
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2020 Open Access

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

Riemannian Algorithms on the Stiefel and the Fixed-Rank Manifold

Sutti, Marco

How to cite

SUTTI, Marco. Riemannian Algorithms on the Stiefel and the Fixed-Rank Manifold. Doctoral Thesis,

2020. doi: 10.13097/archive-ouverte/unige:146438

This publication URL: https://archive-ouverte.unige.ch/unige:146438

Publication DOI: 10.13097/archive-ouverte/unige:146438

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:146438
https://doi.org/10.13097/archive-ouverte/unige:146438

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Section de Mathématiques Professeur Bart Vandereycken

Riemannian Algorithms on the Stiefel
and the Fixed-Rank Manifold

THÈSE

Présentée à la Faculté des Sciences de l’Université de Genève

pour obtenir le grade de Docteur ès Sciences, mention Mathématiques

par

Marco SUTTI
de

Morbegno (Italie)

Thèse N°5514

GENÈVE

Atelier d’impression ReproMail

2020

Sı̄ super�ciēs curva in quāmcumquē

aliam super�ciem explicātur, mēnsūra

curvātūrae in singul̄ıs pūnct̄ıs

invariāta manet.

Carl Friedrich Gauß,

Disquı̄s̄ıtiōnēs generālēs circā
super�ciēs curvās, 1827 Oct. 8

Abstract

This thesis is concerned with numerical algorithms on matrix manifolds. It is divided into

four parts, and in all of them, we make extensive use of Riemannian geometry. The interest

in considering optimization algorithms on matrix manifolds instead of classical algorithms

lies in the fact that by exploiting the underlying geometric structure of the problems, they

allow taking explicitly into account the constraints.

Shooting methods have been known for quite some time to �nd a numerical solution

to a boundary value problem. Here, we describe and specialize these methods to the Stiefel

manifold, discuss their limitations, and provide some numerical examples.

Another method for �nding geodesics is the leapfrog algorithm of L. Noakes. This algo-

rithm is related to the Gauss–Seidel method, a classical iterative method for solving a linear

system of equations, which can be easily extended to nonlinear systems. We propose a con-

vergence proof of leapfrog as a nonlinear Gauss–Seidel method. Our discussion is limited to

the case of the Stiefel manifold, however it may be generalized to other embedded submani-

folds. We discuss other aspects of leapfrog and present some numerical experiments.

We tackle the problem of numerical accuracy in line-search methods. It is known that

when using standard Wolfe conditions, one can attain a numerical accuracy only on the order

of the square root of the machine precision. The Hager–Zhang line search, which employs

the approximate Wolfe conditions, o�ers a workaround to this problem. We give an overview

of this technique, and we generalize it to the Riemannian framework. Numerical examples

show that this new generalization permits to achieve an accuracy on the order of machine

precision when using line search for optimization problems on manifolds.

Multilevel optimization is the extension of multigrid to unconstrained optimization. We

introduce a new generalization of multilevel optimization to the case of Riemannian mani-

folds, and we demonstrate its e�ectiveness through numerical experiments for the manifold

of �xed-rank matrices. Our method combines the classical components of multigrid and

those of Riemannian optimization. To cope with the curvature of the manifold, we need to

introduce the additional tools from Riemannian optimization that allow a generalization of

the existing Euclidean algorithm to manifolds. Our generalization of the Hager–Zhang line

search is also used.

iii

Résumé

Cette thèse porte sur les algorithmes numériques sur les variétés matricielles. Elle est divisée

en quatre parties, dans lesquelles on fait un usage intensif de la géométrie riemannienne.

L’intérêt d’envisager des algorithmes d’optimisation sur des variétés matricielles plutôt que

des algorithmes classiques réside dans le fait qu’en exploitant la structure géométrique sous-

jacente des problèmes, ils permettent de prendre en compte explicitement les contraintes.

Les méthodes de tir permettent de trouver une solution numérique à un problème aux

limites. Nous décrivons et spécialisons ces méthodes à la variété de Stiefel, discutons de leurs

faiblesses, et fournissons quelques exemples numériques.

Une autre méthode pour trouver des géodésiques est l’algorithme leapfrog de L. Noakes.

Cet algorithme est lié à la méthode de Gauss–Seidel, une méthode itérative classique pour

résoudre un système linéaire d’équations, qui peut être aisément étendue à des systèmes non

linéaires. Nous proposons une preuve de convergence de la méthode leapfrog comme mé-

thode de Gauss–Seidel non linéaire. Notre discussion se limite au cas de la variété de Stiefel,

mais elle peut être généralisée à d’autres sous-variétés plongées. Nous discutons d’autres

aspects de la méthode leapfrog et présentons quelques expériences numériques.

Nous abordons le problème de la précision numérique dans les méthodes de recherche

linéaire. On sait qu’en utilisant les critères de Wolfe classiques, on ne peut obtenir une préci-

sion numérique que de l’ordre de la racine carrée de la précision de la machine. La recherche

linéaire de Hager–Zhang, qui utilise les critères de Wolfe approchés, o�re une solution à

ce problème. Nous donnons un aperçu de cette technique, et nous la généralisons au cadre

riemannien. Des exemples numériques montrent que cette nouvelle généralisation permet

d’obtenir une précision de l’ordre de la précision machine lors de l’utilisation de la recherche

linéaire pour des problèmes d’optimisation sur des variétés.

L’optimisation multi-niveaux est l’extension de la méthode multigrille à l’optimisation

sans contraintes. On introduit une nouvelle généralisation de l’optimisation multi-niveaux

au cas des variétés riemanniennes, et nous illustrons son e�cacité par des expériences nu-

mériques pour la variété des matrices de rang �xé. Notre méthode combine les composantes

classiques du multigrille et celles de l’optimisation riemannienne. Pour faire face à la cour-

bure de la variété, nous devons introduire les outils supplémentaires de l’optimisation rie-

mannienne qui permettent une généralisation de l’algorithme euclidien existant aux variétés.

Notre généralisation de la recherche linéaire de Hager–Zhang est également utilisée.

v

Remerciements

Qui me connaît un petit peu est au courant que mon expérience en Suisse a commencé il y a

plus de sept ans. Il s’agit d’un laps de temps énorme : il y a eu plein de souvenirs indélébiles,

de di�érents stades, et surtout le soutien et la compagnie de beaucoup de gens. Je crois qu’il

est naturel que, pendant un espace de temps aussi long, on change beaucoup, on fait de

nouvelles connaissances et on en perd de vieilles sur le chemin. Toutefois, dans les moments

de ré�exion, il m’arrive toujours de penser aussi à ces personnes qui ne �gurent plus dans

ma vie quotidienne. Ils ont aussi contribué, directement ou indirectement, à l’aboutissement

de cette thèse, et je demande pardon si j’ai oublié de mentionner explicitement quelqu’un.

Ces pages de remerciements sont dédiées à vous.

Le plus grand merci est sans doute destiné à Bart, mon directeur de thèse : en premier,

pour m’avoir accepté comme étudiant de doctorat, et puis, pour les nombreuses discussions,

pour ta patience, ta disponibilité, tes remarques tout au long de la rédaction. C’était un plaisir

d’apprendre de toi dans un domaine que tu domines complètement alors que j’étais complè-

tement désorienté quand je suis arrivé à l’Université de Genève. À cette époque-là, je n’étais

pas très à l’aise avec le raisonnement mathématique, ni avec la manière d’écrire un article

scienti�que. Pendant ces quatre années, mon style d’écriture en a certainement béné�cié

énormément. Tu as toujours été plein d’idées et je regrette que nous n’ayons �nalement pas

eu assez de temps pour tout concrétiser, et ce n’est que de ma faute. Merci aussi pour les

dîners et les autres moments passés en dehors de la section de mathématiques.

Je remercie également Nicolas Boumal, Martin J. Gander et André Uschmajew pour avoir

accepté d’être membres du jury. Au-delà des aspects purement liés à la rédaction de cette

thèse, je vous remercie aussi pour les moments conviviaux que l’on a partagés ensemble. Ni-

colas, merci pour le cours très agréable et précis que tu as donné pendant l’école d’hiver à

Villars-sur-Ollon en janvier 2020, ainsi que pour tes retours très précieux sur le manuscrit

Multilevel Riemannian optimization for low-rank problems. Martin, merci pour ta bonne hu-

meur au �ls de toutes ces années, pour la balade et le barbecue au sommet du Salève et pour

les grillades chez toi. André, merci pour nous avoir fait une visite guidée du département de

maths de l’Université Technique de Berlin et pour la sortie au Biergarten lors de la conférence

ICCOPT 2019.

Il m’est impossible de conclure mon expérience doctorale sans mentionner ce qui l’a pré-

cédée, à savoir, mon master à l’École Polytechnique Fédérale de Lausanne (EPFL). Je remercie

donc les amis de l’époque de l’EPFL, et surtout Francesca et Irene, avec lesquelles mon séjour

en Suisse a commencé dans le lointain août 2013.

vii

Remerciements

Matteo, merci pour l’amitié et tous les bons moments que l’on a partagés pendant nos

études à l’EPFL et après, pour les discussions, les sorties et les �lms.

Je ne peux pas oublier ma petite parenthèse estivale à Lugano comme stagiaire au Centre

Suisse de Calcul Scienti�que (CSCS). Je tiens à remercier vivement Claudio pour m’avoir

donné l’opportunité de travailler avec lui, ainsi que Luca, Gabriella, Hussein et les autres

collègues du CSCS.

En 2016, j’ai déménagé à Genève. J’avoue qu’avant de m’établir ici, je m’attendais de pas-

ser la plupart de mon temps à faire de la recherche, mais à Genève on doit aussi dédier pas

mal de temps à l’enseignement. Apprendre une nouvelle langue à l’âge de vingt-sept ans, lors

de mon arrivée à Lausanne, ce n’était pas évident. C’était encore moins évident de la maîtri-

ser pour pouvoir l’utiliser dans l’enseignement mathématique. Et pourtant, des fois, quand

la recherche n’engendrait que de la frustration, les meilleures satisfactions sont arrivées par

l’enseignement. Je remercie donc les étudiants qui m’ont manifesté leurs appréciations pen-

dant ces quatre années. Vos commentaires très positifs sur les séances d’exercices m’ont aidé

en période de di�culté.

Merci à Adrien, Léo et Roberto pour m’avoir accueilli dans leur groupe de grimpeurs, et

pour d’autres bons moments partagés pendant cette année imprévisible. Pedro, merci pour

t’être intéressé à l’analyse numérique et pour avoir eu le courage d’aborder ma thèse.

Je suis également reconnaissant à toutes les personnes qui ont créé une ambiance agréable

à la section de maths. Merci aux collègues qui m’ont accueilli lorsque j’y venais d’arriver, et

qui sont partis avant moi, Gabriele, Pascaline, Vladimir, Ding (鲁玎), Bo (宋博), Maxime,

Fathi, Minh, Parisa et Aitor pour tous les moments passés ensemble.

Pratik, merci pour les repas indiens et les pizzas chez toi, et pour ton soutien lors de mes

moments de découragement, pour m’avoir compris sans avoir besoin de beaucoup de mots.

Eiichi, merci pour les nombreuses discussions à la section et, pendant ces derniers temps,

virtuelles. La section de maths n’aurait pas été la même sans tes blagues.

Merci à mes compagnons de bureau qui m’ont supporté pendant environ trois ans, et qui

m’ont aussi beaucoup aidé à progresser en français. Sandie, pour m’avoir appris ce que sont

les contrepèteries et quelques mots de l’italien parlé en Suisse qui n’existent pas en Italie,

comme picobello. Adrien, merci pour les suggestions de �lms et bandes dessinées, pour les

cinémas et les randonnées, pour la relecture de ma thèse, mais pas pour L’Avare de Molière.

Tommaso, merci pour l’amitié, les dîners et les balades en vélo, et surtout pour les mo-

ments d’adrénaline au parc aventure à Onex, qui nous a fait sortir de notre zone de confort.

Merci aussi aux autres collègues qui sont arrivés après moi à la section (en ordre chro-

nologique) : Ibrahim, Guillaume, Raphaël, Pablo, Conor, Michal, Giancarlo, Ausra. Je sais que

souvent je n’ai pas eu le temps de discuter avec tout le monde comme j’aurais voulu, mais

c’est sûr que mon expérience à la section n’aurait pas été la même sans vous.

Thibaut, merci pour notre balade en vélo au sommet du Salève, pour les entraînements

ensemble pour la Course de l’Escalade 2018, et pour les après-midi jeux et crêpes à Con�gnon.

Je remercie également nos secrétaires, Annick et Nathalie, pour leur disponibilité et pour

les moments de convivialité au Z-Bar. En particulier Joselle, merci pour ton aide pratique dans

la jungle de l’administration genevoise et pour certains cahiers de charges très marrants.

Indubitablement, il y a eu de nombreux dé�s. Étant issu d’un milieu di�érent, celui de

l’ingénierie, le plus grand dé� a été celui de communiquer avec les collègues dont le chemin

s’est toujours déroulé dans le sillon des mathématiques. Souvent, il a été très di�cile d’expli-

quer mon parcours. Je suis donc très reconnaissant aux rares personnes qui ont su m’écouter

sans préjugés ni moqueries.

viii

Heureusement qu’à Genève il n’y a pas eu que le temps passé à la section de mathéma-

tiques. À ce propos, je voudrais remercier particulièrement ceux qui m’ont fait sentir moins

étranger pendant mon séjour en Suisse, notamment la famille Hongler, Vân, Max, Isadora et

Clément. Merci pour m’avoir accueilli comme si je faisais partie de votre famille.

J’ai eu aussi l’opportunité d’apprendre une nouvelle langue : le chinois mandarin. Je re-

mercie donc Fan Leshan (范乐山), mon enseignant pendant la première année de cours, sans

lequel mon début dans l’apprentissage du chinois n’aurait pas été aussi agréable.

Taisuke (泰介), merci pour les discussions intéressantes à propos de politique internatio-

nale et des droits humains : en s’éloignant des sujets matheux, elles m’ont aidé à garder ma

santé mentale.

Jhih-Huang (志煌), merci pour m’avoir appris beaucoup de choses sur le taoïsme, et pour

m’avoir fait découvrir le vélo et ton pays fascinant, Taïwan. Merci surtout pour m’avoir tou-

jours soutenu, et pour avoir écouté (et supporté) mes doutes à chaque fois que je sentais le

besoin d’en parler.

Finalmente i miei pensieri vanno all’Italia. In questi anni, le mie interazioni sociali, a

causa di distanze e impegni, sono state notevolmente ridotte rispetto a quanto alcuni si sa-

rebbero aspettati da me. Vorrei quindi scusarmi con coloro che avevano bisogno di stare

con me durante la mia assenza, perché stavo perseguendo questo obiettivo. Come dicevo

all’inizio, molte persone sono responsabili, direttamente o indirettamente, di ciò che ho fat-

to, e forse in alcune circostanze hanno so�erto la mia assenza quanto me, quindi meritano

altrettanto credito per questo traguardo.

Prima di tutto vorrei ringraziare gli amici valtellinesi che hanno reso più piacevoli i miei

numerosi ritorni a casa durante questi anni. Sonia, grazie per avermi accompagnato a Lu-

gano quando cercavo il mio stage da fare durante il master all’EPFL. Sabrina e Alessandro,

grazie per essere venuti a trovarmi a Ginevra; sebbene il ca�è a Yvoire non fosse come quello

italiano, ho apprezzato molto la vostra visita e la nostra piccola escursione in Alta Savoia.

Poi ci sono gli amici valtellinesi che in questi anni non erano in Valtellina, ma con i quali

ho sempre mantenuto i legami. In particolare Lele, grazie per la tua amicizia che non è mai

venuta meno durante tutti questi anni in cui spesso siamo stati molto lontani, e per le visite

che mi hai reso, dapprima a Losanna nel 2014, e poi a Ginevra a gennaio 2020.

Ringrazio gli amici della zona del lago di Como, tra cui, in particolare, Stefano, per essere

venuto a trovarmi dapprima a Lugano, durante la mia parentesi estiva al CSCS, e poi a Gi-

nevra, all’inizio del mio dottorato. Ed Enrico: ci siamo visti raramente in questi anni, ma è

sempre stato un piacere discutere con te, così come è stato un piacere leggere il tuo romanzo

durante l’estate del 2020.

Ultimi in questa lista degli amici, ma non meno importanti, gli amici di Bergamo. Dan

e Paolo, grazie per essere venuti a trovarmi a Losanna nel 2015, s�dando la lunghezza del

viaggio e, soprattutto, i prezzi svizzeri. Andrea, grazie per avermi fatto conoscere la città di

Anversa in bicicletta durante il mio soggiorno a Leuven, all’inizio 2017.

Le parole non saranno mai abbastanza adatte né su�cienti per esprimere il mio ringra-

ziamento verso i miei genitori e la mia famiglia in generale, che mi è sempre stata di sostegno

durante tutti questi anni, e che mi ha fornito un supporto che non è stato solo morale e psi-

cologico, ma anche pratico.

In�ne, ci sono alcune persone che se ne sono andate durante questi anni. Sono partito

dall’Italia nel 2013, e quando tornavo di tanto in tanto, non c’erano più. Zio Ezio, nonna

“Pace”, zia Ernesta, zia Giovanna. A�rontare la perdita di quelle persone care che erano state

al mio �anco �n da quando sono nato è stata un’ulteriore s�da per me.

ix

Remerciements

Je voudrais ajouter une dernière ré�exion à ces remerciements, une métaphore, en e�et.

Faire une thèse c’est un peu comme aller en vélo : il faut savoir trouver son propre rythme,

comprendre quand il est nécessaire de changer la vitesse, ou quand il faut prendre des pauses.

Comme ce n’est pas un travail en solitaire, il faut avoir de bons compagnons. Pour trouver

son propre rythme, il faut éviter de se laisser in�uencer par les gens qui nous entourent. Car,

de même qu’il n’y a pas un seul modèle de vélo, ainsi il n’y a pas un seul type de doctorat ; de

même qu’il n’y a pas une seule façon de pédaler, ainsi il n’y a pas une seule façon de rédiger

une thèse. Je trouve donc très approprié de conclure ces ré�exions avec une citation de Wu

Ming-Yi (吳明益), un auteur taïwanais que j’ai beaucoup apprécié :

The only necessity is to keep pedaling—quietly, composedly, no matter how thirsty you are

or how di�cult it may be.

x

Contents

Abstract iii

Résumé v

Remerciements vii

Contents xi

Introduction xv

1 Riemannian geometry 1
1.1 First-order geometry . 1

1.1.1 Charts and atlases . 1

1.1.2 Vector spaces as manifolds . 3

1.1.3 Product manifolds . 3

1.1.4 Di�erentiable functions . 4

1.1.4.1 Immersions and submersions 5

1.1.5 Matrix manifolds . 5

1.1.6 Embedded submanifolds . 6

1.1.6.1 The Stiefel manifold . 7

1.1.7 Tangent vectors . 8

1.1.7.1 Tangent vectors to a vector space 10

1.1.7.2 Tangent bundle . 10

1.1.7.3 Vector �elds . 11

1.1.8 Di�erential of a mapping . 11

1.1.9 Tangent spaces to embedded submanifolds 12

1.1.10 Riemannian metric, distance and gradients 14

1.1.11 Riemannian submanifolds . 15

1.2 Line-search algorithms on manifolds . 17

1.2.1 Retractions . 17

1.2.1.1 Retractions on embedded submanifolds 19

1.2.1.2 Retraction on the orthogonal group 20

1.2.1.3 Retraction on the Stiefel manifold 21

1.2.2 Line-search methods on manifolds 22

1.2.2.1 The accelerated Riemannian line-search algorithm 24

xi

Contents

1.2.3 Convergence analysis . 24

1.2.3.1 Convergence on manifolds 24

1.2.3.2 Convergence of line-search methods 25

1.2.4 Speed of convergence . 25

2 Shooting methods on the Stiefel manifold 27
2.1 Geodesics, exponential mapping and logarithm mapping 27

2.1.1 Geodesics on the Stiefel manifold . 28

2.2 Problem statement . 29

2.3 Single shooting method . 30

2.3.1 Parametrization of the tangent space 31

2.3.2 The initial guess . 33

2.3.3 A smaller formulation . 34

2.3.4 Numerical example . 35

2.3.5 Some drawbacks . 35

2.4 Multiple shooting method . 36

2.4.1 Condensing . 38

2.4.2 Numerical example . 38

2.4.3 Open questions . 38

3 The leapfrog algorithm as nonlinear Gauss–Seidel 41
3.1 Leapfrog algorithm . 41

3.1.1 Formal description of the algorithm 42

3.1.2 Known results . 43

3.2 Convergence of leapfrog as nonlinear Gauss–Seidel 43

3.2.1 Nonlinear block Gauss–Seidel method 44

3.2.2 Extended objective function . 44

3.2.3 Leapfrog as nonlinear Gauss–Seidel 45

3.2.4 First-order optimality . 47

3.2.5 Known results on local convergence 48

3.2.6 Local convergence . 49

3.3 Some observations and open problems . 52

3.4 Numerical experiments . 53

4 Extensions on leapfrog 55
4.1 Broken geodesics, length and energy functional 55

4.2 Comparison between steepest descent and leapfrog 56

4.2.1 Steepest descent on the unit sphere 57

4.2.2 Gradient-related sequence in Euclidean space 61

4.3 Convergence to uniformly distributed tuple 63

4.3.1 The stochastic matrix . 64

4.4 Broken geodesic shooting method . 65

4.4.1 Condensing . 67

4.4.2 Complexity of the algorithm . 68

4.4.3 Leapfrog revisited . 68

4.5 Numerical experiments and applications . 69

4.5.1 Leapfrog and multiple shooting . 69

4.5.2 Riemannian center of mass on the space of univariate probability den-

sity functions . 71

xii

Contents

4.5.3 Interpolation on the Stiefel manifold for model order reduction . . . 71

5 Riemannian Hager–Zhang line search 77
5.1 Inaccuracy in standard line search . 77

5.2 Approximate Wolfe conditions . 78

5.3 The Hager–Zhang bracketing . 80

5.3.1 Numerical examples . 81

5.3.1.1 Quadratic cost function . 81

5.3.1.2 Rosenbrock function . 82

5.4 Riemannian Hager–Zhang line search . 83

5.4.1 Numerical examples . 84

5.4.1.1 Derivative of the retraction on the unit sphere 84

5.4.1.2 Rayleigh quotient on the sphere 85

5.4.1.3 Derivative of the QR retraction on the Stiefel manifold . . 86

5.4.1.4 Brockett cost function on the Stiefel manifold 86

5.5 Observations and open problems . 87

6 Multigrid methods 89
6.1 Some notation . 89

6.1.1 Inner products and norms . 90

6.1.2 Stencil notation . 90

6.1.3 Poisson’s equation . 91

6.2 Principles and properties . 91

6.2.1 Fundamental principles . 91

6.2.2 Multigrid features and properties . 94

6.3 Going into more detail of multigrid . 94

6.3.1 Error smoothing . 94

6.3.1.1 Jacobi type iteration . 95

6.3.1.2 Smoothing properties of Jacobi relaxation 95

6.3.2 Transfer operators . 96

6.3.3 Two-grid cycle . 97

6.3.4 Multigrid cycle . 98

6.3.5 Laplace equation on the unit square 99

6.3.5.1 Numerical example . 101

6.4 The Full Approximation Scheme (FAS) . 101

6.4.1 FAS two-grid cycle . 102

6.4.2 Formulating FAS for a 2D BVP . 103

6.4.2.1 Numerical example . 104

7 Multilevel Riemannian optimization for low-rank problems 107
7.1 Introduction . 107

7.2 Preliminaries on multilevel optimization and geometry of �xed-rank matrices 108

7.2.1 Multilevel optimization in Euclidean space 108

7.2.2 The manifold of �xed-rank matrices 109

7.2.3 The orthographic retraction . 111

7.3 Riemannian multigrid line search for low-rank matrices 111

7.3.1 Description of the scheme . 112

7.3.2 Tensor-product multigrid . 113

7.3.3 Riemannian transfer operators . 113

xiii

Contents

7.3.4 Smoothers . 115

7.3.5 The Riemannian coarse-grid correction 115

7.3.6 Gradient of the coarse-grid model . 116

7.3.7 Final algorithm: Riemannian multigrid line search 117

7.3.8 Riemannian Hager–Zhang line search 117

7.4 Numerical experiments for two variational problems 118

7.4.1 A linear problem (Lyapunov equation) 119

7.4.1.1 Discretization of the objective function 119

7.4.1.2 Discretization of the gradient 120

7.4.1.3 Discretized Hessian . 121

7.4.1.4 Numerical results . 121

7.4.1.5 Rank adaptivity . 124

7.4.2 A nonlinear problem . 124

7.4.2.1 Discretization of the objective function 126

7.4.2.2 Discretization of the gradient 126

7.4.2.3 Discretized Hessian . 127

7.4.2.4 Numerical results . 127

7.5 Comparison with other methods . 127

7.6 Conclusions . 129

A Single shooting 135
A.1 Freedom in choosing the geodesic . 135

A.2 Smaller formulation . 136

B Fréchet derivatives 137
B.1 First-order Fréchet derivative of a matrix function 137

B.2 Singular values of JXf . 137

B.2.1 Analysis of JAexp(A) . 138

C Jacobians for multiple shooting 141
C.1 Jacobians with respect to the base point . 141

C.2 Jacobians with respect to the tangent vector 143

D Proofs to Chapter 3 145
D.1 Proof of Remark 3.3 . 145

D.2 Proof of Lemma 3.9 . 146

D.3 Proof of Lemma 3.10 . 146

D.4 Proof of Lemma 3.11 . 149

Bibliography 151

xiv

Introduction

Motivation

Several applications in optimization, image, and signal processing deal with data belonging

to matrix manifolds. These are manifolds in the sense of classical Riemannian geometry,

where variables are matrices.

In this thesis, we present and study some numerical algorithms on matrix manifolds. This

work is divided into four main parts, and in all of them, we make extensive use of Riemannian

geometry.

Curves and surfaces were the original object of study of classical di�erential geome-

try, and Riemannian manifolds can be regarded as abstract generalizations of those objects.

Hence, when thinking about manifolds, it will sometimes be useful to resort to these more

familiar objects for illustration. There exist many nice introductory books on Riemannian

geometry, for instance [KN69, Boo86, Sak96, dC92], but for the purposes of the later chapters

of this thesis, the review of �rst-order Riemannian geometry given in the �rst chapter should

be su�cient.

The interest in considering optimization algorithms on matrix manifolds instead of clas-

sical algorithms is in the fact that by exploiting the underlying geometric structure of the

problems, they allow taking explicitly into account the constraints.

For matrix manifolds, we will often make reference to the pioneering work of [EAS98].

More recent reviews and details on matrix manifolds and related numerical algorithms can

be found in [AMS04, HLW06, AMS08, AM12, AMT13, Bou20].

Matrix manifolds considered in this thesis

In this thesis, we will work with the two manifolds presented in this section. Some appli-

cations require evaluating the distance between two arbitrary points on the manifold. For

some matrix manifolds, like the Grassmann manifold, explicit formulas are available, while

for others, one has to resort to numerical algorithms. One example in the latter class is the

Stiefel manifold, which is de�ned as the set St(n, p) with p 6 n of all n × p orthonormal

matrices

St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
.

In other applications, the underlying geometric structure is exploited to obtain more ef-

fective algorithms. This is, in particular, the case when manifolds of low-rank matrices are

used, since one can avoid forming the full matrices and work directly on the low-rank format.

xv

Introduction

The manifold of matrices of rank k is [Van13, AAM14]

Mk = {X ∈ Rm×n : rank(X) = k}.

Main ideas

The �rst part of this thesis is more focused on the geometry itself. It deals with the problem

of �nding the distance between two points on the Stiefel manifold St(n, p). In this part,

we will make extensive use of the notion of geodesic. Later we will explain in more detail

how geodesics are de�ned, but for this short introduction, it su�ces to say that a geodesic

is a curve with zero acceleration, which generalizes the notion of straight lines in Euclidean

space to a Riemannian manifold [AMS08].

Geodesics are, locally, curves of shortest length, but globally they may not be. Indeed,

geodesics are in general critical points for the length functional, and may or may not be min-

ima. However, for a connected Riemannian manifold, the Hopf–Rinow theorem [Sak96, p. 84]

ensures that any two points can be connected by a length-minimizing geodesic. The geodesic

connecting two points on a manifold may not be unique. Figure 1 illustrates this concept for

the case of the sphere: geodesics on a sphere are great circles, and the length-minimizing

geodesic between any two points is the shorter of the two arcs of a great circle joining them.

Shooting methods have been known for quite some time to �nd a numerical solution to a

boundary value problem (BVP). In Chapter 2, we describe and specialize these methods to

the Stiefel manifold, discuss their limitations, and provide some numerical examples.

X

Y

Figure 1 – Geodesics on the sphere.

In the second part of the thesis, we study another method for �nding geodesics: the

leapfrog algorithm introduced by L. Noakes [Noa98]. Noakes realized that his algorithm was

in some way imitating the Gauss–Seidel method, a classical iterative method for solving a lin-

ear system of equations, which can be easily extended to nonlinear systems. This connection

between leapfrog and nonlinear Gauss–Seidel was not further investigated by the author of

leapfrog, as it appears from the related papers [KN97, KN98a, KN98b, KN08]. Therefore, in

Chapter 3 we propose a convergence proof of leapfrog as a nonlinear Gauss–Seidel method.

Our discussion will be limited to the case of the Stiefel manifold, however it may be gener-

alized to other embedded submanifolds. In Chapter 4, we continue the discussion on other

aspects of leapfrog and present some numerical experiments.

xvi

In the third part of the thesis, we tackle the problem of numerical accuracy in line-search

methods. It is known that when using standard Wolfe conditions, one can attain a numerical

accuracy only on the order of the square root of the machine precision. Employing the ap-

proximate Wolfe conditions and using the line-search technique proposed by [HZ05, HZ06]

provides a solution to this problem. In Chapter 5, we give an overview of the Hager–Zhang

line search, and we generalize this technique to Riemannian manifolds. Numerical examples

show that this new generalization permits to achieve an accuracy on the order of machine

precision when using line search for optimization problems on manifolds.

In the �nal part of the thesis, we use the manifold of �xed-rank matrices Mk in the

context of certain large-scale variational problems arising from the discretization of elliptic

PDEs, where the optimization variable is rank-constrained.

Multilevel optimization is the extension of multigrid to unconstrained optimization, and

the original idea goes back to the MG/Opt [Nas00, LN05]. Chapter 6 describes basic notions

about multigrid and multilevel methods.

In Chapter 7, we introduce a new generalization of the multilevel optimization algorithm

to the case of Riemannian manifolds, and we demonstrate its e�ectiveness through numerical

experiments. All the classical components of multigrid are there, plus the additional compo-

nents from Riemannian optimization. Figure 2 provides an illustration of this generalization,

emphasizing the fact that due to the curvature of the manifold, we need to introduce all the

additional tools from Riemannian optimization that allow a generalization of the existing

Euclidean algorithm to manifolds.

(a) Euclidean (b) Riemannian

Figure 2 – With respect to the Euclidean case (panel (a)), in the Riemannian setting (panel

(b)) we need to introduce new tools that allow us to cope with the curvature of the manifold.

Organization of this thesis

This thesis consists of four main parts: the �rst part comprises chapters 1–2, the second one

chapters 3–4, the third part corresponds to chapter 5, while the fourth part encompasses

chapters 6–7.

In Chapter 1, we introduce the notions of �rst-order Riemannian geometry required for

the reading of this thesis. In Chapter 2, we apply shooting methods for calculating the dis-

xvii

Introduction

tance between two points on the Stiefel manifold. In Chapter 3, we deal with the leapfrog

algorithm and the proof of its convergence as a nonlinear Gauss–Seidel method. Other meth-

ods for computing the Riemannian distance between two points on a manifold are discussed

in Chapter 4.

In Chapter 5, we review the Hager–Zhang line-search method, and introduce its Rieman-

nian counterpart, which will be used in Chapter 7. In Chapter 6, we describe basic notions

about multigrid methods and their derivations. Finally, in Chapter 7, we present our Rieman-

nian multigrid line-search algorithm for low-rank problems.

More precisely, this thesis is divided as follows:

• Chapter 1: introduction to Riemannian geometry.

• Chapter 2: shooting methods to compute the distance on the Stiefel manifold.

• Chapter 3: proof of convergence of leapfrog as a nonlinear Gauss–Seidel method.

• Chapter 4: other methods and extensions on leapfrog.

• Chapter 5: a Riemannian Hager–Zhang line search.

• Chapter 6: introduction to multigrid methods and their derivations.

• Chapter 7: multilevel Riemannian optimization for low-rank problems.

xviii

Chapter1

Riemannian geometry

In this chapter, we will introduce some notions of Riemannian geometry that will provide

a useful and necessary background for the rest of this thesis. The �rst part of this chapter

deals with fundamental de�nitions and �rst-order geometry, while the second part is more

focused on line-search algorithms on manifolds.

Most of this chapter is based on [dC92, Sak96, Lee97, Lee18] for the classical theory of Rie-

mannian geometry, and on [EAS98, AMS08, Bou20] for the algorithms on manifolds. When

discussing the classical numerical optimization algorithms in Euclidean space, some material

was also taken from [NW06, Ber95].

1.1 First-order geometry

A d-dimensional manifold is a setM covered with a suitable collection of charts, that identify

certain subsets ofM with open subsets of Rd. The collection of charts, called atlas, provides

the basic structure to do di�erential calculus on M. The numerical algorithms on matrix

manifolds exploit the matrix structure associated with the problems of interest.

1.1.1 Charts and atlases

LetM be a set, and U be an open subset ofM. Charts are useful because they allow us to

study in Rd the objects associated with U .

For example, let f : U → R be a real-valued function on U , then f ◦ ϕ−1
is a function

from Rd to R, with domain ϕ(U), i.e., f ◦ϕ−1 : ϕ(U)→ R, to which methods of real analysis

apply. Each point of the setM has to be at least in one chart domain. If x ∈ U ∩ V then we

need some kind of compatibility between the two mappings ϕ and ψ, i.e., in the overlaps we

want some kind of smoothness.

The de�nition of atlas speci�es such compatibility conditions at the overlaps of the charts.

De�nition 1.1 (Atlas). A (C∞) atlas ofM into Rd is a collection of charts (Uα, ϕα) of the

setM such that

• The union of all the charts is the setM, i.e., ∪αUα =M.

• For all α, β with Uα ∩ Uβ 6= ∅, the sets ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ) are open sets

of Rd and the change of coordinates ϕβ ◦ ϕ−1
α : Rd → Rd is smooth (i.e., of class C∞)

on its domain ϕα(Uα ∩ Uβ).

We say that the elements of an atlas overlap smoothly.

1

1. Riemannian geometry

Figure 1.1 illustrates the compatibility conditions between charts.

Uα Uβ

M

R
d

R
d

ϕα ϕβ

ϕα(Uα) ϕβ(Uβ)

ϕα(Uα ∩ Uβ) ϕβ(Uα ∩ Uβ)

ϕβ ◦ ϕ−1

α

ϕα ◦ ϕ−1

β

Figure 1.1 – Compatibility between charts.

Two atlases A1 and A2 are equivalent if A1 ∪ A2 is an atlas.

De�nition 1.2 (Maximal atlas). Given A, let A+
be the set of all charts (U , ϕ) such that

A ∪ {(U , ϕ)} is also an atlas. A+
is called the maximal atlas generated by A. The maximal

atlas contains all the charts that one can have for the setM. A maximal atlas ofM is also

called a di�erentiable structure onM.

Now that we have de�ned the concept of maximal atlas, we can state a more rigorous

de�nition of manifold.

De�nition 1.3 (Manifold). A (d-dimensional) manifold is a couple (M,A+), whereM is

a set and A+
is a maximal atlas of M into Rd, such that the topology induced by A+

is

Hausdor� and second-countable.

We will not go into the details of a Hausdor� topology here. For this thesis, it su�ces to

say that, roughly speaking, a topology is Hausdor� if disjoint points have disjoint neighbor-

hoods.

A maximal atlas of a setM that induces a second-countable Hausdor� topology is called

a manifold structure. In general, we call atlas of the manifold (M,A+) any atlas ofMwhose

maximal atlas is A+
. Similarly, a chart of the manifold (M,A+) is any chart of M that

belongs to A+
.

Now we turn our attention to some simple yet familiar examples of manifolds: vector

spaces.

2

1.1. First-order geometry

1.1.2 Vector spaces as manifolds

Let E be a d-dimensional vector space. Then, given a basis (ei)i=1,...,d of E , the function

ψ : E → Rd de�ned by

x 7→

 x1

.

.

.

xd

 , such that x =
d∑
i=1

xiei,

is a chart of the set E . In other words, every d-dimensional vector space is isomorphic to its

space of coordinates Rd. All charts built in this way are compatible, i.e., they satisfy point 2

in De�nition 1.1. As a consequence, they form an atlas of E , i.e., E has a manifold structure.

Hence every vector space is a linear manifold. The linearity is implied by the linearity of the

charts. As we will see later, the challenging case arises in the case of nonlinear manifolds,

i.e., manifolds that are not endowed with a vector space structure.

We now look at some more concrete examples.

The manifold Rn×p. The set Rn×p of n × p real matrices is a vector space. As such, it

has a linear manifold structure. A chart on this manifold is ϕ : Rn×p → Rnp de�ned by

X 7→ vec(X), where vec(X) denotes the vector obtained by stacking the columns of X
below one another. The manifold Rn×p can be further turned into a Euclidean space with

the inner product

〈Z1, Z2〉 = vec(Z1)T vec(Z2) = trace(ZT
1Z2).

This inner product induces the Frobenius norm

‖Z‖F =
√

trace(ZTZ),

which can be regarded as the Euclidean norm for matrices.

The manifold Rn×p∗ . Let Rn×p∗ with p 6 n be the set of all n× p matrices whose columns

are linearly independent, i.e., matrices having full rank p. Observe that Rn×p∗ is an open

subset of Rn×p since its complement

{X ∈ Rn×p : det(XTX) = 0}

is closed. The manifold Rn×p∗ is also known as the noncompact Stiefel manifold of full-rank

n × p matrices. If p = 1 it corresponds to the Euclidean space Rn with the origin removed.

If p = n it becomes GLn, the general linear group of all invertible n× n matrices.

We now go back to some more general theory.

1.1.3 Product manifolds

Let M1 and M2 be two manifolds of dimensions d1 and d2, respectively. We de�ne the

product manifold M1 ×M2 whose elements are (x1, x2), with x1 ∈ M1 and x2 ∈ M2.

Moreover, let (U1, ϕ1) be some chart ofM1, and (U2, ϕ2) be some chart ofM2. Then the

mapping

ϕ1 × ϕ2 : U1 × U2 → Rd1 × Rd2 ,

de�ned by

(x1, x2) 7→ (ϕ1(x1), ϕ2(x2))

3

1. Riemannian geometry

is a chart for the product manifoldM1 ×M2. All the charts obtained in this way form an

atlas forM1 ×M2. ThusM1 ×M2 is a product manifold with a topology equivalent to

the product topology.

It is now time to introduce the �rst notions that allow us to perform calculus on manifolds.

1.1.4 Di�erentiable functions

In this section, we introduce the concept of di�erentiability for functions between manifolds.

In the context of optimization algorithms on manifolds, mappings between manifolds occur

in several situations:

• an optimization problem involves a cost function, which can be viewed as a mapping

from manifoldM to manifold R;

• as inclusions in the theory of embedded submanifolds
1
;

• as retractions, for instance in line-search methods on manifolds.

LetM1 andM2 be two manifolds of dimensions d1 and d2, respectively, and let F : M1 →
M2 be a mapping between these two manifolds. Let x ∈M1, and let ϕ1 and ϕ2 be the charts

that mapM1 andM2 to Rd1
and Rd2

, respectively. Observe that ϕ1 is a chart around x, and

ϕ2 is a chart around F (x). Thus, to go from Rd1
to Rd2

we have to “read through the charts”,

i.e., we have to use the map

F̂ = ϕ2 ◦ F ◦ ϕ−1
1 ,

which is a coordinate representation of F around x. The following diagram illustrates this

concept.

M1 M2

Rd1 Rd2

F

ϕ1 ϕ2

F̂

De�nition 1.4 (Local smoothness of F at x). We say that F is di�erentiable or smooth at x
if F̂ is of class C∞ at ϕ1(x).

We emphasize that this de�nition does not depend on the choice of the charts ϕ1 and ϕ2.

Global smoothness of F is straightforward.

De�nition 1.5 (Global smoothness of F). We say that a function F is smooth if it is smooth

for every x.

We are now ready to introduce the important notion of di�eomorphism, which can be

regarded as a generalization of the concept of isomorphism to the case of smooth manifolds.

De�nition 1.6 (Di�eomorphism). A (smooth) di�eomorphism F : M1 →M2 is a bijection

such thatF and its inverseF−1
are both smooth. We say that two manifolds are di�eomorphic

if there exists a di�eomorphism between them.

Let us introduce some more de�nitions about functions on manifolds which turn out to

be useful in proving that certain sets are indeed smooth manifolds.

1

Embedded submanifolds are de�ned later in Section 1.1.6.

4

1.1. First-order geometry

1.1.4.1 Immersions and submersions

Let F : M1 → M2 be a di�erentiable function between two manifoldsM1 andM2, and

let x ∈ M1 be a point of M1. Let DF̂ (ϕ1(x)) : Rd1 → Rd2
be the di�erential2 of F̂ at

ϕ1(x) ∈ Rd1
, where F̂ denotes a coordinate representation of F , as de�ned above.

De�nition 1.7 (Rank of a function). The rank of F at x is the dimension of the image of the

di�erential DF̂ (ϕ1(x)).

As before, this de�nition does not depend on the charts either. We say that F is an

immersion if its rank is equal to d1 at each point of its domain (hence d1 6 d2), and that F is

a submersion if its rank is equal to d2 at each point of its domain (hence d1 > d2). Equivalent

characterizations are also possible as follows. We say that F is an immersion if and only if,

around each point of its domain, it admits a coordinate representation F̂ : Rd1 → Rd2
that

is the canonical immersion

(u1, . . . , ud1) 7→ (u1, . . . , ud1 , 0, . . . , 0), d1 6 d2,

i.e., in the codomain Rd2
the last d2 − d1 coordinates are set to zero.

We say that F is a submersion if and only if, around each point of its domain, it admits

a coordinate representation F̂ : Rd1 → Rd2
that is the canonical submersion

(u1, . . . , ud1) 7→ (u1, . . . , ud2), d1 > d2,

i.e., in the codomain Rd2
the last d1 − d2 coordinates are neglected.

1.1.5 Matrix manifolds

A matrix manifold is any manifold that is constructed from Rn×p by taking either embedded

submanifolds or quotient manifolds. The two matrix manifolds that are object of study of

this thesis are actually embedded submanifolds. Hence, in the next section, we will explore

into reasonable detail embedded submanifolds.

The major matrix manifolds are

• noncompact Stiefel manifold;

• orthogonal Stiefel manifold;

• oblique manifold: {X ∈ Rn×p : diag(XTX) = Ip};

• generalized Stiefel manifold;

• manifold of symplectic matrices: {X ∈ R2n×2n : XTJX = J}, where

J =
[
On In
−In On

]
.

2

The di�erential of a mapping is discussed later in Section 1.1.8.

5

1. Riemannian geometry

1.1.6 Embedded submanifolds

In general, a set X admits more than one manifold structure, but if it is a subset of a manifold

(M,A+), then it admits at most one submanifold structure. In this case, the manifoldM is

referred to as the embedding space. The following proposition formalizes this result.

Proposition 1.8. LetN be a subset of a manifoldM. ThenN admits at most one di�erentiable
structure that makes it an embedded submanifold ofM.

In other words, it exists a unique di�erentiable structure that makes N an embedded

submanifold. We emphasize that this proposition removes all the freedom of choice of a

di�erentiable structure on N .

When the embedding space is Rn×p, we say that N is a matrix submanifold. In this

thesis, we deal with two particular cases of matrix submanifolds: the Stiefel manifold and

the manifold of �xed-rank matrices.

How can we check if a subsetN ⊂M is an embedded submanifold? Let us �rst introduce

the notion of coordinate slice.

De�nition 1.9 (Coordinate slice of dimension m). Let (U , ϕ) be a chart of a manifoldM. A

ϕ-coordinate slice of U of dimensionm is a set of the formϕ−1(Rm×{0}), which corresponds

to all the points of U whose last n−m coordinates in the chart ϕ are equal to zero.

In other words, a coordinate slice is the image under ϕ−1
of the part of anm-dimensional

plane in Rn which lies in the coordinate range.

The next proposition states that every embedded submanifold is locally a coordinate slice.

Proposition 1.10 (Submanifold property). A subset N of a manifoldM is a d-dimensional
embedded submanifold ofM if and only if, around each point x ∈ N , there exists a chart (U , ϕ)
ofM such that N ∩ U is a ϕ-coordinate slice of U , i.e.,

N ∩ U = {x ∈ U : ϕ(x) ∈ Rd × {0}}.

In this case, the chart (N ∩ U , ϕ) is a chart of the embedded submanifold N .

What are the su�cient conditions for subsets of manifolds to be embedded submanifolds?

We have the following two propositions.

Proposition 1.11 (Submersion theorem). Let F : M1 → M2 (with d1 > d2). Let y be a
point ofM2. If the rank of F is equal to d2 for every point of F−1(y), then F−1(y) is a closed
embedded submanifold ofM1, and dim(F−1(y)) = d1 − d2.

Proposition 1.12 (Subimmersion theorem). Let F : M1 →M2. Let y be a point of F (M1).
If F has constant rank k < d1 in a neighborhood of F−1(y), then F−1(y) is a closed embedded
submanifold ofM1 of dimension d1 − k.

We now focus our attention on a concrete example of matrix submanifold.

6

1.1. First-order geometry

1.1.6.1 The Stiefel manifold

The (orthogonal) Stiefel manifold is an embedded submanifold of Rn×p that frequently arises

in applications, and as such, it is the object of study of the �rst two parts of this thesis. It is

de�ned as the set of all n× p orthonormal matrices

St(n, p) = {X ∈ Rn×p : XTX = Ip},

where Ip denotes the p×p identity matrix. This set, endowed with its submanifold structure

as discussed below, is called an orthogonal or compact Stiefel manifold. Let

X =

 r1 r2 · · · rp

 and XT =

rT1

rT2
.
.
.

rTp

 ,

where ri ∈ Rn are orthonormal vectors for all i = 1, . . . , p. Then

XTX =

rT1r1 rT1r2 · · · rT1rp

rT2r1 rT2r2
.
.
.

.

.

.

.
.
.

.

.

.

rTpr1 · · · · · · rTprp

 =

1 0 · · · 0

0 1
.
.
.

.

.

.

.
.
. 0

0 · · · 0 1

 .

Clearly, St(n, p) is a subset of Rn×p, and we have seen above that Rn×p admits a linear man-

ifold structure. We are going to show that St(n, p) has indeed the structure of an embedded

submanifold of Rn×p.

Proposition 1.13. St(n, p) is an embedded submanifold of Rn×p.

