction, with which we can compare
the perturbative approaches. These simulations are described briefly below. At the
end of this section we compare the different approximations to these simulations.

4.3.1 COLA

We have run a set of 10 Parallel COmoving Lagrangian Acceleration (PICOLA)
simulations [143, 302] of box size 1024Mpc/h with 10243 dark matter particles and
a starting redshift zini = 49. These are all run under a similar ΛCDM cosmology
with Planck parameters [12]: Ωm = 0.315, Ωb = 0.0493, h = 0.674, ns = 0.965
and σ8(z = 0) = 0.811. The simulation redshift space power spectrum multipoles
are measured using the distant-observer (or flat sky) approximation4 and are then
averaged over three line-of-sight directions. We further average over the 10 PICOLA
simulations. We measure the first three even multipoles, the monopole, quadrupole
and hexadecapole. Using these we can then construct the full anisotropic power
spectrum, P (k, µ)5

P sCOLA
tot (k, z) = 2P0(k, z) +

2

5
L2(µ)P2(k, z)

+
2

9
L4(µ)P4(k, z) + [higher order multipoles], (4.11)

where Li is the Legendre polynomial of order ‘i’ and Pi is the ith multipole which
is an average over the measurements made from the COLA simulations. Finally,
we note that the COLA method is an approximate method and has been shown to
deviate from the full N-body approach at smaller scales [158, 51, 44]. This issue can
be ignored as we simply use these simulations as a benchmark in accuracy with which
to compare the less accurate perturbative predictions outlined next. For example,
the redshift space monopole for lowly biased halos was shown to be accurate to full
N-body to within a few percent at z ≤ 1 up to k = 0.7h/Mpc in [158]. On the other
hand, the quadrupole deviates by up to 10% at z = 1 at k = 0.7h/Mpc in the same
paper. Regarding this issue, we expect the dark matter monopole and quadrupole
to perform better than the halo multipoles, and for their accuracy to improve at

4That is, we assume the observer is located at a distance much greater then the box size
(r � 1024Mpc/h), and so all lines of sight are treated as being parallel to the chosen Cartesian
axes of the simulation box. Next, we disturb the position of the matter particles using their velocity
components (vx, vy or vz).

5Note that the hexadecapole at the redshifts considered here is already very small in magnitude
and so the exclusion of higher order multipoles will only negligibly affect the form of P (k, µ).
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higher redshifts. Furthermore, we expect the theoretical models discussed in this
section to perform significantly worse at these scales.

4.3.2 SPT

One-loop contributions to the power spectrum in redshift space (denoted by super-
script s) in the context of SPT are already well-established and have previously been
calculated in the literature (for a review see e.g. [30]). Here as a reference we point
to Eq. (15) of [129]:

P sSPT
tot (k, z) ≡ P s

lin + P sSPT
one−loop = P s

lin + P s
22 + P s

13 (4.12)

= (1 + βµ2)2b2Plin(k, z) + 2

∫
d3q

(2π)3
Plin(q, z)Plin(|k-q|, z)[F S

2 (q,k-q)]2

+ 6(1 + βµ2)bPlin(k, z)

∫
d3q

(2π)3
Plin(q, z)F S

3 (q, -q,k) ,

where Plin(k, z) is the linear power spectrum in real space, β ≡ f/b, f being the linear
growth rate and b being the linear bias, µ = k̂·n, and F S

2 (q,k-q) and F S
3 (q,-q,k) are

the kernels of higher order perturbations. Their expressions are computed from Eq.
(13) of Ref. [129] by neglecting higher order biases. The details of the integrations
that appear in Eq. (4.12) are given in Appendix 4.A for completeness. Further, since
we only consider dark matter we set b = 1.

4.3.3 pr-LPT

Here we consider a specific case of partially resummed-LPT (pr-LPT) introduced
in [212]. The power spectrum using pr-LPT is given in Eq. (63) of Ref. [212],

P sLPT
tot (k, z) = exp

{
−k2[1 + f(f + 2)µ2]A

}
×
{
P sSPT

tot (k, z) + (1 + fµ2)2[1 + f(f + 2)µ2]k2Plin(k, z)A
}
, (4.13)

where
A =

1

6π2

∫
dqPlin(q, z). (4.14)

The prefactor encodes a damping on small scales from velocity dispersion.

4.3.4 EFT

We also consider effective field theory of large scale structure [28, 62, 268, 195, 238,
107] where counter terms are added to the SPT power spectrum, for which we refer
to Eq. (3.8) of Ref. [29]

P sEFT
tot (k, z) = P sSPT

tot (k, z)− 2
3∑

n=0

c2|δs,2nµ
2n k

2

k2
nl

Plin(k, z), (4.15)
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where

c2|δs,6 = f 3c2|δs,0 − f 2c2|δs,2 + fc2|δs,4. (4.16)
(4.17)

We do not apply a resummation scheme as is commonly done in the literature. The
effect of resummation has been shown to have a low impact on the fitting to COLA
data conducted in [29]. The values of the counter term coefficients are determined
by fitting to the COLA simulations. This follows a similar procedure to [52]. We
refer the reader to this work for justifications and details of this procedure. This
is briefly described in Appendix 4.C where also the numerical values of the fitting
parameters are given.

4.3.5 TNS

The last model we consider is the one-loop TNS model. This model was introduced
in [283] and is one of the best approaches to perturbation theory known at present,
having been applied in the recent BOSS galaxy clustering analysis [36, 35]. It
has also been thoroughly validated against simulations and has stood up to other
perturbative models [228, 282, 157, 314, 119, 120, 53, 50, 208, 51, 52]. The model
is given by [283]

P sTNS
tot (k, z) =

1

1 + (k2µ2σ2
v)/2

[
P δδ

one−loop(k, z) + 2µ2P δθ
one−loop(k, z) + µ4P θθ

one−loop(k, z)

+ A(k, µ, z) +B(k, µ, z) + C(k, µ, z)
]
. (4.18)

The terms in brackets are all constructed within SPT, with δδ, δθ and θθ denoting
density-density, density-velocity and velocity-velocity one-loop power spectra. The
perturbative correction terms A,B and C are nonlinear corrections coming from
the RSD modelling while the prefactor is added for phenomenological modeling of
the Fingers of God effect. Within this prefactor, σv, is a free parameter that is
fit to the COLA simulations (see Appendix 4.C). We refer the reader to [283, 52]
for a detailed description of the components A, B and C of the model but we give
some basic expressions in Appendix 4.B. We stick to one-loop TNS in this study,
the reason is that although the two-loop version is shown to do marginally better
than the one-loop at higher redshifts (look at [40] for example), the addition of
loops in standard PT is not guaranteed to improve predictions and our aim is to
quantify how nonlinearities (here expressed through the one-loop and fingers-of-god
damping) translate to the angular spectra, and in particular, how redshift bin-width
acts as a ‘filter’ for these redshift anisotropy nonlinearities, highlighted in Fig. 4.5.

4.3.6 Comparisons

In this section we compare Eq. (4.12) (SPT - blue), Eq. (4.13) (pr-LPT - green),
Eq. (4.15) (EFT - magenta) and Eq. (4.18) (TNS - orange) with Eq. (4.11) (COLA
reconstructed 2d spectrum - grey dots). We also compare Eq. (4.1) with Pm(k) given
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by linear theory (linear Kaiser - dashed black), nonlinear halofit power spectrum
[280] (halofit - red) and the matter power spectrum as measured from the simulations
(black dots). These comparisons are done at z = 0.5 and are shown in Fig. 4.3 and
Fig. 4.4 for µ = 0 (transversal direction) and µ = 1 (radial direction) respectively.
We expect that the grey dots marking the reconstructed COLA 2D spectrum of
Eq. (4.11) provide the most accurate modeling for the full spectrum. This is our
benchmark for accuracy.

We also show the one-loop contributions to Plin, P13 and P22, of Eq. (4.12) in
the upper panels of Fig. 4.3 and Fig. 4.4. They start to become important at k ∼
0.1h/Mpc for µ = 0, which is well known from the literature, and on smaller scales
for µ = 1 as we can see in Fig. 4.4 and as we will also discuss later. Furthermore, P13

and P22 have opposite signs and their amplitudes are individually much larger than
their sum, which is an indication for the well known bad convergence properties of
SPT [61].

The one-loop SPT power spectrum (blue line) at z = 0.5 is shown in the middle
panel of Fig. 4.4 for µ = 1 and in Fig. 4.3 for µ = 0 (in this plot the blue line
is covered by the orange line). One sees clearly that SPT has too much power at
small scales and fits the COLA simulations (grey dots) in a satisfactory way only
for k . 0.1h/Mpc.

The black dots are the COLA matter power spectrum multiplied by the ‘Kaiser
factor’ (1 + βµ2)2. They are accurate until about k = 0.13h/Mpc. The keen reader
may ask why the grey dots and black dots do not overlap in Fig. 4.3 at small scales.
This could be due to inaccuracies in the COLA velocities used in computing the
multipoles as well as the exclusion of higher order multipoles in Eq. (4.11).

Next we consider pr-LPT (green curves). It is clear from Fig. 4.3 and Fig. 4.4,
that the damping introduced in the pr-LPT model is much too strong. Nevertheless,
this correction can fit the power spectrum roughly until k < 0.13h/Mpc which is
already better than the SPT fit.

The EFT power spectrum is plotted as the magenta line (in Fig. 4.3 this line is
covered by the orange line). Somewhat surprisingly, this fit is only a little but not
significantly better than pr-LPT for the angular scales considered. It represents a
reasonable approximation until k ' 0.15h/Mpc. One key reason for the poor fit at
µ = 1 is the lack of damping within the SPT spectrum which the EFT counter terms
cannot suppress efficiently. The inclusion of resummation is expected to improve
the fit (see for example [52]) but we leave this to future work.

Lastly, the TNS model is shown in orange. Clearly, this model represents the
best fit to the full reconstructed simulated power spectrum for µ = 1 (compare the
orange line and the grey dots in Fig. 4.4, lower panel). It can be used roughly until
k ' 0.2h/Mpc. This is somewhat disappointing, as we aspire to achieve a good fit
until k ' 1h/Mpc – to reach convergence in the C` integral for narrow redshift bins
we find that we need to go even to 2h/Mpc. On even smaller scales, corrections
from baryonic physics, that are not present in the simulations used here, can at any
rate no longer be ignored.

We also note that for µ = 0 the SPT, EFT and TNS power spectra are identical,
i.e. in Fig. 4.3 the blue, magenta and orange lines overlay. These spectra only differ



Chapter 4. Nonlinear contributions to angular power spectra 101

in their treatment of redshift space distortions which are absent in the transversal
direction, µ = 0.

In Fig. 4.3 and 4.4 we also show the comparison of the COLA measurements with
the halofit model multiplied by the Kaiser factor given in Eq. (4.1) (red curve). While
this approximation is excellent when fitted to the COLA matter power spectrum,
see Fig. 4.3, it does not correctly model the redshift space distortions. Hence, the
higher order RSD and the nonlinearity in the continuity equation which is not taken
into account in this formula is very relevant. This is also clear from comparing the
black dots, obtained from the matter power spectrum of the COLA simulations by
multiplication with the Kaiser term, and the grey dots which represent the full sum
of the simulated multipoles. It is also interesting to note that while the matter
power spectrum of the simulations on small scales is larger than the linear power
spectrum, adding all the multipoles actually reduces the power spectrum in redshift
space on small scales when compared to the linear power spectrum. While the pr-
LPT approximation exaggerates this reduction of power, all other approximations
either cannot model it at all or (in the case of TNS) underestimate this effect. This
is most visible in radial direction, µ = 1. In the transversal direction, µ = 0, the
nonlinear corrections from SPT, EFT and TNS all overshoot significantly while pr-
LPT is still too small. Here halofit provides the best approximation, see Fig. 4.3.
In the radial direction, µ = 1, only TNS manages to provide a reasonable fit for
k & 0.1h/Mpc, but for k & 0.2h/Mpc it also starts to over-estimate the power
significantly so that there is effectively no good analytical prescription available to
model the redshift space power spectrum into the nonlinear regime.

4.4 Nonlinear correction to the angular power spec-
trum

To profit optimally from future galaxy redshift surveys (Euclid, DESI, 4MOST,
SKA, ...) [19, 299, 13, 257] we must also be able to model scales where nonlinearities
become relevant. Since the angular power spectrum is the true observable quantity,
it is important to study the effects of nonlinearities directly on this quantity. In this
section, we discuss the effect of nonlinearities on the angular power spectrum using
the different approaches discussed in the previous section to model them, and we
study their effects at different redshifts and for different widths of the redshift bins
considered.

Although the power spectrum P s(k, µ, z) in Fourier space, and its counterpart,
the correlation function ξ(r, µ, z), provide some insight into galaxy observations on
small scales, here we want to investigate how these nonlinearities project onto the
sky, i.e. onto the directly observable angular power spectrum.

In the top panel of Fig. 4.5 we compare the C`’s from the different nonlinear
approximations discussed in the previous section at redshift z = 0.5 and using bin
width ∆z = 0.1. For ` . 150, which corresponds roughly to the nonlinearity scale
at z = 0.5, the spectra agree relatively well. Beyond that scale they become very
different, and even though in k-space TNS is a better approximation to the numerical
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Figure 4.3: The power spectrum P s(k, µ) in redshift space in the transversal di-
rection, µ = 0 (effectively the density power spectrum), with b = 1 and z = 0.5.
The upper panel shows the linear spectrum P s

11 (blue) along with the one-loop
contributions P s

22 (orange) and P s
13 (green). The middle panel shows the compari-

son between P sSPT
one−loop, P sLPT

one−loop, and P sEFT
one−loop and P sTNS

one−loop defined respectively in
Eq. (4.12), Eq. (4.13), Eq. (4.15) and Eq. (4.18). In the lower panel the ratios of
the corresponding nonlinear spectra and the linear one are shown. The black dots
show the monopole of the N -body simulations while the grey dots also include the
quadrupole and the hexadecapole available from COLA.
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Figure 4.4: The same as Fig. 4.3 but in the radial direction, µ = 1, where redshift
space distortions are important. We see that the Kaiser formula used for halofit and
for the black COLA points does not provide a good fit to the RSD even at mildly
nonlinear scales.
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Figure 4.5: The plot shows the C`’s from density and RSD at z = 0.5 computed
using the different approaches discussed in the text: P sSPT

one−loop, Eq. (4.12), P sLPT
one−loop,

Eq. (4.13), P sEFT
one−loop, Eq. (4.15), and P sTNS

one−loop, Eq. (4.18), as well as the nonlinear
C` computed by CAMB using the halofit model, and the simulated multipoles from
COLA. The redshift bin width is ∆z = 0.1 for the top panel, ∆z = 0.01 for the
middle panel and ∆z = 0.001 for the bottom panel. None of the models shown here
manages to agree with the numerical simulations except on the largest scales and
for wide redshift bins.
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Figure 4.6: We show `(k⊥, z) for k⊥ = (0.01 , 0.1 , 1)h/Mpc as well as `NL(z) =
`(kNL(z), z) as a function of redshift z.

results this is no longer true in ` space where the CAMB halofit (red line) seems
to best mimic the COLA result (grey line), but also this result is more than 20%
off at ` = 1000 from the COLA simulation and a better approximation is certainly
needed.

When smaller bin widths are chosen, ∆z = 0.01 for the middle panel and ∆z =
0.001 for the lower panel, the difference between the approximations and the COLA
simulations becomes even worse. For these bin widths more small scale power enters
the C`’s which not only increases their amplitude but also makes them more sensitive
to the treatment of nonlinearities. This important new finding is discussed in more
detail around Fig. 4.8.

We define the nonlinearity scale through the condition

σ(RNL) = 0.2 (4.19)

that was also used by Euclid [189, 250]. Here σ2(R) is the usual variance of the
mass fluctuation in a sphere of radius R,

σ2(R, z) ≡ 1

2π2

∫ ∞
0

dk

k

(
3j1(kR)

kR

)2

k3δ2(k, z) , (4.20)

so that σ(R = 8h/Mpc) = σ8. We then associate a nonlinearity scale in Fourier
space through

kNL(z) =
2π

RNL(z)
. (4.21)

A given transversal wave number k⊥ at redshift z roughly corresponds to a multipole

`(k, z) ' k⊥χ(z) . (4.22)

In Fig. 4.6 we show `(k⊥, z) for three different values of k⊥ as well as `NL(z) =
`(kNL(z), z).

In Fig. 4.7 we compare linear and nonlinear spectra for different redshifts for the
TNS model in Fourier space. For k < 0.15h/Mpc the density only spectra (dashed
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Figure 4.7: Relative differences between P s(k, µ)NL and P s(k, µ)lin for the TNS
model for different redshifts. The dashed lines represent the density only (µ = 0),
and the solid ones represent density plus RSD (µ = 1). The horizontal dotted black
line is the 10% line. For the density-only spectrum nonlinearities become important
around k = 0.1h/Mpc, while in the µ = 1 spectrum with RSD the nonlinearities
appear on much larger scales.

lines) are closer to the linear result than the spectra including RSD with µ = 1 (solid
lines). This indicates that velocities exhibit nonlinearities already on larger scales
than the density. Roughly at k = 0.15h/Mpc this trend is reversed. When we enter
a more nonlinear regime (after shell crossing), the velocities tend to damp the power
in redshift space, so the density + RSD spectra are less nonlinear than the density
only spectra on these scales. Interestingly, the ‘cross-over’ scale of k = 0.15h/Mpc
seems to be nearly redshift independent.

In Fig. 4.8 we compare linear and nonlinear angular spectra for different redshifts
using the TNS model for the nonlinear case. As we explain later in Fig. 4.12 and 4.13,
for the smaller redshift bins which are sensitive to RSD, TNS follows the simulation
results better than CAMB halofit. For ∆z = 0.1, the higher the redshift the higher
the value of ` below which our model deviates by less than 10% (black dotted line)
from the linear result. Furthermore, redshift space distortions are not very visible
in ` space for ∆z = 0.1 (see top panel of Fig. 4.8).

For ∆z = 0.01 and ∆z = 0.001 (middle and low panels of Fig. 4.8), RSDs
are very prominent but now, even for very low `, the linear approximation is no
longer sufficient. This is due to the fact that a very precise redshift resolution in
the spectrum is sensitive to very small radial modes, hence to very high values of k‖
which are affected by nonlinearities. Physically this just means that we are sensitive
to nonlinearities if we want high resolution in any direction, radial or transversal.
This shift of the nonlinearity scale to lower `’s for narrow redshift bins is also visible
in the lower panels of Fig. 4.5.

This is a very important result of the present paper: if we want to resolve RSD in
the angular power spectrum we must have sufficiently precise redshift measurements,
in which case the C`’s are sensitive to nonlinearities in the radial power spectrum
for virtually all `’s.

At the highest redshift, z = 2 and for the most narrow redshift bin, ∆z = 0.001
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Figure 4.8: Relative difference between CNL
` and C lin

` for the TNS model for different
redshifts. The dashed lines represent the density only (neglecting any RSD terms in
the power spectrum) , and the solid ones represent density plus RSD. The horizontal
dotted black line is the 10% line.
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this yields simply a nearly constant offset from the linear results by about 5%. For
lower redshifts and/or larger bin widths the difference from the linear result grows
with ` as one naively expects. It is also interesting to note that for the smallest
bin width (bottom panel of Fig. 4.8), the deviation never exceeds 10% for z ≥ 1 or
z = 0.5 and ` . 500. This can be understood by noting that RSDs which are most
significant for the smallest bin width damp the nonlinearities.

Mathematically, the fact that nonlinearities at small ∆z enter already at low `
can be understood very nicely from the flat sky approximation. Convolving Eq. (4.8)
with a tophat window function of width ∆z we find for a mean redshift denoted by
z̄

C`(z̄,∆z) =
1

πχ2

∫
dk‖j

2
0

(
k‖∆z

2H(z̄)

)
P

(
k‖,

`

χ

)
. (4.23)

Here the spherical Bessel function, j2
0(k‖∆z/2H) acts as a ‘low pass filter’ which

filters out modes with k‖ � 2H(z)/∆z. For very small ∆z the integral therefore
extends to high values of k =

√
k2
‖ + (`/χ)2 for any `, and these modes can become

large and nonlinear. In this case nonlinearities affect the result even at the lowest
` values. In other words, for linear perturbation theory to apply it is not sufficient
that the relevant transverse modes, k⊥ = `/χ(z) are well in the linear regime, but
also the relevant radial modes, k‖ ≤ 2H(z)/∆z must be in the linear regime. A
crude approximation yields

k‖,max '
2πH(z̄)

∆z
< kNL(z̄) or ∆z & (∆z)min =

2πH(z̄)

kNL(z̄)
. (4.24)

We show (∆z)min as a function of z̄ in Fig. 4.9. The critical width is therefore of the
order of ∆z ≈ 0.01 to 0.02, for narrower redshift bins (higher redshift resolution) we
have to expect that (radial) nonlinearities affect the C` for all values of `, not only
for ` > `NL.

