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Abstract

This thesis is concerned with numerical algorithms on matrix manifolds. It is divided into
four parts, and in all of them, we make extensive use of Riemannian geometry. The interest
in considering optimization algorithms on matrix manifolds instead of classical algorithms
lies in the fact that by exploiting the underlying geometric structure of the problems, they
allow taking explicitly into account the constraints.

Shooting methods have been known for quite some time to find a numerical solution
to a boundary value problem. Here, we describe and specialize these methods to the Stiefel
manifold, discuss their limitations, and provide some numerical examples.

Another method for finding geodesics is the leapfrog algorithm of L. Noakes. This algo-
rithm is related to the Gauss—Seidel method, a classical iterative method for solving a linear
system of equations, which can be easily extended to nonlinear systems. We propose a con-
vergence proof of leapfrog as a nonlinear Gauss—Seidel method. Our discussion is limited to
the case of the Stiefel manifold, however it may be generalized to other embedded submani-
folds. We discuss other aspects of leapfrog and present some numerical experiments.

We tackle the problem of numerical accuracy in line-search methods. It is known that
when using standard Wolfe conditions, one can attain a numerical accuracy only on the order
of the square root of the machine precision. The Hager-Zhang line search, which employs
the approximate Wolfe conditions, offers a workaround to this problem. We give an overview
of this technique, and we generalize it to the Riemannian framework. Numerical examples
show that this new generalization permits to achieve an accuracy on the order of machine
precision when using line search for optimization problems on manifolds.

Multilevel optimization is the extension of multigrid to unconstrained optimization. We
introduce a new generalization of multilevel optimization to the case of Riemannian mani-
folds, and we demonstrate its effectiveness through numerical experiments for the manifold
of fixed-rank matrices. Our method combines the classical components of multigrid and
those of Riemannian optimization. To cope with the curvature of the manifold, we need to
introduce the additional tools from Riemannian optimization that allow a generalization of
the existing Euclidean algorithm to manifolds. Our generalization of the Hager-Zhang line
search is also used.
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Resume

Cette theése porte sur les algorithmes numériques sur les variétés matricielles. Elle est divisée
en quatre parties, dans lesquelles on fait un usage intensif de la géométrie riemannienne.
L’intérét d’envisager des algorithmes d’optimisation sur des variétés matricielles plutot que
des algorithmes classiques réside dans le fait qu’en exploitant la structure géométrique sous-
jacente des problémes, ils permettent de prendre en compte explicitement les contraintes.

Les méthodes de tir permettent de trouver une solution numérique a un probleme aux
limites. Nous décrivons et spécialisons ces méthodes a la variété de Stiefel, discutons de leurs
faiblesses, et fournissons quelques exemples numériques.

Une autre méthode pour trouver des géodésiques est 'algorithme leapfrog de L. Noakes.
Cet algorithme est lié a la méthode de Gauss—Seidel, une méthode itérative classique pour
résoudre un systéme linéaire d’équations, qui peut étre aisément étendue a des systémes non
linéaires. Nous proposons une preuve de convergence de la méthode leapfrog comme mé-
thode de Gauss—Seidel non linéaire. Notre discussion se limite au cas de la variété de Stiefel,
mais elle peut étre généralisée a d’autres sous-variétés plongées. Nous discutons d’autres
aspects de la méthode leapfrog et présentons quelques expériences numériques.

Nous abordons le probléme de la précision numérique dans les méthodes de recherche
linéaire. On sait qu’en utilisant les critéres de Wolfe classiques, on ne peut obtenir une préci-
sion numérique que de 'ordre de la racine carrée de la précision de la machine. La recherche
linéaire de Hager-Zhang, qui utilise les criteres de Wolfe approchés, offre une solution a
ce probléme. Nous donnons un apercu de cette technique, et nous la généralisons au cadre
riemannien. Des exemples numériques montrent que cette nouvelle généralisation permet
d’obtenir une précision de 'ordre de la précision machine lors de 'utilisation de la recherche
linéaire pour des problémes d’optimisation sur des variétés.

L’optimisation multi-niveaux est '’extension de la méthode multigrille a 'optimisation
sans contraintes. On introduit une nouvelle généralisation de I'optimisation multi-niveaux
au cas des variétés riemanniennes, et nous illustrons son efficacité par des expériences nu-
mériques pour la variété des matrices de rang fixé. Notre méthode combine les composantes
classiques du multigrille et celles de Poptimisation riemannienne. Pour faire face a la cour-
bure de la variété, nous devons introduire les outils supplémentaires de 'optimisation rie-
mannienne qui permettent une généralisation de I’algorithme euclidien existant aux variétés.
Notre généralisation de la recherche linéaire de Hager—Zhang est également utilisée.
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Introduction

Motivation

Several applications in optimization, image, and signal processing deal with data belonging
to matrix manifolds. These are manifolds in the sense of classical Riemannian geometry,
where variables are matrices.

In this thesis, we present and study some numerical algorithms on matrix manifolds. This
work is divided into four main parts, and in all of them, we make extensive use of Riemannian
geometry.

Curves and surfaces were the original object of study of classical differential geome-
try, and Riemannian manifolds can be regarded as abstract generalizations of those objects.
Hence, when thinking about manifolds, it will sometimes be useful to resort to these more
familiar objects for illustration. There exist many nice introductory books on Riemannian
geometry, for instance [KN69, Boo86, Sak96, dC92], but for the purposes of the later chapters
of this thesis, the review of first-order Riemannian geometry given in the first chapter should
be sufficient.

The interest in considering optimization algorithms on matrix manifolds instead of clas-
sical algorithms is in the fact that by exploiting the underlying geometric structure of the
problems, they allow taking explicitly into account the constraints.

For matrix manifolds, we will often make reference to the pioneering work of [EAS98].
More recent reviews and details on matrix manifolds and related numerical algorithms can
be found in [AMS04, HLW06, AMS08, AM12, AMT13, Bou20].

Matrix manifolds considered in this thesis

In this thesis, we will work with the two manifolds presented in this section. Some appli-
cations require evaluating the distance between two arbitrary points on the manifold. For
some matrix manifolds, like the Grassmann manifold, explicit formulas are available, while
for others, one has to resort to numerical algorithms. One example in the latter class is the
Stiefel manifold, which is defined as the set St(n,p) with p < n of all n x p orthonormal
matrices

St(n,p) = {X e RV?: XX = ,}.

In other applications, the underlying geometric structure is exploited to obtain more ef-
fective algorithms. This is, in particular, the case when manifolds of low-rank matrices are
used, since one can avoid forming the full matrices and work directly on the low-rank format.

XV



INTRODUCTION

The manifold of matrices of rank & is [Van13, AAM14]

M ={X e R™": rank(X) = k}.

Main ideas

The first part of this thesis is more focused on the geometry itself. It deals with the problem
of finding the distance between two points on the Stiefel manifold St(n,p). In this part,
we will make extensive use of the notion of geodesic. Later we will explain in more detail
how geodesics are defined, but for this short introduction, it suffices to say that a geodesic
is a curve with zero acceleration, which generalizes the notion of straight lines in Euclidean
space to a Riemannian manifold [AMS08].

Geodesics are, locally, curves of shortest length, but globally they may not be. Indeed,
geodesics are in general critical points for the length functional, and may or may not be min-
ima. However, for a connected Riemannian manifold, the Hopf-Rinow theorem [Sak96, p. 84]
ensures that any two points can be connected by a length-minimizing geodesic. The geodesic
connecting two points on a manifold may not be unique. Figure 1 illustrates this concept for
the case of the sphere: geodesics on a sphere are great circles, and the length-minimizing
geodesic between any two points is the shorter of the two arcs of a great circle joining them.
Shooting methods have been known for quite some time to find a numerical solution to a
boundary value problem (BVP). In Chapter 2, we describe and specialize these methods to
the Stiefel manifold, discuss their limitations, and provide some numerical examples.

Figure 1 — Geodesics on the sphere.

In the second part of the thesis, we study another method for finding geodesics: the
leapfrog algorithm introduced by L. Noakes [Noa98]. Noakes realized that his algorithm was
in some way imitating the Gauss—Seidel method, a classical iterative method for solving a lin-
ear system of equations, which can be easily extended to nonlinear systems. This connection
between leapfrog and nonlinear Gauss—Seidel was not further investigated by the author of
leapfrog, as it appears from the related papers [KN97, KN98a, KN98b, KN08]. Therefore, in
Chapter 3 we propose a convergence proof of leapfrog as a nonlinear Gauss-Seidel method.
Our discussion will be limited to the case of the Stiefel manifold, however it may be gener-
alized to other embedded submanifolds. In Chapter 4, we continue the discussion on other
aspects of leapfrog and present some numerical experiments.

xvi



In the third part of the thesis, we tackle the problem of numerical accuracy in line-search
methods. It is known that when using standard Wolfe conditions, one can attain a numerical
accuracy only on the order of the square root of the machine precision. Employing the ap-
proximate Wolfe conditions and using the line-search technique proposed by [HZ05, HZ06]
provides a solution to this problem. In Chapter 5, we give an overview of the Hager-Zhang
line search, and we generalize this technique to Riemannian manifolds. Numerical examples
show that this new generalization permits to achieve an accuracy on the order of machine
precision when using line search for optimization problems on manifolds.

In the final part of the thesis, we use the manifold of fixed-rank matrices M, in the
context of certain large-scale variational problems arising from the discretization of elliptic
PDEs, where the optimization variable is rank-constrained.

Multilevel optimization is the extension of multigrid to unconstrained optimization, and
the original idea goes back to the MG/Opt [Nas00, LN05]. Chapter 6 describes basic notions
about multigrid and multilevel methods.

In Chapter 7, we introduce a new generalization of the multilevel optimization algorithm
to the case of Riemannian manifolds, and we demonstrate its effectiveness through numerical
experiments. All the classical components of multigrid are there, plus the additional compo-
nents from Riemannian optimization. Figure 2 provides an illustration of this generalization,
emphasizing the fact that due to the curvature of the manifold, we need to introduce all the
additional tools from Riemannian optimization that allow a generalization of the existing
Euclidean algorithm to manifolds.
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Figure 2 — With respect to the Euclidean case (panel (a)), in the Riemannian setting (panel
(b)) we need to introduce new tools that allow us to cope with the curvature of the manifold.

Organization of this thesis

This thesis consists of four main parts: the first part comprises chapters 1-2, the second one
chapters 3-4, the third part corresponds to chapter 5, while the fourth part encompasses
chapters 6-7.

In Chapter 1, we introduce the notions of first-order Riemannian geometry required for
the reading of this thesis. In Chapter 2, we apply shooting methods for calculating the dis-
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tance between two points on the Stiefel manifold. In Chapter 3, we deal with the leapfrog
algorithm and the proof of its convergence as a nonlinear Gauss—Seidel method. Other meth-
ods for computing the Riemannian distance between two points on a manifold are discussed
in Chapter 4.

In Chapter 5, we review the Hager—Zhang line-search method, and introduce its Rieman-
nian counterpart, which will be used in Chapter 7. In Chapter 6, we describe basic notions
about multigrid methods and their derivations. Finally, in Chapter 7, we present our Rieman-
nian multigrid line-search algorithm for low-rank problems.

More precisely, this thesis is divided as follows:

« Chapter 1: introduction to Riemannian geometry.

« Chapter 2: shooting methods to compute the distance on the Stiefel manifold.

« Chapter 3: proof of convergence of leapfrog as a nonlinear Gauss-Seidel method.
« Chapter 4: other methods and extensions on leapfrog.

« Chapter 5: a Riemannian Hager—Zhang line search.

+ Chapter 6: introduction to multigrid methods and their derivations.

« Chapter 7: multilevel Riemannian optimization for low-rank problems.
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CHAPTER ]

Riemannian geometry

In this chapter, we will introduce some notions of Riemannian geometry that will provide
a useful and necessary background for the rest of this thesis. The first part of this chapter
deals with fundamental definitions and first-order geometry, while the second part is more
focused on line-search algorithms on manifolds.

Most of this chapter is based on [dC92, Sak96, Lee97, Lee18] for the classical theory of Rie-
mannian geometry, and on [EAS98, AMS08, Bou20] for the algorithms on manifolds. When
discussing the classical numerical optimization algorithms in Euclidean space, some material
was also taken from [NW06, Ber95].

1.1 First-order geometry

A d-dimensional manifold is a set M covered with a suitable collection of charts, that identify
certain subsets of M with open subsets of R%. The collection of charts, called atlas, provides
the basic structure to do differential calculus on M. The numerical algorithms on matrix
manifolds exploit the matrix structure associated with the problems of interest.

1.1.1 Charts and atlases

Let M be a set, and U be an open subset of M. Charts are useful because they allow us to
study in R? the objects associated with 2.

For example, let f: U4 — R be a real-valued function on U, then f o ¢~ is a function
from R< to R, with domain oU),ie., fo oL ©(U) — R, to which methods of real analysis
apply. Each point of the set M has to be at least in one chart domain. If x € &/ NV then we
need some kind of compatibility between the two mappings ¢ and %, i.e., in the overlaps we
want some kind of smoothness.

The definition of atlas specifies such compatibility conditions at the overlaps of the charts.

1

Definition 1.1 (Atlas). A (C*°) atlas of M into R? is a collection of charts (U, ) of the
set M such that

« The union of all the charts is the set M, i.e., Uy, = M.

« For all o, B with U, NUp # @, the sets po (Us NUp) and @3(Us N Up) are open sets
of R? and the change of coordinates ot R? — R? is smooth (i.e., of class C™)
on its domain @, (U NUg).

We say that the elements of an atlas overlap smoothly.

1
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Figure 1.1 illustrates the compatibility conditions between charts.

Po(Ua NUB) (U NUZ)

Figure 1.1 — Compatibility between charts.

Two atlases A; and Ay are equivalent if A; U As is an atlas.

Definition 1.2 (Maximal atlas). Given A, let AT be the set of all charts (U, ¢) such that
AU{(U, )} is also an atlas. AT is called the maximal atlas generated by A. The maximal
atlas contains all the charts that one can have for the set M. A maximal atlas of M is also
called a differentiable structure on M.

Now that we have defined the concept of maximal atlas, we can state a more rigorous
definition of manifold.

Definition 1.3 (Manifold). A (d-dimensional) manifold is a couple (M, A™), where M is
a set and A" is a maximal atlas of M into R?, such that the topology induced by A™ is
Hausdorff and second-countable.

We will not go into the details of a Hausdorff topology here. For this thesis, it suffices to
say that, roughly speaking, a topology is Hausdorft if disjoint points have disjoint neighbor-
hoods.

A maximal atlas of a set M that induces a second-countable Hausdorff topology is called
a manifold structure. In general, we call atlas of the manifold (M, A1) any atlas of M whose
maximal atlas is A™. Similarly, a chart of the manifold (M, A") is any chart of M that
belongs to A™.

Now we turn our attention to some simple yet familiar examples of manifolds: vector
spaces.



1.1. First-order geometry

1.1.2 Vector spaces as manifolds

Let £ be a d-dimensional vector space. Then, given a basis (e;);=1,. 4 of &, the function
¥: & — R? defined by

1
€ d

T : |, suchthat z= inei,
24 i=1
is a chart of the set £. In other words, every d-dimensional vector space is isomorphic to its
space of coordinates R?. All charts built in this way are compatible, i.e., they satisfy point 2
in Definition 1.1. As a consequence, they form an atlas of £, i.e., £ has a manifold structure.
Hence every vector space is a linear manifold. The linearity is implied by the linearity of the
charts. As we will see later, the challenging case arises in the case of nonlinear manifolds,
i.e., manifolds that are not endowed with a vector space structure.
We now look at some more concrete examples.

The manifold R"*P. The set R"*P of n x p real matrices is a vector space. As such, it
has a linear manifold structure. A chart on this manifold is ¢: R"*P — R™ defined by
X — vec(X), where vec(X) denotes the vector obtained by stacking the columns of X
below one another. The manifold R™*P can be further turned into a Euclidean space with
the inner product

(Z1,Zy) = vec(Z1)  vec(Zy) = trace(Z] Zs).

This inner product induces the Frobenius norm
| Z||p = y/trace(Z7Z),

which can be regarded as the Euclidean norm for matrices.

The manifold R} *?. Let R} ™ with p < n be the set of all n x p matrices whose columns
are linearly independent, i.e., matrices having full rank p. Observe that R}*? is an open
subset of R™*? since its complement

{X e R™P: det(X'X) =0}

is closed. The manifold RY™? is also known as the noncompact Stiefel manifold of full-rank
n X p matrices. If p = 1 it corresponds to the Euclidean space R" with the origin removed.
If p = n it becomes G L, the general linear group of all invertible n x n matrices.