Proof. To show that St(n, p) is an embedded submanifold of the manifold Rn×p, we can use

the submersion theorem (Proposition 1.11). This means that we need to introduce a function

F between two manifolds and show that it is a submersion. Here, we consider the two

manifolds M1 = Rn×p and M2 = Ssym(p), where Ssym(p) denotes the set of all p × p
symmetric matrices, which is also a vector space, hence a linear manifold. As function F
between these two manifolds, let us consider

F : Rn×p → Ssym(p),

de�ned by

X 7→ XTX − Ip.

Observe that XTX − Ip is indeed a symmetric matrix. We point out that St(n, p) is the set

of the inverse images of the null matrix under F , namely,

St(n, p) = F−1(Op).

Here, Op is the null matrix of size p-by-p, and it plays the role of the y in Proposition 1.11.

We need to show that F is a submersion at each point X of St(n, p), i.e., that the di�erential

of F maps onto Ssym(p). The meaning of this is that the dimension of the image of DF is

equal to dim(Ssym(p)). This can formally be written as

∀Ẑ ∈ Ssym(p), ∃Z ∈ Rn×p : DF (X)[Z] = Ẑ.

7

1. Riemannian geometry

To compute the di�erential of F , we can use the de�nition

F (X + Z) = F (X) + DF (X)[Z] + o(‖Z‖).

Specializing it for the function F (X) = XTX − Ip, we get

(XT + ZT)(X + Z)− Ip = XTX − Ip +XTZ + ZTX = F (X) + DF (X)[Z],

from which we can identify DF (X)[Z] = XTZ + ZTX . Now the question is the following:

for any Ẑ ∈ Ssym(p), does there exist a Z ∈ Rn×p such that DF (X)[Z] = Ẑ? The answer

is yes, as can be checked by choosing Z = 1
2XẐ :

DF (X)[Z] = XTZ + ZTX = 1
2X

TXẐ + 1
2 Ẑ

TXTX = Ẑ.

This shows that the rank of F , i.e., the dimension of the image of DF (X)[Z], is equal to

d2 = dim(Ssym(p)) for every point of F−1(Op). Then from Proposition 1.11 it follows that

St(n, p) = F−1(Op) is an embedded submanifold of Rn×p.

As a byproduct of the above proof, one can also obtain the dimension of St(n, p). Ob-

serve that the vector space Ssym(p) has dimension
1
2p(p + 1), since a symmetric matrix is

completely determined by its upper triangular part. By Proposition 1.11, dim(St(n, p)) =
d1 − d2 = np− 1

2p(p+ 1).

To conclude this section, let us state some basic properties of the Stiefel manifold St(n, p).

• It is closed, because it is the inverse image of the closed set {Op} under the continuous

function F : Rn×p → Ssym(p).

• It is bounded; each column of X ∈ St(n, p) has norm 1, so the Frobenius norm of X is

equal to

√
p.

• It is compact, since it is closed and bounded. This follows from the Heine–Borel theorem
[AMS08, p. 193].

The Stiefel manifold St(n, p) may degenerate to some special cases. For p = 1, it reduces

to the unit sphere Sn−1
in Rn. For p = n, the Stiefel manifold becomes the orthogonal group

On, whose dimension is
1
2n(n− 1).

1.1.7 Tangent vectors

Let us go back to some more general theory that is not restricted to matrix manifolds, and

introduce some basic concepts of di�erential geometry that are used to generalize the notion

of directional derivative to a real-valued function on a manifold.

De�nition 1.14 (Curve inM). LetM be a manifold. A curve inM is a smooth mapping

γ : R→M, de�ned by t 7→ γ(t).

The derivative of the curve may be de�ned as

γ′(t) = lim
τ→0

γ(t+ τ)− γ(t)
τ

. (1.1)

However, we emphasize that the di�erence γ(t+τ)−γ(t) requires a vector space structure in

order to make sense, thus this de�nition fails for an abstract nonlinear manifold. Nonetheless,

8

1.1. First-order geometry

given a smooth function on a manifold f : M → R, the function f ◦ γ : t 7→ f(γ(t)) is a

smooth function from R to R, with a well-de�ned classical derivative.

Let Fx(M) denote the set of smooth, real-valued functions de�ned on a neighborhood

of a point x ∈ M. The tangent vector to the curve γ at t = 0 is de�ned as the mapping

.
γ(0) : Fx(M)→ R, that maps a function into a scalar f 7→ .

γ(0)f , where

.
γ(0)f = d(f(γ(t)))

dt

∣∣∣∣
t=0

.

We emphasize that the tangent vector is a mapping, so it is not a vector as in the sense of

classical geometry. Nonetheless, to preserve our intuition and for illustration purposes, we

will often depict it as an arrow in a two- or three-dimensional space.

WhenM is (a submanifold of) a vector space E , the mapping
.
γ(0) and the derivative of

a curve (1.1) are closely related by

.
γ(0)f = Df(γ(0))[γ′(0)].

A formal de�nition with a slightly di�erent notation is the following.

De�nition 1.15 (Tangent vector). A tangent vector ξx to a manifold M at a point x is a

mapping from Fx(M) to R, such that there exists a curve γ onM with γ(0) = x, satisfying

ξxf = .
γ(0)f = d(f(γ(t)))

dt

∣∣∣∣
t=0

,

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx.

The notion of tangent vector allows us to introduce another very important concept.

De�nition 1.16 (Tangent space). The tangent space toM at x, denoted TxM, is the set of

all tangent vectors toM at x.

The crucial observation here is that the tangent space admits a vector space structure.

Indeed, for two tangent vectors to
.
γ1(0) and

.
γ2(0) toM at x, the linearity property holds,

since

(a .γ1(0) + b
.
γ2(0))f = a(.γ1(0)f) + b(.γ2(0)f),

and (a .γ1(0) + b
.
γ2(0)) is still a tangent vector. The fact that TxM is a vector space is very

important, since it provides a local vector space approximation to the manifold.

Later, in Section 1.2.1, we will de�ne retractions, i.e., mappings from TxM toM, which

can be used to locally transform an optimization problem on the manifoldM into an opti-

mization problem on the more friendly vector space TxM.

Remark 1.17. Observe that the tangent space TxM has the same dimension d as the man-

ifoldM, i.e., dim(TxM) = dim(M).

This can be shown by using a coordinate chart. Let (U , ϕ) be a coordinate chart at x. A

basis of TxM is given by (.γ1(0), . . . , .γd(0)), with γi(t) = ϕ−1(ϕ(x)+tei), where ei denotes

the ith canonical vector of Rd. The tangent vectors
.
γi(0) are de�ned as

.
γi(0)f = ∂i(f ◦ ϕ−1)(ϕ(x)),

9

1. Riemannian geometry

where ∂i denotes the standard partial derivative with respect to the ith component. Finally,

for any tangent vector
.
γ(0) we have the decomposition

.
γ(0) =

d∑
i=1

(.γ(0)ϕi)
.
γi(0),

where
.
γ(0)ϕi are the coordinates of the tangent vector in Rd. Figure 1.2 illustrates for a

two-dimensional manifold the construction that we have just outlined.

R
2

ϕ

ϕ(U)

ϕ
−1

γ1(t)

M

U

TxM

1

γ2(t)

Figure 1.2 – The tangent space TxM has the same dimension as the manifoldM.

1.1.7.1 Tangent vectors to a vector space

Let E be a vector space. We have seen above that a tangent vector ξx to E at x is a mapping

ξx : Fx(E)→ R, de�ned by

f 7→ ξxf = d(f(γ(t)))
dt

∣∣∣∣
t=0

,

where γ is a curve in E with γ(0) = x. The directional derivative of f at x along γ′(0)
coincides with the classical derivative of f(γ(t)) evaluated at t = 0, i.e.,

ξxf = Df(x)[γ′(0)].

Moreover, TxE is identi�ed with E itself, i.e., TxE ' E .

1.1.7.2 Tangent bundle

The tangent bundle is the set of all tangent vectors toM, i.e., the union of all the tangent

spaces toM:

TM =
⋃
x∈M

TxM.

Since every ξ ∈ TM is in one and only one tangent space TxM, it follows that M is a

quotient of TM, with natural projection

π : TM→M,

10

1.1. First-order geometry

de�ned by ξ ∈ TxM 7→ x. This gives us the following di�erent perspective. We can regard

each x as the representative element of all ξ ∈ TxM, so thatM can be viewed the set of all

representative elements, i.e., a quotient set. It can be shown that the tangent bundle TM has

a natural manifold structure.

1.1.7.3 Vector �elds

A vector �eld ξ is a smooth function from the manifold to the tangent bundleM → TM,

de�ned by x 7→ ξx. Hence, a vector �eld ξ assigns to each point x ∈ M a tangent vector

ξx ∈ TxM.

Given ξ a vector �eld onM, and f ∈ F(M), we de�ne

(ξf)(x) = ξx(f).

Here, ξf denotes the real-valued function that maps x into ξx(f), the tangent vector toM
at x applied to f . Compare with the multiplication of a vector �eld by a function, which is

de�ned as

(fξ)x = f(x)ξx, ∀x ∈M,

and the addition of two vector �elds, which is

(ξ + ζ)x = ξx + ζx, ∀x ∈M.

De�nition 1.18 (The coordinate vector �eld). The vector �eld Ei on U , de�ned by

(Eif)(x) = ∂i(f ◦ ϕ−1)(ϕ(x)) = D(f ◦ ϕ−1)(ϕ(x))[ei],

is called the ith coordinate vector �eld of (U , ϕ).

Any vector �eld ξ admits a decomposition ξ =
∑
i(ξϕi)Ei on U , where ξϕi is the func-

tion that gives the tangent vector applied to ϕ at x.

If the manifold is an n-dimensional vector space E , then the coordinate vector �eld be-

comes

(Eif)(x) = ∂if(x) = lim
t→0

f(x+ tei)− f(x)
t

= Df(x)[ei],

i.e., we do not need to “read through the charts”.

We are now ready to introduce another fundamental concept that makes it possible to

relate the tangent spaces to two di�erent manifolds.

1.1.8 Di�erential of a mapping

The di�erential of a mapping is a function that maps a tangent vector to a manifoldM into

a tangent vector to another manifold N . Let F : M → N be a smooth mapping between

two manifolds. Recall that ξx is a smooth mapping from Fx(M) to R. The mapping

DF (x)[ξx] : FF (x)(N)→ R,

de�ned by

(DF (x)[ξ])f = ξ(f ◦ F),

is a tangent vector to N at F (x). Here, FF (x)(N) denotes the set of smooth real-valued

functions de�ned on a neighborhood of F (x), and ξ(f ◦ F) is the tangent vector applied to

the composite function f ◦ F .

11

1. Riemannian geometry

The mapping

DF (x) : TxM→ TF (x)N ,

de�ned by

ξ 7→ DF (x)[ξ],

is a linear mapping called the di�erential of F at x. Figure 1.3 illustrates the notion of the

di�erential.

M N

TxM TF (x)N

F

DF (x)

DF (x)[ξx]

F (γ(t))

γ(t)

Figure 1.3 – The di�erential map of F at x.

Remark 1.19. F is an immersion if and only if DF (x) is an injection, for all x ∈M. F is a

submersion if and only if DF (x) is a surjection, i.e., if rank(DF (x)) = d2, for all x ∈M.

As we will show in the following section, the di�erential is useful for characterizing

tangent spaces to embedded submanifolds.

1.1.9 Tangent spaces to embedded submanifolds

Let E be a vector space and letM be an embedded submanifold of E . Let γ be a curve in

M. Since γ is a curve inM, it also induces a tangent vector
.
γ(0) ∈ TxM. The relationship

between γ′(0) and
.
γ(0) is given by

.
γ(0)f = Df(x)[γ′(0)]. One can identify TxM with the

set {γ′(0) : γ curve inM, γ(0) = x}, which is a linear subspace of the vector space TxE ' E .

IfM is a matrix submanifold, i.e., E = Rn×p, we have TxE = Rn×p, hence the tangent

vectors toM are represented by n× p matrices.

The following remark is very important for a practical characterization of tangent spaces

to embedded submanifolds.

Remark 1.20 (Characterization of tangent spaces to embedded submanifolds). LetM be an

embedded submanifold of E . Let F : E →M. The tangent vectors toM at x correspond to

those vectors ξ that satisfy DF (x)[ξ] = 0. Thus TxM is the kernel of the linear operator

DF (x)
TxM = ker(DF (x)).

12

1.1. First-order geometry

Example 1.21 (Tangent space on a sphere). Let t 7→ x(t) be a curve in the unit sphere Sn−1

through x0 at t = 0. Since x(t) ∈ Sn−1
for all t, we have

x(t)Tx(t) = 1.

Di�erentiating with respect to t, we get

.
xTx+ xT

.
x = 0.

For t = 0, this becomes

.
xT0x0 + xT0

.
x0 = 0,

.
x0 being the tangent vector to Sn−1

at x0. The last equation represents the kernel of the

di�erential operator of t 7→ x(t). This shows that
.
x0 is an element of the set

{z ∈ Rn : xT0z = 0}.

The tangent space to Sn−1
at x is the set of all vectors orthogonal to x in Rn, i.e.,

TxS
n−1 = {z ∈ Rn : xTz = 0}.

Example 1.22 (Tangent space on the orthogonal Stiefel manifold). The orthogonal Stiefel

manifold

St(n, p) = {X ∈ Rn×p : XTX = Ip}

is an embedded submanifold of Euclidean space Rn×p (see Section 1.1.6.1). Let t 7→ X(t) be

a curve in St(n, p) throughX0 at t = 0, i.e.,X(t) ∈ Rn×p,X(0) = X0, andX(t)TX(t) = Ip
for all t. Di�erentiating with respect to t, we get

.
X(t)TX(t) +X(t)T

.
X(t) = 0.

For t = 0, this becomes .
XT

0X0 +X0
.
X0 = 0,

.
X0 being the tangent vector to St(n, p) at X0. We deduce that

.
X0 belongs to the set

{Z ∈ Rn×p : XT
0Z + ZTX0 = 0}. (1.2)

We can recognize in DF (X0)[Z] the expression XT
0Z + ZTX0 = 0, thus (1.2) is the kernel

of DF (X0), with F : X 7→ XTX . Hence the tangent space is

TXSt(n, p) = {Z ∈ Rn×p : XTZ + ZTX = 0}.

An alternative way to characterize the tangent space TXSt(n, p) is the following. Let

X⊥ be an orthonormal matrix whose columns span the orthogonal complement of span(X).

Since X is orthonormal, together with X⊥ one can form an orthonormal basis of the space

Rn×p, and we can decompose any tangent vector

.
X on this basis as

.
X = XΩ +X⊥K,

Ω being a p-by-p skew-symmetric matrix, Ω ∈ Sskew(p), and K ∈ R(n−p)×p
, with no re-

striction on K . So the tangent space to the Stiefel manifold can also be characterized by

TXSt(n, p) = {XΩ +X⊥K : Ω = −ΩT, K ∈ R(n−p)×p}.

13

1. Riemannian geometry

With this characterization in mind, and with the fact that dim
(
St(n, p)

)
= dim

(
TXSt(n, p)

)
,

it is straightforward to work out the dimension of the Stiefel manifold as

dim(St(n, p)) = dim(Sskew) + dim(R(n−p)×p) = 1
2p(p− 1) + (n− p)p = np− 1

2p(p+ 1),

which veri�es the result obtained in Section 1.1.6.1.

As we mentioned before, if p = n then the Stiefel manifold reduces to the special case of

the orthogonal group

On = {X ∈ Rn×n : XTX = In},

and the tangent space at X is given by

TXOn = {XΩ : ΩT = −Ω} = XSskew(n). (1.3)

In particular, if X = In, we have TInOn = Sskew(n). This means that the tangent space to

On at the identity matrix In is the set of skew-symmetric n-by-n matrices Sskew(n). In the

language of Lie groups, we say that Sskew(n) is the Lie algebra of the Lie group On.

We now go back to some more general theory.

1.1.10 Riemannian metric, distance and gradients

We have seen in the previous sections that tangent vectors generalize to manifolds the no-

tion of directional derivative. In order to generalize the steepest descent method to nonlinear

manifolds, we still need a notion of length that applies to tangent vectors, in order to under-

stand which direction from x gives the steepest increase.
To this aim, we endow TxM with an inner product 〈·, ·〉x, i.e., a bilinear, symmetric pos-

itive de�nite form. The subscript x in 〈·, ·〉x indicates that in general the inner product de-

pends on the point x ∈M. The inner product 〈·, ·〉x induces a norm ‖ξx‖x =
√
〈ξx, ξx〉x on

TxM. The normalized direction of steepest ascent is then given by

arg max
ξx∈TxM : ‖ξx‖=1

Df(x)[ξx].

Most importantly, the introduction of the inner product structure permits to de�ne the

notion of Riemannian manifold.

De�nition 1.23 (Riemannian manifold). A manifoldM endowed with a smoothly-varying
inner product (called Riemannian metric3 g) is called Riemannian manifold.

Strictly speaking, a Riemannian manifold is a couple (M, g), i.e., a manifold with a Rie-

mannian metric on it.

Remark 1.24. A vector space endowed with an inner product structure is a particular case

of Riemannian manifold called Euclidean space.

De�nition 1.25 (Length of a curve). The length of a curve γ : [a, b]→M on a Riemannian

manifold (M, g) is

L(γ) =
∫ b

a

√
g(.γ(t), .γ(t)) dt.

3

Riemannian inner product would be a more appropriate term in order to avoid confusion with a metric in

the standard sense, but the original terminology stuck.

14

1.1. First-order geometry

De�nition 1.26 (Riemannian distance). The Riemannian distance is de�ned as the shortest

path between two points x and y

dist : M×M→ R : dist(x, y) = inf
Γ
L(γ),

where Γ denotes the set of all curves γ inM joining points x and y.

Assuming that M is Hausdor� (see De�nition 1.3), the Riemannian distance de�nes a

metric in the standard sense, i.e.,

• it is nonnegative: dist(x, y) > 0;

• it is symmetric: dist(x, y) = dist(y, x);

• it satis�es the triangular inequality: dist(x, z) + dist(z, y) > dist(x, y).

De�nition 1.27 (Riemannian gradient). Let f be a smooth scalar �eld on a Riemannian

manifoldM. The Riemannian gradient of f at x, denoted grad f(x), is the unique element

of TxM such that

〈grad f(x), ξ〉x = Df(x)[ξ], ∀ξ ∈ TxM.

We point out that Df(x)[·] is an element of the dual space of TxM, i.e., the space of all

linear functionals from TxM to R. The gradient grad f(x) always exists because of Riesz

representation theorem, which states that every element of the dual space can be written

uniquely in the above form.

The Riemannian gradient has some remarkable properties that turn out to be very useful

in the context of optimization.

• The direction of grad f(x) is the steepest-ascent direction of f at x, namely

grad f(x)
‖ grad f(x)‖ = arg max

ξ∈TxM : ‖ξ‖=1
Df(x)[ξ].

• The norm of grad f(x) gives the steepest slope of f at x, i.e.,

‖ grad f(x)‖ = Df(x)
[grad f(x)
‖ grad f(x)‖

]
.

1.1.11 Riemannian submanifolds

LetM be an embedded submanifold of a Riemannian manifoldM. SinceM is a submanifold,

it can inherit the Riemannian metric from its embedding spaceM

gx(ξ, ζ) = ḡx(ξ, ζ), ξ, ζ ∈ TxM.

De�nition 1.28 (Normal space). The orthogonal complement of TxM in TxM is called

normal space toM at x and it is de�ned by

(TxM)⊥ =
{
ξ ∈ TxM : ḡx(ξ, ζ) = 0, ∀ζ ∈ TxM

}
.

Any tangent vector ξ ∈ TxM can be uniquely decomposed into

ξ = Px ξ + P⊥x ξ,

where Px and P⊥x denote the orthogonal projections onto TxM and (TxM)⊥, respectively.

15

1. Riemannian geometry

Example 1.29 (Sphere). The unit sphere Sn−1
is a Riemannian submanifold of Rn. The

inner product on the sphere is inherited from the embedding space Rn

〈ξ, η〉x = ξTη.

The normal space at x ∈ Sn−1
is

(TxSn−1)⊥ = {xα : α ∈ R}.

The projections are given by

Px ξ = (I − xxT) ξ, P⊥x ξ = xxTξ.

Example 1.30 (Orthogonal Stiefel manifold). We recall that the tangent space to St(n, p) at

X is given by

TXSt(n, p) = {XΩ +X⊥K : Ω = −ΩT, K ∈ R(n−p)×p}.

The Riemannian metric inherited by TXSt(n, p) from the embedding space Rn×p is

〈ξ, η〉X = trace(ξTη).

The normal space is given by those matrices A such that

〈ξ, A〉X = 0, ∀ξ ∈ TXSt(n, p).

Take A in the form A = XS, with X ∈ St(n, p) and S a p-by-p symmetric matrix, S ∈
Ssym(p). Then one can easily verify that

〈ξ, A〉X = trace(ξTA) = trace((ΩT
ξX

T +KT
ξX

T
⊥)XS) = trace(ΩT

ξS) = 0.

Thus the normal space is given by

(TXSt(n, p))⊥ = {XS : S ∈ Ssym(p)}.

The projection onto the tangent space TXSt(n, p) is

PX ξ = Xskew(XTξ) + (I −XXT) ξ,

and the projection onto the normal space (TXSt(n, p))⊥ is

P⊥X ξ = Xsym(XTξ).

To prove these expressions for the projectors, we start by writing a generic tangent vector as

the sum of all its projections

ξ = PX ξ + P⊥X ξ = XΩ +X⊥K +XS.

Left-multiplying by XT
we get

XTξ = Ω + S,

and taking the transpose

ξTX = −Ω + S.

16

1.2. Line-search algorithms on manifolds

The symmetric and the skew-symmetric parts of XTξ are

sym(XTξ) = XTξ + ξTX

2 = S, skew(XTξ) = XTξ − ξTX
2 = Ω.

Now we only need to �nd X⊥K :

X⊥K = ξ −XΩ −XS = ξ −X XTξ − ξTX
2 −X XTξ + ξTX

2 = (I −XXT) ξ.

Finally,

ξ = Xskew(XTξ) + (I −XXT) ξ +Xsym(XTξ).

From the last expression one can identify the expressions for the projectors.

The main concepts of �rst-order Riemannian geometry have been introduced. We are

now ready to discuss the �rst numerical algorithms on manifolds.

1.2 Line-search algorithms on manifolds

Line-search algorithms in Rn are based on the update formula

xk+1 = xk + tkηk,

where tk ∈ R is the step size and ηk ∈ Rn is the search direction. We want to develop

an analogous formula and theory for optimization problems posed on nonlinear manifolds.

We can identify the following main aspects that we need to consider in order to generalize

line-search algorithms to manifolds:

• ηk will be a tangent vector toM at xk, i.e., ηk ∈ TxkM;

• the search is performed along a curve inM whose tangent vector at t = 0 is ηk.

The choice of such a curve leads us to the concept of retraction.

1.2.1 Retractions

In a line-search algorithm, given a pointx, we compute η = − grad f(x) and then we move in

the direction of η until a reasonable decrease is found, which is often de�ned as the su�cient

decrease condition. In Rn the implementation of this idea is straightforward. On a manifold,

we need to move in the direction of a tangent vector while remaining constrained to the

manifold. In order to do so, we introduce the concept of a retraction mapping. Roughly

speaking, a retractionR at x, denotedRx, is a mapping from TxM toMwith a local rigidity

condition that preserves gradients at x. Figure 1.4 illustrates the concept of retraction.

The Riemannian exponential mapping is also a retraction, but it is not computationally

e�cient. Indeed, retractions are a �rst-order approximation of the Riemannian exponential,

and that is what makes them cheaper to compute in practical applications.

Hereafter we give a more formal de�nition.

De�nition 1.31 (Retraction). A retraction on M is a smooth mapping from the tangent

bundle to the manifold, R : TM→M, with the following properties:

17

1. Riemannian geometry

TxM

M

ξ

x

Rx(ξ)

Figure 1.4 – Retraction mapping.

(i) Rx(0x) = x, whereRx denotes the restriction ofR to TxM and 0x is the zero element

of TxM.

(ii) With the identi�cation T0xTxM' TxM, Rx satis�es the local rigidity condition

DRx(0x) = idTxM.

We point out thatRx maps from TxM toM, in particular it maps 0x to x. Moreover, we

recall that the di�erential of a function between two manifolds is a mapping between their

corresponding tangent spaces. Hence the di�erential of Rx at 0x is the mapping

DRx(0x) : T0xTxM→ TxM,

but since T0xTxM ' TxM, we actually recognize in DRx(0x) the identity map of TxM,

denoted idTxM. The identi�cation T0xTxM' TxM holds because TxM is a vector space.

Remark 1.32. For any ξ ∈ TxM, the curve γξ : t 7→ Rx(tξ) satis�es
.
γξ(0) = ξ.

In the context of optimization algorithms, retractions have two main purposes:

• they turn points of TxM into points ofM;

• they transform cost functions de�ned in a neighborhood of x ∈M into cost functions

de�ned on the vector space TxM.

Given a real-valued function f : M → R, and a retraction R : TM → M, one can

de�ne the “pullback” of f through R as f̂ = f ◦R. For x ∈M, the restriction of f̂ to TxM
is f̂x = f ◦Rx, f̂x : TxM→ R. We have the equality between the di�erentials

Df̂x(0x) = Df(x).

Indeed, using the chain rule for the di�erential of a composite function

D(f ◦ g)(x) = Df(g(x)) ◦Dg(x),

and De�nition 1.31, we have

Df̂x(0x) = D(f ◦Rx)(0x) = Df(Rx(0x)) ◦DRx(0x) = Df(x).

18

1.2. Line-search algorithms on manifolds

In addition, ifM is endowed with a Riemannian metric, then we also have the equality of

the gradients

grad f̂x(0x) = grad f(x).

To show this, recall that, by de�nition,

∀ξ ∈ TxM, Df(x)[ξ] = 〈grad f(x), ξ〉,

and

∀ξ ∈ T0xTxM' TxM, Df̂x(0x)[ξ] = 〈grad f̂x(0x), ξ〉.

Since Df̂x(0x) = Df(x), this implies 〈grad f(x), ξ〉 = 〈grad f̂x(0x), ξ〉 for all ξ ∈ TxM.

Since this holds for all ξ, we can drop the ξ and the inner product to obtain the equality

grad f(x) = grad f̂x(0x).

In the next sections and examples we show how to de�ne retractions on embedded sub-

manifolds using the QR factorization and the polar decomposition.

1.2.1.1 Retractions on embedded submanifolds

LetM be an embedded submanifold of a vector space E . Thus TxM is a linear subspace of

TxE ' E . Sincex ∈M ⊆ E and ξ ∈ TxM⊆ TxE ' E , with a little abuse of notation, we can

write x+ ξ ∈ E in the embedding space. So as a general recipe for embedded submanifolds,

we can de�ne a retraction Rx(ξ) by

• moving along the direction ξ to get to the point x+ ξ in E ;

• mapping the point x + ξ back toM. When dealing with matrix manifolds, this step

can be based on matrix decompositions, such as, e.g., the QR factorization or the polar

decomposition.

This idea is formalized in the following proposition.

Proposition 1.33 (Retractions on embedded submanifolds [AMS08, Prop. 4.1.2]). Let M
be an embedded submanifold of E and let N be an abstract manifold such that dim(M) +
dim(N) = dim(E). Assuming that:

(i) there exists a di�eomorphism φ fromM×N to an open submanifold E∗ of E , namely
φ : M×N → E∗, de�ned by (F,G) 7→ φ(F,G);

(ii) there exists a point I ∈ N satisfying ∀F ∈M, φ(F, I) = F ,

then the mapping

RX(ξ) : π1(φ−1(X + ξ)), X ∈M, ξ ∈ TXM,

de�nes a retraction onM.

Remark 1.34. Observe that since φ is a di�eomorphism, there exists the inverse mapping

φ−1 : E∗ → M × N . For instance, in the QR factorization, this will be φ−1 : Rn×n →
St(n, p) × Supp+(p), de�ned by A 7→ (Q,R). Here, Supp+(p) denotes the set of all p-by-p
upper triangular matrices with strictly positive diagonal elements.

19

1. Riemannian geometry

Remark 1.35. Concretely, N can be a set of factors deriving from a matrix decomposition.

Here, π1 : M× N → M : (F,G) 7→ F denotes the projection onto the �rst component of

such a decomposition. For example, if one performs a QR factorization, applying π1 would

keep only the Q factor. This can be regarded as a kind of projection.

Proof of Proposition 1.33. Consider (X + ξ) ∈ E∗ for any ξ in a neighborhood of 0X . Since

φ−1
is de�ned on the whole E∗, it follows that RX(ξ) is de�ned for any ξ in a neighborhood

of 0X . We verify the properties of a retraction stated in De�nition 1.31. Smoothness of RX
is direct. For the property RX(0X) = X , observe that

RX(0X) = π1(φ−1(X + 0X)) = π1(φ−1(X)) = π1((X, I)) = X.

For the local rigidity property, �rst note that the Taylor development gives

φ(X + ξ, I) = φ(X, I) + D1φ(X, I)[ξ],

where D1 denotes the derivative with respect to the �rst component. Because of assumption

(ii) of Proposition 1.33, we have φ(X + ξ, I) = X + ξ and φ(X, I) = X , which yield

X + ξ = X + D1φ(X, I)[ξ],

and so the result

∀ξ ∈ TXM, D1φ(X, I)[ξ] = Dφ(X, I)[(ξ, 0)] = ξ.

Then since (π1 ◦ φ−1)(φ(X, I)) = X , it follows

ξ = D(π1 ◦ φ−1)(φ(X, I)) [D1φ(X, I)[ξ]] = D(π1 ◦ φ−1)(X)[ξ] = DRX(0X)[ξ],

which proves the claim that RX is a retraction.

Example 1.36 (Retraction on the unit sphere Sn−1
). LetM = Sn−1

,N = {λ ∈ R : λ > 0},
and consider φ : M×N → Rn∗ de�ned by (x, λ) 7→ λx. Proposition 1.33 yields the retraction

Rx(ξ) = x+ ξ

‖x+ ξ‖
,

de�ned for all ξ ∈ TxSn−1
. Observe that Rx(ξ) is the point on the sphere Sn−1

that mini-

mizes the distance to x+ ξ.

1.2.1.2 Retraction on the orthogonal group

LetM = On, the orthogonal group, i.e., the set of all Q ∈ Rn×n such that QTQ = I . Let

A ∈ Rn×n∗ be a full-rank matrix (see Section 1.1.2). In this section, we present two possibilities

to de�ne a retraction on the orthogonal group.

QR factorization. Let A = QR with Q ∈ On and R ∈ Supp+(n), the set of all upper tri-

angular matrices with strictly positive diagonal elements. The inverse of the QR factorization

is

φ : On × Supp+(p)→ Rn×n∗ ,

de�ned by

(Q,R) 7→ A = QR.

Now let qf = π1 ◦ φ−1
denote the mapping that sends a matrix A to the Q factor of its QR

factorization. The mapping qf can be computed by using the Gram–Schmidt orthonormal-

ization procedure. To show that qf is a retraction, one needs to check that φ satis�es all the

hypotheses of Proposition 1.33.

20

1.2. Line-search algorithms on manifolds

(i) • φ is bijective because of the existence and uniqueness properties of the QR factor-

ization;

• φ is smooth because the matrix product is smooth;

• φ−1
is C∞, since Q is obtained by the Gram–Schmidt procedure, which is C∞

over the set of full-rank matrices Rn×n∗ , and R is obtained as Q−1A.

(ii) The identity matrix In is the neutral element: φ(Q, I) = Q, for all Q ∈ On.

Hence all the assumptions of Proposition 1.33 hold for φ. Recalling that tangent vectors to

the orthogonal group have the form (1.3), we have that, for a matrix X ∈ On and a tangent

vector XΩ ∈ TXOn,

RX(XΩ) = qf(X +XΩ) = qf(X(I +Ω)) = Xqf(I +Ω)

is a retraction on the orthogonal group On.

Polar decomposition. The polar decomposition is the factorization A = QP with Q ∈
On and P ∈ Ssym+(n), i.e., the set of all symmetric positive de�nite matrices of order n. The

inverse of the polar decomposition is

φ : On × Ssym+(n)→ Rn×n∗ ,

de�ned by

(Q,P) 7→ A = QP.

The polar decomposition of A is given by [AMS08, p. 58]

φ−1(A) =
(
A(ATA)−1/2, (ATA)1/2

)
. (1.4)

In fact, one can readily check thatA(ATA)−1/2 ∈ On and (ATA)1/2 ∈ Ssym+(n). Hence, for

a matrix X ∈ On and a tangent vector XΩ ∈ TXOn, we have that

RX(XΩ) = π1(φ−1(X +XΩ)) (1.5)

= X(I +Ω)
(
(X(I +Ω))TX(I +Ω)

)−1/2

= X(I +Ω)
(
(I −Ω)XTX(I +Ω)

)−1/2

= X(I +Ω)(I −Ω2)−1/2

is a retraction on On. Computing this retraction requires an eigenvalue decomposition of

(I −Ω2) in order to calculate its matrix square root.

1.2.1.3 Retraction on the Stiefel manifold

As with the orthogonal group above, here we also present two possibilities for de�ning the

retraction on the Stiefel manifold.

QR factorization. For a matrix X ∈ St(n, p) and a tangent vector ξ ∈ TXSt(n, p), the

retraction based on a QR factorization is given by

RX(ξ) = qf(X + ξ),

where qf(A) denotes the Q factor of the decomposition of A ∈ Rn×p∗ as A = QR, with

Q ∈ St(n, p) and R ∈ Supp+(n). The retraction RX(ξ) can be computed in a �nite number

of arithmetic operations and square roots, using, e.g., the modi�ed Gram–Schmidt algorithm.

21

1. Riemannian geometry

Polar decomposition. The retraction on the Stiefel manifold based on the polar decom-

position can be obtained by specializing (1.5) for the vector X + ξ

RX(ξ) = (X + ξ)
(
(X + ξ)T(X + ξ)

)−1/2

= (X + ξ) (XTX +XTξ + ξTX + ξTξ)−1/2

= (X + ξ) (I + ξTξ)−1/2,

where we used the fact that XTξ + ξTX = 0 since ξ ∈ TXSt(n, p). In general, to compute

the matrix square root we need to perform an eigenvalue decomposition. When p is small,

which is usually the case for the Stiefel manifold, the numerical cost of evaluating the polar

retraction is reasonable since it involves the eigenvalue decomposition of the small matrix

(Ip + ξTξ)−1/2
. The retraction based on the polar decomposition is actually a second-order

approximation of the Riemannian exponential, and it represents an orthogonal projection on

St(n, p). It gives the best approximation of any given matrix by an orthonormal matrix.

1.2.2 Line-search methods on manifolds

Line-search methods on manifolds are based on the update formula

xk+1 = Rxk(tkηk),

where the search direction ηk is a tangent vector of TxkM and the step length tk is a real

scalar.

The recipe for constructing a line-search method can be summarized as follows:

• choose a retraction R;

• select a search direction ηk;

• select a step length tk.

Figure 1.5 illustrates the components of a line-search method on a manifold.

TxkM

M

tkηk
xk

xk+1 = Rxk
(tkηk)

Figure 1.5 – Line search on a manifold.

In order to obtain global convergence results, we need to impose some restrictions on

ηk and tk. In particular, as xk approaches a non-critical point, we would like to prevent the

directions ηk from becoming orthogonal to the gradient direction, because this would cause

the method to get stuck near that point.

22

1.2. Line-search algorithms on manifolds

De�nition 1.37 (Gradient-related sequence). Given a cost function f on a Riemannian man-

ifoldM, we say that a sequence of tangent vectors {ηk}, ηk ∈ TxkM, is gradient related if,

for any subsequence of points {xk}k∈K that converges to a non-critical point of f , the cor-

responding subsequence of tangent vectors {ηk}k∈K is bounded and satis�es

lim
k→∞

sup
k∈K
〈grad f(xk), ηk〉 < 0.

This is a nonorthogonality type of condition. If {ηk} is gradient related, it follows that if a

subsequence {grad f(xk)}k∈K tends to a nonzero vector, the corresponding subsequence of

directions ηk is bounded and does not tend to be orthogonal to grad f(xk). Roughly speak-

ing, this means that the angle between the search direction ηk and grad f(xk) does not get

too close to 90 degrees [Ber95, p. 35]. This condition is very similar to the uniform angle

condition of [BAC18, Lemma 2.10]. The latter allows to obtain algebraic convergence rates

for the Riemannian gradient descent with a backtracking line-search procedure; see [BAC18,

Theorem 2.11].

Figure 1.6 illustrates the concept of gradient-related sequence for vectors lying on a

two-dimensional tangent space. The cyan half-plane highlights the part of the tangent plane

where the relation 〈grad f(xk), ηk〉 < 0 holds.

grad f(xk)
Txk

M

ηk

〈grad f(xk), ηk〉 < 0

xk

Figure 1.6 – Gradient-related vectors.

De�nition 1.38 (Armijo point [AMS08, p. 62]). Given a cost function f on a Riemannian

manifold M with retraction R, a point x ∈ M, a tangent vector η ∈ TxM and scalars

ᾱ > 0, β, σ ∈ (0, 1), the Armijo point is

ηA = tAη = βmᾱη,

where tA = βmᾱ is the Armijo step size, andm is the smallest nonnegative integer such that

f(x)− f(RxηA) > −σ〈grad f(x), ηA〉x.

Remark 1.39. The last expression is a condition of su�cient decrease for the cost function.

Indeed, the left-hand side represents the decrease in f when moving along the direction of

ηA while constrained toM.

We are now ready to describe the line-search method on manifolds.

23

1. Riemannian geometry

1.2.2.1 The accelerated Riemannian line-search algorithm

Given a Riemannian manifoldM, a smooth function f onM, a retraction R from TM to

M, scalars ᾱ > 0 and 0<c, β, σ<1, and an initial iterate x0 ∈M, the line-search algorithm

generates a sequence of iterates {xk} as follows. At each iteration k = 0, 1, 2, . . ., it chooses

a search direction ηk in the tangent space TxkM such that the sequence {ηi} is gradient

related (De�nition 1.37). Then the new point xk+1 is chosen such that

f(xk)− f(xk+1) > c
(
f(xk)− f(Rxk(tAk ηk))

)
, (1.6)

where tAk is the Armijo step size (De�nition 1.38) for the given ᾱ, β, σ, ηk.

Condition (1.6) leaves a lot of freedom in taking advantage of problem-related informa-

tion that may produce a more e�cient algorithm. Some possibilities to choose xk+1 in (1.6)

are the following:

• xk+1 = Rxk(tAk ηk), where tAk is the Armijo point as described above;

• xk+1 = Rxk(t∗kηk), with t∗k given by an exact line search t∗k = arg min
t

f(Rxk(tηk)), if

this exact line search can be carried out e�ciently;

• xk+1 = Rxk(ξk), with ξk de�ned by

ξk = arg min
ξ∈Sk

f(Rxk(ξ)),

where Sk = span{ηk, R−1
xk

(xk−1)}. This is a minimization over a two-dimensional

subspace Sk of TxkM. The subspace Sk contains the Armijo point associated with ηk,

since ηk is in Sk. This is a viable choice if the minimization over the subspace Sk can

be carried out e�ciently.

1.2.3 Convergence analysis

In this section, we discuss convergence concepts and limit points on manifolds, and then we

give a convergence result for the line-search algorithm that we have just outlined above.

1.2.3.1 Convergence on manifolds

De�nition 1.40 (Convergent sequence and limit point). An in�nite sequence {xk}k=0,1,... of

points of a manifoldM is convergent if there exists a chart (U , ψ) ofM, a point x∗ of U , and

a K > 0 such that xk is in U for all k > K and such that the sequence {ψ(xk)}k=K,K+1,...
converges toψ(x∗). The pointψ−1(limk→∞ ψ(xk)) is called the limit point of the convergent

sequence {xk}k=0,1,....

Remark 1.41. The points of the sequence {xk}k=0,1,... can be outside U , but after a certain

k = K they all fall inside U .

Remark 1.42. Every convergent sequence of a Hausdor� manifold (see De�nition 1.3) has

one and only one limit point. For non-Hausdor� topologies, multiple distinct limit points are

possible.

Equivalently, a sequence on a manifold is convergent if there exists a point x∗ such that

every neighborhood of x∗ contains all but �nitely many points of the sequence. Figure 1.7

illustrates the concept of convergent sequence and limit point on a manifold.

24

1.2. Line-search algorithms on manifolds

U

M

R
nψ

ψ(U)

x∗

ψ(x∗)

{xk}k=0,1,...

{ψ(xk)}k=K,K+1,...

Figure 1.7 – Convergent sequence and limit point on a manifold.

1.2.3.2 Convergence of line-search methods

Theorem 1.43. Let {xk} be an in�nite sequence of iterates generated by the line-search algo-
rithm of Section 1.2.2.1. Let f be a continuously di�erentiable scalar �eld, bounded below. Then
every accumulation point of {xk} is a critical point of the cost function f .

Remark 1.44. We are implicitly saying that a sequence can have more than one accumula-

tion point, for example, from a sequence {xk} we may extract two subsequences such that

they have two distinct accumulation points.

The proof of Theorem 1.43 can be done by contradiction, but it still remains quite techni-

cal, so we refer the interested reader to [AMS08, p. 65]. It should be pointed out that Theorem

1.43 only guarantees the convergence to critical points, but it does not tell us anything about

their nature, i.e., it does not specify whether the critical points are local minimizers, local

maximizers or saddle points. However, it is observed in practice that unless the initial point

x0 is designed in a “pathological way”, line-search algorithms constructed according to the

pattern discussed in Section 1.2.2.1 do produce sequences that converge to local minima of the

cost function. These practical observations are supported by the stability analysis of critical

points, which we do not discuss here.

1.2.4 Speed of convergence

How fast does the sequence {xk} converge to x∗? WhenM is a Riemannian manifold, it is

possible to de�ne a notion of linear convergence by using the Riemannian distance.

De�nition 1.45 (Linear convergence). LetM be a Riemannian manifold and let dist denote

the Riemannian distance onM (see De�nition 1.26). A sequence {xk}k=0,1,... converges lin-
early to a point x∗ ∈M if there exists a constant c ∈ (0, 1) and an integer K > 0 such that,

for all k > K , it holds that

dist(xk+1, x∗) 6 cdist(xk, x∗). (1.7)

The limit

lim
k→∞

sup dist(xk+1, x∗)
dist(xk, x∗)

is called the linear convergence factor of the sequence. An iterative algorithm is said to con-

verge locally linearly to a point x∗ if there exists a neighborhood U of x∗ and a constant

c ∈ (0, 1) such that, for every initial point x0 ∈ U , the sequence {xk} generated by the

algorithm satis�es (1.7).

25

1. Riemannian geometry

Like other de�nitions that appeared in this chapter, this de�nition is also independent of

the chart used.

We can also say that a sequence {xk}k=0,1,... on a Riemannian manifold converges lin-

early to x∗ with constant c if and only if

‖R−1
x∗ (xk+1)−R−1

x∗ (x∗)‖ 6 c ‖R−1
x∗ (xk)−R−1

x∗ (x∗)‖,

for all k su�ciently large, where R is any retraction onM and ‖ · ‖ is the norm on Tx∗M
induced by the Riemannian metric.

Let εg denote the accuracy for the gradient to satisfy the necessary optimality condition.

Under the assumptions that f is bounded below onM and that f ◦ Rx has Lipschitz con-

tinuous gradient with constant Lg , [BAC18] showed that the Riemannian gradient descent

with constant step size 1/Lg or with backtracking Armijo line search produces points with

Riemannian gradient smaller than εg in O(1/ε2
g) iterations.

26

Chapter2

Shooting methods on the Stiefel

manifold

The object of study in this chapter is the compact Stiefel manifold, i.e.,

St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
.

As we have shown in Section 1.1.6.1, St(n, p) is an embedded submanifold of Rn×p. In this

chapter, we are concerned with computing the Riemannian distance (De�nition 1.26) between

two points on the Stiefel manifold. As we shall see, the distance between two points on a

manifold is related to the concept of minimizing geodesic. Therefore, we start o� this chapter

by introducing the notion of geodesics.

2.1 Geodesics, exponential mapping and logarithm mapping

Geodesics are de�ned as curves with zero “acceleration”, i.e., they solve the second-order

ordinary di�erential equation (ODE)

D2

dt2 γ(t) = 0,

where
D2

dt2 denotes the acceleration vector �eld. Geodesics allow us to introduce the Rieman-
nian exponential Expx : TxM → M that maps a tangent vector ξ = γ̇(0) ∈ TxM to the

geodesic endpoint γ(1) = y: Expx(ξ) = y. The Riemannian exponential is a local di�eomor-

phism (see De�nition 1.6), i.e., it is locally invertible and its inverse is called the Riemannian
logarithm of y at x: Logx(y) = ξ.

Thanks to a result of Riemannian geometry known as Gauss’s lemma, the exponential

map can be locally understood as a radial isometry [dC92, p. 69]. This means that one can

measure the distance between two su�ciently close points on the manifold by computing

the norm of the corresponding vector in the tangent space.

The di�eomorphicity of the exponential mapping is closely linked to the behavior of

geodesics. While in Euclidean geometry straight lines are also distance-minimizing curves,

in Riemannian geometry a geodesic γ : [0, t]→M emanating from a point x is distance-min-

imizing only for small t > 0. In general, there exists a point γ(tc), called cut point, where the

distance-minimizing property �rst breaks down [Sak96, p. 83]. The union of the cut points of

all geodesics emanating from x is called cut locus of x; it is the boundary of the (star-shaped)

27

2. Shooting methods on the Stiefel manifold

domain in which Expx : TxM→M is a di�eomorphism. The cut locus is closely linked not

only to local properties such as the curvature ofM, but also to global topological properties

[Sak96, ATV13].

The injectivity radius at a point x of a Riemannian manifoldM is the largest radius for

which the exponential map Expx is a di�eomorphism from the tangent space to the manifold;

it is the least distance from x to the cut locus of x. The global injectivity radius of a manifold

is the in�mum of all the injectivity radii at all points of the manifold. Given two points x
and x on a manifoldM, if d(x, y) < inj(M), then there exists a unique length-minimizing

geodesic from x to y. For the Stiefel manifold, the injectivity radius is lower bounded by

0.89π [Ren13, Eq. (5.13)].

Given two points on the Stiefel manifold, our goal is to compute the length of the mini-

mizing geodesic connecting them. For some manifolds, there are explicit formulas available

for computing the distance, as in the case of the Grassmann manifold Grass(n, p). For in-

stance, let X and Y belong to Grass(n, p), then the distance between X and Y is

dist(X ,Y) =
√
θ2

1 + · · ·+ θ2
p,

where θi, i = 1, . . . , p, are the principal angles between X and Y (see [Won67, Thm. 8] and

[AMS04, p. 211]). For the Stiefel manifold there is no such closed-form solution. In general,

the problem of �nding the distance given two points on a Riemannian manifold is related to

the Riemannian logarithm function that we de�ned above. The problem of computing the

Riemannian logarithm on the Stiefel manifold has already been tackled by several authors,

who proposed some numerical algorithms. Rentmeesters [Ren13] and Zimmermann [Zim17,

ZD19] proposed a similar algorithm which is only locally convergent and depends upon the

de�nition of the matrix logarithm function.