The radial cutoff scale k‖,max, also shown in Fig. 4.9, lies well below the nonlinear
scale for ∆z = 0.1, while for ∆z = 0.01 it is in the range of k ≈ 0.3h/Mpc to
0.8h/Mpc, depending on redshift, already in the nonlinear regime. For narrow
redshift bins, ∆z = 0.001, it becomes larger than the ‘absolute’ convergence scale of
k ≈ 2h/Mpc, for which the C` integral (4.23) converges without any damping from
the Bessel function, i.e. also for ∆z → 0 (except for very high ` where the effective
starting value of the integration, `/χ, is pushed to higher k).

To illustrate clearly the relevance of RSDs we show the difference between the
density only (dashed) and density plus RSD (solid) in the nonlinear predictions in
Fig. 4.10 using the TNS approximation. For the widest redshift bin, ∆z = 0.1,
redshift space distortions are not very relevant. For small ∆z, however, they sig-
nificantly reduce the C` spectrum at high `. As for the power spectrum, on linear
scales RSD enhances the power spectrum via the Kaiser effect while on nonlinear
scales it reduces it due to the velocity overshoot which damps the density power
spectrum in redshift space. The crossover between the dashed and the solid line
roughly corresponds to the nonlinearity scale at a given redshift. This explains also
why the crossover location is nearly independent of the bin width ∆z.



Chapter 4. Nonlinear contributions to angular power spectra 109

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0130

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

0.0170

(
z)

m
in

(z
)

10 3 10 2 10 1

z

10 1

100

k
,m

ax

z = 0.5
z = 1
z = 1.5
z = 2
Convergence scale

Figure 4.9: Left: (∆z)min defined in Eq. (4.24) as a function of z̄. For redshift
bins narrower than (∆z)min we expect radial nonlinearities to affect the C`’s also
for low values of `. Right: The radial scale k‖,max for which the integrand of the C`
integral is damped by the Bessel function, as function of bin width ∆z, for different
redshifts. We also show as a dashed line the convergence scale of the integral in the
case ∆z → 0.

To quantify the importance of RSD terms, we have performed a simple Fisher fore-
cast for several bin widths. We modeled the RSDs with the Kaiser formula applied
to halofit, and only kept the cosmic variance contribution to the noise (neglecting
survey-dependent contributions like shot noise and sky fraction). More details about
the Fisher analysis are given in Appendix 4.E. The signal-to-noise ratio (SNR) is
shown in Fig. 4.11 as a function of redshift bin width, ∆z, for three different red-
shifts. As we see, the RSD signal drops by an order of magnitude when going from
∆z = 0.01 to ∆z = 0.1, highlighting the importance of using narrow redshift bins
for measuring RSD. The RSD signal is however still detectable even for wide bins,
and it should therefore be included in the C` also for ∆z = 0.1.

In Fig. 4.12 we compare also the result of halofit from CAMB (dashed) with the
one from the COLA simulations (solid) for density plus RSD angular power spectra.
For the bin width ∆z = 0.1 we only have a slight overshoot of the CAMB spectrum
at ` > 400 for z = 0.5, all other spectra are in good agreement. However, for small
bin widths ∆z ≤ 0.01, and especially for ∆z = 0.001, the insufficient treatment of
the RSD in the halofit model where they are taken into account simply by the linear
Kaiser formula, leads to a significant spurious amplification of the power spectrum
already at low values of `. This overshoot is more significant at lower redshifts,
where nonlinearities are more relevant, but it is already visible at z = 2.

In Fig. 4.13 we compare the results using the TNS approximation (dashed) with
the ones from the COLA simulations (solid) for density plus RSD angular power
spectra. Clearly, the TNS approximation handles redshift space distortions much
better that halofit and the spurious excess is reduced and no longer visible for
z = 1.5 and 2.0. However, we have checked that the relative difference between the
simulation result and TNS is larger than cosmic variance for z = 2 and ` > 200
as well as z ≤ 1.5 and ` = 100 for narrow bins, ∆z = 0.001. It becomes larger
than cosmic variance at ` = 700, 350 and 200 for z̄ = 1.5, 1 and 0.5 respectively,
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Figure 4.10: The comparison between CNL
` for density and density + RSD, for

different mean redshifts and with width ∆z = 0.1, 0.01, 0.001 from top to bottom.
NL stands for nonlinear, and in this plot we show the case of TNS model. The
dashed lines contain density only while in the the solid lines both, density and RSD
are included.
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widths.
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the redshifts z = 0.5, 1.0, 1.5, 2.0 and for different redshift bin widths.
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for both bin widths, ∆z = 0.01 and ∆z = 0.1. This indicates again that for slim
redshift bins, ∆z = 0.001, nonlinearities are relevant already at low ` (where however
cosmic variance is very large). For wide redshift bins, ∆z = 0.1, where RSD are not
significant, the halofit model from CAMB is actually a better approximation than
TNS. We have already seen this in Fig. 4.5.

4.5 Discussion and conclusion

In this paper we have compared different perturbation theory-based schemes, stan-
dard perturbation theory (SPT), partially resummed Lagrangian perturbation the-
ory (pr-LPT), the effective field theory of large scale structure (EFT), the TNS
model, and halofit to treat nonlinearities in the angular power spectrum. We also
compare these predictions with COLA simulations. These simulations are percent
level accurate within k . 1h/Mpc when compared to full N-body measurements of
the matter power spectrum [302]. At the level of the redshift space multipoles, the
simulations still provide fair accuracy up to k ∼ 0.3h/Mpc [52]. All other models
considered here are less accurate in the modeling of RSD and so we use the COLA
simulations as our benchmark in accuracy.

For these approaches, we provide two bases of comparisons. The first is at the
level of the two dimensional redshift space power spectrum P (k, µ). Even though
this comparison is not new, it is useful to understand the results for the angular
power spectrum. For P (k, µ) we draw the following conclusions:

• Using the COLA simulations as a reference, the TNS model offers the best
modelling of the RSD anisotropy, being comparable to the COLA measure-
ments into the quasi linear regime, k . 0.2h/Mpc, at z = 0.5, for all µ.
nonlinear RSD modelling is essential in modelling the 2D power spectrum.
This has been checked by comparing the Kaiser formula combined with the
halofit nonlinear matter power spectrum to the COLA measurements. Despite
being a good approximation at µ ∼ 0, halofit performs the worst out of all
models at µ ∼ 1 and k&0.1h/Mpc.

The main and new basis for comparison is at the level of the angular power
spectrum. We note that this quantity is more directly related to observations. Our
main conclusions are summarized as follows:

• We find that the flat sky approximation is valid at percent level accuracy and
so adopt this for all our comparisons of C`.

• For large bin widths (∆z ∼ 0.1), RSD is much less important and the main
contributor to nonlinear information is within the matter power spectrum. At
this bin width halofit combined with the Kaiser factor agrees within a few
percent with our benchmark model, the COLA simulation up to ` . 400 at
z = 0.5 and higher for higher z.

• Small bin widths greatly enhance the impact of nonlinear RSD. Because of this,
the TNS model out-performs all other models for ∆z = 0.01 and ∆z = 0.001.
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Despite this, it is still a poor approximation, being accurate to within a few
percent only for ` . 150 at z = 0.5.

• The most surprising result is that for small bin widths, nonlinear RSD in-
formation becomes important also for very low `, with significant nonlinear
effects (∼ 10%) being found at ` ≤ 50 at z = 0.5 for the TNS model.

• For large bin widths, the effect of lensing, which is not easy to incorporate in
P (k, µ), but is straightforwardly included in the C`’s, cannot be ignored, and
at z = 0.5 with ∆z = 0.1, it is already equal in magnitude to the RSD signal
at ` ≤ 150, This is discussed in Appendix 4.D.

In conclusion, at the level of the angular power spectrum, it becomes very difficult
to disentangle nonlinearities and various contributions to the signal. In particular,
at low redshift, nonlinear RSD can play a large role at ` ≤ 150 for small bin width,
while for large bin widths lensing begins to affect the signal. At high redshift (z > 1)
nonlinear RSD is better controlled but lensing becomes more important for large bin
widths. At z = 1 lensing is subdominant to RSD up to ` . 500 for small and large
bin width choices. The TNS model offers a relatively good prescription to model
the nonlinear effects of RSD in the angular power spectrum, but is still very limited,
especially at low redshift where nonlinearities are enhanced.

While this can be circumvented for wide redshift bins by only considering spectra
for ‘linear’ `’s, this becomes impossible for narrow redshift bins. In fact, for ∆z .
0.001, we need to accurately model the nonlinear spectrum to high k for all values of
`, no prescription is currently accurate enough to do this. It appears therefore that,
at least for now, the angular spectrum is less well suited to measure RSDs than the
correlation function.

We have found that while the TNS approximation is the only one with a rea-
sonably good treatment of velocities, it does not reproduce well the COLA angular
power spectra for wide redshift bins, ∆z ≥ 0.1. For such wide-bin spectra, RSDs
are not important and halofit, which gives the better fit to the density only power
spectrum than TNS, is actually preferable. On the other hand, for slim redshift
bins, ∆z ≤ 0.01 TNS is a much better approximation. For such bin widths, radial
nonlinearities are already relevant for very low `’s which renders halofit, or even
more so the linear power spectrum, simply useless. On the other hand, on scales
` > `NL(z), where also the transverse wave number enters the nonlinear regime,
also the TNS approximation which models the pure matter density power spectrum
becomes insufficient, especially at low redshift, z ' 0.5.

From this work it is clear that we are still far away from modelling the angular
power spectrum at 1% precision over a reasonable range of `. But we now know
better in which direction we have to make progress. We need to model the density
power spectrum similar to halofit but then correct for nonlinear RSD like in the
TNS model. Especially, if we want to model the C`’s in narrow redshift bins where
they are sensitive to redshift space distortions. This is essential if we wish to safely
extract very important cosmological information. We must make sure to model RSD
very precisely, as they can enter the C`’s at small `� `NL(z) depending on the bin
width.
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APPENDIX

4.A Derivation of the one-loop terms

Following the notations and conventions in [129] for Eq. (4.12), we have:

P s
tot(k) ≡ P s

11 + P s
22 + P s

13

= (1 + βµ2)2b2
1P11(k) + 2

∫
d3q

(2π)3
P11(q)P11(|k-q|)[F S

2 (q,k-q)]2

+6(1 + βµ2)b1P11(k)

∫
d3q

(2π)3
P11(q)F S

3 (q, -q,k) (4.A25)

where β ≡ f/b1 and b1 denotes the linear bias. The symmetrised expression for
F S

2 (k1,k2) and the unsymmetrised one for F3(k1,k2,k3) are shown in Eq. (13) of
[129]. We symmetrise F3(k1,k2,k3) and find F S

3 (q, -q,k), neglecting higher order
biases.

As can be seen in Eq. (13) of [129], the expressions for F S
2 and F S

3 are given in
terms of JS2 , JS3 , KS

2 and KS
3 , which can be computed from the general nth order

expression as found in literature (see for example Eq. (10a) and (10b) of [159]).
While Eq. (4.A26) and Eq. (4.A27) given below are easily available in literature,
for obtaining Eq. (4.A28) and Eq. (4.A29), we have used the expression for n = 3
and symmetrised it. However, our results did not match very accurately with the
symmetrised expression obtained from Eq. (11) of [129], and therefore we explicitly
write them below in Eq. (4.A28) and Eq. (4.A29). We find these relations to be as
follows:

JS2 (q1,q2) =
5

7
+

1

2

q1.q2

q1q2

(
q1
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+
q2

q1

)
+

2

7

(q1.q2)2

q2
1q

2
2

(4.A26)

KS
2 (q1,q2) =

3

7
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1

2

q1.q2

q1q2

(
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q2

q1

)
+
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q2
1q

2
2

(4.A27)

JS3 (q1,q2,q3) =
1

3
Sym

[
7
q.q1

q2
1

JS2 (q2,q3) +
q2q1.(q2 + q3)

q2
1|q2 + q3|2

KS
2 (q2,q3) (4.A28)

+

(
7
q.(q1 + q2)

|q1 + q2|2
+
q2(q1 + q2).q3

|q1 + q2|2q2
3

)
KS

2 (q1,q2))

]

KS
3 (q1,q2,q3) =

1

3
Sym

[
q1.q
q2

1

JS2 (q2,q3) +
q2q1.(q2 + q3)

q2
1|q2 + q3|2

KS
2 (q2,q3) (4.A29)

+

(
q.(q1 + q2)

|q1 + q2|2
+
q2(q1 + q2).q3

|q1 + q2|2q2
3

)
KS

2 (q1,q2)

]
Here ‘Sym’ indicates symmetrisation in q1, q2 and q3.
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Figure 4.14: Vectors and angles involved in the calculations of P13 and P22: k̂ is the
direction of the wave vector k of Eq. (4.12) and q is also given in Eq. (4.12). n is
the line-of-sight direction.

One can replace q1, q2, q3 and k = q1 + q2 + q3 as required and effectively
calculate these kernels.
The final expressions for F S

2 (q,k-q) and F S
3 (q, -q,k) along with subsequent calcu-

lations can be found in a Mathematica notebook [116].
In the kernels F S

2 and F S
3 we encounter the scalar products q̂ · n ≡ µq = cos(γ),

k̂ · n ≡ µ = cos(α), and k̂ · q ≡ x = cos(β). We also define r = |q|/|k|. We can
write µq in terms of µ, x, and φq, where φq is the angle between the projection of q
and n onto the plane perpendicular to k̂ (see Fig. 4.14)

µq = xµ+
√

(1− x2)(1− µ2) cos(φq) (4.A30)

For an arbitrary function ψ(k,q), we can write:∫
ψ(k,q)d3q =

∫ ∞
0

q2dq

∫ 1

−1

dx

∫ 2π

0

dφqψ(k,q) . (4.A31)

Therefore the integration corresponding to P s
22(k, µ) in Eq. (4.A25) reduces to

P s
22 =

2k3

(2π)3

∫ ∞
0

drr2P11(r)

∫ 1

−1

dxP11(k
√

1 + r2 − 2r x)

∫ 2π

0

dφq[F
S
2 (r, φq, x, µ, b1, f)]2 ,

(4.A32)
where we take the integral over φq analytically, and the result can be found in our
Mathematica notebook [116]. We write P s

22 as a sum over powers of µ, b1 and f as

P s
22 =

`=4∑
`=0

m=2∑
m=0

n=4∑
n=0

µ2`bm1 f
nA`mn(k) , (4.A33)
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and finally by integrating over r and x we find the coefficients A`mn(k) numerically.
Next, we explain the computation of P s

13(k, µ), where the integration is as follows:

P s
13 = 6(1 + βµ2)b1P11(k)

1

(2π)3

∫ ∞
0

drr2P11(r)

∫ 1

−1

dµq

∫ 2π

0

dφqF
S
3 (r, φq, x, µ, b1, f) ,

(4.A34)
We integrate over φq and µq analytically, the result of which is contained in our

Mathematica notebook [116]. Then similar to P s
22, we write P s

13 as a sum over powers
of µ, b1 and f as

P s
13 =

`=2∑
`=0

m=1∑
m=0

n=3∑
n=0

µ2`bm1 f
nB`mn(k) , (4.A35)

and by integrating over r numerically, we find the coefficients B`mn(k) which are
given in our Mathematica notebook [116]. We use the minimum and maximum
values of wave number that we have from our CLASS output, kmin, kmax, for the
limits of q.

In order to avoid numerical problems, we employ the following algorithm for
computing the integrals in case of P13:
We divide the integration range in two large parts.

• For kmin < q < k:
If k < 1000 kmin, we integrate the original term(s) from qmin = kmin to k. Else,
we take the sum of the integration of the series expansion around q = 0 from
qmin to q < k/1000 and integration of the original term(s) from k/1000 to
q < k.

• For k < q < kmax:
If 10 k > kmax, we integrate the original term(s) (with the signs corrected
for argument of Logarithm) from k to kmax. Else, we take the sum of the
integration of the original term(s) from k to 10 k and the integration of the
series expansion around q =∞ from 10 k to kmax.

4.B TNS model A, B and C correction terms

In this appendix we present the basic forms of the RSD correction terms appearing
in Eq. (4.18). These terms are given as

A(k, µ) =
3∑

m,n=1

µ2mfn
k3

(2π)2

×
[ ∫

dr

∫
dx
(
Amn(r, x)Plin(k) + Ãmn(r, x)Plin(kr, z)

)
× Plin(k

√
1 + r2 − 2rx, z)

(1 + r2 − 2rx)
+ Plin(k, z)

∫
dramn(r)Plin(kr, z)

]
, (4.B36)
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B(k, µ) =
4∑

n=1

2∑
a,b=1

µ2n(−f)a+b k3

(2π)2

×
∫
dr

∫
dxBn

ab(r, x)
Pa2(k

√
1 + r2 − 2rx, z)Pb2(kr, z)

(1 + r2 − 2rx)a
, (4.B37)

C(k, µ) = (kµf)2

×
∫
d3pd3q

(2π)3
δD(k − q − p)

µ2
p

p2
(1 + fx2)2Plin(p, z)Plin(q, z), (4.B38)

where µp = k̂ · p̂, r = k/q and x = k̂ · q̂. Explicit expressions for Amn, Ãmn, amn and
Bn
ab can be found in the Appendices of [283]. The C(k, µ) term is known to have

small oscillatory features and thus it is usually omitted in the literature. We choose
to include it in our work.

4.C Fitting Procedure for EFT and TNS model

To fit the RSD free parameters of the EFT (Eq. 4.15) and TNS (Eq. 4.18) models
to the simulation data we simply minimize the χ2

red

χ2
red(kmax) = 1

Ndof

kmax∑
k=kmin

∑
`,`′=0,2

[
P S
`,data(k)− P S

`,model(k)
]

×Cov−1
`,`′(k)

[
P S
`′,data(k)− P S

`′,model(k)
]
, (4.C39)

where Cov`,`′ is the Gaussian covariance matrix between the different multipoles,
and kmin = 0.006h/Mpc. The number of degrees of freedom Ndof is given by Ndof =
2×Nbins−Nparams, where Nbins is the number of k−bins used in the summation and
Nparams is the number of free parameters in the theoretical model. Here, Nparams = 2
for EFT and not 3 because we only fit the first two multipoles6, and Nparams = 1 for
the TNS model.

We increase kmax until χ2
red(kmax) ≥ 1. This gives a good indication of where the

model doesn’t fit the data so well anymore. In the fit we keep cosmology fixed to
the COLA simulation’s fiducial values and only vary the counter term coefficients
and σv.

We use linear theory to model the covariance between the multipoles (see Ap-
pendix C of [283] for details). This has been shown to reproduce N-body results up
to k ≤ 0.300h/Mpc at z = 1. In the covariance matrix we assume a number density
of n = 1× 10−3 h3/Mpc3 and a survey volume of Vs = 4Gpc3/h3 which are similar
specifications for a Euclid like survey [19]. The best fit parameters as well as kmax

are shown in Table 4.1.
6The inclusion of the hexadecapole would restrict the determined range we can safely fit to.

Further, the monopole and quadrupole contain most of the RSD information so we can omit the
hexadecapole from these fits.
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Table 4.1: Table showing the maximum kmax[h/Mpc] used in Eq. (4.C39) and best
fit model parameters for TNS and EFT models found by a least χ2 fit to the COLA
data.

Model TNS EFT
z 0.5 1 1.5 2 0.5 1 1.5 2

kmax 0.16 0.21 0.27 0.35 0.16 0.21 0.27 0.311
σv 7.35 6.26 5.12 4.19 - - - -

c2|δs,0/k
2
nl - - - - 0.05 0.00 0.00 0.13

c2|δs,2/k
2
nl - - - - 13.57 8.96 5.66 1.52

c2|δs,4/k
2
nl - - - - 7.34 8.03 6.86 5.73

4.D Neglecting the lensing term

Throughout the paper, we have neglected the lensing contribution to the angular
power spectrum. In this appendix, we show that among the three different redshift
bins that we used, namely, ∆z = 0.1, ∆z = 0.01, and ∆z = 0.001, lensing is of
the same order as the RSD contribution only for ∆z = 0.1 while for the other two
redshift bins, it is negligible.

In Fig. 4.15, we show the ratio of lensing to the RSD term for different redshifts
with ∆z = 0.01 (left panel) and ∆z = 0.1 (right panel). For ∆z = 0.1, lensing is not
negligible when compared to RSD, however, we have shown that for this window
width, RSD is also not very significant. For ∆z = 0.001 (left panel), the lensing
terms are at most 1% of the RSD terms. It is also interesting to note that for
∆z = 0.1 the lensing signal is very small at ` < 400. This comes from the fact
that the lensing signal is the sum of the always negative lensing-density correlation
and the positive lensing-lensing term. As the density term is larger than lensing, at
low redshift the signal is dominated by the first term and is therefore negative. At
sufficiently high redshift when enough lensing has accumulated, the lensing-lensing
term starts to dominate and the signal becomes positive. For ∆z = 0.1 this happens
roughly at z = 1. For ∆z = 0.01 this happens roughly at z ∼ 0.5 for the low
multipoles, ` < 200 while for higher multipoles the positive lensing-lensing signal
dominates. Since the cross correlation lensing(z2)-density(z1) is significant only for
density fluctuations at redshift over which the lensing term is integrated, z1 < z2,
this contribution is smaller for smaller redshift bins.