We now go back to some more general theory.

1.1.3 Product manifolds

Let M; and M3 be two manifolds of dimensions d; and ds, respectively. We define the
product manifold My x Ms whose elements are (z1,z2), with z; € M; and x93 € M.
Moreover, let (U1, ¢1) be some chart of M, and (Us, p2) be some chart of Ms. Then the

mapping
Y1 X Ea: Z/[l X Z/lz —>Rd1 X RdQ,
defined by
(z1,22) = (p1(21), p2(z2))
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is a chart for the product manifold M; x M. All the charts obtained in this way form an
atlas for M x Mj. Thus M; x My is a product manifold with a topology equivalent to
the product topology.

It is now time to introduce the first notions that allow us to perform calculus on manifolds.

1.1.4 Differentiable functions

In this section, we introduce the concept of differentiability for functions between manifolds.
In the context of optimization algorithms on manifolds, mappings between manifolds occur
in several situations:

« an optimization problem involves a cost function, which can be viewed as a mapping
from manifold M to manifold R;

« as inclusions in the theory of embedded submanifolds’;
« as retractions, for instance in line-search methods on manifolds.

Let M and M3 be two manifolds of dimensions d; and ds, respectively, and let F': M; —
M be a mapping between these two manifolds. Let x € M, and let 1 and @9 be the charts
that map M and Ms to R% and R, respectively. Observe that ¢ is a chart around z, and
(9 is a chart around F'(x). Thus, to go from R% to R% we have to “read through the charts”,
i.e., we have to use the map

F=gpyoFop,

which is a coordinate representation of F' around x. The following diagram illustrates this
concept.

M1L>M2

o =

~

Rdl F Rdg
Definition 1.4 (Local smoothness of F' at x). We say that F is differentiable or smooth at x
if F'is of class C*° at p1(z).

We emphasize that this definition does not depend on the choice of the charts ¢ and ».
Global smoothness of F' is straightforward.

Definition 1.5 (Global smoothness of F'). We say that a function F’ is smooth if it is smooth
for every .

We are now ready to introduce the important notion of diffeomorphism, which can be
regarded as a generalization of the concept of isomorphism to the case of smooth manifolds.

Definition 1.6 (Diffeomorphism). A (smooth) diffeomorphism F': M; — M is a bijection
such that F and its inverse F'~! are both smooth. We say that two manifolds are diffeomorphic
if there exists a diffeomorphism between them.

Let us introduce some more definitions about functions on manifolds which turn out to
be useful in proving that certain sets are indeed smooth manifolds.

'Embedded submanifolds are defined later in Section 1.1.6.
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1.1.4.1 Immersions and submersions

Let F': M1 — Ms be a differentiable function between two manifolds M; and Mo, and
let z € M, be a point of M;. Let DF(p1(2)): R4 — R be the differential’ of F' at
©1(x) € R, where F' denotes a coordinate representation of F', as defined above.

Definition 17 (Rank of a function). The rank of F at x is the dimension of the image of the
differential DF'(p1(x)).

As before, this definition does not depend on the charts either. We say that F' is an
immersion if its rank is equal to d; at each point of its domain (hence d; < d3), and that F'is
a submersion if its rank is equal to dy at each point of its domain (hence d; > ds). Equivalent
characterizations are also possible as follows. We say that F' is an immersion if and only if,
around each point of its domain, it admits a coordinate representation F:RY 5 R that
is the canonical immersion

(ul,...,udl)»—>(ul,...,udl,O,...,O), d; < do,
i.e., in the codomain R the last dy — d coordinates are set to zero.
We say that F' is a submersion if and only if, around each point of its domain, it admits
a coordinate representation F': R% — R% that is the canonical submersion

(ul,...,udl)r—)(ul,...,udQ), di > do,

i.e., in the codomain R? the last d; — ds coordinates are neglected.

1.1.5 Matrix manifolds

A matrix manifold is any manifold that is constructed from R™*? by taking either embedded
submanifolds or quotient manifolds. The two matrix manifolds that are object of study of
this thesis are actually embedded submanifolds. Hence, in the next section, we will explore
into reasonable detail embedded submanifolds.

The major matrix manifolds are

» noncompact Stiefel manifold;

« orthogonal Stiefel manifold,;

- oblique manifold: {X € R™*P: diag(X'X) = I,};

« generalized Stiefel manifold;

« manifold of symplectic matrices: {X € R*"*27: XTJX = J}, where

O?’L In
-[or 8]

’The differential of a mapping is discussed later in Section 1.1.8.
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1.1.6 Embedded submanifolds

In general, a set X admits more than one manifold structure, but if it is a subset of a manifold
(M, AT), then it admits at most one submanifold structure. In this case, the manifold M is
referred to as the embedding space. The following proposition formalizes this result.

Proposition 1.8. Let N be a subset of a manifold M. Then N admits at most one differentiable
structure that makes it an embedded submanifold of M.

In other words, it exists a unique differentiable structure that makes N an embedded
submanifold. We emphasize that this proposition removes all the freedom of choice of a
differentiable structure on V.

When the embedding space is R™*?, we say that N is a matrix submanifold. In this
thesis, we deal with two particular cases of matrix submanifolds: the Stiefel manifold and
the manifold of fixed-rank matrices.

How can we check if a subset N/ C M is an embedded submanifold? Let us first introduce
the notion of coordinate slice.

Definition 1.9 (Coordinate slice of dimension m). Let (I, ¢) be a chart of a manifold M. A
-coordinate slice of U of dimensionm is a set of the form ¢~ (R™ x {0} ), which corresponds
to all the points of U whose last n — m coordinates in the chart ¢ are equal to zero.

In other words, a coordinate slice is the image under gp_l of the part of an m-dimensional
plane in R™ which lies in the coordinate range.

The next proposition states that every embedded submanifold is locally a coordinate slice.

Proposition 1.10 (Submanifold property). A subset N of a manifold M is a d-dimensional
embedded submanifold of M if and only if, around each point x: € N/, there exists a chart (U, )
of M such that N N U is a p-coordinate slice of U, i.e.,

NNnU={zel: o(x) e R x {0}}.
In this case, the chart (N'NU, ) is a chart of the embedded submanifold .

What are the sufficient conditions for subsets of manifolds to be embedded submanifolds?
We have the following two propositions.

Proposition 1.11 (Submersion theorem). Let F': M — Mo (withd; > dg). Lety be a
point of Ms. If the rank of F is equal to do for every point of F~1(y), then F~(y) is a closed
embedded submanifold of M1, and dim(F~1(y)) = d; — da.

Proposition 1.12 (Subimmersion theorem). Let F': M; — Ma. Let y be a point of F'(M).
If F has constant rank k < dy in a neighborhood of F~*(y), then F~1(y) is a closed embedded
submanifold of My of dimension d; — k.

We now focus our attention on a concrete example of matrix submanifold.
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1.1.6.1 The Stiefel manifold

The (orthogonal) Stiefel manifold is an embedded submanifold of R™*? that frequently arises
in applications, and as such, it is the object of study of the first two parts of this thesis. It is
defined as the set of all n X p orthonormal matrices

St(n,p) = {X e R"?: X'X = I,,},

where I, denotes the p X p identity matrix. This set, endowed with its submanifold structure
as discussed below, is called an orthogonal or compact Stiefel manifold. Let

T
. | —ri—
X=|17r ro Tp and X' = . )
. | :
B -
where r; € R" are orthonormal vectors forallt = 1,...,p. Then
riri Tire - TiTp 10 -0
YTy — riry riro : _ 0 1
: 0
rzT,'ﬁ "“;Tﬂ‘p 0o --- 0 1

Clearly, St(n, p) is a subset of R™*P, and we have seen above that R"*? admits a linear man-
ifold structure. We are going to show that St(n, p) has indeed the structure of an embedded
submanifold of R™*P.

Proposition 1.13. St(n, p) is an embedded submanifold of R™*P.

Proof. To show that St(n, p) is an embedded submanifold of the manifold R"*P, we can use
the submersion theorem (Proposition 1.11). This means that we need to introduce a function
F between two manifolds and show that it is a submersion. Here, we consider the two
manifolds M; = R™? and My = Sgym(p), where Sgym(p) denotes the set of all p x p
symmetric matrices, which is also a vector space, hence a linear manifold. As function F’
between these two manifolds, let us consider

F:R"? — Sym(p),

defined by .
X—=X'X—-1I,

Observe that X' X — I, is indeed a symmetric matrix. We point out that St(n, p) is the set
of the inverse images of the null matrix under F', namely,

St(n,p) = F_I(Op).

Here, O,, is the null matrix of size p-by-p, and it plays the role of the y in Proposition 1.11.
We need to show that F' is a submersion at each point X of St(n, p), i.e., that the differential
of F' maps onto Sgym(p). The meaning of this is that the dimension of the image of DF is
equal to dim(Sgym (p)). This can formally be written as

VZ € Soym(p), 3Z € R™P: DF(X)[Z] = Z.
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To compute the differential of F, we can use the definition
F(X+7)=F(X)+DF(X)[Z]+o(]| Z])-
Specializing it for the function F/(X) = XTX — I,,, we get
X"+ZNX+2)-1,=X"X-1,+X'Z+Z'X = F(X) + DF(X)[Z],

from which we can identify DF(X)[Z] = X'Z + Z" X. Now the question is the following:
for any Z € Ssym(p), does there exist a Z € R™*P such that DF'(X)[Z] = Z? The answer
is yes, as can be checked by choosing Z = %XZ:

DF(X)[Z)=X"Z2+Z2'X =1X'XZ+12'X"X = Z.

This shows that the rank of F, i.e., the dimension of the image of DF(X)[Z], is equal to
dy = dim(Ssym(p)) for every point of F~(0O,). Then from Proposition 1.11 it follows that
St(n,p) = F~1(0,) is an embedded submanifold of R™*?. O

As a byproduct of the above proof, one can also obtain the dimension of St(n, p). Ob-
serve that the vector space Sgym(p) has dimension 1p(p + 1), since a symmetric matrix is
completely determined by its upper triangular part. By Proposition 1.11, dim(St(n,p)) =

dy —da =np— %p(p—f— 1).

To conclude this section, let us state some basic properties of the Stiefel manifold St(n, p).

« Itis closed, because it is the inverse image of the closed set {O,,} under the continuous
function F': R™*? — Sgym (p).

« Itis bounded; each column of X € St(n,p) has norm 1, so the Frobenius norm of X is
equal to \/p.

« Itis compact, since it is closed and bounded. This follows from the Heine—Borel theorem
[AMS08, p. 193].

The Stiefel manifold St(n, p) may degenerate to some special cases. For p = 1, it reduces
to the unit sphere S"~! in R". For p = n, the Stiefel manifold becomes the orthogonal group
O,,, whose dimension is 4n(n — 1).

1.1.7 Tangent vectors

Let us go back to some more general theory that is not restricted to matrix manifolds, and
introduce some basic concepts of differential geometry that are used to generalize the notion
of directional derivative to a real-valued function on a manifold.

Definition 1.14 (Curve in M). Let M be a manifold. A curve in M is a smooth mapping
~v: R — M, defined by t — ~(t).

The derivative of the curve may be defined as

) — fan 2T =)

T—0 T

(1.1)

However, we emphasize that the difference (¢4 7) —~(t) requires a vector space structure in
order to make sense, thus this definition fails for an abstract nonlinear manifold. Nonetheless,
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given a smooth function on a manifold f: M — R, the function fo~v:t — f(y(t))isa
smooth function from R to R, with a well-defined classical derivative.

Let (M) denote the set of smooth, real-valued functions defined on a neighborhood
of a point x € M. The tangent vector to the curve v at t = 0 is defined as the mapping
4(0): Fz(M) — R, that maps a function into a scalar f — %(0) f, where

d(f(v(#)

H0)f = S5

We emphasize that the tangent vector is a mapping, so it is not a vector as in the sense of
classical geometry. Nonetheless, to preserve our intuition and for illustration purposes, we
will often depict it as an arrow in a two- or three-dimensional space.

When M is (a submanifold of) a vector space &, the mapping 4(0) and the derivative of
a curve (1.1) are closely related by

7(0).f = Df(v(0))[y'(0)].
A formal definition with a slightly different notation is the following.

Definition 1.15 (Tangent vector). A tangent vector &, to a manifold M at a point x is a
mapping from F, (M) to R, such that there exists a curve v on M with v(0) = z, satisfying

d(f(v(1)))

§of = ’7(0)]0 = dt t—07

for all f € F,(M). Such a curve 7 is said to realize the tangent vector &,.
The notion of tangent vector allows us to introduce another very important concept.

Definition 1.16 (Tangent space). The tangent space to M at x, denoted T, M, is the set of
all tangent vectors to M at x.

The crucial observation here is that the tangent space admits a vector space structure.
Indeed, for two tangent vectors to 41 (0) and §2(0) to M at x, the linearity property holds,
since

(@71(0) + b32(0)) f = a($1(0).f) + b(52(0).f),

and (a’1(0) 4+ b32(0)) is still a tangent vector. The fact that 7, M is a vector space is very
important, since it provides a local vector space approximation to the manifold.

Later, in Section 1.2.1, we will define retractions, i.e., mappings from 7, M to M, which
can be used to locally transform an optimization problem on the manifold M into an opti-
mization problem on the more friendly vector space T, M.

Remark 1.17. Observe that the tangent space 7, M has the same dimension d as the man-
ifold M, ie., dim(7T, M) = dim(M).

This can be shown by using a coordinate chart. Let (4, ¢) be a coordinate chart at x. A
basis of T, M is given by (¥1(0), ..., %4(0)), with v;(t) = ¢~ (¢(x) +te;), where e; denotes
the ith canonical vector of R%. The tangent vectors ;(0) are defined as

3(0)f = 0i(f o™ ) (o()),
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where 0; denotes the standard partial derivative with respect to the ith component. Finally,
for any tangent vector 4(0) we have the decomposition

d
F(0) =D (3(0)¢i) %:(0),

i=1

where #(0)¢; are the coordinates of the tangent vector in R?. Figure 1.2 illustrates for a
two-dimensional manifold the construction that we have just outlined.

Figure 1.2 — The tangent space 7}, M has the same dimension as the manifold M.

1.1.7.1 Tangent vectors to a vector space

Let £ be a vector space. We have seen above that a tangent vector &, to £ at x is a mapping

&x: Fz(€) — R, defined by

fores- WO

where v is a curve in £ with v(0) = z. The directional derivative of f at z along 7/(0)
coincides with the classical derivative of f(y(t)) evaluated att = 0, i.e.,

§of = Df(x)[y'(0)].
Moreover, T,.€ is identified with £ itself, i.e., T,.€ ~ £.

1.1.7.2 Tangent bundle

The tangent bundle is the set of all tangent vectors to M, i.e., the union of all the tangent
spaces to M:
TM= ] TuM.
xreM
Since every £ € T'M is in one and only one tangent space T, M, it follows that M is a
quotient of 7'M, with natural projection

T TM— M,

10
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defined by ¢ € T M > x. This gives us the following different perspective. We can regard
each x as the representative element of all £ € T, M, so that M can be viewed the set of all
representative elements, i.e., a quotient set. It can be shown that the tangent bundle 7'M has
a natural manifold structure.

1.1.7.3 Vector fields

A vector field £ is a smooth function from the manifold to the tangent bundle M — T'M,
defined by = — &,. Hence, a vector field £ assigns to each point x € M a tangent vector

&y € Ty M.
Given ¢ a vector field on M, and f € F(M), we define

() @) = &(f)-

Here, £ f denotes the real-valued function that maps x into &, (f), the tangent vector to M
at  applied to f. Compare with the multiplication of a vector field by a function, which is
defined as

and the addition of two vector fields, which is
E+Qs=8+C  VZEM.
Definition 1.18 (The coordinate vector field). The vector field E; on U, defined by
(Eif)@) = 0i(f o 9™ )(p(x)) = D(f 0 ™) (o(@))[ed],
is called the ith coordinate vector field of (U, ).

Any vector field £ admits a decomposition £ = Y, (€p;) E; on U, where {; is the func-
tion that gives the tangent vector applied to ¢ at x.
If the manifold is an n-dimensional vector space £, then the coordinate vector field be-

(Bif) o) = 0:f (&) = lim L& T 10 = /(@)

t—0 t

comes

= Df(z)[ei],
i.e., we do not need to “read through the charts”.