Another method for �nding geodesics is the leapfrog algorithm introduced by L. Noakes

[Noa98]. This method has global convergence properties, but it slows down when the so-

lution is approached [KN08, p. 2796]. This motivates the use of shooting methods, which

have local quadratic convergence, when close to the solution. Indeed, shooting methods for

�nding the distance on the Stiefel manifold are the topic of this chapter. Moreover, Noakes

realized that his leapfrog algorithm was in some way imitating the Gauss–Seidel method

[Noa98, p. 39]. We will explore this connection later in Chapter 3.

2.1.1 Geodesics on the Stiefel manifold

A Riemannian metric has to be speci�ed in order to turn St(n, p) into a Riemannian manifold,

and in general di�erent choices are possible. In this thesis, we consider the non-Euclidean

canonical metric inherited by St(n, p) from its de�nition as a quotient space of the orthogonal

group [EAS98, Eq. (2.39)]. GivenY ∈ St(n, p) and ξ ∈ TY St(n, p), the canonical metric reads

gc(ξ, ξ) = trace
(
ξT(I − 1

2Y Y
T) ξ

)
. (2.1)

Remark 2.1. Another popular choice, the embedded metric ge(ξ, ξ) = trace(ξTξ), leads to

very similar derivations, but we do not use it in this thesis.

By endowing the Stiefel manifold with the canonical metric, one can get the following

second-order ordinary di�erential equation for the geodesic [EAS98, Eq. (2.41)]

..
Y +

.
Y
.
Y TY + Y

(
(Y T .Y)2 +

.
Y T .Y

)
= 0,

28

2.2. Problem statement

where Y ≡ Y (t). An explicit formula for a geodesic that realizes a tangent vector ξ with

base point Y0 has been provided by Ross Lippert [EAS98, Eq. (2.42)]

Y (t) = Q exp
([

Ω −KT

K On−p

]
t

)[
Ip

O(n−p)×p

]
, (2.2)

with Q =
[
Y0 Y0⊥

]
, Y0⊥ being any matrix whose columns span Y⊥0 = (span(Y0))⊥. We

recall from Section 1.1.9 that tangent vectors to the Stiefel manifold may be expressed in the

form

ξ = Y0Ω + Y0⊥K,

where Ω and K are the components of the tangent vector ξ in the subspaces spanned by

the columns of Y0 and Y0⊥, respectively. In particular, Ω ∈ Sskew(p) and K ∈ R(n−p)×p
,

Sskew(p) being the vector space of p-by-p skew-symmetric matrices.

Remark 2.2. The matrix Y0⊥ does not need to be orthonormal. Indeed, its only requirement

is that it has to span Y⊥0 = (span(Y0))⊥, the orthogonal subspace to Y0 = span(Y0). See

Appendix A.1.

2.2 Problem statement

In this section, we state the problem more formally. Given two points Y0, Y1 on St(n, p)
that are su�ciently close to each other, �nding the distance between them is equivalent

to �nding the tangent vector ξ∗ ∈ TY0St(n, p) with the shortest possible length such that

[Lee18, Bou20]

ExpY0(ξ∗) = Y1,

where ExpY0 denotes the Riemannian exponential mapping at Y0. The solution to this prob-

lem is equivalent to the Riemannian logarithm of Y1 with base point Y0

ξ∗ = LogY0(Y1).

Figure 2.1 provides an artistic illustration of the problem statement.

TY0St(n, p)

St(n, p)

ξ∗
Y0

Y1

Y (t)

Figure 2.1 – Illustration of the problem statement.

In terms of the di�erential equation governing the geodesic, the problem statement may

be written as follows:

29

2. Shooting methods on the Stiefel manifold

Find ξ∗ ≡
.
Y (0) ∈ TY0St(n, p) such that the second-order ODE

..
Y = −

.
Y
.
Y TY − Y

(
(Y T .Y)2 +

.
Y T .Y

)
, with boundary conditions

{
Y (0) = Y0,

Y (1) = Y1,
(2.3)

is satis�ed. This kind of problem is known as a boundary value problem (BVP).

2.3 Single shooting method

The second-order ODE in problem (2.3) can be recast into a system of �rst-order ODEs. Let

Z1(t) = Y (t), Z2(t) =
.
Y (t) be the geodesic and its derivative, respectively, and let

Z(t) =
(
Z1(t)
Z2(t)

)
.

We get the initial value problem (we omit the dependence on t)

.
Z(t) =

(.
Z1.
Z2

)
=
(

Z2
−Z2Z

T
2Z1 − Z1

(
(ZT

1Z2)2 + ZT
2Z2

)) ,
with initial conditions Z(0) =

(
Z1(0)
Z2(0)

)
=
(
Y0
ξ

)
.

(2.4)

Here, ξ is the unknown such that Z1(1) = Y1. In practice, since we already have the explicit

formula (2.2) for the geodesic Z1(t), we do not need to solve the initial value problem (2.4).

The explicit formula for Z2 is just the derivative of Z1 with respect to t, namely,

Z2(t) = Q exp
([

Ω −KT

K On−p

]
t

)[
Ω
K

]
.

Now let us de�ne the function

F (ξ) = vec
(
Z1(1, ξ)− Y1

)
, (2.5)

where the dependence on ξ is explicit. Roughly speaking, this represents the mismatch be-

tween Z1(1), i.e., the geodesic at t = 1, and the boundary condition Y1. We want to �nd ξ∗

such that

F (ξ∗) = 0,

which can be solved by Newton’s method. To apply Newton’s method we need the Jacobian

matrix of F (ξ) with respect to ξ, denoted JξF . This actually reduces to JξZ1
, the Jacobian

matrix of Z1 with respect to ξ, since Y1 appearing in F (ξ) is not a function of ξ.

A pseudocode for the single shooting method is given in Algorithm 1. As stopping cri-

terion, the norm of F is often used; in Section 2.3.2, we consider the 2-norm of the update

δξ(k)
. In the following sections, we will explain in more detail the algorithmic components

of the single shooting method applied to the Stiefel manifold.

30

2.3. Single shooting method

Algorithm 1: Single Shooting on the Stiefel manifold

Given Y0, Y1;

Result: ξ∗ such that ExpY0(ξ∗) = Y1
Set ξ(k) = ξ(0)

;

while a stopping criterion is met do
Compute Jacobian matrix J

(k)
Z1

;

Compute F (k) = vec
(
Z

(k)
1 − Y1

)
;

Solve F (k) + Jξ
(k)

Z1
δξ(k) = 0 for δξ(k)

;

Update ξ(k) ← ξ(k) + δξ(k)
;

end

2.3.1 Parametrization of the tangent space

The tangent vector ξ belongs to Rn×p, but by inspecting its structure,

ξ = Y0Ω + Y0⊥K,

one can observe that it only depends on np− 1
2(p+1) parameters (the dimension of the Stiefel

manifold). Therefore we can express ξ as a function of these np− 1
2(p + 1) parameters. By

standard linear algebra arguments, it is possible to �nd a matrix B ∈ Rp2× 1
2p(p−1)

whose

columns form a basis of Sskew. This allows us to write the vectorization of Ω as

vec(Ω) = Bs,

for some s ∈ R
1
2p(p−1)

being a column vector representing Ω in the basis B of Sskew. The

vectorization of the matrix K is simply k = vec(K) ∈ R(n−p)p
. Hence we can collect the

coe�cients of ξ in a single vector

x =
(
s
k

)
∈ Rnp−

1
2p(p+1).

Let us call

A(x) =
[
Ω −KT

K On−p

]
the matrix in the argument of the exponential appearing in the geodesic (2.2). Then (2.2) can

be rewritten as

Z1(1, x) = Q exp(A(x))
[

Ip
O(n−p)×p

]
.

Equation (2.5) becomes

F (x) = vec
(
Z1(1, x)− Y1

)
, (2.6)

where we made clear the dependence on x. Newton’s method consists in solving successive

linearizations of this equation, i.e.,

F (x+ δx) = Z1(x+ δx)− Y1 = 0, (2.7)

where we have omitted the vec operator for readability.

31

2. Shooting methods on the Stiefel manifold

Here, the termZ1(x+δx) is the expression for the geodesic when we perturb the tangent

vector. From Z1(x+ δx) we can work out the Jacobian of Z1 with respect to x, denoted JxZ1
.

Applying matrix perturbation theory we obtain

Z1(x+ δx) = Z1(x) +Q D exp(A(x))
[
DA(x)[δx]

] [Ip
O(n−p)×p

]
+ o(‖δx‖), (2.8)

where the notation D exp(A(x))
[
DA(x)[δx]

]
denotes the Fréchet derivative of the matrix

exponential at A(x) in the direction of DA(x)[δx]. Clearly, a chain rule is involved in this

term, so we �rst need to �nd DA(x)[δx]. The perturbation of A(x) yields

A(x+ δx) = A(x) + DA(x)[δx] + o(‖δx‖).

Let blkvec be the operator that performs a block-wise vectorization of A(x), namely,

blkvec(A(x)) = blkvec
([

Ω −KT

K On−p

])
=

vec(Ω)
vec(K)

vec(−KT)
vec(On−p)

 =

Bs
k

−Πn−p,p k
O(n−p)2×1

=

B Op2×p(n−p)

Op(n−p)× 1
2p(p−1) Ip(n−p)

Op(n−p)× 1
2p(p−1) −Πn−p,p

O(n−p)2× 1
2p(p−1) O(n−p)2×p(n−p)

(
s
k

)
,

where Πn−p,p is the perfect shu�e matrix de�ned by

vec(XT) = Πn−p,p vec(X).

From the last equation we can identify the Jacobian matrix of A(x) with respect to x as

JxA(x) =

B Op2×p(n−p)

Op(n−p)× 1
2p(p−1) Ip(n−p)

Op(n−p)× 1
2p(p−1) −Πn−p,p

O(n−p)2× 1
2p(p−1) O(n−p)2×p(n−p)

 .

Hence vec(DA(x)[δx]) = JxA(x) δx. We still need a map that links the block-wise vectoriza-

tion blkdiag to the ordinary column-stacking vectorization vec. Since this mapping is linear,

it can be represented by a matrix T ∈ Rn2×n2

vec(DA(x)[δx]) = T · blkvec(DA(x)[δx]).

The perturbation of the matrix exponential yields

exp(A+ δA) = exp(A) + D exp(A)[δA] + o(‖δA‖),

where D exp(A)[δA] is the Fréchet derivative of the matrix exponential atA in the direction

of δA. Vectorizing D exp(A)[δA] we get

vec(D exp(A)[δA]) = JAexp(A) vec(δA),

32

2.3. Single shooting method

with JAexp(A) being the Jacobian of the matrix exponential. A closed-form expression for

JAexp(A) is given in [Hig08, NH95],

JAexp(A) =
(

exp(AT/2)⊗ exp(A/2)
)

sinch
(

1
2 [AT ⊕ (−A)]

)
,

where ⊕ denotes the Kronecker sum: AT ⊕ (−A) = AT ⊗ In − In ⊗ A, and sinch is the

hyperbolic sinc,

sinch(y) = sinh(y)/y.

Vectorizing the second term on the right-hand side of (2.8) and wrapping things up, we get

vec
(
QD exp(A(x))

[
DA(x)[δx]

] [Ip
O

])
=
([
Ip O

]
⊗Q

)
vec
(

D exp(A(x))
[
DA(x)[δx]

])
=
([
Ip O

]
⊗Q

)
JAexp(A) vec(DA(x)[δx])

=
([
Ip O

]
⊗Q

)
JAexp(A) T blkvec(DA(x)[δx])

=
([
Ip O

]
⊗Q

)
JAexp(A) T J

x
A(x) δx.

From the last equation we can identify the Jacobian matrix of Z1 with respect to x as

JxZ1 =
([
Ip Op×(n−p)

]
⊗Q

)
JAexp(A) T J

x
A(x). (2.9)

This means that the linearization of (2.7) yields

Z1(x) + JxZ1 δx− Y1 = 0,

i.e., the Newton update

JxZ1 δx = −F (x).

This is an overdetermined system to be solved for δx. Indeed, JxZ1
: Rnp−

1
2p(p+1) → Rnp, and

since for p > 1 one hasnp > np−1
2p(p+1), there are always more equations than unknowns.

The system is overconstrained, but Newton’s equation has a solution since F (x) = 0 is

assumed to have a solution.

2.3.2 The initial guess

It is very well known that Newton’s method has only local convergence properties, and in

general a su�ciently good initial guess is needed in order for the method to converge. In this

section, we describe the way we decided to initialize Newton’s method. We need to choose

an initial guess ξ(0)
su�ciently close to ξ∗. To this aim, we use a �rst-order approximation

of the matrix exponential exp(A) ≈ I +A in (2.6) and solve for ξ. This yields the �rst-order

approximation to the solution ξ∗ as

ξ̄ = Y1 − Y0.

Then we project it onto TY0St(n, p). We recall from Section 1.1.11 that the projection of a

vector ξ onto the tangent space to the Stiefel manifold at Y is given by

PY ξ = Y skew(Y Tξ) + (I − Y Y T) ξ.

The projection of ξ̄ onto the tangent space at Y0 yields

Pξ̄ = PY0(ξ̄) = Y0 skew
(
Y T

0 (Y1 − Y0)
)

+ (In − Y0Y
T

0)(Y1 − Y0) = Y1 − Y0 sym(Y T
0 Y1).

33

2. Shooting methods on the Stiefel manifold

To get ξ(0)
, we rescale this vector so that its norm is equal to the norm of ξ̄,

ξ(0) = ‖ξ̄‖
‖Pξ̄ ‖

Pξ̄ .

This procedure is illustrated in Figure 2.2.

Pξ̄TY0
St(n, p) Y0

St(n, p)
Y1

ξ̄

ξ(0)

Figure 2.2 – Initial guess for the single shooting method.

2.3.3 A smaller formulation

It can be shown that the geodesic problem on St(n, p) is actually equivalent to a geodesic

problem on St(2p, p) (see [EAS98, Ren13]). In the formulation above, the complexity of com-

puting the matrix exponential is O(n3), but if p � n then this smaller formulation can be

used and its computational cost is onlyO(p3). In practice, it makes sense to consider the for-

mulation on St(2p, p) only if p < n
2 . In this section, we show how this “baby” formulation

can be obtained.

Consider the same problem setting as in the previous sections, and let the QR factorization

of K be

K =
[
Q Q⊥

] [R
O(n−2p)×p

]
= QR,

where

[
Q Q⊥

]
∈ R(n−p)×(n−p)

is the orthogonal factor of K , with Q ∈ R(n−p)×p
and

Q⊥ ∈ R(n−p)×(n−2p)
orthonormal matrices, and R ∈ Rp×p is upper triangular.

In Appendix A.2 we show that

Y1 =
[
Y0 Y0⊥Q

]
exp

([
Ω −RT

R Op

])[
Ip
Op

]
. (2.10)

Here, our aim is to �nd Ω ∈ Rp×p and R ∈ Rp×p such that (2.10) holds true. Then, we can

reconstruct the tangent vector as ξ = Y0Ω + Y0⊥QR.

Let Y1 be decomposed in the basis

[
Y0 Y0⊥Q

]
, and let M and N be the components of

Y1 in this basis

Y1 = Y0M + Y0⊥QN. (2.11)

This implies that [
M
N

]
= exp

([
Ω −RT

R Op

])[
Ip
Op

]
. (2.12)

Left-multiplication of (2.11) by Y T
0 and Y T

0⊥ yields, respectively Y T
0 Y1 = M and Y T

0⊥Y1 =
QN . So one possible way to get N out of Y T

0⊥Y1 is to compute its QR factorization

[Q,N] = qr(Y T
0⊥Y1). (2.13)

34

2.3. Single shooting method

The remarkable fact is that (2.12) is a geodesic problem on St(2p, p) with base point

Ŷ0 =
[
Ip
Op

]
,

with ξ̂ = Ŷ0Ω + Ŷ0⊥R the tangent vector to St(2p, p) at Ŷ0, and arrival point

Ŷ1 =
[
M
N

]
.

Indeed, this problem setting yields the geodesic problem

Ŷ1 = [Ŷ0 Ŷ0⊥]︸ ︷︷ ︸
I2p

exp
([
Ω −RT

R Op

])[
Ip
Op

]
,

which is exactly (2.12).

This problem can be solved via the single shooting method described above to �nd ξ̂(k) =
Ŷ0Ω

(k) + Ŷ0⊥R
(k)

at a certain iteration k (a stopping criterion is needed here). The compo-

nents are given by Ω(k) = Ŷ T
0 ξ̂

(k)
, R(k) = Ŷ T

0⊥ξ̂
(k)

. Then the tangent vector ξ(k)
of the

original problem on St(n, p) can be recovered by

ξ(k) = Y0Ω
(k) + Y0⊥QR

(k),

where Q ∈ R(n−p)×p
is the orthonormal factor of Y T

0⊥Y1 as in (2.13).

2.3.4 Numerical example

As a concrete example to illustrate the single shooting algorithm, let us consider the Stiefel

manifold St(15, 4). We �x one point X = [I4 O11×4]T, while the other point Y is placed at

a distance L∗ = 0.75π from X . In this way, the points X and Y are not too far from each

other; indeed, they fall in the injectivity radius of St(n, p), which is lower bounded by 0.89π
[Ren13, Eq. (5.13)]. By de�nition of the injectivity radius, this guarantees the existence and

uniqueness of the minimizing geodesic betweenX and Y . By using single shooting, we want

to recover this distance.

To monitor the convergence behavior of single shooting, we consider the norm of the

update ‖δξ(k)‖2, as it appears in Algorithm 1, and stop the algorithm when 10−15
is reached.

Figure 2.3 reports on the convergence behavior. The quadratic convergence of single shooting

is clearly visible, and the threshold value of 10−15
is reached at the 5th iteration.

2.3.5 Some drawbacks

The local convergence behavior of Newton’s method behind single shooting is such that the

method will in general diverge unless the initial iterate is su�ciently close to a solution. Some

simple analysis for the Jacobian of the matrix exponential involved in the single shooting

method is provided in Appendix B.2.1. Moreover, unstable systems
1

remain di�cult to treat,

and Newton’s method might possibly show bad convergence due to strong nonlinearity of

the problem. These limitations make the single shooting method not very useful in practice.

1

Unstable system or ill-conditioned BVPs: small perturbations of the data (i.e., the boundary conditions)

cause big perturbations of the solution.

35

2. Shooting methods on the Stiefel manifold

Figure 2.3 – Convergence of the update norm ‖δξ(k)‖2 for single shooting on St(15, 4).

2.4 Multiple shooting method

A way to improve over single shooting is to consider a partition of the original interval

into many smaller subintervals, which leads us to the multiple shooting method. This slicing

permits to reduce the nonlinearity of the problem and improve numerical stability. As in

single shooting, there is also Newton’s method behind multiple shooting. The di�erence

is that many initial value problems are solved separately on all multiple shooting intervals.

The resulting system to be solved is larger, but the banded structure of the Jacobian can be

exploited. A thorough description of the multiple shooting method can be found in [SB91,

p. 516]. Here, we will specialize the method in the context of the geodesic problem on the

Stiefel manifold St(n, p).

Let X , Y be two points on a Stiefel manifold St(n, p). Consider a piecewise (or broken)

geodesic2
joining X to Y , having m− 1 geodesic segments. Let Σ

(k)
1 denote the point on the

Stiefel manifold on the kth subinterval, and Σ
(k)
2 the tangent vector to St(n, p) at Σ

(k)
1 . Let

Σ be the variable that collects the points and the tangent vectors for all k. The compatibility

conditions of the geodesic and its �rst derivative, plus the two boundary conditions denoted

by r1 and r2, can be encoded into a system of nonlinear equations to be solved for Σ

F (Σ) =

Z
(1)
1 −Σ(2)

1
Z

(1)
2 −Σ(2)

2
Z

(2)
1 −Σ(3)

1
Z

(2)
2 −Σ(3)

2
.
.
.

Z
(m−1)
1 −Σ(m)

1
Z

(m−1)
2 −Σ(m)

2
r1 = Σ

(1)
1 −X

r2 = Σ
(m)
1 − Y

= 0. (2.14)

2

For more details about the concept of broken geodesic, see Section 3.1.1 and Section 4.1.

36

2.4. Multiple shooting method

Here, as in (2.4), Z
(k)
1 denotes the geodesic, whereas Z

(k)
2 is the derivative of the geodesic

with respect to t. All the quantities Z
(k)
i and Σ

(k)
i , k = 1, . . . ,m− 1 and i = 1, 2, are to be

understood as vectorized quantities.

Figure 2.4 illustrates the variables (points and tangent vectors) involved in the multiple

shooting on the Stiefel manifold.

St(n, p)

Σ
(1)
1

Z
(1)
1

Σ
(2)
1

Z
(2)
1

Σ
(3)
1

Y

X
Σ

(1)
2

Σ
(2)
2

Σ
(3)
2

Z
(2)
2

Z
(1)
2

Figure 2.4 – Multiple shooting on the Stiefel manifold.

Now consider the perturbed system

F (Σ + δΣ) = 0, with δΣ =
[
δΣ(1) δΣ(2) · · · δΣ(m)

]T
.

A linearization of the previous equation gives

F (Σ) + JΣF · δΣ = 0, (2.15)

where JΣF ∈ R2mnp×2mnp
is a block Jacobian matrix. Each block JΣFk` ∈ Rnp×np is given by

JΣFkk = G(k), JΣFk,k+1 = −I2np, k = 1, . . . ,m− 1,

JΣFm,1 = C, JΣFm,m = D, JΣFk` = O2np otherwise.

Every G(k)
is itself a Jacobian matrix for each subinterval de�ned as

G(k) =

∂Z

(k)
1

∂Σ
(k)
1

∂Z
(k)
1

∂Σ
(k)
2

∂Z
(k)
2

∂Σ
(k)
1

∂Z
(k)
2

∂Σ
(k)
2

 =

JΣ1
Z1

JΣ2
Z1

JΣ1
Z2

JΣ2
Z2

 , (2.16)

where we omitted the superscript
(k)

in the last matrix for ease of notation. We refer the

reader to Appendix C for the explicit expressions of the Jacobian matrices appearing in (2.16).

The Jacobian matrices associated to the boundary conditions are given by

C =

∂r1
∂Σ

(1)
1

∂r1
∂Σ

(1)
2

∂r2
∂Σ

(1)
1

∂r2
∂Σ

(1)
2

 =
[
Inp Onp

Onp Onp

]
, D =

∂r1

∂Σ
(m)
1

∂r1
∂Σ

(m)
2

∂r2
∂Σ

(m)
1

∂r2
∂Σ

(m)
2

 =
[
Onp Onp

Inp Onp

]
.

37

2. Shooting methods on the Stiefel manifold

2.4.1 Condensing

The linear system (2.15) can be solved e�ciently thanks to the structure of JΣF , which allows

any δΣ(k)
, k = 2, . . . ,m, to be expressed as a function of δΣ(1)

[SB91, p. 519]. Eventually,

only one linear system of size 2np× 2np has to be solved to �nd δΣ(1)

M · δΣ(1) = −w,

where

M = C +D ·
1∏

k=m−1
G(k), w = F (m) +D ·

m−1∑
k=1

 m−1∏
`=k+1

G(`)

· Fk.
The other δΣ(k)

are obtained as

δΣ(k) = F (k−1) +G(k−1) · δΣ(k−1), k = 2, . . . ,m.

The complexity of multiple shooting with this condensing strategy is O(mn3p3).

2.4.2 Numerical example

Consider again the Stiefel manifold St(15, 4). Let X = [I4 O11×4]T, and let us place the

other point Y at a distance L∗ = 0.89π from X . By using multiple shooting, we want to

recover this distance. As number of points we choose m = 7, i.e., the path between X and

Y is cut into 6 equidistant subintervals.

To monitor the convergence behavior, two quantities have been considered:

• |Lk − L∗|, where Lk is the length of the piecewise geodesic at iteration k.

• ‖F (Σk)‖2, where F (Σk) is the nonlinear function de�ned by Equation 2.14.

Figure 2.5 reports on the convergence behavior. The quadratic convergence of multiple

shooting is clearly visible, and the tolerance of 10−15
is reached at the 7th iteration.

2.4.3 Open questions

As we have already mentioned in Section 2.3.5, it is very di�cult to say something on the

global convergence of Newton’s method. For local convergence, we have the result of the

Newton–Kantorovich theorem. In practical applications, a su�cient number of iterations in

the leapfrog algorithm (to be discussed in the next chapter) produces an iterate Σ(k)
which

satis�es the conditions of the Newton–Kantorovich theorem. One can observe that F (Σ(k))
tends to zero as leapfrog progresses. For this reason, leapfrog can be used to initialize multiple

shooting. We will see some concrete examples of this in Section 4.5.

38

2.4. Multiple shooting method

Figure 2.5 – Convergence of multiple shooting on St(15, 4).

39

Chapter3

The leapfrog algorithm as nonlinear

Gauss–Seidel

In the previous chapter, we have introduced some numerical algorithms to solve the geodesic

problem on the Stiefel manifold. In particular, we focused on shooting methods, and we

explored how they specialize to the Stiefel manifold, with corresponding advantages and

disadvantages.

Another method for �nding geodesics is the leapfrog algorithm introduced by L. Noakes

[Noa98]. This method has global convergence properties, yet convergence of leapfrog slows

down when the solution is approached [KN08, p. 2796]. Noakes also realized that his algo-

rithm was in some way imitating the Gauss–Seidel method [Noa98, p. 39]. The Gauss–Seidel

method is a well-known iterative method for solving a linear system of equations, and it

can be readily extended to nonlinear systems of equations [OR00, p. 219]. The link between

leapfrog and nonlinear Gauss–Seidel was not further investigated, since there is no trace of

this idea being developed in the other related papers [KN97, KN98a, KN98b, KN08].

In this chapter, we will prove convergence of leapfrog as a nonlinear block Gauss–Seidel

method. Even though our focus will be on St(n, p), most of our discussion may be generalized

to other embedded submanifolds.

3.1 Leapfrog algorithm

The main idea behind the leapfrog algorithm of Noakes [Noa98] is to exploit the success

of single shooting that we presented in Chapter 2 to construct a connecting geodesic when

X and Y are two close points on M. However, when X and Y are far apart, it is well

known that single shooting will have di�culty �nding the connecting geodesic. The leapfrog

algorithm cuts this global problem into several local problems, where intermediate points

Xi ∈ M are introduced between X and Y , for which the endpoint geodesic problem (2.4)

can be solved by single shooting. This is similar to multiple shooting except that there is no

explicit continuity equation and the geodesics are computed between Xi−1 and Xi+1, hence

they “skip” the middle point Xi. In multiple shooting, the continuity is enforced explicitly,

whereas in leapfrog it follows automatically from the minimization of the length functional

via a piecewise geodesic
1
. The algorithm then iteratively updates the piecewise geodesic to

obtain a globally smooth geodesic between X and Y . This idea is not new and goes back as

early as 1963 by Milnor [Mil63, III.§16].

1

This and other aspects are further discussed in Chapter 4.

41

3. The leapfrog algorithm as nonlinear Gauss–Seidel

3.1.1 Formal description of the algorithm

In this section, we describe the leapfrog algorithm by following the presentation in [Noa98].

Let M be a C∞ path-connected Riemannian manifold. Consider a piecewise (or broken)

geodesic ωX joining X0 to Xm−1, having m − 1 geodesic segments. Assuming Xi and

Xi+1 are su�ciently close to each other, ωX is uniquely identi�ed by the m-tuple X =
(X0, X1, . . . , Xm−1) ∈ Mm

, where Xi are the junctions of the geodesic segments. For

i = 1, . . . ,m− 2, each Xi is mapped onto the minimizing geodesic joining Xi−1 and Xi+1.

This achieves the largest possible decrease in length while keeping other variables �xed.

Though there are several choices to do this, leapfrog maps Xi onto the midpoint of the

geodesic joining Xi−1 and Xi+1. By iterating this procedure, the algorithm generates a

sequence Ω = {ωX(k) : [0, 1]→M : k = 0, 1, . . .} of broken geodesics whose lengths are

decreasing. Figure 3.1 illustrates one iteration of the leapfrog algorithm.

(1)

X
(0)
1

X
(0)
2

X0 Xm−1

(2)

X
(0)
1

X
(0)
2

X0 Xm−1

(3)

X
(0)
1

X
(0)
2

X
(1)
1

X0 Xm−1

(4)

X
(1)
1

X
(0)
2

X0 Xm−1

(5)

X
(1)
1

X
(0)
2

X
(1)
2

X0 Xm−1

(6)

X
(1)
1 X

(1)
2

X0 Xm−1

Figure 3.1 – Illustration of one full iteration of the leapfrog scheme for some non-Euclidean

metric (the lengths for the Euclidean metric clearly increase during iteration).

The leapfrog algorithm. Let M : M×M→M denote the midpoint map de�ned by

M(X,Y) = ExpX
(

1
2 LogX(Y)

)
,

where we have silently assumed that d(X,Y) < inj(M) so that the Riemannian logarithm

is well de�ned (see Section 2.1). One complete outer iteration (indexed by k = 1, 2, . . .) of

leapfrog comprises m− 2 inner iterations indexed by i = 1, . . . ,m− 2 that compute

X
(k)
i = M(X(k)

i−1, X
(k−1)
i+1). (3.1)

In other words, X
(k−1)
i is replaced by the midpoint X

(k)
i of the minimizing geodesic joining

X
(k)
i−1 and X

(k−1)
i+1 . This process is repeated until all points X

(k−1)
1 , . . . , X

(k−1)
m−2 have been

updated in order. See Figure 3.1 for one such iteration of the leapfrog algorithm. The iteration

is started withX(0) = (X(0)
0 , X

(0)
1 , X

(0)
2 , . . . , X

(0)
m−1), and repeated until a stopping criterion

is satis�ed. Since the endpoints do not change, we denote X0 = X
(k)
0 and Xm−1 = X

(k)
m−1

for all k.

It is clear that leapfrog implicitly generates a sequence

Ω = {ωX(k) : [0, 1]→M : k = 0, 1, . . .}

42

3.2. Convergence of leapfrog as nonlinear Gauss–Seidel

of broken geodesics ωX(k) that are de�ned from X(k)
. In addition, the length of ωX(k) is

non-increasing in k since at each step two neighboring geodesics get replaced by one global

geodesic connecting their endpoints.

3.1.2 Known results

Let Y be the set of all tuples X = (X0, X1, . . . , Xm−1) ∈ Mm
satisfying d(Xi−1, Xi) 6 δ

for all i = 1, 2, . . . ,m − 2. In [Noa98, §2], δ is related to the notion of Lebesgue number of

an open cover. Here, we can assume that δ is equal to
1
2 inj

(
M
)
, where inj is the injectivity

radius of the manifold (see Section 2.1). Let F : Y → Y represent one full leapfrog iteration

and let X∗ be the limit of any convergent subsequence of S = {Fk(X(0)) : k > 1} with

X(0) ∈ Y . By compactness, [Noa98] shows that at least one convergent subsequence of S
exists and that the limit of this subsequence are points that lie on a global geodesic connecting

the endpoints X0 and Xm−1. The following result is stated in [KN08, Theorem 5.2].

Theorem 3.1. S has a unique accumulation point.

The theorem guarantees convergence of the iterates X(k) = F(X(k−1)) with X(0) ∈ Y .

From [Noa98, Lemma 3.2] we also know that leapfrog will converge to a uniformly distributed

m-tuple X∗ = (X0, X
∗
1 . . . , X

∗
m−2, Xm−1), i.e., d(X∗i , X∗i+1) are all equal, for i = 0, . . . ,

m−2. In other words, at convergence, the geodesic segments connecting the junction points

will all have the same length. This aspect is further investigated in Section 4.3.

An apparent drawback in the current theory is that it lacks a classical convergence proof

as a �xed-point iteration method, although leapfrog can be easily recognized as such. In

the next section, we will provide the details of how to analyze leapfrog as a nonlinear block

Gauss–Seidel method.

3.2 Convergence of leapfrog as nonlinear Gauss–Seidel

LetM = St(n, p) with the Riemannian distance function d. The starting point is to realize

that leapfrog solves the optimization problem

min
X1,...,Xm−2∈St(n,p)

F (X1, . . . , Xm−2) with F (X1, . . . , Xm−2) =
m−1∑
i=1

d2(Xi−1, Xi),

by cyclically minimizing over each variable Xi for i = 1, 2, . . . ,m − 2. Speci�cally, at the

kth iteration, leapfrog updates X
(k−1)
i by the minimizer of the problem

min
Xi∈St(n,p)

F (X(k)
1 , . . . , X

(k)
i−1, Xi, X

(k−1)
i+1 , . . . , X

(k−1)
m−2)

= min
Xi∈St(n,p)

d2(X(k)
i−1, Xi) + d2(Xi, X

(k−1)
i+1) + constant.

(3.2)

Since d is the Riemannian distance function, this problem coincides with the de�nition of

the Riemannian center of mass
2,3

between the two points X
(k)
i−1 and X

(k−1)
i+1 ; see [Kar77,

2

The Riemannian center of mass was constructed in [GK73]. As H. Karcher points out in [Kar14], “Probably

in 1990 someone renamed it without justi�cation into karcher mean and references to the older papers were

omitted by those using the new name. (...) I think it is fair to say that a substantial amount of damage was caused

by the renaming”. For this reason, in this thesis, we decided to stick to the original name.

3

A numerical experiment involving the Riemannian center of mass on the Stiefel manifold is discussed in

Section 4.5.

43

3. The leapfrog algorithm as nonlinear Gauss–Seidel

Eq. (1.1)]. For the compact Stiefel manifold, a Riemannian center of mass always exists, but

it does not need to be unique [Ren13, p. 37]. However, a su�cient condition for uniqueness

is d(X(k)
i−1, X

(k−1)
i+1) < inj

(
St(n, p)

)
, where inj is the injectivity radius (see Section 2.1). This

is true if all Xi are close enough (we will make this more precise later). In that case, the

unique solution that solves (3.2) is the midpoint of the minimizing geodesic between X
(k)
i−1

and X
(k−1)
i+1 . Leapfrog now proceeds to update the Xi in a Gauss–Seidel fashion where the

most recent X
(k)
i−1 is used to update X

(k−1)
i . This kind of optimization scheme is known as

block coordinate descent method of Gauss–Seidel type [OR00].

3.2.1 Nonlinear block Gauss–Seidel method

Let us �rst consider the case of Gauss–Seidel in Rn. Let the variable x ∈ Rn be partitioned

as x = (x1, x2, . . . , xm), where xi ∈ Rqi and

∑
i qi = n, and group correspondingly the

components of F̃ : D ⊂ Rn → Rn into mappings F̃i : Rn → Rqi , i = 1, . . . ,m. The

minimizers of the function F̃ (x) satisfy the �rst-order optimality condition∇F̃ (x) = 0. Let

us de�ne Gi = ∇F̃i, i = 1, . . . ,m. If we interpret the linear Gauss–Seidel iteration in terms

of obtaining x
(k)
i as the solution of the ith equation of the system with the otherm−1 block

variables held �xed, then we may immediately consider the same prescription for nonlinear

equations [OR00, p. 219]. Then solving

Gi(x(k)
1 , . . . , x

(k)
i−1, y, x

(k−1)
i+1 , . . . , x(k−1)

m) = 0 (3.3)

for y and de�ning x
(k)
i = y describes a nonlinear block Gauss–Seidel process in which a com-

plete iteration requires the solution of m nonlinear systems of dimensions qi, i = 1, . . . ,m;

see [OR00, p. 225]. The convergence theory in [OR00] applies only to functions whose do-

main of de�nition is Euclidean space Rn. It cannot be applied to functions which are de�ned

on manifolds, such as the Riemannian distance d that is only de�ned on a subset of Rn,

namely, the embedded submanifold. For this reason, in the next section we will introduce a

smooth extension of the Riemannian distance function that can also be evaluated for points

that do not belong to the manifold.

3.2.2 Extended objective function

As we have seen above, leapfrog solves in an alternating way the problem

min
X1,...,Xm−2∈St(n,p)

F (X1, . . . , Xm−2) =
m−1∑
i=1

d2(Xi−1, Xi),

where X0 and Xm−1 are the �xed endpoints. This objective function F is only de�ned on

the manifold St(n, p). In this section, we will identify an extended objective function F̃ that

is de�ned on Rn×p for which the standard nonlinear block Gauss–Seidel method produces

the same iterates as the leapfrog algorithm. The key result of this section is stated in Propo-

sition 3.7. This will allow us to analyze the convergence of leapfrog using standard results

for nonlinear Gauss–Seidel.

We claim the extended cost function can be chosen as

min
X1,...,Xm−2∈Rn×p

F̃ (X1, . . . , Xm−2) =
m−1∑
i=1

d̃2(Xi−1, Xi),

44

3.2. Convergence of leapfrog as nonlinear Gauss–Seidel

with extended distance function

d̃2(X̃, Ỹ) =

d2(PStX̃,PStỸ) + ‖X̃ − PStX̃‖2F + ‖Ỹ − PStỸ ‖2F

if σp(X̃) > 0 and σp(Ỹ) > 0,

+∞ otherwise,

(3.4)

where PSt denotes the orthogonal projector onto the Stiefel manifold.

The condition σp(X̃) > 0 is equivalent to the existence of a unique best approximation of

X̃ in St(n, p). In other words, PStX̃ is well de�ned. Concretely, we can de�ne the projector

PSt : Rn×p → St(n, p) by PSt(Z) = Z(ZTZ)−1/2
, that is, the orthogonal factor of the polar

decomposition of Z (see Section 1.2.1.2, Equation (1.4)). Figure 3.2 illustrates the extended

distance function d̃2(X̃, Ỹ).

X Y

X̃

Ỹ

‖X̃ −X‖F ‖Ỹ − Y ‖Fd(X,Y)

Rn×p

St(n, p)

Figure 3.2 – The extended distance function.

3.2.3 Leapfrog as nonlinear Gauss–Seidel

In order to show that nonlinear Gauss–Seidel applied to F̃ is equivalent to leapfrog for F , we

need a few lemmas. The �rst one addresses the problem of how close the points on St(n, p)
need to be so that their connecting geodesic is unique.

Lemma 3.2. LetX,Y ∈ St(n, p) such that d(X,Y) 6 δg , with δg = 0.89π. Then there exists
a unique minimizing geodesic betweenX and Y . As a consequence, also the Riemannian center
of mass between X and Y exists and is uniquely de�ned.

Proof. By de�nition of injectivity radius, if d(X,Y) < inj(St(n, p)), then there is only one

minimizing geodesic betweenX andY . From [Ren13, Eq. (5.13)], we know that the injectivity

radius is lower bounded by 0.89π.

Remark 3.3. We can compare the Riemannian and Euclidean distances between X and

Y ∈ St(n, p) asymptotically in the following way
4
. From the expansion of the canonical

distance in (D.4), it is clear that

d(X,Y) 6 ‖X − Y ‖F +O(‖X − Y ‖2F) for ‖X − Y ‖F → 0.
4

For the Riemannian distance de based on the embedded metric, it is easy to see that ‖X−Y ‖F 6 de(X, Y)
since the Euclidean length of a geodesic on St(n, p) is always larger than that of a straight line.

45

3. The leapfrog algorithm as nonlinear Gauss–Seidel

By neglectingO(‖X−Y ‖2F), we thus have d(X,Y) . ‖X−Y ‖F. In particular, ‖X−Y ‖F 6
δg implies d(X,Y) . δg .

Let Xi−1, Xi+1 ∈ St(n, p). Denote

Fi(Y) = d2(Xi−1, Y) + d2(Y,Xi+1), F̃i(Ỹ) = d̃2(Xi−1, Ỹ) + d̃2(Ỹ , Xi+1),

where Xi−1, Xi+1 are constant and hidden in the notation.

Lemma 3.4. With the notation from above assume that d(Xi−1, Xi+1) 6 δg , then the ith
substep of leapfrog produces the same solution Y ∗ as the minimization of F̃i

arg min
Y ∈St(n,p)

Fi(Y) = arg min
Ỹ ∈Rn×p

F̃i(Ỹ) = Y ∗,

with Y ∗ the Riemannian center of mass on St(n, p) of Xi−1 and Xi+1.

Proof. Since d(Xi−1, Xi+1) 6 δg , Lemma 3.2 gives that the minimizer of Fi on St(n, p)
is unique and equals the Riemannian center of mass Y ∗. To show that it also equals the

minimizer of F̃i on Rn×p, take any Ỹ ∈ Rn×p. If σk(Ỹ) > 0, then we can write

Ỹ = Y +∆, Y = PStỸ ∈ St(n, p).

Using that Y ∗ is the minimizer of Fi on St(n, p), we thus get

F̃i(Ỹ) = d2(Xi−1, Y) + d2(Y,Xi+1) + 2‖∆‖2F > Fi(Y) > Fi(Y ∗).

The same inequality holds trivially if σk(Ỹ) = 0 since then F̃i(Ỹ) = +∞. Finally, since

F̃i(Y ∗) = Fi(Y ∗), we obtain that F̃i is also uniquely minimized by Y ∗.

Lemma 3.5. Suppose that for all iterations k = 0, 1, . . ., the iterates of leapfrog satisfy

d(X(k)
i−1, X

(k−1)
i+1) 6 δg,

for all i = 1, 2, . . . ,m − 2. Then, the leapfrog algorithm started in X(0) generates the same
iterates as the nonlinear Gauss–Seidel algorithm started in X(0) and applied to

min
X1,...,Xm−2∈Rn×p

F̃ (X1, . . . , Xm−2).

Proof. By induction. Suppose true until substep i−1 of iteration k. Then, leapfrog computes

the new iterate as

X
(k)
i = arg min

Y ∈St(n,p)
d2(X(k)

i−1, Y) + d2(Y,X(k−1)
i+1).

The uniqueness of the minimizer follows from Lemma 3.2 and d(X(k)
i−1, X

(k−1)
i+1) 6 δg . Like-

wise, nonlinear Gauss–Seidel computes

X̃
(k)
i = arg min

Ỹ ∈Rn×p
F̃ (X(k)

1 , . . . , X
(k)
i−1, Ỹ , X

(k−1)
i+1 , . . . , X

(k−1)
m−2),

and the uniqueness of the minimizer follows from our reasoning below. Both minimization

problems are the same as minimizing Fi and F̃i from Lemma 3.4 but with X
(k)
i−1 and X

(k−1)
i+1

taking the roles ofXi−1 andXi+1, respectively. By Lemma 3.4, the minimizers of both prob-

lems are the same and hence X
(k)
i = X̃

(k)
i . The above reasoning can also be applied to the

base case k = i = 1 since X
(1)
0 = X

(0)
0 . Hence, we have proven the result.

46

3.2. Convergence of leapfrog as nonlinear Gauss–Seidel

If the initial points are close enough, the iterates in leapfrog stay close.

Lemma 3.6. Let X(0) ∈ St(n, p)m be such that d(X(0)
i−1, X

(0)
i) 6 1

2δg for all 1 6 i 6 m− 1.
Then, leapfrog started atX(0) is well de�ned and all its iteratesX(k) satisfy for all 1 6 i 6 m−2
and k > 1

d(X(k)
i−1, X

(k)
i) = d(X(k)

i , X
(k−1)
i+1) 6 1

2δg. (3.5)

Proof. By induction. Suppose true for all substeps i until iteration k − 1 and until substep

i− 1 of iteration k. This implies in particular

d(X(k)
i−1, X

(k−1)
i) 6 1

2δg, d(X(k−1)
i , X

(k−1)
i+1) 6 1

2δg.

By triangle inequality for the Riemannian distance,

d(X(k)
i−1, X

(k−1)
i+1) 6 d(X(k)

i−1, X
(k−1)
i) + d(X(k−1)

i , X
(k−1)
i+1) 6 δg,

Lemma 3.2 gives that the leapfrog iteration is well de�ned and produces the unique minimizer

X
(k)
i = arg min

Y ∈St(n,p)
d2(X(k)

i−1, Y) + d2(Y,X(k−1)
i+1).

We thus have

d2(X(k)
i−1, X

(k)
i) + d2(X(k)

i , X
(k−1)
i+1) 6 d2(X(k)

i−1, X
(k−1)
i) + d2(X(k−1)

i , X
(k−1)
i+1) 6 1

2δ
2
g .

Since X
(k)
i is the midpoint of the geodesic connecting X

(k)
i−1 to X

(k−1)
i+1 , we also have

d(X(k)
i−1, X

(k)
i) = d(X(k)

i , X
(k−1)
i+1).

Combining these two results proves (3.5) until substep i at iteration k. Since X
(k+1)
0 =

X
(k)
0 = X

(0)
0 , the case for substep i = 1 and iteration k + 1 satisifes the same reasoning as

above. The same is true for the base case i = k = 1, which ends the proof.

Hence, combining Lemmas 3.5 and 3.6, we get our desired result:

Proposition 3.7. LetX(0) ∈ St(n, p)m be such that d(X(0)
i−1, X

(0)
i) 6 1

2δg for all 1 6 i 6 m.
Then the leapfrog algorithm applied to F is equivalent to the nonlinear Gauss–Seidel method
applied to F̃ .

We can now proceed and analyze the convergence of this nonlinear Gauss–Seidel method

using standard theory.

3.2.4 First-order optimality

From Proposition 3.7, we know that at iteration k > 1 and for subinterval i ∈ {1, . . . ,m−2},
leapfrog solves the following unconstrained optimization problem

min
Xi∈Rn×p

F̃ ki (Xi),

where the objective function is de�ned as

F̃ ki (Y) = d̃2(X(k)
i−1, Y) + d̃2(Y,X(k−1)

i+1).

47

3. The leapfrog algorithm as nonlinear Gauss–Seidel

Recall that X
(k)
i−1, X

(k−1)
i+1 ∈ St(n, p) are the neighboring points of Xi and that X

(k)
i−1 was

previously updated and that X
(k−1)
i+1 will be updated next.

Let us de�ne

Gi(Y) = ∇Y F̃ ki (Y) = ∇Y d̃2(X(k)
i−1, Y) +∇Y d̃2(X(k−1)

i+1 , Y).

At the minimizer Xi, the gradient of F̃ ki vanishes, i.e., Gi(Xi) = 0. Likewise, if we take all

the minimizers X = (X1, . . . , Xm−2) together, they will satisfy

G1(X) = ∇X1 d̃
2(X0, X1) +∇X1 d̃

2(X1, X2) = 0,
G2(X) = ∇X2 d̃

2(X1, X2) +∇X2 d̃
2(X2, X3) = 0,

.

.

.

Gm−2(X) = ∇Xm−2 d̃
2(Xm−3, Xm−2) +∇Xm−2 d̃

2(Xm−2, Xm−1) = 0.

This can be written compactly as G(X) = 0, where G is de�ned componentwise Gi : Rn×p →
Rn×p, for i = 1, . . . ,m− 2.

3.2.5 Known results on local convergence

Assuming convergence to the limit point X∗1 , X
∗
2 , . . . , X

∗
m−2, the asymptotic convergence

rate is determined by the spectral radius of a certain blockwise partitioning of the Hessian

of F̃ at this limit point.