4.E Fisher forecast

In this appendix, we explain in more details the Fisher forecast we have performed
for RSD detection. We replace each µ2 term with Aµ2, where A is an artificial
amplitude with fiducial value of 1, and our aim is to forecast how precisely we
can measure this amplitude. For nonlinear RSD, we simply use the Kaiser formula
applied to halofit model, basically replacing P (k‖,

`
χ
, z̄) in Eq. (4.8) with the Kaiser
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Figure 4.15: Ratio of lensing terms to RSD tems for different redshifts with ∆z =
0.01 (left panel) and ∆z = 0.1 (right panel).

formula given in Eq. (4.1), we have

C∆∆
` (z, z) =

1

2πχ2(z̄)

[∫ +∞

−∞
dk‖(1 + 2Afµ2 + A2f 2µ4)P (k‖, `/χ, z)

]
≡ Cδδ

` + 2ACδθ
` + A2Cθθ

` , (4.E40)

where ∆ is the density perturbations in redshift space

∆(n, z) = δ(n, r)− ∇zvz(r)

aH(z)
, (4.E41)

and θ = ∇zvz(r)/aH(z), where z is the line of sight direction. For the Fisher
forecast, we follow a similar approach as the one used in Section 4 of [162]. The
Fisher matrix for parameters α and β with covariance matrix, C, follows the formula

Fαβ =
∑
`

2`+ 1

2

[
(∂αC)

(
C−1
)

(∂βC)
(
C−1
)]

(4.E42)
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which for our case with one parameter, A and covariance matrix being the C`’s,
reduces to

FAA =
`max∑
`=2

2`+ 1

2

[
∂AC

∆∆
`

C∆∆
`

]2

. (4.E43)
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shear correlations, JCAP 1806 (2018) 008, [arXiv: 1801.02518]

From the discussions in Section 1.2, we know that gravitational lensing is arguably
the most important relativistic effect that has a direct consequence on the observed
signal. There are mainly three kinds of lensing probes - the galaxy clustering, which
statistically estimates overdensities by counting galaxies at a particular random
separation (δ correlated with δ); the cosmic shear measurements, which provide in-
formation about the shapes of galaxies (γ correlated with γ); and the galaxy-galaxy
lensing, which correlates the shape of the background galaxies with the position
of the foreground ones that act as lenses to the background (γ correlated with δ).
The distortion due to the third kind is called a tangential shear, where the source
galaxy ellipticities get oriented perpendicular to the line connecting the foreground
and the background galaxies. The primary message this work intends to convey is
that similar to the number counts, there are relativistic effects in galaxy-galaxy lens-
ing probes which should not be ignored. These effects arise due to the presence of
matter distributions between the foreground and the observer, which contribute as
well to the distortion of the background galaxy shapes. Current analyses of galaxy
survey observations neglect such effects by including them either in the error budget,
or marginalising over them. We suggest that the relativistic corrections, especially
lensing, should rather be directly included in the main signal, since they have a
significant contribution to it. On carrying out a mock survey analysis of the Dark
Energy Survey (DES), we find that for the most strongly correlated foreground and
background redshifts, the γ − γ correlation term contributes almost 50% to the to-
tal signal, although at low foreground redshifts this is merely 1.5% (for a complete
survey with zero magnification bias). We carry out the same analysis using higher
redshifts that are expected to be probed by Euclid, and find the lensing correction
to be even higher, suggesting that the deeper the survey, the more significant it is
to take these corrections into account.
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Abstract: We investigate the corrections which relativistic light-cone computa-
tions induce on the correlation of the tangential shear with galaxy number counts,
also known as galaxy-galaxy lensing. The standard-approach to galaxy-galaxy lens-
ing treats the number density of sources in a foreground bin as observable, whereas
it is in reality unobservable due to the presence of relativistic corrections. We find
that already in the redshift range covered by the DES first year data, these cur-
rently neglected relativistic terms lead to a systematic correction of up to 30% in
the density-shear correlation function for the highest redshift bins. This correction
is dominated by the the fact that a redshift bin of number counts does not only
lens sources in a background bin, but is itself again lensed by all masses between
the observer and the counted source population. Relativistic corrections are cur-
rently ignored in the standard galaxy-galaxy analyses, and the additional lensing of
a counted source populations is only included in the error budget (via the covari-
ance matrix). At increasingly higher redshifts and larger scales, these relativistic
and lensing corrections become however increasingly more important, and we here
argue that it is then more efficient, and also cleaner, to account for these corrections
in the density-shear correlations.

5.1 Introduction

Currently one of the most impressive success stories in cosmology is the highly
accurate observation and our detailed understanding of the cosmic microwave back-
ground (CMB), its anisotropies and its polarisation, see e.g. [11, 12, 10, 97, 96]. As
a cosmological community, we would now like to repeat this success story at lower
redshifts by using present and future galaxy surveys. Contrary to the CMB which
primarily comes from the two-dimensional surface of last scattering, galaxy surveys
are three-dimensional and therefore contain more, potentially richer information.
Especially by using tomography, i.e., by splitting a source population into different
redshift bins, we can study how cosmic structure formation proceeds and thereby
directly test the gravitational instability picture.

To repeat the CMB success story, it is important that we make optimal use of the
low-redshift data. Of course, the fact that clustering becomes non-linear on smaller
scales and late time as well as the influence of non-gravitational hydrodynamical
effects and more, render the interpretation of the data more difficult. The current
standard-approach to model these non-linearities is to translate a linear power spec-
trum to a non-linear power spectrum by using ‘Halofit’ [280], and in this paper we
shall adhere to this approach, noting however that it only refers to the non-linear
growth of scalar perturbations in Newtonian gravity. General Relativistic N-body
codes do exist and the agreement of the matter power spectrum from relativistic
simulations with Halofit is excellent [7].

The problem of galaxy formation depending on its environment is on an obser-
vational level modeled by ‘biasing’: the observed galaxy density distribution δg is
assumed to be related to the underlying matter density distribution, δg = b(z)δ via
some biasing function b. When cosmological parameters are inferred, this bias func-
tion is treated as nuisance parameters, and marginalized over. Another nuisance
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parameter in shear correlations is the intrinsic alignment contribution to the shear
signal. Also this is marginalized over. The free parameters of these bias functions
are likely to mimic, to some extent, the contribution from relativistic effects which
we study in this paper. However, since these effects are signals of theoretical interest
which can be calculated, marginalizing over them is suboptimal.

In this paper we investigate the impact of general relativistic corrections on
the correlation between number counts in a foreground bin, and lensing in a back-
ground bin. Our starting point is that it has lately been shown [310, 309, 46, 67]
that counting galaxies in a fixed solid angle and redshift bin does not directly mea-
sure the galaxy over-density. The resulting count is not only affected by redshift
space distortions [175], but also enhanced or decreased by lensing and magnification
bias [211] and by large-scale relativistic effects. The relativistic effects other than
lensing are mainly relevant on very large scales where they can mimic a primor-
dial non-Gaussianity [56, 246]. Redshift space distortions are well known and are
routinely used to constrain the cosmic growth factor [219, 239].

In recent years it has been shown that also the lensing and magnification bias
term is considerable and will be measured in future galaxy clustering analyses [221].
Furthermore, neglecting it can lead to misinterpretation of results from galaxy sur-
veys, see, e.g. [59, 222, 297]. Also in this paper we investigate the effects of the
lensing term. More precisely, we focus on galaxy-galaxy lensing, where the tangen-
tial shear of background sources is correlated with number counts in the foreground.
We study how relativistic effects, and especially the lensing term from projection,
affect the correlation of galaxy density fluctuations with the tangential shear. We
find, that already in present surveys the effect can contribute up to 50% at high
redshift. That this term has to be included in the galaxy-galaxy lensing cross corre-
lation is of course not new. It has already been discussed ten years ago in Ref. [315]
and subsequently in several other papers. Nevertheless it is not included in present
analyses. Here we present a concrete case study to estimate the maximum size of
the effect in recent surveys.

This paper is structured as follows: In the next section we derive the theoretical
expressions for the cross-correlation function between relativistically correct number
counts and the tangential shear, and its corresponding angular power spectrum in
redshift space. In Section 5.3 we present some numerical examples and discuss
them. We show especially how the recently published DES (Dark Energy Survey)
first year results [1] could gain in precision by including the lensing term directly
into the signal of the number counts. In Section 5.4 we conclude. We present a
comprehensive derivation of the density-shear correlation function in the full and
flat sky in Appendix 5.A.

5.2 Correlating number counts with shear measure-
ments

Here we present the first order expression for the correlation between galaxy number
counts and the tangential shear. For completeness, a detailed derivation is presented
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in Appendix 5.A, where we also make the connection to results known from the
literature.

In first order perturbation theory, the number of galaxies within a redshift bin
dz and a solid angle dΩ at observed redshift z, in observed direction n = n(ϑ, ϕ) is
given by

N(z,n) = N̄(z)[1 + ∆(z,n,mlim)] (5.1)

where N̄(z) is the average spatial number density at redshift z, and where the
observable over-density is [46, 67, 86, 56]

∆(n, z,mlim) = b(z)δ +
1

H

[
Φ̇ + ∂2

rV
]

+ (2− 5s)

[∫ r

0

dr̃

r
(Φ + Ψ)− κ

]
+(fevo − 3)HV + (5s− 2)Φ + Ψ

+

(
Ḣ
H2

+
2− 5s

rH
+ 5s− fevo

)(
Ψ + ∂rV +

∫ r

0

dr̃(Φ̇ + Ψ̇)

)
.

(5.2)

Here an overdot denotes a derivative with respect to conformal time, H is the con-
formal Hubble parameter and r = r(z) is the comoving distance to redshift z. The
peculiar velocity is given by V , the velocity potential in longitudinal gauge, such
that velocity components are given by vi = −∂iV . The term δ is the matter density
fluctuation in comoving gauge: on small scales it reduces to the Newtonian density
contrast, but it is by itself not observable, even if the galaxy bias function b(z)
were known. The quantities Φ and Ψ are the Bardeen potentials. More details on
Eq. (5.2) are given in [86] and [88].

Furthermore, denoting the angular Laplacian as ∆Ω, the convergence κ is given
by the angular Laplacian of the lensing potential, φ,

κ = −1

2
∆Ωφ , (5.3)

φ(n, z) = −
∫ r(z)

0

dr̃
r(z)− r̃
r(z)r̃

(Φ + Ψ)(r̃n, τ0 − r̃) . (5.4)

We denote the limiting luminosity by Llim. The evolution bias, fevo, captures the
fact that new galaxies form and galaxies merge as the Universe expands and hence
their number density evolves not simply as (1 + z)3; fevo depends on redshift and on
Llim and is defined as

fevo(z, Llim) ≡ ∂ ln〈a3N̄(z, L > Llim)

∂ ln a
. (5.5)

Here N̄(z, L > Llim) is the background number density of galaxies with luminosity
above Llim and a = 1/(z + 1) is the cosmic scale factor. Finally, we introduce
magnification bias: due to magnification, less luminous galaxies still make it into
our survey if they are in a region of high magnification and vice versa. Denoting the
limiting magnitude of the survey mlim, the magnification bias is given by

s(z,mlim) ≡ ∂ log10 N̄(z, L > Llim)

∂m

∣∣∣∣
mlim

. (5.6)
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The redshift dependence of this quantity depends on the specific survey. Only if
we see all galaxies of a considered type, i.e. if the survey is complete, we have
s = 0. Note that s nearly always enters in the combination 5s − 2. This is the
factor which multiplies the fluctuations of the angular diameter (area) distance [47],
δDA(z) which contributes twofold: it leads to an increase in the transversal volume
(area) and hence to a decrease in the density; this is the term −2. But it also
increases the observed brightness in sources of a given luminosity and can bring
them into an incomplete survey, enhancing the density; this is the term +5s which
is also called magnification bias. In the combination (5s − 2)κ we shall call them
here the “lensing contribution" to the actually observable ∆(n, z).

In Appendix 5.A we derive the following expression for the correlation function
between the observable galaxy number count ∆ and the tangential shear γt

〈∆(n, z)γt(n
′, z′)〉 =

−1

4π

∑
`

2`+ 1

`(`+ 1)
P` 2(n · n′)C∆,κ

` (z, z′) . (5.7)

Here, P`m(µ) is the Legendre polynomial of degree ` and order m, and C∆,κ
` (z, z′)

is the angular power spectrum of the correlation between ∆ and κ. We split it into
its correlation with the not-directly observable density contrast (‘δ’), augmented by
redshift space distortions (‘rsd’), by the convergence κ and by large scale relativistic
effects (‘ls’)

C∆,κ
` (z, z′) = b(z)Cδ,κ

` (z, z′)+Crsd, κ
` (z, z′)−(2−5s(z))Cκ,κ

` (z, z′)+C ls, κ
` (z, z′) . (5.8)

Here, Crsd,κ
` denotes the correlation of κ with the redshift space distortion (rsd) term

caused by ∂2
rV , while C ls,κ

` denotes its correlation with all the remaining relativistic
terms which are relevant mainly on very large scales. They also include the so-called
Doppler term ∝ ∂rV which is strictly speaking not relativistic but also only relevant
on large scales. The lensing term −(2 − 5s(z))Cκ,κ

` and the large scale corrections,
C ls, κ
` , apart from the Doppler term are due to General Relativity and we call them

‘General Relativistic corrections’. We shall see that on intermediate and small scales,
` > 20, the lensing term by far dominates these corrections to the number density.

In standard analyses, which includes the DES analysis, only the term Cδ,κ
` (z, z′)

is considered. The main point of this paper is to show that this introduces systematic
deviations in the signal and that in particular the lensing of the number densities
in the foreground bin cannot be neglected. In the next section we compute all the
terms for several examples and we show that only the Cκ,κ

` (z, z′) term is a relevant
correction for present and near future galaxy clustering surveys. Redshift space
distortions are always much smaller and the relativistic terms contribute only on
very large scales, ` < 10, where cosmic variance is significant and which are not
accessed in the DES survey.

5.3 Numerical Examples

In this section we present changes in the signal for numerical evaluations of the
above relativistic contributions for the standard ΛCDM cosmology. We use the
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public code class [194, 41] which has been expanded to include the relativistic
contributions to galaxy number counts [88]. We assume purely scalar perturbations
with cosmological parameters of the Planck-2015 results [12]. More precisely, we set
the Hubble parameter H0 = 67.556 km s−1 Mpc−1, the baryon density parameter
Ωbh

2 = 0.022032, the cold dark matter density parameter Ωcdmh
2 = 0.12038, the

curvature K = 0, the number of neutrino species Nν = 3.046 and the neutrino
masses are neglected. We set the galaxy bias to unity, b(z) = 1, and assume a
complete survey, s = 0, for our analysis.

We first present results for a mock survey which mimics the redshift binning
of the first year DES observations. A similar analysis with somewhat smaller sky
coverage has also been published by KiDS (Kilo Degree survey) [294]. In contrast to
DES, we assume however full-sky coverage since our interest also includes the very
low multipoles where relativistic effects leave noticeable traces.

In this paper we do not want to exactly determine the contribution to the DES
correlation functions and error budget from our terms, we just want to give the
correct order of magnitude. Clearly, since this is a systematic effect which is easy to
model, it would be more useful to add it to the data than to just include it in the
error budget.

Furthermore, if 2− 5s(z) > 0, which is true in observed volumes where a survey
reaches near completeness, then the Cκ,κ

` contribution is negative as is Cδ,κ
` so that

|Cδ,κ
` − 2Cκ,κ

` | > |C
δ,κ
` |.

5.3.1 A generic survey with DES-like redshift binning

The DES collaboration has presented first year data on the cross-correlation of
galaxy clustering and lensing [1]. This analysis uses five galaxy redshift bins in
the foreground (abbreviated by ‘f’) with width ∆z = 0.15. These foreground pop-
ulations are correlated with four tangential shear redshift bins in the background,
(abbreviated by ‘b’) with widths ∆z = 0.23, 0.2, 0.27 and 0.23 respectively. The
mean redshifts of these bins are given by

zf1 = 0.225 zf2 = 0.375 zf3 = 0.525 zf4 = 0.675 zf5 = 0.825 (5.9)
zb1 = 0.315 zb2 = 0.53 zb3 = 0.765 zb4 = 1.1 (5.10)

In order to establish whether relativistic corrections have a noticeable impact on
current surveys, we model a generic DES-like survey by using the above redshifts for
centers of Gaussian redshift bins with the corresponding widths. If relativistic effects
have a noticeable impact, then the correlations Cδ,κ

` (zfi, zbj), where only δ-terms
are included, deviate from the correlations C∆,κ

` (zfi, zbj), where also the relativistic
terms are included.

We have thus calculated the contribution of Cδ,κ
` (zfi, zbj) in C∆,κ

` (zfi, zbj) for all
zfi < zbj. In Fig. 5.1 we show the full relative difference (C∆,κ

` −Cδ,κ
` )/C∆,κ

` , whereas
in Fig. 5.2 we show the relative contribution 2Cκ,κ

` /C∆,κ
` from the convergence κ

alone.
As it can be seen in the top panel of Fig. 5.1, for the lowest foreground bin,

the subdominant terms apart from δ (as seen in Eq. 5.8) contribute up to 1.5%
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to the total on large scales ( ` > 20). The scales accessible to the DES 1st year
survey correspond to ` > 50, where the contribution of the subdominant terms is
small, around 1-1.5%. For ` >∼ 40, lower redshift lensing bins which are closer to
the foreground source always dominate while for ` < 40 this is no longer so. For
very wide angles the relativistic effects which increase for larger redshifts contribute
significantly.

In the bottom panel we show the relative contribution from the ‘subdominant’
terms for the highest background bin and all foreground bins. Of course this is a
monotonically increasing function of the foreground redshift. It rises up to 50% for
` > 50 which contribute to the DES results. Clearly, these contributions cannot be
neglected. Note that the results obtained in the top and bottom panel of Fig. 5.1
have been obtained using ‘Halofit’ [280] for the density power spectrum. This is
relevant above ` ∼ 50 as is shown in the middle panel where the results with (dashed)
and without (solid) Halofit are compared for two redshift bin combinations. In
Fig. 5.2 we now show simply −2Cκ,κ

` /C∆,κ
` . We have verified that for ` >∼ 50 this is

virtually identical to (C∆,κ
` − Cδ,κ

` )/C∆,κ
` , hence all the difference is actually due to

lensing. It ranges from a mere 1% for the lowest foreground bin to more than 50%
for the highest one, which assures us that the contribution will increase further with
the higher redshift bins of future surveys (see also Fig. 5.4). At low ` the lensing
contribution alone does not explain all the signal and redshift space distortions and
relativistic effects can become significant. In Fig. 5.3, we show and compare the
different contributions, with the total galaxy number count signal shown in black.
This is done only for the highest redshift bins, zf5 and zb4, since the differences
are most prominent in this case. While we see that the redshift space distortions
and other relativistic effects have comparatively small contributions, the one due to
lensing is definitely important, it is in fact larger than the density term at very large
scales, ` < 10. For lower redshifts, the lensing term is smaller and we have found
that at low ` redshift space distortions and relativistic effects cannot be neglected.
For a comparison with the DES first year results only the C`’s with ` > 50 are
relevant, since the sky coverage of the DES first year is about 1/30th of the full sky.
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Figure 5.1: The top and middle panels show the relative contribution of all terms
apart from δ for the cross-correlations between the lowest foreground bin and second
highest foreground bin denoted here by [f1] and [f4] respectively, with the higher
background bins. This is expressed in terms of the relative difference in angular
power spectra of the mentioned contributions. The bottom one is for all foreground
bins correlated with the highest background [b4]. HF stands for Halofit. DES results
are only sensitive to the values of ` above the vertical red line at ` = 50. The signals
are all negative, and hence the vertical axis is written with a negative sign.
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Figure 5.2: The same as in Fig. 5.1 but here C∆,κ
` − Cδ,κ

` is replaced by −2Cκ,κ
` .
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Figure 5.3: This figure compares the different contributions to the number count
shear cross-correlation, always using Halofit. The black line represents the total
galaxy number counts–tangential shear correlation, the magenta, green, blue and
orange ones are for the density, κ, redshift space distortion and large scale relativistic
effects respectively. The dashed lines indicate negative signals.