We are now ready to introduce another fundamental concept that makes it possible to
relate the tangent spaces to two different manifolds.

1.1.8 Differential of a mapping

The differential of a mapping is a function that maps a tangent vector to a manifold M into
a tangent vector to another manifold V. Let F': M — A be a smooth mapping between
two manifolds. Recall that £, is a smooth mapping from F, (M) to R. The mapping

DF(z)[&]: Fra)yWV) — R,

defined by
(DF(x)[E])f =&(f o F),
is a tangent vector to N at F'(x). Here, Fp(y)(N) denotes the set of smooth real-valued

functions defined on a neighborhood of F'(x), and £(f o F') is the tangent vector applied to
the composite function f o F.

11
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The mapping
DF(l‘): oM — TF(a;)Nv

defined by
§ = DF(z)[¢],

is a linear mapping called the differential of F' at x. Figure 1.3 illustrates the notion of the
differential.

M N
\—/

F

Figure 1.3 — The differential map of F" at x.

Remark 1.19. F is an immersion if and only if DF'(z) is an injection, for all z € M. Fisa
submersion if and only if DF'(z) is a surjection, i.e., if rank(DF(x)) = dg, for all z € M.

As we will show in the following section, the differential is useful for characterizing
tangent spaces to embedded submanifolds.

1.1.9 Tangent spaces to embedded submanifolds

Let £ be a vector space and let M be an embedded submanifold of £. Let v be a curve in
M. Since 7 is a curve in M, it also induces a tangent vector §(0) € T, M. The relationship
between /(0) and 4(0) is given by ¥(0) f = Df(z)[y/(0)]. One can identify T, M with the
set {7/(0): y curve in M, v(0) = z}, which is a linear subspace of the vector space T,,€ ~ £.

If M is a matrix submanifold, i.e., £ = R"*P, we have T,,€ = R"*P, hence the tangent
vectors to M are represented by n X p matrices.

The following remark is very important for a practical characterization of tangent spaces
to embedded submanifolds.

Remark 1.20 (Characterization of tangent spaces to embedded submanifolds). Let M be an
embedded submanifold of £. Let F': £ — M. The tangent vectors to M at x correspond to
those vectors ¢ that satisfy DF'(x)[¢] = 0. Thus T, M is the kernel of the linear operator
DF(x)

TyM = ker(DF(x)).

12
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Example 1.21 (Tangent space on a sphere). Let ¢ — x(t) be a curve in the unit sphere S™*
through z¢ at t = 0. Since x(t) € S™! for all £, we have

z(t)z(t) = 1.
Differentiating with respect to ¢, we get
il +27d =0.

For ¢t = 0, this becomes
Fozo + 200 = 0,

o being the tangent vector to S™~! at xy. The last equation represents the kernel of the
differential operator of ¢ — x(t). This shows that & is an element of the set

{z € R": 2)z = 0}.
The tangent space to S™ ! at x is the set of all vectors orthogonal to  in R", i.e.,
T,5" ' ={z e R": 2"z = 0}.

Example 1.22 (Tangent space on the orthogonal Stiefel manifold). The orthogonal Stiefel
manifold
St(n,p) = {X e R™P: X'X =I,}

is an embedded submanifold of Euclidean space R"*? (see Section 1.1.6.1). Let ¢ — X (¢) be
a curve in St(n, p) through Xgatt = 0,ie., X (t) € R"*?, X(0) = Xg,and X (t)' X (t) = I,
for all t. Differentiating with respect to ¢, we get

X)Xt +Xt)X(t)=0.

For ¢t = 0, this becomes
X X0+ XoXo =0,

Xo being the tangent vector to St(n, p) at X. We deduce that Xo belongs to the set
{Z eR™P: X} Z + Z" X, = 0}. (1.2)

We can recognize in DF(X()[Z] the expression X[ Z + ZTX( = 0, thus (1.2) is the kernel
of DF(Xj), with F': X +— X' X. Hence the tangent space is

TxSt(n,p) ={Z e R"P: X'Z + Z'X = 0}.

An alternative way to characterize the tangent space Tx St(n,p) is the following. Let
X be an orthonormal matrix whose columns span the orthogonal complement of span(X).
Since X is orthonormal, together with X | one can form an orthonormal basis of the space
R™*P, and we can decompose any tangent vector X on this basis as

X=X0+X /K,

2 being a p-by-p skew-symmetric matrix, {2 € Sgkew(p), and K € R(M=P)XP ith no re-
striction on K. So the tangent space to the Stiefel manifold can also be characterized by

TxSt(n,p) = {XQ+ X K: 2 =-07, K ¢ Rlv=P)xpY,

13
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With this characterization in mind, and with the fact that dim (St(n, p)) = dim(TxSt(n, p)),
it is straightforward to work out the dimension of the Stiefel manifold as

dim(St(n, p)) = dim(Sskew) + dim(R(”*p)Xl’) = %p(p - 1)+ (n—pp=np— %p(p +1),

which verifies the result obtained in Section 1.1.6.1.
As we mentioned before, if p = n then the Stiefel manifold reduces to the special case of
the orthogonal group
Op={X eR™™: XX = I,,},

and the tangent space at X is given by
TxO, ={X82: 2" = —2} = XSgow(n). (1.3)

In particular, if X = I,,, we have 77, O,, = Sskew (7). This means that the tangent space to
O,, at the identity matrix I, is the set of skew-symmetric n-by-n matrices Sskew (7). In the
language of Lie groups, we say that Sskew(n) is the Lie algebra of the Lie group O,,.

We now go back to some more general theory.

1.1.10 Riemannian metric, distance and gradients

We have seen in the previous sections that tangent vectors generalize to manifolds the no-
tion of directional derivative. In order to generalize the steepest descent method to nonlinear
manifolds, we still need a notion of length that applies to tangent vectors, in order to under-
stand which direction from z gives the steepest increase.

To this aim, we endow T, M with an inner product (-, ), i.e., a bilinear, symmetric pos-
itive definite form. The subscript x in (-, -), indicates that in general the inner product de-
pends on the point z € M. The inner product (-, -), induces a norm ||, ||z = / (&2, &z)z On
T, M. The normalized direction of steepest ascent is then given by

argmax  Df(2)[&].
Ex€TeM: [|&2 =1

Most importantly, the introduction of the inner product structure permits to define the
notion of Riemannian manifold.

Definition 1.23 (Riemannian manifold). A manifold M endowed with a smoothly-varying
inner product (called Riemannian metric® g) is called Riemannian manifold.

Strictly speaking, a Riemannian manifold is a couple (M, g), i.e., a manifold with a Rie-
mannian metric on it.

Remark 1.24. A vector space endowed with an inner product structure is a particular case
of Riemannian manifold called Euclidean space.

Definition 1.25 (Length of a curve). The length of a curve ~y: [a,b] — M on a Riemannian

manifold (M, g) is b
Lo = [ VG50,

*Riemannian inner product would be a more appropriate term in order to avoid confusion with a metric in
the standard sense, but the original terminology stuck.

14
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Definition 1.26 (Riemannian distance). The Riemannian distance is defined as the shortest
path between two points z and y

dist: M x M — R: dist(z,y) = irllfL(y),

where I denotes the set of all curves  in M joining points x and y.

Assuming that M is Hausdorff (see Definition 1.3), the Riemannian distance defines a
metric in the standard sense, i.e.,

« it is nonnegative: dist(z,y) > 0;
o it is symmetric: dist(x, y) = dist(y, );
« it satisfies the triangular inequality: dist(z, z) + dist(z, y) > dist(z, y).

Definition 1.27 (Riemannian gradient). Let f be a smooth scalar field on a Riemannian
manifold M. The Riemannian gradient of f at x, denoted grad f(x), is the unique element
of T, M such that

We point out that D f(x)[-] is an element of the dual space of T, M, i.e., the space of all
linear functionals from 7, M to R. The gradient grad f(x) always exists because of Riesz
representation theorem, which states that every element of the dual space can be written
uniquely in the above form.

The Riemannian gradient has some remarkable properties that turn out to be very useful
in the context of optimization.

« The direction of grad f(z) is the steepest-ascent direction of f at x, namely

gradf(z) _ D
Terad @)~ cengmex_ DI@IEL

« The norm of grad f(z) gives the steepest slope of f at z, i.e.,

grad f () } ‘

| rad f(@)l} = DJ(z) {llgrwif(x)ll

1.1.11 Riemannian submanifolds

Let M be an embedded submanifold of a Riemannian manifold M. Since M is a submanifold,
it can inherit the Riemannian metric from its embedding space M

92(§,¢) = 92(&, €), §,¢eTaM.

Definition 1.28 (Normal space). The orthogonal complement of T, M in T, M is called
normal space to M at z and it is defined by

(TM)- ={ee TLM: ,(6,0) =0, VCeT,M}.
Any tangent vector ¢ € T, M can be uniquely decomposed into
§=Pr{+PrE

where P, and P denote the orthogonal projections onto T, M and (T, M), respectively.

15
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Example 1.29 (Sphere). The unit sphere S”~! is a Riemannian submanifold of R™. The
inner product on the sphere is inherited from the embedding space R"

(& ma=E.
The normal space at z € S" ! is
(T,S" 1)t = {za: a e R}.
The projections are given by
P,&=(I—xx)E, PLl¢=za'¢

Example 1.30 (Orthogonal Stiefel manifold). We recall that the tangent space to St(n, p) at
X is given by

TxSt(n,p) = {XQ+ X, K: 2 =—-0", K e Rn=P)*p},
The Riemannian metric inherited by T'x St(n, p) from the embedding space R™*? is

(€, m)x = trace(€'n).

The normal space is given by those matrices A such that
<§7 A>X =0, vf S TXSt(n7p)

Take A in the form A = XS, with X € St(n,p) and S a p-by-p symmetric matrix, S €
Ssym (). Then one can easily verify that

(€, A)x = trace(¢TA) = trace((QfTXT + KgXD XS) = trace(_QgS) =0.
Thus the normal space is given by
(TxSt(n,p))* ={XS: S € Sym®)}-
The projection onto the tangent space Tx St(n, p) is
Px ¢ = Xskew(X'€) + (I — XX")¢,
and the projection onto the normal space (TxSt(n,p))~ is
Py € = Xsym(X¢).

To prove these expressions for the projectors, we start by writing a generic tangent vector as
the sum of all its projections

E=Px¢+PyE=X0+X K+ XS.

Left-multiplying by X we get
XTe=0+85,

and taking the transpose

X =-0+8.

16
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The symmetric and the skew-symmetric parts of X T¢ are

XT X XTe—€'X
sym(X'¢) = % =S8,  skew(XT¢) = % = 0.
Now we only need to find X | K:
XT _ TX XT TX
XLKzg_XQ_ngg_X%_X%:([_XXT)g'

Finally,
€ = Xskew(XTE) + (I — XXT) €+ Xsym(X'€).

From the last expression one can identify the expressions for the projectors.

The main concepts of first-order Riemannian geometry have been introduced. We are
now ready to discuss the first numerical algorithms on manifolds.

1.2 Line-search algorithms on manifolds

Line-search algorithms in R" are based on the update formula

Tkl = Tk + ik,

where ¢, € R is the step size and 7, € R” is the search direction. We want to develop
an analogous formula and theory for optimization problems posed on nonlinear manifolds.
We can identify the following main aspects that we need to consider in order to generalize
line-search algorithms to manifolds:

« 1y will be a tangent vector to M at xy, i.e., n, € T, M;
« the search is performed along a curve in M whose tangent vector at t = 0 is 1.

The choice of such a curve leads us to the concept of retraction.

1.2.1 Retractions

In aline-search algorithm, given a point z, we compute = — grad f(z) and then we move in
the direction of 7 until a reasonable decrease is found, which is often defined as the sufficient
decrease condition. In R” the implementation of this idea is straightforward. On a manifold,
we need to move in the direction of a tangent vector while remaining constrained to the
manifold. In order to do so, we introduce the concept of a retraction mapping. Roughly
speaking, a retraction R at x, denoted R, is a mapping from T, M to M with a local rigidity
condition that preserves gradients at x. Figure 1.4 illustrates the concept of retraction.

The Riemannian exponential mapping is also a retraction, but it is not computationally
efficient. Indeed, retractions are a first-order approximation of the Riemannian exponential,
and that is what makes them cheaper to compute in practical applications.

Hereafter we give a more formal definition.

Definition 1.31 (Retraction). A retraction on M is a smooth mapping from the tangent
bundle to the manifold, R: T M — M, with the following properties:

17
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T M

Figure 1.4 — Retraction mapping.

(i) R;(0;) = z, where R, denotes the restriction of R to 7, M and 0,, is the zero element
of T, M.

(ii) With the identification 7y, 7, M ~ T, M, R, satisfies the local rigidity condition

DR, (0;) = idp, m-

We point out that R, maps from 7, M to M, in particular it maps 0, to . Moreover, we
recall that the differential of a function between two manifolds is a mapping between their
corresponding tangent spaces. Hence the differential of R, at 05 is the mapping

DR,(0,): To, TeM — Ty M,

but since Ty, T, M ~ T, M, we actually recognize in DR, (0,,) the identity map of T, M,
denoted id7, ¢ The identification Ty, 7, M ~ T, M holds because T, M is a vector space.

Remark 1.32. For any £ € T, M, the curve v¢: t — R, (t) satisfies Y¢(0) = &.
In the context of optimization algorithms, retractions have two main purposes:
« they turn points of 7, M into points of M;

« they transform cost functions defined in a neighborhood of € M into cost functions
defined on the vector space T, M.

Given a real-valued function f: M — R, and a retraction R: TM — M, one can
define the “pullback” of f through R as f = f o R. For x € M, the restriction of f to T, M
is fo = fo Ry, fz: TxM — R. We have the equality between the differentials

Df,(0;) = Df(x).

Indeed, using the chain rule for the differential of a composite function

D(fog)(z) =Df(g(z)) o Dg(x),

and Definition 1.31, we have
Dfx(ox) = D(f o Ry)(0:) = Df(Ry(0z)) o DR (0;) = Df(x).

18
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In addition, if M is endowed with a Riemannian metric, then we also have the equality of
the gradients

grad fm(()x) = grad f(z).
To show this, recall that, by definition,

v§eT,M,  Df(x)[¢] = (grad f(z), ),

and

Ve € To, To M ~ Ty M, Df%(ozv)[f] = (grad fx(ox)a§>

Since Df,(0,) = Df(x), this implies (grad f(z),£) = (grad f,(0,),£) for all £ € T, M.
Since this holds for all £, we can drop the ¢ and the inner product to obtain the equality
grad f(z) = grad f;(0,).

In the next sections and examples we show how to define retractions on embedded sub-
manifolds using the QR factorization and the polar decomposition.

1.2.1.1 Retractions on embedded submanifolds

Let M be an embedded submanifold of a vector space £. Thus T, M is a linear subspace of
T, ~&. Sincex e M C Eand€ € T, M C T,E ~ £, with alittle abuse of notation, we can
write  + £ € £ in the embedding space. So as a general recipe for embedded submanifolds,
we can define a retraction R, (&) by

« moving along the direction £ to get to the point x + £ in &;

« mapping the point z + £ back to M. When dealing with matrix manifolds, this step
can be based on matrix decompositions, such as, e.g., the QR factorization or the polar
decomposition.

This idea is formalized in the following proposition.

Proposition 1.33 (Retractions on embedded submanifolds [AMS08, Prop. 4.1.2]). Let M
be an embedded submanifold of £ and let N be an abstract manifold such that dim(M) +
dim(N) = dim(&). Assuming that:

(i) there exists a diffeomorphism ¢ from M x N to an open submanifold £, of £, namely
¢: M XN — &, defined by (F,G) — ¢(F,G);

(ii) there exists a point I € N satisfyingVF € M, ¢(F,I) = F,
then the mapping
Rx(&): m(¢™H (X +€), X eM, {eTyM,
defines a retraction on M.

Remark 1.34. Observe that since ¢ is a diffeomorphism, there exists the inverse mapping
¢ 1 & — M x N. For instance, in the QR factorization, this will be ¢~1: R"*" —
St(n,p) X Sypp+ (p), defined by A — (Q, R). Here, S,,,,+ (p) denotes the set of all p-by-p
upper triangular matrices with strictly positive diagonal elements.
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Remark 1.35. Concretely, A can be a set of factors deriving from a matrix decomposition.
Here, m1: M x N — M: (F,G) — F denotes the projection onto the first component of
such a decomposition. For example, if one performs a QR factorization, applying m; would
keep only the Q factor. This can be regarded as a kind of projection.