Let {X(k)} ⊂ Rn be any sequence that converges to X∗. Then

R1{X(k)} = lim sup
k→∞

k

√
‖X(k) −X∗‖

is the root-convergence factor of the sequence [OR00, De�nition 9.2.1]. If I is an iterative

process with limit point X∗, and C(I, X∗) is the set of all sequences generated by I which

converge to X∗, then

R1(I, X∗) = sup
{
R1{X(k)} : {X(k)} ∈ C(I, X∗)

}
is the root-convergence factor of I at X∗.

Theorem 3.8 (Nonlinear block Gauss–Seidel theorem). Let G : D ⊂ R(m−2)np → R(m−2)np

be continuously di�erentiable in an open neighborhood B0 ⊂ D of a point X∗ ∈ D for which
G(X∗) = 0. Consider the decomposition of G′(X) = D − L − U into its block diagonal,
strictly lower-, and strictly upper-triangular parts, and suppose that D(X∗) is nonsingular
and ρ(MBGS(X∗)) < 1, where MBGS = (D − L)−1U . Then there exists an open ball
B = B(X∗, δ) in B0 such that, for any X0 ∈ B, there is a unique sequence {X(k)} ⊂ B
which satis�es the nonlinear Gauss–Seidel prescription. Moreover, limk→∞X

(k) = X∗ and
R1(I, X∗) = ρ(MBGS(X∗)).

Proof. As a direct extension of [OR00, Theorem 10.3.5].

This theorem shows the need for the Hessian of F̃ (i.e., G′) and its block D − L − U
decomposition. As we shall see, our matrixG′ is given by the sum of two matricesG′ = A+E,

where A is symmetric block tridiagonal and positive de�nite, and E can be regarded as a

perturbation matrix. Since it is very di�cult to compute the spectral radius ofMBGS
with this

48

3.2. Convergence of leapfrog as nonlinear Gauss–Seidel

perturbation E, we will not use Theorem 3.8 directly. Instead, we will use the Householder–
John theorem [Hac16, Corollary 3.42], which states that if G′ is positive de�nite, then the

MBGS
from Theorem 3.8 satis�es ρ(MBGS) < 1. In other words, (linear) block Gauss–Seidel

for a symmetric and positive de�nite G′ always converges monotonically in the energy norm

[Hac16, Theorem 3.53]. Therefore, we only need to restrict the perturbation E such that the

whole matrix G′ is symmetric and positive de�nite. In order to do that, we will also use a

block version of the Gershgorin circle theorem [FV62, Theorem 2].

3.2.6 Local convergence

As required in Theorem 3.8, we compute the Hessian as the Jacobian matrix G′(X), a square

matrix of size (m− 2)np. By symmetry of the Hessian, we can write this compactly as

G′ =

D10 +D12 LT

12
L12 D21 +D23 LT

23
L23 D32 +D34 LT

34
.
.
.

.
.
.

.
.
.

Lm−3,m−2 Dm−2,m−3 +Dm−2,m−1

 ,

where

Lij = ∇Xi∇Xj d̃2(Xi, Xj) and Dij = ∇2
Xi d̃

2(Xi, Xj)

denote the mixed and double derivatives
5
.

We now turn to the computation of these derivativesLij andDij . To that end, the follow-

ing lemma is convenient since it writes d̃2(Xi, Xj) as an expansion that does not explicitly

use the Riemannian distance.

Lemma 3.9. Let X̃, Ỹ ∈ Rn×p such that σp(X̃) > 0 and σp(Ỹ) > 0, then

d̃2(X̃, Ỹ) = ‖PStX̃ − PStỸ ‖2F − 1
2‖Ip −

(
PStX̃

)TPStỸ ‖2F
+ ‖X̃ − PStX̃‖2F + ‖Ỹ − PStỸ ‖2F +O(‖PStX̃ − PStỸ ‖4F).

(3.6)

Proof. See Appendix D.2.

In the following, denote δij = ‖Xi −Xj‖2 for any Xi, Xj ∈ St(n, p).

Lemma 3.10. Let Xi ∈ St(n, p). Then

Dij = 2Inp + 1
2 (XT

i ⊗Xi)Πp,n − 1
2 (Ip ⊗XiX

T
i) +∆ij , (3.7)

Lij = −2Inp + 1
2(XT

i ⊗Xi)Πp,n + 3
2(Ip ⊗XiX

T
i) + Λij , (3.8)

with ‖∆ij‖2 6 14δij + 10δ2
ij and ‖Λij‖2 6 11

2 δij + 10δ2
ij + 4δ3

ij . Here, Πp,n is the vec-
permutation matrix de�ned as the permutation matrix that satis�es vec(X) = Πn,p vec(XT);
see, e.g., [HS81, Eq. (5)].

Proof. See Appendix D.3.

5

Observe that Lij = LT
ji by equality of mixed derivatives but in general Dij 6= DT

ji since only the variable

corresponding to the �rst index is derived.

49

3. The leapfrog algorithm as nonlinear Gauss–Seidel

Our aim is to diagonalize G′. We will do this in a few steps. First, observe that G′ re-

mains block-tridiagonal if it is transformed using a compatible block diagonal matrix Q =
diag{Q1, Q2, . . . , Qm−2}:

QTG′Q =

QT

1(D10 +D12)Q1 QT
1L

T
12Q2

QT
2L12Q1 QT

2(D21 +D23)Q2 QT
2L

T
23Q3

QT
3L23Q2 QT

3(D32 +D34)Q3 QT
3L

T
34Q4

.
.
.

.
.
.

.
.
.

 ,
(3.9)

Here, the Q1, . . . , Qm−2 ∈ Rnp×np can be any orthogonal matrices. The lemma below

shows us how to choose these matrices so that we obtain diagonal blocks in QTG′Q, up to

�rst order in δij .

Lemma3.11. LetX⊥i ∈ Rn×(n−p) be such thatXT
i X
⊥
i = Op×(n−p) and (X⊥i)TX⊥i = I(n−p).

De�ne the orthogonal matrices

Q̄i =
[
Ip ⊗Xi Ip ⊗X⊥i

]
,

and similarly for Q̄j . Then, there exists an orthogonal matrix Q̂, only depending on n and p,
such that Qi = Q̄iQ̂ and Qj = Q̄jQ̂ satisfy

‖QT
iDijQi −D‖2 6 C

(ij)
D , D = diag

{
Ip(p−1)/2, 2 Inp−p(p−1)/2

}
, (3.10)

‖QT
jLijQi − L‖2 6 C

(ij)
L , L = diag

{
−Ip(p−1)/2, −2I(n−p)p, Op(p+1)/2

}
, (3.11)

where C(ij)
D = 14δij + 10δ2

ij and C
(ij)
L = 15

2 δij + 31
2 δ

2
ij + 14δ3

ij + 4δ4
ij .

Proof. See Appendix D.4.

The matrix Q̂ above is related to the diagonalizaton of the vec-permutation matrix Πp,p;

see (D.10) in Appendix D.4 for its de�nition. It is therefore also independent of Xi. This is a

crucial property to obtain the following result.

Lemma 3.12. De�ne δ = max06i6m−2 δi,i+1 and assume δ 6 1. Then the minimal eigenvalue
of G′ is bounded by

λmin(G′) > 2− 2 cos π
m−1 − 43δ − 90δ2.

As a consequence, G′ is symmetric and positive de�nite when

δ <
1

180
(√

2 569− 720 cos π
m−1 − 43

)
.

Proof. From Lemma 3.11, recall the diagonal matrices D and L, and the orthogonal matri-

ces Q1, . . . , Qm−2. De�ne Q = diag{Q1, Q2, . . . , Qm−2}. Substituting the nonzero blocks

in (3.9) by

QT
i (Di,i−1 +Di,i+1)Qi = 2D + Eii, QT

i+1Li,i+1Qi = L+ Ei,i+1,

we can write QTG′Q as

QTG′Q =

2D L
L 2D L

.
.
.

.
.
.

.
.
.

+

E11 ET
12

E12 E22 ET
23

.
.
.

.
.
.

.
.
.

 =: A+ E. (3.12)

50

3.2. Convergence of leapfrog as nonlinear Gauss–Seidel

Equation (3.12) is an approximate tridiagonalization of the matrix G′. Observe that the sym-

metric matricesA andE have compatible block partitioning. Furthermore, from Lemma 3.11,

we get immediately that

‖Eii‖2 6 28δ + 20δ2 =: CD, ‖Ei,i+1‖2 6 15
2 δ + 31

2 δ
2 + 14δ3 + 4δ4 =: CL.

We will regard QTG′Q as an O(δ) perturbation of A. Using properties of Kronecker

products, we can write

A = 2Im−2 ⊗D +M ⊗ L, M =

0 1

1 .
.
.

.
.
.

.
.
.

.
.
. 1

1 0

 ∈ R(m−2)×(m−2). (3.13)

Thanks to the Kronecker structure in (3.13) and the diagonal matrices D and L, the eigen-

values of A are easily determined as

λjk = 2dj + µk`j , j = 1, . . . , np, k = 1, . . . ,m− 2,

where dj and `j are the diagonal entries ofD and L, respectively, and µk are the eigenvalues

of the Toeplitz matrix M . Using [Gov94, Eq. (2.7)], we �nd

µk = −2 cos kπ
m−1 , k = 1, . . . ,m− 2.

Together with (3.10) and (3.11), this allows us to determine that the minimal value among all

λjk corresponds to j = 1 and k = m− 2. We thus obtain

λmin(A) = 2− 2 cos π
m−1 > 0 for all m > 2.

By Weyl’s inequality [SS90, Corollary 4.9], λmin(G′) = λmin(A + E) > 0 is guaranteed if

‖E‖2 < λmin(A). To bound ‖E‖2, we use a block version of the Gershgorin circle theorem

(see [FV62, Theorem 2] and also [Tre08, Remark 1.13.2]). Applied to the symmetric block

tridiagonal matrix E, it guarantees that its eigenvalues are included in the union of intervals

m−2⋃
i=1

np⋃
k=1

[ε(i)
k −Ri, ε

(i)
k +Ri], Ri = ‖Ei−1,i‖2 + ‖ET

i,i+1‖2 6 2CL,

where ε
(i)
k is the kth eigenvalue ofEii. These eigenvalues ε

(i)
k are all bounded in magnitude by

CD . Hence ‖E‖2 6 CD+2CL = 43δ+51δ2+28δ3+8δ4
. Since δ < 1, it is easily veri�ed that

‖E‖2 6 43δ+90δ2
and thus the matrix G′ remains positive de�nite if 43δ+90δ2 < λmin(A),

i.e.,

δ <
1

180
(√

2 569− 720 cos π
m−1 − 43

)
.

All put together, we have the �nal result of local convergence.

Theorem3.13. If the leapfrog algorithm is startedwith δ satisfying the condition of Lemma 3.12,
then it converges to the unique length-minimizing geodesic connectingX0 andXm−1, provided
that the initial intermediate points are su�ciently close to that geodesic.

51

3. The leapfrog algorithm as nonlinear Gauss–Seidel

Proof. We use [Hac16, Corollary 3.42] which states that if G′ is positive de�nite and can be

split into the sum of an arbitrary positive de�nite matrix and an arbitrary symmetric matrix,

then the scalar Gauss–Seidel converges, i.e., ρ(MBGS) < 1, and the convergence is monotone

with respect to the energy norm ‖·‖G′ . By [Hac16, Theorem 3.53], we know that this theorem

remains valid for any block version.

Now, the splitting (3.12) has exactly the form prescribed by [Hac16, Corollary 3.42], be-

causeA is positive de�nite andE is symmetric. By Lemma 3.12, we know thatG′ remains pos-

itive de�nite if δ < 1
180

(√
2 569− 720 cos π

m−1 − 43
)

. Under these conditions, the leapfrog

algorithm converges as a block Gauss–Seidel method to the length-minimizing geodesic con-

necting X0 and Xm−1.

3.3 Some observations and open problems

For m large, Lemma 3.12 gives that G′ is positive de�nite when δ . π2/43m2
. Let d0 =

‖X0−Xm−1‖2 be the distance between the two endpoints. Then by equidistant partitioning

of the intermediate points, one has δ ' d0/m. To guarantee a positive de�nite G′, we would

then need d0/m . π2/43m2
which implies m . 0.23/d0.

This result is unsatisfactory, since it would have been desirable to guarantee positive

de�niteness of QTG′Q = A + E with orthogonal Q by increasing the number of points

m given a �xed d0. Unfortunately, we cannot guarantee this with our proof. The problem

is that ‖E‖2 = O(δ) whereas λmin(A) = O(1/m2), which lead to our condition that m
needed to be smaller than some �xed fraction of the original distance d0. If ‖E‖2 = O(δ2),

then there would be no condition on m since δ2 ' d2
0/m

2 . 1/m2
is su�cient to guarantee

λmin(A+E) > 0. However, it would still not be satisfactory since the perturbation does not

lead to an improvement with increasing m, for which one probably needs ‖E‖2 = O(δ3).

As we show below, there is strong numerical indication that with our choice of extended

distance function this is not the case.

Numerical experiments reported in Figure 3.3 suggest that the minimal eigenvalues of G′
and A di�er by O(δ2), whereas our perturbation analysis only showed ‖E‖2 = O(δ). It is

however not trivial to prove this result. Indeed, up to �rst order, we can study the eigenvalues

of the symmetric matrix A+ E by using the derivative formula [SS90, Theorem 2.3]

λmin(A+ E) = λmin(A) + vTminEvmin +O(‖E‖2), (3.14)

where λmin(A) is assumed to be isolated (as it is the case) and vmin is its associated eigenvec-

tor. One possibility to improve on our bounds, at least asymptotically, would be to prove that

|vTminEvmin| = O(δ3). However, in the same �gure, |vTminEvmin| seems to be again O(δ2).

In addition, all these conclusions remain true in the limiting geodesic.

Another problem with the matrixA and G′ is that it has a bad spectral gap γ (i.e., the dif-

ference of smallest and second smallest eigenvalue) when m grows. Numerical observations

suggest that the spectral gap might be O(1/m) which complicates non-asymptotic bounds.

As a last remark, one could resort to a more general theory for the convergence of nonlin-

ear block Gauss–Seidel for a quasi-convex objective function [GS00], which requires quasi--

convexity for each Xi alone. Looking at the Hessian G′ where all Xj except Xi are constant,

the only block that is left in the matrix G′ is the diagonal one, namely Di,i−1 +Di,i+1. Using

Lemma 3.11, we immediately get the eigenvalues of this block. Now, for C
(ij)
D < 1 in (3.10)

we get strong convexity in Xi alone. One problem with this approach is that the feasible set

has to be a Cartesian product of convex subsets of Rn×p. Moreover, the result in [GS00] only

52

3.4. Numerical experiments

Figure 3.3 – Eigenvalue perturbations – not

at the limiting geodesic.

Figure 3.4 – Eigenvalue perturbations – at

the limiting geodesic.

guarantees subsequence convergence, and there is no rate of convergence or contraction rate

for the whole sequence. Hence the convergence behavior could also be slower than linear.

3.4 Numerical experiments

As a concrete example to demonstrate the leapfrog algorithm, let us consider the Stiefel man-

ifold St(12, 3). We �x one point X = [I3 O9×3]T, while the other point Y is placed at the

distance L∗ = 0.95π from X . This is done by creating a tangent vector to St(12, 3) at X
of length L∗, and then mapping it to St(12, 3) via the Riemannian exponential (2.2). For this

choice of L∗, single shooting will not work (recall that the injectivity radius on St(n, p) is

at least 0.89π). We want to recover this distance using the leapfrog algorithm and study its

convergence.

For each value of m ∈ {10, 20, 50, 100}, we construct an initial guess X(0)
by placing

m − 2 intermediate points randomly along the linear segment connecting X and Y in the

embedding space, and projecting them to the Stiefel manifold. We then apply leapfrog for

300 iterations and monitor the convergence behavior of

err-k = ‖X(k) −X∗‖F,

where X∗ is the solution of leapfrog (i.e., a uniformly distributed tuple corresponding to the

global geodesic that was constructed above), andX(k)
is the approximate solution at iteration

k of leapfrog. This is illustrated in Figure 3.5, from which it is clear that for large m leapfrog

always converges albeit very slowly.

Next, we apply leapfrog for 50 iterations and for each m ∈ {4, 6, 8, 10, . . . , 100} we

repeat this experiment for 100 random initializations of the initial guess X(0)
. For each ex-

periment i, we de�ne the error reduction rate
6

as

µ
(i)
k = err-(k + 1)

err-k
, for k = 0, 1, . . . , 49, i = 1, . . . , 100,

and we compute the worst and the median reduction rates across all the experiments, namely,

maxi,k{µ
(i)
k } and medi maxk{µ

(i)
k }. Since during the �rst iterations leapfrog is faster, we also

compute the convergence factor given by maxi{µ(i)
0 }.

6

In the limit k →∞, this gives the asymptotic Q-rate of convergence of the sequence.

53

3. The leapfrog algorithm as nonlinear Gauss–Seidel

Figure 3.5 – Convergence behavior of err-k
for increasing values of m.

Figure 3.6 – Boxplot of maxk{µ
(i)
k } for in-

creasing values of m.

From Table 3.1, we see that the convergence of leapfrog deteriorates as m increases but

it remains strictly smaller than 1. For small values of m, maxi{µ(i)
0 } and maxi,k{µ

(i)
k } are

signi�cantly di�erent, whereas for large values of m, they are quite similar. The same con-

clusion can be reached from Figure 3.6 where boxplots show the dispersion and skewness in

the µ
(i)
k . Clearly, the convergence factors become very concentrated for large m.

Table 3.1 – Values of maxi{µ(i)
0 }, maxi,k{µ

(i)
k } and medi maxk{µ

(i)
k } versus number of

points m, for the experiment described in Section 3.4.

m 4 6 8 10 15 20 30

maxi{µ(i)
0 } 0.5577 0.7058 0.7829 0.8296 0.8604 0.8824 0.8980

maxi,k{µ
(i)
k } 0.8776 0.9443 0.9671 0.9781 0.9843 0.9881 0.9906

medi maxk{µ
(i)
k } 0.8774 0.9443 0.9671 0.9781 0.9843 0.9881 0.9906

m 40 50 60 70 80 90 100

maxi{µ(i)
0 } 0.9390 0.9573 0.9728 0.9799 0.9843 0.9870 0.9888

maxi,k{µ
(i)
k } 0.9836 0.9799 0.9898 0.9940 0.9959 0.9969 0.9976

medi maxk{µ
(i)
k } 0.9822 0.9790 0.9898 0.9940 0.9958 0.9968 0.9975

54

Chapter4

Extensions on leapfrog

In this chapter, we recall and work on some concepts that relate to the original de�nition of

distance on a Riemannian manifoldM. As we have seen in Section 1.1.10, the Riemannian

distance between two points is de�ned as the minimum value of the length functional over

the set of all curves inM joining those two points. We will have a closer look at what the

length and energy functionals are and how they can be useful in the context of numerical

algorithms that calculate the Riemannian distance. Most of these concepts go back to Milnor

[Mil63], and the leapfrog algorithm of Noakes also builds upon these notions.

4.1 Broken geodesics, length and energy functional

LetM be a Riemannian manifold, andX0,Xm−1 two points ofM. Consider a broken geodesic
connecting X0 and Xm−1, identi�ed by the m-tuple

X ≡ (X0, . . . , Xm−1) ∈Mm.

From [Noa98, De�nition 3.2], the curve ωX(t) : [0, 1]→M is de�ned as

ωX(t) = γi

(
t L(X)−

∑i−1
j=1 d(Xj−1, Xj)

d(Xi−1, Xi)

)
,

with γi : [0, 1]→M being the minimizing geodesic fromXi−1 toXi. Figure 4.1 provides an

illustration of a broken geodesic through four points.

X1

X2

X3

γ1(t) γ2(t) γ3(t)X0

Figure 4.1 – A broken geodesic ωX .

The length functional is given by the sum of the lengths of all geodesic segments, namely,

L(X) =
m−1∑
i=1

d(Xi−1, Xi). (4.1)

55

4. Extensions on leapfrog

The energy functional is de�ned as [Mil63, III.§16]

E(X) =
m−1∑
i=1

d2(Xi−1, Xi)
ti − ti−1

,

where t ∈ [ti−1, ti], ti, and the junction times

ti =
∑i
j=1 d(Xj−1, Xj)

L(X) , i = 1, . . . ,m− 1, t0 = 0. (4.2)

If the parameter t is proportional to arc-length along ωX , then one has the equality L2(X) =
E(X) [Mil63, III.§12]. Indeed, using the above de�nitions, one has

E(X) =
m−1∑
i=1

d2(Xi−1, Xi)∑i

j=1 d(Xj−1,Xj)
L(X) −

∑i−1
j=1 d(Xj−1,Xj)

L(X)

= L(X)
m−1∑
i=1

d2(Xi−1, Xi)
d(Xi−1, Xi)

= L2(X).

The important Corollary 12.3 in [Mil63, p. 72] states that a path ωX is a critical point for the
energy functional E if and only if ωX is a geodesic.

4.2 Comparison between steepest descent and leapfrog

In this section, we formulate the problem of minimizing the energy functional from a steepest

descent point of view. Given the endpointsX0 andXm−1, we want to �nd the (m−2)-tuple

of junction points X ≡ (X1, . . . , Xm−2) such that

min
X∈Mm−2

E(X), with X ≡ (X0,X, Xm−1).

Since Mm−2
is a Cartesian product of M, the Riemannian gradient of E(X) is an (m −

2)-tuple of tangent vectors at the junction points

gradXE(X) =
(
gradX1E(X), . . . , gradXm−2E(X)

)
. (4.3)

From [Kar77, Eq. (1.2.1)], we know that the Riemannian gradient of the Riemannian distance

squared is given by

gradX d2(X,Y) = −2 LogX(Y), (4.4)

where LogX(Y) is the Riemannian logarithm of Y at X . By using this result, each gradient

in the tuple (4.3) is given by

gradXiE(X) = −2
(

LogXi(Xi−1)
ti − ti−1

+
LogXi(Xi+1)
ti+1 − ti

)
, i = 1, . . . ,m− 2,

or, equivalently,

gradXiE(X) = −2L(X)
(

LogXi(Xi−1)
d(Xi−1, Xi)

+
LogXi(Xi+1)
d(Xi, Xi+1)

)
, i = 1, . . . ,m− 2.

The steepest descent method reads: for k > 0, until a stopping criterion is met, compute

X
(k+1)
i = Exp

X
(k)
i

(α(k)η
(k)
i), i = 1, . . . ,m− 2, (4.5)

56

4.2. Comparison between steepest descent and leapfrog

where η
(k)
i = − grad

X
(k)
i

E(X(k)) ∈ T
X

(k)
i

M and α(k)
is the step size, which is computed

via a line-search technique.

Using the same notation, we can formally express the leapfrog update as in (4.5). Recall

from Section 3.1.1 that the midpoint map M :M×M→M is de�ned by

M(X,Y) = ExpX
(

1
2 LogX(Y)

)
.

One complete iteration (indexed by k) of leapfrog comprises m− 2 inner iterations, indexed

by j. Starting from X(0) =
(
X

(0)
0 , X

(0)
1 , X

(0)
2 , . . . , X

(0)
m−1

)
, for k > 0, until a stopping

criterion is met, leapfrog computes

X
(k+1)
j = M

(
X

(k+1)
j−1 , X

(k)
j+1

)
, η

(k+1)
j = Log

X
(k)
j

X
(k+1)
j ,

for j = 1, . . . ,m − 2. Numerical experiments show that the sequence of update directions

{η(k)}, with η(k) =
(
η

(k)
1 , η

(k)
2 , . . . , η

(k)
m−2

)
, generated by the leapfrog algorithm is gradient

related1
, namely for any subsequence {X(k)}k∈K of {X(k)} that converges to a non-critical

point of E, the corresponding subsequence {η(k)}k∈K is bounded and satis�es

lim
k→∞

sup
k∈K

〈
gradX(k)E(X(k)), η(k)

〉
< 0. (4.6)

However, the uniform angle condition from [BAC18, Lemma 2.10] is not satis�ed.

We emphasize that steepest descent, in contrast to leapfrog, does not converge to a uni-

formly distributed tuple (see Chapter 3). Indeed, there is nothing in the theory of steepest

descent that would imply it to converge to a uniformly distributed tuple, whereas leapfrog

instead makes the speci�c choice of the midpoint map. In the next section, we will illustrate

this di�erence with a concrete example.

4.2.1 Steepest descent on the unit sphere

For an easier comparison, we detail the derivation of the steepest descent direction and the

leapfrog direction for the unit sphere Sn−1
endowed with the standard inner product on Rn.

Geodesics are given by

x(t) = x cos(‖ .x0‖ t) +
.
x0
‖ .x0‖

sin(‖ .x0‖ t),

where x ≡ x(0) and
.
x0 ≡

.
x(0). Therefore the Riemannian exponential at x is

y = Expx(.x0) = x(1) = x cos(‖ .x0‖) +
.
x0
‖ .x0‖

sin(‖ .x0‖),

and the corresponding Riemannian logarithm is

Logx(y) = .
x0 = arccos(xTy) Px y

‖Px y‖
,

where y ≡ x(1) and Px is the projector onto

(
span(x)

)⊥
, i.e., Px = I − xxT.

Figure 4.2 provides an illustration of these objects for the unit sphere S2
.

1

See De�nition 1.37. For an illustration of this concept, we refer the reader to Figure 1.6.

57

4. Extensions on leapfrog

TxS
2

S2

.
x0

x

y

Figure 4.2 – Illustration of a sphere S2
with its tangent plane at x, the geodesic connecting

x and y, and the corresponding tangent vector.

The distance between two points x, y ∈ Sn−1
is the norm of Logx(y), i.e.,

d(x, y) = ‖Logx(y)‖ = arccos(xTy).

Therefore the Euclidean gradient of d2(x, y) with respect to x is

∇xd2(x, y) = −2 arccos(xTy) y√
1− (xTy)2

.

The Riemannian gradient is given by a projection of the Euclidean gradient onto TxS
n−1

Px∇xd2(x, y) = −2 arccos(xTy) Px y√
1− (xTy)2

= −2 Logx(y).

Incidentally, this result veri�es (4.4) for the particular case of Sn−1
.

Example. Consider a tuple X = (x0, x1, x2) on the unit sphere Sn−1
. The associated

energy functional is

E(X) = L2(X) =
(
d(x0, x1) + d(x1, x2)

)2
,

whose Riemannian gradient with respect to the junction point x1 is

gradx1E(X) = −2
(
d(x0, x1) + d(x1, x2)

)(Logx1(x0)
d(x0, x1) +

Logx1(x2)
d(x1, x2)

)

= −2
(
arccos(xT0x1) + arccos(xT1x2)

)(Px1x0
‖Px1x0‖

+ Px1x2
‖Px1x2‖

)
= −2

(
arccos(xT0x1) + arccos(xT1x2)

)
Px1

(
x0

‖Px1x0‖
+ x2
‖Px1x2‖

)
.

Then steepest descent uses the direction η = − gradx1E(X).

58

4.2. Comparison between steepest descent and leapfrog

For a direct comparison, let us compute the leapfrog update vector. With the tangent

vector

.
x0 = Logx0(x2) = arccos(xT0x2) Px0x2

‖Px0x2‖
,

the midpoint map gives the new point

x̃1 = Expx0

(1
2
.
x0
)

= x0 cos
(1

2‖
.
x0‖

)
+

.
x0
‖ .x0‖

sin
(1

2‖
.
x0‖

)
= x0 cos

(1
2 arccos(xT0x2)

)
+ Px0x2
‖Px0x2‖

sin
(1

2 arccos(xT0x2)
)

= x0

√
xT0x2 + 1

2 + Px0x2
‖Px0x2‖

√
1− xT0x2

2 ,

where we used trigonometric formulas to develop the second-last line. Finally, the leapfrog

update vector is given by

ηlf = Logx1(x̃1) = arccos(xT1x̃1) Px1 x̃1
‖Px1 x̃1‖

.

This example shows that the direction of the leapfrog update is di�erent from the direction

of steepest descent.

To illustrate this di�erence even further, let us focus on the special case of the unit sphere

S2
embedded in R3

. The points on S2
are parametrized according to spherical coordinates,

namely,

xi =

sinφi cos θi
sinφi sin θi

cosφi

 , θi ∈ [0, 2π), φi ∈ [0, π).

Here, θ is the azimuthal angle, while φ is the polar angle. Let us �x some θ0, φ0 for x0 and

θ2, φ2 for x2, and let θ1 ∈ [0, 2π) and φ1 ∈ (φ0, φ2). Figure 4.3 shows the Riemannian

gradient vector �eld (in blue) and the leapfrog update vector �eld (in red) for some points on

the unit sphere S2
. The thick green line is the minimizing geodesic connecting x0 and x2.

Let us de�ne the quantity

α̂ =
〈

gradx1E(x1)
‖ gradx1E(x1)‖ ,

ηlf
‖ηlf‖

〉
,

which provides a measure of the angle between the Riemannian gradient gradx1E(x1) and

the leapfrog update vector ηlf . A value of α̂ equal to zero means that these two directions are

perpendicular to each other. In Figure 4.4, the quantities ‖gradX1E(X1)‖ and α̂ are plotted

as a function of θ1, φ1.

From Figures 4.3 and 4.4 it is evident that if x1 approaches the geodesic, then α̂ → 0,

in other words, the vectors gradx1E(x1) and ηlf are nearly perpendicular. As we mentioned

above, this situation is due to the fact that the two methods try to achieve two di�erent aims:

steepest descent is just looking for the minimizing geodesic, no matter the location of x1,

while leapfrog also tries to place x1 at the midpoint of the geodesic.

59

4. Extensions on leapfrog

Figure 4.3 – Gradient and leapfrog vector �elds on the unit sphere S2
.

-0.5 0 0.5 1 1.5

1

1.5

2

2.5

1

2

3

4

5

6

-0.5 0 0.5 1 1.5

1

1.5

2

2.5

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

Figure 4.4 – Contours on S2
for the gradient norm and α̂ as a function of θ1, φ1.

60

4.2. Comparison between steepest descent and leapfrog

4.2.2 Gradient-related sequence in Euclidean space

In this section, we will explicitly verify that, in a Euclidean space with the standard inner

product 〈x, y〉 = xTy, the sequence of update directions generated by the leapfrog algorithm

is gradient related. In other words, we will verify that the term 〈gradX(k)E(X(k)), η(k)〉
appearing in (4.6) is strictly negative for all k > 1.

The motivation to do this comes from the fact that, for embedded submanifolds with a

Riemannian metric inherited from the embedding space, the Euclidean distance is equal to

the Riemannian distance up to third-order terms (see Appendix D.1).

Given x, y ∈ Rn, the logarithm Logx(y) is the vector pointing to y with base point x,

namely,

Logx(y) = y − x.

As usual, the distance between x and y is the norm of the logarithm

d(x, y) = ‖Logx(y)‖ = ‖y − x‖,

whose Euclidean gradient with respect to x is

∇xd(x, y) = −Logx(y)
d(x, y) = − y − x

‖y − x‖
,

Now let us consider a piecewise path (a, x, b) in R2
, as illustrated in Figure 4.5.

γ

y

x

a

x

b

ηlf
a− x b−

x

M(a, b)

∇xE(x)

Figure 4.5 – Leapfrog update vector in R2
.

The energy of this path is given by

E(x) = L2(x) =
(
‖a− x‖+ ‖b− x‖

)2
.

The gradient of E(x) with respect to x is given by

∇xE(x) = −2
(
‖a− x‖+ ‖b− x‖

) (a− x
‖a− x‖

+ b− x
‖b− x‖

)
.

Observe that the direction of∇xE(x) coincides with the direction of the angle bisector of γ,

where γ denotes the angle opposite side b− a (see Figure 4.5).

61

4. Extensions on leapfrog

The midpoint map is simply given by

M(a, b) = a+ b

2 ,

and hence the leapfrog update vector is

ηlf = LogxM(a, b) = a+ b

2 − x.

We want to check whether the quantity α̂ = 〈∇xE(x), ηlf〉 is strictly negative or not.

α̂ = −2
(
‖a− x‖+ ‖b− x‖

)︸ ︷︷ ︸
=:C>0

〈
a− x
‖a− x‖

+ b− x
‖b− x‖

,
a+ b

2 − x
〉

= −2C
(〈a− x, a+ b〉

2‖a− x‖ − 〈a− x, x〉
‖a− x‖

+ 〈b− x, a+ b〉
2‖b− x‖ − 〈b− x, x〉

‖b− x‖

)
.

After some manipulations, we get

α̂ = −2C
(
‖a‖2 + 2‖x‖2 − 3〈a, x〉+ 〈a, b〉 − 〈b, x〉

2‖a− x‖ + ‖b‖
2 + 2‖x‖2 − 3〈b, x〉+ 〈a, b〉 − 〈a, x〉

2‖b− x‖

)
.

Using the law of cosines ‖a−x‖2 = ‖a‖2 +‖x‖2−2〈a, x〉, ‖b−x‖2 = ‖b‖2 +‖x‖2−2〈b, x〉,
and the properties of the inner product 〈a, b〉−〈a, x〉−〈b, x〉+‖x‖2 = 〈a, b−x〉−〈x, b−x〉 =
〈a− x, b− x〉 = ‖a− x‖‖b− x‖ cos γ, one can obtain

α̂ = −2C
(
‖a− x‖2 + ‖a− x‖‖b− x‖ cos γ

2‖a− x‖ + ‖b− x‖
2 + ‖a− x‖‖b− x‖ cos γ

2‖b− x‖

)

= −2C
(‖a− x‖+ ‖b− x‖ cos γ

2 + ‖b− x‖+ ‖a− x‖ cos γ
2

)
= −C2(1 + cos γ).

Finally, one gets the condition

−C2(1 + cos γ) < 0 ⇐⇒ (1 + cos γ) > 0 ⇐⇒ γ 6= π.

Thus, when considering Euclidean space, the sequence of update directions generated by the

leapfrog algorithm is always gradient related, unless x1 lies already on a geodesic, which

is the case when γ = π. But this is the case of a critical point, to which the de�nition of

gradient-related sequence does not apply. Indeed, in such a case, the problem is already

solved and there is nothing to do.

What we did in the last section is indeed a big simpli�cation. We only considered R2

and only one junction point as a variable (i.e., only two subintervals), hence ignoring what

happens when we have more than one junction point. However, this big simpli�cation did

allow us to verify two main things, namely: that the leapfrog update vector is di�erent from

the negative gradient of the energy functional, and that the leapfrog update vector remains

gradient related.

62

4.3. Convergence to uniformly distributed tuple

4.3 Convergence to uniformly distributed tuple

One of the main properties of leapfrog is the convergence to a uniformly distributed tuple.

In other words, at convergence, the broken geodesic not only is a globally C1
geodesic, but

its junction points are also equally spaced from each other. Here, we reformulate the result

of [Noa98, Lemma 3.2] for convenience.

Lemma 4.1 (Convergence to uniformly distributed tuple). Let ωX be a geodesic γ. Then the
sequence of iterates generated by leapfrog converges to the uniformly distributedm-tuple(

X0, γ
(1
m−1

)
, γ
(2
m−1

)
, . . . , γ

(
i

m−1
)
, . . . , Xm−1

)
.

To further investigate this property, let us consider the tangent vectors associated to this

tuple, i.e., (ξ0, ξ1, . . . , ξm−1). Then the result of Lemma 4.1 is equivalent to saying that, at

convergence, the tangent vectors all have the same length, i.e.,

‖ξi‖ = ‖ξi+1‖, i = 0, . . . ,m− 3.

The main assumption of Lemma 4.1 is that ωX is already a geodesic γ. This implies that its

length Lγ = L(X) does not vary under further leapfrog iterations, but only the distribution

of the points Xi along the geodesic γ may change. So another way to de�ne the junction

times at iteration k is

t
(k)
i =

∑i−1
j=0 ‖ξ

(k)
j ‖

Lγ
, i = 1, . . . ,m− 1, with t

(k)
0 = 0, t(k)

m−1 = 1, ∀k. (4.7)

Here, we are going to verify the recursion

t
(k)
i = 1

2

(
t
(k)
i−1 + t

(k−1)
i+1

)
, (4.8)

which appears in the proof of [Noa98, Lemma 3.1]. Observe that the midpoint map acts on

the lengths of the geodesic segments as

‖ξ(k)
i ‖ = 1

2

(
‖ξ(k)
i−1‖+ ‖ξ(k−1)

i+1 ‖
)
, i = 0, . . . ,m− 2, with ξ

(k)
−1 = ξ

(k−1)
0 , k > 0.

(4.9)

Starting from

‖ξ(k)
−1‖ = ‖ξ(k−1)

0 ‖,
and using the identities

i−2∑
j=−1

‖ξ(k)
j ‖ −

i−2∑
j=0
‖ξ(k)
j ‖ =

i∑
j=0
‖ξ(k−1)
j ‖ −

i∑
j=1
‖ξ(k−1)
j ‖,

i−2∑
j=−1

‖ξ(k)
j ‖+

i∑
j=1
‖ξ(k−1)
j ‖ =

i−2∑
j=0
‖ξ(k)
j ‖+

i∑
j=0
‖ξ(k−1)
j ‖,

rearranging indices we get

i−1∑
j=0
‖ξ(k)
j−1‖+

i−1∑
j=0
‖ξ(k−1)
j+1 ‖ =

i−2∑
j=0
‖ξ(k)
j ‖+

i∑
j=0
‖ξ(k−1)
j ‖.

Using (4.9) on the left-hand side

2
i−1∑
j=0
‖ξ(k)
j ‖ =

i−2∑
j=0
‖ξ(k)
j ‖+

i∑
j=0
‖ξ(k−1)
j ‖,

then dividing by Lγ and using the de�nition (4.7), we get the recursion (4.8).

63

4. Extensions on leapfrog

4.3.1 The stochastic matrix

Let us make some further considerations on the leapfrog algorithm. The midpoint map guar-

antees the following recursive inequality concerning the lengths of the geodesic segments:

‖ξ(k)
i ‖ 6 1

2

(
‖ξ(k)
i−1‖+ ‖ξ(k−1)

i+1 ‖
)
, i = 0, . . . ,m− 2, with ξ

(k)
−1 = ξ

(k−1)
0 , k > 0.

This is almost the same as (4.9), the only di�erence being the equality replaced by the in-

equality since, in general, ωX is not a geodesic. The inequality is more general than (4.9),

and always true due to the way the leapfrog iterates are constructed.

Making the recursion explicit, one can obtain the following inequalities (the 6 sign has

to be interpreted elementwise)

‖ξ(k+1)
0 ‖

‖ξ(k+1)
1 ‖

.

.

.

‖ξ(k+1)
m−1 ‖

‖ξ(k+1)
m−2 ‖

6

1
2

1
2

1
4

1
4

1
2

1
8

1
8

1
4

1
2

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

1
2m−2

1
2m−2

1
2m−3

1
2m−4 . . . 1

2

1
2m−2

1
2m−2

1
2m−3

1
2m−4 . . . 1

2

‖ξ(k)
0 ‖

‖ξ(k)
1 ‖
.
.
.

‖ξ(k)
m−1‖

‖ξ(k)
m−2‖

.

Denoting the vector by δ and the matrix by T , we compactly rewrite

δ(k+1) 6 Tδ(k). (4.10)

The matrix T ∈ R(m−1)×(m−1)
has a Hessenberg structure and several other interesting

properties:

• It is a doubly stochastic matrix [BP94, p. 48], i.e.,

∀i, j Tij ∈ R+,
m−1∑
j=1

Tij = 1 ∀i,
m−1∑
i=1

Tij = 1 ∀j.

• It is irreducible [BP94, p. 29], i.e.,

∀i, j, ∃N ∈ N such that (TN)ij > 0.

For our matrix, N = m− 2 to obtain a nonzero coe�cient T1,m−1 on the upper right

corner. To show this, �rst we observe that since all the matrix coe�cients are positive,

by taking matrix powers they stay positive. Moreover, at each multiplication, a diago-

nal gets �lled with strictly positive coe�cients. So it takes a power of N = m − 2 to

make the coe�cient T1,m−1 strictly positive.

• The Perron root (or Perron–Frobenius eigenvalue) of T is r = 1.

• It exists a vector v such that Tv = rv and whose components are all strictly positive.

For our matrix, v = 1√
m−1 (1, . . . , 1)T, i.e., a normalized right eigenvector associated

with r = 1. It also exists a vector w such that wTT = rwT
and whose components

are all strictly positive. For our matrix, w ≡ v.

64

4.4. Broken geodesic shooting method

Let us now consider the “shadow sequence” with the equality sign associated with (4.10),

namely

δ̃(k+1) = T δ̃(k).

By recursively applying this equality one obtains

δ̃(k+1) = T k+1δ̃(0).

Using the fact that δ̃(k+1)
is an upper bound on δ(k+1)

, one can write

δ(k+1) 6 T k+1δ̃(0).

By the Perron-Frobenius theorem [BP94, p. 45], it holds

lim
k→∞

T k

rk
= vwT,

where v and w are normalized such that wTv = 1. The matrix vwT
is the projection onto

the eigenspace associated with the Perron root r. In our case, the above limit becomes

lim
k→∞

T k = vvT = 1
m− 1 1m−1,

where 1m−1 is an all-ones square matrix of size m − 1. This implies that, in the limit for

k →∞,

δ(∞) 6 vvTδ̃(0) = 1
m− 1 1m−1 δ̃

(0) =

 1
m− 1

m−1∑
j=1

δ̃
(0)
j

 (1, . . . , 1)T.

This result tells us that, at convergence, each component of δ(∞)
is bounded by an arithmetic

mean of all the components of δ̃(0)
. Nonetheless, it remains an open problem to �nd a lower

bound in order to prove convergence in this way.

4.4 Broken geodesic shooting method

In this section, we propose an alternative shooting algorithm which exploits the idea of bro-

ken geodesics introduced by [Noa98, KN08] and discussed in Section 4.1. The main di�erence

between this method and multiple shooting is that it produces a continuous curve at each

iteration.

As before, let us consider m points, corresponding to m− 1 subintervals. The base point

of each subinterval is found by using the geodesic equation with base point from the previous

subinterval. Hence, only the m − 1 tangent vectors ξi, i = 0, . . . ,m − 2, are unknowns of

the problem. We adopt the notation

X0 ≡ X, Xi ≡ γi(Xi−1, ξi−1, t = 1),
.
Xi ≡

.
γi(Xi−1, ξi−1, t = 1), i = 1, . . . ,m− 1,

with γi being the geodesic that realizes ξi−1, with base point Xi−1. Figure 4.6 provides an

illustration of the problem statement and the notation adopted. Here, X3 depends on ξ2 and

X2, which depends on ξ1 and X1, and so on.

65

4. Extensions on leapfrog

ξ0
X1 .

X1

ξ1 X2

ξ2

.
X2

X3

γ1(t) γ2(t) γ3(t)X Y

Figure 4.6 – Broken geodesic shooting method.

Our system of nonlinear equations collects the mismatching for the tangent vectors and

for the arrival point

F (ξ) =

.
X1 − ξ1.
X2 − ξ2

.

.

.

r = Xm−1 − Y

 = 0. (4.11)

The idea is very similar to multiple shooting, except that here only the continuity of the

derivative of the geodesic has to be enforced.

Now, consider a perturbation of the nonlinear system

F (ξ + δξ) = 0, with δξ = [δξ0 δξ1 · · · δξm−2]T .

A linearization of this system yields

F (ξ) + JξF · δξ = 0, (4.12)

with the Jacobian JξF ∈ R(m−1)np×(m−1)np
having a lower block-Hessenberg structure:

JξF =

Jξ0.
X1

−Inp
JX1.
X2
Jξ0
X1

Jξ1.
X2

−Inp
.
.
.

.
.
.

.
.
.

.
.
.

J
Xm−3.
Xm−2

J
Xm−4
Xm−3

· · · Jξ0
X1

.
.
.

.
.
. J

ξm−3.
Xm−2

−Inp

J
Xm−2
Xm−1

J
Xm−3
Xm−2

· · · Jξ0
X1

J
Xm−2
Xm−1

J
Xm−3
Xm−2

· · · Jξ1
X2

· · · J
Xm−2
Xm−1

J
ξm−3
Xm−2

J
ξm−2
Xm−1

.

The blocks on the main diagonal are calculated as

(JξF)ii = J
ξi−1.
Xi

, i = 1, . . . ,m− 2, and (JξF)m−1,m−1 = J
ξm−2
Xm−1

,

where J
ξi−1.
Xi

denotes the Jacobian matrix of ξi−1 with respect to

.
Xi. The o�-diagonal blocks

are given by

(JξF)ij = J
Xi−1.
Xi

 j+1∏
k=i−1

J
Xk−1
Xk

 Jξj−1
Xj

, i = 1, . . . ,m− 2, 0 < j < i,

(JξF)m−1,j =

 j+1∏
k=m−1

J
Xk−1
Xk

 Jξj−1
Xj

, j = 1, . . . ,m− 2,

66

4.4. Broken geodesic shooting method

where the matrix products are ordered products, and

(JξF)ij = −Inp, j = i+ 1, (JξF)ij = Onp, j > i+ 1, i = 1, . . . ,m− 2.

Observe that the last line of JξF is built di�erently because it enforces the boundary condi-

tion at Y . Indeed, at convergence, Xm−1 has to be equal to Y . Moreover, we emphasize that

we have all the analytic expressions for computing the smaller Jacobians appearing in JξF ,

because these are the same as the Jacobians for single and multiple shooting (see Chapter 2

and Appendix C).

To gain insight into the above derivation, let us expand

.
Xi as

.
Xi ≡

.
γi(Xi−1, ξi−1, t = 1)

= .
γi
(
γi−1(Xi−2, ξi−2, t = 1), ξi−1, t = 1

)
= .
γi
(
γi−1

(
γi−2(Xi−3, ξi−3, t = 1), ξi−2, t = 1

)
, ξi−1, t = 1

)
= .
γi
(
γi−1

(
γi−2

(
γi−3(. . . (γ1(X0, ξ0, t = 1), ξ1, t = 1

)
, . . . , ξi−2, t = 1

)
, ξi−1, t = 1

)
.

For instance, the Jacobian
∂
.
Xi
∂ξ0

is given by the chain rule

∂
.
Xi

∂ξ0
= ∂

.
Xi

∂Xi−1

∂Xi−1
∂Xi−2

· · · ∂X2
∂X1

∂X1
∂ξ0

,

that we can write in matrix notation as

Jξ0.
Xi

= J
Xi−1.
Xi

J
Xi−2
Xi−1

· · · JX1
X2

Jξ0
X1
.

At every iteration the method solves (4.12) for δξ. Since JξF can be quite big, it makes

sense to consider the same condensing strategy as the one adopted for multiple shooting (see

Section 2.4.1).

4.4.1 Condensing

The linear system (4.12) can be solved e�ciently thanks to the structure of JξF , which allows

any δξi, i = 1, . . . ,m− 2, to be expressed as a function of δξ0. This condensing strategy can

be summarized as follows:

w̃i = Fi +
i∑

j=2
(JξF)ij w̃j−1, M̃i = (JξF)i1 +

i∑
j=2

(JξF)ij M̃j−1, i = 1, . . . ,m− 1,

w = w̃m−1, M = M̃m−1.