5.3.2 Future surveys and higher redshifts

As our numerical examples illustrate, the impact of especially lensing on the number
counts increases with redshift. Future surveys like Euclid [19, 190, 103], LSST (Large
Synoptic Survey Telescope) [3, 202] or SKA (Square Kilometer Array) [2, 203] will
go to higher redshifts than the here modeled DES-like redshift binning, and it will be
even more important to take lensing effects on the number counts into consideration.
In the case of SKA, the lensing term is of course absent for intensity maps [126] but
present for number counts. As an example, in Fig. 5.4, we show the situation for two
cases: zf = 1.0, zb = 1.5 and zf = 1.5, zb = 2.0. In both cases, the κ−κ contribution
is seen to be identical to the full difference (C∆,κ

` −Cδ,κ
` ), and is therefore evidently

the most significant effect.

5.4 Conclusion

Galaxy surveys are these days analyzed via mainly two approaches, one of which is
to investigate galaxy clustering and one is to detect gravitational shear, also known
as gravitational lensing. It has recently become popular to cross-correlate these two
observations, such that the correlations between the number density in a foreground
bin, and the shear in a background bin are measured. In a relativistic framework,
galaxy catalogues do however not measure purely the density δ but the combination
∆ of density, redshift space distortions, lensing and large scale relativistic terms as



Chapter 5. General Relativistic corrections in density-shear correlations 133

zf = 1.0

zb = 1.5

50 100 500 1000
-2.0

-1.5

-1.0

-0.5

0.0

l

C
lΔ
,κ
-
C
lδ
,κ

C
lΔ
,κ

,-
2
C
lκ
,κ

C
lΔ
,κ

zf = 1.5

zb = 2.0

50 100 500 1000

1

10

100

1000

104

l

C
lΔ
,κ
-
C
lδ
,κ

C
lΔ
,κ

,-
2
C
lκ
,κ

C
lΔ
,κ

Figure 5.4: The top and bottom panels show the relative difference of the full number
counts which include relativistic corrections, and the contribution from only δ to the
number count-tangential shear correlation (orange for linear and green for Halofit).
The contribution of lensing κ alone is also shown (black for linear and magenta for
Halofit). For large ` the full difference and the κ− κ term are identical while at low
` there is no difference between the linear perturbation theory result and Halofit.
We consider the cases zf = 1.0 and zb = 1.5, and zf = 1.5 and zb = 2.0 respectively.
The dashed lines in the bottom panel indicate negative signals. The spikes are due
to sign changes.

given in Eq. (5.2). We have investigated this issue in this paper.
The number density of sources in a foreground bin is, in a relativistic setting, not

a direct observable. Most prominently, the number density is affected by redshift
space distortions and by lensing itself, but also by the large scale relativistic effects
and the Doppler term. These introduce additional correlations with a lensing bin in
the background. Owing to these extra-correlations, it is not ideal to simply ‘combine
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probes’ as is frequently done, and to compute a joint covariance matrix for lensing,
galaxy counts and galaxy-galaxy lensing. Rather, the relativistic corrections in the
number counts should be directly accounted for as signal. In this paper we have
shown that for a DES-like redshift binning, this can lead to a 50% correction of
the signal in the density-tangential shear correlation function of the highest redshift
bin. For the lowest redshift bin, the correction due to relativistic effects is 1.5%.
This contribution systematically enhances the correlation ∆-κ. In our treatment we
have set s = 0 which is probably not a very good approximation especially for the
highest redshift bins. Including the correct value for s(z) (which we do not know)
will reduce the correction somewhat.

Not including the relativistic effects in the signal, but computing a joint covari-
ance matrix and marginalizing over galaxy bias parameters, will hide the relativistic
corrections in the error bars and in the marginalized biases. This is a sub-optimal
procedure from a theoretical perspective, as galaxy clustering already occurs in
Newtonian gravity, but the here discussed relativistic effects are a signal of General
Relativity, and hence contribute to our physical understanding of the Universe. For
future surveys with decreasing errors and higher redshifts, not hiding these effects
in the error bars will also be important in order to reach the targeted percent ac-
curacy on cosmological parameters. With increasing sky coverage and redshift, the
relativistic effects can even dominate the cross-correlation on large angular scales.

Note also, that the claim that lensing be relevant only on very small scales is
simply not correct. Its relative contribution to the the total number-count-tangential
shear power spectrum is nearly constant from ` ∼ 50 to ` = 2000 with a wide hump
around ` ∼ 700. The increase of lensing at smaller scales is therefore similar to the
one of density fluctuations.

The goal of this brief and simple study is not a detailed signal to noise analysis
of the effect in the DES data. It is possible that in the highest redshift bin the
density-tangential shear cross correlation in the first-year analysis of the DES data
is systematically biased by a factor of more than 50% so that our correction would
be smaller than the error. We also have not analysed how neglecting lensing in these
cross-correlations propagates into the parameter estimation from DES. This would
require a more detailed study taking into account also the number count spectra
where lensing also is not considered in the present DES data analysis. Nevertheless,
we think such a large effect has to be at least discussed and, as we show here, it is
relatively easy to include it. A more detailed signal to noise analysis of the effect in
the DES data is left for a future work, maybe in collaboration with DES.

Finally, we want to stress that including the κ−κ term in the analysis is not only
necessary but also very fruitful. This term is sensitive to the lensing potential and
it contains additional information which we can use, e.g., to test modified gravity
models, see [220].
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APPENDIX

5.A Deriving the correlation function for number
counts and tangential shear

In this appendix we derive the correlation between density number counts and the
tangential shear and we make contact with the formulas usually found in the liter-
ature.

5.A.1 Full Sky

We consider the correlation between the galaxy number density in direction n at
redshift z, ∆(n, z) and the tangential shear at (n′, z′) perpendicular to n′ in direction
e which points from n′ towards n, see Fig. 5.5. The 2× 2 shear tensor γab is given

Figure 5.5: Notation for the correlation between the galaxy number density fluctu-
ation ∆(n, z) and the tangential shear γt(n′, z′) in direction e.

in terms of the lensing potential φ by

γab(n
′, z′) = −(∇a∇b −

1

2
δab∆Ω)φ (5.A11)

γt(n
′, z′) = γab(n

′, z′)eaeb , (5.A12)

where δab is the 2 × 2 identity matrix, ∇a is the covariant derivative on the sphere
and e is the tangent vector on the sphere pointing from n′ to n. We expand the
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fields ∆ and φ in spherical harmonics,

φ(n′, z′) =
∑
`,m

aφ`m(z′)Y`m(n′) (5.A13)

∆(n, z) =
∑
`,m

a∆
`m(z)Y`m(n) . (5.A14)

Without loss of generality we may choose n = ez in z−direction and e = −eϑ in
−ϑ-direction. Using that Y`m(ez) = δm0

√
2`+1
4π

we then obtain

〈∆(n, z)γt(n
′, z′)〉 = −

∑
`,m,`′,m′

〈a∆ ∗
`m (z)aφ`′m′(z

′)〉Y ∗`m(ez)

(
∇ϑ∇ϑ −

1

2
∆Ω

)
Y`′m′(n

′)

= −
∑
`

C∆,φ
` (z, z′)

√
2`+ 1

4π

(
∇ϑ∇ϑ −

1

2
∆Ω

)
Y`0(n′) .(5.A15)

Here we assumed that the fluctuations ∆ and φ are statistically isotropic such that

〈a∆ ∗
`m (z)aφ`′m′(z

′)〉 = C∆,φ
` (z, z′)δ`,`′δm,m′ . (5.A16)

Next we use the spin raising and spin lowering operators (see [96], Appendix 4 for
details) to write the covariant derivative ∇ϑ = 1

2
( /∂+ /∂∗) and ∆Ω = 1

2
( /∂ /∂∗+ /∂∗ /∂)

so that
∇ϑ∇ϑ −

1

2
∆Ω =

1

4

(
/∂2 + /∂∗ 2

)
Now in terms of µ = cosϑ′ for a function (spin s = 0) which does not depend on ϕ
we find (again, details are found in [96], Appendix 4)

/∂2f(µ) = /∂∗ 2f(µ) = (1− µ2)f ′′(µ) .

Inserting this in Y`0(n′) =
√

2`+1
4π
P`(µ) we obtain

1

4

(
/∂2 + /∂∗ 2

)
Y`0(n′) =

1

2

√
2`+ 1

4π
(1− µ2)P ′′` (µ)

=
1

2

√
2`+ 1

4π
P` 2(µ) .

Here P` 2 is the associated Legendre function of order 2 (see [5] and [96], Appendix 4
for details). Inserting this in (5.A16) we obtain

〈∆(n, z)γt(n
′, z′)〉 =

−1

8π

∑
`

C∆,φ
` (z, z′)(2`+ 1)P` 2(cosϑ′) (5.A17)

=
−1

4π

∑
`

C∆,κ
` (z, z′)

2`+ 1

`(`+ 1)
P` 2(n · n′) , (5.A18)

where we have used that aκ`m = (` + 1)`aφ`m/2. This result implies that the corre-
sponding correlation spectrum is

C∆,γt
` (z, z′) = −C∆,κ

` (z, z′) . (5.A19)
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The angular dependence via P` 2(n ·n′), is a consequence of the fact that we are cor-
relating the 2-tensor γab with a scalar quantity, hence the corresponding correlation
function 〈∆(n, z)γt(n

′, z′)〉 transforms like a tensor under rotations around n′.
This remains true for the correlation of an arbitrary scalar quantity A with

the tangential shear which is therefore given by (5.A18) replacing C∆,κ
` (z, z′) by

CA,κ
` (z, z′). Note also that the normalisation scales with ` as expected since∫ 1

−1

P` s(µ)P`′ s(µ)dµ =
2

2`+ 1

(`+ s)!

(`− s)!
δ`,`′ .

5.A.2 Flat sky

Usually the above equation is derived somewhat differently in the flat sky approx-
imation. This is largely sufficient if one considers relatively small sky patches as
e.g. the DES year-1 data with their ≈1300 square degrees. In flat sky ` is a 2d
vector, the Fourier transform variable of the sky position x which is dimensionless.
The spherical harmonics are then replaced by Y`m → 1

2π
exp(i` · x), /∂ = −∂1 + i∂2

and /∂∗ = −∂1 − i∂2. One can obtain the flat sky result of the above equation
directly by using the flat sky versions of /∂ and /∂∗. This yields

1

2
( /∂2 + /∂∗ 2)Y`m → − `2

4π

(
cos2 ϕ− sin2 ϕ

)
ei`·x =

`2

2π

(
1

2
− cos2 ϕ

)
ei`·x (5.A20)

Statistical isotropy in the flat sky yields

〈∆∗(`, z)φ(`′, z′)〉 = δ2(`− x`′)C∆,φ
` (z, z′),

and the convergence is given by κ(`) = `2

2
φ(`). Note that correctly speaking we

consider two flat skies, one at redshift z where the foreground galaxies lie and one
at redshift z′ where we measure the shear of the background galaxies.

Using cosϕ = `′ · e/`′, (5.A20) leads to

γt(x, z
′) =

1

2π

∫
d2`′

(
(`′ · e)2 − 1

2
`′2
)
e−i`

′·xφ(`′, z′), (5.A21)

so that we obtain for the correlation function

〈∆(y, z)γt(x, z
′)〉 =

2

(2π)2

∫
d2`

(
(ˆ̀ · e)2 − 1

2

)
eir`·eC∆,κ

` (z, z′) . (5.A22)

In the last line we set ˆ̀ = `/` and we have used statistical isotropy and κ(`) =
`2φ(`)/2. The angular integration gives∫ 2π

0

(
cos2 ϕ− 1

2

)
eir` cos(ϕ)dϕ = −πJ2(r`) , (5.A23)

where J2 is the Bessel function [5] of order 2. With this we find

〈∆(x, z)γt(x + r, z′)〉 = − 1

2π

∫ ∞
0

`d`J2(`r)C∆,κ
` (z, z′) . (5.A24)
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To make contact with the formulas found in the literature, e.g. in [1], we consider
a distribution nf (z) of foreground galaxies and a distribution nb(z′) of background
shear measurements. Integrating over these distributions and using that a fore-
ground galaxy at z only shears a background one at z′ for z < z′, we obtain

〈∆(f)(x)γ
(b)
t (x + r)〉 =

−1

2π

∫ ∞
0

dznf (z)

∫ ∞
z

dz′nb(z
′)

∫ ∞
0

`d`J2(`r)C∆,κ
` (z, z′) .

(5.A25)
The difference of this expression from the one usually used in the literature is that
there the approximation C∆,κ

` (z, z′) ∼ Cδ,κ
` (z, z′) is used, i.e. it is assumed the num-

ber density of foreground objects is (modulo a bias factor) given by the underlying
density δ. One can then express the shear power spectrum as an integral over the
gravitational potential which is related to the density by the Poisson equation. Using
the Limber approximation one can write the result as an integral over the dimen-
sionless power spectrum in k-space. This leads after some standard manipulations
to

〈δγt〉(θ) =
3ΩmH

2
0

2

∫ ∞
0

`d`

2π
J2(`θ)

∫ ∞
0

dznf (z)∫ ∞
z

dz′nb(z
′)
r(z)(r(z′)− r(z))

r(z′)H(z)
P

(
`+ 1/2

r(z)
, z

)
. (5.A26)

This is the expression found, e.g., in [1] where for nf (z) and nb(z
′) we have to

consider the distribution of foreground respectively background galaxies in the dif-
ferent redshift bins. Here, P is the (dimensionless) Fourier space density fluctuations
spectrum, and in our numerical applications we have used Halofit [280] to model its
non-linearities.
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The observable Eg statistics

Based on:
[113] B. Ghosh, & R. Durrer,The observable Eg statistics, JCAP 1906 (2019) 010,
[arXiv: 1812.09546]

We have already touched upon the topic of alternate theories of gravity in Sec-
tion 1.3 and Chapter 2, and now we are going to discuss a simple test of gravity
at cosmological scales, known as Eg statistics. To be more accurate, Eg is actu-
ally a test of ΛCDM and the regimes in which it fails to work. This observable,
despite having the limitation of being valid only within linear perturbation theory,
has the advantage of providing a bias independent insight in case measurements are
made using the same galaxy population. It is based upon the fact that the well-
known equality of the Bardeen potentials in the general relativistic regime where
anisotropic stress is zero, in general breaks down when a modification of the theory
of gravity is considered. In such cases, one can measure the velocity field at a given
redshift, extract the matter overdensity from there, and then extract the lensing
signal at this redshift by cross-correlating these galaxies and the background lensing
maps. The ratio between the lensing-galaxy cross-correlation and the galaxy-galaxy
cross-correlation acts as a direct probe of the deviation from ΛCDM cosmology.
Similar to Chapter 5, we want to include lensing corrections in Eg measurements
as well. The importance of this has already been established in [222], but it was
also demonstrated that trying to include lensing corrections compromises the most
positive feature of Eg statistics, that is the bias independence. A solution that is
applicable for intensity mapping surveys was proposed. However, we understand
that it is of absolute importance to take the lensing corrections into account so that
we can construct an "observable" Eg measurement. This is what we attempt to do
in this work using CMB lensing, and we find that the relative error in the Eg values
is only around 4% for the highest foreground redshift of DES (for zero magnification
bias), whereas it goes up to 40% if we look at redshift of z = 2 for Euclid (consider-
ing realistic magnification biases), indicative of the fact that lensing corrections are
relevant for Eg measurements as well.

139





Chapter 6. The observable Eg statistics 140

Abstract: Recently Dizgah & Durrer have shown that the Eg statistics, useful
to test theories of modified gravity, is plagued by additional scale and bias dependent
lensing contributions. In this work we develop and illustrate a method to remove
these lensing terms by using in addition to the galaxy clustering data also shear data
and the correlations of shear and galaxy clustering. We introduce a truly observable
statistics termed Ẽg which conserves the properties of scale and bias independence
on linear scales. The method discussed here is best adapted to photometric surveys.
It is found that the corrections to the original Eg statistics are small for the present
DES data, but for future surveys of the quality of Euclid they are very substantial.

6.1 Introduction

Over the past few decades, our understanding of the observable Universe has un-
dergone a rapid development, and especially observations of the cosmic microwave
background (CMB) have led to a cosmological standard model, ΛCDM, with pa-
rameters which are determined at a few percent precision or better. Lately, the
inclusion of observations from the cosmological large scale structure (LSS), espe-
cially the baryon acoustic oscillations, has become more and more relevant. The
observed accelerated expansion of the Universe is compatible with General Relativ-
ity (GR) only when including a cosmological constant Λ. Such a constant cannot
be distinguished by any experiment from the effect of quantum vacuum energy, but
its value, corresponding to an energy scale of about 10−3eV, is very discrepant with
all expectations from particle physics. This unsatisfactory situation has motivated
the development of modified theories of gravity, which challenge GR on very large
scales, allowing for accelerated expansion without a cosmological constant. Thus,
even though GR and modified gravity provide similar expansion laws at the back-
ground level, they usually exhibit differences when the evolution of perturbations are
taken into account. This is something that can be effectively probed with current
and upcoming cosmological LSS surveys.

A recently proposed observable which aims to distinguish between ΛCDM and
modified gravity theories by providing a test for gravity at large scales, is the so-
called Eg statistics introduced by Zhang et al. in 2007 [313]. The Eg statistics
is defined as the ratio of galaxy-lensing cross-correlations to the galaxy-velocity
cross-correlation, and is expected to provide a bias independent insight if both mea-
surements are made using the same galaxy population. There have been different
measurements of Eg using different data sets since then [254, 38, 243]. In this pa-
per, we will follow the approach used by Pullen et al. [243], where instead of the
galaxy-lensing cross correlations, the CMB lensing cross correlations are used. The
reason for this is that CMB lensing is very accurate and enables surveys to probe
at earlier times and even larger scales compared to galaxy surveys. Also, it is not
plagued by the systematics of shear measurements such as intrinsic alignment.

A previous study [222] has shown, however, that neglecting the lensing contri-
bution to galaxy number counts at high redshifts can give rise to large errors (up to
25-40 % for z = 1.5), and is hence indispensable for correct number count measure-
ments. However, if the definition of Eg includes these corrections, the scale and bias
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independence of the Eg statistics is compromised, which refutes its original purpose.
As a result, one needs to develop a method which will enable the desired use of this
quantity without posing a threat to its special, positive features.

In this paper, we explore how lensing corrections can be incorporated in standard
Eg measurements. However, while [222] suggest to use 21 cm intensity mapping
which is not affected by lensing and which has been explored in [242], we propose
a different method which can be implemented in galaxy number count surveys.
Although intensity mapping measurements have a promising future with surveys
like the Square Kilometer Array (SKA) [203] , we should also be able to carry out
studies regarding Eg statistics with the ongoing galaxy surveys.

A correction similar to the one proposed in the present work has also been sug-
gested in Ref. [305]. In this paper, however the lensing contribution was estimated
by rescaling the CMB lensing term. Here we propose to use in addition to the
number counts also shear data which directly measure the lensing power spectrum
and the galaxy–lensing cross correlation spectrum at the redshift of the galaxy sur-
vey. This avoids the uncertain, and most probably bias dependent scaling proposed
in [305], but requests more observational data. For our method to work we need
therefore both, number count and shear power spectra at a given redshift z as well
as the number count–CMB lensing correlation spectrum and the CMB lensing power
spectrum.

According to [243], Eg in case of CMB lensing can be estimated as,

Eg(`, z) = Γ(z)
Cκg
` (z∗, z)

βCgg
` (z, z)

(6.1)

where z∗ denotes the CMB redshift and z is the redshift of the galaxy survey. Γ(z)
is a pre-factor depending on Hubble parameter H(z), the lensing kernel W (z∗, z),
and the galaxy redshift distribution denoted by fg(z). The pre-factor Γ(z) is not
very relevant for this work as we simply wish to provide a method of measuring Eg
without going into the technicalities, and hence we do not discuss it in detail here.
More about this pre-factor can be found in literature [243, 305]. Cκg

` is the lensing
convergence–galaxy angular cross-power spectrum, Cgg

` is the galaxy angular auto-
power spectrum, and β is the redshift space distortion parameter. Within linear
perturbation theory, β = f/bg, where f is the linear growth rate and bg is the
galaxy bias.