Proof of Proposition 1.33. Consider (X + &) € &, for any £ in a neighborhood of Ox. Since
¢~ ! is defined on the whole &,, it follows that Rx (&) is defined for any ¢ in a neighborhood
of Ox. We verify the properties of a retraction stated in Definition 1.31. Smoothness of Rx
is direct. For the property Rx(0x) = X, observe that

Rx(0x) = mi(¢™ (X +0x)) = m(¢~ (X)) = m((X,])) = X.
For the local rigidity property, first note that the Taylor development gives

where D; denotes the derivative with respect to the first component. Because of assumption
(ii) of Proposition 1.33, we have ¢(X + &, 1) = X + £ and ¢(X, I) = X, which yield

X +&=X +Dig(X, I)[¢],
and so the result
VE € TxM, Dig(X, I)[§] = D(X, I)[(£,0)] = &.
Then since (71 0 ¢~ 1) (¢(X, ) = X, it follows
¢ =D(m 0 ¢~ ") (o(X, 1)) [Dip(X, DE]] = D(m1 0 ¢~ ") (X)[€] = DRx (0x)[€],
which proves the claim that Rx is a retraction. U

Example 1.36 (Retraction on the unit sphere S"~1). Let M = S""L, /' = {A € R: A > 0},

and consider ¢: M xN — R? defined by (x, \) — Az. Proposition 1.33 yields the retraction
x+&

I+ &II°

defined for all ¢ € T,,S™ 1. Observe that R, (&) is the point on the sphere S™~! that mini-
mizes the distance to x + .

Ry(§) =

1.2.1.2 Retraction on the orthogonal group

Let M = O,,, the orthogonal group, i.e., the set of all ) € R™*" such that Q'Q = I. Let
A € R}*" be a full-rank matrix (see Section 1.1.2). In this section, we present two possibilities
to define a retraction on the orthogonal group.

QR factorization. Let A = QR with Q € O, and R € S,;,,+(n), the set of all upper tri-
angular matrices with strictly positive diagonal elements. The inverse of the QR factorization
is

¢: Op X Syt (p) — R,

pp*
defined by
(Q,R) — A=QR.

Now let qf = 71 0 ¢! denote the mapping that sends a matrix A to the Q factor of its QR
factorization. The mapping qf can be computed by using the Gram-Schmidt orthonormal-
ization procedure. To show that ¢f is a retraction, one needs to check that ¢ satisfies all the
hypotheses of Proposition 1.33.
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(1) « ¢ is bijective because of the existence and uniqueness properties of the QR factor-
ization;
+ ¢ is smooth because the matrix product is smooth;

« ¢~1is O, since Q is obtained by the Gram-Schmidt procedure, which is C™
over the set of full-rank matrices R?*", and R is obtained as Q! A.

(i) The identity matrix I, is the neutral element: ¢(Q,I) = Q, for all Q € O,,.

Hence all the assumptions of Proposition 1.33 hold for ¢. Recalling that tangent vectors to
the orthogonal group have the form (1.3), we have that, for a matrix X € O,, and a tangent
vector X2 € TxO,,,

Rx(X2)=qf(X + X02)=qf(X(I+ 2)) = Xqf(I + 2)
is a retraction on the orthogonal group O,,.
Polar decomposition. The polar decomposition is the factorization A = QP with @) €

Oy and P € Sy, + (n), i.e., the set of all symmetric positive definite matrices of order n. The
inverse of the polar decomposition is

¢: Op X Sqym+(n) — R,

defined by
(Q.P)— A=QP.

The polar decomposition of A is given by [AMS08, p. 58]
67H(A) = (A(ATA) V2, (ATA)2) (1.4)
In fact, one can readily check that A(ATA)~1/2 € O,, and (ATA)'/? € S+ (n). Hence, for
a matrix X € O, and a tangent vector X {2 € TxO,,, we have that
Rx(X0) = m (671 (X + X22)) (15)
T ~1/2
= X(I+9) ((X(I+2)'X(I+2))

T ~1/2
= X(I+92) (I - X"X(I + 2))
= X(I+Q)(I— 0%~/
is a retraction on O,,. Computing this retraction requires an eigenvalue decomposition of
(I — £2%) in order to calculate its matrix square root.
1.2.1.3 Retraction on the Stiefel manifold
As with the orthogonal group above, here we also present two possibilities for defining the

retraction on the Stiefel manifold.

OR factorization. For a matrix X € St(n,p) and a tangent vector £ € T'xSt(n,p), the
retraction based on a QR factorization is given by

Rx (&) = af(X +¢),

where qf(A) denotes the Q factor of the decomposition of A € RY*? as A = QR, with
Q € St(n,p) and R € S+ (n). The retraction Rx (§) can be computed in a finite number
of arithmetic operations and square roots, using, e.g., the modified Gram-Schmidt algorithm.
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1. RIEMANNIAN GEOMETRY

Polar decomposition. The retraction on the Stiefel manifold based on the polar decom-
position can be obtained by specializing (1.5) for the vector X + £

—1/2
Rx(€) = (X +&) (X +T(X +9))

= (X4 (XX +XTe+TX 4712
=X+ I +£9712,

where we used the fact that X'¢ + ¢TX = 0 since ¢ € T St(n, p). In general, to compute
the matrix square root we need to perform an eigenvalue decomposition. When p is small,
which is usually the case for the Stiefel manifold, the numerical cost of evaluating the polar
retraction is reasonable since it involves the eigenvalue decomposition of the small matrix
(I, + £7¢ )~1/2. The retraction based on the polar decomposition is actually a second-order
approximation of the Riemannian exponential, and it represents an orthogonal projection on
St(n, p). It gives the best approximation of any given matrix by an orthonormal matrix.

1.2.2 Line-search methods on manifolds

Line-search methods on manifolds are based on the update formula

Tr1 = Ry (temk),

where the search direction 7, is a tangent vector of 7}, M and the step length ¢, is a real
scalar.
The recipe for constructing a line-search method can be summarized as follows:

« choose a retraction R;
« select a search direction 7y;
« select a step length ¢.

Figure 1.5 illustrates the components of a line-search method on a manifold.

Figure 1.5 — Line search on a manifold.

In order to obtain global convergence results, we need to impose some restrictions on
Nk and tx. In particular, as xj, approaches a non-critical point, we would like to prevent the
directions 7 from becoming orthogonal to the gradient direction, because this would cause
the method to get stuck near that point.
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1.2. Line-search algorithms on manifolds

Definition 1.37 (Gradient-related sequence). Given a cost function f on a Riemannian man-
ifold M, we say that a sequence of tangent vectors {ny }, i € Ty, M, is gradient related if,
for any subsequence of points {xy }rci that converges to a non-critical point of f, the cor-
responding subsequence of tangent vectors {7 }rci is bounded and satisfies

lim sup(grad f(xg),nK) < O.
k—00 Leke
This is a nonorthogonality type of condition. If {7, } is gradient related, it follows that if a
subsequence {grad f(zx)} rex tends to a nonzero vector, the corresponding subsequence of
directions 7y, is bounded and does not tend to be orthogonal to grad f(zy). Roughly speak-
ing, this means that the angle between the search direction 7, and grad f(xj) does not get
too close to 90 degrees [Ber95, p. 35]. This condition is very similar to the uniform angle
condition of [BAC18, Lemma 2.10]. The latter allows to obtain algebraic convergence rates
for the Riemannian gradient descent with a backtracking line-search procedure; see [BAC18,
Theorem 2.11].
Figure 1.6 illustrates the concept of gradient-related sequence for vectors lying on a
two-dimensional tangent space. The cyan half-plane highlights the part of the tangent plane
where the relation (grad f(xx), nr) < 0 holds.

T, M
grad f (%)

(grad f(xg), k) <0

Figure 1.6 — Gradient-related vectors.

Definition 1.38 (Armijo point [AMS08, p. 62]). Given a cost function f on a Riemannian
manifold M with retraction R, a point x € M, a tangent vector n € T, M and scalars
a> 0,8, o€ (0,1), the Armijo point is

't =ty = pman,
where t4 = ™@ is the Armijo step size, and m is the smallest nonnegative integer such that
f(@) = f(Ren™) > —o(grad f(2), 1o

Remark 1.39. The last expression is a condition of sufficient decrease for the cost function.
Indeed, the left-hand side represents the decrease in f when moving along the direction of
nt while constrained to M.

We are now ready to describe the line-search method on manifolds.
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1. RIEMANNIAN GEOMETRY

1.2.2.1 The accelerated Riemannian line-search algorithm

Given a Riemannian manifold M, a smooth function f on M, a retraction R from T'M to
M, scalars & > 0 and 0 <c¢, B, 0 < 1, and an initial iterate g € M, the line-search algorithm
generates a sequence of iterates {z}} as follows. At each iteration k = 0, 1,2, .. ., it chooses
a search direction 7, in the tangent space T}, M such that the sequence {7} is gradient
related (Definition 1.37). Then the new point x4 is chosen such that

flzr) = flzgp) 2 ¢ (f(ﬂfk) — f(Ra, (t?nk))) : (1.6)

where t? is the Armijo step size (Definition 1.38) for the given &, 3, o, 7.

Condition (1.6) leaves a lot of freedom in taking advantage of problem-related informa-
tion that may produce a more efficient algorithm. Some possibilities to choose x4 in (1.6)
are the following:

e k11 = Ry, (tn), where t} is the Armijo point as described above;

« Tpy1 = Ry, (tiny), with ¢} given by an exact line search t}, = argmin f(R,, (tn)), if
t

this exact line search can be carried out efficiently;
o Tpt1 = Ry, (&), with &, defined by

&k = argmin f(Ry, (€)),
£€SK
where Sy, = span{ny, R, (zx—1)}. This is a minimization over a two-dimensional
subspace S}, of T, M. The subspace S, contains the Armijo point associated with 7,
since 7y, is in Sg. This is a viable choice if the minimization over the subspace Sy can
be carried out efficiently.

1.2.3 Convergence analysis

In this section, we discuss convergence concepts and limit points on manifolds, and then we
give a convergence result for the line-search algorithm that we have just outlined above.

1.2.3.1 Convergence on manifolds

Definition 1.40 (Convergent sequence and limit point). An infinite sequence {xj }x—0,1,... of
points of a manifold M is convergent if there exists a chart (U, 1) of M, a point z, of U, and
a K > 0 such that xy, is in U/ for all £ > K and such that the sequence {¢(zy) }r—x K+1,...
converges to ¢ (x, ). The point ¢~ (limy_, 0 1(2)) is called the limit point of the convergent

sequence { }r=0.1,..-

Remark 1.41. The points of the sequence {z}};—0,1,.. can be outside U, but after a certain
k = K they all fall inside U.

Remark 1.42. Every convergent sequence of a Hausdorff manifold (see Definition 1.3) has
one and only one limit point. For non-Hausdorff topologies, multiple distinct limit points are
possible.

Equivalently, a sequence on a manifold is convergent if there exists a point z, such that
every neighborhood of x, contains all but finitely many points of the sequence. Figure 1.7
illustrates the concept of convergent sequence and limit point on a manifold.
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b

o
{(xr) b=k K 41....

{zr k=01,

Figure 1.7 — Convergent sequence and limit point on a manifold.

1.2.3.2 Convergence of line-search methods

Theorem 1.43. Let {x} be an infinite sequence of iterates generated by the line-search algo-
rithm of Section 1.2.2.1. Let f be a continuously differentiable scalar field, bounded below. Then
every accumulation point of {x}} is a critical point of the cost function f.

Remark 1.44. We are implicitly saying that a sequence can have more than one accumula-
tion point, for example, from a sequence {x} we may extract two subsequences such that
they have two distinct accumulation points.

The proof of Theorem 1.43 can be done by contradiction, but it still remains quite techni-
cal, so we refer the interested reader to [AMS08, p. 65]. It should be pointed out that Theorem
1.43 only guarantees the convergence to critical points, but it does not tell us anything about
their nature, i.e., it does not specify whether the critical points are local minimizers, local
maximizers or saddle points. However, it is observed in practice that unless the initial point
xo is designed in a “pathological way”, line-search algorithms constructed according to the
pattern discussed in Section 1.2.2.1 do produce sequences that converge to local minima of the
cost function. These practical observations are supported by the stability analysis of critical
points, which we do not discuss here.

1.2.4 Speed of convergence

How fast does the sequence {x} converge to x,? When M is a Riemannian manifold, it is
possible to define a notion of linear convergence by using the Riemannian distance.

Definition 1.45 (Linear convergence). Let M be a Riemannian manifold and let dist denote
the Riemannian distance on M (see Definition 1.26). A sequence {xj }r=0,1,.. converges lin-
early to a point z, € M if there exists a constant ¢ € (0, 1) and an integer & > 0 such that,
for all £ > K, it holds that

dist(xg1, xx) < cdist(xg, x4). (1.7)

The limit q
ist
lim sup S (@1, 2e)
k00 dist(xg, )

is called the linear convergence factor of the sequence. An iterative algorithm is said to con-
verge locally linearly to a point x, if there exists a neighborhood U of z, and a constant
¢ € (0,1) such that, for every initial point 2y € U, the sequence {x}} generated by the
algorithm satisfies (1.7).
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1. RIEMANNIAN GEOMETRY

Like other definitions that appeared in this chapter, this definition is also independent of

the chart used.
We can also say that a sequence {xj }x—0,1,... on a Riemannian manifold converges lin-
early to . with constant c if and only if

IR (1) — Ry (o)l < el Ry (xn) — By (),

for all k sufficiently large, where R is any retraction on M and || - || is the norm on T, M
induced by the Riemannian metric.

Let £, denote the accuracy for the gradient to satisfy the necessary optimality condition.
Under the assumptions that f is bounded below on M and that f o R, has Lipschitz con-
tinuous gradient with constant L,, [BAC18] showed that the Riemannian gradient descent
with constant step size 1/L, or with backtracking Armijo line search produces points with
Riemannian gradient smaller than €, in O(1/ 63) iterations.

26



CHAPTER 2

Shooting methods on the Stiefel
manifold

The object of study in this chapter is the compact Stiefel manifold, i.e.,
St(n,p) = {X ERVP . XTX = I,,} .

As we have shown in Section 1.1.6.1, St(n, p) is an embedded submanifold of R"*P. In this
chapter, we are concerned with computing the Riemannian distance (Definition 1.26) between
two points on the Stiefel manifold. As we shall see, the distance between two points on a
manifold is related to the concept of minimizing geodesic. Therefore, we start off this chapter
by introducing the notion of geodesics.

2.1 Geodesics, exponential mapping and logarithm mapping

Geodesics are defined as curves with zero “acceleration”, i.e., they solve the second-order
ordinary differential equation (ODE)

D2
a2 y(t) =0,

where (%22 denotes the acceleration vector field. Geodesics allow us to introduce the Rieman-
nian exponential Exp,: T, M — M that maps a tangent vector £ = 4(0) € T, M to the
geodesic endpoint v(1) = y: Exp, (§) = y. The Riemannian exponential is a local diffeomor-
phism (see Definition 1.6), i.e., it is locally invertible and its inverse is called the Riemannian
logarithm of y at z: Log,(y) = &.

Thanks to a result of Riemannian geometry known as Gauss’s lemma, the exponential
map can be locally understood as a radial isometry [dC92, p. 69]. This means that one can
measure the distance between two sufficiently close points on the manifold by computing
the norm of the corresponding vector in the tangent space.

The diffeomorphicity of the exponential mapping is closely linked to the behavior of
geodesics. While in Euclidean geometry straight lines are also distance-minimizing curves,
in Riemannian geometry a geodesic y: [0, ¢] — M emanating from a point x is distance-min-
imizing only for small ¢ > 0. In general, there exists a point y(¢.), called cut point, where the
distance-minimizing property first breaks down [Sak96, p. 83]. The union of the cut points of
all geodesics emanating from x is called cut locus of x; it is the boundary of the (star-shaped)
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2. SHOOTING METHODS ON THE STIEFEL MANIFOLD

domain in which Exp,: T, M — M is a diffeomorphism. The cut locus is closely linked not
only to local properties such as the curvature of M, but also to global topological properties
[Sak9e, ATV13].

The injectivity radius at a point = of a Riemannian manifold M is the largest radius for
which the exponential map Exp,, is a diffeomorphism from the tangent space to the manifold;
it is the least distance from z to the cut locus of z. The global injectivity radius of a manifold
is the infimum of all the injectivity radii at all points of the manifold. Given two points z
and z on a manifold M, if d(z,y) < inj(M), then there exists a unique length-minimizing
geodesic from x to y. For the Stiefel manifold, the injectivity radius is lower bounded by
0.89 7 [Ren13, Eq. (5.13)].