Eventually, only one linear system of size np× np has to be solved to �nd δξ0:

M · δξ0 = −w,

and the remaining δξi are obtained as

δξi = Fi +
i∑

j=1
(JξF)ij δξj−1, i = 1, . . . ,m− 2.

67

4. Extensions on leapfrog

4.4.2 Complexity of the algorithm

Solving system (4.12) via the condensing strategy has an asymptotic complexityO(m2n3p3).

Without condensing, using Matlab lu, the complexity isO(m3n3p3). If the original problem

on St(n, p) is reduced to a problem on St(2p, p) (see Section 2.3.3), then we get with the

condensing strategy O(m2p6), and without condensing O(m3p6). As a consequence, for

large values of m, the broken geodesic algorithm with condensing strategy will be more

e�cient than the Matlab lu. Figure 4.7 provides an illustration of this fact for St(40, p)
with m = 6.

Figure 4.7 – Computational time of the broken geodesic algorithm for St(40, p) with m = 6.

By contrast, multiple shooting with condensing has a complexity O(mp6), i.e., the com-

plexity is linear in m. Hence this complexity analysis shows that multiple shooting is in

general more e�cient than the broken geodesic shooting method.

4.4.3 Leapfrog revisited

With the notation introduced above, the leapfrog algorithm can be compactly rewritten as

follows. Starting from a broken geodesic whose junction points are(
X

(0)
0 , X

(0)
1 , X

(0)
2 , . . . , X

(0)
m−1

)
, with X

(0)
0 ≡ X, X

(0)
m−1 ≡ Y,

the leapfrog algorithm computes, for k > 1,

X
(k)
0 = X

(k−1)
0 , ξ

(k)
i = 1

2 Log
X

(k)
i

(
X

(k−1)
i+2

)
,

X
(k)
i+1 = Exp

X
(k)
i

(
ξ

(k)
i

)
, i = 0, . . . ,m− 3,

until a stopping criterion is satis�ed. We recall that leapfrog assumes the subintervals to be

small enough so that the Riemannian logarithm can be computed via single shooting.

Leapfrog has the remarkable property of converging to a curve having continuous �rst

derivatives. In other words, at convergence the curve will be globally C1
:

lim
k→∞

.
X

(k)
i − ξ

(k)
i = 0, i = 1, . . . ,m− 3.

68

4.5. Numerical experiments and applications

Observe that these equations are the same as those of the broken geodesic algorithm, as

stated in the nonlinear system (4.11).

4.5 Numerical experiments and applications

In this section, we present some simple numerical experiments about the leapfrog and the

multiple shooting algorithms. We report on their convergence behavior and discuss a couple

of applications.

From an algorithmic point of view, we propose the following scheme, summarized by

Figure 4.8:

• Since we do not know a priori whether Y0 and Y1 are very close or very distant, the �rst

attempt to solve the endpoint geodesic problem is always done with single shooting.

• If single shooting works
2
, then the problem is solved and we are done. In practice, we

perform single shooting and check whether it converges or not. If single shooting does

not converge, we start with leapfrog with two subintervals, i.e., with m = 3 points,

which is the smallest partition possible.

• If leapfrog with two subintervals does not work, i.e., if the single shooting behind

leapfrog does not work, we keep increasing the number of subintervals until it works.

The reason for this is that the single shooting behind leapfrog has to converge on each

subinterval.

• When leapfrog works, we perform a few iterations and then we use the iterate found

by leapfrog as an initial guess for multiple shooting.

• The problem is solved with multiple shooting, which converges quadratically to the

solution.

4.5.1 Leapfrog and multiple shooting

As a concrete example to demonstrate the leapfrog and the multiple shooting algorithms, let

us consider the Stiefel manifold St(12, 3). We �x one pointX = [I3 O9×3]T, while the other

point Y is placed at a distance L∗ = 0.95π from X . This choice is made in order to have

two points that are far enough from each other; i.e., this problem is such that it cannot be

solved by using single shooting alone. Recall also that a lower bound on the injectivity radius

of St(n, p) is given by 0.89π [Ren13, Eq. (5.13)], so it makes sense to consider a distance

L∗ > 0.89π in order to test these algorithms. By using our numerical algorithms, we want

to recover this distance. As number of points we choosem = 4, i.e., the path betweenX and

Y is cut into 3 subintervals.

To monitor the convergence behavior, two quantities have been considered:

• |Lk − L∗|, where Lk is the length of the piecewise geodesic at iteration k.

• ‖F (Σk)‖2, where F (Σk) is the nonlinear function of multiple shooting, as de�ned in

Section 2.4.

2

In the experiments, we choose 10 as maximum number of single shooting iterations. We consider that single

shooting fails when this number is exceeded.

69

4. Extensions on leapfrog

Single shooting

Successful?

m = 3

Leapfrog

Successful?

Multiple shooting

m ← m + 1

Return ξ

no

yes

no

yes

Figure 4.8 – Flowchart of the Stiefel Log algorithm.

Figure 4.9 reports on the convergence behavior of leapfrog. Leapfrog is stopped when

‖F (Σk)‖2 reaches the threshold value of 10−3
(this happens at the 28th iteration). We esti-

mate that at this threshold the iterates will fall in the so-called basin of attraction of Newton’s

method, so that multiple shooting will succeed when started with the iterate generated by

leapfrog. The linear convergence behavior of leapfrog is clearly visible.

Figure 4.10 reports on the convergence behavior of multiple shooting. Multiple shooting

is started from where leapfrog left the job; one can check this by comparing the last iteration

in leapfrog with the 0th iteration of multiple shooting. It is apparent the quadratic conver-

gence behavior and the onset of the plateau at around machine precision εmach ≈ 10−16
.

Figure 4.9 – Convergence of leapfrog for

St(12, 3), with m = 4.

Figure 4.10 – Convergence of multiple shoot-

ing for St(12, 3), with m = 4.

70

4.5. Numerical experiments and applications

4.5.2 Riemannian center of mass on the space of univariate probability
density functions

We present an application that uses means on a Riemannian manifoldM. Given N points

qi ∈M, their Riemannian center of mass is de�ned by the optimization problem

µ = arg min
p∈M

1
2N

N∑
i=1

d(p, qi)2,

where d(p, qi) is the Riemannian distance between two points onM.

On manifolds of positive curvature there are in general many Riemannian centers of

mass. The Stiefel manifold has also positive curvature and an upper bound on its sectional

curvature is given by 5/4 [Ren13, p. 95].

The Riemannian center of mass, and hence the Riemannian distance, is used to calculate

an average probability density function (PDF). This is a simple problem since we consider the

unit n-sphere Sn, which is a special case of Stiefel manifold, but it remains interesting be-

cause it allows for a nice visualization of the outcome. Before presenting a concrete example,

let us introduce some important notions.

Let P be the space of univariate PDFs on the unit interval [0, 1]

P =
{
g : [0, 1]→ R>0 :

∫ 1

0
g(x) dx = 1

}
.

By introducing the half-density representation of the elements of P

q(t) =
√
g(t),

the set P can be identi�ed with the space

Q =
{
q : [0, 1]→ R>0 : ‖q‖ = 1

}
.

This identi�cation allows us to attach a spherical structure to P , and the unit n-sphere Sn =
{x ∈ Rn+1 : ‖x‖ = 1} can be used to approximate the space of univariate PDFs on the unit

interval [0, 1]. We refer the reader to [SK16, §7.5.3] for further details.

Given a certain number of PDFs, one might be interested into computing summary statis-

tics of all them, and this can be given by their Riemannian center of mass. As a concrete

example, we consider three PDFs, sampled at 100 points. This discretization makes them

belong to St(100, 1), i.e., the unit sphere S99
. Figure 4.11 shows the three PDFs on the left

panel, and their Riemannian center of mass on the right panel. The resulting Riemannian

center of mass is a PDF that summarizes the features (e.g., peak locations, spread around the

peaks) of the three original PDFs.

4.5.3 Interpolation on the Stiefel manifold for model order reduction

In this section, we consider an example in the same order of ideas as in [AF11]. Speci�cally,

we look at the interpolation of linear parametric reduced-order models. It is beyond the scope

of this thesis to discuss reduced-order models (ROMs); for a comprehensive review of model

order reduction techniques, we refer the reader to [BGW15].

71

4. Extensions on leapfrog

Figure 4.11 – Riemannian center of mass of three PDFs.

Let us consider the dynamical model parametrized with respect to p = [p1, . . . , pd]T{ .x(t; p) = A(p) x(t; p) +B(p) u(t)
y(t; p) = C(p) x(t; p),

with x(t; p) ∈ Rn the vector of state variables, u(t) ∈ Rm the vector of inputs, and y(t) ∈
Rq the vector of outputs. The system matrices are A(p) ∈ Rn×n, B(p) ∈ Rn×m, and

C(p) ∈ Rq×n.

The reduced dynamical system is{ .xr(t; p) = Ar(p) xr(t; p) +Br(p) u(t)
yr(t; p) = Cr(p) xr(t; p),

with xr = V Tx the reduced-size vector, and system matrices Ar = V TAV , Br = V TB,

Cr = CV , where V ≡ V (p) ∈ St(n, r). To obtain the matrix V , one needs to apply a ROM

technique. Here, we adopt a proper orthogonal decomposition (POD) with N snapshots

[BGW15, §3.3.1]. Let X be the snapshot matrix that collects N snapshots of the solution at

di�erent times t1, . . . , tN :

X =
[
x(t1; p), . . . ,x(tN ; p)

]
.

Then the POD basis V is chosen as the r left singular vectors of X that correspond to the r
largest singular values. In Matlab notation:[

U,∼,∼
]

= svd(X), then V = U(:, 1:r).

The process of interpolation on manifolds is explained in [AF11, p. 2180] and [BGW15,

§4.2.1]. It can be summarized as follows, with Figure 4.12 as a reference illustration. For

each parameter in a set of parameter values {p1, . . . ,pK}, one uses a model order reduction

technique to derive a reduced-order basis Vi ∈ St(n, r). This yields a set of local basis

matrices {V1, . . . , VK}. One of these matrices (V3 in the �gure) is chosen as reference point

to expand a tangent space to St(n, r). Then, given a new parameter value p̂, a basis V̂ can be

obtained by interpolating the local basis matrices on the tangent space. This process remains

the same also for general manifolds.

72

4.5. Numerical experiments and applications

St(n, r)

TV3
St(n, r)

V3

V2

Γ2 = LogV3
(V2)

V1

Γ1 = LogV3
(V1)

V4

Γ4 = LogV3
(V4)Γ̂

ExpV3

(
Γ̂
)

= V̂

Figure 4.12 – Interpolation on St(n, r).

As a concrete application, we consider the transient heat equation on a square domain

with 4 disjoint discs, which model four cookies lying on a square tray in an oven [Tob12,

p. 86]. The problem is discretized with a �nite element mesh with piecewise linear basis

functions, resulting in a parametrized dynamical system of size n = 1169 of the form

.x(t; p) = −A(p) x(t; p) + b,

where

p = (p1, p2, p3, p4) ∈ [0, 1]4, A(p) =
(
A0 +

4∑
i=1

piAi
)
,

and the matrices A1, . . . , A4 contain the contributions from the corresponding disc. The

right-hand side b is obtained from the discretization of the source term f ≡ 1. Figure 4.13

illustrates the discretized problem.

0 1 2 3 4

0

1

2

3

4

Figure 4.13 – Mesh for 2× 2 discs (from [Tob12, Fig. 4.13]).

In our example, p = (p1, 0.10, 0.15, 0.70), with p1 ∈ [0.12, 1], i.e., the �rst parameter

varies while the others are �xed. As ROM technique, we adopt a POD with 500 snapshots in

time, with a reduced-model size r = 4.

We monitored the following error quantities:

• The error between V̂POD, the basis obtained by directly applying a POD, and V̂interp,

the basis obtained by interpolating on St(n, r) as described above:

err-interp = ‖V̂POD − V̂interp‖2.

73

4. Extensions on leapfrog

• For the new operating point p̂ = (p̂1, 0.10, 0.15, 0.70), with p̂1 = 0.40, the relative

error on the output of the reduced model with respect to the output of the full model

(see [BGW15, §2.4]):

err-y = ‖yr(t, p̂)− y(t, p̂)‖L2

‖y(t, p̂)‖L2
.

To perform the interpolation on the tangent space, the Matlab function interp1 for 1D

interpolation was used with three di�erent methods: piecewise linear interpolation (linear),

piecewise cubic spline interpolation (spline) and shape-preserving piecewise cubic interpo-

lation (pchip).

Figure 4.14 reports on the convergence behavior of err-interp with respect to the number

K of local basis matrices. It is clear that err-interp improves as we increase the number of

local basis matrices. Moreover, the spline method appears to be the most accurate among the

ones considered.

Figure 4.14 – Convergence of err-interp.

In the next example, we monitor the convergence behavior of err-y with respect to the

size r of the reduced model, r = 1, 2, . . . , 20. We choose p = (0.12, 0.10, 0.15, 0.70) and

considered �ve di�erent PODs, with an increasing number of snapshots, 10, 100, 500, 1 000,

2 500 respectively. We estimate that for applications in various �elds of engineering, an err-y
of about 1% is already good enough. From Figure 4.15 one can observe that for reduced

models obtained from 500, 1 000, 2 500 snapshot PODs, the 1% error is achieved for a size

r = 4. When using less snapshots (like 10, 100), one needs r = 9, 10 to achieve err-y = 1%.

74

4.5. Numerical experiments and applications

Figure 4.15 – Convergence of err-y.

75

Chapter5

Riemannian Hager–Zhang line

search

In optimization methods that only use �rst-order information, the convergence to station-

ary points is typically linear at best. In contrast to second-order algorithms like Newton’s

method, this makes it di�cult to achieve high accuracy in �nite precision arithmetic when

using standard line searches, like the weak Wolfe conditions. As we shall see, a more accurate

line search was proposed by Hager and Zhang [HZ05, HZ06] in the context of a new nonlin-

ear CG method. In this chapter, we explain in some detail how the Hager–Zhang line search

works. Most importantly, we generalize this line-search method to the Riemannian setting.

The algorithm obtained is applied to two optimization problems from [AMS08] in order to

illustrate the improved accuracy. More problems on the manifold of �xed-rank matrices are

presented in Chapter 7.

5.1 Inaccuracy in standard line search

The usual stopping criterion for line search is the weak Wolfe conditions, which we recall

here. Let f be a di�erentiable objective function. Let xk be the current iterate, gk = ∇f(xk)
the gradient, and dk the search direction. The weak Wolfe conditions for the step size αk > 0
are de�ned by

f(xk + αkdk)− f(xk) 6 δαk d
T
kgk, dTk∇f(xk + αkdk) > σ dTkgk,

with 0 < δ 6 σ < 1. The �rst inequality is known as su�cient decrease, or Armijo, condi-
tion, while the second represents a curvature condition. One can reformulate the weak Wolfe

conditions in terms of φ(αk) = f(xk + αkdk) as follows:

δ φ′(0) > φ(αk)− φ(0)
αk

, φ′(αk) > σ φ′(0), (5.1)

with 0 < δ 6 σ < 1. Since we are moving along a descent direction for f , we observe

that the slope φ′(0) and the di�erence φ(αk) − φ(0) are negative. The �rst inequality is

thus asking for the decrease in φ at αk to be larger than δ φ′(0). The second inequality is

asking for the slope of φ at αk to be larger than σ φ′(0). Figure 5.1 illustrates the weak Wolfe

conditions in terms of φ.

In �nite precision arithmetic, the weak Wolfe conditions can be di�cult to satisfy very

accurately due to roundo� error when x is very close to the local minimum of f . This is easy

77

5. Riemannian Hager–Zhang line search

α

φ(α)

δ φ′(0)φ(0)

αk0

φ(αk)

φ′(αk)

Figure 5.1 – Weak Wolfe conditions in terms of φ.

to see for a smooth objective function with a strict local minimum, like the one depicted in

Figure 5.2. The function f is locally quadratic and its minimum can only be determined by

the line-search method within

√
εmach, with εmach the machine epsilon.

6.7e –16

1+2.5e –81– 2.5e –8 1.0

Figure 5.2 – Exact and numerical graphs of f(x) = 1 − 2x + x2
near x = 1 (adapted from

[HZ05, §4]). The dotted line is the exact f , while the solid line is its representation in double

precision with εmach ≈ 10−16
.

Remark 5.1. Newton’s method with unitary step size does not have this problem of nu-

merical accuracy, since no line search is involved. Even if a line search is used far from

the optimum, eventually no line search will be used close to it, where we know that New-

ton’s method converges quadratically, and hence this problem will not arise. In a �rst-order

method with a �xed step this problem will not show up either. By this observation, we want

to stress that the problem of numerical accuracy is due to the line-search method adopted,

and in general it is not intrinsic to �rst-order methods.

5.2 Approximate Wolfe conditions

Hager and Zhang proposed in [HZ05, §4] to relax the weak Wolfe conditions (5.1) and for-

mulate the approximate Wolfe conditions based on the derivative of the objective function.

Using these conditions as stopping criterion for line search permits to reach an accuracy

78

5.2. Approximate Wolfe conditions

within the machine precision εmach. Roughly speaking, the idea is that �nding the zero of

the derivative of a quadratic (which is just a straight line) is better conditioned numerically

than �nding the minimizer of the quadratic itself.

The main observation of Hager and Zhang is that, in a neighborhood of a local minimum,

the �rst condition in (5.1) is di�cult to satisfy since φ(α) ≈ φ(0). This makes the subtraction

φ(α)−φ(0) relatively inaccurate [HZ06, §3]. To prevent this loss of accuracy, they introduce

the approximate Wolfe conditions [HZ05, Eq. (4.1)]

(2δ − 1)φ′(0) > φ′(αk) > σ φ′(0), 0 < δ < 0.5, δ 6 σ < 1. (5.2)

Here, the �rst inequality is an approximation of the �rst condition in (5.1), but the second

inequality coincides with the second condition in (5.1).
1

The approximation comes from

replacing φ by its quadratic interpolant q that satis�es the conditions q(0) = φ(0), q′(0) =
φ′(0), and q′(αk) = φ′(αk). In other words, the interpolant q has the form

q(α) = aα2 + b α+ c, q′(α) = 2aα+ b,

with the conditions

q(0) = c = φ(0), q′(0) = b = φ′(0),

q′(αk) = 2aαk + φ′(0) = φ′(αk) =⇒ a = φ′(αk)− φ′(0)
2αk

.

So the quadratic model is

q(α) =
(
φ′(αk)− φ′(0)

2αk

)
α2 + φ′(0)α+ φ(0).

For α = αk we have

q(αk) =
(
φ′(αk)− φ′(0)

2

)
αk + φ′(0)αk + q(0)

=
(
φ′(αk) + φ′(0)

2

)
αk + q(0),

hence

q(αk)− q(0)
αk

= φ′(αk) + φ′(0)
2 . (5.3)

The �nite di�erence quotient on the right-hand side of the �rst Wolfe condition in (5.1) can

be approximated by (5.3)

φ(αk)− φ(0)
αk

≈ q(αk)− q(0)
αk

= φ′(αk) + φ′(0)
2 . (5.4)

We emphasize that this expression is only valid for this speci�c interpolant q. With this ap-

proximation, the subtraction q(αk)−q(0) can be computed more accurately asφ′(αk)+φ′(0),

thereby circumventing the possible cancellation due to roundo� errors in the original di�er-

ence φ(αk)− φ(0). Substituting (5.4) into (5.1) yields the �rst approximate Wolfe condition

in (5.2), namely,

(2δ − 1)φ′(0) > φ′(αk).
1

For this reason, it would therefore be more appropriate to talk about the approximate Armijo condition

rather than the approximate Wolfe conditions, but we stick with the latter name as in [HZ05, HZ06].

79

5. Riemannian Hager–Zhang line search

5.3 The Hager–Zhang bracketing

The algorithm for generating and updating the bracketing interval is based on the secant

and bisection methods, as described in [HZ06, §3]. This is similar to standard line-search

methods, except that the method tries to enforce the approximate Wolfe conditions (5.2). In

this section, we will only give an outline of the algorithm; we refer the reader to [HZ06] for a

more detailed description. We �rst describe the termination criteria, and then the line-search

procedure itself.

The Hager–Zhang line search is terminated whenever a step size αk is generated such

that one of the following termination criteria is satis�ed:

• T1: The original Wolfe conditions (5.1) are satis�ed (with a standard Armijo procedure);

• T2: The approximate Wolfe conditions (5.2) are satis�ed (approximation with an in-

terpolant as explained in the previous section) and the additional condition [HZ06,

Eq. (27)]

φ(αk) 6 φ(0) + εk, (5.5)

where εk > 0 is an estimate for the error in the value of f at iteration k.

As in [HZ05, p. 182], for the numerical experiments we took

εk = ε |f(xk)|, (5.6)

where ε is a small �xed parameter, ε = 10−6
. Condition (5.5) allows for a small growth

in the value of the objective f . Roughly speaking, this criterion permits to terminate

the line search when the value of f at the accepted step (i.e., φ(αk) = f(xk + αkdk))

is not much larger than the value of f at the previous iterate (i.e., φ(0) = f(xk)).

The method from [HZ06, §3] generates a nested sequence of bracketing intervals that are

guaranteed to contain an acceptable step length α. A typical interval [a, b] in this sequence

satis�es condition (5.5) and the opposite slope condition, i.e.,

φ(a) 6 φ(0) + εk, φ′(a) < 0, φ′(b) > 0. (5.7)

This is nothing else than the opposite sign condition of the bisection method translated to

the derivative, meaning that the derivative changes sign in the bracketing interval (and, thus,

must have a root). Figure 5.3 illustrates the opposite slope condition (5.7) for the function

φ(α), for a bracketing interval [a, b].

Given a bracketing interval [a, b] satisfying (5.7) and a point c generated by either a secant

step or a bisection step, the update of the bracketing interval is performed according to the

procedure described in [HZ06, p. 123]. After completing this procedure, we have a new

interval

[ā, b̄] ⊂ [a, b],

whose endpoints satisfy (5.7).

The input c for the update routine is generated by a secant step. Basically, this is a step

taken towards a local minimum ofφ(α), given by the recurrence relation of the secant method

applied to φ′(α), i.e.,

c = aφ′(b)− b φ′(a)
φ′(b)− φ′(a) .

This special secant step is used to achieve rapid convergence. However, if the secant step is

converging too slowly, then a bisection step is used instead. This is checked via the condition

80

5.3. The Hager–Zhang bracketing

α

φ(α)

0

φ(b)

φ′(b) � 0

φ(0) + εk

a b

φ(a) � φ(0) + εk

φ′(a) < 0

φ(0)

Figure 5.3 – The opposite slope condition together with the condition φ(a) 6 φ(0) + εk.

(b̄ − ā) > γ(bj − aj). The choice γ = 0.66 that we made in the numerical experiments

ensures that the length of the interval [a, b] decreases by a factor of 2/3 in each iteration of

the line-search algorithm.

A pseudocode for the Hager–Zhang line search algorithm is outlined in Algorithm 2.

Algorithm 2: Hager–Zhang line search

Generate a starting guess c;
Generate an initial interval [a, b] satisfying (5.7); set j = 0;

while T1 or T2 is satis�ed do
Use a secant method to update the bracketing interval;

If the secant method is converging too slowly, use a bisection step

c = (ā+ b̄)/2 and update the bracketing interval;

Increment j: j = j + 1;

end

5.3.1 Numerical examples

To illustrate the convergence behavior of the Hager–Zhang line search, we consider two

numerical examples in which we compare the results of steepest descent using weak Wolfe

conditions and the Hager–Zhang line search.

As in [HZ05, p. 186], we did not consider objective functions whose optimal cost is zero.

The reason is that if the optimal cost is zero, then the estimate (5.6) for the error in the

function value gets very poor as the iterates approach the minimizer (i.e., as f(xk) tends to

zero). Since we wish to obtain a decrease in the objective value, a small ε = 10−6
is chosen

for the error tolerance in (5.6). In all the numerical experiments with the Hager–Zhang line

search of this chapter we used the following parameter values:

δ = 0.1, σ = 0.9, ε = 10−6, γ = 0.66.

5.3.1.1 Quadratic cost function

In this �rst example, we consider the quadratic cost function f : Rn×n → R, de�ned by

f(X) = 1
2 trace(XTAX)− trace(XTB).

81

5. Riemannian Hager–Zhang line search

Here, we choose n = 100, the condition number of the symmetric positive de�nite matrix A
as κ(A) = 10, and B = AX∗, where X∗ is the exact solution to the problem AX = B. The

starting point of the optimization is a random initial guess X(0)
.

From Figure 5.4, we see that the gradient norm stagnates at about 10−8
for the weak Wolfe

conditions (WW). In contrast, the approximate Wolfe conditions used by the Hager–Zhang

line search (HZ) allow to reach an accuracy on the order of εmach (≈ 10−16
in double pre-

cision) in both the objective value and the gradient norm. The error ‖Xk −X∗‖/‖X∗‖ also

shows that a small gradient is needed, and a termination criterion based only on the objective

value is not su�cient.

Figure 5.4 – Convergence behavior of steep-

est descent with WW or HZ line search, for

a quadratic cost function.

Figure 5.5 – Number of function evaluations

per steepest descent iteration, for a quadratic

cost function.

Figure 5.5 reports on the number of function evaluations per steepest descent iteration.

For this example, when using the approximate Wolfe conditions the number of function eval-

uations is about 55% less than the one attained by using the weak Wolfe conditions. This is

most likely because the standard line search wastes a lot of e�ort in bracketing the function

φ(α) that becomes noisy due to roundo� error when α is close to a stationary point.

5.3.1.2 Rosenbrock function

The second example deals with the minimization of the Rosenbrock function, a standard test

function in optimization. A two-dimensional Rosenbrock function is given by the following

expression

z(x, y) = 100 (y − x2)2 + (1− x)2 + 1,

that has a unique minimum value of 1 which is attained at the point [1, 1]. Figure 5.6 illus-

trates this Rosenbrock function from two di�erent angles
2
, with the global minimum repre-

sented by a red disk. As one can see, the global minimum lies inside a long, narrow, deeply

curved �at valley. To �nd the valley is trivial; however, it is very di�cult to converge to the

global minimum.

For the numerical experiments, we minimize the above two-dimensional Rosenbrock

function starting from an initial guess very close to the exact solution, using 200 steepest

descent iterations. From Figure 5.7, we see that the gradient norm stagnates very early for

the weak Wolfe conditions, at about 10−2
. In contrast, the approximate Wolfe conditions

2

A log scaling f(x, y) = log(1 + z) has been applied in order to obtain a decent visualization.

82

5.4. Riemannian Hager–Zhang line search

Figure 5.6 – Log-scaled 2D Rosenbrock function.

allow us to achieve a better accuracy in the gradient norm, even if this stagnates at around

10−9
, which remains far from the εmach (≈ 10−16

in double precision). This might be due to

the nature of the valley where the global minimum is lying, and that we are not using any sec-

ond-order information about the valley. However, the error in the solution ‖Xk−X∗‖/‖X∗‖
stagnates at around 10−6

with the weak Wolfe conditions, while it reaches 10−13
with the

Hager–Zhang line search.

Figure 5.8 shows that the number of function evaluations per steepest descent iteration

is in general higher when using the weak Wolfe conditions. This makes the Hager–Zhang

line search not only more accurate, but also cheaper than the standard line search.

Figure 5.7 – Convergence behavior of steep-

est descent with WW or HZ line search, for

the 2D Rosenbrock function.

Figure 5.8 – Number of function evaluations

per steepest descent iteration, for the 2D

Rosenbrock function.

5.4 Riemannian Hager–Zhang line search

The Hager–Zhang line search explained in the previous sections can be readily extended to

Riemannian manifolds by applying it to the retracted objective function φ(t) = f(Rx(t · η))

83

5. Riemannian Hager–Zhang line search

along the search direction η ∈ TxM with t > 0 the step length (see Section 1.2.2). We call

this generalization Riemannian Hager–Zhang line search. The function φ considered in the

line-search procedure is given by a composition of the objective f and the retraction chosen.

Since φ′ is needed in order to apply the approximate Wolfe conditions, we have to compute

the derivative of the retraction dRx(t · η)/dt, which is cumbersome for general retractions

Rx. Fortunately, in Riemannian optimization we can choose a retraction that better suits our

needs. Moreover, some programming languages (e.g., C++, Python) allow for easy derivation

with automatic di�erentiation.

Here we state the problem more formally. Let M be a Riemannian manifold, x ∈ M
and Rx the retraction at x. Let f : M → R be an objective function. Observe that, for a

�xed tangent vector η, one has Rx : R→M, de�ned by t 7→ Rx(tη). Hence let φ : R→ R,

de�ned by t 7→ φ(t) = f(Rx(tη)). By chain rule, one can get the derivative of φ(t) as

φ′(t) =
〈
∇f(Rx(tη)), d

dtRx(tη)
〉

= trace
(
∇f(Rx(tη))T d

dtRx(tη)
)
,

where∇f is the Euclidean gradient of f .

The retraction Rx and its derivative
d
dtRx(tη) depend on the choice of the manifold. In

Section 7.3.8, we will see how to apply the Riemannian Hager–Zhang line search on the

manifold of �xed-rank matrices in the context of a new multilevel Riemannian optimization

algorithm. In the rest of this chapter, we already present two examples to illustrate that

the Riemannian Hager–Zhang line search does provide more accurate results than the ones

obtained when using standard line-search techniques on manifolds. The two examples dis-

cussed below are the Rayleigh quotient on the sphere [AMS08, p. 73], and the Brockett cost

function on the Stiefel manifold [AMS08, p. 80].

5.4.1 Numerical examples

For both the examples presented in this section, we �rst detail how to compute the deriva-

tives of the retractions by explicit formulas, and then we switch to the associated numerical

experiments.

5.4.1.1 Derivative of the retraction on the unit sphere

Consider the retraction on the unit sphere Sn−1
(see Section 1.2.1.1, and [AMS08, p. 57])

Rx(tη) = x+ tη

‖x+ tη‖2
,

de�ned for all η ∈ TxSn−1
and t ∈ R. Perturbing t with a small ε > 0 gives

Rx
(
(t+ ε)η

)
= x+ (t+ ε)η
‖x+ (t+ ε)η‖2

= 1
‖x+ tη‖2

·
(
x+ tη + εη − (x+ tη) (x+ tη)Tη

‖x+ tη‖22
ε

)
.

From the �rst-order terms in ε, we can identify the derivative

d
dtRx(tη) = 1

‖x+ tη‖2
·
(
In −

(x+ tη)(x+ tη)T

‖x+ tη‖22

)
η.

84

5.4. Riemannian Hager–Zhang line search

The asymptotic complexity of computing Rx is O(n). The derivative
d
dtRx can be computed

at an additional cost of O(n) via the formula:

d
dtRx(tη) = η

‖x+ tη‖2
−Rx(tη) · (x+ tη)Tη

‖x+ tη‖22
.

The O(n) complexity is due to the calculation of the scalar product (x + tη)Tη, whose cost

is ≈ 2n.

5.4.1.2 Rayleigh quotient on the sphere

We consider the problem of computing a dominant eigenvector of a symmetric matrixAn×n.

Let λ1 be the largest eigenvalue of A, and v1 the associated normalized eigenvector. The

largest eigenvalue λ1 is a maximum value of the function f : Sn−1 → R, de�ned by

x 7→ xTAx,

which is known as the Rayleigh quotient on the sphere. The global maximizers of the Rayleigh

quotient are ±v1. We refer the reader to [AMS08, p. 74] for a complete characterization of

the critical points of the Rayleigh quotient.

In our numerical experiment, we consider n = 1000, and 600 steepest descent iterations.

We compare the results for steepest descent using the standard Manopt line search with

Armijo condition
3

versus the Hager–Zhang line search.

Figure 5.9 reports on the convergence behavior of the gradient norm. As in the Euclidean

examples that we discussed in the previous sections, it is apparent that the Riemannian steep-

est descent with Hager–Zhang line search leads to a more accurate result, allowing to reach

double precision with εmach ≈ 10−16
.

Figure 5.9 – Convergence behavior of steepest descent with standard Armijo (SA) or

Hager–Zhang (HZ) line search when applied to the Rayleigh quotient on the sphere. The

horizontal dashed lines indicate

√
εmach and εmach.

3

See [BMAS14].

85

5. Riemannian Hager–Zhang line search

5.4.1.3 Derivative of the QR retraction on the Stiefel manifold

The next numerical example deals with a cost function de�ned on the Stiefel manifold, so we

need to compute the derivative of a retraction on St(n, p). We choose the retraction based

on the QR factorization (see Section 1.2.1.3, and [AMS08, Eq. (4.8)])

RX(tξ) = qf(X + tξ), (5.8)

where qf(A) denotes the Q factor of the decomposition of A ∈ Rn×p∗ as A = QR, where Q
belongs to St(n, p) andR is an upper triangular p-by-pmatrix with strictly positive diagonal

elements. This choice makes this decomposition unique.

An explicit formula for the directional derivative D qf(X)[ξ] of (5.8) is given in the cal-

culations of [Cha12, Eq. (17)]. Here, we rewrite it in the form

d
dtRX(tξ) = ξR−1 −Qup

[
R−TξTQ+QTξR−1

]
,

where up is de�ned for any matrix M ∈ Rn×n as [Cha12, Eq. (1)]

up(M) = triu(M)− diag
(1

2 diag(M)
)

=

1
2m11 m12 · · · m1n

1
2m22

.
.
. m2n

.
.
.

.

.

.

1
2mnn

 .

Here, triu denotes the operator that extracts the upper triangular part of a matrix, while diag
extracts the main diagonal from a matrix if its argument is a matrix, or builds a diagonal

matrix from a vector if its argument is a vector.

The computational complexity of the thin QR factorization involved in the retractionRX
is 4p2(n−p/3) [Hig08, p. 337]. Once the retraction has been computed, the derivative

d
dtRX

can be calculated at an additional cost of O(np2).

The derivative of the QR retraction is used in the following section to apply the Rieman-

nian Hager–Zhang line search on the Stiefel manifold.

5.4.1.4 Brockett cost function on the Stiefel manifold

We consider a cost function de�ned as a weighted sum

∑
i µix

T
(i)Ax(i) of Rayleigh quotients

on the sphere under an orthogonality constraint, xT(i)x(j) = δij . This function can be written

in matrix form as

f : St(n, p)→ R : X 7→ trace(XTAXN),

where A ∈ Rn×n is symmetric and N = diag(µ1, . . . , µp), with 0 < µ1 < . . . < µp. This

function is known in the literature as the Brockett cost function [Bro93]. Its Euclidean gradient

is given by∇f = 2AXN . We refer the reader to [AMS08, p. 81] for a characterization of the

critical points of the Brockett cost function.

In our numerical experiment, we consider n = 10, p = 3, and 700 steepest descent

iterations. As in the previous example, we compare the results for steepest descent using the

standard Manopt line search with Armijo condition versus the Riemannian Hager–Zhang

line search. Figure 5.10 reports on the convergence behavior of the gradient norm. As in

the case of the Rayleigh quotient on the sphere, the steepest descent with Hager–Zhang line

search is clearly more accurate, allowing to reach double precision εmach ≈ 10−16
.

86

5.5. Observations and open problems

Figure 5.10 – Convergence behavior of steepest descent with standard Armijo (SA) or

Hager–Zhang (HZ) line search when applied to the Brockett cost function on the Stiefel

manifold.

5.5 Observations and open problems

An open problem for the Hager–Zhang line search is to prove convergence of the method

that employs it. In [HZ05, p. 190], the authors proved global convergence of their conjugate

gradient method only under the standard Wolfe conditions.

One observation is that the quadratic interpolant introduced in Section 5.2 is actually an

instance of a more general interpolation problem known as Hermite–Birkho� interpolation
[Fin08]. This is a kind of interpolation problem in which one prescribes the function values

and/or derivative values at the given interpolation points. In our setting, we are concerned

with the Hermite–Birkho� interpolant where the given information contains function values

and/or only �rst derivative values at given interpolation points. Let us recall that the condi-

tions for the quadratic interpolant q introduced in Section 5.2 are q(0) = φ(0), q′(0) = φ′(0),

and q′(αk) = φ′(αk), and let us de�ne the error e(α) as

e(α) = φ(α)− q(α).

A bound for the error term is given by [Fin08, Eq. (23)]. By applying the theory in [Fin08] to

our case, we obtain the error bound

|e(α)| 6 α2
(
|α− αk|+

αk
2

) ∣∣∣φ(3)(c̄)
∣∣∣

6 ,

where c̄ is in the interval spanned by all the interpolation points, i.e., c̄ ∈ [0, αk].
This means that when replacing the quotient

φ(αk)− φ(0)
αk

with

q(αk)− q(0)
αk

in Equation (5.1), we are actually committing an error e(αk)/αk, that can be bounded by

|e(αk)| 6 1
12 α

3
k

∣∣∣φ(3)(c̄)
∣∣∣ .

87

5. Riemannian Hager–Zhang line search

The issue here is that we do not know a priori the expression φ, nor the expression of c̄
(which depends on the interpolation knots).

As we observed in Section 5.3, the condition (5.5) allows for a small increase in the ob-

jective function. This suggests that the Hager–Zhang bracketing might be viewed as a non-

monotone line-search procedure [GLL86]. In the Riemannian framework, [GSAS20] recently

proposed a new Riemannian gradient descent with a nonmonotone line search.

88

Chapter6

Multigrid methods

Multigrid methods are a class of methods for discretizing and solving PDEs and, in particular,

they are among the most e�cient numerical schemes for the solution of elliptic PDEs. The

underlying ideas of multigrid methods lend themselves to several generalizations in which

grids are not necessarily used, like multilevel, multiscale and multiresolution methods. The

algebraic multigrid method is another generalization which extends the fundamental multi-

grid ideas to matrix problems in a purely algebraic manner.

In this chapter, we will introduce standard multigrid and describe the classical multigrid

components. We will also present some concrete numerical examples along the way. The aim

is to provide an easy introduction to multigrid methods before Chapter 7, where we extend

the multigrid ideas to optimization on Riemannian manifolds. Most of this chapter is based

on [TOS00, BHM00, Hac03].

6.1 Some notation

The continuous boundary value problem (BVP) is{
LΩu(x) = fΩ(x) x ∈ Ω,
LΓu(x) = fΓ (x) x ∈ Γ = ∂Ω,

(6.1)

where LΩ is an elliptic operator and LΓ is a boundary operator. In this chapter, u always

denotes the exact solution of the continuous problem, and uh the exact solution of the discrete

problem. Moreover, we always consider two-dimensional BVPs, which is su�cient for the

applications in Chapter 7. For the discretized quantities, we use the term of discrete di�erential
operator, and of grid functions and grid operators instead of vectors and matrices, respectively.

The discrete boundary value problem is{
LΩh uh(x, y) = fΩh (x, y) (x, y) ∈ Ωh,
LΓh uh(x, y) = fΓh (x, y) (x, y) ∈ Γh = ∂Ωh,

(6.2)

where h is the discretization parameter, and

uh(x, y) = uh(xi, yj) = uh(ihx, jhy).

For the sake of notation, often we simply write ui,j . These coe�cients are collected in a

matrix U .

89

6. Multigrid methods

Remark 6.1. The discrete elliptic operator LΩh and the discrete boundary operator LΓh are

grid operators, i.e., they are mappings between spaces of grid functions.

We usually write the discrete boundary value problem in the shortened form

Lhuh = fh in Ωh,

where uh and fh are grid functions on Ωh, and Lh is a discrete linear operator

Lh : G(Ωh)→ G(Ωh),

G(Ωh) being a �nite dimensional vector space of grid functions on Ωh.

6.1.1 Inner products and norms

We de�ne the following inner product for grid functions [TOS00, §1.3.3]:

〈uh, vh〉2 = 1
#Ωh

∑
x∈Ωh

uh(x) vh(x),

where #Ωh denotes the number of grid points in Ωh. The scaling factor (#Ωh)−1
allows

us to compare grid functions living on di�erent grids, and also the corresponding continuous
functions on Ω. The induced norm is

‖uh‖2 =
√√√√ 1

#Ωh

∑
x∈Ωh

u2
h(x) =

√
1

#Ωh
‖uh‖F, (6.3)

where ‖ · ‖F denotes the usual Frobenius norm of a matrix. We point out that (6.3) is just the

discrete analogue of the L2
-norm of a two-dimensional continuous function, i.e.,

‖u‖2 =
√∫∫

Ω
u2(x) dx.

For the discrete operators Lh on G(Ωh), the operator norm is de�ned as the spectral norm

‖Bh‖S =
√
ρ(BhBT

h),

where Bh is any linear operator Lh : G(Ωh)→ G(Ωh), and ρ is the spectral radius.

6.1.2 Stencil notation

The so-called stencil notation is used to represent discrete operators Lh. We �rst de�ne it

for an in�nite grid. A general stencil [sκ1κ2]h de�nes an operator on the set of grid functions

wh by

[sκ1κ2]hwh(x, y) =
∑
κ1,κ2

sκ1κ2wh(x+ κ1hx, y + κ2hy).

Since we are usually interested in discrete operators de�ned only on �nite gridsΩh, in order

to identify LΩh with its stencil representation we need to restrict the stencil [sκ1κ2]h to Ωh.

This implies that only a �nite number of coe�cients [sκ1κ2]h are nonzero. In practical ap-

plications, the �ve-point stencil or the compact nine-point stencil are commonly used; they

are, respectively, s0,1
s−1,0 s0,0 s1,0

s0,−1

h

,

 s−1,1 s0,1 s1,1
s−1,0 s0,0 s1,0
s−1,−1 s0,−1 s1,−1

h

.

90

6.2. Principles and properties

Close to the boundary points, the stencils may need to be modi�ed to include an appropriate

treatment of boundary conditions.

In this multigrid presentation, in order to �x our ideas, we will often refer to the following

model problem.

6.1.3 Poisson’s equation

Poisson’s equation is a classical model for a discrete elliptic boundary value problem. We

consider the two-dimensional discrete Poisson equation with Dirichlet boundary conditions{
−∆huh(x, y) = fΩh (x, y) (x, y) ∈ Ωh,
uh(x, y) = fΓh (x, y) (x, y) ∈ Γh.

(6.4)

Here, Ω = [0, 1]2 ⊂ R2
, with h = 1/n, n ∈ N, and Lh = −∆h is an approximation of the

partial di�erential operator L, de�ned by Lu = −∆u = −uxx−uyy , on the square grid Gh.

6.2 Principles and properties

6.2.1 Fundamental principles

In this section we introduce the two fundamental principles of a multigrid method using

problem (6.4). Let us consider a grid function um+1
h (xi, yj) which is updated from its neigh-

boring points using a lexicographical Gauss–Seidel method (m is the iteration index):

um+1
h (xi, yj) = 1

4
[
h2fh(xi, yj) + um+1

h (xi − h, yj) + umh (xi + h, yj)

+um+1
h (xi, yj − h) + umh (xi, yj + h)

]
.

(6.5)

Figure 6.1 illustrates the stencil for the lexicographical Gauss–Seidel method. The approxima-

tion at (xi, yj) (black dot in the middle) is updated from its four neighboring points. Among

these, the two points in the lower-left corner (represented by the red dots) have already been

updated; the other two points (represented by the white dots) still have to be updated.

umh

um+1
h

um+1
h umh

xi, yj

Figure 6.1 – Stencil of the lexicographical Gauss–Seidel method.

Let emh be the error of the approximation at iterationm with respect to the exact discrete

solution, de�ned by

emh (xi, yj) = uh(xi, yj)− umh (xi, yj).

91

6. Multigrid methods

If one applies the Gauss–Seidel method (6.5) to Poisson’s equation (6.4), one can observe that,

after a few steps, the error of the approximation becomes smooth. It does not necessarily

become small, but it does become smooth. This is illustrated in Figure 6.2, where we have

reported the error for a random initial guess, the error after 5 iterations, and the error after 10

iterations. The smoothness of the error after 10 iterations, even when starting with a random

initial guess, is striking.

(a) e0
h (b) e5

h (c) e10
h

Figure 6.2 – Error of lexicographical Gauss–Seidel applied to problem (6.4): (a) random initial

guess; (b) after 5 iterations; (c) after 10 iterations.

Hence, the iteration formula (6.5) can be interpreted as an error averaging process. We

now introduce the two basic ideas, or principles, underlying every multigrid (or even multi-

level) scheme.

Two basic principles of multigrid:

1. Smoothing principle. Many classical iterative methods (e.g., Gauss–Sei-

del) when applied to discrete elliptic problems show a strong smoothing

e�ect on the error of any approximation.

2. Coarse-grid correction principle. A smooth error term can be well rep-

resented on a coarse grid. Indeed, a grid function that is su�ciently smooth

on a given grid can be transferred on a coarser grid without any signi�cant

loss of information.

To analyze this behavior, we look at the Fourier expansion of the error eh = emh . At a

given iteration m, this can be written as (we omit the superscript m for readability)

eh(x, y) =
n−1∑
k,`=1

αk,` ϕ
k,`
h (x, y), (6.6)

whereϕk,`h (x, y) = sin(kπx) sin(`πy) are the eigenfunctions of the discrete Laplacian∆h. The

fact that eh becomes smooth after some iterations means that the high-frequency components
in (6.6), i.e., the terms αk,` ϕ

k,`
h (x, y) with k or ` large, become small after a few iterations,

whereas the low-frequency components hardly change.

Let us consider a grid Ωh with discretization parameter h = 1/n and a coarser grid ΩH
with mesh size H > h. For example, we can choose H = 2h, which corresponds to what is

called standard coarsening. One can observe that, for (x, y) ∈ Ω2h, it holds

ϕk,`(x, y) = −ϕn−k,`(x, y) = −ϕk,n−`(x, y) = ϕn−k,n−`(x, y). (6.7)

92

6.2. Principles and properties

In other words, on the coarse grid Ω2h these four eigenfunctions coincide. To verify this,

take for instance −ϕn−k,`(x, y), and observe that

−ϕn−k,`(x, y) = − sin((n− k)πx) sin(`πy)

= − sin
(

2iπ − kπ2i
n

)
sin
(
`π

2j
n

)
= sin

(
kπ

2i
n

)
sin
(
`π

2j
n

)
= ϕk,`(x, y),

where in the second line we used the fact that for (x, y) ∈ Ω2h one has x = iH = 2i/n
and y = jH = 2j/n, while in the third line we used the trigonometric formula sin(α −
β) = sinα cosβ − cosα sin β to simplify the �rst factor. Similar calculations can be carried

out to show the other equalities in (6.7). Moreover, note that for k or ` equal to n/2 the

above eigenfunctions vanish on Ω2h, because sin(iπ) and sin(jπ) vanish for all i, j. So in

the context of model problem (6.4), it is reasonable to separate low and high frequencies as

follows.

De�nition 6.2. For k, ` ∈ {1, . . . , n− 1}, we say that ϕk,` is an eigenfunction (or a compo-
nent) of low frequency if max(k, `) < n/2, or of high frequency if n/2 6 max(k, `) < n.