The remainder of this paper is structured as follows: In Section 6.2 we briefly
outline the theory leading to Eg, and explain how lensing corrections can be ef-
fectively incorporated in our measurements. In Section 6.3 we present numerical
results for CMB lensing of foreground galaxies with redshift bins corresponding to
the Dark Energy Survey (DES) Year 1 results [1] and for some redshifts of the Eu-
clid collaboration [19]. Our numerical results are obtained from linear perturbation
theory and are therefore only valid on sufficiently large scales. In Section 6.4 we
discuss our findings and conclude.
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6.2 Theory

As mentioned above, Eg statistics is aimed at distinguishing between GR and modi-
fied gravity theories. The fundamental parameters that come to mind when we wish
to make this distinction are the gravitational Bardeen potentials Φ and Ψ which
appear in the perturbed Friedman-Robertson-Walker metric in longitudinal gauge,

ds2 = a2(t)[−(1 + 2Ψ)dt2 + (1− 2Φ)δijx
idxj] . (6.2)

In the case of GR, Φ = Ψ in the absence of anisotropic stress. However, for modified
theories of gravity, a valid way to check the relation between these two potentials is
to measure the ratio between the lensing effect that is proportional to the quantity
∇2(Φ + Ψ) and the peculiar velocity field of non-relativistic particles that is related
to the time component of the metric, Ψ. Following Zhang [313], we define in Fourier
space,

Eg(z, k) =
k2(Φ + Ψ)

3H2
0 (1 + z)θ(k)

, (6.3)

where θ = ∇ · v/H(z), v being the peculiar velocity field and H(z) the Hubble
parameter at a redshift z. The quantity θ(k) in ΛCDM cosmology becomes θ(k) =
f(z)δm(k, z), where f(z) ' [Ωm(z)]0.55 within GR. Ωm(z) denotes the matter density
parameter at redshift z. According to Poisson’s equation,

k2Φ =
3

2
H2

0 Ωm,0(1 + z)δm , (6.4)

where Ωm,0 = Ωm(0). Thus, within GR, Eg reduces to Eg(z, k) = Ωm,0/f(z), sim-
plifying eq.(6.3) with the help of eq.(6.4) and the relation Φ = Ψ. In particular, Eg
depends neither on scale nor on galaxy bias.

This reduced version of Eg can be given a more general form in order to cater to
modified gravity by incorporating two arbitrary functions µ(k, z) and γ(k, z) such
that

k2Φ = 4πGa2ρ̄µ(k, z)δm(k, z), Ψ = γ(k, z)Φ . (6.5)

In a theory where the modification of gravity can be cast in this way, we have,

Eg(k, z) =
Ωm,0µ(k, z)[γ(k, z) + 1]

2f
(6.6)

which reduces to the GR form for µ(k, z) = γ(k, z) = 1. For a generic modified
theory of gravity, however, we expect this quantity to depend on scale in a non-
trivial way.

Having discussed the basic idea behind the Eg statistics approach, it is important
to understand why lensing corrections are inevitable as well as a threat to the very
foundation of Eg statistics, and how we can deal with them. In Section 6.3, we show
some numerical examples to support our claim, but in this section, we wish to assert
its importance theoretically.
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For our current interests, we will be focussing only on the over-density and
lensing term (for the full expression, see [46]). We can neglect the redshift space
distortion for wide redshift bins having ∆z

>∼ 0.1, and we may also ignore large-scale
effects involving the Bardeen potentials for subhorizon scales (` > 20). Thus we can
approximate the galaxy fluctuations in direction n and at redshift z by:

∆g(n, z) = b(z)δm(χ(z)n, z) +

(
1− 5

2
s(z)

)∫ χ(z)

0

dχ
χ(z)− χ
χ(z)χ

∇2
Ω(Φ + Ψ)(χn, t0 − χ)

= bδm − 2

(
1− 5

2
s

)
κ (6.7)

where χ(z) is the comoving distance to redshift z, b(z) is the galaxy bias and s(z)
is the magnification bias. δm is the matter over-density and κ is the convergence.

The magnification bias is the logarithmic derivative of the galaxy number count
at the limiting magnitude,

s(z,mlim) ≡ ∂ log10 N̄(z, L > Llim)

∂m

∣∣∣∣
mlim

. (6.8)

Here mlim = 5 logLlim+const. is the limiting magnitude of the survey. The magni-
fication bias accounts for the fact that highly magnified galaxies, even if they are
intrinsically not luminous enough can get included in the survey. Only if the sur-
vey is sensitive enough to include all galaxies (of a given type) down to the lowest
luminosities, we have s = 0.

Since we truly observe ∆g and not δm, if we have to take along the additional
lensing term, κ , with the overdensity δ when correlating number counts with lensing
data. For any two redshifts z1 and z2 we then find

Cκg
` (z1, z2) = b(z2)Cκδ

` (z1, z2)− (2− 5s(z2))Cκκ
` (z1, z2) (6.9)

and correspondingly, the auto-correlation of number counts gives

Cgg
` (z1, z2) = b(z1)b(z2)Cδδ

` (z1, z2) + (2− 5s(z1))(2− 5s(z2))Cκκ
` (z1, z2)

−b(z2)(2− 5s(z1))Cκδ
` (z1, z2)− b(z1)(2− 5s(z2))Cκδ

` (z2, z1)

(6.10)

Now, in case of CMB lensing, the scale independent and bias independent quantity
actually is not the one given in eq.(6.1) but

Ẽg(`, z) = Γ(z)
Cκδ
` (z∗, z)

β(z)Cδδ
` (z, z)

, (6.11)

while what we naively measure is

Eg(`, z) = Γ(z)
Cκg
` (z∗, z)

β(z)Cgg
` (z, z)

. (6.12)
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Here, Eg is the statistics that galaxy surveys actually measure, while Ẽg is the one
excluding lensing corrections. Inserting (6.9) and (6.10) above we have

Eg ∝
Cκg
` (z∗, z)

β(z)Cgg
` (z, z)

=
1

β(z)

bCκδ
` (z∗, z)− (2− 5s)Cκκ

` (z∗, z)

b2Cδδ
` (z, z) + (2− 5s)2Cκκ

` (z, z)− 2b(2− 5s)Cκδ
` (z, z)

,

(6.13)
where b and s are to be evaluated at redshift z at all instances. It is clear from
eq. (6.13) that a straightforward way to remove the difference between the scale
independent quantity Ẽg and the measured quantity Eg would be to have a galaxy
population with (2− 5s) = 0, i.e., s = 2/5 which corresponds to intensity mapping.
This is the idea suggested in [222, 242], but here we want to explore a different
method that can be implemented in galaxy surveys, without depending on upcoming
intensity mapping surveys. The idea is to obtain the Eg statistics for the density
power spectra in terms of the galaxy number counts, the lensing power spectrum
(obtained by shear measurements) and their correlation, that is, in terms of the
observable spectra, namely, Cκg

` (z1, z2), Cgg
` (z1, z2) and Cκκ

` (z1, z2) which appear in
eq. (6.9) and eq. (6.10).

Using (6.9) we first find

b(z)Cκδ
` (z∗, z) = Cκg

` (z∗, z) + (2− 5s(z))Cκκ
` (z∗, z) . (6.14)

From (6.10) we obtain

b2(z)Cδδ
` (z, z) = Cgg

` (z, z)− (2− 5s(z))2Cκκ
` (z, z) + 2b(z)(2− 5s(z))Cκδ

` (z, z) ,

= Cgg
` (z, z) + (2− 5s(z))2Cκκ

` (z, z) + 2b(z)(2− 5s(z))Cκg
` (z, z) .

(6.15)

Inserting this in eq. (6.11) we obtain

Ẽg(`, z) = Γ(z)
bCκδ

` (z∗, z)

β(z)b2Cδδ
` (z, z)

=
1

β(z)

Cκg
` (z∗, z) + (2− 5s)Cκκ

` (z∗, z)

Cgg
` (z, z) + (2− 5s)2Cκκ

` (z, z) + 2(2− 5s)Cκg
` (z, z)

,

(6.16)
where b and s are to be evaluated at redshift z. In the next section we want to study
in which cases the difference between Ẽg and Eg is relevant. For this we introduce
the relative difference defined as,

∆Eg

Ẽg
=
Ẽg − Eg
Ẽg

. (6.17)

6.3 Numerical Results

In order to illustrate our method proposed in Section 6.2, we show some exam-
ples using the specifications from the Dark Energy Survey (DES) Year 1 and for
a Euclid-like survey [190, 19]. For the numerical calculation we use the public
code class [194, 41] in which relativistic contributions to galaxy number counts
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are included [88]. We assume purely scalar perturbations, and consider the cos-
mological parameters of the Planck 2015 results [12]. Thus in our evaluations, the
Hubble parameter is H0 = 67.556 km s−1 Mpc−1 = 100h km s−1 Mpc−1, the baryon
density parameter is Ωbh

2 = 0.022032, the cold dark matter density parameter
is Ωcdmh

2 = 0.12038, the curvature is K = 0, the number of neutrino species is
Nν = 3.046 and the neutrino masses are neglected.

6.3.1 Eg statistics for DES-like redshift binning

From the specifications of the first year results of the DES collaboration [1, 290,
92, 144, 101] which has measured all - the galaxy number counts, lensing and the
cross-correlation of galaxy clustering and lensing, we consider five galaxy redshift
bins in the foreground having a width ∆z = 0.15. The mean redshifts of these bins
are,

z1 = 0.225 z2 = 0.375 z3 = 0.525 z4 = 0.675 z4 = 0.825 . (6.18)

In this section, we numerically compute the required angular power spectra for the
purpose of Eg measurement, in case of CMB lensing for the above mentioned DES
foreground redshifts. For our purpose, we assume a complete survey setting1

In fig. 6.1 we show the behaviour of Ẽg(`, z) against ` for different values of DES
foreground redshifts, which have been obtained from the observable angular power
spectra using eq. (6.16). Ẽg is clearly scale independent for ` >∼ 100. We also find
that the uncorrected Eg has an error of about 4% compared to the corrected one
Ẽg for the highest foreground redshift of DES. This error is much smaller than the
ratio Cκκ

` /Cδκ
` which can become as large as 0.3, see Ref. [115]. We suggest that

the additional terms in the numerator and the denominator partially cancel in the
correction. As we shall see in Section 6.3.2, for much higher redshifts like that of
Euclid, this error will increase by about a factor of ten.

1The DES collaboration has not published any value for s(z), the true value is most probably
different from zero and depends on z. However it is not available to us as the DES collaboration
has neglected convergence in its analysis.
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Figure 6.1: The upper panel shows Eg as a function of ` for different values of z
corresponding to foreground bins of DES Year 1 results. The lower panel shows the
correction on Eg value due to lensing effects for each redshift bin.

6.3.2 Eg statistics for Euclid-like redshift binning

Now we repeat the same analysis as in Section 6.3.1 for few redshifts probed by the
Euclid satellite [19]. According to Euclid photometric specifications, the galaxy bias
and magnification bias are given as a function of the redshift as2,

b(z) = b0

√
1 + z (6.19)

s(z) = s0 + s1z + s2z
2 + s3z

3 (6.20)

Here we set b0 = 1 and the magnification bias coefficients are s0 = 0.1194, s1 =
0.2122, s2 = −0.0671 and s3 = 0.1031. The window function is taken to be Gaussian

2In Ref. [305] Euclid is also considered with a similar galaxy bias, but the luminosity bias is
set to the constant values s = 0.48 for the spectroscopic survey and s = 0.326 for the photometric
survey. These values are close to the point s = 0.4 where the correction vanishes, artificially
reducing the lensing correction.
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with a standard deviation of ∆zi/2, where ∆zi
>∼ 2δz is the width of the i-th bin,

δz being the photometric redshift error given by δz = 0.05(1 + z). For more details
about Euclid specifications, we also refer to Appendices A.1 and B of [221].
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Figure 6.2: Same as Fig. 6.1 but for the case of Euclid. At z = 1 we have s(z) = 0.37
which renders the correction terms very small, while at z = 2 we find s(z) = 1.1.
The shaded area represents the cosmic variance error as a function of ` for ` > 100 .

As seen in fig. 6.2, now the uncorrected Eg has an error of about 40% compared
to the corrected Eg for the highest redshift of Euclid, that is, z = 2. The error is
significantly scale dependent which comes from the fact that the uncorrected signal
is scale dependent. As one can see from the top panel, the corrected statistics,
Ẽg(`, z) is again scale independent for ` >∼ 50.

As for the absolute value of the result we have found that our normalization Γ(z)
has to be multiplied by an overall factor which amounts to 6 for DES and 0.35 for
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Euclid. The ratio,
Eg(`, z2)

Eg(`, z1)
=

(
Ωm(z1)

Ωm(z2)

)0.55

(6.21)

which we expect in a ΛCDM cosmology is very well realized in our findings (fig. 6.3).
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Figure 6.3: The ratio as defined in eq.(6.21), here shown for the DES redshift bins.
The circular dots represent the theoretically expected values as in the right hand
side of eq. (6.21), and the stars represent our numerical results.

6.4 Discussion and Conclusion

With upcoming surveys aiming for high redshift probes and increasing precision,
the utility of the Eg statistics in measuring deviations from general relativity is very
promising. It is however important to include lensing and magnification bias effects
in these measurements to reach the best possible accuracy. In this paper we have
shown how this can be achieved in a photometric survey where we dispose of galaxy
number counts, shear measurements and their correlation so that all three observable
spectra Cgg

` , Cκg
` and Cκκ

` are available. Our method constructs the corrected Eg
statistics termed Ẽg(`, z) from these observables. This quantity is independent of
scale (for sufficiently large `) and bias (in the linear regime). We have found that the
lensing contributions are small for low redshift surveys like DES (up to ∼ 4%), but
they are very significant in case of higher redshift surveys like Euclid (up to ∼ 40%).
Our work is based purely on theoretical calculations using linear perturbation theory
and has to be taken with a grain of salt. From the DES survey we simply assume
the same foreground redshifts and galaxy bias and galaxy distribution in redshift,
while for Euclid we use the galaxy distribution in redshift as well as the galaxy and
magnification biases. Nevertheless, it is safe to assume that Euclid will be able to
measure the needed C`’s with cosmic variance limited accuracy out to ` ∼ 1000.
For z = 2 this corresponds to a linear scale of about 14h−1Mpc which is still well
in the linear regime at z = 2. The relative error from cosmic variance [96] of a C`
observable is

√
2/(2`+ 1) so that Ẽg which is a ratio of C`’s is expected to have a
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cosmic variance error of

δcvẼg(`)

Ẽg(`)
=

2√
2`+ 1

'
√

2

`
, (6.22)

which amounts to 14% for ` = 100 and 4.5% for ` = 1000. This is the cosmic variance
indicated as shaded region in fig. 6.2. When summing all available multipoles `
(assumed to be independent) from some value `min to `max, the cosmic variance
error can be further reduced to

δcvẼg

Ẽg
'
√

2 log (`max/`min)

`max − `min

, (6.23)

which is about 0.003, significantly less than 1%, for the values `max = 1000 and
`min = 100 (see fig. 6.4 below).
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Figure 6.4: The cumulative cosmic variance error as a function of ` as given in
eq.(6.23).

This shows that the corrections discussed in this work, even if probably not
yet relevant for the present DES data, certainly have to be taken into account to
optimize our analysis of future data of the quality of Euclid. The strength of the Eg
statistics is its scale invariance which allows a simple combination of the result from
different scales. In addition, its bias independence renders it independent of the
galaxies considered as long as their bias is linear, even if it is not scale independent.
However, at second order we in general expect non-linear bias which will affect the
Eg statistics which renders it less attractive at small, non-linear scales.
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Intrinsic and extrinsic shape and size

correlations of galaxies in weak lensing data

Based on:
[114] B. Ghosh, R. Durrer and B.M. Schäfer, Intrinsic and extrinsic shape and size
correlations of galaxies in weak lensing data, [arXiv: 2005.04604]

After we have had a look at weak gravitational lensing and agreed upon the im-
portance of lensing corrections in galaxy survey observations, we need to go one
step further and acknowledge the presence of effects that manifest in addition to
lensing. One such important effect is the astrophysical contribution of intrinsic
alignments, which is the subject of this work. This kind of effects arise due to the
fact that nearby galaxies are subjected to a local tidal gravitational field that influ-
ences the process of their formation, and also their shapes and sizes. This tidal shear
is basically expressed as the second derivative of the gravitational potential Φ. The
shape and size correlation of galaxies can be studied in the light of both weak lensing
and the tidal interaction which can be described via a linear alignment model for
elliptical galaxies. Interestingly, these two effects are analogous as far as the reaction
of the galaxy is concerned. While a galaxy changes its physical appearance in re-
sponse to intrinsic alignment, there is a deformation in the shape of its light bundle
as a result of lensing. Mathematically speaking, in case of intrinsic alignments, the
quantity giving rise to the deformation is proportional to the inverse of the velocity
dispersion 1/σ2, while for lensing, the gravitational potential is expressed in units
of c2. In this work, we attempt to parametrise how elliptical galaxies react to such
external tidal gravitational fields and use a Fisher forecast to predict the intrinsic as
well as extrinsic correlations of their shape and size with weak lensing. For this we
first study the tidal interaction of galaxies using the Jeans equation for stationary
and static systems and then go on to compute the angular spectra for shapes and
sized from the source terms that are expressed in terms of Φ. This eventually helps
us quantify the information content of shape and size correlations using a Fisher-
matrix formalism, where we find that the size measurements have larger Poissonian
errors than the shape measurements, and combining shape and size is not expected
to improve the results significantly.
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Abstract: The subject of this paper are shape and size correlations of galax-
ies due to weak gravitational lensing and due to direct tidal interaction of elliptical
galaxies with gravitational fields sourced by the cosmic large-scale structure. Setting
up a linear intrinsic alignment model for elliptical galaxies which parameterises the
reaction of the galaxy to an external tidal shear field through the velocity disper-
sion, we predict intrinsic correlations and cross-correlations with weak lensing for
both shapes and sizes, juxtaposing both types of spectra with lensing. We quantify
the observability of the intrinsic shape and size correlations and estimate with the
Fisher-formalism how well the alignment parameter can be determined from the
Euclid weak lensing survey. Specifically, we find a contamination of the weak lens-
ing convergence spectra with an intrinsic size correlation amounting to up to 10%
over a wide multipole range ` = 100 . . . 300, with a corresponding cross-correlation
exhibiting a sign change, similar to the cross-correlation between weak lensing shear
and intrinsic shapes. A determination of the alignment parameter yields a precision
of a few percent forecasted for Euclid, and we show that all shape and many size
correlations should be measurable with Euclid.

7.1 Introduction

Weak lensing has emerged as a powerful probe for investigating the cosmic large-scale
structure [215, 26, 18, 25, 181], for testing gravitational theories and for constraining
cosmological parameters. As gravitational lensing probes fluctuations in the gravi-
tational potential directly [176, 147, 146, 145, 33, 133, 132, 224, 124], it depends on
minimal assumptions and is fixed for a given gravitational theory. Correlations in
the shapes of galaxies induced by weak lensing [31, 32] have been detected almost
two decades ago, and by now lensing is recognised as a tool for investigating cosmo-
logical theories alongside the cosmic microwave background and galaxy clustering
[296, 153, 154, 223]. The last generation of surveys, most notably KiDS and DES [1]
have provided independent confirmation for the ΛCDM-model and support param-
eter determinations from the CMB, even though tensions between the two probes,
most notably in the matter density Ωm and σ8 remain [205, 91]. The next genera-
tion of surveys, in particular Euclid [19] and LSST will probe cosmological models to
almost fundamental limits of cosmic variance, but with decreasing statistical errors
the control of systematical errors will become one of the central questions for data
analysis, along with higher-order effects in the lensing signal related to evaluating the
tidal shear fields along a geodesic, effects of lensing on galaxy number counts [115,
289] in galaxy-galaxy lensing correlation, as well as non-Gaussian statistics of the
lensing signal due to nonlinear structure formation and non-Gaussian contributions
to the covariance [160, 177, 178, 225].

Among astrophysical contaminants of the weak lensing signal, intrinsic align-
ments [166, 206, 138, 17, 185, 209, 187] are perhaps the most dramatic, leading to
significant biases in the estimation of cosmological parameters, surpassing most likely
baryonic corrections [301, 267]. There are two primary models for the two dominant
galaxy types for linking the apparent shapes to tidal gravitational fields in the large-
scale structure [93], which acts, due to long-ranged correlations, as the medium to
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reduce randomness and to correlate the measured ellipticities. The shapes of spiral
galaxies are thought to be determined by the orientation of the angular momentum
of the stellar disc [65, 80, 23], and ultimately of the dark matter halo harbour-
ing the stellar component. With this idea in mind, shape correlations are traced
back to angular momentum correlations, which in turn would depend through tidal
torquing as the angular momentum generated mechanism on the tidal shear fields.
Tidal torquing models commonly predict ellipticity correlations on small scales at a
level of at most 10% of the weak lensing signal on multipoles above ` ' 300 for a
survey like Euclid, many physical assumptions have been challenged, most notably
the orientation of the disc relative to the host halo angular momentum, as well as
an over-prediction of the correlation inherent to the torquing mechanism.