Given two points on the Stiefel manifold, our goal is to compute the length of the mini-
mizing geodesic connecting them. For some manifolds, there are explicit formulas available
for computing the distance, as in the case of the Grassmann manifold Grass(n, p). For in-
stance, let X and ) belong to Grass(n, p), then the distance between X’ and ) is

dist(X,Y) = /0 + - - - + 62,

where 0;,7 = 1, ..., p, are the principal angles between A" and ) (see [Won67, Thm. 8] and
[AMSO04, p. 211]). For the Stiefel manifold there is no such closed-form solution. In general,
the problem of finding the distance given two points on a Riemannian manifold is related to
the Riemannian logarithm function that we defined above. The problem of computing the
Riemannian logarithm on the Stiefel manifold has already been tackled by several authors,
who proposed some numerical algorithms. Rentmeesters [Ren13] and Zimmermann [Zim17,
ZD19] proposed a similar algorithm which is only locally convergent and depends upon the
definition of the matrix logarithm function.

Another method for finding geodesics is the leapfrog algorithm introduced by L. Noakes
[Noa98]. This method has global convergence properties, but it slows down when the so-
lution is approached [KNO08, p. 2796]. This motivates the use of shooting methods, which
have local quadratic convergence, when close to the solution. Indeed, shooting methods for
finding the distance on the Stiefel manifold are the topic of this chapter. Moreover, Noakes
realized that his leapfrog algorithm was in some way imitating the Gauss—Seidel method
[Noa9s, p. 39]. We will explore this connection later in Chapter 3.

2.1.1 Geodesics on the Stiefel manifold

A Riemannian metric has to be specified in order to turn St(n, p) into a Riemannian manifold,
and in general different choices are possible. In this thesis, we consider the non-Euclidean
canonical metric inherited by St(n, p) from its definition as a quotient space of the orthogonal
group [EAS98, Eq. (2.39)]. GivenY € St(n,p)and{ € Ty St(n, p), the canonical metric reads

9e(€.€) = trace(€7(1 - 3YYT)¢). (2.1)

Remark 2.1. Another popular choice, the embedded metric g.(¢,£) = trace(£7¢), leads to
very similar derivations, but we do not use it in this thesis.

By endowing the Stiefel manifold with the canonical metric, one can get the following
second-order ordinary differential equation for the geodesic [EAS98, Eq. (2.41)]

V+YYTY +Y (YY) +YTY) =0,
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2.2. Problem statement

where Y = Y (). An explicit formula for a geodesic that realizes a tangent vector { with
base point Yy has been provided by Ross Lippert [EAS98, Eq. (2.42)]

Y(t):Qexp<l£ 51’{]t> [O( I ] 2.2)

n—p)Xp

with @ = [Y) Yo ], Yo. being any matrix whose columns span YV = (span(Yp))t. We
recall from Section 1.1.9 that tangent vectors to the Stiefel manifold may be expressed in the
form

E=Yo2+ Yy K,

where {2 and K are the components of the tangent vector £ in the subspaces spanned by
the columns of Yy and Yy, respectively. In particular, 2 € Syew(p) and K € R(*P)xP,
Sskew (D) being the vector space of p-by-p skew-symmetric matrices.

Remark 2.2. The matrix Yj; does not need to be orthonormal. Indeed, its only requirement
is that it has to span )3~ = (span(Yp))+, the orthogonal subspace to Jy = span(Yp). See
Appendix A.1.

2.2 Problem statement

In this section, we state the problem more formally. Given two points Yp, Y7 on St(n,p)
that are sufficiently close to each other, finding the distance between them is equivalent
to finding the tangent vector £* € Ty, St(n, p) with the shortest possible length such that
[Lee18, Bou20]

Expy, (%) = Y1,

where Expy, denotes the Riemannian exponential mapping at Yp. The solution to this prob-
lem is equivalent to the Riemannian logarithm of Y] with base point Yj

&= Logy, (Y1).

Figure 2.1 provides an artistic illustration of the problem statement.

St(n,p)

Figure 2.1 — Illustration of the problem statement.

In terms of the differential equation governing the geodesic, the problem statement may
be written as follows:
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2. SHOOTING METHODS ON THE STIEFEL MANIFOLD

Find £* = Y(0) € Ty, St(n, p) such that the second-order ODE

" Y(0) = Yo,

V=-YYY -Y((YV)2+Y"Y), withboundary conditions {Y(l) v (2.3)
=11,

is satisfied. This kind of problem is known as a boundary value problem (BVP).

2.3 Single shooting method

The second-order ODE in problem (2.3) can be recast into a system of first-order ODEs. Let
Z1(t) =Y (t), Z2(t) = Y (t) be the geodesic and its derivative, respectively, and let

Z1(t)
Z(t) = .
(®) (Zz(t)>
We get the initial value problem (we omit the dependence on t)

2(t) = 4\ _ Z2
" \Zy)  \—ZZiZ - 2:((Z] Z2)? + 23 Z5) )

with initial conditions Z(0) = <§;E8§> = (?) .

(2.4)

Here, £ is the unknown such that Z; (1) = Y3. In practice, since we already have the explicit
formula (2.2) for the geodesic Z;(t), we do not need to solve the initial value problem (2.4).
The explicit formula for Zs is just the derivative of Z; with respect to ¢, namely,

an-o(fp )2

Now let us define the function
F(f) = VeC(Zl(17 5) - Y1)7 (25)

where the dependence on ¢ is explicit. Roughly speaking, this represents the mismatch be-
tween Z1(1), i.e., the geodesic at t = 1, and the boundary condition Y;. We want to find £*
such that

F(E) =0,

which can be solved by Newton’s method. To apply Newton’s method we need the Jacobian
matrix of F'(§) with respect to &, denoted Jf;. This actually reduces to J 51, the Jacobian
matrix of Z; with respect to &, since Y] appearing in F'(£) is not a function of &.

A pseudocode for the single shooting method is given in Algorithm 1. As stopping cri-
terion, the norm of F' is often used; in Section 2.3.2, we consider the 2-norm of the update
66 In the following sections, we will explain in more detail the algorithmic components
of the single shooting method applied to the Stiefel manifold.
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2.3. Single shooting method

Algorithm 1: Single Shooting on the Stiefel manifold
Given Yy, Y1;
Result: £* such that Expy, (£*) = Y1
Set ¢k = ¢(0);
while a stopping criterion is met do

o)

Compute Jacobian matrix 7.5
Compute F(*¥) = vec(ZYg) -1);
Solve F(*) + ngk) 5§(k) — 0 for 5€(k);
Update £ « ¢(k) 1 g¢(k),

end

2.3.1 Parametrization of the tangent space

The tangent vector £ belongs to R"*P, but by inspecting its structure,
=Y+ Yy K,

one can observe that it only depends on np— %(p—i— 1) parameters (the dimension of the Stiefel
manifold). Therefore we can express £ as a function of these np — %(p + 1) parameters. By

2.1
standard linear algebra arguments, it is possible to find a matrix B € RP *2P(P~1) whose
columns form a basis of Sgiew. This allows us to write the vectorization of {2 as

vec({2) = Bs,

1
for some s € RzP(P~1) being a column vector representing (2 in the basis B of Sgyew. The
vectorization of the matrix K is simply k& = vec(K) € R("~P)P, Hence we can collect the
coeflicients of £ in a single vector

= (;) c R 3p(p+1)

Let us call
N —-KT
A(:U) = [K On_};|

the matrix in the argument of the exponential appearing in the geodesic (2.2). Then (2.2) can
be rewritten as

(n—p)xp

Zi(1,2) = Qexp(A(z)) lO Iy ] .

Equation (2.5) becomes
F(z) = vec(Z1(1,z) — Y1), (2.6)

where we made clear the dependence on x. Newton’s method consists in solving successive
linearizations of this equation, i.e.,

F(zx+dzx)=Zi(x 4+ 0x) — Y1 =0, (2.7)
where we have omitted the vec operator for readability.
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Here, the term Z; (x4 dx) is the expression for the geodesic when we perturb the tangent
vector. From Z; (z + dx) we can work out the Jacobian of Z; with respect to z, denoted J7 .
Applying matrix perturbation theory we obtain

zl<x+5a:>—zl<x>+czDexp(A(w»[DA(:c)wxn[ bl bosel), @)

O(n—p) Xp

where the notation D exp(A(z))[DA(z)[0z]] denotes the Fréchet derivative of the matrix
exponential at A(z) in the direction of DA(z)[dx]. Clearly, a chain rule is involved in this
term, so we first need to find DA(z)[0x]. The perturbation of A(z) yields

Az + dz) = A(x) + DA(x)[0x] + o(||dz]]).

Let blkvec be the operator that performs a block-wise vectorization of A(x), namely,

vec(£2) Bs
B 2 —-K'|\ | vec(K _ k
blkvec(A(x)) = blkvec ( lK Onp‘| ) T |vee(—=K") | T | —Hp—ppk

VeC(ON—p) O(nfp)2><1

B Op2 xp(n—p)
_ Op(nfp) x1p(p—1) Ip(n—p) <s>
Op(n—p)x ip(p—1) —Ilnpp k|’

Otmp2xp-1) On-p?xpin-p)
where I1,,_,, ,, is the perfect shuffle matrix defined by
vec(X") = II,,_,, vec(X).

From the last equation we can identify the Jacobian matrix of A(x) with respect to = as

B Op2xp(n—p)
Op(nfp) x 1p(p—1) Ip(n—p)

Ty =
Al=) Op(n—p)X%p(p—l) —In—pp

Otmpyxipp-1) Om—p)xp(n—p)

Hence vec(DA(x)[dz]) = J () 02 We still need a map that links the block-wise vectoriza-
tion blkdiag to the ordinary column-stacking vectorization vec. Since this mapping is linear,
it can be represented by a matrix T' € R xn?

vec(DA(z)[0z]) = T - blkvec(DA(z)[dz]).
The perturbation of the matrix exponential yields
exp(A + 0A) = exp(A) + Dexp(A)[0A] + o(|[6A]]),

where D exp(A)[d A] is the Fréchet derivative of the matrix exponential at A in the direction
of § A. Vectorizing D exp(A)[0 A] we get
vec(D exp(A)[0A]) = JA4 (a) vec(dA),

exp

32



2.3. Single shooting method

with J4 exp(A) being the Jacobian of the matrix exponential. A closed-form expression for
JA (4) 1s given in [Hig08, NH95],

exp

Jonn = (exp(AT/2) @ exp(4/2)) sinch(3[AT @ (—A)]),

where @ denotes the Kronecker sum: A" @ (—A) = AT ® I, — I, ® A, and sinch is the
hyperbolic sinc,
sinch(y) = sinh(y)/y.

Vectorizing the second term on the right-hand side of (2.8) and wrapping things up, we get

vec (QDeXp(A(x))[DA(x)[éac]] [’g]) = ([I, O] ® Q) vec(Dexp(A(w))[DA(ac)[(S:UH)

(1, O] ® Q) J4 e (4) vec(DA(z)[dz])
([1, O] ® Q) J2 exp (4) T blkvec(DA(z)[dz])
= ([, Ol®Q) J4 exp(A) T SA() 02

From the last equation we can identify the Jacobian matrix of Z; with respect to z as

J§1 = ([I O ] ® Q) exp(A) Tjg(w) (2'9)

This means that the linearization of (2.7) yields

Z1(x) + Jz, 0z — Y1 =0,

i.e., the Newton update
J%l dx = —F(x).

This is an overdetermined system to be solved for dz. Indeed, J7 : R~ P tl) R", and

since for p > 1 onehasnp > np—3; p(p+1) there are always more equations than unknowns.
The system is overconstrained, but Newton’s equation has a solution since F'(z) = 0 is
assumed to have a solution.

2.3.2 The initial guess

It is very well known that Newton’s method has only local convergence properties, and in
general a sufficiently good initial guess is needed in order for the method to converge. In this
section, we describe the way we decided to initialize Newton’s method. We need to choose
an initial guess £(9) sufficiently close to £*. To this aim, we use a first-order approximation
of the matrix exponential exp(A) ~ I + A in (2.6) and solve for £. This yields the first-order
approximation to the solution £* as

E=Y1 - Yo.

Then we project it onto Ty, St(n, p). We recall from Section 1.1.11 that the projection of a
vector £ onto the tangent space to the Stiefel manifold at Y is given by

Py ¢ = Yskew(Y'¢) + (I - YYT)E.
The projection of € onto the tangent space at Yj yields

Pg =Py, (€) = Yoskew(Y( (Y1 — Yo)) + (In — Yo¥() (Y1 — Yo) = V1 — Yosym(Yg'Y1).
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2. SHOOTING METHODS ON THE STIEFEL MANIFOLD

To get £(9), we rescale this vector so that its norm is equal to the norm of &,

[
¢O = P;.
IPel ¢

This procedure is illustrated in Figure 2.2.

TYO St(nvp) YVO

s

St(n, p)

Figure 2.2 — Initial guess for the single shooting method.

2.3.3 A smaller formulation

It can be shown that the geodesic problem on St(n, p) is actually equivalent to a geodesic
problem on St(2p, p) (see [EAS98, Ren13]). In the formulation above, the complexity of com-
puting the matrix exponential is O(n?), but if p < n then this smaller formulation can be
used and its computational cost is only O(p?). In practice, it makes sense to consider the for-
mulation on St(2p, p) only if p < 7. In this section, we show how this “baby” formulation
can be obtained.

Consider the same problem setting as in the previous sections, and let the QR factorization
of K be
R

O(n—2p)xp

K=[Q @LJ[ ]:@R,

where [Q Q] € R("=P)x(n=P) js the orthogonal factor of K, with Q € R("~P)*P and

Q. € R("=P)*(n=2p) orthonormal matrices, and R € RP*? is upper triangular.
In Appendix A.2 we show that

_pT
-l [2 2[5 o

Here, our aim is to find {2 € RP*P and R € RP*P such that (2.10) holds true. Then, we can
reconstruct the tangent vector as £ = Y2 + Yy QR.
Let Y7 be decomposed in the basis [Yy Y, @], and let M and N be the components of
Y7 in this basis
Y1 =YoM + Yo  QN. (2.11)

e

Left-multiplication of (2.11) by Y] and Y, yields, respectively Y Y, = M and Y, Y7 =
QN. So one possible way to get N out of Y], Y7 is to compute its QR factorization

[Q,N] = qr(Yy, Y1). (2.13)

This implies that
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2.3. Single shooting method

The remarkable fact is that (2.12) is a geodesic problem on St(2p, p) with base point

- |1
YO - [Op] )
with £ = Y32 + Yy R the tangent vector to St(2p, p) at Yy, and arrival point
- M
7 = [ N] |

Indeed, this problem setting yields the geodesic problem

Lo 0 —r\[1
Yi = [Yy Yyu] exp P
- wes([7 o ]) 8]

Iap

which is exactly (2.12).

This problem can be solved via the single shooting method described above to find 5 (
}A/O_Q(k) + }A/O L R™) at a certain iteration k (a stopping criterion is needed here). The compo-
nents are given by 2*) = }A’OTfA(k), Rk — }A/OTJ_E(]“). Then the tangent vector £) of the
original problem on St(n, p) can be recovered by

k) _

¢W = 0" 1+ v, QR,

where Q € R("P)XP is the orthonormal factor of YOTJ_Yl as in (2.13).

2.3.4 Numerical example

As a concrete example to illustrate the single shooting algorithm, let us consider the Stiefel
manifold St(15,4). We fix one point X = [I; O11x4]", while the other point Y is placed at
a distance L* = 0.75 7 from X. In this way, the points X and Y are not too far from each
other; indeed, they fall in the injectivity radius of St(n, p), which is lower bounded by 0.89 7
[Ren13, Eq. (5.13)]. By definition of the injectivity radius, this guarantees the existence and
uniqueness of the minimizing geodesic between X and Y. By using single shooting, we want
to recover this distance.

To monitor the convergence behavior of single shooting, we consider the norm of the
update |6 () ||, as it appears in Algorithm 1, and stop the algorithm when 10~ is reached.
Figure 2.3 reports on the convergence behavior. The quadratic convergence of single shooting
is clearly visible, and the threshold value of 107! is reached at the 5th iteration.