(a) low-frequency components (b) high-frequency components

coarse-grid points
fine-grid points
sampling of the eigenfunc-
tion on the coarse grid

Legend:

Figure 6.3 – Low- and high-frequency components for a 1D example (N = 4, n = 8). Adapted

from [TOS00, p. 18].

Remark 6.3. On the coarse grid Ω2h, only the low frequencies are visible, because all high

frequencies coincide with a low frequency. This can be seen from (6.7) where, if max(k, `)
is low (i.e., smaller than n/2), then ϕk,` is a low frequency and ϕn−k,n−` is a high fre-

quency. The phenomenon of high frequencies coinciding with low ones is called aliasing of
frequencies. Figure 6.3 illustrates some low- and high-frequency components and the alias-

ing phenomenon. It is clear from panel (b) that the undersampling on the coarser grid makes

the high-frequency components (solid black lines) indistinguishable from the low-frequency

components (dashed gray lines).

93

6. Multigrid methods

Remark 6.4. The terms “high” and “low” frequency are related to both the �ne grid Ωh and

the coarse grid ΩH considered. They are not absolute notions.

6.2.2 Multigrid features and properties

The combination of the multigrid iteration together with an appropriate smoother leads to a

highly e�cient Poisson solver. The most desirable property of a multigrid method is the h-
independent convergence. It can be observed numerically that the convergence of a multigrid

Poisson solver is essentially independent of the size of the �nest grid in the multigrid cycle.

We show this property through a numerical experiment in Section 6.3.5.1.

As con�rmed by mathematical theory, multigrid methods work well for elliptic PDEs

with a su�cient degree of regularity and formulated on nice domains. However, in practical

applications, for example for PDE systems with non-elliptic features and nonlinear terms,

such a theory is usually not so widely available.

The typical components of a multigrid method are the smoothing procedure, the coarsen-

ing strategy, the coarse-grid operators, the intergrid transfer operators and the cycle type.

Concerning the grids, a hierarchy of coarse grids is needed for multigrid. Assume n is a

power of 2, n = 2p, p ∈ N∗, then the discretization parameter is h = 2−p. Then we can form

the grid sequence

Ωh, Ω2h, Ω4h, . . . , Ωh0 ,

where Ωh0 is the coarsest grid. From the multigrid point of view, unstructured grids are a

complication. Usually �nite di�erences and �nite volumes are used with Cartesian grids,

while �nite element methods are used with unstructured grids.

Multigrid can be used as an iterative linear solver for a discrete elliptic BVP. It can also

be used as a solver for the di�erential problem itself, i.e., the error is computed with respect

to the di�erential problem. This version is called full multigrid (FMG). The FMG can be

optimal: the number of operations is O(N), where N is the number of unknowns in the

problem considered. From a practical point of view, e�ciency means that the proportionality

constants in this asymptotic term O(N) are moderately small.

Multigrid methods have a wide range of applications, as they are not restricted to a certain

discretization approach, but can be used in connection with any type of grid-based discretiza-

tion, and also �nite element meshes. Adaptive versions of multigrid are possible, in which

�ner and �ner grids are only constructed in those parts of the domain where the current

discretization error is signi�cantly large. For one-dimensional problems, multigrid usually

degenerates to well-known optimal solvers, so it does not really make much sense to discuss

it in the 1D case, unless for analysis purposes.

6.3 Going into more detail of multigrid

As we mentioned above, multigrid is based on two main principles: error smoothing and

coarse-grid correction. In this section, we discuss these two aspects in more detail.

6.3.1 Error smoothing

Classical iterative solvers like Jacobi or Gauss–Seidel exhibit smoothing properties that de-

pend on the choice of a relaxation parameter value. For the Gauss–Seidel method, they also

depend on the ordering of the grid points. Iterative methods of Jacobi or Gauss–Seidel type

are also called relaxation methods (or smoothing methods, or smoothers) when they are used

for the purpose of error smoothing.

94

6.3. Going into more detail of multigrid

There exist many classical iterative solvers for the solution of a linear system Au = f .

The general iteration of an iterative solver for this equation can be recast as

um+1 = Mum + s, m = 0, 1, . . . ,

whereM is called iteration matrix. So the original equationAu = f is equivalent to the �xed
point equation u = Mu+ s. There are several ways of specifying M , e.g., as an approximate

solution of the defect equation, via splitting, or preconditioning.

The asymptotic convergence speed is characterized by the spectral radius of M , i.e.,

ρ(M) = max
i
{|λi| : λi eigenvalue of M}.

In other words, the spectral radius is the asymptotic convergence factor of the iteration, i.e.,

for m→∞,

lim
m→∞

‖u− um+1‖
‖u− um‖

6 ρ(M).

6.3.1.1 Jacobi type iteration

If we apply the ω-Jacobi method to our model problem (6.4), we get the iteration

um+1
h = umh −

ωh2

4 (Lhumh − fh) = umh −
ωh2

4 Lhu
m
h + h2

4 fh

=
(
Ih −

ωh2

4 Lh

)
umh + h2

4 fh = Sh(ω)umh + ωh2

4 fh,

where we de�ned the iteration matrix Sh(ω) = Ih − ωh2

4 Lh. To study the convergence

properties of the method, we need the eigenfunctions of Sh, which are given by

ϕk,`h (x) = sin(kπx) sin(`πy),

with (x, y) ∈ Ωh, and k, ` = 1, . . . , n−1. It is well known that the asymptotic convergence

speed of ω-Jacobi is ρ(Sh) = 1 − O(ωh2), which is unsatisfactory [Saa03]. Nonetheless,

ω-Jacobi becomes more valuable if we look at it as a smoother, and not as an iterative solver.

Indeed, if ω is appropriately chosen, then the highly oscillatory eigenfunctions are reduced

much more quickly.

6.3.1.2 Smoothing properties of Jacobi relaxation

In this section, we recall some results for the Jacobi relaxation. Let wh and wh denote the

approximation before and after one relaxation step, respectively. The errors eh and ēh before

and after one relaxation step are de�ned by

eh = uh − wh and ēh = uh − wh.

Since the eigenfunctions of the operator form a basis for the space of grid functions, we can

expand these errors into discrete eigenfunction series

eh =
n−1∑
k,`=1

αk,` ϕ
k,`
h , ēh =

n−1∑
k,`=1

χk,`h αk,` ϕ
k,`
h .

95

6. Multigrid methods

For the analysis, we need to look at the factors χk,`h appearing in the expansion of ēh. More-

over, we need to distinguish between low and high frequencies. We emphasize that this

distinction depends on the coarser grid Ω2h used. The smoothing factor associated to the

iteration matrix Sh(ω) is given by the worst factor among all χk,`h , i.e., the greatest in abso-

lute value among those associated to high frequencies. This is formalized by the following

de�nition.

De�nition 6.5 (Smoothing factor of Sh(ω)). The smoothing factor is the worst factor by

which high-frequency error components are reduced per relaxation step, de�ned as

µ(h;ω) = max
k,`
{|χk,`h (ω)| : n/2 6 max(k, `) 6 n− 1︸ ︷︷ ︸

high frequencies

},

and its supremum µ∗ over h

µ∗(ω) = sup
h∈H

µ(h;ω),

whereH denotes a set of reasonable mesh sizes.

The smaller the smoothing factor, the better are the properties of a given relaxation pro-

cedure. It turns out that ω-Jacobi has no smoothing properties (i.e., µ(h;ω) > 1) for ω 6 0
or ω > 1. Conversely, for 0 < ω < 1 the smoothing factor is strictly smaller than 1, indepen-

dently of h. The optimal choice of ω is given by the value 4/5, which attains the minimum

inf
ω∈[0,1]

µ∗(ω) = µ∗(4/5).

This means that one step of ω-Jacobi with ω = 4/5 reduces all high-frequency error compo-

nents by at least a factor of 3/5 (independently of the mesh size h).

Remark 6.6. Gauss–Seidel with over-relaxation parameter ω∗ has asymptotic convergence

speed ρ(ω∗-GS) = 1 − O(h), instead of ρ(GS) = 1 − O(h2). For model problem (6.4), we

have the factor µ(GS-LEX) = 0.50 for lexicographical Gauss–Seidel, corresponding to the

choice of relaxation parameter ω = 1.

6.3.2 Transfer operators

We describe the intergrid transfer operators on the interval [0, 1] referring to Figure 6.4 for

illustration. Let the �ner level be `f = 3, so that we have the discretization parameter h =
2−3

, then the number of interior grid points on the �ner level is m = 23 − 1 = 7. For

the coarser level, `c = 2, one has the discretization parameter H = 2−2 = 2h and M =
22 − 1 = 3 interior grid points. On the �ner level, we consider the grid function u =
(u1, u2, . . . , u7)T ∈ R7

, which we transfer on the coarser level to obtain the grid function

v = (v1, v2, v3)T ∈ R3
. For the restriction operator, one option is to adopt the full-weighting

(FW) restriction (panel (a) of Figure 6.4). In our example, this is an operator R : R7 → R3
,

de�ned by v1
v2
v3

 =

1
4

1
2

1
4
1
4

1
2

1
4
1
4

1
2

1
4

u1
u2
.
.
.

u7

 .

96

6.3. Going into more detail of multigrid

Another choice for the restriction is the injection operator (panel (b) of Figure 6.4)

v1
v2
v3

 =

0 1 0

0 1 0
0 1 0

u1
u2
.
.
.

u7

 .

For the prolongation, the most common choice is to use linear interpolation. In our example,

the prolongation operator P : R3 → R7
is de�ned by

P =

1
2 1 1

2
1
2 1 1

2
1
2 1 1

2

T

.

Observe that we have the relationship P = 2RT
. Prolongation by linear interpolation is

illustrated in panel (c) of Figure 6.4.

ℓ = 3

L = 2

H = 2h

h

v

FW

u

PINJ

(a) (b) (c)

Figure 6.4 – Some intergrid transfer operators for the example described in Section 6.3.2: (a)

full-weighting restriction; (b) injection; (c) prolongation by linear interpolation.

We now have all the necessary multigrid components to describe the basic two-grid cycle.

6.3.3 Two-grid cycle

The two-grid cycle is the natural basis for any multigrid algorithm, and lends itself to be

easily generalized. We describe it for the solution of a discrete linear elliptic BVP

Lhuh = fh,

on a grid Ωh. Let the defect, or residual, be de�ned as

dmh = fh − Lhumh ,

97

6. Multigrid methods

where uh is the exact discrete solution, and umh is an approximation of the solution uh at

iteration m. In a (linear) multigrid method, one usually solves the defect equation

Lhe
m
h = dmh

for the error emh . The defect dmh is transferred to the coarse grid ΩH by using the restriction
operator IHh

dmH = IHh d
m
h .

Then one has to solve the coarse-grid correction equation

LH ê
m
H = dmH

for the correction êmH , with LH : G(ΩH)→ G(ΩH). The correction is then transferred to the

�ne grid Ωh by using the interpolation (or prolongation) operator IhH :

êmh = IhH ê
m
H ,

and used to correct the approximation uh.

The iteration operator associated to the two-grid cycle is given by

Mh : G(Ωh)→ G(Ωh), Mh := Ih − ChLh,

where Ch = IhHL
−1
H IHh . So the approximate solution at iteration m is given by:

umh = (Ih −Mm
h)L−1

h fh.

The pseudocode for the two-grid cycle is presented in the following box.

for i = 1, 2, . . . , do

(1) Pre-smoothing: ūh = SMOOTHν1(u(i)
h , Lh, fh)

(2) i. Compute residual: dh = fh − Lhūh
ii. Restrict the residual: dH = IHh dh

iii. Solve LHeH = dH for eH

iv. Prolong the coarse-grid correction: eh = IhHeH

v. Apply the correction: ûh = ūh + eh

(3) Post-smoothing: u
(i+1)
h = SMOOTHν2(ûh, Lh, fh)

end for

6.3.4 Multigrid cycle

As mentioned earlier, the two-grid cycle can be easily generalized to more complex cycles. By

recursively applying the same idea to coarser and coarser grids, one can obtain the multigrid

cycle. Let us consider the sequence of coarser and coarser grids Ωh` , i.e.,

Ωh`f , Ωh`f−1 , . . . , Ωh`c ,

98

6.3. Going into more detail of multigrid

where `f denotes the �nest level, `c the coarsest level, and `c 6 ` 6 `f . Moreover, let the

restriction and prolongation operators be

I`−1
` : G(Ω`)→ G(Ω`−1), I``−1 : G(Ω`−1)→ G(Ω`).

The multigrid algorithm, or (`f + 1)-grid cycle, is described in the box below [TOS00, p. 47].

um+1
` = MGCYC(`, γ, um` , L`, f`, ν1, ν2)

(1) Pre-smoothing: ūm` = SMOOTHν1(um` , L`, f`)

(2) i. Compute defect: d̄m` = f` − L`ūm`
ii. Restrict the defect: d̄m`−1 = I`−1

` d̄m`

iii. Solve L`−1ê
m
`−1 = d̄m`−1 for êm`−1 by:

• If ` = `c, use a direct or fast iterative solver;

• If ` > `c, by performing γ (> 1) `-grid cycles, using the zero grid

function as a �rst approximation:

êm`−1 = MGCYCγ(`− 1, γ, 0, L`−1, d̄
m
`−1, ν1, ν2)

iv. Prolongation of the coarse-grid correction: êm` = I``−1ê
m
`−1

v. Apply the correction: um,after CGC

` = ūm` + êm`

(3) Post-smoothing: um+1
` = SMOOTHν2(um,after CGC

` , L`, f`)

The parameter γ is called the cycle index. In practice, only γ = 1 (V-cycle) and γ = 2
(W-cycle) are used [BHM00, p. 42]. Figure 6.5 illustrates a V- and a W-cycle with γ = 2,

when using four grid levels. The black bullet • denotes a smoothing step, while ◦ represents

a direct solution step on the coarsest level `c.

h

2h

4h

8h

Figure 6.5 – Illustration of a V- and a W-cycle with cycle index γ = 2 and four grid levels.

6.3.5 Laplace equation on the unit square

Let us have a look at a concrete example by applying the multigrid cycle to the two-dimen-

sional Laplace equation on the unit square Ω = [0, 1]2{
−∆u = f(x, y) (x, y) ∈ Ω,
u(x, y) = 0 (x, y) ∈ ∂Ω,

∆u = ∂2u

∂x2 + ∂2u

∂y2 . (6.8)

99

6. Multigrid methods

We discretize this problem with a uniform grid of m = 2`f − 1 interior grid points in each

direction with h = 1
m+1 = 2−`f . The forcing term is

fi,j = f(xi, yj)

for i, j = 1, . . . ,m, with xi = ih, yj = jh and ui,j = u(xi, yj).

Using centered �nite di�erences to discretize the second derivatives give

1
h2 (−ui−1,j + 2ui,j − ui+1,j) + 1

h2 (−ui,j−1 + 2ui,j − ui,j+1) = fi,j

for i, j = 1, . . . ,m. Example for i = j = 1:

1
h2 (−u01 + 2u11 − u21) + 1

h2 (−u10 + 2u11 − u12) = f11.

LetU be the matrix that collects all the unknowns at the grid points. The boundary conditions

do not enter in the matrix U , and they are moved to the right-hand side. For example, the

previous expression is rewritten as

1
h2 (2u11 − u21) + 1

h2 (2u11 − u12) = f11 + 1
h2u01 + 1

h2u10.

The coe�cients u11 and u21 appear on the �rst column of U , while u11 and u12 appear on

the �rst row of U , and so on. This suggests the compact matrix form, known as Lyapunov
equation,

A1DU + UA1D = C, (6.9)

where

A1D = 1
h2

2 −1
−1 2 −1

.
.
.

.
.
.

.
.
.

−1 2 −1
−1 2

 ,

and C contains the samplings of the function f(x, y) on our grid plus the boundary condi-

tions. By applying vectorization, (6.9) becomes

(I ⊗A1D +A1D ⊗ I) vec(U) = vec(C).

For a two-dimensional problem, the discretized second derivative is

A2D =

4 −1 −1

−1 4 −1 .
.
.

−1 4 −1 −1
.
.
.

.
.
.

.
.
.

−1 .
.
.

.
.
.

.
.
.

.
.
. −1 4 −1
−1 −1 4

.

It is easy to see that there is a relationship between A1D and A2D since

A2D = I ⊗A1D +A1D ⊗ I.

100

6.4. The Full Approximation Scheme (FAS)

6.3.5.1 Numerical example

Here, we consider the model problem (6.8) with f(x, y) = 0 and a non-homogeneous Dirich-

let boundary condition at the upper side of the square domain, given by

u(x, 1) = 1,

and a homogeneous Dirichlet condition elsewhere on the boundary. We solve this problem

using full-weighting restriction, linear interpolation and a multigrid V-cycle with a smoother

based on ω-Jacobi. The initial guess is a random grid function that satis�es the Dirichlet

boundary conditions. A total of 20 multigrid V-cycles are carried out.

Figure 6.6 shows the solution and error surfaces at the 10th iteration with discretization

level `f = 5, corresponding to a total of 1089 grid points. One can observe that the error is

smooth, with a peak on the order of 10−5
.

Figure 6.6 – Solution and error surfaces at the 10th iteration for the problem described in

Section 6.3.5.

Figure 6.7 shows the convergence behavior of the error norm
1

for di�erent �nest levels,

`f = 7, 8, 9, 10. It appears that twenty multigrid iterations permit to achieve an error norm

in the order of 10−11
. The convergence behavior is essentially independent of the size of the

�nest grid in the multigrid cycle. As we mentioned above, this is one of the most desirable

properties of multigrid.

6.4 The Full Approximation Scheme (FAS)

Although multigrid methods were originally introduced to solve large-scale linear systems

deriving from the discretization of PDEs, they can also be used to solve nonlinear problems

[TOS00, p. 147]. Generally speaking, there are two approaches to do this:

• Global linearization method. For example, in Newton’s method applied to a nonlinear

problem, at each iteration step one has to solve a linear system. Multigrid can be used

to solve each of these linear problems.

1

The norm considered here is the induced norm of a grid function as de�ned in Section 6.1.1, Equation (6.3).

101

6. Multigrid methods

Figure 6.7 – The mesh-independent convergence of (linear) multigrid for the problem de-

scribed in in Section 6.3.5. All lines are almost on top of each other.

• Apply multigrid directly to the nonlinear problem. The two multigrid principles (error

smoothing and coarse-grid correction) are not restricted to linear problems but can

be immediately extended to nonlinear problems. This leads to the Full Approximation
Scheme (FAS). For linear problems, the FAS reduces to the linear multigrid we discussed

above. FAS also constitutes the basis of a number of advanced numerical techniques,

and can be generalized to optimization problems, as we will see in Chapter 7.

In this section, we are going to illustrate the FAS by means of the model problem{
N(u) = fΩ in Ω,

B(u) = fΓ on Γ,
(6.10)

where N indicates a nonlinear elliptic di�erential operator, while B is a boundary operator.

By discretizing (6.10) on a �nite-dimensional grid Ωh with discretization parameter h, one

gets a nonlinear system of discrete equations

Nh(uh) = fh, (6.11)

where Nh is the discrete nonlinear operator. On the coarse grid, we have the usual coarse

discretization of this operator, denoted by NH .

Remark 6.7. In (6.11), boundary conditions have been eliminated so that they are now im-

plicitly contained in the discrete right-hand side fh.

6.4.1 FAS two-grid cycle

We describe one iteration cycle of the nonlinear (h,H) two-grid method for solving (6.11).

The main di�erence with respect to linear multigrid is that here we do not work with the

errors, but with the full approximations to the discrete solution themselves. The residual

equation on Ωh reads

Nh(wh) = rh +Nh(ūh), (6.12)

102

6.4. The Full Approximation Scheme (FAS)

where wh = ūh + eh is the full approximation, ūh is the smoothed approximation and eh is

the error. We point out that since the discrete operator Nh is nonlinear, we have generally

Nh(ūh+eh) 6= Nh(ūh)+Nh(eh). This is the reason why it is not su�cient to work with the

errors eh, but we need to use the full approximations wh = ūh + eh instead. On the coarse

grid ΩH , Equation (6.12) is approximated by

NH(wH) = rH +NH(ūH), (6.13)

wH = ūH + eH being the full approximation on the coarse grid, and ūH = ÎHh ūh. This

equation has to be solved for the coarse-grid correction eH . After solution on the coarse

grid, the coarse-grid correction eH is computed as the di�erence of ūH and wh, and then it

is transferred to Ωh by using the prolongation operator IhH .

Observe that in FAS the restriction operator ÎHh for the relaxed approximation ūh is usu-

ally di�erent from IHh , which is used to transfer the residual rh to the coarse grid. The most

common choice for ÎHh is injection, for vertex-centered grids, while for IHh a full-weighting

restriction operator is used.

The FAS two-grid cycle is described in the box below. Here, SMOOTH stands for a

nonlinear relaxation procedure having appropriate error smoothing properties, such as, for

instance, nonlinear Gauss–Seidel or Jacobi method, and their weighted versions.

for i = 1, 2, . . . , do

(1) Pre-smoothing: ūh = SMOOTHν1(u(i)
h , Nh, fh)

(2) i. Compute residual: rh = fh −Nh(ūh)
ii. Restrict the residual: rH = IHh rh

iii. Restrict the smoothed approximation: ūH = IHh ūh

iv. Solve NH(ūH + eH) = rH +NH(ūH) for eH

v. Prolong the coarse-grid correction: eh = IhHeH

vi. Apply the correction: ûh = ūh + eh

(3) Post-smoothing: u
(i+1)
h = SMOOTHν2(ûh, Nh, fh)

end for

6.4.2 Formulating FAS for a 2D BVP

We are now ready to show how to apply FAS for the solution of a concrete nonlinear boundary

value problem. Consider the two-dimensional boundary value problem [BHM00, p. 102]{
−∆u(x, y) + γ u(x, y) eu(x,y) = f(x, y) in Ω,

u(x, y) = 0 on ∂Ω,
(6.14)

withΩ = [0, 1]2. We consider a uniform grid with n = 2`f +1 grid points in each dimension,

(xi, yj) = (ih, jh) for 0 6 i, j 6 n−1. As before, we discretize the second derivatives using

second-order accurate centered �nite di�erences. This leads to the discretized problem

−ui−1,j + 2ui,j − ui+1,j
h2 + −ui,j−1 + 2ui,j − ui,j+1

h2 + γ ui,j e
ui,j = fi,j

103

6. Multigrid methods

for 0 < i, j < n−1. Moreover, we consider the homogeneous Dirichlet boundary conditions

u0,j = un−1,j = ui,0 = ui,n−1 = 0 for all i, j, whenever these terms appear in the equations.

Because the nonlinear component equations of the system are nonlinear, the nonlinear

Gauss–Seidel method uses scalar Newton’s method to solve the (i, j)th equation for ui,j :

4ui,j − ui+1,j − ui−1,j − ui,j−1 − ui,j+1
h2 + γ ui,j e

ui,j = fi,j .

We get the following nonlinear equation

F (ui,j) = 4ui,j + γh2ui,j e
ui,j − h2fi,j − ui+1,j − ui−1,j − ui,j−1 − ui,j+1 = 0,

that has to be solved for ui,j . The �xed-point iteration function of Newton’s method is

ΦNewton(x) = x− F (x)
F ′(x) .

Since the derivative of F (ui,j) with respect to ui,j is

F ′(ui,j) = 4 + γh2(1 + ui,j)eui,j ,

we obtain the update

ui,j ← ui,j −
4ui,j + γh2ui,j e

ui,j − h2fi,j − ui+1,j − ui−1,j − ui,j−1 − ui,j+1
4 + γh2(1 + ui,j)eui,j

.

On the coarsest level `c = 1, we have a 3 × 3 grid with only one interior point u1,1. The

equation that has to be solved for u1,1 is

16u1,1 + γ u1,1 e
u1,1 = f1,1.

This equation is nonlinear in u1,1, so its solution on the coarse grid can be obtained by using

Newton’s method. The corresponding Newton’s iteration function is

ΦNewton(x) = x− 16x+ γ x ex − f1,1
16 + γ (1 + x) ex .

6.4.2.1 Numerical example

For problem (6.14), let us consider the forcing term

f(x, y) = 2
(
(x− x2) + (y − y2)

)
+ γ(x− x2)(y − y2) e(x−x2)(y−y2),

which corresponds to the exact solution

u(x, y) = (x− x2)(y − y2).

We choose `f = 5, corresponding to a total of 1089 grid points. We solve this problem

using full-weighting restriction, linear interpolation and a FAS V-cycle with a smoother based

on nonlinear Gauss–Seidel. The initial guess is a random grid function that satis�es the

homogeneous Dirichlet boundary conditions. A total of twenty FAS V-cycles are carried out.

Figure 6.8 illustrates the shape of the solution and the error at the last iteration. It is clear

the smoothness of the solution and of the error, which is in the order of 10−12
.

Figure 6.9 reports on the convergence behavior of the error norm for several �nest levels,

`f = 7, 8, 9, 10. As it appears from the numerical experiments, FAS also exhibits a nice

mesh-independent convergence behavior, and 20 iterations allow to reach a plateau in the

error norm at around 10−13
.

104

6.4. The Full Approximation Scheme (FAS)

Figure 6.8 – FAS solution and error surfaces at the 10th iteration for the problem described

in Section 6.4.2.

Figure 6.9 – The mesh-independent convergence of FAS for the problem described in Sec-

tion 6.4.2. All lines are almost on top of each other.

105

Chapter7

Multilevel Riemannian

optimization for low-rank problems

7.1 Introduction

The topic of this chapter is the e�cient solution of certain large-scale variational problems

arising from the discretization of elliptic PDEs. We combine in particular Riemannian op-

timization on the manifold of �xed-rank matrices with ideas from nonlinear multigrid and

multilevel optimization. The low-rank manifold will allow us to approximate the solution

with signi�cantly less degrees of freedom. In addition, the idea of recursive coarse-grid cor-

rections from multigrid will lead to almost mesh-independent convergence of our algorithm

similar to classical multigrid algorithms.

Approximating very large matrices by low rank is a popular technique to speed up nu-

merical calculations. In the context of high-dimensional problems, this is done in so-called

low-rank matrix and tensor methods, where tensors are the higher order analog of two-di-

mensional matrices [Hac12]. One of the early examples are low-rank solvers for the Lya-

punov equation, AX + XAT = C , and other matrix equations; see [Sim16] for a recent

overview. In order to approximate the unknown solutionX by low rank, an iterative method

has to be used that directly constructs the low-rank approximation. Of particular importance

for this thesis are methods that accomplish this via Riemannian optimization [AMS08]: the

minimization problem (obtained after a possible reformulation of the original problem) is

restricted to the manifold of �xed-rank matrices thereby guaranteeing a low-rank represen-

tation of critical points. Examples of such methods are [MMBS13, Van13, Ste16] for matrix

and tensor completion, [SWC12] for metric learning, [VV10, MV14, KSV16] for matrix and

tensor equations, and [RO18, RNO19] for eigenvalue problems. In the context of discretized

PDEs these optimization problems are very ill-conditioned, making simple �rst-order meth-

ods like gradient descent unmanageably slow. In [VV10, KSV16, RO18], for example, the

gradient is therefore preconditioned with the inverse of the local Hessian. Solving these

Hessian equations is done by a preconditioned iterative scheme, thereby mimicking the class

of quasi or truncated Newton methods. We also refer to [UV19] for a recent overview of

geometric methods for obtaining low-rank approximations.

Multilevel optimization is the extension of multigrid, and in particular, the full approx-

imation scheme (FAS) to unconstrained optimization. In the MG/Opt method from [Nas00,

LN05], the idea was introduced how to modify the objective functions on each scale so that

they correspond to FAS coarse-grid corrections. Several extensions and theoretical conver-

gence proofs were proposed, including optimization with trust-regions [TTWM09] and line

107

7. Multilevel Riemannian optimization for low-rank problems

searches [WG09]. Related to this chapter is the low-rank multigrid method from [GH07] for

matrix equations arising from the discretization of elliptic PDEs. It applies a low-rank ap-

proximation after every step of the classical multigrid algorithm from [Pen97] for the linear

Sylvester matrix equation. A similar multigrid approach with truncation of the matrix iter-

ates to low rank is used by [ES18] for the solution of large linear systems of equations arising

from the �nite element discretization of stochastic PDEs. Our proposed method is di�erent

in the sense that it is closer to MG/Opt and other multilevel optimization algorithms and that

it works directly with the manifold of �xed-rank matrices.

This chapter is structured as follows. We �rst recall important ideas from multilevel op-

timization and the geometry of �xed-rank matrices that will be needed later on. The main

contribution is in Section 7.3 where we present our new algorithm entitled Riemannian multi-

grid line search (RMGLS). The presentation will be su�ciently general to be applicable to any

multilevel hierarchy of manifolds but the implementation will be explained only for low-rank

matrices. Numerical experiments for both a linear and a nonlinear variational problem are

presented in Section 7.4. Finally, in Section 7.5, we compare our method to other low-rank

and multilevel methods.

7.2 Preliminaries on multilevel optimization and geometry
of �xed-rank matrices

As mentioned above, our algorithm is a generalization of known (Euclidean) multilevel algo-

rithms to Riemannian manifolds. It will then be able to calculate low-rank approximations

for the variational problems discussed in Section 7.4 by minimizing a cost function over the

manifold of �xed-rank matrices. Before we present this algorithm in Section 7.3, we brie�y

recall two important concepts for its derivation: MG/Opt [Nas00], a variant of multigrid for

optimization problems, and retraction-based Riemannian optimization [AMS08], a local op-

timization method well suited to minimize over the set of �xed-rank matrices.

7.2.1 Multilevel optimization in Euclidean space

The full approximation scheme (FAS) presented in Section 6.4 can be generalized to a multi-

level algorithm for minimizing a di�erentiable objective function f . The original idea goes

back to the MG/Opt [Nas00, LN05]. We brie�y explain the main idea for two grids since the

algorithm on more grids is recursively de�ned from it and we will explain the algorithm for

Riemannian manifolds in more detail in Section 7.3. Let the subscripts ·h, ·H denote quan-

tities on the �ne Ωh ' Rn and the coarse grid ΩH ' RN , respectively. Let fh : Ωh → R
be our original objective function f that we optimize with an initial guess x̄h ∈ Ωh that is

su�ciently smoothed. As in FAS, we introduce a modi�cation to the coarse-grid objective

function fH . Let gE(z1, z2) := zT1z2 denote the Euclidean inner product and IHh : Ωh → ΩH

the restriction operator. At iteration i of MG/Opt, let x
(i)
H = IHh x̄h ∈ ΩH be the iterate on

the coarse grid. Then by minimizing the model ψH : ΩH → R, de�ned by

xH 7→ ψH(xH) = fH(xH)− gE(xH , κH), (7.1)

with

κH := ∇fH(x(i)
H)− IHh ∇fh(x̄h), (7.2)

one obtains a two-grid cycle for optimizing fh. On the coarser level, the minimization of (7.1)

starts at the smoothed approximation x
(i)
H , hence we can rewrite (7.1) in the following way:

108

7.2. Preliminaries on multilevel optimization and geometry of �xed-rank matrices

�nd an update eH such that

ψH(x(i)
H + eH) := fH(x(i)

H + eH)− gE(x(i)
H + eH , κH) (7.3)

is su�ciently minimized at x
(i+1)
H = x

(i)
H +eH . This coarse-grid update eH is then transported

back to the �ne grid using the interpolation operator IhH : ΩH → Ωh, and used to correct x̄h.

The linear modi�cation (7.1) to fH is one of the central tenets of multilevel optimiza-

tion, as proposed in the MG/Opt method of [Nas00, LN05] and similar multilevel algorithms

in [GST08, WG09]. The model ψH is actually a generalization of the coarse-grid correction

equation of the FAS scheme in the context of optimization. Indeed, applying FAS for solv-

ing the nonlinear critical point equation ∇fh(x) = 0 at the approximation x
(i)
h gives the

coarse-grid correction [TOS00, Chap. (5.3.4)]

∇fH(x(i)
H + eH)−∇fH(x(i)

H) = −IHh ∇fh(x̄h)

that has to be solved for eH . A solution of this equation can be trivially written as

∇fH(x(i)
H + eH)− (∇fH(x(i)

H)− IHh ∇fh(x̄h)) = 0,

which is exactly a critical point of (7.3) with de�nition (7.2) for κH .

As in classical multigrid methods, the error has to be smooth in order to be representable

on the coarse grid. For classical multigrid or FAS, iterative methods such as weighted Jacobi

and Gauss–Seidel, and their nonlinear versions, can be used to smooth the error. Analo-

gously, in the optimization framework, one can use cheap �rst-order optimization methods.

Practice has shown that weighted versions of steepest descent, coordinate search and limited

memory BFGS are e�ective smoothers for a wide range of large-scale multilevel optimization

problems; see, e.g., [GMS
+

10].

Except for the introduction of the model (7.1), the principle behind the multigrid two-grid

cycle remains the same in the optimization context. Figure 7.1 illustrates the two-grid cycle

of a multilevel optimization scheme. The initial guess at iterate i is denoted by x
(i)
h and the

pre-smoothing update by ph, likewise p̂h is the post-smoothing update, resulting in the next

iterate x
(i+1)
h . In the next section, we will generalize this two-grid optimization cycle (and

�gure) to Riemannian manifolds.

7.2.2 The manifold of �xed-rank matrices

Computing a rank-k approximation to a matrix X ∈ Rm×n can be seen as an optimization

problem on the manifold of �xed-rank matrices

Mk = {X ∈ Rm×n : rank(X) = k}.

Using the SVD, one has the equivalent characterization

Mk = {UΣV T : U ∈ St(m, k), V ∈ St(n, k),
Σ = diag(σ1, σ2, . . . , σk) ∈ Rk×k, σ1 > · · · > σk > 0},

where St(m, k) is the Stiefel manifold of m × k real matrices with orthonormal columns

(see Section 1.1.6.1), and diag(σ1, σ2, . . . , σk) is a square matrix with σ1, σ2, . . . , σk on its

diagonal. The following proposition shows thatMk is indeed a smooth manifold and has a

compact representation for its tangent space.

109

7. Multilevel Riemannian optimization for low-rank problems

recursive cycling

IH
h

Ih
H

Ωh

ΩH

min
xh∈Ωh

fh(xh)

min
xH∈ΩH

ψH(xH)

x
(i+1)
h

ph x̄h
p̂hx̂heh

eH

x
(i)
h

x
(i+1)
H

x
(i)
H

Figure 7.1 – A two-grid cycle for minimizing an objective function.

Proposition 7.1 ([Van13, Prop. 2.1]). The setMk is a smooth submanifold of dimension (m+
n− k)k embedded in Rm×n. Its tangent space TXMk at X = UΣV T ∈Mk is given by

TXMk =
[
U U⊥

] [Rk×k Rk×(n−k)

R(m−k)×k 0(m−k)×(n−k)

] [
V V⊥

]T
. (7.4)

In addition, every tangent vector ξ ∈ TXMk can be written as

ξ = UMV T + UpV
T + UV T

p , (7.5)

withM ∈ Rk×k, Up ∈ Rm×k, Vp ∈ Rn×k such that UT
pU = V T

p V = 0.

Observe that sinceMk ⊂ Rm×n, we represent tangent vectors in (7.4) and (7.5) as matri-

ces of the same dimensions. The Riemannian metric is the restriction of the Euclidean metric

on Rm×n to the submanifoldMk,

gX(ξ, η) = 〈ξ, η〉 = trace(ξTη), with X ∈Mk and ξ, η ∈ TXMk.

The Riemannian gradient of a smooth function f : Mk → R at X ∈ Mk is de�ned as the

unique tangent vector grad f(X) in TXMk such that

〈 grad f(X), ξ 〉 = D f(X)[ξ] for all ξ ∈ TXMk,

where D f denotes the directional derivatives of f . More concretely, for embedded subman-

ifolds, the Riemannian gradient is given by the orthogonal projection onto the tangent space

of the Euclidean gradient of f seen as a function on the embedding space Rm×n; see, e.g.,

[AMS08, Eq. (3.37)]. De�ning PU = UUT
and P⊥U = I − PU for any U ∈ St(m, k), the

orthogonal projection onto the tangent space at X is [Van13, Eq. (2.5)]

PTXMk
: Rm×n → TXMk, Z 7→ PU Z PV + P⊥U Z PV + PU Z P⊥V .

Then, denoting ∇f(X) the Euclidean gradient of f at X , the Riemannian gradient is given

by

grad f(X) = PTXMk

(
∇f(X)

)
. (7.6)

110

7.3. Riemannian multigrid line search for low-rank matrices

7.2.3 The orthographic retraction

A retraction is a smooth map from the tangent space to the manifold, RX : TXMk →Mk,

used to map tangent vectors to points on the manifold (see Section 1.2.1). It is, essentially, any

smooth �rst-order approximation of the exponential map of the manifold; see, e.g., [AM12,

De�nition 1]. In order to establish convergence of the Riemannian algorithms, it is su�cient

for the retraction to be de�ned only locally.

In our setting, we have chosen the orthographic retraction onMk. The reason for this

choice is that for the orthographic retraction we have explicit expressions for the retraction

and its inverse. Given a point X = UΣV T ∈Mk and a tangent vector ξ in the format (7.5),

the retraction of ξ at X is given by [AO15, §3.2]

RX(ξ) = [U(Σ +M) + Up] (Σ +M)−1 [(Σ +M)V T + V T
p]. (7.7)

Figure 7.2 illustrates the orthographic retraction. As a special case, observe that if X is full

rank, then UUT = UTU = I and V V T = V TV = I , therefore Up = 0 and Vp = 0, so

RX(ξ) = U(Σ +M)V T = X + ξ.

ξ
TXMk

X

Mk

Y = RX(ξ)

Figure 7.2 – The orthographic retraction.

The inverse of the orthographic retraction is simply given by the orthogonal projection

of Y −X on TXMk :

ξ := R−1
X (Y) = PTXMk

(Y −X) = PTXMk
(Y)−X. (7.8)

Equivalently, this can be written in tangent vector format (7.5) with the factors

Mξ = UTY V −Σ, Up,ξ = (I − UUT)Y V, Vp,ξ = (I − V V T)Y TU.

When implementing RX and R−1
X , it is important to exploit the factored forms of the

rank-k matrices X and Y , and the parametrization (7.5) of the tangent vector ξ. In that case,

the �op counts of RX and R−1
X are both O(nk2 + k3). See also [AO15, §3.2].

7.3 Riemannian multigrid line search for low-rank matrices

In this section, we describe the central contribution of this chapter: a Riemannian multilevel

linesearch algorithm, called RMGLS, for the approximate low-rank solution of optimization

problems. We detail how the two-grid optimization cycle of MG/Opt can be generalized to

the retraction-based framework for the geometry of �xed-rank matrices, both of which were

described in the previous section.

Our algorithm involves the classical components of multigrid (smoothers, prolongation

and restriction operators, and a coarse-grid correction) and Riemannian optimization (line

search, retractions, gradients). Since this generalization is possible for other types of mani-

folds, we have presented it with general manifolds in mind. However, remarks on the imple-

mentation apply only to the manifold of �xed-rank matrices.

111

7. Multilevel Riemannian optimization for low-rank problems

7.3.1 Description of the scheme

MH

Mh

LS

Rx̄h

˜Ih

H

LS

ηh

ηH
R−1

x
(i)
H

IH

h

recursive cycling

min
xh∈Mh

fh(xh)

min
xH∈MH

ψH(xH)

x
(i+1)
h

x̂h

p̂h
x̄h

ph

x
(i)
h

x
(i)
H

pH
x̄H x

(i+1)
H

p̂HRx̄H

x̂H

Figure 7.3 – The Riemannian multigrid line search (RMGLS) scheme. The coarse-grid correc-

tion is computed either directly or by a recursive application of RMGLS. It is instructive to

compare this �gure to the Euclidean version in Figure 7.1.

We �rst describe the algorithm for a two-grid cycle, making reference to Figure 7.3. Recall

that quantities related to the �ne grid and to the coarse grid are denoted by the subscripts

·h and ·H , respectively. For example,Mh andMH are the �ne and coarse-scale manifolds,

respectively.

Starting from an approximation x
(i)
h onMh, we �rst perform some pre-smoothing steps,

then the smoothed approximation x̄h is restricted toMH . This gives us x
(i)
H , for which we

compute a correction ηH onMH . IfMH is a su�ciently small manifold, ηH is computed

directly with a trust-region method to minimize ψH . Otherwise, it is the inverse retraction of

the result x
(i+1)
H obtained from the recursive application of the two-grid scheme withMH as

�ne-scale manifold. In the �gure, the latter option is depicted for illustration, including the

steps performed onMH . In both cases, the interpolation ηh of the coarse-scale correction

ηH to the �ne scale is applied to x̄h via line search. The updated approximation x̂h is then

post-smoothed and we �nally obtain x
(i+1)
h as result of one iteration of RMGLS.

An important di�erence compared to multilevel optimization on Euclidean space is the

explicit di�erence between the approximations x
(i)
h , x̄h, x̂h, x

(i+1)
h , x

(i)
H , x

(i+1)
H that are points

on the manifoldsMh andMH , and the updates and corrections ph, p̂h, ηh, ηH that are tan-

gent vectors on the tangent spaces ofMh andMH . This is also clearly visible in Figure 7.3

where the approximations are depicted as full circles and tangent vectors as arrows.

In the next subsections, we will explain every component of the algorithm, except for

the line search, which has been explained in Chapter 5. The �nal algorithm in pseudocode is

listed in Section 7.3.7.

112

7.3. Riemannian multigrid line search for low-rank matrices

7.3.2 Tensor-product multigrid

Observe that a matrix in Rn×n can be regarded as an element of the tensor-product space

Rn ⊗ Rn ' Rn×n. Starting from this observation, it is possible to construct a multigrid

algorithm by taking tensor products of standard multigrid components. This approach is

known as tensor-product multigrid [RW95, Pen97].

For example, let IHh : Rn → RN and IhH : RN → Rn denote the standard restriction and

prolongation operators for a linear multigrid algorithm with Rn the �ne and RN the coarse

grid. Let `f denote the �ne-scale level, h = 2−`f , H = 2h, n = 2`f − 1, and N = 2`f−1 − 1.

Then in 1D the restriction IHh could be the N × n injection matrix de�ned as

(IHh)ij =
{

1, if j = 2i;
0, otherwise.

Some concrete instances of transfer operators in 1D are given in Section 6.3.2.

Higher-order extensions for IHh and IhH , like full weighting and linear interpolation, are

de�ned analogously; see [TOS00]. Following the tensor-product idea, we can then easily

construct a restriction operator on the space of matrices by applying IHh to the rows and

columns of X ,

IHh : Rn×n → RN×N , X 7→ IHh X(IHh)T. (7.9)

Likewise, an interpolation operator for matrices is constructed as

IhH : RN×N → Rn×n, X 7→ IhHX(IhH)T.

Hence, we have obtained transfer operators between the �ne and coarse grids Rn×n and

RN×N , respectively.

7.3.3 Riemannian transfer operators

In our setting, the transfer operators from above are to be applied to rank-k matrices. Let us

denote these manifolds byMk
h ⊂ Rn×n andMk

H ⊂ RN×N .

First, we can directly compute the restriction fromMk
h toMk

H by (7.9) since both man-

ifolds are embedded in matrix space. It is clear from (7.9) that rank(IHh (Xh)) 6 k if Xh is

a rank-k matrix. In numerical calculations, the rank of IHh (Xh) is always equal to k, but if

it were strictly less we could simply reduce the de�ning rank of the coarse manifold.
1

The

computation of IHh (Xh) is carried out directly on its factorized SVD form, and followed by a

reorthogonalization to preserve the SVD format of the result. The entire procedure is sum-

marized in the following box.

Restriction of Xh = UhΣhV
T
h ∈Mk

h:

(1) Compute compact QRs: QURU = IHh Uh and QVRV = IHh Vh

(2) Compute compact SVD: ÛΣ̂V̂ T = RUΣhR
T
V

(3) Compute factors: UH = QU Û , ΣH = Σ̂, VH = QV V̂

Result is XH = UHΣHV
T
H ∈Mk̄

H in SVD form, with k̄ = rank(XH).

1

In the next step of our algorithm RMGLS, the rank of the coarse iterate will typically grow after smoothing

and we can then again continue withMk
H as our coarse manifold.

113

7. Multilevel Riemannian optimization for low-rank problems

Figure 7.4 illustrates the restriction procedure on the low-rank format.

Σh

Uh (IH
h
)T

V T

h

IH
h

N × n n× k k × k k × n n×N

N × k k × k k ×N

IH
h
Uh

(IHh Vh)
T

Xh

XH

QU RU R
T

V

Σh

QT

V

Restriction

Reorthogonalization

Û V̂ T
Σ̂

QT

V

QU

ΣH

V T

H

UH

Σh

Figure 7.4 – Restriction operator on the low-rank format.

Next, when transferring tangent vectors between manifolds of di�erent scales, the result

of the transfer operators is not necessarily in the tangent space at the transferred points. We

therefore follow the transfer operators by an orthogonal projection onto the new tangent

space,

ĨHh = PTXHMH
◦ IHh

∣∣
TXhMh

and ĨhH = PTXhMH
◦ IhH

∣∣
TXHMH

. (7.10)

This projection step is related to the so-called vector transport in retraction-based Rieman-

nian optimization and can be seen as a �rst-order approximation of parallel transport in

Riemannian geometry; see [AMS08]. As explained in the box below, the computation of the

interpolation ĨHh exploits the factored form of tangent vectors. The implementation of the

restriction ĨhH is similar and omitted.

114

7.3. Riemannian multigrid line search for low-rank matrices

Interpolation of ξH = UHMHVH + Up,HV
T
H + UHV

T
p,H ∈ TXHMk

H

Required: Xh = UhΣhV
T
h ∈Mk

h and XH = UHΣHV
T
H ∈Mk

H

(1) Compute factors: Ûp,h = IhHUp,H , M̂h = MH , V̂p,h = IhHVp,H

(2) Normalize: Up,h =
(
I − UhUT

h

)
Ûp,h, Vp,h =

(
I − VhV T

h

)
V̂p,h

Mh = UT
hÛp,h + V̂ T

p,hVh + M̂h

Result is ξh = UhMhVh + Up,hV
T
h + UhV

T
p,h ∈ TXhMk

h in the form (7.5).

Like in [WG09], we will use injection and linear interpolation in the numerical exper-

iments. In that case, the �op counts for computing IHh , ĨhH , and ĨHh in factored form as

explained above are both O(nk2 + k3) forMk
h ⊂ Rn×n.

7.3.4 Smoothers

In the context of optimization on manifolds, a smoother can be any cheap �rst-order opti-

mization method for minimizing fh: given x
(i)
h , it returns a tangent vector ξh such that, after

retraction, the error of the new iterate x̄h = R
x

(i)
h

(ξh) is smooth. In the Euclidean multilevel

algorithm of [WG09], for example, a few steps of L-BFGS are used.

In our experiments, we simply use a �xed number of steps of Riemannian steepest de-

scent; see [AMS08]. In addition, we halve the step length found by the line-search method

so that the resulting step better approximates one step of the Richardson iteration in linear

multigrid.