Elliptical galaxies, on the other hand, are thought to acquire shape correlations
through direct interaction with the tidal shear field [264, 43, 217, 42, 293]: Second
derivatives of the gravitational potential would give rise to an anisotropic deforma-
tion of the galaxy, in the principal directions of the tidal shear tensor. Interestingly,
the reaction of a galaxy to the tidal shear field is determined by the inverse velocity
dispersion 1/σ2 similar to lensing, where the relevant quantity is the gravitational
potential in units of c2. Tidal alignments of elliptical galaxies are thought to be
present at intermediate angular scales of a few hundred in multipole ` for a survey
like Euclid, with amplitudes being typically an order of magnitude smaller than that
of the weak lensing effect. In parallel, alignment models using ideas from effective
field theories provide parameterised relationships between tensors constructed from
the cosmic density and velocity fields and can capture a wider range of alignment
mechanisms and track them into the nonlinear regime [298], but perhaps with a less
clear physical picture. There are indications that this in fact takes place in Nature,
for instance in measurements of shape correlations in the local Universe [55], in
shallow surveys [191, 70, 232], using stacking techniques or correlation techniques in
deeper surveys [140, 207, 74] and correlation techniques in weak lensing surveys [135,
137, 180, 170, 136, 173, 164, 182, 263, 183, 174, 172]. Likewise, intrinsic alignment
effects have been investigated in fluid-mechanical simulations of galaxy formation
[for instance 286, 287, 73, 84, 75, 139, 27].

While intrinsic alignments refer to a physical change of the appearance of the
galaxies [for reviews, see 179, 171, 184, 292], there is an analogous deformation effect
on the shape of the light bundle emanating from a galaxy by gravitational lensing.
To lowest order, both effects depend on tidal gravitational field which suggests that
the effects must be correlated. The main difference is that while lensing shear comes
from the gravitational tidal field integrated along the line of sight, intrinsic alignment
is due to the local gravitational tidal field. Nevertheless, cross-correlations between
the physical change in shape and the apparent change in shape are predicted to
be nonzero for elliptical galaxies, and to be more exact, should in fact be negative
as galaxies align themselves radially with a large structure while lensing generates
a tangential alignment. As a result, ellipticity correlations of galaxies is a sum of
the conventional weak lensing (often referred to as GG), the intrinsic alignment (or
II) and the cross-correlation between the two (called GI). Parameter estimation
from weak lensing [63, 58, 42] as well as weak lensing mass reconstructions [104,
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68] would be affected by these intrinsic contributions, and can be taken care of by
direct modelling or by self-calibration [291, 307, 306, 308, 236]. In addition, intrinsic
alignments can show up in cross correlation with the reconstructed CMB-lensing
deflection field [141, 127, 72, 188, 218], and they might be usable as cosmological
probes in their own right [233, 284].

There should be analogous effects of the size of an elliptical galaxy due to tidal
gravitational fields: In gravitational lensing the light bundle can be isotropically
enlarged, i.e. changed in size while the shape is conserved: This nonzero convergence
is caused by the trace of the tidal field, and determines to lowest order magnification
as well, adding cosmological information [149, 279]. Similarly, the size of an elliptical
galaxy would physically change for a fixed velocity dispersion if the trace of the tidal
field is nonzero,1 or equivalently, if it resides in an overdense or underdense region.
An underdense region with density contrast δ < 0 would source a gravitational
potential Φ through the Poisson-equation ∆Φ/c2 = 3Ωm/(2χ

2
H)δ, with the Hubble-

distance χH = c/H0, such that the eigenvalues of ∂i∂jΦ would be negative, stretching
the galaxy to a physically larger size. Alternatively, one can argue that the change
of volume (or area) is given by the Jacobian of the differential acceleration, i.e. of
the tidal field, such that the perturbed volume is V/V0 = det(δab +∂a∂bΦ), implying
that lnV − lnV0 = ln det(δab + ∂a∂bΦ) = tr ln(δab + ∂a∂bΦ) ' tr(∂a∂bΦ) = ∆Φ and
consequently V/V0 = exp(∆Φ) and (V − V0)/V ' ∆Φ. To what extent extrinsic
and intrinsic size correlations can add to our understanding of cosmology has been
investigated by [134].

The motivation of our paper are exactly these correlations between the sizes of
elliptical galaxies as they would be predicted by a linear alignment model as a con-
sequence of the trace ∆Φ of the tidal shear tensor ∂a∂bΦ being nonzero, as proposed
by [140]. These intrinsic size correlations would be generated in complete analogy
to intrinsic shape correlations caused by the traceless part of the tidal shear, and
would contaminate measurements of weak lensing convergence correlations [16] in
the same way as intrinsic shape correlations are a nuisance to the weak lensing shear.
Alternatively, one can imagine these as a manifestation of ellipticity-density corre-
lations [152], only that density is mapped out by the galaxy size. After introducing
tidal interactions of elliptical galaxies with their surrounding large-scale structure in
Section 7.2, we compute shape correlations from direct tidal interaction and through
gravitational lensing in Section 7.3. We quantify the information content of each
of the correlations and the amount of covariance in Section 7.4, before discussing
our results in Section 7.5. In general we work in the context of a wCDM-cosmology
with a constant equation of state value of w close to −1, and standard values for
the cosmological parameters, i.e. Ωm = 0.3, σ8 = 0.8, h = 0.7 and ns = 0.96, and
a parameterised spectrum for nonlinearly evolving scales. We compute numerical
results on the information content of size-correlations for the case of a tomographic
weak lensing survey like Euclid’s [19]. Throughout the paper, summation convention
is implied.

1While in certain definitions the trace is subtracted in the tidal field, here the tidal field is
simply ∂a∂bΦ including the trace which is important as is it responsible for size changes.
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7.2 Tidal interactions of galaxies and gravitational
lensing

In a simplified way one can imagine elliptical galaxies as a stellar component in
virial equilibrium with a velocity dispersion σ2, filling the gravitational potential.
[241] then argue that if the velocity dispersion is isotropic, one can invoke the Jeans-
equation for stationary and static systems in order to relate density ρ(r) and poten-
tial Φ(r),

σ2∂r ln ρ(r) = −∂rΦ → ρ(r) ∝ exp

(
−Φ(r)

σ2

)
, (7.1)

reminiscent of the barometric formula. Here, r = 0 is the centre of our galaxy where
ρ is maximal and Φ has a minimum. If the gravitational potential is distorted by
external fields as the galaxy is not an isolated object, the equipotential contours get
distorted correspondingly and the stellar component reacts and galaxy assumes a
different shape. We still assume that Φ has a minimum at the center of the galaxy,
r = 0. To lowest order, the change in shape takes place along the principal axes of
the tidal tensor ∂a∂bΦ, which is defined as the tensor of second derivatives of the
gravitational potential Φ.

Φ(r)→ Φ(r) +
1

2
∂a∂bΦ rarb, (7.2)

leading to a distortion of the density of the stellar component. For weak tidal fields,
the exponential can be Taylor-expanded to yield

ρ ∝ exp

(
−Φ(r)

σ2

)[
1− ∂a∂bΦ

2σ2
rarb

]
. (7.3)

For this perturbed stellar component one can compute the change of the second
moments of the brightness distribution, where we ignore projection effects for a
moment and use ρ(r) for projected quantities,

∆qcd =

∫
∂2r ρ(r) rcrd rarb ×

∂a∂bΦ

2σ2
= Sabcd Φab, Φab ≡ ∂a∂bΦ , (7.4)

which bears a resemblance to the generalised Hooke-law ∆qcd = Sabcd Φab, relating
the stresses Φab to the observable strains ∆qcd, which suggests to think of Sabcd as
the susceptibility of a galaxy to change its shape or size under the influence of tidal
gravitational fields. In the theory of elastic media one would then in fact use index
symmetries to derive that there must be two material constants, similarly, in the
theory of viscous fluids one defines two Lamé-viscosity coefficients (bulk and shear
viscosity), so naturally the question arises whether the same constant of proportion-
ality determines the size and the shape deformation as in the case of lensing.

In our model we assume that the reaction of the galaxy to the tidal shear is
instantaneous, which is an assumption that can be challenged: Adjustment to a new
tidal field should take place on the free-fall time scale tff = 1/

√
Gρ with the total

matter density ρ, that is typically a factor of ∆ = 200 higher than the background
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density Ωmρcrit with ρcrit = 3H2
0/(8πG). Substitution shows that the free fall time

scale is only
√

8π/(3Ωm∆) ' 0.37 times shorter than the age of the Universe 1/H0,
but because at least in linear structure formation tidal gravitational fields are close
to constant in dark energy-cosmologies, the approximation might not be too bad. Of
course in nonlinear structure formation, the time-scale of evolution would be much
shorter and could give rise to an interesting time evolution of intrinsic alignments
even for elliptical galaxies [192, 260, 261]

After introducing polar coordinates, assuming spherical symmetry for the unper-
turbed galaxy and writing r0 = r cosφ and r1 = r sinφ for the vector components,
the elasticity tensor is in our case given by

Sabcd =
1

2σ2

∫
∂r r5ρ(r)

∫
∂φ cos4−(a+b+c+d) φ sina+b+c+d φ, (7.5)

has 16 entries and is fully symmetric under index exchange. Absorbing the prefac-
tor

∫
∂r r5ρ(r)/(2σ2) into an alignment parameter D, Sabcd can only assume three

different values, namely S0000 =
∫
∂φ cos4 φ = S1111 =

∫
∂φ sin4 φ = 3π/4, S0001 =∫

∂φ cos3 φ sinφ = S1110 =
∫
∂φ cosφ sin3 φ = 0 and S0011 =

∫
∂φ cos2 φ sin2 φ =

π/4.
Introducing the four Pauli-matrices σ(n)

ab as the basis for the tidal shear ∂a∂bΦ,

σ(0) =

(
+1 0
0 +1

)
, σ(1) =

(
+1 0
0 −1

)
,

σ(2) =

(
0 +1
−1 0

)
, and σ(3) =

(
0 +1

+1 0

)
, (7.6)

Since σ(2) is anti-symmetric while the tidal tensor is symmetric as partial differ-
entiations interchange, the component of Φab in direction σ(2) vanishes. We now
determine the change in size s that is introduced by a tidal field Φab ∝ σ

(0)
ab ,

s =
1

2
∆qcdσ

(0)
cd =

1

2
Sabijσ

(0)
cd σ

(0)
ab =

1

2
(S0000 + S0011 + S1100 + S1111) = π, (7.7)

whereas the change in shape ε+ introduced by a tidal field Φab ∝ σ
(1)
ab would be

ε+ =
1

2
∆qcdσ

(1)
cd =

1

2
Sabijσ

(1)
cd σ

(1)
ab =

1

2
(S0000 − S0011 − S1100 + S1111) =

π

2
, (7.8)

or the change in shape ε× generated by the tidal field Φab ∝ σ
(3)
ab ,

ε× =
1

2
∆qcdσ

(3)
cd =

1

2
Sabijσ

(3)
cd σ

(3)
ab =

1

2
(S0101 + S0110 + S1001 + S1010) =

π

2
, (7.9)

i.e. the changes in shape are only half as large as the change in size, analogously to
the weak lensing convergence with ∆ψ = 2κ, which implies as well that the same
alignment parameter governs the shape and size distortions. With an assumption
on the shape of the projected stellar density ρ(r), for instance a Sérsic-profile [269,
123],

ρ(r) ∝ exp

(
−b(n)

[(
r

r0

)1/n

+ 1

])
, (7.10)
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it is possible to derive the scaling of ellipticity induced by the action of a tidal
gravitational field, dominantly with the size of the galaxy but also with the Sérsic-
index n. In eqn. (7.10), r0 is the scale radius of the stellar component, and b(n) '
2n − 1/3, approximatively [83]. Computing the relevant integral

∫
∂r r5ρ(r) for a

properly normalised density distribution
∫
∂2r ρ(r) = 2π

∫
∂r rρ(r) = 1 and using

the definition of ellipticity ε as it would result from the second moments qab of the
normalised brightness distribution I(r) which we equate to the stellar density ρ(r),

ε =
qxx − qyy
qxx + qyy

+ 2i
qxy

qxx + qyy
, with qab =

∫
∂2r ρ(r) rarb, (7.11)

where one recognises the size of the image in the denominator, qxx+qyy =
∫
∂2rρ(r)(x2+

y2) = 2π
∫
∂r r3ρ(r), it is possible to show the scaling of the ellipticity to be

ε ∝
(∫ ∞

0

∂r r5ρ(r)

)/(∫ ∞
0

∂r r3ρ(r)

)

= r2
0 ×

∫ ∞
−b

∂x
(x
b

+ 1
)6n−1

exp(−x)

/∫ ∞
−b

∂x
(x
b

+ 1
)4n−1

exp(−x). (7.12)

Technically, we obtained this result after substitution x = b
[
(r/r0)1/n − 1

]
, where

the ratio of integrals has in general only a numerical solution and shows the de-
pendence of the susceptibility to shape change due to tidal forces caused by the
distribution of the stars inside the galaxy. The dominant scaling of ellipticity with
the size r2

0 of the galaxy is dimensionally consistent with the linear tidal shear model
qab = Sabcd Φcd. The results are shown in Fig. 7.1, which indicates a strong scaling
of the alignment parameter with increasing Sérsic-index n, where we should note
that we consider the Sérsic-profile as a reasonably simple model for the stellar dis-
tribution, which is not consistent with a constant velocity dispersion σ2, and neither
a gravitating self-consistent solution. Rather, it is supposed to illustrate that the
internal dynamics of an elliptical galaxy can impact on the magnitude of tidal align-
ment and that not all elliptical galaxies should have the same alignment parameter
if their Sérsic-index varies.

It is straightforward to show that the distortion modes are all independent for
the linear model, i.e. tidal fields ∝ σ

(m)
ab will never source distortion modes ∝ σ

(n)
cd

with m 6= n. For making the influence of the tidal field on the galaxy size more
specific, we compute the change in size s explicitly as the second moment of the
brightness distribution for the isotropic case,

s =
1

2σ2

∫
∂2r r2ρ(r)

[
1

2
∂a∂bΦ rarb

]
=

1

2σ2

∫
∂2r r2ρ(r)

[
1

4
∆Φ r2

]
=

π

σ2

∫
r5∂r ρ(r)

∆Φ

4
∝ π

2
∆Φ (7.13)

such that the change in size comes out proportional to the trace ∆Φ of the tidal
field and consistent with the above argumentation with the same definition of the
alignment parameter D.
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Figure 7.1: Scaling of the relation between ellipticity ε and Sérsic-index n, for a given
tidal gravitational field and a given velocity dispersion σ2. As particular cases, the
exponential profile for n = 1 and the de Vaucouleurs-profile for n = 4 are indicated
by vertical lines.

With many galaxies in a tomographic bin A with a suitable, normalised redshift
distribution pA(z)∂z one can define the line of sight-averaged ellipticity from second
angular derivatives of the weighted projection of the potential Φ:

ϕA,ab = ∂a∂bϕA with ϕA = D

∫
∂χ pA(z(χ))

∂z

∂χ

D+

a

Φ

χ2
=

∫
∂χWϕ,A(χ) Φ,

(7.14)
with the Hubble-functionH(χ)/c = ∂z/∂χ which originates from the transformation
of the redshift distribution, and the growth rate D+/a of gravitational potentials,
and the alignment parameter D, which encapsulates the proportionality between
tidal field and physical shape and size change. The line of sight-weighting function
Wϕ,A of bin A is defined by the last equals sign. The parameter D reflects the
brightness distribution of a galaxy through its fourth moments and scale inversely
with the velocity dispersion σ2. Because linear intrinsic alignments have the opposite
sign compared to gravitational lensing in the same gravitational potential, we choose
a negative value for the alignment parameter D in order to not having to carry
through minus-signs explicitly. This is due to the fact that an overdense region
enlarges the image of a galaxy in lensing but compresses a galaxy physically.

Equation (7.14) can be amended to include a bias model, as the galaxy density
traces the dark matter density not perfectly. As the intrinsic shape and size-spectra
correspond to ellipticity- and diameter-weighted galaxy correlation functions, a bi-
asing model would in fact matter and can change the dependence between the ob-
servables and the tidal field as a function of scale or redshift. For simplicity, we
work with a bias of unity without any dependence on mass or redshift, which is
reasonable for low-mass galaxies in the relevant redshift range [270]. Modelling the
statistics of the intrinsic alignment effects from a Gaussian random field as we do
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subsequently ignores that the galaxy shapes and sizes provide a measurement of the
tidal field restricted to peak regions of the large-scale structure, which influences
the statistics of tidal fields [235, 260], while the dependence of tidal shears on the
environment should be reproduced [108, 253].

The angular derivatives ∂a are related to the spatial derivatives ∂x through ∂a =
χ∂x, with x = θχ in the small-angle approximation. From that, one can recover the
ellipticity components ε+,A and ε×,A as well as the size sA from a decomposition of
the tensor ϕA,ab with the Pauli-matrices σ(n)

ab ,

ϕA,ab = sAσ
(0)
ab + ε+,Aσ

(1)
ab + ε×,Aσ

(3)
ab , (7.15)

where three components are sufficient because of the symmetry ϕA,ab = ϕA,ba. Using
two properties of the Pauli-matrices σ(n)

ab , namely σ(l)
ab σ

(m)
bc = δlmσ

(0)
ac + εlmnσ

(n)
ac , and

their tracelessness σ(m)
aa = 0, it is possible to invert the last relation and to obtain

the expansion coefficients,

sA =
1

2
ϕA,abσ

(0)
ab , ε+,A =

1

2
ϕA,abσ

(1)
ab , and ε×,A =

1

2
ϕA,abσ

(3)
ab . (7.16)

The approach above is motivated by the weak lensing shear γ, which results from
the tensor ψB,ij containing the second derivatives of the weak lensing potential ψB,

ψB,ij = ∂i∂jψB with ψB = 2

∫
∂χ

GB(χ)

χ

D+

a
Φ =

∫
∂χWψ,B(χ)Φ, (7.17)

with the lensing efficiency

GB(χ) =

∫ χB+1

max(χ,χB)

∂χ′ p(χ′)
∂z

∂χ′

(
1− χ

χ′

)
. (7.18)

It is interesting to note that the effect of convergence and shear are fully analogous
to the changes in size and shape due to direct tidal interaction, up to some inter-
esting details: A light bundle, consisting of photons as relativistic test particles for
the gravitational potential, is deflected twice as strongly compared to non-relativistic
test particles such as the stars inside an elliptical galaxy, and the constant of propor-
tionality that makes the gravitational potential dimensionless is c2 in lensing instead
of σ2 for the intrinsic alignments. Finally, the lensing kernel GB/χ is non-zero not
only inside the bin B under consideration but the integral extends from χ = 0 to the
outer rim of bin B, χB+1. We compute both lensing and intrinsic alignments from
the dimensionless potential Φ give in units of c2 and use a numerical value for the
alignment parameter scaled by c2/σ2. Again, there is an analogous decomposition

ψB,ij = κBσ
(0)
ij + γ+,Bσ

(1)
ij + γ×,Bσ

(3)
ij (7.19)

with the analogous inversion,

κB =
1

2
ψB,ijσ

(0)
ij , γ+,B =

1

2
ψB,ijσ

(1)
ij , and γ×,B =

1

2
ψB,ijσ

(3)
ij . (7.20)
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The intrinsic size field provides a measure of the projected density in the same way
as the weak lensing convergence κ, but with a different weighting function:

s =
1

2
ϕabσ

(0)
ab =

D

2
σ

(0)
ab ∂a∂b

∫
∂χ p(χ)

D+

a

Φ

χ2

=
D

2

∫
∂χ p(χ)

D+

a
∆Φ =

3Ωm

4χ2
H

D

∫
∂χ p(χ)

D+

a
δ, (7.21)

by substituting the Poisson-equation ∆Φ = 3Ωm/(2χ
2
H)δ, using ∂a = χ∂x for the

derivatives, and approximating the full Laplacian by the one containing the deriva-
tives perpendicular to the line of sight. Again, one recognises a factor of two between
the gravitational acceleration of photons in gravitational lensing and non-relativistic
particles as in our case of stars inside an elliptical galaxy. As discussed before, an
actual measurement of the mean size s of the galaxies into a certain direction would
in addition be weighted with a biasing factor because the tidal field is only measur-
able at positions where galaxies exist: While the inclusion of a reasonably simple
linear and deterministic biasing model is certainly possible and straightforward, we
ignore this out of simplicity.