2.3.5 Some drawbacks

The local convergence behavior of Newton’s method behind single shooting is such that the
method will in general diverge unless the initial iterate is sufficiently close to a solution. Some
simple analysis for the Jacobian of the matrix exponential involved in the single shooting
method is provided in Appendix B.2.1. Moreover, unstable systems' remain difficult to treat,
and Newton’s method might possibly show bad convergence due to strong nonlinearity of
the problem. These limitations make the single shooting method not very useful in practice.

'Unstable system or ill-conditioned BVPs: small perturbations of the data (i.e., the boundary conditions)
cause big perturbations of the solution.
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2. SHOOTING METHODS ON THE STIEFEL MANIFOLD

10° —— |5£@|5
Quadratic
1075 ¢
10710t
10715 |
0 1 2 3 4 5

iteration £ of single shooting

Figure 2.3 — Convergence of the update norm [|6¢(*) ||, for single shooting on St(15,4).

2.4 Multiple shooting method

A way to improve over single shooting is to consider a partition of the original interval
into many smaller subintervals, which leads us to the multiple shooting method. This slicing
permits to reduce the nonlinearity of the problem and improve numerical stability. As in
single shooting, there is also Newton’s method behind multiple shooting. The difference
is that many initial value problems are solved separately on all multiple shooting intervals.
The resulting system to be solved is larger, but the banded structure of the Jacobian can be
exploited. A thorough description of the multiple shooting method can be found in [SB91,
p- 516]. Here, we will specialize the method in the context of the geodesic problem on the
Stiefel manifold St(n, p).

Let X, Y be two points on a Stiefel manifold St(n,p). Consider a piecewise (or broken)
geodesic? joining X to Y, having m — 1 geodesic segments. Let X %k) denote the point on the

Stiefel manifold on the kth subinterval, and Zék) the tangent vector to St(n, p) at E%k). Let
27 be the variable that collects the points and the tangent vectors for all k. The compatibility
conditions of the geodesic and its first derivative, plus the two boundary conditions denoted
by r1 and r9, can be encoded into a system of nonlinear equations to be solved for X

_ Zfl) _29) }
Zél) B 252)
ng) B Ef’)
Zéz) B 253)

F(%) = : = 0. (2.14)

®For more details about the concept of broken geodesic, see Section 3.1.1 and Section 4.1.
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2.4. Multiple shooting method

Here, as in (2.4), Zyg) denotes the geodesic, whereas Zék) is the derivative of the geodesic

with respect to ¢. All the quantities ZZ-(k) and Ei(k), k=1,...,m—1land? = 1,2, are to be
understood as vectorized quantities.

Figure 2.4 illustrates the variables (points and tangent vectors) involved in the multiple
shooting on the Stiefel manifold.

1
S s

S

s Ziw

2
i \ (1)

\2(2) Z2 (3)
\\ 2 21
i s
Y

Z;Q) (]

St(n, p)
Figure 2.4 — Multiple shooting on the Stiefel manifold.

Now consider the perturbed system
F(Z+6%)=0, with 0¥=[ox0 5@ ... 4x0m }T.
A linearization of the previous equation gives
F(X) 4 Jg 65 =0, (2.15)
where Jx € R2mPX2mnp jg 3 block Jacobian matrix. Each block J#,, € R™*"P is given by
i =G®,  Jfpm = —Lmp,  k=1....m—1,

JFEm,l =C, JFEmm =D, J#s = Oanp  otherwise.

Every G¥) is itself a Jacobian matrix for each subinterval defined as

7" 97"
@) Q) Jor Jx2
) 3o 5y A 7
G\ = = , (2.16)
8Z(k) (9Z(k) le JZQ
Q) pan) Z2 722
) a5y

where we omitted the superscript (*) in the last matrix for ease of notation. We refer the
reader to Appendix C for the explicit expressions of the Jacobian matrices appearing in (2.16).
The Jacobian matrices associated to the boundary conditions are given by

ory ory ory Ory
o oxtV ox{V | Iy Oy Do oxy™ oxi™ | [Opp Onpp
- Ora Org - Onp np ’ - Org Ora - Inp Onp ’

axM  axiV axi™  axim
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2. SHOOTING METHODS ON THE STIEFEL MANIFOLD

2.4.1 Condensing

The linear system (2.15) can be solved efficiently thanks to the structure of Ji, which allows
any oX k) k= 2,...,m, to be expressed as a function of ox M [SB91, p. 519]. Eventually,
only one linear system of size 2np x 2np has to be solved to find § £

M-63WM = —,
where
1 m—1 m—1
M=C+D [[ G®, w=F"™4+D. [T ¢“|- F.
k=m—1 k=1 \¢
The other §5(¥) are obtained as
xR = pl=1) L glk=1) . sxk=1)  p =9 . m.

The complexity of multiple shooting with this condensing strategy is O(mn>p?).

2.4.2 Numerical example

Consider again the Stiefel manifold St(15,4). Let X = [I; O11x4]", and let us place the
other point Y at a distance L* = 0.89 7 from X. By using multiple shooting, we want to
recover this distance. As number of points we choose m = 7, i.e., the path between X and
Y is cut into 6 equidistant subintervals.

To monitor the convergence behavior, two quantities have been considered:

L — L*

, where Ly, is the length of the piecewise geodesic at iteration k.

[F(Z%)

2, where F'(X)},) is the nonlinear function defined by Equation 2.14.

Figure 2.5 reports on the convergence behavior. The quadratic convergence of multiple
shooting is clearly visible, and the tolerance of 1071° is reached at the 7th iteration.

2.4.3 Open questions

As we have already mentioned in Section 2.3.5, it is very difficult to say something on the
global convergence of Newton’s method. For local convergence, we have the result of the
Newton—Kantorovich theorem. In practical applications, a sufficient number of iterations in
the leapfrog algorithm (to be discussed in the next chapter) produces an iterate X*) which
satisfies the conditions of the Newton-Kantorovich theorem. One can observe that F(X(*))
tends to zero as leapfrog progresses. For this reason, leapfrog can be used to initialize multiple
shooting. We will see some concrete examples of this in Section 4.5.
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2.4. Multiple shooting method

10° ‘ :
—A—|Ly, — L¥|
——[[F(Zp)]]2
- — — —Quadratic
10*0 L \\ B
N\
\
\
\
\
\
_ \
10710} \ A
\
\
10715 C I 1 |
0 2 4 6 8

iteration k of multiple shooting

Figure 2.5 — Convergence of multiple shooting on St(15, 4).

39






CHAPTER 3

The leapfrog algorithm as nonlinear
Gauss-Seidel

In the previous chapter, we have introduced some numerical algorithms to solve the geodesic
problem on the Stiefel manifold. In particular, we focused on shooting methods, and we
explored how they specialize to the Stiefel manifold, with corresponding advantages and
disadvantages.

Another method for finding geodesics is the leapfrog algorithm introduced by L. Noakes
[Noa98]. This method has global convergence properties, yet convergence of leapfrog slows
down when the solution is approached [KNO8, p. 2796]. Noakes also realized that his algo-
rithm was in some way imitating the Gauss—Seidel method [Noa98, p. 39]. The Gauss—Seidel
method is a well-known iterative method for solving a linear system of equations, and it
can be readily extended to nonlinear systems of equations [ORO00, p. 219]. The link between
leapfrog and nonlinear Gauss—Seidel was not further investigated, since there is no trace of
this idea being developed in the other related papers [KN97, KN98a, KN98b, KN08].

In this chapter, we will prove convergence of leapfrog as a nonlinear block Gauss—Seidel
method. Even though our focus will be on St(n, p), most of our discussion may be generalized
to other embedded submanifolds.

3.1 Leapfrog algorithm

The main idea behind the leapfrog algorithm of Noakes [Noa98] is to exploit the success
of single shooting that we presented in Chapter 2 to construct a connecting geodesic when
X and Y are two close points on M. However, when X and Y are far apart, it is well
known that single shooting will have difficulty finding the connecting geodesic. The leapfrog
algorithm cuts this global problem into several local problems, where intermediate points
X; € M are introduced between X and Y, for which the endpoint geodesic problem (2.4)
can be solved by single shooting. This is similar to multiple shooting except that there is no
explicit continuity equation and the geodesics are computed between X;_; and X1, hence
they “skip” the middle point X;. In multiple shooting, the continuity is enforced explicitly,
whereas in leapfrog it follows automatically from the minimization of the length functional
via a piecewise geodesic!. The algorithm then iteratively updates the piecewise geodesic to
obtain a globally smooth geodesic between X and Y. This idea is not new and goes back as
early as 1963 by Milnor [Mil63, IT1.§16].

""This and other aspects are further discussed in Chapter 4.
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3. THE LEAPFROG ALGORITHM AS NONLINEAR GAUSS—SEIDEL

3.1.1 Formal description of the algorithm

In this section, we describe the leapfrog algorithm by following the presentation in [Noa98].
Let M be a C*° path-connected Riemannian manifold. Consider a piecewise (or broken)
geodesic wx joining X to X,,—1, having m — 1 geodesic segments. Assuming X; and
X;41 are sufficiently close to each other, wx is uniquely identified by the m-tuple X =
(X0, X1,...,X;m—1) € M™, where X, are the junctions of the geodesic segments. For
i =1,...,m — 2, each X; is mapped onto the minimizing geodesic joining X;_; and X;;.
This achieves the largest possible decrease in length while keeping other variables fixed.
Though there are several choices to do this, leapfrog maps X; onto the midpoint of the
geodesic joining X; 1 and X;;;. By iterating this procedure, the algorithm generates a
sequence 2 = {wym : [0,1] > M: k=0,1,...} of broken geodesics whose lengths are
decreasing. Figure 3.1 illustrates one iteration of the leapfrog algorithm.

xM
PN ---0
.~ .
P ’ - __\ Y S, »
- 1; ~ e ."(.JT PrEd X 0 s
) ( - (0) )
<X Xy N X" DEREERN s x(Y Xy N
° ® ° ° ° °
X(J Xm—l XU Xm,—l X(] Xm,—l
1 (2) 3)
(1 . , 1 1
x® x®  x® xH x®
.---0l ---0l KJ e ‘e
’ N AY ” h \\ ’ \\
. N X
- - N \ --- N \ ’ \
’ " hE WU . T el . K
’ Phd N 1 - P ~ 1 ’ \
- 0 - ~(0)
. DN B Xy N / \
° ° ° ° ° °
X() Xm—l Xl) Xm—l X(l Xm—l

Figure 3.1 — Illustration of one full iteration of the leapfrog scheme for some non-Euclidean
metric (the lengths for the Euclidean metric clearly increase during iteration).

The leapfrog algorithm. Let M: M x M — M denote the midpoint map defined by
M(X,Y) = Expy (} Logx (¥)),

where we have silently assumed that d(X,Y") < inj(M) so that the Riemannian logarithm
is well defined (see Section 2.1). One complete outer iteration (indexed by £k = 1,2,...) of

leapfrog comprises m — 2 inner iterations indexed by ¢ = 1, ..., m — 2 that compute
k k k-1
X =amx ™, x5). (3.1)
In other words, X Z»(k_l) is replaced by the midpoint X ,L.(k) of the minimizing geodesic joining
XZ.(f)l and X Z.(J’:U. This process is repeated until all points X 1(k_1), c Xé,lf__gl ) have been

updated in order. See Figure 3.1 for one such iteration of the leapfrog algorithm. The iteration
is started with X (©) = (X(()O), X{O), Xéo) ey X7(7?11)’ and repeated until a stopping criterion
(k)

is satisfied. Since the endpoints do not change, we denote X, = X(()k) and X,,, 1 = X7

for all k.
It is clear that leapfrog implicitly generates a sequence

Q={wyw:[0,1]] > M: k=0,1,...}
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3.2. Convergence of leapfrog as nonlinear Gauss—Seidel

of broken geodesics wy(x) that are defined from X (k). In addition, the length of wy ) is
non-increasing in k since at each step two neighboring geodesics get replaced by one global
geodesic connecting their endpoints.

3.1.2 Known results

Let ) be the set of all tuples X = (Xg, X1,...,X;m—1) € M satistying d(X;_1, X;) < 0
foralli =1,2,...,m — 2. In [Noa98, §2], J is related to the notion of Lebesgue number of
an open cover. Here, we can assume that § is equal to % inj (M), where inj is the injectivity
radius of the manifold (see Section 2.1). Let F: JJ — ) represent one full leapfrog iteration
and let X* be the limit of any convergent subsequence of S = {F*(X(©): k > 1} with
X(©) ¢ Y. By compactness, [Noa98] shows that at least one convergent subsequence of S
exists and that the limit of this subsequence are points that lie on a global geodesic connecting
the endpoints Xy and X,,,_1. The following result is stated in [KN08, Theorem 5.2].

Theorem 3.1. S has a unique accumulation point.

The theorem guarantees convergence of the iterates X (¥) = F (X (k=1)) with X(©) e Y.
From [Noa98, Lemma 3.2] we also know that leapfrog will converge to a uniformly distributed
m-tuple X* = (Xo, X{ ..., X5, o, Xpm_1), le, d(X], X7, ) are all equal, for i = 0, ...,
m — 2. In other words, at convergence, the geodesic segments connecting the junction points
will all have the same length. This aspect is further investigated in Section 4.3.

An apparent drawback in the current theory is that it lacks a classical convergence proof
as a fixed-point iteration method, although leapfrog can be easily recognized as such. In
the next section, we will provide the details of how to analyze leapfrog as a nonlinear block

Gauss—Seidel method.

3.2 Convergence of leapfrog as nonlinear Gauss—Seidel

Let M = St(n, p) with the Riemannian distance function d. The starting point is to realize
that leapfrog solves the optimization problem

m—1
min F(Xi,...,Xm_2) with F(Xi,..., Xm_2)= d(Xi_1, X,),
X1, ; Xm—2€St(n,p) ( ! m 2) ( ! m 2) ; ( 1 Z)

by cyclically minimizing over each variable X; for ¢ = 1,2,...,m — 2. Specifically, at the

)

kth iteration, leapfrog updates X Z-(k_l by the minimizer of the problem

g UK, X
1 €5t(n,p

(3.2)
_ : 2 (v (k) 2 (k—1)
= Xl-gslégl,p) d*(X;27, Xi) +d° (X, X; ) + constant.

Since d is the Riemannian distance function, this problem coincides with the definition of

the Riemannian center of mass** between the two points Xz(f)l and Xl-(_lf_zl); see [Kar77,

The Riemannian center of mass was constructed in [GK73]. As H. Karcher points out in [Kar14], “Probably
in 1990 someone renamed it without justification into karcher mean and references to the older papers were
omitted by those using the new name. (...) I think it is fair to say that a substantial amount of damage was caused
by the renaming”. For this reason, in this thesis, we decided to stick to the original name.

*A numerical experiment involving the Riemannian center of mass on the Stiefel manifold is discussed in
Section 4.5.

43



3. THE LEAPFROG ALGORITHM AS NONLINEAR GAUSS—SEIDEL

Eq. (1.1)]. For the compact Stiefel manifold, a Riemannian center of mass always exists, but
it does not need to be unique [Ren13, p. 37]. However, a sufficient condition for uniqueness
is d(Xi(E)17 Xg:l)) < inj(St(n, p)), where inj is the injectivity radius (see Section 2.1). This
is true if all X; are close enough (we will make this more precise later). In that case, the

unique solution that solves (3.2) is the midpoint of the minimizing geodesic between X fk)l

and X i(j:l). Leapfrog now proceeds to update the X; in a Gauss—Seidel fashion where the
(k)

most recent X, is used to update X i(kfl). This kind of optimization scheme is known as
block coordinate descent method of Gauss—Seidel type [OR00].

3.2.1 Nonlinear block Gauss—Seidel method

Let us first consider the case of Gauss-Seidel in R™. Let the variable x € R" be partitioned
asx = (x1,22,...,%Tm), where x; € R% and ), ¢; = n, and group correspondingly the
components of F: D c R" — R into mappings Fi:R" — R%, i = 1,...,m. The
minimizers of the function F'(z) satisfy the first-order optimality condition VF(x) = 0. Let
us define G; = Vﬁi, it =1,...,m. If we interpret the linear Gauss-Seidel iteration in terms
of obtaining :El(k) as the solution of the ¢th equation of the system with the other m — 1 block
variables held fixed, then we may immediately consider the same prescription for nonlinear

equations [OR00, p. 219]. Then solving
k k k—1 —

gi(xg), ce :L‘,gi)l, v, xl(-H ), e zlk 1)):O (3.3)
for y and defining J;Z(k) = y describes a nonlinear block Gauss—Seidel process in which a com-
plete iteration requires the solution of m nonlinear systems of dimensions ¢;, 7 = 1,...,m;
see [ORO00, p. 225]. The convergence theory in [OR00] applies only to functions whose do-
main of definition is Euclidean space R". It cannot be applied to functions which are defined
on manifolds, such as the Riemannian distance d that is only defined on a subset of R",
namely, the embedded submanifold. For this reason, in the next section we will introduce a

smooth extension of the Riemannian distance function that can also be evaluated for points
that do not belong to the manifold.