7.3.5 The Riemannian coarse-grid correction

Similar to Euclidean multilevel optimization, explained in Section 7.2.1, we also modify the

objective function in the Riemannian setting. To illustrate the generalization to the manifold

case, let us �rst rewrite the Euclidean model (7.3) as

ψEuclidean

H : Rn → R, xH 7→ ψEuclidean

H (xH) = fH(xH)− gE(xH , κH), (7.11)

where xH := x
(i)
H + eH is the full approximation. In the following, we describe how we turn

this model into a function on manifolds.

Let us assume that the algorithm at the coarse level starts at x
(i)
H ∈Mk

H . We consider as

optimization variable a point on the manifold xH ∈Mk
H . In the Riemannian setting, such a

point xH cannot be evaluated as in (7.11) since the inner product gE(xH , κH) is only de�ned

for tangent vectors. We will therefore lift xH to the tangent space at x
(i)
H by means of the

inverse retraction when evaluating the inner product.
2

A coarse objective function suitable

for Riemannian optimization is therefore given by

ψH : Mk
H → R, xH 7→ ψH(xH) = fH(xH)− g

x
(i)
H

(R−1
x

(i)
H

(xH), κH), (7.12)

where R−1
x

(i)
H

is the inverse retraction at x
(i)
H , g

x
(i)
H

denotes the Riemannian metric at x
(i)
H , and

κH ∈ Tx(i)
H

Mk
H is de�ned as

κH = grad fH(x(i)
H)− ĨHh (grad fh(x̄h)). (7.13)

2

Recall from Section 7.2.3 that this inverse is easy to compute for the orthographic retraction.

115

7. Multilevel Riemannian optimization for low-rank problems

Here, grad denotes the Riemannian gradient and ĨHh (grad fh(x̄h)) is the restricted Rieman-

nian gradient coming from the �ne-scale manifold. The restriction operator ĨHh is de�ned as

in (7.10), and the subtraction of the two tangent vectors is carried out in the factored format

(7.5). Let us denote by x
(i+1)
H the approximate minimizer ofψH , and de�ne the tangent vector

ηH := R−1
x

(i)
H

(x(i+1)
H).

7.3.6 Gradient of the coarse-grid model

During the optimization process, we need the Riemannian gradient of the coarse-grid cor-

rection function ψH . Recall from (7.6) that this is simply the orthogonal projection of the

Euclidean gradient onto the tangent space.

To this end, let us simplify the notation by omitting ·H in (7.12) to denote ψH as

ψ(x) = f(x)− gx(i)(R−1
x(i)(x), κ), (7.14)

where x, x(i) ∈ Mk and where the tangent vector κ ∈ Tx(i)Mk does not depend on x;

see (7.13). The only di�culty is thus the Euclidean gradient of the second term in (7.14).

Thanks to our choice of Riemannian metric onMk, we have

gx(i)(R−1
x(i)(x), κ) = 〈R−1

x(i)(x), κ 〉,

where 〈·, ·〉 denotes the Frobenius inner product of two matrices. By the chain rule, the

Euclidean gradient of 〈R−1
x(i)(x), κ 〉 can therefore be written as the directional derivative

∇〈R−1
x(i)(x), κ 〉 = 〈∇R−1

x(i)(x), κ 〉 = DR−1
x(i)(x)[κ].

For the orthographic retraction Rx, we know from (7.8) that its inverse satis�es

R−1
x(i)(x) = PT

x(i)Mk
(x)− x(i).

Since this is an a�ne linear function in x, its Fréchet derivative is simply the orthogonal

projection. We therefore obtain

DR−1
x(i)(x)[κ] = PT

x(i)Mk
(κ) = κ,

since κ ∈ Tx(i)Mk by construction. Combining, we �nally obtain the Riemannian gradient

of ψ as

gradψ(x) = PT
x(i)Mk

(
∇f(x)

)
− κ.

Remark 7.2. In the Euclidean multilevel optimization method from [WG09, Eq. (2.6)], an

important property called �rst-order coherence is introduced. In our Riemannian setting, it

amounts to

gxH (gradψH(xH), ξH) = gxh(grad fh(xh), ξh),

for any search direction ξH ∈ TxHMH with xH = IHh (xh) and ξh = ĨhH(ξH). This is

a desirable property since it ensures the same slope of the objective functions on the �ne

and coarse grids. Practically, this equation imposes a relation between the intergrid transfer

operators in the multilevel algorithm. In our setting as explained in Section 7.3.3, one can

show that it requires IhH = (IHh)T. This is indeed a typical choice in multigrid algorithms. It

is, for example, satis�ed for the injection IhH and linear interpolation IHh .

116

7.3. Riemannian multigrid line search for low-rank matrices

7.3.7 Final algorithm: Riemannian multigrid line search

In the following box, we have listed the �nal Riemannian multigrid line search algorithm to

optimize an objective function on a Riemannian manifold. The smoother is denoted by the

function SMOOTH and corresponds to ν1 or ν2 steps of steepest descent for fh.

One RMGLS iteration starting at x
(i)
h to minimize fh.

(1) Pre-smoothing: x̄h = SMOOTHν1(x(i)
h , fh)

(2) Coarse-grid correction:

(a) Restrict to the coarse manifold: x
(i)
H = IHh (x̄h)

(b) Compute the linear correction term:

κH = grad fH(x(i)
H)− ĨHh (grad fh(x̄h))

(c) De�ne the coarse-grid objective function

ψH(xH) = fH(xH)− g
x

(i)
H

(R−1
x

(i)
H

(xH), κH)

(d) Compute an approximateminimizer x(i+1)
H starting at x

(i)
H to min-

imize ψH using either

• a Riemannian trust-region method (ifMH is small)

• one recursive RMGLS iteration (otherwise)

(e) Compute the coarse-grid correction: ηH = R−1
x

(i)
H

(x(i+1)
H)

(f) Interpolate to the �ne manifold: ηh = ĨhH(ηH)
(g) Compute the corrected approximation on the �ne manifold:

x̂h = Rx̄h(α∗ηh) with α∗ obtained from line search

(3) Post-smoothing: x
(i+1)
h = SMOOTHν2(x̂h, fh)

Remark 7.3. The RMGLS algorithm above is very similar to the way one FAS multigrid

iteration is presented in [TOS00, p. 157].

Remark 7.4. For e�ciency reasons, it is crucial to implement the algorithm without forming

full matrices, i.e., always exploiting the low-rank format explicitly, also when evaluating the

objective function f . More details will be given in Section 7.4.

7.3.8 Riemannian Hager–Zhang line search

The Riemannian Hager–Zhang line search explained in Chapter 5 can be immediately used

on the manifold of �xed-rank matricesMk. As mentioned above, we have chosen the ortho-

graphic retraction because it has an explicit inverse; see Section 7.2.3. Let us show that its

derivative can also be e�ciently calculated.

117

7. Multilevel Riemannian optimization for low-rank problems

LetX ∈Mk andRX the orthographic retraction. Recall that f : Mk → R. By the chain

rule, we get for φ(t) = f(RX(tη)) that

φ′(t) =
〈
∇f(RX(tη)), d

dtRX(tη)
〉

= trace
(
∇f(RX(tη))T d

dtRX(tη)
)
, (7.15)

where∇f is the Euclidean gradient of f . Using (7.7), we can work out the standard derivative

d
dtRX(tη) =

(
U(Σ + tM) + tUp

)
(Σ + tM)−1(MV T + V T

p)
−
(
U(Σ + tM) + tUp

)
(Σ + tM)−1M(Σ + tM)−1((Σ + tM)V T + tV T

p
)

+ (Up + UM)(Σ + tM)−1((Σ + tM)V T + tV T
p
)
,

where X = UΣV T
and η = UMV T + UpV

T + UV T
p as in (7.5).

In (7.15), we need to evaluate trace(ATB). For computational e�ciency, we want to

avoid the naive multiplication ATB since it costs O(n3) �ops. A more e�cient approach is

to rewrite the derivative in the factorized format
d
dtRX(tη) = GHT

by de�ning

G =
[
−(U + tUp(Σ + tM)−1)M(Σ + tM)−1 U + tUp(Σ + tM)−1 Up + UM

]
and

H =
[
V (Σ + tM)T + tVp VMT + Vp V + tVp(Σ + tM)−T

]
.

Observe that G,H ∈ Rn×3k
. Assuming a similar factorization for ∇f(RX(tη)) = G̃H̃T

with G̃, H̃ ∈ Rn×k̃, the trace in (7.15) can then be computed as

φ′(t) = trace
(
H̃G̃TGHT) = trace

(
(G̃TG)(HTH̃)

)
at a cost of O((n + k)kk̃). In typical applications targeting low-rank approximations, k̃ is

larger than k but signi�cantly smaller than n. For example, in our numerical experiments

below, k̃ = O(k2) showing a large reduction fromO(n3) when k is small. Figure 7.5 provides

an illustration of this computational trick.

n n

n

kk

n

k k

G̃
T

H
T

k k

H̃G

k k

O(nk2) O(nk2)

O(k3)

Figure 7.5 – The “trace trick”.

7.4 Numerical experiments for two variational problems

We report on numerical properties of the proposed algorithm, RMGLS, by applying it to the

variational problems presented in this section. These are large-scale �nite-dimensional opti-

mization problems arising from the discretization of in�nite-dimensional problems. Because

118

7.4. Numerical experiments for two variational problems

of their underlying PDEs, these variational problems present a natural multilevel structure.

Variational problems of this type have been considered as benchmarks in other nonlinear

multilevel algorithms [Hen03, GST08, WG09]. For the theoretical aspects of variational prob-

lems, some good references are [BS07, LDL16].

The experiments below were performed by recursively executing RMGLS in a V-cycle

manner for both problems, as explained in Section 7.3.7. Unless otherwise noted, the Rie-

mannian version of the Hager–Zhang line search was used. The algorithm was implemented

in Matlab and it is available on Yareta.

7.4.1 A linear problem (Lyapunov equation)

We consider the minimization problemmin
w
F(w(x, y)) =

∫
Ω

1
2‖∇w(x, y)‖2 − γ(x, y)w(x, y) dx dy

such that w = 0 on ∂Ω,
(7.16)

where ∇ =
(
∂
∂x ,

∂
∂y

)
, Ω = [0, 1]2 and γ is a function that satis�es homogeneous Dirichlet

boundary conditions on ∂Ω. The variational derivative (Euclidean gradient) of F is

δF
δw

= −∆w − γ. (7.17)

A critical point of (7.16) is thus also a solution of the elliptic PDE −∆w = γ.

7.4.1.1 Discretization of the objective function

We use a standard �nite di�erence discretization for (7.16). In particular, Ω is represented at

level ` as a square grid

Ω` = {(xi, yj) | xi = ih`, yj = jh`, i = 0, 1, . . . , n`, j = 0, 1, . . . , n`}, n` = 2`,

yielding a square mesh of uniform mesh width h` = 1/n`. The unknown w onΩ` is denoted

bywij := w(xi, yj), and likewise for γij := γ(xi, yj), where we have omitted the dependence

on ` in the notation for readability. The partial derivatives are discretized as forward �nite

di�erences

∂wxij = 1
h(wi+1,j − wi,j), ∂wyij = 1

h(wi,j+1 − wi,j). (7.18)

The discretized version of F therefore becomes

Fh = h2
2`−1∑
i,j=0

(1
2(∂w2

xij + ∂w2
yij)− γij wij

)
. (7.19)

In order to �nd a low-rank approximation of (7.16) with RMGLS, the unknown wij from

above will be approximated as the ijth entry of a matrixWh ∈ Rn×n of rank k. For e�ciency,

this matrix is always represented in the factored form Wh = UΣV T
. Likewise, we gather all

γij in a factored matrix Γh = UγΣγV
T
γ of rank kγ . In the experiments below, kγ = 5.

For reasons of computational e�ciency, it is important to exploit these low-rank forms

in the execution of RMGLS. For the objective value Fh this can be done as follows. First,

observe that the �rst term satis�es

I :=
2`−1∑
i,j=0

(∂w2
xij + ∂w2

yij) = ‖∂Wx‖2F + ‖∂Wy‖2F, (7.20)

119

https://yareta.unige.ch/frontend/archive/833fad78-f35c-497c-b282-c62cae3172c9

7. Multilevel Riemannian optimization for low-rank problems

where ∂Wx, ∂Wy ∈ Rn×n contain the derivatives ∂wxij , ∂wyij . Then it is easy to verify

from (7.18) that

∂Wx = LWh and ∂Wy = WhL
T

with L = 1
h

−1 1

−1 1
.
.
.

.
.
.

−1 1

 .

Substituting this factorization and Wh = UΣV T
in (7.20), we get

I = ‖(LU)Σ‖2F + ‖(LV)Σ‖2F.

To recast the second term in (7.19) using matrices, observe that

II :=
∑
i,j

γij wij =
∑
i,j

(Γh �Wh)ij = trace(Γ T
hWh) = trace

(
Σγ(UT

γU)Σ(V TVγ)
)
,

where � denotes the elementwise (or Hadamard) product of two matrices. Summing the

terms I and II , we �nally obtain

Fh = h2

2

(
‖(LU)Σ‖2F + ‖(LV)Σ‖2F − 2 trace

(
Σγ(UT

γU)Σ(V TVγ)
))
,

which can be evaluated in O((n+ kγ)kγk) �ops.

7.4.1.2 Discretization of the gradient

The discretization of (7.17) gives

Gh = h2 (AWh +WhA− Γh) , (7.21)

where A is the discretization of −∆ by a second-order central di�erence, i.e.,

A = 1
h2

2 −1
−1 2 −1

.
.
.

.
.
.

.
.
.

−1 2 −1
−1 2

 . (7.22)

Observe that Gh = 0 in (7.21) — and hence for Wh a critical point of (7.19) — coincides with

a solution to the Lyapunov equation AWh +WhA = Γh.

Like for the discretized objective function above, we represent the discretized gradient

Gh as a factored matrix. Using the same notation as above, this can be done as follows:

Gh = h2
(
AUΣV T + UΣV TA− Γh

)
= h2

(
(AU)ΣV T + UΣ(V TA)− UγΣγV T

γ

)
= h2

[
AU U Uγ

]
blkdiag(Σ,Σ,−Σγ)

[
V AV Vγ

]T
,

where blkdiag(Σ,Σ,−Σγ) is the block diagonal matrix created by aligning the matrices Σ,

Σ, and −Σγ along the main diagonal. The gradient Gh can be represented in only O(nk)
�ops for computing AU and AV .

120

7.4. Numerical experiments for two variational problems

We introduce the notation ξh for the Riemannian gradient and recall that it is given by

the projection (7.6)

ξh = PTWhMk
h
(Gh).

Its norm ‖ · ‖F can be directly computed from the format (7.5) as

‖ξh‖F =
√
‖M‖2F + ‖Up‖2F + ‖Vp‖2F.

7.4.1.3 Discretized Hessian

On the coarsest level, where a Riemannian trust-region method is used, we need to provide

the directional derivative of the gradient, de�ned as

Hess f(x)[h] = D(grad f)(x)[h],

where x, h ∈ E . Let η denote a tangent vector toMk
h at Wh, i.e., η ∈ TWh

Mk
h. We consider

η being factorized as UηΣηV
T
η . Then the directional derivative of the gradient is

HessFh(Wh)[η] = h2(Aη + ηA),

and its factored form is

HessFh(Wh)[η] = h2
[
AUη Uη

]
blkdiag (Ση, Ση)

[
Vη AVη

]T
.

7.4.1.4 Numerical results

As mentioned above, the unconstrained minimizer of Fh over Rn×n is also a solution of a

Lyapunov equation. Restricted toMk
h and for small kγ , this is a typical benchmark problem

for low-rank methods; see, e.g., [Sim16, §4.4]. In particular, it guarantees the existence of an

approximation of rank

k = O
(

log(1/ε) log(κ(A)) kγ
)
,

with error at most ε and κ(A) the condition number of A. In the experiments, we have

kγ = 5 and

γ(x, y) = ex−2y
5∑
j=1

2j−1 sin(jπx) sin(jπy). (7.23)

We now report on the behavior of RMGLS. In all cases, we used 5 pre- and 5 post-smooth-

ing steps, and coarsest scale `c = 5. To monitor the convergence behavior of RMGLS, we

have considered three quantities. In all formulas, ·(i) indicates that a quantity was evaluated

at the ith outer iteration of RMGLS.

(a) The relative error of the discretized objective function Fh:

err-F(i) := |F (i)
h −F

(∗)
h |/|F

(∗)
h |.

Here, F (∗)
h is the minimal value overMk

h of the original objective function in (7.16). It

is approximated by minimizing Fh on Mk
h with the Riemannian trust-region (RTR)

method [AMS08], terminated when the Riemannian gradient norm is smaller than

10−13
.

121

7. Multilevel Riemannian optimization for low-rank problems

(b) The Frobenius norm of the normalized Riemannian gradient:

R-grad(i) := ‖ξ(i)
h ‖F/‖ξ

(0)
h ‖F.

(c) The relative error in Frobenius norm of the low-rank approximation:

err-W (i) := ‖W (i)
h −W

(∗)
h ‖F/‖W

(∗)
h ‖F.

Here,W
(∗)
h is the minimizer ofFh over Rn×n. It is computed with a Euclidean trust-re-

gion method, terminated when the Euclidean gradient norm is smaller than 10−14
. No

rank truncation was used for W
(∗)
h and no problem with multiple local minima oc-

curred.
3

In Figure 7.6, the convergence of the objective function and gradient norm are depicted for

RMGLS with �nest scale `f = 8 and rank k = 5. We observe that the objective function has

converged already after 25 iterations, whereas the gradient norm continues to decrease until

iteration 35. This di�erence indicates that using a stopping criterion based on the objective

function alone can be misleading if we want the most accurate stationary point, and it is

better to use a criterion based on the gradient norm.

Figure 7.6 – Convergence of err-F and R-grad for level `f = 8 and rank k = 5, for the

problem of Section 7.4.1.

Figure 7.7 shows the convergence of err-W for increasing ranks k. We compare a line

search based on the new Hager–Zhang conditions to the weak Wolfe conditions. The plateaus

in both panels are due to the fact that the approximate solution is computed in low-rank for-

mat and it is compared to the full-rank reference solutionW
(∗)
h . The latter has good low-rank

approximations, which is con�rmed by the later onset of the stagnation phase when increas-

ing the rank in RMGLS. Panel (b) of Figure 7.7 shows that a line-search procedure with weak

Wolfe conditions does not allow us to reduce err-W below

√
εmach ≈ 10−8

in double preci-

sion arithmetic. This clearly makes the case that the Hager–Zhang line search is useful if we

want to obtain more accurate low-rank approximations, as it is visible in panel (a).

3

For the linear problem, we can of course also directly solve the Lyapunov equation. However, this is not

feasible for the nonlinear problem below.

122

7.4. Numerical experiments for two variational problems

(a) Hager–Zhang (b) weak Wolfe

Figure 7.7 – Convergence of err-W for level `f = 8, for the problem of Section 7.4.1.

To assess the accuracy of the solutions obtained for the Lyapunov equation, we also use

the standard residual

r(Wh) := ‖AWh +WhA− Γh‖F.

We also consider the following relative residual based on the backward error [Sim07, Eq. (3.6)]

rBW(Wh) := ‖AWh +WhA− Γh‖F
2‖A‖2‖Wh‖F + ‖Γh‖F

.

Figure 7.8 compares the convergence behavior of R-grad for di�erent �ne-scale manifolds

with `f = 7, 8, 9, 10. The corresponding sizes of the discretizations are 16 384 (•), 65 536 (•),
262 144 (•) and 1 048 576 (•). Panel (a) corresponds to rank k = 5, while panel (b) refers to

k = 10. One can observe that the convergence behavior is not very dependent on the mesh

size, thereby con�rming that RMGLS has an almost mesh-independent convergence typical

of multigrid methods. In Table 7.1, the �nal R-grad, err-W , backward error rBW(Wh) and

residual r(Wh) of the Lyapunov equation are displayed.

(a) rank k = 5 (b) rank k = 10

Figure 7.8 – Convergence of R-grad for several �nest levels `f , for the problem of Sec-

tion 7.4.1.

The numerical experiments presented in this section show that RMGLS, our Riemannian

multilevel optimization algorithm with Hager–Zhang line search, converges as we would ex-

pect from an e�ective multigrid method. Satisfying the approximate Wolfe conditions in the

123

7. Multilevel Riemannian optimization for low-rank problems

Table 7.1 – Final gradient norm and residuals for the problems of Figure 7.8. The error of the

best rank-5 approximation is ≈ 8.73× 10−4
. The error of the best rank-10 approximation is

≈ 1.41× 10−8
.

`f size R-grad(100)

rBW(W (100)
h

)
rBW(W (0)

h
)

r(W (100)
h) err-W (100)

r
a
n

k
5

7 (•) 16 384 2.15× 10−14 4.91× 10−5 1.27× 10−4 8.73× 10−4

8 (•) 65 536 3.76× 10−14 1.65× 10−5 6.34× 10−5 8.74× 10−4

9 (•) 262 144 5.55× 10−14 5.57× 10−6 3.17× 10−5 8.75× 10−4

10 (•) 1 048 576 1.10× 10−13 1.97× 10−6 1.59× 10−5 8.75× 10−4

r
a
n

k
1
0

7 (•) 16 384 1.35× 10−14 4.47× 10−9 1.63× 10−8 1.52× 10−8

8 (•) 65 536 1.83× 10−14 1.54× 10−9 8.46× 10−9 1.54× 10−8

9 (•) 262 144 2.43× 10−14 5.25× 10−10 4.27× 10−9 1.55× 10−8

10 (•) 1 048 576 1.12× 10−13 1.82× 10−10 2.14× 10−9 1.55× 10−8

Hager–Zhang line search seems to be su�cient for the method to converge to local minima

that are accurate when measured in the relative error and residual norms.

7.4.1.5 Rank adaptivity

In the framework of Riemannian optimization, rank-adaptivity can be introduced by succes-

sive runs of increasing rank, using the previous solution as a warm start for the next rank. For

recent discussions about this approach see [UV15, KSV16]. An example is given for the prob-

lem described in this section, with (7.23) as right-hand side, again with �nest level `f = 8
and coarsest level `c = 5, using 5 smoothing steps. Starting from rank k(0) = 5, we run

RMGLS for 10 iterations, and use the approximate solution to warm start the algorithm with

ranks k(i) = k(i−1) + 5, i = 1, . . . , 4. Figure 7.9 compares the convergence behavior of this

adaptive strategy with the non-adaptive RMGLS, for a target rank k = 25. It is apparent that

the adaptive RMGLS is more e�cient than its non-adaptive counterpart. For example, at the

30th iteration, r(W (30)
h) ≈ 2.50 × 10−4

for the non-adaptive RMGLS, whereas it is already

r(W (30)
h) ≈ 4.57× 10−10

in the adaptive version.

7.4.2 A nonlinear problem

Next, we consider the variational problem from [WG09, Example 5.1] involving an exponen-

tial as nonlinear term:min
w
F(w) =

∫
Ω

1
2‖∇w‖

2 + λ(w − 1) ew − γ w dx dy

such that w = 0 on ∂Ω,
(7.24)

where λ = 10, Ω = [0, 1]2, and

γ(x, y) =
(
(9π2 + λe(x2−x3) sin(3πy))(x2 − x3) + 6x− 2

)
sin(3πy).

124

7.4. Numerical experiments for two variational problems

Figure 7.9 – Rank-adaptivity for RMGLS applied to the problem of Section 7.4.1, with (7.23)

as right-hand side. Starting from rank 5, the rank is increased by 5 every 10 iterations, until

k = 25. The black crosses illustrate the behavior of non-adaptive RMGLS with rank k = 25.

The variational problem (7.24) corresponds to the nonlinear PDE [Hen03, Eq. (5.4)]

{
−∆w + λwew − γ = 0 in Ω,

w = 0 on ∂Ω.

The exact solution wex = (x2 − x3) sin(3πy) has rank 1, making it less interesting as test

case for our low-rank method. In addition, a discretization of the exponential term ew does

not admit a good low-rank approximation for w close to the exact solution.

The following modi�cation,

{
−∆w + λw(w + 1)− γ = 0 in Ω,

w = 0 on ∂Ω,
(7.25)

is better suited as test case: as we will show below, the nonlinearityw(w+1) can be computed

e�ciently when w is low rank and the exact solution is full rank but has good low-rank

approximations.

To obtain the variational problem corresponding to (7.25), −∆w gives rise to the term

1
2‖∇w‖

2
in the integrand of the objective functional, as seen in Section 7.4.1. The term in

γ also remains the same. For the nonlinear term in the middle, we calculate the integral of

λw(w + 1) with respect to w, which gives λw2(1
3w + 1

2
)
. Finally, we can formulate the

variational problem as

min
w
F(w) =

∫
Ω

1
2‖∇w‖

2 + λw2(1
3w + 1

2
)
− γ w dx dy

such that w = 0 on ∂Ω.
(7.26)

For γ, we choose the same right-hand side adopted in (7.23).

125

7. Multilevel Riemannian optimization for low-rank problems

7.4.2.1 Discretization of the objective function

Discretizing (7.26) similarly as in Section 7.4.1.1, we obtain

Fh = h2
2`−1∑
i,j=0

(
1
2(∂w2

xij + ∂w2
yij) + λw2

ij

(1
3wij + 1

2
)
− γijwij

)
.

The �rst term and the third term have the same matrix form as the one seen in Section 7.4.1.1.

For the second term, we have

∑
i,j

λ

2 w
2
ij = λ

2 trace(W T
hWh) = λ

2 ‖Σ‖
2
F,

and ∑
i,j

λ

3 w
3
ij = λ

3 trace(W T
h (Wh �Wh)). (7.27)

For the term Wh �Wh, we perform the element-wise multiplication in factorized form as

explained in [KT14, §7] and store the result in the format U�Σ�V
T
�:

Wh �Wh = (U ∗T U)(Σ ⊗Σ)(V ∗T V)T = U�Σ�V
T
�,

where ∗T denotes a transposed variant of the Khatri-Rao product (see de�nition in [KT14,

§7]). Observe that rank(Wh �Wh) 6 k2
. As a consequence, the term (7.27) becomes

λ

3 trace(W T
h (Wh �Wh)) = λ

3 trace
(
V (UΣ)TU�Σ�V T

�
)

= λ

3 trace
(
Σ(UTU�)Σ�(V T

�V)
)
.

Finally, the discretized functional in matrix form is

Fh = h2

2

(
‖(LU)Σ‖2F + ‖(LV)Σ‖2F + λ‖Σ‖2F

+ 2
3λ trace

(
Σ(UTU�)Σ�(V T

�V)
)
− 2 trace

(
Σγ(UT

γU)Σ(V TVγ)
))
,

which can be evaluated in O
(
nk(kγ + k2) + k(k2

γ + k3)
)

�ops.

7.4.2.2 Discretization of the gradient

The gradient of F is the functional derivative

δF
δw

= −∆w + λw(w + 1)− γ.

The discretized Euclidean gradient in matrix form is given by

Gh = h2 (AWh +WhA+ λWh �Wh + λWh − Γh) ,

with A as in (7.22). Substituting the formats Wh = UΣV T
, Wh � Wh = U�Σ�V

T
�, and

Γh = UγΣγV
T
γ , we get the factorized form

Gh = h2
[
(A+ λI)U U U� Uγ

]
blkdiag(Σ,Σ, λΣ�,−Σγ)

[
V AV V� Vγ

]T
.

The gradient Gh can be represented in only O(nk) �ops for computing (A+λI)U and AV .

126

7.5. Comparison with other methods

7.4.2.3 Discretized Hessian

The directional derivative of the gradient is

HessFh(Wh)[η] = h2(Aη + ηA+ 2λWh � η + λη).

Let the Hadamard product Wh � η in factorized form be Wh � η = U�Σ�V
T
�. Then the

factored form of the directional derivative of the gradient is

h2
[
AUη Uη U� Uη

]
blkdiag (Ση, Ση, 2λΣ�, λΣη)

[
Vη AVη V� Vη

]T
.

7.4.2.4 Numerical results

We repeat the same set of experiments as for the previous problem to verify the convergence

of the error and residual functions de�ned in Section 7.4.1.4. The coarse level was again taken

as `c = 5. Comparing Figures 7.10, 7.11, 7.12, and 7.13 for this nonlinear problem to the ones

of the linear problem, we observe that the earlier conclusions remain virtually the same.

Figure 7.10 – Convergence of err-F and

R-grad for level `f = 8 and rank k = 5,

for the problem of Section 7.4.2.

Figure 7.11 – Convergence of err-W , with

Hager–Zhang line search, for `f = 8 and

the rank values k = 5, 10, 15, 20.

7.5 Comparison with other methods

We compare Euclidean trust regions (ETR), Euclidean multilevel optimization (EML), EML

with low rank via truncated SVD, Riemannian trust regions (RTR) with �xed rank, and our

RMGLS with �xed rank. ETR and EML do not use any low-rank approximation, whereas the

other methods do.

All methods were implemented in Matlab. ETR and RTR were executed using solvers

from the Manopt package [BMAS14] with the Riemannian embedded submanifold geometry

from [Van13] for RTR. EML was implemented by ourselves based on the same multigrid

components as RMGLS, as already explained in Section 7.4. EML with truncated SVD applies

truncation via the SVD with a �xed rank after every computational step in EML.

Table 7.2 summarizes the results for the linear problem described in Section 7.4.1. It

is apparent that the Euclidean algorithms soon become very ine�cient as the problem size

grows. Hence we omit results for bigger problem sizes. For the smaller problems, the residual

of the �nal approximation was always very small since there was no rank truncation.

127

7. Multilevel Riemannian optimization for low-rank problems

Figure 7.12 – Convergence of R-grad for several �nest levels `f and rank k = 5, for the

problem of Section 7.4.2.

Figure 7.13 – Rank-adaptivity for RMGLS applied to the problem of Section 7.4.2, with (7.23)

as right-hand side. Starting from rank 5, the rank is increased by 5 every 10 iterations, until

k = 25. The black crosses illustrate the behavior of non-adaptive RMGLS with rank k = 25.

128

7.6. Conclusions

In the low-rank version of EML with truncated SVD, the algorithm was stopped before
stagnation in the residual norm started to occur, as determined by manual inspection. This

was done so that the algorithm certainly did not run longer than needed.
4

All the other

low-rank algorithms were stopped when the norm of the Riemannian gradient was below

the threshold value of 10−12
.

Observe that the accuracy achieved by EML with truncated SVD is not as good compared

to RTR and RMGLS. This was not due to our stopping condition but probably because of

the �xed-rank truncations throughout the multigrid cycle in EML. It is possible that a more

careful choice of ranks can improve on the accuracy, but we did not investigate this issue

since RTR and RMGLS are also using �xed-rank truncations.

The Riemannian algorithms on the manifold of �xed-rank matrices show a more e�cient

behavior. For problems having a relatively small size (`f = 10, 11), RTR is more e�cient than

RMGLS, while for bigger problems, RMGLS is much more e�cient that RTR. The fastest

computational time for a given level is highlighted in bold text. In particular, for `f = 14,

our RMGLS is almost 6 times more e�cient than the RTR. This demonstrates that for very

big problem sizes the Riemannian multilevel strategy is the most advantageous.

An important observation is that the Riemannian algorithms can be terminated based

on the Riemannian gradient, since it provably can be made very small, as it is clear from

the tables and also from the �gures in the previous section. This property allows us to stop

the algorithm when the local gradient is smaller than a certain threshold. On the contrary,

the EML low-rank algorithm does not have this property and, since the (Riemannian) gra-

dient might never become very small, the stopping criterion has to be based on stagnation

detection.

Another observation concerns the “multiplying factor” across the levels for di�erent

methods. We are mostly interested in comparing the scaling factors for RTR and RMGLS

when enlarging the level `f , since the other methods are visibly more expensive than these

two. From Table 7.2, we obtain on average scaling factors of 3.5 for RTR and 1.7 for RMGLS,

respectively. Finally, Table 7.3 shows that if we increase the rank, it is possible to achieve bet-

ter accuracy in the residuals r(W (end)
h) for both EML with rank truncation and RMGLS. In

addition, RMGLS is considerably faster than EML for the same rank and for the biggest prob-

lem. Table 7.4 summarizes the results for the nonlinear problem described in Section 7.4.2.

Similar considerations as above can be done for this problem. We point out that the higher

computational times in the low-rank algorithms are due to the calculations of the Hadamard

products in factored form. From Table 7.4 we can obtain the following average multiplying

factors across the levels: 4.3 for RTR, 2.0 for RMGLS. These are in good agreement with the

ones computed for the linear problem.

7.6 Conclusions

In this chapter, we have shown how to combine multilevel optimization with optimization

on low-rank manifolds. Compared to other approaches, no explicit preconditioning needs to

be performed to solve an ill-conditioned Newton equation. Numerical experiments demon-

strated that for two variational problems our method succeeds in computing good low-rank

approximations with an almost mesh-independent convergence behavior. In addition, we dis-

cussed how to apply the accurate Riemannian Hager–Zhang line search presented in Chap-

ter 5 to the manifold of �xed-rank matrices.

4

Although in practice such a stopping condition can not be implemented.

129

7. Multilevel Riemannian optimization for low-rank problems

Table 7.2 – Comparisons of di�erent methods for the problem described in Section 7.4.1. The

— means the Riemannian gradient ξ
(end)
h does not apply.

`f size time (s) ‖ξ(end)
h ‖F r(W (end)

h)

ETR (no rank truncation, no multilevel)

9 262 144 19 — 9.2451× 10−15

10 1 048 576 164 — 5.2284× 10−15

11 4 194 304 1 787 — 1.0223× 10−14

EML (8 smoothing steps, `c = 7)

no rank truncation

9 262 144 16 — 6.2645× 10−13

10 1 048 576 77 — 3.4368× 10−13

11 4 194 304 459 — 4.2710× 10−12

truncation to rank 5

9 262 144 9 — 4.5166× 10−5

10 1 048 576 35 — 2.2084× 10−5

11 4 194 304 58 — 1.7780× 10−4

RTR – rank 5 (no multilevel)

10 1 048 576 6 1.5002× 10−14 1.5873× 10−5

11 4 194 304 20 2.7687× 10−14 7.9369× 10−6

12 16 777 216 66 6.6810× 10−14 3.9685× 10−6

13 67 108 864 237 1.1654× 10−13 1.9842× 10−6

14 268 435 456 929 2.6852× 10−13 9.9212× 10−7

RMGLS – rank 5 (8 smoothing steps, `c = 7)

10 1 048 576 18 6.1634× 10−13 1.5873× 10−5

11 4 194 304 26 2.5091× 10−13 7.9369× 10−6

12 16 777 216 52 6.5807× 10−13 3.9685× 10−6

13 67 108 864 94 9.2574× 10−13 1.9842× 10−6

14 268 435 456 161 6.1323× 10−13 9.9212× 10−7

130

7.6. Conclusions

Table 7.3 – Comparisons of EML with rank truncation and RMGLS for di�erent ranks applied

to the problem described in Section 7.4.1. In both cases, 8 smoothing steps and coarsest level

`c = 7 are used.

EML RMGLS

`f size time (s) r(W (end)
h) time (s) ‖ξ(end)

h ‖F r(W (end)
h)

r
a
n

k
1
0 9 262 144 13 9.1637× 10−9

18 7.6740× 10−13 4.2704× 10−9

10 1 048 576 55 3.3303× 10−9 31 5.0568× 10−13 2.1431× 10−9

11 4 194 304 451 4.9866× 10−5 76 3.1722× 10−13 1.0704× 10−9

r
a
n

k
1
5 9 262 144 43 4.7685× 10−11 42 6.1597× 10−13 4.2953× 10−11

10 1 048 576 107 2.4681× 10−11 103 6.1486× 10−13 2.1541× 10−11

11 4 194 304 495 4.5356× 10−11 174 8.9919× 10−13 1.0940× 10−11

131

7. Multilevel Riemannian optimization for low-rank problems

Table 7.4 – Comparisons of di�erent methods for the problem described in Section 7.4.2. The

— means the Riemannian gradient ξ
(end)
h does not apply.

`f size time (s) ‖ξ(end)
h ‖F r(W (end)

h)

ETR: no rank truncation, no multilevel

9 262 144 23 — 8.8890× 10−15

10 1 048 576 196 — 6.0243× 10−15

11 4 194 304 1 990 — 1.1352× 10−14

EML: `c = 7, 8 smoothing steps

no rank truncation

9 262 144 22 — 2.6912× 10−13

10 1 048 576 75 — 9.4184× 10−13

11 4 194 304 506 — 4.2292× 10−13

truncation to rank 5

9 262 144 11 — 4.4994× 10−5

10 1 048 576 47 — 5.0028× 10−5

11 4 194 304 72 — 1.6216× 10−4

RTR: rank 5, no multilevel

10 1 048 576 11 1.3449× 10−14 1.5614× 10−5

11 4 194 304 31 9.3240× 10−14 7.8072× 10−6

12 16 777 216 151 5.9424× 10−14 3.9036× 10−6

13 67 108 864 554 1.1696× 10−13 1.9518× 10−6

14 268 435 456 3 338 2.1950× 10−13 9.7591× 10−7

RMGLS: rank 5, `c = 7, 8 smoothing steps

10 1 048 576 44 5.3255× 10−13 1.5614× 10−5

11 4 194 304 51 4.0362× 10−13 7.8072× 10−6

12 16 777 216 120 9.6698× 10−13 3.9036× 10−6

13 67 108 864 209 3.8296× 10−13 1.9518× 10−6

14 268 435 456 549 9.8448× 10−13 9.7591× 10−7

132

7.6. Conclusions

Table 7.5 – Comparisons of EML with rank truncation and RMGLS for di�erent ranks applied

to the problem described in Section 7.4.2. In both cases, 8 smoothing steps and coarsest level

`c = 7 are used.

EML RMGLS

`f size time (s) r(W (end)
h) time (s) ‖ξ(end)

h ‖F r(W (end)
h)

r
a
n

k
1
0 9 262 144 30 4.7324× 10−7 21 7.8437× 10−13 3.7321× 10−7

10 1 048 576 123 3.4975× 10−7 61 4.0398× 10−13 1.8660× 10−7

11 4 194 304 797 1.2826× 10−5 153 5.5800× 10−13 9.3301× 10−8

r
a
n

k
1
5 9 262 144 107 7.4928× 10−10 92 2.0183× 10−13 4.2886× 10−10

10 1 048 576 380 9.6225× 10−10 207 6.5306× 10−13 2.6044× 10−10

11 4 194 304 3 113 4.3682× 10−10 532 1.3610× 10−13 8.3563× 10−11

133

Appendix A

Single shooting

A.1 Freedom in choosing the geodesic

As mentioned in Remark 2.2, the matrix Y0⊥ does not need to be orthonormal; in fact, its

only requirement is that it has to span Y⊥0 = (span(Y0))⊥, the orthogonal subspace to Y0 =
span(Y0). In this appendix, we are going to show this, starting from the geodesic

Y (t) =
[
Y0 Y0⊥

]
exp

([
Ω −KT

K On−p

]
t

)[
Ip

O(n−p)×p

]
.

Let M be any (n− p)-by-(n− p) invertible matrix, and de�ne

M̃ =
[
Ip

M

]
, M̃−1 =

[
Ip

M−1

]
, M̃−1M̃ = M̃M̃−1 = In.

Observe that

[
Y0 Y0⊥

]
M̃−1 =

[
Y0 Y0⊥

] [Ip
M−1

]
=
[
Y0 Y0⊥M

−1],
and

M̃

[
Ip

O(n−p)×p

]
=
[
Ip

M

] [
Ip

O(n−p)×p

]
=
[

Ip
O(n−p)×p

]
.

In the following steps, we use these facts together with the property M̃ exp(A)M̃−1 =
exp(M̃AM̃−1), which holds for any invertible matrix M̃ .

Y (t) =
[
Y0 Y0⊥

]
M̃−1M̃ exp

([
Ω −KT

K On−p

]
t

)
M̃−1M̃

[
Ip

O(n−p)×p

]
,

=
[
Y0 Y0⊥M

−1] exp
(
M̃

[
Ω −KT

K On−p

]
M̃−1t

)[
Ip

O(n−p)×p

]
,

=
[
Y0 Y0⊥M

−1] exp
([

Ω −KTM−1

MK On−p

]
t

)[
Ip

O(n−p)×p

]
.

Since the matrix M is invertible, it can be regarded as a change of basis. Hence, it appears

from the last expression that there is freedom in choosing Y0⊥, since it can be any matrix

whose columns form a basis for Y⊥0 .

135

A. Single shooting

A.2 Smaller formulation

In this section, we prove that, when p 6 n
2 , the geodesic problem on St(n, p) can be refor-

mulated into an equivalent problem on St(2p, p). We start from (2.2) with t = 1, namely,

Y1 =
[
Y0 Y0⊥

]
exp

([
Ω −KT

K On−p

])[
Ip

O(n−p)×p

]
.

Consider the QR decomposition of K

K =
[
Q Q⊥

] [R
O(n−2p)×p

]
= QR,

where

[
Q Q⊥

]
∈ R(n−p)×(n−p)

is the orthogonal factor of K , whose blocks Q ∈ R(n−p)×p
,

Q⊥ ∈ R(n−p)×(n−2p)
are orthonormal, and R ∈ Rp×p is upper triangular. Inserting this

decomposition in the matrix [
Ω −KT

K On−p

]
,

we get Ω
[
−RT O

][
Q Q⊥

]T[
Q Q⊥

][R
O

]
On−p

 =
[
Ip [

Q Q⊥
]]Ω −RT

R Op
On−2p

[Ip [
Q Q⊥

]T] .
Substituting this expression into the argument of the matrix exponential, and using the

property exp(Q̃MQ̃T) = Q̃ exp(M)Q̃T
for any orthogonal matrix Q̃, we get

Y1 =
[
Y0 Y0⊥

] [Ip [
Q Q⊥

]] exp

Ω −RT

R Op
On−2p

[Ip [

Q Q⊥
]T
] [

Ip
O(n−p)×p

]
.

Using the fact that the argument of exp is a block diagonal matrix, we can write

Y1 =
[
Y0 Y0⊥Q Y0⊥Q⊥

] exp
([
Ω −RT

R Op

])
I(n−2p)

 Ip

Op
O(n−2p)×p

 .
We collect the matrices in order to make the products conformable

Y1 =
[[
Y0 Y0⊥Q

]︸ ︷︷ ︸
∈Rn×2p

Y0⊥Q⊥︸ ︷︷ ︸
∈Rn×(n−2p)

]exp
([
Ω −RT

R Op

])
I(n−2p)

[
Ip
Op

]
O(n−2p)×p

 .
Finally we have obtained the smaller formulation (2.10)

Y1 =
[
Y0 Y0⊥Q

]
exp

([
Ω −RT

R Op

])[
Ip
Op

]
.

136

Appendix B

Fréchet derivatives

B.1 First-order Fréchet derivative of a matrix function

The Fréchet derivative of a matrix function f : Cn×n → Cn×n at X ∈ Cn×n is the unique

linear function Df(X)[·] of the matrix E ∈ Cn×n, that satis�es

f(X + E)− f(X)−Df(X)[E] = o(‖E‖). (B.1)

The mapping itself is denoted by either Df(X)[·] or Df(X), while the value of the mapping

for direction E (i.e. the directional derivative) is denoted by Df(X)[E].
Since Df(X) : Cn×n → Cn×n is a linear operator, one can write

vec
(

Df(X)[E]
)

= JXf vec(E) (B.2)

for some n2 × n2
complex matrix JXf independent of E. We refer to JXf as the Kronecker

representation of the Fréchet derivative, or simply as the Jacobian matrix.

B.2 Singular values of JXf

In this section, we report some results that are used in the analysis of the single shooting

method on the Stiefel manifold (see Section B.2.1). The operator norm of Df(X) for the

Frobenius norm is de�ned by

‖Df(X)‖F = max
Z 6=0

‖Df(X)[Z]‖F
‖Z‖F

= max
‖Z‖F=1

‖Df(X)[Z]‖F.

By vectorizing Df(X)[Z] as in (B.2), and using the fact that the Euclidean norm of z =
vec(Z) equals the Frobenius norm of Z , we can also write

‖Df(X)‖F = max
‖z‖2=1

‖JXf z‖2 = ‖JXf ‖2 = σmax(JXf),

where σmax(JXf) is the largest singular value of JXf .

We have the following important theorem.

Theorem B.1 ([Hig08, Cor. 3.16]). If X ∈ Cn×n is normal, then

σmax(JXf) = max
λ,µ∈Λ(X)

∣∣f [λ, µ]
∣∣, (B.3)

137

B. Fréchet derivatives

whereΛ(X) denote the eigenvalues ofX , and f [λ, µ] is the �rst-order divided di�erence de�ned
by

f [λ, µ] =
{

f(λ)−f(µ)
λ−µ , λ 6= µ,

f ′(λ), λ = µ.
(B.4)

If Df(X) is invertible, we have a similar property for the minimal singular value:

Theorem B.2. If X ∈ Cn×n is normal, then

σmin(JXf) = min
λ,µ∈Λ(X)

∣∣f [λ, µ]
∣∣.

Proof. We adjust the proof of [Hig08, Cor. 3.16] accordingly. We start from the variational

property [GVL13, Theorem 8.6.1]

σmin(JXf) = min
‖E‖F=1

‖Df(X)[E]‖F,

and we use Df(X)[E] = Z
(

Df(D)[Ẽ]
)
Z−1

, with D = diag(λi) and Ẽ = Z−1EZ , as in

[Hig08, Cor. 3.12]. Then

σmin(JXf) = min
‖Ẽ‖F=1

‖Z
(

Df(D)[Ẽ]
)
Z−1‖F = min

‖Ẽ‖F=1
‖Df(D)[Ẽ]‖F = min

i,j

∣∣f [λi, λj]
∣∣,

where for the last equality we used the same reasoning as in the proof of [Hig08, Cor. 3.13].

B.2.1 Analysis of JAexp(A)

As we did in Section 2.3.1, let us denote

A =
[
Ω −KT

K On−p

]
the matrix in the argument of the exponential appearing in the geodesic (2.2), with Ω ∈
Sskew(p) and K ∈ R(n−p)×p

, and let the Jacobian of exp(A) with respect to A be [Hig08]

JAexp(A) =
(

exp(AT/2)⊗ exp(A/2)
)

sinch
(

1
2 [AT ⊕ (−A)]

)
.

Since A is normal, we can apply the theorems presented above to bound the singular values

of the Jacobian JAexp(A) of the matrix exponential of A.

Theorem B.3. Let A and JAexp(A) be as de�ned above, and let α = ‖A‖2. We have

σmax
(
JAexp(A)

)
= 1 and σmin

(
JAexp(A)

)
= |sincα| .

Proof. Since A is a real skew-symmetric matrix, the eigenvalues of A are purely imaginary.

Hence we may denote them as ix and iy, with x, y ∈ R. Let us rewrite (B.3) as

‖JAexp(A)‖2 = σmax
(
JAexp(A)

)
= max
|x|,|y|6α

∣∣ exp[ix, iy]
∣∣,

where |x|, |y| 6 α because the absolute value of an eigenvalue of a normal matrix cannot

exceed any norm of that matrix. The maximum is attained for y = x, and using the de�nition

in (B.4), we get

σmax
(
JAexp(A)

)
= max
|x|6α

∣∣ exp[ix, ix]
∣∣ = max

|x|6α

∣∣ exp′(ix)
∣∣ = max

|x|6α

∣∣ exp(ix)
∣∣ = 1.