This implies that the statistics of all modes of the shape and size field can be
described by spectra of the source fields, which in turn are given by a Limber-
projection. Specifically, the spectrum of ϕA,ab reads

〈ϕA,ab(`)ϕ∗B,ij(`′)〉 = (2π)2δD(`− `′) CϕAϕB
abij (`)

with CϕAϕB
abij (`) = `a`b`i`j

∫
∂χ

χ2
Wϕ,A(χ)Wϕ,B(χ) PΦΦ(k = `/χ), (7.22)

similarly, one obtains for the field ψB,ij,

〈ψA,ab(`)ψ∗B,ij(`′)〉 = (2π)2δD(`− `′) CψAψB
abij (`)

with CψAψB
abij (`) = `a`b`i`j

∫
∂χ

χ2
Wψ,A(χ)Wψ,B(χ) PΦΦ(k = `/χ), (7.23)

and finally for their cross-correlation,

〈ϕA,ab(`)ψ∗B,ij(`′)〉 = (2π)2δD(`− `′) CϕAψB
abij (`)

with CϕAψB
abij (`) = `a`b`i`j

∫
∂χ

χ2
Wϕ,A(χ)Wψ,B(χ) PΦΦ(k = `/χ). (7.24)

In general, all lensing effects originating from a tidal gravitational field will have the
opposite sign than the intrinsic tidal alignment, which causes the cross-correlation
between lensing and intrinsic alignments to have a negative sign. This is taken care
of numerically by choosing a negative value for the alignment parameter D, which
does not affect the auto-correlations: Those are proportional to D2 and therefore
positive. In analogy we define the angular spectra CϕAϕB(`), CψAψB(`) and CϕAψB(`)
of the potentials ϕA and ψB. For the spectrum of the gravitational potential we use
a linear spectrum of the form PΦΦ(k) ∝ kns−4T 2(k) with a transfer function T (k)
and a nonlinear extension on small scales [78, 155], normalised to σ8, but assume
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Gaussian statistics throughout. We apply a smoothing on a scale defined through
M = 4π/3 ΩmρcritR

3, ρcrit = 3H2
0/(8πG),

Φ(k)→ Φ(k) exp

(
−(kR)2

2

)
, (7.25)

to the potential used for intrinsic alignments, where we set the mass scale to be
M = 1012M�/h: In doing this we can control how close size- and shape-correlations
trace the tidal shear field, and select the relevant long-wavelength modes.

7.3 Angular spectra of galaxy shapes and sizes

The prefactors `a`b appearing in the expressions for the spectra of the projected
tidal shears can be compactly written by introducing polar coordinates, `0 = ` cosφ
and `1 = ` sinφ. Then,

`a`b =
`2

2

(
σ

(0)
ab + (cos2 φ− sin2 φ)σ

(1)
ab + 2 sinφ cosφσ

(3)
ab

)
=
`2

2

(
σ

(0)
ab + cos(2φ)σ

(1)
ab + sin(2φ)σ

(3)
ab

)
, (7.26)

recovering the fact that the phase angle rotates twice as fast as the coordinate
system. We are going to make the choice φ = 0 by a suitable rotation of the
coordinate frame, such that there are no contractions with σ(3)

ab , and correspondingly
vanishing γ× or ε×. This corresponds effectively to the computation of E- and B-
modes of the shear field and of the ellipticity field, with

e(`) = cos(2φ)γ+(`) + sin(2φ)γ×(`), (7.27)
b(`) =− sin(2φ)γ+(`) + cos(2φ)γ×(`), (7.28)

where in our model there are no B-modes due to the index exchange symmetry.
Now, the decomposition with Pauli-matrices makes it possible to write down all
ellipticity spectra as contractions of the possible spectra of the source terms, for
lensing,

Cγγ
AB(`) =

1

4
σ

(1)
ab σ

(1)
ij C

ψAψB
abij (`) =

`4

4
CψAψB(`), (7.29)

for intrinsic alignments,

Cεε
AB(`) =

1

4
σ

(1)
ab σ

(1)
ij C

ϕAϕB
abij (`) =

`4

4
CϕAϕB(`), (7.30)

and for the cross-correlation between the two,

Cεγ
AB(`) =

1

4
σ

(1)
ab σ

(1)
ij C

ϕAψB
abij (`) =

`4

4
CϕAψB(`). (7.31)

A measurement of the shape correlations is limited by a Poissonian shape noise
contribution,

N shape
AB (`) = σ2

shape

ntomo

n̄
δAB, (7.32)
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with a value of σshape = 0.4 and the number density n̄ = 4.727 × 108 galaxies per
steradian typical for Euclid-studies. It is straightforward to show that of the 20
possible spectra 10 are in fact nonzero, and that certain consistency relations hold,
for instance 〈κκ′〉 = 〈γ+γ

′
+〉 + 〈γ×γ′×〉 as well as 〈ss′〉 = 〈ε+ε′+〉 + 〈ε×ε′×〉, in any

coordinate frame.
The resulting extrinsic and intrinsic shape spectra are shown for a tomographic

survey in Fig. 7.2: Intrinsic shape correlations are relevant at intermediate multi-
poles, but are surpassed by one to two orders of magnitude by weak lensing-induced
shape correlations, for realistic values of the alignment parameter D. Intrinsic and
extrinsic shapes are anti-correlated, and the cross-correlation is modulating the
spectra over much wider multipole ranges. In fulfilment of the Cauchy-Schwarz-
inequality, the cross-correlation has values between the pure lensing and intrinsic
alignment effect. The alignment parameter D was chosen to be 10−5, and scales
proportional to (c/σ)2, where σ = 105m/s would be a typical value for a Milky Way-
sized object with 1012M�/h: Increasing the velocity dispersion (where σ ∝ M1/3

due to the viral law) requires a larger alignment parameter D. This value of the
alignment parameter is chosen lower than the value measured by [293] in CFHTLenS-
data, even though details of the models differ from a technical point of view [293,
who compute the correlations in real-space before Fourier-transforming into Fourier-
space, whereas our model is set up entirely in Fourier-space], the models themselves
should be compatible. Compared to the IllustrisTNG-simulation [316], where the
alignment parameter as a constant of proportionality is measured directly in the
relation between ellipticity and tidal shear, our value for D is higher, because the
measurement of the ambient tidal shear field contains a contribution from the local
matter density and disregards biasing effects. Currently, there are still large uncer-
tainties concerning the value and its dependence on galaxy mass as well as a possible
evolution in redshift and galaxy biasing, such that we decided to use an intermediate
value.

In a similar manner as in the previous section, one obtains the size spectra from
contracting the possible spectra of the source terms, for lensing,

Cκκ
AB(`) =

1

4
σ

(0)
ab σ

(0)
ij C

ψAψB
abij (`) =

`4

4
CψAψB(`), (7.33)

for intrinsic alignments,

Css
AB(`) =

1

4
σ

(0)
ab σ

(0)
ij C

ϕAϕB
abij (`) =

`4

4
CϕAϕB(`), (7.34)

and again, for the cross-correlation between the two,

Csκ
AB(`) =

1

4
σ

(0)
ab σ

(0)
ij C

ϕAψB
abij (`) =

`4

4
CϕAψB(`), (7.35)

i.e. all size-spectra are equal to their shape-counterparts. In the estimation process,
there is a constant, diagonal noise contribution

N size
AB (`) = σ2

size

ntomo

n̄
δAB, (7.36)
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Figure 7.2: Shape-shape correlations as a function of multipole order `, separated
by gravitational lensing Cγγ

AB(`), intrinsic size correlations Cεε
AB(`) and the cross-

correlation Cγε
AB(`) (of which we show the absolute value), with the Poissonian noise

contributions N shape
AB (`) (dark grey) and N size

AB (`) (light grey, a factor of 4 higher)
in comparison, for Euclid’s redshift distribution and tomography with 3 bins, for
a ΛCDM-cosmology with an alignment parameter D = −10−5 on a mass scale
M = 1012M�/h, corresponding to a virial velocity of σ ' 105m/s. Thick and thin
lines indicate a nonlinear and linear spectrum, respectively.

with the size noise σsize = 0.8.
Fig. 7.2 shows at the same time the intrinsic and extrinsic size-spectra, as they

would result from a tomographic survey. In fact, as a consequence of the linear
alignment model and the linearity of weak lensing the size-correlations are identi-
cal to the shape correlations, including the anti-correlation between intrinsic and
extrinsic size. Given the fact that there is a slightly higher uncertainty in the mea-
surement of angular size in comparison to shape one can already now expect that
the corresponding signal to noise-ratios for size-correlations are slightly inferior to
shapes. These statements rely on the fact that the same alignment parameter D
is relevant for both shapes and sizes, as the linear alignment model would suggest.
Similarly, we show in Fig. 7.3 the Pearson correlation coefficient rγε as a function of
multipole `,

rγε =
Cγε
AA(`)√

Cγγ
AA(`) Cεε

AA(`)
, (7.37)

where we would like to emphasise that the Pearson-coefficients for shapes and sizes
are identical, rγε = rκs. We set the bin-indices equal, A = B, because only in this
case Cεε

AB(`) and Css
AB(`) are unequal to zero. The values for rγε suggest that there

is in fact redundancy in the spectra.
Finally, we compute the cross-correlations between galaxy shapes and sizes, for

lensing

Cκγ
AB(`) =

1

4
σ

(0)
ab σ

(1)
ij C

ψAψB
abij (`) =

`4

4
CψAψB(`) (7.38)
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Figure 7.3: Pearson correlation coefficients rγε as a function of multipole order `.

for intrinsic alignments,

Csε
AB(`) =

1

4
σ

(0)
ab σ

(1)
ij C

ϕAϕB
abij (`) =

`4

4
CϕAϕB(`) (7.39)

and for the cross-correlation between lensing and alignments,

Cκε
AB(`) =

1

4
σ

(0)
ab σ

(1)
ij C

ψAϕB
abij (`) =

`4

4
CψAϕB(`) (7.40)

Csγ
AB(`) =

1

4
σ

(0)
ab σ

(1)
ij C

ψAϕB
abij (`) =

`4

4
CϕAψB(`), (7.41)

where due to the independence of the errors in the shape and size correlations one
does not have to deal with a noise contribution when estimating spectra. Effectively,
the cross-correlations between shape and size look identical to the autocorrelations,
but in their estimation process there is no noise term, if statistical independence of
the two measurement processes for shape and size is given.

7.4 Information content of shape and size correla-
tions

For quantifying the information content of intrinsic size and shape correlations in
comparison to weak lensing convergence and shear we use the Fisher-matrix for-
malism. Arranging the measurements of galaxy shapes and sizes into a data vector
yields the data covariance matrix,

C =


Cεε
AB(`) + 2Cεγ

AB(`) Csε
AB′(`) + Csγ

AB′(`)

+ Cγγ
AB(`) +N shape

AB + Cκε
AB′(`) + Cκγ

AB′(`)

Csε
A′B(`) + Csγ

A′B(`) Css
A′B′(`) + 2Csκ

A′B′(`)
+ Cκε

A′B(`) + Cκγ
A′B(`) + Cκκ

A′B′(`) +N size
A′B′

 (7.42)
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Given the similarities between the shape and size correlations allows to rewrite the
covariance matrix as

C =


`4

4

(
CϕAϕB(`) + 2CϕAψB(`) `4

4

(
CϕAϕB′ (`) + 2CϕAψB′ (`)

+ CψAψB(`)
)

+N shape
AB + CψAψB′ (`)

)
`4

4

(
CϕA′ϕB(`) + 2CϕA′ψB(`) `4

4

(
CϕA′ϕB′ (`) + 2CϕA′ψB′ (`)

+ CψA′ψB(`)
)

+ CψA′ψB′ (`)
)

+N size
A′B′

 , (7.43)

which is dangerously close to being singular, underlining the degeneracy between
the shape- and size measurements. Already at this stage one should expect that a
combined measurement of shear and size does not yield strong improvements of the
signal to noise-ratio alone, and given the fact that the same potentials are involved
with identical physical dependences on cosmology, resulting Fisher-matrices will
be very similar. We use the Fisher-matrix formalism as a quick way to quantify
the fundamental sensitivities and degeneracies, while noting that the non-Gaussian
shape of the likelihood matters in most cases and that tools for dealing with non-
Gaussian likelihoods analytically exist [277, 266].

The Fisher-matrix Fµν for a tomographic survey assumes the generic form

Fµν = fsky

∑
`

2`+ 1

2
tr
(
C−1∂µS C

−1∂νS
)

(7.44)

where we implicitly assume a full sky coverage by having independent Fourier-modes.
Similarly, we define the signal to noise ratio Σ,

Σ2 = fsky

∑
`

2`+ 1

2
tr
(
C−1S C−1S

)
, (7.45)

with the noiseless spectrum S(`) of which the signal strength is sought. For the case
of Euclid, we extend the summation over the multipoles from ` = 10 to ` = 3000,
and we are assuming for simplicity a full-sky coverage with no correlations between
different multipoles but scale down the signal subsequently with a sky coverage of
fsky, which would be justified because most of the signal originates at small angular
scales. We set the number of tomographic bins to ntomo = 5.

Clearly, not all galaxies are ellipticals for which the tidal alignment model would
apply, but only a fraction of q ' 1/3 of them. Therefore, we compute two values for
the signal to noise-ratio Σ: First, we weight the GI-type spectra by a factor q, and
the II-type spectra by a factor q2 relative to the GG-term, as lensing operates on all
galaxies identically irrespective of their type. These numbers for Σ would correspond
estimates of the spectra from the full data set and indicate the level of significance
by which the shape or size correlations are incompatible with a pure gravitational
lensing model. Fig. 7.4 quantifies the signal to noise-ratio Σ for measuring intrinsic
shape and intrinsic size correlations: We compute the signal to noise-ratio for a
measurement of the II and GI-terms in both shape- and size correlations in the
presence of the full cosmic variance, which is dominated by gravitational lensing, i.e.
by the GG-terms. As expected, lensing-induced shape correlations are measurable
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Figure 7.4: Cumulative signal to noise-ratio Σ(`)/
√
fsky for Euclid 5-bin tomography

for measuring shape correlations and intrinsic size correlations, for the full galaxy
sample.

at a higher signal to noise-ratio compared to size correlations, but both are easily
within the reach of Euclid. The signal to noise ratio suggests that GI-type terms
are detectable in shape correlations and perhaps marginally in size correlations, and
II-terms are marginally detectable, with intrinsic shape correlations being the least
disappointing.

The inverse Σ−1 of the signal to noise-ratio is at the same time the relative
error D/σD on the alignment parameter D, which suggests that measurements of
the alignment parameter can be carried out the level of a few ten percent, so the
investigation of trends with galaxy mass, type or redshift seem feasible. We have
chosen a rather conservative value for D, nothing precludes the usage of a strategy
to boost intrinsic alignments relative to lensing. As for the morphological mix of
spiral and elliptical galaxies we conclude that the signal to noise ratios are likewise
proportional to q for the GI-terms and to q2 for the II-terms, such that effectively
the combined parameter q ×D is determined through a measurement. In the same
way as adopting higher values for the alignment parameter D, a higher fraction of
elliptical galaxies q would be reflected in the signal to noise-ratio Σ.

On the other hand one could pursue the strategy to pre-select elliptical galaxies
on the basis of their colours or morphologies and to measure the shape- and size
correlations on the resulting, reduced data set. In this case, effectively, the total
number of galaxies n̄ is reduced by q and the number of galaxy pairs by q2, leading
to an increased Poissonian noise term, which becomes larger by a factor of q. Con-
sequently, the signal strength for weak lensing is much weaker, as it is estimated
from a much smaller number of galaxies, but the relative amplitudes between lensing
and the intrinsic alignment spectra are smaller. The resulting numbers are shown
in Fig. 7.5, where the overall higher shape and size noise terms decrease the signifi-
cance, but vice versa, the amplitude of the intrinsic correlations relative to those of
lensing are higher, such that a feasible strategy for measuring intrinsic shape corre-



Chapter 7. Intrinsic and extrinsic shape and size correlations of galaxies in weak
lensing data 167

10 30 100 300 1000 3000
multipole `

10-1

100

101

102

103

cu
m

ul
at

iv
e 

Σ
(`

)/
√ f sk

y
, e

llip
tic

al
s s

el
ec

te
d

C
γγ
AB(`)

C
γε
AB(`)

C εε
AB(`)

CAB(`)

C s
AB(`)

C ss
AB(`)

Figure 7.5: Cumulative signal to noise-ratio Σ(`)/
√
fsky for Euclid 5-bin tomography

for measuring shape correlations and size correlations, for a case when elliptical
galaxies are selected for the estimation of correlations.

lations could be to measure the GI-terms and the II-terms with a selected sample of
elliptical galaxies. The intrinsic size correlations, however, seem to be out of reach
with Euclid, no matter the strategy. The attainable signal to noise ratio depends
not only on the alignment parameter D but also on the mass-scale on which the
spectra are smoothed: The two are not independent and should be related through
a virial relationship linking velocity dispersion σ2 and mass M , σ2 ∝ M2/3, but
choosing a smaller mass scale has the consequence that higher multipoles contribute
to the signal an increase Σ(`).

Fig. 7.6 shows constraints on a wCDM-cosmology from galaxy shapes and galaxy
sizes: As both observables are probing tidal gravitational fields with identical phys-
ical dependences there can not be any fundamental difference in the degeneracies,
with the only exception that the noise in the size-measurement is typically larger
compared to the shape-measurement, which effectively cuts off high multipoles from
contributing to the signal. And we would like to emphasise that the two measure-
ments are highly correlated such that one does not gain an advantage from com-
bining the two. We would argue, however, that there is potential to use shape and
size-correlations to investigate deviations from the Newtonian form of the Poisson
equation due to modified theories of gravity. For this, one needs a very good un-
derstanding of the detailed mechanisms of alignment with possibly nonlinear correc-
tions to the tidal alignment model, as well as the scaling behaviour of the alignment
parameter with redshift and galaxy mass [142], and possibly different alignment pa-
rameters for subpopulations of elliptical galaxies, as the strong dependence on the
Sérsic-index suggests. Fundamental degeneracies in the spectra are present between
the alignment parameter D and σ8, which are perfectly degenerate in the linear
regime, but the degeneracy is broken by combining GG, GI and II-terms in the
measurement, as they are proportional to σ2

8, σ2
8D and σ2

8D
2, respectively. In a

very similar way, the proportionality of the lensing spectrum to Ω2
m to first order
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Figure 7.6: Marginalised 1σ-contours from the Fisher-matrix analysis on a standard
wCDM-cosmology (with w = −0.9) for a fixed value D = −10−5 for the alignment
parameter and a smoothing scale of 1012M�/h: We give contours separated by shape
and size correlations, and for the full galaxy sample versus a sample containing only
elliptical galaxies.

translates to the GI-term, which is proportional to Ωm. The influence of the partic-
ular dark energy model by mapping the redshift distribution of the galaxies onto a
distribution in comoving distance, is identical for all correlations. Pursuing the two
strategies of either keeping the full galaxy sample and downweighting GI-spectra by
q = 1/3 and II-terms by q2 yields smaller errors than pre-selecting elliptical galaxies
first, because the smaller Poisson-noise, but the second strategy has a higher relative
contribution from intrinsic alignments, which start to matter in deriving constraints,
as they provide cosmological information.

7.5 Summary and Conclusion

The subject of our investigation were extrinsic and intrinsic shape and size correla-
tions of elliptical galaxies due to weak gravitational lensing and intrinsic alignments.
Our starting point was the description of the stellar density of a virialised system
through the Jeans-equation, in which we perturb the gravitational potential with an
external tidal shear field. Under the condition that this field is reasonably weak and
the galaxy compact enough, one can compute the response in shape and size of a
galaxy in linear approximation in the tidal field, controlled by the galaxy’s velocity
dispersion σ2. The susceptibility of a galaxy to tidal distortion is highly dependent
on the stellar profile: A toy model using the Sérsic profile family showed a strong
increase in the response from exponential profiles to de Vaucouleurs-profiles.

These are our main findings:

• Assuming a weakly perturbed Jeans-equilibrium for elliptical galaxies natu-
rally reproduces a linear response of the shape and the size of a galaxy to
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external tidal gravitational fields, and suggests that the same alignment pa-
rameter is responsible for the change in shape and in size. Nominally, the
velocity dispersion σ of the galaxy sets the scale for the gravitational field,
which is remarkably similar to the quantity Φ/c2 in gravitational lensing. With
virial equilibrium on can continue to argue that σ2 is proportional to M/R
with the mass M and the size R, such that the ratio (R/σ)2, which controls
the perturbation of the stellar component, is in fact constant [compare 241].
Therefore, alignments should not strongly depend on the mass scale under
consideration, which would however enter through a convolution of the tidal
shear spectrum with a filter function. Galaxy biasing would introduce an ad-
ditional modulation of the intrinsic alignment effect and should be included
in particular when comparing intrinsic alignment spectra with the straight-
forward galaxy clustering; in this sense the intrinsic shapes and sizes become
weighted clustering spectra.

• Using the standard Poisson-equation, the galaxy sizes provide a direct mapping
of the ambient matter density, and that the intrinsic and extrinsic shapes
and sizes are consistent to each other. To which extend this can be used to
probe deviations from Newtonian gravity is largely unclear and depends on a
detailed understanding of the astrophysics of the objects. When using shape-
and size-correlations as cosmological probes, the Poisson equation causes them
to contain only degenerate information, and there is a direct mapping between
GG, GI and II-type terms. In addition, the shape and size-correlations are
highly degenerate to the point where size correlations become redundant in
comparison to the stronger and more sensitive shape correlations. We would
like to make a point, however, that size correlations can provide an alternative
method for mapping out the matter distribution.