3.2.2 Extended objective function

As we have seen above, leapfrog solves in an alternating way the problem

m—1
i F(X1,. o0 Xm2) = > d(X;_1, X;),
XI’.__’annjglgsﬂn’p) ( 1, s Am 2) ; ( i—1, )

where X and X,,,_; are the fixed endpoints. This objective function F' is only defined on
the manifold St(n, p). In this section, we will identify an extended objective function F' that
is defined on R™*? for which the standard nonlinear block Gauss-Seidel method produces
the same iterates as the leapfrog algorithm. The key result of this section is stated in Propo-
sition 3.7. This will allow us to analyze the convergence of leapfrog using standard results
for nonlinear Gauss—Seidel.

We claim the extended cost function can be chosen as

m—1
min F(Xl, e ,mez) = Z &Q(Xifl,Xi),

nxp
Xl:---7Xm72€R i=1
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3.2. Convergence of leapfrog as nonlinear Gauss—Seidel

with extended distance function

d?*(Pg X, PsY) + || X — P X||2 + ||Y — Ps, Y2
d(X,Y) = ifo,(X) > 0and o) (V) >0,  (3.4)

+00 otherwise,

where Pgt denotes the orthogonal projector onto the Stiefel manifold.

The condition ap(f( ) > 0is equivalent to the existence of a unique best approximation of
X in St(n, p). In other words, P X is well defined. Concretely, we can define the projector
Pgi: R"*P — St(n, p) by Psy(Z) = Z(Z" Z)~'/2, that is, the orthogonal factor of the polar
decomposition of Z (see Section 1.2.1.2, Equation (1.4)). Figure 3.2 illustrates the extended
distance function d2(X,Y).

R7XP

~

X
X Y
\ »

1% - XIlr \/ TR
& St(n, p)

Figure 3.2 — The extended distance function.

3.2.3 Leapfrog as nonlinear Gauss—Seidel

In order to show that nonlinear Gauss—Seidel applied to Fis equivalent to leapfrog for F', we
need a few lemmas. The first one addresses the problem of how close the points on St(n, p)
need to be so that their connecting geodesic is unique.

Lemma 3.2. Let X,Y € St(n,p) such thatd(X,Y) < 64, withdy = 0.89 7. Then there exists
a unique minimizing geodesic between X andY . As a consequence, also the Riemannian center
of mass between X and Y exists and is uniquely defined.

Proof. By definition of injectivity radius, if d(X,Y") < inj(St(n,p)), then there is only one
minimizing geodesic between X and Y. From [Ren13, Eq. (5.13)], we know that the injectivity
radius is lower bounded by 0.89 7. U

Remark 3.3. We can compare the Riemannian and Euclidean distances between X and
Y € St(n,p) asymptotically in the following way?. From the expansion of the canonical
distance in (D.4), it is clear that

d(X.Y) <X = Y[lp +O(|X = Y[§) for X —Ylr—0.

*For the Riemannian distance de based on the embedded metric, it is easy to see that || X — Y |lr < de(X,Y)
since the Euclidean length of a geodesic on St(n, p) is always larger than that of a straight line.
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3. THE LEAPFROG ALGORITHM AS NONLINEAR GAUSS—SEIDEL

By neglecting O(|| X — Y ||%), we thushave d(X,Y) < || X —Y||p. In particular, | X —Y||r <
dg implies d(X,Y) < dg.

Let X;_1, Xi+1 € St(n,p). Denote
F(Y)=d*(Xi-1,Y) + d*(Y, Xiy1), F(Y) =d*(Xi-1,Y) + &(Y, Xi+1),
where X;_1, X;41 are constant and hidden in the notation.

Lemma 3.4. With the notation from above assume that d(X;_1, XZ-+1)~< g, then the ith
substep of leapfrog produces the same solution Y* as the minimization of F;

argmin Fy(Y) = argmin F;(Y) = Y,
YESt(n,p) ?ER”XI’

with Y* the Riemannian center of mass on St(n,p) of X;_1 and X;41.

Proof. Since d(X;—1, Xi+1) < d4, Lemma 3.2 gives that the minimizer of F; on St(n, p)
is unique and equals the Riemannian center of mass Y*. To show that it also equals the
minimizer of F; on R"*?, take any Y € R"*?. If 03,(Y) > 0, then we can write

Y =Y + A, Y = Pg;Y € St(n,p).
Using that Y* is the minimizer of F; on St(n, p), we thus get
Fy(Y) = d*(X;-1,Y) + (Y, Xig1) + 2| A} > F(Y) > F(Y™).

The same inequality holds trivially if 01(Y) = 0 since then F;(Y) = —+oc. Finally, since
F;(Y*) = F;(Y™), we obtain that Fj is also uniquely minimized by Y™*. O

Lemma 3.5. Suppose that for all iterations k = 0, 1, .. ., the iterates of leapfrog satisfy

dx B, x5 <6,
foralli = 1,2,...,m — 2. Then, the leapfrog algorithm started in X ) generates the same
iterates as the nonlinear Gauss—Seidel algorithm started in X(©) and applied to

min F(X1,...,Xm—2).
X1y, X —2€RMXP

Proof. By induction. Suppose true until substep ¢ — 1 of iteration k. Then, leapfrog computes
the new iterate as

Xi(k) = argmin d2(Xi(E)17 V) + d*(Y, Xl(il 1))’
Y eSt(n,p)

The uniqueness of the minimizer follows from Lemma 3.2 and d(X (k

i
wise, nonlinear Gauss—-Seidel computes

1L x% ) <6, Like-

Xi(k) = arg min F’(Xl(k), ... ,Xi(ﬁ)l, ?,Xﬁ:l), e ,XT(::QI)),
Y eRnxp

and the uniqueness of the minimizer follows from our reasoning below. Both minimization

problems are the same as minimizing F; and F} from Lemma 3.4 but with X; (k )1 and X Z(J’il 2

taking the roles of X;_; and X1, respectively. By Lemma 3.4, the minimizers of both prob-
(k)

lems are the same and hence X;

(1)

base case k =i = 1 since X

= ka) The above reasoning can also be applied to the

= Xéo). Hence, we have proven the result. O
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3.2. Convergence of leapfrog as nonlinear Gauss—Seidel

If the initial points are close enough, the iterates in leapfrog stay close.

Lemma 3.6. Let X(©) € St(n, p)™ be such that d(X*,, Xx\”) < 15, forall1 <i<m —1.
Then, leapfrog started at X(©) is well defined and all its iterates X %) satisfy forall1 < i < m—2
andk > 1

dXP, xMy = ax®, xE ) < Ls,. (3.5)

Proof. By induction. Suppose true for all substeps ¢ until iteration k£ — 1 and until substep
t — 1 of iteration k. This implies in particular

1— K3

a(x By, xEY) < by, ax Y xIY) < doy

[

By triangle inequality for the Riemannian distance,

dx L xEy <ax B, xFy ax Y xETY) <6,

Lemma 3.2 gives that the leapfrog iteration is well defined and produces the unique minimizer

Xz(k) = arg min d2 (Xz(f)17 Y) + d2 (Y7 XZ(—IF-II) ) °
Y €St(n,p)

We thus have

PP xP) 4 2x® xEY) < @x B xF)y a2 x Y x ) < a2,

Since Xi(k) is the midpoint of the geodesic connecting X Z(k)l to X fﬁ;

1)

, we also have

dxP, x®y = axM, xE).

1— 3

Combining these two results proves (3.5) until substep ¢ at iteration k. Since XékH)

Xék) = Xéo) , the case for substep ¢ = 1 and iteration k + 1 satisifes the same reasoning as
above. The same is true for the base case ¢ = k = 1, which ends the proof. O]

Hence, combining Lemmas 3.5 and 3.6, we get our desired result:

Proposition 3.7. Let X(©) € St(n,p)™ be such that d(Xi(E)l, Xl-(o)) < 36y foralll <i<m.
Then the leapfrog algorithm applied to F' is equivalent to the nonlinear Gauss—Seidel method
applied to F'.

We can now proceed and analyze the convergence of this nonlinear Gauss-Seidel method
using standard theory.
3.2.4 First-order optimality

From Proposition 3.7, we know that at iteration & > 1 and for subintervali € {1,...,m—2},
leapfrog solves the following unconstrained optimization problem

min  FF(X;),
X, ERn*P

where the objective function is defined as

EFY) = B(xXP,v) + (v, xE).

7
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3. THE LEAPFROG ALGORITHM AS NONLINEAR GAUSS—SEIDEL

Recall that Xi(f)l, Xl-(ifl) € St(n,p) are the neighboring points of X; and that X (k)l was

i
. k—1
previously updated and that X ( 1 )

i will be updated next.
Let us define

Gi(Y) = Vy EF(Y) = Vy B(XF, ) + vy (XY 7).

7

At the minimizer X, the gradient of ﬁ'lk vanishes, i.e., G;(X;) = 0. Likewise, if we take all
the minimizers X = (X,..., X;,_2) together, they will satisfy

G1(X) = Vx,d*(Xo, X1) + Vx,d*(X1,X3) =0,
G2(X) = Vx,d*(X1, X2) + Vx,d*(X2, X3) =0,

Gm—a(X) = Vx,, _,d*(Xm_3, Xm_2) + Vx,,_,d*(Xm_2,Xm_1) = 0.

This can be written compactly as G(X) = 0, where G is defined componentwise G; : R"*P —
R™P fori=1,...,m — 2.

3.2.5 Known results on local convergence

Assuming convergence to the limit point X{, X3,..., X} 5, the asymptotic convergence
rate is determined by the spectral radius of a certain blockwise partitioning of the Hessian
of F at this limit point.

Let {X(®)} € R™ be any sequence that converges to X *. Then

Ri{X®} =limsup /|| X® — Xx*|
k—o0
is the root-convergence factor of the sequence [OR00, Definition 9.2.1]. If 7 is an iterative
process with limit point X*, and C(Z, X*) is the set of all sequences generated by Z which
converge to X*, then

Ri(Z, X*) = sup { B {xW}: {(x B} € (T, x*)}
is the root-convergence factor of 7 at X*.

Theorem 3.8 (Nonlinear block Gauss-Seidel theorem). Let G: D ¢ R(m=2)mp _, R(m—2)np
be continuously differentiable in an open neighborhood By C D of a point X* € D for which
G(X*) = 0. Consider the decomposition of G'(X) = D — L — U into its block diagonal,
strictly lower-, and strictly upper-triangular parts, and suppose that D(X™*) is nonsingular
and p(MBGS(X*)) < 1, where MBSS = (D — L)~'U. Then there exists an open ball
B = B(X*,0) in By such that, for any X° € B, there is a unique sequence {X®)} C B
which satisfies the nonlinear Gauss-Seidel prescription. Moreover, limy,_,oo X¥) = X* and
Ry(T, X*) = p(MPOS(X7)).

Proof. As a direct extension of [OR00, Theorem 10.3.5]. O

This theorem shows the need for the Hessian of F (i.e., ) and its block D — L — U
decomposition. As we shall see, our matrix G’ is given by the sum of two matrices G’ = A+E,
where A is symmetric block tridiagonal and positive definite, and E can be regarded as a
perturbation matrix. Since it is very difficult to compute the spectral radius of M PSS with this
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3.2. Convergence of leapfrog as nonlinear Gauss—Seidel

perturbation F, we will not use Theorem 3.8 directly. Instead, we will use the Householder—
John theorem [Hac16, Corollary 3.42], which states that if G’ is positive definite, then the
MBS from Theorem 3.8 satisfies p(MBGS) < 1. In other words, (linear) block Gauss-Seidel
for a symmetric and positive definite G’ always converges monotonically in the energy norm
[Hac16, Theorem 3.53]. Therefore, we only need to restrict the perturbation F such that the
whole matrix G’ is symmetric and positive definite. In order to do that, we will also use a
block version of the Gershgorin circle theorem [FV62, Theorem 2].

3.2.6 Local convergence

As required in Theorem 3.8, we compute the Hessian as the Jacobian matrix G'(X), a square
matrix of size (m — 2)np. By symmetry of the Hessian, we can write this compactly as

D1o + D12 L,
Lo Dyy + Do3 Ll
G = Los D33 + D3y L},

Lm73,m72 Dmf2,m73 + Dme,mfl

where

Lij=Vx,Vx,d*(X;,X;) and Dy = V% d* (X, X))

denote the mixed and double derivatives®.

We now turn to the computation of these derivatives L;; and D;;. To that end, the follow-
ing lemma is convenient since it writes JQ(Xi, X) as an expansion that does not explicitly
use the Riemannian distance.

Lemma 3.9. Let X, Y € R™*? such that 0,,(X) > 0 and 0,,(Y) > 0, then

. - ~ -
P(X,Y) = ||PseX — PseY [} — 311, — (PseX) PsiY I}

+[|X = Pse X [[f + |V = PsiY[[f + O(|[Psi X — PsiY[[). 0
Proof. See Appendix D.2. O
In the following, denote ¢;; = ||.X; — X||2 for any X;, X; € St(n,p).
Lemma 3.10. Let X; € St(n,p). Then
Djj = 2Ly + 1 (X © X;) Iy — L (I, ® Xi X]) + Ay, (3.7)
Lij = 2Ly, + 3(X] ® X3) I + 3(1, ® Xi X]) + Ajj, (3.8)

with || Agjlla < 14055 + 105% and || Aijlla < o + 1052-2]- + 45%. Here, I1,,, is the vec-
permutation matrix defined as the permutation matrix that satisfies vec(X) = II,, , vec(XT);
see, e.g., [HS81, Eq. (5)].

Proof. See Appendix D.3. O

>Observe that L;; = LL by equality of mixed derivatives but in general D;; # DJT-i since only the variable
corresponding to the first index is derived.
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3. THE LEAPFROG ALGORITHM AS NONLINEAR GAUSS—SEIDEL

Our aim is to diagonalize G’. We will do this in a few steps. First, observe that G’ re-
mains block-tridiagonal if it is transformed using a compatible block diagonal matrix Q =

diag{le Q27 ey Qm—2}:

Q1(D1o + D12)Q1 Q1L1,Q2
o Q5L12Q) Q5 (D21 + D23) Q> Q5L33Qs3
QGQ= QIL3Qo QY(Ds2 + D34)Q3  QILL, Q4 J
(3.9)
Here, the Q1,...,Qm—2 € R"*" can be any orthogonal matrices. The lemma below

shows us how to choose these matrices so that we obtain diagonal blocks in Q'g’'Q, up to
first order in ;;.

Lemma 3.11. Let X;* € R"*("~P) be such that X] X;- = O

px(n—p) and (X)X = I _p).
Define the orthogonal matrices

Qi=[Lo®X; I,®X]],

and similarly for_Q)z-. Then, there exists an orthogonal matrix @ only depending on n and p,
such that Q; = Q;Q and Q; = Q;Q satisfy
1QIDi;Qi — Dlla < C”, D = diag {Lp—1)2 2 Lp—pp-1)2} » (3.10)

1QFLi;Qi — L2 < ), L= diag {_Ip(p—l)/27 =2l —p)p> Op(p+1)/2} , (3.11)
where C/) = 146;; + 1062, and C{7) = 1355 + 3162 + 1463, + 464,

Proof. See Appendix D.4. O

The matrix () above is related to the diagonalizaton of the vec-permutation matrix /I p.p>

see (D.10) in Appendix D.4 for its definition. It is therefore also independent of X;. This is a
crucial property to obtain the following result.

Lemma 3.12. Defined = maxo<i<m—2 9i,i+1 and assumed < 1. Then the minimal eigenvalue
of G is bounded by
Amin(G') = 2 — 2 cos T+ — 435 — 9067

As a consequence, G' is symmetric and positive definite when

5 < ﬁ (/2569 — 720 cos 75 — 43).