138

B.2. Singular values of JXf

This shows that the maximum singular value of JAexp(A) is always 1.

For the minimum singular value, let us specialize Theorem B.2 to our case:

σmin
(
JAexp(A)

)
= min
|x|,|y|6α

∣∣ exp[ix, iy]
∣∣ = min

|x|,|y|6α

∣∣∣∣∣eix − eiy

ix− iy

∣∣∣∣∣︸ ︷︷ ︸
=:g(x,y)

.

The minima of g(x, y) are attained on the anti-diagonal at the corners, namely, when x =
α, y = −α and x = −α, y = α. This gives:

σmin
(
JAexp(A)

)
=
∣∣∣∣∣eiα − e− iα

2 iα

∣∣∣∣∣ =
∣∣∣∣sinαα

∣∣∣∣ = |sincα| .

Figure B.1 illustrates the function |sincα| for α in the interval [0, 5].

Figure B.1 – A plot of |sincα| for α in the interval [0, 5].

Observe that forα = π the sinc function is equal to zero, hence JAexp(A) becomes singular.

Since JAexp(A) appears in the expression for the Jacobian of the geodesic, Equation (2.9),

JxZ1 =
([
Ip Op×(n−p)

]
⊗Q

)
JAexp(A) T J

x
A(x),

the above result is related to the cases in which single shooting fails.

139

Appendix C

Jacobians for multiple shooting

In this appendix, we report the explicit formulas for the Jacobian matrices that are used in

the multiple shooting method on the Stiefel manifold St(n, p) (see Section 2.4).

Let Σ1 denote a base point and Σ2 its corresponding tangent vector as explained in Sec-

tion 2.4 and illustrated in Figure 2.4.

To compute the Jacobian matrices appearing in (2.16), we formulate the geodesic equation

(2.2) using the singular value decomposition of the base point Σ1, namely, Σ1 = USV T
. Let

us consider the partitioned matrices (Matlab notation)

Up = U(: , 1: p), U⊥ = U(: , p+ 1: end), Vp = V (: , 1: p), V⊥ = V (: , p+ 1: end),

and let Q̃ =
[
Σ1 U⊥

]
. Then the SVD formulations of the geodesic and its derivative are

Z1(t) = Q̃ exp(tA)
[

Ip
O(n−p)×p

]
, Z2(t) = Q̃ exp(tA)A

[
Ip

O(n−p)×p

]
,

where

A(Q̃,Σ2) =

 [
Ip O

]
Q̃TΣ2 −

[[
O In−p

]
Q̃TΣ2

]T
[
O In−p

]
Q̃TΣ2 On−p

 =
[
ΣT

1Σ2 −(UT
⊥Σ2)T

UT
⊥Σ2 On−p

]
.

C.1 Jacobians with respect to the base point

Let us �rst compute the Jacobians of the geodesic and its derivative with respect to the base

point Σ1, i.e.,

JΣ1
Z1

= ∂Z1
∂Σ1

and JΣ1
Z2

= ∂Z2
∂Σ1

.

We adopt for the functions involved the notation:

• s(Σ1) = svd(Σ1), performs the SVD of Σ1 and returns Up, U⊥, Vp, V⊥;

• q̃(s(Σ1)) =
[
Σ1 U⊥

]
= Q̃, builds the matrix Q̃ from Σ1 and U⊥;

• h(q̃(s(Σ1))) = A, builds the matrix argument of exp;

• g(h(Q̃)) = exp(A), performs the matrix exponential of A.

141

C. Jacobians for multiple shooting

To compute
∂Z1
∂Σ1

we have to consider the derivative of a product and the chain rule for a

composite function:

DZ1(Σ1)[E] = Dq̃
(
s(Σ1), Ds(Σ1)[E]

)
exp(A)

[
Ip
O

]

+ Q̃ Dg
(
h(q̃(s(Σ1))), Dh

[
q̃(s(Σ1)), Dq̃ (s(Σ1), Ds(Σ1)[E])

]) [Ip
O

]
.

As in Appendix B, Df(A)[E] denotes the Fréchet derivative of f at the matrix A in the

direction of E. Vectorizing the last expression we get

vec(DZ1(Σ1)[E]) =
([
Ip O

]
exp(A)T ⊗ In

)
vec(Dq̃) +

([
Ip O

]
⊗ Q̃

)
vec(Dg). (C.1)

Here,

vec(Dg(A)[E]) = JAexp(A) vec(Dh),

with JAexp(A) the Jacobian of exp with respect to its argument. As we did for single shooting

(see Section 2.3.1), we introduce a linear map T that maps a block-wise vectorization into the

ordinary column-stacking vectorization. This is achieved by:

vec(Dh) = T · blkvec(Dh),

where

blkvec(Dh) =

vec
([
Ip O

]
Dq̃TΣ2

)
vec
([
O In−p

]
Dq̃TΣ2

)
− vec

([
O In−p

]
Dq̃TΣ2

)T
vec(On−p)

 = JΣ1
h vec(Dq̃T) = JΣ1

h Πn,n vec(Dq̃),

with

JΣ1
h =

ΣT

2 ⊗
[
Ip O

]
ΣT

2 ⊗
[
O In−p

]
−Π(n−p),p

(
ΣT

2 ⊗
[
O In−p

])
O(n−p)2×n2

 .
Observe that

vec
(
Q̃
)

= vec
([
Σ1 U⊥

])
=
[

vec(Σ1)
vec(U⊥)

]
,

hence

vec(Dq̃(Σ1)[E]) =
[

vec(DΣ1)
vec(DU⊥)

]
=
[
Inp

JΣ1
U⊥

]
vec(E) = JΣ1

q̃ vec(E), (C.2)

where the Jacobian of U⊥ with respect to Σ1 can be derived from [Vac94] as:

JΣ1
U⊥

= −
(
UT
⊥ ⊗

(
UpS

−1
p V T

p

))
Πn,p.

Eventually, the vectorization of Dg(A)[E] is

vec(Dg(A)[E]) = JAexp(A) TJ
Σ1
h Πn,n J

Σ1
q̃︸ ︷︷ ︸

=:JΣ1
A

vec(E), (C.3)

142

C.2. Jacobians with respect to the tangent vector

from which we identify the Jacobian of the exponential with respect to Σ1, namely,

JΣ1
exp(A) = JAexp(A)J

Σ1
A .

Substituting (C.2) and (C.3) into (C.1) and dropping vec(E), we obtain the Jacobian of the

geodesic with respect to Σ1

JΣ1
Z1

=
([
Ip O

]
exp(A)T ⊗ In

)
JΣ1
q̃ +

([
Ip O

]
⊗ Q̃

)
JΣ1

exp(A).

By using the same procedure, one can get the Jacobian of the derivative of the geodesic with

respect to Σ1, i.e.,

JΣ1
Z2

=
([
Ip O

]
AT exp(A)T ⊗ In

)
JΣ1
q̃ +

([
Ip O

]
AT ⊗ Q̃

)
JΣ1

exp(A)

+
([
Ip O

]
⊗ Q̃ exp(A)

)
JΣ1
A .

C.2 Jacobians with respect to the tangent vector

To obtain the Jacobians with respect to the tangent vector Σ2, one can proceed in a very

similar way as in the previous section. The Jacobian of the geodesic with respect to Σ2 is

given by

JΣ2
Z1

=
([
Ip O

]
⊗ Q̃

)
JΣ2

exp(A),

and the Jacobian of the derivative of the geodesic with respect to Σ2 is

JΣ2
Z2

=
([
Ip O

]
⊗ Q̃

) [(
AT ⊗ In

)
JΣ2

exp(A) +
(
In ⊗ exp(A)

)
JΣ2
A

]
.

Here,

JΣ2
exp(A) = JAexp(A)J

Σ2
A and JΣ2

A = TJΣ2
h ,

with

JΣ2
h =

Ip ⊗

([
Ip O

]
Q̃T
)

Ip ⊗
([
O In−p

]
Q̃T
)

−Π(n−p),p
(
Ip ⊗

[
O In−p

]
Q̃T
)

O(n−p)2×np

 ∈ Rn
2×np.

143

Appendix D

Proofs to Chapter 3

D.1 Proof of Remark 3.3

As we mentioned in Remark 3.3, from the expansion of the canonical distance in Equa-

tion (D.4) (see next section), it is clear that

dc(X,Y) 6 ‖X − Y ‖F +O(‖X − Y ‖2F) for ‖X − Y ‖F → 0.

If O(‖X − Y ‖2F) is small enough, then dc(X,Y) . ‖X − Y ‖F.

For the Riemannian distance de(X,Y) based on the embedded metric, it is much easier

to see that ‖X − Y ‖F 6 de(X,Y), for any X,Y on a manifoldM. Indeed, the Euclidean

distance is the minimum length of all possible paths in the embedding space, whereas the

Riemannian distance is the minimum length of all possible paths on the manifold (see De�-

nition 1.26). Since the embedding space contains the manifold, the paths that are considered

in the second case are also paths in the �rst case, and that implies that the Euclidean distance

‖ · ‖F must be smaller than or equal to the Riemannian distance de. Figure D.1 illustrates this

fact for the Stiefel manifold St(10, 4).

Figure D.1 – Comparison between embedded, canonical, and Euclidean distance for St(10, 4).

145

D. Proofs to Chapter 3

D.2 Proof of Lemma 3.9

The expansion (3.6) is simple to obtain once the Riemannian distance is related to the Eu-

clidean one.

Proof of Lemma 3.9. Take X,Y ∈ St(n, p) su�ciently close so that we can de�ne the Rie-

mannian logarithm ξ = LogX(Y) (see Remark 3.3). By de�nition of the Riemannian distance

dc for the canonical metric gc, we have

d2
c(X,Y) = ‖ξ‖2c = gc(ξ, ξ).

Writing a tangent vector as ξ = XΩ+X⊥K ∈ TXSt(n, p) (see Section 1.1.9) and using (2.1),

we can evaluate gc as

gc(ξ, ξ) = trace(ξT(In − 1
2 XX

T) ξ) = 1
2 ‖Ω‖

2
F + ‖K‖2F = ‖ξ‖2F − 1

2 ‖Ω‖
2
F.

Using Ω = XTξ, we also have

d2
c(X,Y) = ‖ξ‖2F − 1

2 ‖X
Tξ‖2F. (D.1)

Since ξ is the initial velocity vector of the geodesic connecting X to Y , it follows that

ξ = Y −X +O(‖ξ‖2F). (D.2)

This can be seen by expanding the matrix exponential in the expression (2.2) of the geodesic:

Y =
[
X X⊥

](
In +

[
XTξ −ξTX⊥
XT
⊥ξ On−p

]
+O

(
‖ξ‖2F

))[Ip
O(n−p)×p

]

= X +
[
X X⊥

] [
X X⊥

]T
ξ +O(‖ξ‖2F).

We obtain (D.2) using the fact that

[
X X⊥

]
is an orthogonal matrix. In addition, [Bel03,

Lemma 4.2.1, p. 59] shows that

‖ξ‖2F = ‖X − Y ‖2F +O(‖X − Y ‖4F). (D.3)

Then inserting the equations (D.2) and (D.3) into (D.1) leads to

d2
c(X,Y) = ‖X − Y ‖2F − 1

2‖X
T(X − Y)‖2F +O(‖X − Y ‖4F). (D.4)

Using this in (3.4), one obtains (3.6).

D.3 Proof of Lemma 3.10

The aim is to compute Lij = ∇Xi∇Xj d̃2(Xi, Xj) and Dij = ∇2
Xi
d̃2(Xi, Xj), where Xj ∈

St(n, p). Let us simplify notation and de�ne

d̃2(X,Y) = ‖PStX − PStY ‖2F − 1
2‖Ip −

(
PStX

)TPStY ‖2F
+ ‖X − PStX‖2F + ‖Y − PStY ‖2F +O(‖PStX − PStY ‖4F).

Clearly, Lij = ∇X∇Y d̃2(X,Y) and Dij = ∇2
X d̃

2(X,Y) with X = Xi and Y = Xj . Recall

from Section 3.2.2 that we can specify the projector on the Stiefel manifold as PSt(Y) =
Y (Y TY)−1/2

, that is, the orthogonal factor of the polar decomposition of Y .

146

D.3. Proof of Lemma 3.10

Proof of Lemma 3.10. Directly developing the whole of d̃2(X,Y) we get

d̃2(X,Y) = trace
(

7
2Ip +XTX + Y TY −

(
PStX

)TPStY − 2XTPStX − 2Y TPStY

− 1
2
(
PStY

)TPStX
(
PStX

)TPStY
)

+O(‖PStX − PStY ‖4F).
(D.5)

To compute the gradient and the Hessian of d̃2(X,Y), consider the perturbation X̃ = X+E,

with X ∈ St(n, p), ‖E‖F small, and expand the previous expression.

First of all, for a symmetric matrix A, one can easily show by diagonalizing that

(I +A)−1/2 = I − 1
2A+ 3

8A
2 +O(‖A‖3), ‖A‖ → 0,

from which we can obtain the expansion for the perturbed projector

PStX̃ = X̃(X̃TX̃)−1/2

= X + E − 1
2XX

TE − 1
2XE

TX − 1
2XE

TE − 1
2EX

TE − 1
2EE

TX

+ 3
8X(XTE)2 + 3

8X(ETX)2 + 3
8XX

TEETX + 3
8XE

TXXTE +O(‖E‖3F).
(D.6)

After substituting the expansion (D.6) for PSt(X̃) in (D.5) and isolating �rst- and sec-

ond-order terms in E, we �nd the expressions for the gradient and the Hessian. Here, only

the �nal results are reported.

The gradient with respect to X is

∇X d̃2(X, Ỹ) = −
(
In − 1

2XX
T)PStỸ + 1

2X
(
PStỸ

)T
X −

(
In −XXT)PStỸ

(
PStỸ

)T
X,

and the gradient with respect to Y is

∇Y d̃2(X̃, Y) = −
(
In − 1

2Y Y
T)PStX̃ + 1

2Y
(
PStX̃

)T
Y −

(
In − Y Y T)PStX̃

(
PStX̃

)T
Y.

The Hessian matrix with respect to X is

∇2
X d̃

2(X,Y) = sym
[
Y TX ⊗ In +

(
Y T ⊗X

)
Πp,n + Ip ⊗ Y XT

]
− 3

4 sym
[(
Y TXXT ⊗X

)
Πp,n

+
(
XT ⊗XY TX

)
Πp,n + Ip ⊗XXTY XT + Y TX ⊗XXT

]
+ 2 sym

[(
XTY Y T ⊗X

)
Πp,n + Ip ⊗XXTY Y T −

(
XTY Y TXXT ⊗X

)
Πp,n

]
+ (XT ⊗X)Πp,n + Ip ⊗XXT − Ip ⊗ Y Y T +XTY Y TX ⊗ In
− Ip ⊗XXTY Y TXXT −XTY Y TX ⊗XXT,

where sym(A) = (A+AT)/2. In order to simplify∇2
X d̃

2(X,Y), we will take Y = X +∆
with ‖∆‖ → 0. After some algebraic manipulations, we obtain

1

∇2
X d̃

2(X,X +∆) = 2Inp + 1
2 (XT ⊗X)Πp,n − 1

2 (Ip ⊗XXT) +
+ 3 sym

(
XT∆⊗ In + (∆T ⊗X)Πp,n

)
+ sym(Ip ⊗∆XT)

− 11
4 sym

(
(∆TXXT ⊗X)Πp,n +∆TX ⊗XXT)

− 3
4 sym

(
(XT ⊗X∆TX)Πp,n + Ip ⊗XXT∆XT)

+ 2 sym
(
(XT∆∆T ⊗X)Πp,n + Ip ⊗XXT∆∆T − (XT∆∆TXXT⊗X)Πp,n

)
− Ip ⊗∆∆T +XT∆∆TX ⊗ In − Ip ⊗XXT∆∆TXXT −XT∆∆TX ⊗XXT.

1

We stress that∇2
X d̃2

denotes the derivative with respect to the �rst argument of d̃2
.

147

D. Proofs to Chapter 3

Observe that every term on the right-hand side above can be bounded by at most a second

power of ‖∆‖2 since ‖ sym(A)‖2 6 ‖A‖2, ‖A ⊗ B‖2 = ‖A‖2‖B‖2 and X ∈ St(n, p).

Hence, we obtain after some manipulation that

‖∇2
X d̃

2(X,X +∆)−∇2
X d̃

2(X,X)‖2 6 14‖∆‖2 + 10‖∆‖22.

Writing the result with X = Xi and X + ∆ = Xj , we recover the expression (3.7) for the

Hessian Dij = ∇2
Xi
d̃2(Xi, Xj).

Next, for the term Lij , to obtain the gradient of ∇X d̃2(X, Ỹ) with respect to X we can

expand PStX̃ at �rst order in E

PStX̃ = X̃(X̃TX̃)−1/2 = X + E − 1
2XX

TE − 1
2XE

TX +O(‖E‖2F).

After some manipulations, we arrive at the mixed term

∇X∇Y d̃2(X,Y) =− Inp + 1
2 (Ip ⊗ Y Y T)− 1

4 (Ip ⊗ Y Y TXXT)− 1
4 (XT ⊗ Y Y TX)Πp,n

+ 1
2 (Ip ⊗XXT) + 1

2 (XT⊗X)Πp,n + 1
2 (Y T⊗ Y)Πp,n − 1

4 (Y TXXT⊗ Y)Πp,n

− 1
4 (Y TX ⊗ Y XT) + (Y T ⊗ Y Y TX)Πp,n − (Y TXXT ⊗ Y Y TX)Πp,n

− Y TX ⊗ Y Y TXXT + Y TX ⊗ Y Y T − (Y T ⊗X)Πp,n + (Y TXXT ⊗X)Πp,n

+ Y TX ⊗XXT − Y TX ⊗ In.

Similarly, we can calculate the other mixed term, which is

∇Y∇X d̃2(X,Y) =− Inp + 1
2 (Ip ⊗XXT)− 1

4 (Ip ⊗ Y Y TXXT)− 1
4 (Y TXXT ⊗ Y)Πp,n

+ 1
2 (Ip ⊗ Y Y T) + 1

2 (Y T⊗ Y)Πp,n + 1
2 (XT⊗X)Πp,n − 1

4 (XT⊗ Y Y TX)Πp,n

− 1
4 (Y TX ⊗ Y XT) + (Y TXXT ⊗X)Πp,n − (Y TXXT ⊗ Y Y TX)Πp,n

− Y TX ⊗ Y Y TXXT + Y TX ⊗XXT − (Y T ⊗X)Πp,n + (Y T ⊗ Y Y TX)Πp,n

+ Y TX ⊗ Y Y T − Y TX ⊗ In.

Observe that, by swapping the arguments and taking the transpose, we have the equality

∇Y∇X d̃2(X,Y) =
(
∇X∇Y d̃2(Y,X)

)T
.

As above, in order to bound the spectrum of ∇X∇Y d̃2(X,Y), we expand it with Y =
X +∆ with ‖∆‖ → 0. After some algebraic manipulations, we obtain

∇X∇Y d̃2(X,X +∆) =− 2Inp + 1
2 (XT ⊗X)Πp,n + 3

2 (Ip ⊗XXT)
− 1

4 (XT ⊗X∆TX)Πp,n + 1
2 (∆T ⊗X)Πp,n − 1

4 (∆TXXT ⊗X)Πp,n

+ 3
4 (∆TX ⊗XXT)− 5

4 (Ip ⊗X∆TXXT) + 3
2 (Ip ⊗X∆T)−∆TX ⊗ In

− 5
4 (∆TXXT ⊗∆)Πp,n − 5

4 (Ip ⊗∆∆TXXT) + 3
2 (Ip ⊗∆∆T)

+∆TX ⊗X∆T + 3
2 (∆T ⊗∆)Πp,n − (∆TXXT ⊗X∆TX)Πp,n

− 1
4 (XT ⊗∆∆TX)Πp,n + (∆T ⊗X∆TX)Πp,n − 1

4 (∆TX ⊗∆XT)
−∆TX ⊗X∆TXXT + (∆T ⊗∆∆TX)Πp,n +∆TX ⊗∆∆T

−∆TX ⊗∆∆TXXT − (∆TXXT ⊗∆∆TX)Πp,n.

Observe that every term on the right-hand side above can be bounded by at most a third

power of ‖∆‖2. Hence, we obtain that

‖∇X∇Y d̃2(X,X +∆)−∇X∇Y d̃2(X,X)‖2 6 11
2 ‖∆‖2 + 10‖∆‖22 + 4‖∆‖32.

Writing the result withX = Xi and Y = Xj , we recover the expression (3.8) for the gradient

Lij = ∇Xi∇Xj d̃2(Xi, Xj).

148

D.4. Proof of Lemma 3.11

D.4 Proof of Lemma 3.11

We �rst start with i = j, which corresponds to ∆ij = Λij = 0 in Lemma 3.10, and prove the

following auxiliary lemma.

Lemma D.1. De�ne the orthogonal matrix

Q̄i =
[
Ip ⊗Xi Ip ⊗X⊥i

]
∈ O(np).

Then there exists an orthogonal matrix Q̂, only depending on n and p, such that Qi = Q̄iQ̂
satis�es

QT
iDiiQi = D =

[
Ip(p−1)/2

2Inp−p(p−1)/2

]
(D.7)

and

QT
iLiiQi = L =

−Ip(p−1)/2
−2I(n−p)p

Op(p+1)/2

 . (D.8)

Proof. By properties of the so-called vec-permutation matrices (see [HS81, Eq. (5), (6), (23)]),

there exists a permutation matrix Πp,n ∈ Rnp×np that satis�es

Πp,n(XT
i ⊗Xi)Πp,n = Xi ⊗XT

i , Π−1
p,n = ΠT

p,n.

This shows that (XT
i ⊗Xi)Πp,n = ΠT

p,n(Xi ⊗XT
i) is symmetric. Furthermore,

((XT
i ⊗Xi)Πp,n)2 = (XT

i ⊗Xi)Πp,nΠ
T
p,n(Xi ⊗XT

i) = Ip ⊗XiX
T
i .

Denoting the symmetric matrix Si = (XT
i ⊗Xi)Πp,n, we can then use Lemma 3.10 to write

Dii = 2Inp + 1
2Si −

1
2S

2
i , Lii = −2Inp + 1

2Si + 3
2S

2
i . (D.9)

It thus su�ces to diagonalize Si. Using the matrix Q̄i de�ned in the statement of the lemma,

direct calculation shows that

Q̄T
iSiQ̄i =

[
(XT

i ⊗ Ip)Πp,n(Ip ⊗Xi)
O(n−p)p

]
=
[
Πp,p

O(n−p)p

]
=: Π̂,

where we used that Πp,n(Ip ⊗Xi)Πp,p = Xi ⊗ Ip, with Πp,p ∈ Rp2×p2
another vec-permu-

tation matrix that is also symmetric (see [HS81, Eq. (6), (15)]). The matrix Π̂ above therefore

has the spectral decomposition

Π̂ = Q̂Λ̂Q̂T, Λ̂ =

−Ip(p−1)/2
O(n−p)p

Ip(p+1)/2

 , (D.10)

for some orthogonal matrix Q̂ that indeed does not depend on Xi, as claimed. By de�ning

the orthogonal matrix Qi = Q̄iQ̂, we have thus shown that QT
iSiQi = Λ̂, and by (D.9) also

that

QT
iDiiQi = 2Inp + 1

2 Λ̂−
1
2 Λ̂

2, QT
iLiiQi = −2Inp + 1

2 Λ̂+ 3
2 Λ̂

2.

It is straightforward to verify that these matrices can be written as the claimed matrices D
and L.

149

D. Proofs to Chapter 3

Lemma 3.11 is now proven as a perturbation of the case above.

Proof of Lemma 3.11. From Lemma 3.10, we know thatLij = Lii+Λij . Lemma D.1 therefore

gives

QT
jLijQi = (Qj −Qi)TLijQi +QT

iLijQi

= (Qj −Qi)TLijQi + L+QT
iΛijQi.

Taking norms and recalling that δij = ‖Qj −Qi‖2, we obtain

‖QT
jLijQi − L‖2 6 δij(‖Lii‖2 + ‖Λij‖2) + ‖Λij‖2.

Since ‖Lii‖2 = ‖L‖2 6 2 by Lemma D.1, this shows (3.11). The bound (3.10) is similarly

proven.

150

Bibliography

[AAM14] Absil, P.-A., Amodei, L., and Meyer, G. Two Newton methods on the manifold

of �xed-rank matrices endowed with Riemannian quotient geometries. Compu-
tational Statistics, 29:569–590, 2014.

[AF11] Amsallem, D. and Farhat, C. An Online Method for Interpolating Linear

Parametric Reduced-Order Models. SIAM Journal on Scienti�c Computing,

33(5):2169–2198, 2011.

[AM12] Absil, P.-A. and Malick, J. Projection-like retractions on matrix manifolds. SIAM
Journal on Optimization, 22(1):135–158, 2012.

[AMS04] Absil, P.-A., Mahony, R., and Sepulchre, R. Riemannian Geometry of Grassmann

Manifolds with a View on Algorithmic Computation. Acta Applicandae Mathe-
matica, 80(2):199–220, Jan 2004.

[AMS08] Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, Princeton, NJ, 2008.

[AMT13] Absil, P. A., Mahony, R., and Trumpf, J. An Extrinsic Look at the Riemannian

Hessian. In Geometric Science of Information, pages 361–368, Berlin, Heidelberg,

2013. Springer Berlin Heidelberg.

[AO15] Absil, P.-A. and Oseledets, I. V. Low-rank retractions: a survey and new results.

Computational Optimization and Applications, 62(1):5–29, Sep 2015.

[ATV13] Afsari, B., Tron, R., and Vidal, R. On the Convergence of Gradient Descent for

Finding the Riemannian Center of Mass. SIAM Journal on Control and Optimiza-
tion, 51(3):2230–2260, 2013.

[BAC18] Boumal, N., Absil, P.-A., and Cartis, C. Global rates of convergence for noncon-

vex optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33,

02 2018.

[Bel03] Belkin, M. Problems of Learning on Manifolds. PhD thesis, The University of

Chicago, 2003.

[Ber95] Bertsekas, D. Nonlinear Programming. Athena Scienti�c, 1995.

151

Bibliography

[BGW15] Benner, P., Gugercin, S., and Willcox, K. A Survey of Projection-Based

Model Reduction Methods for Parametric Dynamical Systems. SIAM Review,

57(4):483–531, 2015.

[BHM00] Briggs, W. L., Henson, V. E., and McCormick, S. F. A Multigrid Tutorial, Second
Edition. Society for Industrial and Applied Mathematics, second edition, 2000.

[BMAS14] Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R. Manopt, a Matlab

toolbox for optimization on manifolds. Journal of Machine Learning Research,

15:1455–1459, 2014.

[Boo86] Boothby, W. M. An introduction to di�erentiable manifolds and Riemannian ge-
ometry; 2nd ed. Pure Appl. Math. Academic Press, Orlando, FL, 1986.

[Bou20] Boumal, N. An introduction to optimization on smooth manifolds. Available

online, November 2020.

[BP94] Berman, A. and Plemmons, R. J. Nonnegative Matrices in the Mathematical Sci-
ences. Society for Industrial and Applied Mathematics, 1994.

[Bro93] Brockett, R. W. Di�erential geometry and the design of gradient algorithms.

Proc. of Sympo. in Pure Math, 54:69–92, 1993.

[BS07] Brenner, S. and Scott, R. The Mathematical Theory of Finite Element Methods.
Texts in Applied Mathematics. Springer New York, 2007.

[Cha12] Chang, X.-W. On the perturbation of the Q-factor of the QR factorization. Nu-
merical Linear Algebra with Applications, 19(3):607–619, 2012.

[dC92] do Carmo, M. Riemannian Geometry. Mathematics (Boston, Mass.). Birkhäuser,

1992.

[EAS98] Edelman, A., Arias, T. A., and Smith, S. T. The Geometry of Algorithms with

Orthogonality Constraints. SIAM Journal on Matrix Analysis and Applications,
20(2):303–353, 1998.

[ES18] Elman, H. C. and Su, T. A Low-Rank Multigrid Method for the Stochastic

Steady-State Di�usion Problem. SIAM Journal on Matrix Analysis and Appli-
cations, 39(1):492–509, 2018.

[Fin08] Finden, W. An error term and uniqueness for Hermite–Birkho� interpolation

involving only function values and/or �rst derivative values. Journal of Compu-
tational and Applied Mathematics, 212(1):1 – 15, 2008.

[FV62] Feingold, D. G. and Varga, R. S. Block diagonally dominant matrices and gen-

eralizations of the Gerschgorin circle theorem. Paci�c J. Math., 12:1241—1250,

1962.

[GH07] Grasedyck, L. and Hackbusch, W. A Multigrid Method to Solve Large Scale

Sylvester Equations. SIAM Journal on Matrix Analysis and Applications,
29(3):870–894, 2007.

[GK73] Grove, K. and Karcher, H. How to Conjugate C1
-Close Group Actions. Mathe-

matische Zeitschrift, 132:11–20, 1973.

152

Bibliography

[GLL86] Grippo, L., Lampariello, F., and Lucidi, S. A Nonmonotone Line Search Tech-

nique for Newton’s Method. SIAM Journal on Numerical Analysis, 23(4):707–716,

1986.

[GMS
+

10] Gratton, S., Mou�e, M., Sartenaer, A., Toint, P. L., and Tomanos, D. Numerical

experience with a recursive trust-region method for multilevel nonlinear bound-

constrained optimization. Optimization Methods and Software, 25(3):359–386,

2010.

[Gov94] Gover, M. J. C. The Eigenproblem of a Tridiagonal 2-Toeplitz Matrix. Linear
Algebra and its Applications, 197-198:63 – 78, 1994.

[GS00] Grippo, L. and Sciandrone, M. On the convergence of the block nonlinear

Gauss–Seidel method under convex constraints. Operations Research Letters,
26(3):127 – 136, 2000.

[GSAS20] Gao, B., Son, N. T., Absil, P.-A., and Stykel, T. Riemannian optimization on the

symplectic Stiefel manifold. 2020.

[GST08] Gratton, S., Sartenaer, A., and Toint, P. Recursive Trust-Region Methods for Mul-

tiscale Nonlinear Optimization. SIAM Journal on Optimization, 19(1):414–444,

2008.

[GVL13] Golub, G. H. and Van Loan, C. F. Matrix Computations. Johns Hopkins Studies

in Mathematical Sciences, 4rd edition, 2013.

[Hac03] Hackbusch, W. Multi-Grid Methods and Applications. Springer Series in Com-

putational Mathematics. Springer Berlin Heidelberg, 2003.

[Hac12] Hackbusch, W. Tensor Spaces and Numerical Tensor Calculus. Springer, 2012.

[Hac16] Hackbusch, W. Iterative Solution of Large Sparse Systems of Equations. Springer,

2016.

[Hen03] Henson, V. E. Multigrid methods nonlinear problems: an overview. In Bouman,

C. A. and Stevenson, R. L., editors, Computational Imaging, volume 5016, pages

36–48. International Society for Optics and Photonics, SPIE, 2003.

[Hig08] Higham, N. J. Functions of Matrices: Theory and Computation. Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[HLW06] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical Integration. Springer,

Berlin, Heidelberg, 2006.

[HS81] Henderson, H. V. and Searle, S. R. The vec-permutation matrix, the vec operator

and Kronecker products: a review. Linear and Multilinear Algebra, 9(4):271–288,

1981.

[HZ05] Hager, W. W. and Zhang, H. A new conjugate gradient method with guar-

anteed descent and an e�cient line search. SIAM Journal on Optimization,

16(1):170–192, 2005.

[HZ06] Hager, W. W. and Zhang, H. Algorithm 851: CG_DESCENT, a Conjugate Gradi-

ent Method with Guaranteed Descent. ACM Trans. Math. Softw., 32(1):113–137,

March 2006.

153

Bibliography

[Kar77] Karcher, H. Riemannian center of mass and molli�er smoothing. Comm. Pure
Appl. Math., 30(5):509–541, September 1977.

[Kar14] Karcher, H. Riemannian center of mass and so called karcher mean, 2014.

[KN69] Kobayashi, S. and Nomizu, K. Foundations of Di�erential Geometry. Wiley, 1969.

[KN97] Kaya, C. Y. and Noakes, J. L. Geodesics and an optimal control algorithm.

Proceedings of the 36th IEEE Conference on Decision and Control (CDC), pages

4918–4919, 1997.

[KN98a] Kaya, C. Y. and Noakes, J. L. The leap-frog algorithm and optimal control: Back-

ground and demonstration. Proceedings of International Conference on Optimiza-
tion Techniques and Applications (ICOTA ’98), pages 835–842, 1998.

[KN98b] Kaya, C. Y. and Noakes, J. L. The leap-frog algorithm and optimal control: The-

oretical aspects. Proceedings of International Conference on Optimization Tech-
niques and Applications (ICOTA ’98), pages 843–850, 1998.

[KN08] Kaya, C. Y. and Noakes, J. L. Leapfrog for Optimal Control. SIAM Journal on
Numerical Analysis, 46(6):2795–2817, 2008.

[KSV16] Kressner, D., Steinlechner, M., and Vandereycken, B. Preconditioned Low-rank

Riemannian Optimization for Linear Systems with Tensor Product Structure.

SIAM Journal on Scienti�c Computing, 38(4):A2018–A2044, 2016.

[KT14] Kressner, D. and Tobler, C. Algorithm 941: Htucker—A Matlab Toolbox for Ten-

sors in Hierarchical Tucker Format. ACM Trans. Math. Softw., 40(3):22:1–22:22,

April 2014.

[LDL16] Le Dret, H. and Lucquin, B. Partial Di�erential Equations: Modeling, Analysis
and Numerical Approximation. Birkhäuser, Basel, 2016.

[Lee97] Lee, J. M. Riemannian Manifolds: An Introduction to Curvature. Graduate Texts

in Mathematics. Springer New York, 1997.

[Lee18] Lee, J. M. Introduction to Riemannian Manifolds. Graduate Texts in Mathematics.

Springer International Publishing, 2018.

[LN05] Lewis, R. M. and Nash, S. G. Model problems for the multigrid optimiza-

tion of systems governed by di�erential equations. SIAM J. Sci. Comput.,
26(6):1811–1837, June 2005.

[Mil63] Milnor, J. W. Morse Theory, volume 51 of Annals of Math. Studies. Princeton

University Press, 1963.

[MMBS13] Mishra, B., Meyer, G., Bach, F., and Sepulchre, R. Low-rank optimization with

trace norm penalty. SIAM Journal on Optimization, 23(4):2124–2149, 2013.

[MV14] Mishra, B. and Vandereycken, B. A Riemannian approach to low-rank algebraic

Riccati equations. In 21st International Symposium on Mathematical Theory of
Networks and Systems, 2014.

[Nas00] Nash, S. G. A multigrid approach to discretized optimization problems. Opti-
mization Methods and Software, 14(1-2):99–116, 2000.

154

Bibliography

[NH95] Najfeld, I. and Havel, T. F. Derivatives of the Matrix Exponential and Their

Computation. Advances in Applied Mathematics, 16(3):321–375, 1995.

[Noa98] Noakes, J. L. A global algorithm for geodesics. Journal of the Australian Mathe-
matical Society. Series A. Pure Mathematics and Statistics, 65(1):37–50, 1998.

[NW06] Nocedal, J. and Wright, S. J. Numerical Optimization. Springer, New York, NY,

USA, second edition, 2006.

[OR00] Ortega, J. and Rheinboldt, W. Iterative Solution of Nonlinear Equations in Several
Variables. Society for Industrial and Applied Mathematics, 2000.

[Pen97] Penzl, T. A Multi-Grid Method for Generalized Lyapunov Equations. 1997.

[Ren13] Rentmeesters, Q. Algorithms for data �tting on some common homogeneous
spaces. PhD thesis, Université catholique de Louvain, Louvain, Belgium, 2013.

[RNO19] Rakhuba, M., Novikov, A., and Oseledets, I. Low-rank Riemannian eigen-

solver for high-dimensional Hamiltonians. Journal of Computational Physics,
396:718–737, 2019.

[RO18] Rakhuba, M. and Oseledets, I. Jacobi–Davidson Method on Low-Rank Matrix

Manifolds. SIAM Journal on Scienti�c Computing, 40(2):A1149–A1170, 2018.

[RW95] Rosen, I. G. and Wang, C. A Multilevel Technique for the Approximate Solu-

tion of Operator Lyapunov and Algebraic Riccati Equations. SIAM Journal on
Numerical Analysis, 32(2):514–541, 1995.

[Saa03] Saad, Y. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, second edition, 2003.

[Sak96] Sakai, T. Riemannian Geometry. Fields Institute Communications. American

Mathematical Soc., 1996.

[SB91] Stoer, J. and Bulirsch, R. Introduction to numerical analysis. Texts in applied

mathematics. Springer, New York, 1991.

[Sim07] Simoncini, V. A New Iterative Method for Solving Large-Scale Lyapunov Matrix

Equations. SIAM Journal on Scienti�c Computing, 29(3):1268–1288, 2007.

[Sim16] Simoncini, V. Computational methods for linear matrix equations. SIAM Review,

58(3):377–441, 2016.

[SK16] Srivastava, A. and Klassen, E. P. Functional and Shape Data Analysis. Springer

series in Statistics. Springer, 2016.

[SS90] Stewart, G. W. and Sun, J.-g. Matrix Perturbation Theory. Academic Press, 1990.

[Ste16] Steinlechner, M. Riemannian Optimization for High-Dimensional Tensor Com-

pletion. SIAM Journal on Scienti�c Computing, 38(5):S461–S484, 2016.

[SWC12] Shalit, U., Weinshall, D., and Chechik, G. Online learning in the embedded man-

ifold of low-rank matrices. Journal of Machine Learning Research, 13:429–458,

2012.

155

Bibliography

[Tob12] Tobler, C. Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems.
PhD thesis, ETH, Zürich, Switzerland, 2012.

[TOS00] Trottenberg, U., Oosterlee, C., and Schuller, A. Multigrid. Elsevier Science, 2000.

[Tre08] Tretter, C. Spectral Theory of Block Operator Matrices and Applications. Imperial

College Press, 2008.

[TTWM09] Toint, P. L., Tomanos, D., and Weber-Mendonça, M. A multilevel algorithm

for solving the trust-region subproblem. Optimization Methods and Software,
24(2):299–311, 2009.

[UV15] Uschmajew, A. and Vandereycken, B. Greedy rank updates combined with

Riemannian descent methods for low-rank optimization. In 2015 International
Conference on Sampling Theory and Applications (SampTA), pages 420–424, May

2015.

[UV19] Uschmajew, A. and Vandereycken, B. Variational methods for nonlinear geomet-
ric data and applications, chapter Geometric methods on low-rank matrix and

tensor manifolds. Springer, 2019.

[Vac94] Vaccaro, R. J. A Second-Order Perturbation Expansion for the SVD. SIAM Jour-
nal on Matrix Analysis and Applications, 15(2):661–671, 1994.

[Van13] Vandereycken, B. Low-Rank Matrix Completion by Riemannian Optimization.

SIAM Journal on Optimization, 23(2):1214–1236, 2013.

[VV10] Vandereycken, B. and Vandewalle, S. A Riemannian optimization approach for

computing low-rank solutions of Lyapunov equations. SIAM J. Matrix Anal.
Appl., 31(5):2553–2579, 2010.

[WG09] Wen, Z. and Goldfarb, D. A line search multigrid method for large-scale nonlin-

ear optimization. SIAM Journal on Optimization, 20(3):1478–1503, 2009.

[Won67] Wong, Y.-C. Di�erential Geometry of Grassmann Manifolds. Proceedings of the
National Academy of Sciences of the United States of America, 57(3):589–594, 1967.

[ZD19] Zimmermann, R. and Debrabant, K. Parametric Model Reduction via Interpolat-

ing Orthonormal Bases. In Radu, F. A., Kumar, K., Berre, I., Nordbotten, J. M., and

Pop, I. S., editors, Numerical Mathematics and Advanced Applications ENUMATH
2017, pages 683–691, Cham, 2019. Springer International Publishing.

[Zim17] Zimmermann, R. A Matrix-Algebraic Algorithm for the Riemannian Logarithm

on the Stiefel Manifold under the Canonical Metric. SIAM Journal on Matrix
Analysis and Applications, 38(2):322–342, 2017.

156

	Abstract
	Résumé
	Remerciements
	Contents
	Introduction
	1 Riemannian geometry
	1.1 First-order geometry
	1.1.1 Charts and atlases
	1.1.2 Vector spaces as manifolds
	1.1.3 Product manifolds
	1.1.4 Differentiable functions
	1.1.4.1 Immersions and submersions

	1.1.5 Matrix manifolds
	1.1.6 Embedded submanifolds
	1.1.6.1 The Stiefel manifold

	1.1.7 Tangent vectors
	1.1.7.1 Tangent vectors to a vector space
	1.1.7.2 Tangent bundle
	1.1.7.3 Vector fields

	1.1.8 Differential of a mapping
	1.1.9 Tangent spaces to embedded submanifolds
	1.1.10 Riemannian metric, distance and gradients
	1.1.11 Riemannian submanifolds

	1.2 Line-search algorithms on manifolds
	1.2.1 Retractions
	1.2.1.1 Retractions on embedded submanifolds
	1.2.1.2 Retraction on the orthogonal group
	1.2.1.3 Retraction on the Stiefel manifold

	1.2.2 Line-search methods on manifolds
	1.2.2.1 The accelerated Riemannian line-search algorithm

	1.2.3 Convergence analysis
	1.2.3.1 Convergence on manifolds
	1.2.3.2 Convergence of line-search methods

	1.2.4 Speed of convergence

	2 Shooting methods on the Stiefel manifold
	2.1 Geodesics, exponential mapping and logarithm mapping
	2.1.1 Geodesics on the Stiefel manifold

	2.2 Problem statement
	2.3 Single shooting method
	2.3.1 Parametrization of the tangent space
	2.3.2 The initial guess
	2.3.3 A smaller formulation
	2.3.4 Numerical example
	2.3.5 Some drawbacks

	2.4 Multiple shooting method
	2.4.1 Condensing
	2.4.2 Numerical example
	2.4.3 Open questions

	3 The leapfrog algorithm as nonlinear Gauss–Seidel
	3.1 Leapfrog algorithm
	3.1.1 Formal description of the algorithm
	3.1.2 Known results

	3.2 Convergence of leapfrog as nonlinear Gauss–Seidel
	3.2.1 Nonlinear block Gauss–Seidel method
	3.2.2 Extended objective function
	3.2.3 Leapfrog as nonlinear Gauss–Seidel
	3.2.4 First-order optimality
	3.2.5 Known results on local convergence
	3.2.6 Local convergence

	3.3 Some observations and open problems
	3.4 Numerical experiments

	4 Extensions on leapfrog
	4.1 Broken geodesics, length and energy functional
	4.2 Comparison between steepest descent and leapfrog
	4.2.1 Steepest descent on the unit sphere
	4.2.2 Gradient-related sequence in Euclidean space

	4.3 Convergence to uniformly distributed tuple
	4.3.1 The stochastic matrix

	4.4 Broken geodesic shooting method
	4.4.1 Condensing
	4.4.2 Complexity of the algorithm
	4.4.3 Leapfrog revisited

	4.5 Numerical experiments and applications
	4.5.1 Leapfrog and multiple shooting
	4.5.2 Riemannian center of mass on the space of univariate probability density functions
	4.5.3 Interpolation on the Stiefel manifold for model order reduction

	5 Riemannian Hager–Zhang line search
	5.1 Inaccuracy in standard line search
	5.2 Approximate Wolfe conditions
	5.3 The Hager–Zhang bracketing
	5.3.1 Numerical examples
	5.3.1.1 Quadratic cost function
	5.3.1.2 Rosenbrock function

	5.4 Riemannian Hager–Zhang line search
	5.4.1 Numerical examples
	5.4.1.1 Derivative of the retraction on the unit sphere
	5.4.1.2 Rayleigh quotient on the sphere
	5.4.1.3 Derivative of the QR retraction on the Stiefel manifold
	5.4.1.4 Brockett cost function on the Stiefel manifold

	5.5 Observations and open problems

	6 Multigrid methods
	6.1 Some notation
	6.1.1 Inner products and norms
	6.1.2 Stencil notation
	6.1.3 Poisson's equation

	6.2 Principles and properties
	6.2.1 Fundamental principles
	6.2.2 Multigrid features and properties

	6.3 Going into more detail of multigrid
	6.3.1 Error smoothing
	6.3.1.1 Jacobi type iteration
	6.3.1.2 Smoothing properties of Jacobi relaxation

	6.3.2 Transfer operators
	6.3.3 Two-grid cycle
	6.3.4 Multigrid cycle
	6.3.5 Laplace equation on the unit square
	6.3.5.1 Numerical example

	6.4 The Full Approximation Scheme (FAS)
	6.4.1 FAS two-grid cycle
	6.4.2 Formulating FAS for a 2D BVP
	6.4.2.1 Numerical example

	7 Multilevel Riemannian optimization for low-rank problems
	7.1 Introduction
	7.2 Preliminaries on multilevel optimization and geometry of fixed-rank matrices
	7.2.1 Multilevel optimization in Euclidean space
	7.2.2 The manifold of fixed-rank matrices
	7.2.3 The orthographic retraction

	7.3 Riemannian multigrid line search for low-rank matrices
	7.3.1 Description of the scheme
	7.3.2 Tensor-product multigrid
	7.3.3 Riemannian transfer operators
	7.3.4 Smoothers
	7.3.5 The Riemannian coarse-grid correction
	7.3.6 Gradient of the coarse-grid model
	7.3.7 Final algorithm: Riemannian multigrid line search
	7.3.8 Riemannian Hager–Zhang line search

	7.4 Numerical experiments for two variational problems
	7.4.1 A linear problem (Lyapunov equation)
	7.4.1.1 Discretization of the objective function
	7.4.1.2 Discretization of the gradient
	7.4.1.3 Discretized Hessian
	7.4.1.4 Numerical results
	7.4.1.5 Rank adaptivity

	7.4.2 A nonlinear problem
	7.4.2.1 Discretization of the objective function
	7.4.2.2 Discretization of the gradient
	7.4.2.3 Discretized Hessian
	7.4.2.4 Numerical results

	7.5 Comparison with other methods
	7.6 Conclusions

	A Single shooting
	A.1 Freedom in choosing the geodesic
	A.2 Smaller formulation

	B Fréchet derivatives
	B.1 First-order Fréchet derivative of a matrix function
	B.2 Singular values of TEXT
	B.2.1 Analysis of TEXT

	C Jacobians for multiple shooting
	C.1 Jacobians with respect to the base point
	C.2 Jacobians with respect to the tangent vector

	D Proofs to Chapter 3
	D.1 Proof of Remark 3.3
	D.2 Proof of Lemma 3.9
	D.3 Proof of Lemma 3.10
	D.4 Proof of Lemma 3.11

	Bibliography