• Similar to the case of shape correlations, one obtains a completely diagonal
autocorrelation for the intrinsic sizes, Css

AB(`) ∝ δAB and a non-diagonal cross-
correlation between size and convergence, Csκ

AB(`), so the non-diagonal part of
the lensing signal only contains GG and GI, but never II-terms [161, 278, 156],
and in principle nulling- and boosting techniques [169, 167, 168] are applicable
to size-correlations as well.

• Computing a forecast for Euclid we obtain the result that intrinsic shape- and
size-correlations as well as their cross-correlations with lensing are measurable.
Typical signal to noise-ratios obtained for 5-bin tomography are with Euclid
range around 10 for Cγε

AB(`)- and Cεε
AB(`)-correlations, while size correlations

are more difficult to detect. Simulating two strategies, measuring correlations
in the full galaxy sample or pre-selecting elliptical galaxies first, showed that
the latter could be able to make Cεε

AB(`)-correlations detectable. Our forecasts
used a conservative value for the alignment parameter, D ' −10−5, which
should strongly depend on the mass scale [241] and potentially on the profile
shape as well. With this value of D, among the size correlations, only Cκs

AB(`)
could yield a marginal detection. But since the intrinsic signal is directly
proportional to D, increasing D by a factor 3-4 would change this result.
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• Investigating the dependence of the spectra on the fundamental parameters of
the cosmological model with a standard Fisher-matrix analysis showed that
intrinsic shape and size-correlations have essentially identical parameter de-
pendences, irrespective of whether the mechanism is gravitational lensing or
intrinsic alignments. Typically, the shape-measurement yields smaller Poisso-
nian errors compared to the size estimation, such that the value of the errors is
smaller in a size measurement. A combination of the two measurements would
not yield significant improvements due to the large covariance between the two
measurements. Nevertheless, since they are complementary, the two measure-
ments can provide a consistency test for General Relativity on cosmological
scales. We pursued two strategies, which consist in pre-selecting the elliptical
galaxies, which increases the noise due to reducing the data, or keeping the full
galaxy sample and downweighting the GI- and II-terms with the fraction of
elliptical galaxies. The first strategy yielded tighter errors, but in the second
strategy one picks up stronger contributions from the GI- and II-terms to the
Fisher-matrix, which in turn are very similar to galaxy clustering correlations.

In the future, we would like to investigate the usability of both types of shape and
size spectra for designing specific tests of gravity, for instance for Vainshtein-type
screening mechanisms [186, 288], which would manifest themselves in differences
between the intrinsic and extrinsic shape and size spectra. Likewise, there is the
question whether measurements of the velocity dispersion could help to disentangle
intrinsic size from lensing shear, as the size effect would cause galaxies with the
same velocity dispersion to appear systematically larger in underdense regions, and
through velocity dispersion a common baseline could be established. In addition,
we would like to point out that the susceptibility

∫
∂r r5ρ(r) of a stellar system

with density ρ could differ for subclasses of elliptical galaxies giving rise to different
effective alignment parameters D. Lastly, we would like to comment on possible
intrinsic-size and shape effects arising at second order: Similar to lens-lens coupling
one could expect a B-mode generation if lensing shear acts on a correlated intrinsic
ellipticity field [similar to 79], and if lensing deflection shifts the galaxies to new
positions [117, 118]. To what extent spiral galaxies would exhibit similar intrinsic
size correlations is unclear, and possibly much more dependent on the astrophysics
of galaxy formation, beyond models of tidal torquing [259]. Lastly we would argue
that intrinsic size correlations are straightforward to be implemented in effective
field theories of structure formation [105, 298], as they only require the computation
of ∆Φ on a smoothed field.





8

Summary and Conclusions

In this thesis, we highlighted the importance of reconciling theory with observa-
tions, when it comes to analysing the results of galaxy survey data. We emphasised
on the fact that the observable galaxy number counts are not merely an estimate
of the overdensity that we would naively expect, but a combination of different
contributions that arise due to density and volume perturbations of the observed
light cone along the way as photons propagate from the galaxies to the observer on
earth. We established that the only way we can truly observe galaxies in the sky is
via an approach that is dependent on their redshift and angular position. In more
details, we addressed the corrections due to redshift-space distortion (RSD) and
weak gravitational lensing, and especially for the latter, we came to the conclusion
that the inclusion of these effects for upcoming surveys probing higher redshifts is
indispensable. For this, we studied the two-point statistics of galaxy observables,
namely the correlation function, power spectrum and angular power spectrum, and
which of these suit our requirements the best. We also discussed the treatment of
these statistics in the non-linear regime, which will be useful for a more enriched
understanding of cosmological structure formation.

In Chapter 2 we mathematically proved that the intuitive expectation of the
frame-independence of observable galaxy number counts is true. This work is based
upon the importance of studying theories of gravity beyond general relativity, the
scalar-tensor theory in this case, where we showed that by a simple conformal trans-
formation we can go from the usual Einstein frame to the Jordan frame. We com-
puted the behaviour of the background as well as perturbation quantities in both
these frames and found that while many of them are either gauge-invariant or frame-
invariant, the truly observable galaxy number counts are both, re-establishing them
as good physical observables.

In Chapter 3, we computed the full-sky relativistic correlation function and power
spectrum including all relativistic effects, in an attempt to go beyond the usually
adopted flat-sky approximation approach. We did this via two approaches - one
involving the direct computation of the correlation function, and the other via the
angular power spectra. We conclude that the contribution of lensing multipoles at
higher redshifts is highly significant, while the other large-scale relativistic effects
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are more prominent at smaller redshifts. We also found that the corrections due to
large-scale effects and wide angle corrections are of the same order of magnitude.

In Chapter 4, we tried to find a way to model the angular power spectra C`’s in
the nonlinear regime but in the redshift-space. This is a challenging task because the
existing analytical prescriptions do not agree very well with numerical simulations,
which have so far been considered the best approach in dealing with nonlinearities.
Although we specified the reason for using C`’s as the ability to incorporate rel-
ativistic effects, for the current work we went only up to including redshift space
distortions as a first step towards more complicated computations in the near future.
We adopted a flat-sky approximation for faster computations, which we confirm to
be agreeing up to 1% with results obtained from a full-sky code such as CAMB.
We studied different perturbation methods, including one-loop corrections to SPT,
LPT, EFT and TNS, and compared them with a partial N-body simulation like
COLA. We concluded that we need to model the density power spectrum similar
to halofit but then correct for non-linear RSD like in the TNS model, especially for
narrow redshift bins which are sensitive to RSD.

In Chapter 5, we shifted our focus to lensing, and stressed on the importance
of lensing corrections in galaxy-galaxy lensing probes. We talked about additional
lensing contributions in the observed signal that arise due to the presence of matter
distribution between the foreground galaxies and the observer, which we suggested
to include in the main signal and not just in the error budget. To demonstrate
this, we used a mock survey where we use the DES redshift bins with Gaussian
distribution, and found that the contribution due to lensing-lensing correlation is
only around 1.5% for the weakest correlation, but up to 50% for the strongest. Also,
when we repeated the same exercise for higher redshifts intended to be probed by
Euclid, we find that this contribution goes up even further, up to 70%. This proves
the fact that the higher in redshifts we go, the more significant the lensing corrections
become.

In Chapter 6, we studied lensing corrections again, but in the case of Eg statis-
tics which is a test of gravity at large cosmological scales. Eg statistics work in
the linear perturbation theory regime only, but are useful because of their positive
feature of giving a bias-independent measurement, provided we use the same galaxy
population. Following our discussions in Chapter 5, it is only natural to expect that
lensing corrections will have a strong effect in Eg statistics as well. However, if we
try to incorporate these corrections, the bias-independence of the measurements are
compromised, which can be tackled in case of intensity mapping surveys where lens-
ing doesn’t come into the picture. Our work here was to try to implement a method
by which lensing can be incorporated even in the usual galaxy surveys, for which we
use the observable spectra. We found that the errors that arise due to non-inclusion
of lensing increase significantly from 4% to 40% with higher foreground redshifts, as
expected.

In Chapter 7, we went one step ahead and analysed additional astrophysical
effects on weak lensing, namely the intrinsic alignment effects. These effects, that
arise out of the interaction of galaxies with their tidal shear fields, are in some ways
analogous to lensing itself, and by studying their contribution to the total lensing
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signal in terms of shape and size correlations, we can obtain information about
how convenient it is to measure either shape, size or both and how much error
is incurred in these measurements. We find that these intrinsic correlations have
the same parameter dependences, whether the underlying mechanism is lensing or
intrinsic alignment. We also found that shape estimation has a better cumulative
signal-to-noise ratio than size estimation, although a combination of the two may
not cause a dramatic improvement in the measurements.

The work that has been discussed in this thesis can be extended to answer more
unsolved questions on relativistic contributions in galaxy observations. As men-
tioned, the Eg statistics as a test of gravity has the shortcoming of being applicable
only at large cosmological scales, and under the regime of linear perturbation the-
ory. While going to nonlinear scales, we must of course consider higher orders in
perturbation theory and employ a better test of gravity that is more general in
its approach. It will be interesting to see how important are general relativistic
corrections in such tests which are easy to implement in the nonlinear regime as
well.

Secondly, since angular power spectra are the truly observable quantities, we have
made an attempt to model them in the redshift space, that is, with the inclusion
of RSD effects. However, as already explained, it is not ideal to ignore lensing
contributions in the main signal, which makes it imperative to consider them as well
in the nonlinear regime. In the Appendix 3.C we have shown that even if the lensing
contribution is negligible compared to RSD for wide redshift bins, it is of the same
order as RSD for narrow bins and should not be neglected. It will be computationally
challenging yet important to include these contributions for modelling angular power
spectra in the nonlinear regime.

Finally, along with lensing contributions in the above-mentioned cases of testing
gravity and modelling of angular power spectra, we should also take into considera-
tion the systematic effects of astrophysical origin like intrinsic alignments that have
a signature in our measurements. It is difficult to isolate them from weak lensing
signals in which they are inherently included, and therefore measurements that in-
volve the correlation of shear and galaxy number counts should be extended to take
into account these intrinsic effects and the magnitude of their contribution should
be assessed.





A

Useful mathematics

The sections below provide a brief introduction to a few mathematical concepts that
have been used in the thesis. They can be studied in more detail in [94] and [21].

A.1 Fourier transform

The Fourier transform of any function f(x) can be given to express it in a con-
figurational space. According to the convention we use in this thesis, the Fourier
transform of a spatial 3-vector can be give as:

f(k) =

∫
d3xf(x)eik·x (A.1)

so that the inverse Fourier transform is

f(x) =
1

(2π)3

∫
d3kf(k)e−ik·x (A.2)

A.2 Legendre polynomials

The Legendre polynomials are defined in the interval [-1, 1] and formal an orthonor-
mal set. The normalisation condition is the following:∫ 1

−1

dxP`(x)P ′`(x) =
2

2`+ 1
δ``′ (A.3)

The Legendre polynomials obey the following differential equation:

(1− x2)P ′′` − 2xP ′` + `(`+ 1)P` = 0 (A.4)

We can obtain them via the recursion relation:

(`+ 1)P`+1(x) = (2`+ 1)xP`(x)− `P`−1(x) (A.5)
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The Rodrigues’ formula is:

P`(x) =
1

2``!

d`

dx`
(x2 − 1)` (A.6)

Some of the lowest-order Legendre polynomials are as follows:

P0 = 1, (A.7)
P1 = x, (A.8)

P2 =
1

2
(3x2 − 1), (A.9)

P3 =
1

2
(5x3 − 3x), (A.10)

P4 =
1

8
(35x4 − 30x2 + 3) (A.11)

We also find that P`(−x) = (−1)`P`(x) and P`(1) = 1.
Finally, we can define the associate Legendre functions by:

P`m(x) = (1− x2)m/2
dmP`(x)

dxm
= (1− x2)m/2

1

2``!

d`+m

dx`+m
(x2 − 1)` (A.12)

for 0 ≤ m ≤ `. These Legendre functions are solutions of the following differential
equation:

(1− x2)P”`m − 2xP ′`m +

[
`(`+ 1)− m2

1− x2

]
P`m = 0 (A.13)

The orthogonality relation holds as follows:∫ 1

−1

P`m(x)P`′m(x)dx (A.14)

=

∫ π

0

P`m(cosϑ)P`′m(cosϑ sinϑ)dϑ =
2

2`+ 1

(`+m)!

(`−m)!
δ``′ (A.15)

A.3 Spherical harmonics

For our purpose, it is sufficient to be familiar with spherical harmonics of spin-0. If
we have a unit vector n defined by its polar angles (ϑ, ϕ), we can write the spherical
harmonics as:

Y`m = (−1)m

√
2`+ 1

4π

(`−m)!

(`+m)!
eimϕP`m(µ), µ = cosϑ (A.16)

We can also prove that Y`−m = (−1)mȲ`m and the orthogonality relation holds as
follows: ∫

Y`m(n)Ŷ`′m′(n)dΩn = δ``′δmm′ (A.17)
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The addition theorem for spherical harmonics is given by:

2`+ 1

4π
P`(n1 · n2)) =

∑̀
m=−`

Ŷ`m(n1)Y`m(n2) (A.18)

Some of the lower spherical harmonics are given by:

` = 0 Y00 =
1√
4π
, (A.19)

` = 1

Y11 = −
√

3
8π

sinϑeiϕ,

Y10 =
√

3
4π

cosϑ,
, (A.20)

` = 2


Y22 =

√
15

32π
sin2 ϑe2iϕ,

Y21 = −
√

15
8π

sinϑ cosϑeiϕ,

Y20 =
√

5
4π

(
3
2

cos2 ϑ− 1
2

)
,

(A.21)

` = 3



Y33 = −
√

35
64π

sin3 ϑe3iϕ,

Y32 =
√

105
32π

sin2 ϑ cosϑe2iϕ,

Y31 = −
√

21
16π

sinϑ
(

5
2

cos2 ϑ− 1
2

)
eiϕ,

Y30 =
√

7
4π

cosϑ
(

5
2

cos2 ϑ− 3
2

)
(A.22)

Y`−m = (−1)mY ∗`m (A.23)

A.4 Bessel functions and spherical Bessel functions

The two kinds of Bessel functions Jν(x) and Yν(x) are real solutions to the following
differential equation:

x2 d
f

dx2
+ x

df

dx
+ (x2 − ν2)f = 0 (A.24)

The Hankel functions can be defined as:

H(1)
ν = Jν + iYν , H(2)

ν = Jν − iYν (A.25)

These functions satisfy the recurrence relations:

Fν−1 + Fν+1 =
2ν

x
Fν , (A.26)

Fν−1 − Fν+1 = 2F ′ν , (A.27)

Fν−1 −
ν

x
Fν = F ′ν , (A.28)

− Fν+1 +
ν

x
Fν = F ′ν (A.29)
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We can represent the Bessel functions Jn, n ∈ N as the integral:

Jn(x) =
(−i)n

π

∫ π

0

eix cos θ cos(nθ)dθ (A.30)

from which we obtain the expansion:

eiy cosφ = J0(y) + 2
∞∑
n=1

inJn(y) cos(nφ) =
∞∑

n=−∞

inJn(y)einφ (A.31)

The spherical Bessel and Hankel functions can be derived from the normal Bessel
and Hankel functions as follows:

jn(x) =
√

(π/2x)Jn+1/2(x), (A.32)

yn(x) =
√

(π/2x)Yn+1/2(x), (A.33)

h(1)
n = jn + iyn, (A.34)

h(2)
n = jn − iyn. (A.35)

They are solutions of the differential equation:

x2 d
f

dx2
+ 2x

df

dx
+ (x2 − n(n+ 1)))f = 0 (A.36)

and they satisfy the following recurrence relations:

fn
x

=
1

2n+ 1
(fn−1 + fn+1), (A.37)

f ′n =
1

2n+ 1
(nfn−1 − (n+ 1)fn+1), (A.38)

The following expansion holds for an exponential function in terms of spherical
Bessel functions and spherical harmonics:

eix·k = eikrx̂·k̂ =
∑
`m

j`mj`m(rk)Y`m(x̂) (A.39)

Having determined the coefficients c`m, we also find that

eik·nr =
∞∑
`=0

(2`+ 1)i`j`(kr)P`(µ) (A.40)

where P`(µ) are Legendre polynomials.



B

Derivation of kernels for one-loop SPT terms

This appendix can be seen as an extension to Appendix 4.A where we have not
shown the detailed calculations for the kernels involved in the integration in Eq.
(4.A25). Here we try to show explicitly the calculations for the same.

The kernels JS3 and KS
3 are expressed in terms of the kernels JS2 and KS

2 given
in equations (4.A26) and (4.A27) respectively.

JS3 (q1,q2,q3) =
1

3

[
7
q.q1

q2
1

JS2 (q2,q3) +
q2q1.(q2 + q3)

q2
1|q2 + q3|2

KS
2 (q2,q3) (B.1)

+ 7
q.q2

q2
2

JS2 (q3,q1) +
q2q2.(q3 + q1)

q2
2|q3 + q1|2

KS
2 (q3,q1)

+ 7
q.q3

q2
3

JS2 (q1,q2) +
q2q3.(q1 + q2)

q2
3|q1 + q2|2

KS
2 (q1,q2)

+

(
7
q.(q1 + q2)

|q1 + q2|2
+
q2(q1 + q2).q3

|q1 + q2|2q2
3

)
KS

2 (q1,q2)

+

(
7
q · (q2 + q3)

|q2 + q3|2
+
q2(q2 + q3).q1

|q2 + q3|2q2
1

)
KS

2 (q2,q3)

+

(
7
q · (q3 + q1)

|q3 + q1|2
+
q2(q3 + q1) · q2

|q3 + q1|2q2
2

)
KS

2 (q3,q1)

]

KS
3 (q1,q2,q3) =

1

3

[
q1.q
q2

1

JS2 (q2,q3) +
q2q1.(q2 + q3)

q2
1|q2 + q3|2

KS
2 (q2,q3) (B.2)

+
q2.q
q2

2

JS2 (q3,q1) +
q2q2.(q3 + q1)

q2
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KS
2 (q3,q1)

+
q3.q
q2

3
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+

(
q.(q3 + q1)

|q3 + q1|2
+
q2(q3 + q1).q2

|q3 + q1|2q2
2

)
KS

2 (q3,q1)

]
The angles between the vectors in question are given as µ1, µ2 and µ3. Then we

have,

F S
2 (q,k-q) = b1J

S
2 (q,k-q) + fµ2KS

2 (q,k-q) (B.3)

+
b1f

2

[
µ2

1 + µ2
2 + µ1µ2

(
q

k − q
+
k − q
q

)]
+ f 2

[
µ2

1µ
2
2 +

µ1µ2

2

(
µ2

1

q

k − q
+ µ2

2

k − q
q

)]
and a similar but much complicated expression for F S

3 (q,-q,k) as can be seen in
Eq. (10b) of [129]. We do not show this expression here because in the case of
F S

3 (q,-q,k), we integrate all the terms individually in our code.
Finally, the result of the integrations look like the following:∫ 2π

0

dφq[F
S
2 (q, φq, x, µ, b1, f)]2

=
1

784
(4b2

1(49(−f 2µ2(−1 + µ2) + x2(1 + 4fµ2 + f 2µ2(−1 + 3µ2)))

− 28rx(−3− 10fµ2 + f 2(7µ2 − 14µ4) + x2(10 + 24fµ2 + 7f 2µ2(−1 + 3µ2)))

+ 2r2((3 + 7fµ2)2 − 2x2(30 + 112fµ2 + 49f 2µ2(−1 + 3µ2))

+ 2x4(50 + 140fµ2 + 49f 2µ2(−1 + 3µ2)))) + 8b1fµ
2(49(−f 2µ2(−1 + µ2)

+ x2(2 + 4fµ2 + f 2µ2(−1 + 3µ2))) + r2(2(−3− 8x2 + 60x4)

+ 49f 2µ2(−1 + µ2 + x2(7− 9µ2) + 2x4(−3 + 5µ2)) + 7f(−3 + µ2 + x2(13− 27µ2)

+ 2x4(−5 + 27µ2)))− 7rz(−4 + 32x2 + 7f 2µ2(5− 7µ2 + x2(−5 + 11µ2))

f(7− 25µ2 + x2(−7 + 81µ2)))) + f 2µ4(196(−f 2µ2(−1 + µ2)

+ x2(2 + 4fµ2 + f 2µ2(−1 + 3µ2)))− 56rx(2 + 12x2 + 7f 2µ2(3− 3µ2 + x2(−3 + 5µ2))

+ f(7− 5µ2 + x2(−7 + 33µ2)))

r2(8(1 + 6x2)2 + 56f(1 + 6x2)(1− µ2 + x2(−1 + 3µ2))

+ 49f 2(3(−1 + µ2)2 − 6x2(1− 6µ2 + 5µ4)

+ x4(3− 30µ2 + 35µ4))))) . (B.4)

∫ 1

−1

dµq

∫ 2π

0

dφq[F
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3 (q, φq, x, µ, b1, f)]2

= π
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2

3
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2
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2
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252r5
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756r5
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1
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1
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1− r
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