Proof. From Lemma 3.11, recall the diagonal matrices D and L, and the orthogonal matri-
ces Q1,...,Qm—2. Define Q = diag{Q1,Qq, ..., Qm—2}. Substituting the nonzero blocks
in (3.9) by

QI (Dji—1+ Dii+1)Qi = 2D + Ey, Qii1Lii1Qi =L+ Ej 41,

we can write 9'G’Q as

2D L By El,
Q'¢go=|L 2D L + | Bz Ex El = A+ E. (3.12)
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3.2. Convergence of leapfrog as nonlinear Gauss—Seidel

Equation (3.12) is an approximate tridiagonalization of the matrix G’. Observe that the sym-
metric matrices A and E have compatible block partitioning. Furthermore, from Lemma 3.11,
we get immediately that

| Eiilla < 286 4 206% =: Cp, | Biis1lle < 26 + 362 + 140° + 46* = C.

We will regard QTG’Q as an O(J) perturbation of A. Using properties of Kronecker
products, we can write

0 1

A=20, @ D+MaL M=|1 = | cRrm-2xtm-2) (3.13)

1

1 0
Thanks to the Kronecker structure in (3.13) and the diagonal matrices D and L, the eigen-
values of A are easily determined as

)\ijde—l—,ukfj, j=1...,np, k=1,...,m—2,

where d; and ¢; are the diagonal entries of D and L, respectively, and j1;, are the eigenvalues
of the Toeplitz matrix M. Using [Gov94, Eq. (2.7)], we find

uk:—2cosnf”1, k=1,....,m—2.

Together with (3.10) and (3.11), this allows us to determine that the minimal value among all
Aji corresponds to j = 1 and & = m — 2. We thus obtain

Amin(A) =2 —2cos - >0 forallm >

By Weyl’s inequality [SS90, Corollary 4.9], Apin(G’') = Amin(A4 + E) > 0 is guaranteed if
IE|l2 < Amin(A). To bound || E||2, we use a block version of the Gershgorin circle theorem
(see [FV62, Theorem 2] and also [Tre08, Remark 1.13.2]). Applied to the symmetric block
tridiagonal matrix F, it guarantees that its eigenvalues are included in the union of intervals

m—2 np

U UEY - Riel? + R],  Ri=|Ei-

i=1 k=1

zz+1H2 2CL7

where 5,(;) is the kth eigenvalue of F;;. These eigenvalues 5,(:) are all bounded in magnitude by
Cp. Hence | [E||2 < Cp+2CL, = 436+5152+2853+80%. Since § < 1, it is easily verified that
| Ell2 < 436+9062 and thus the matrix G’ remains positive definite if 436 +906% < Amin(A),

ie.,

5 < @ (/2569 — 720 cos 75 — 43).
All put together, we have the final result of local convergence.

Theorem 3.13. Ifthe leapfrog algorithm is started with ¢ satisfying the condition of Lemma 3.12,
then it converges to the unique length-minimizing geodesic connecting Xy and X,—1, provided
that the initial intermediate points are sufficiently close to that geodesic.
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3. THE LEAPFROG ALGORITHM AS NONLINEAR GAUSS—SEIDEL

Proof. We use [Hac16, Corollary 3.42] which states that if G’ is positive definite and can be
split into the sum of an arbitrary positive definite matrix and an arbitrary symmetric matrix,
then the scalar Gauss—Seidel converges, i.e., p(M BGS) < 1, and the convergence is monotone
with respect to the energy norm ||-||g/. By [Hac16, Theorem 3.53], we know that this theorem
remains valid for any block version.

Now, the splitting (3.12) has exactly the form prescribed by [Hac16, Corollary 3.42], be-
cause A is positive definite and E is symmetric. By Lemma 3.12, we know that G’ remains pos-
itive definite if § < ﬁ (\/ 2569 — 720 cos % — 43). Under these conditions, the leapfrog

algorithm converges as a block Gauss—Seidel method to the length-minimizing geodesic con-
necting X¢ and X, 1. ]

3.3 Some observations and open problems

For m large, Lemma 3.12 gives that G’ is positive definite when § < 72/43m?. Let dy =
| Xo — Xm—1|2 be the distance between the two endpoints. Then by equidistant partitioning
of the intermediate points, one has 0 ~ dy/m. To guarantee a positive definite G’, we would
then need do/m < 72 /43m? which implies m < 0.23/dj.

This result is unsatisfactory, since it would have been desirable to guarantee positive
definiteness of 9'G'Q = A + E with orthogonal Q by increasing the number of points
m given a fixed dp. Unfortunately, we cannot guarantee this with our proof. The problem
is that ||E|l2 = O(6) whereas Apin(A) = O(1/m?), which lead to our condition that m
needed to be smaller than some fixed fraction of the original distance dy. If | E||2 = O(6?),
then there would be no condition on m since §2 ~ d2/m? < 1/m? is sufficient to guarantee
Amin(A4 + E) > 0. However, it would still not be satisfactory since the perturbation does not
lead to an improvement with increasing m, for which one probably needs || E|j2 = O(53).
As we show below, there is strong numerical indication that with our choice of extended
distance function this is not the case.

Numerical experiments reported in Figure 3.3 suggest that the minimal eigenvalues of G’
and A differ by O(6?), whereas our perturbation analysis only showed || E|2 = O(6). It is
however not trivial to prove this result. Indeed, up to first order, we can study the eigenvalues
of the symmetric matrix A 4+ E by using the derivative formula [SS90, Theorem 2.3]

Amin(A + E) = Amin(A4) + 0gyin Bvmin + O(| E|1?), (3.14)
where A\pin(A) is assumed to be isolated (as it is the case) and vy,iy is its associated eigenvec-
tor. One possibility to improve on our bounds, at least asymptotically, would be to prove that
[vL . Evmin| = O(6%). However, in the same figure, [v]; Fvmin| seems to be again O(52).
In addition, all these conclusions remain true in the limiting geodesic.

Another problem with the matrix A and G is that it has a bad spectral gap  (i.e., the dif-
ference of smallest and second smallest eigenvalue) when m grows. Numerical observations
suggest that the spectral gap might be O(1/m) which complicates non-asymptotic bounds.

As alast remark, one could resort to a more general theory for the convergence of nonlin-
ear block Gauss-Seidel for a quasi-convex objective function [GS00], which requires quasi--
convexity for each X; alone. Looking at the Hessian G’ where all X; except X are constant,
the only block that is left in the matrix G’ is the diagonal one, namely D; ;1 + D; ;1. Using

Lemma 3.11, we immediately get the eigenvalues of this block. Now, for ng ) < lin (3.10)
we get strong convexity in X; alone. One problem with this approach is that the feasible set
has to be a Cartesian product of convex subsets of R"*P. Moreover, the result in [GS00] only

52



3.4. Numerical experiments
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Figure 3.3 - Eigenvalue perturbations — not  Figure 3.4 — Eigenvalue perturbations - at
at the limiting geodesic. the limiting geodesic.

guarantees subsequence convergence, and there is no rate of convergence or contraction rate
for the whole sequence. Hence the convergence behavior could also be slower than linear.

3.4 Numerical experiments

As a concrete example to demonstrate the leapfrog algorithm, let us consider the Stiefel man-
ifold St(12, 3). We fix one point X = [I3 Ogx3]", while the other point Y is placed at the
distance L* = 0.957 from X. This is done by creating a tangent vector to St(12,3) at X
of length L*, and then mapping it to St(12, 3) via the Riemannian exponential (2.2). For this
choice of L*, single shooting will not work (recall that the injectivity radius on St(n, p) is
at least 0.89 7). We want to recover this distance using the leapfrog algorithm and study its
convergence.

For each value of m € {10,20,50, 100}, we construct an initial guess X ©) by placing
m — 2 intermediate points randomly along the linear segment connecting X and Y in the
embedding space, and projecting them to the Stiefel manifold. We then apply leapfrog for
300 iterations and monitor the convergence behavior of

err-k = || X® — X*||p,

where X* is the solution of leapfrog (i.e., a uniformly distributed tuple corresponding to the
global geodesic that was constructed above), and X (%) is the approximate solution at iteration
k of leapfrog. This is illustrated in Figure 3.5, from which it is clear that for large m leapfrog
always converges albeit very slowly.

Next, we apply leapfrog for 50 iterations and for each m € {4,6,8,10,...,100} we
repeat this experiment for 100 random initializations of the initial guess X (). For each ex-
periment i, we define the error reduction rate® as

) = er-(k+1) e k—0.1.....49 i=1,....100,

err-k
and we compute the worst and the median reduction rates across all the experiments, namely,
max; ,{ ,ug) } and med; maxy{ ,u,(;) }. Since during the first iterations leapfrog is faster, we also

compute the convergence factor given by max;{ ,uéz) }.

SIn the limit k — oo, this gives the asymptotic Q-rate of convergence of the sequence.
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err-k
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iteration k of leapfrog

Figure 3.5 — Convergence behavior of err-%

for increasing values of m.
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Figure 3.6 — Boxplot of maxk{u,(f)} for in-

creasing values of m.

From Table 3.1, we see that the convergence of leapfrog deteriorates as m increases but

it remains strictly smaller than 1. For small values of m, max;{ ugi)} and max; i { u,(f)} are
significantly different, whereas for large values of m, they are quite similar. The same con-
clusion can be reached from Figure 3.6 where boxplots show the dispersion and skewness in

e '. early, € convergence ractors become very concentrate or large m.
the 11", Clearly, th gence factors b y trated for larg

Table 3.1 — Values of maxi{u(()i)}, maxi7k{u,(j)} and med; maxk{p,(:)} versus number of
points m, for the experiment described in Section 3.4.

m 4 6 8 10 15 20 30
max, {1} 0.5577 0.7058 0.7829 0.8296 0.8604 0.8824 0.8980
max; {1’} 08776 09443 09671 09781 09843 0.9881 0.9906
med; max{p{"} 08774 09443 09671 09781 09843 09881 0.9906

m 40 50 60 70 80 90 100
max; {1} 0.9390 0.9573 0.9728 0.9799 0.9843 0.9870 0.9888
max;  {ul’} 09836 09799 09898 09940 0.9959 0.9969 0.9976
med; max{p{"} 09822 09790 09898 09940 09958 0.9968 0.9975
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CHAPTER 4

Extensions on leapfrog

In this chapter, we recall and work on some concepts that relate to the original definition of
distance on a Riemannian manifold M. As we have seen in Section 1.1.10, the Riemannian
distance between two points is defined as the minimum value of the length functional over
the set of all curves in M joining those two points. We will have a closer look at what the
length and energy functionals are and how they can be useful in the context of numerical
algorithms that calculate the Riemannian distance. Most of these concepts go back to Milnor
[Mil63], and the leapfrog algorithm of Noakes also builds upon these notions.

4.1 Broken geodesics, length and energy functional

Let M be a Riemannian manifold, and X, X,,—1 two points of M. Consider a broken geodesic
connecting X and X,,,_1, identified by the m-tuple

X = (XQ, c. 7Xm71) e M™.
From [Noa98, Definition 3.2], the curve wx (t): [0, 1] — M is defined as
(tL(X) — Yo (X, Xj))

WX(t) =% d(X'_l X)

with 7;: [0, 1] — M being the minimizing geodesic from X;_; to X;. Figure 4.1 provides an
illustration of a broken geodesic through four points.

X, X

Xo
Xo 1) Y2(t) Y3(t)

Figure 4.1 — A broken geodesic wx.

The length functional is given by the sum of the lengths of all geodesic segments, namely,

L(X) =Y d(Xi-1,X)). (4.1)
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The energy functional is defined as [Mil63, I11.§16]

where t € [t;_1,t;], t;, and the junction times

o Z§:1 d(Xj-1, Xj)
(2 L(X) Y

izl,...,m—l, tQZO. (4.2)

If the parameter ¢ is proportional to arc-length along wy, then one has the equality L?(X) =
E(X) [Mil63, II1.§12]. Indeed, using the above definitions, one has

m—1 2 m—1 42
d*(Xi—1,X5) d* (X1, X5) 9
E(X) = i i =L(X — 2 = [4(X).
&0 = 2o dX-1X)) S (X -1X) ( )lzzl d(Xi-1, Xi) &0
L(X) N L(X)

The important Corollary 12.3 in [Mil63, p. 72] states that a path wx is a critical point for the
energy functional E if and only if wx is a geodesic.

4.2 Comparison between steepest descent and leapfrog

In this section, we formulate the problem of minimizing the energy functional from a steepest
descent point of view. Given the endpoints X and X,,,_1, we want to find the (m — 2)-tuple
of junction points X = (X7, ..., X;,_2) such that

min F(X), with X = (X0, X, X-1).
XemMm=2

Since M™~2 is a Cartesian product of M, the Riemannian gradient of F(X) is an (m —
2)-tuple of tangent vectors at the junction points

grady F(X) = (gradxlE(X), e ,gradedE(X)) . (4.3)

From [Kar77, Eq. (1.2.1)], we know that the Riemannian gradient of the Riemannian distance
squared is given by
grady d*(X,Y) = —2Logy (Y), (4.4)

where Log x (Y') is the Riemannian logarithm of Y at X. By using this result, each gradient
in the tuple (4.3) is given by

Logy (Xi-1) Logy (Xi
gradXiE(X):—2< ogx; (Xi-1) | Losx,( Z“)>, i=1,...,m—2,

t; —ti—1 tiv1 — 1

or, equivalently,

Logy (Xi1) Logy (X;
gradXiE(X):—ZL(X)< ogx,(Xi-1) | Logx,( ’“)>, i=1,...,m—2.

d(Xio1, Xi)  d(Xy, Xig1)
The steepest descent method reads: for £ > 0, until a stopping criterion is met, compute

Xz‘(kH) = Exp,w (a(k)ngk)), i=1,...,m—2, (4.5)
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4.2. Comparison between steepest descent and leapfrog

where ngk) = — gradX_(mE(X(k)) € Ty M and a'F) is the step size, which is computed

via a line-search technique.
Using the same notation, we can formally express the leapfrog update as in (4.5). Recall
from Section 3.1.1 that the midpoint map 91 : M x M — M is defined by
M(X,Y) = Bxpx (4 Logx (¥))

One complete iteration (indexed by k) of leapfrog comprises m — 2 inner iterations, indexed
by j. Starting from X(© = (Xéo),XP),XéO), . 7X7(73)—1)’ for £ > 0, until a stopping
criterion is met, leapfrog computes

(k+1) _ (k+1) (k) (k+1) _ (k+1)
XD (x50 X)) Loy X
for j = 1,...,m — 2. Numerical experiments show that the sequence of update directions

{n®)}, with n*) = (ngk), nék), e 777(:),2), generated by the leapfrog algorithm is gradient

related', namely for any subsequence {X(*)},cxc of {X(*)} that converges to a non-critical
point of E, the corresponding subsequence {1(*)} < is bounded and satisfies

lim sup <gradX(k>E(X(k)), n(k)> < 0. (4.6)
k—00 kecic
However, the uniform angle condition from [BAC18, Lemma 2.10] is not satisfied.

We emphasize that steepest descent, in contrast to leapfrog, does not converge to a uni-
formly distributed tuple (see Chapter 3). Indeed, there is nothing in the theory of steepest
descent that would imply it to converge to a uniformly distributed tuple, whereas leapfrog
instead makes the specific choice of the midpoint map. In the next section, we will illustrate
this difference with a concrete example.

4.2.1 Steepest descent on the unit sphere

For an easier comparison, we detail the derivation of the steepest descent direction and the
leapfrog direction for the unit sphere S"~! endowed with the standard inner product on R”.
Geodesics are given by

a(t) = @ cos(|[&ol| 1) + sin([|Zo] ),

i
l|Zol|

where x = 2(0) and £9 = 4(0). Therefore the Riemannian exponential at x is

. . To . .
y= Epr(ZEO) = l‘(l) = .ZECOS(||$0H) + HiOH Sln(”l'()“),

and the corresponding Riemannian logarithm is

P,y
1Pz yll’

Log,(y) = & = arccos(z'y)

where y = z(1) and P, is the projector onto (span(x))l, ie,P,=1—xz".

Figure 4.2 provides an illustration of these objects for the unit sphere S2.

!See Definition 1.37. For an illustration of this concept, we refer the reader to Figure 1.6.

57



4. EXTENSIONS ON LEAPFROG

Figure 4.2 — Illustration of a sphere S? with its tangent plane at x, the geodesic connecting
z and y, and the corresponding tangent vector.

The distance between two points x, y € S™ ! is the norm of Log,(v), i.e.,

d(z,y) = || Log,(y)|| = arccos(z"y).
Therefore the Euclidean gradient of d?(x, ) with respect to  is

V.d*(z,y) = —2 arccos(xTy);.
1—(2Ty)?
The Riemannian gradient is given by a projection of the Euclidean gradient onto 7}, 5™ !

P,y

P,V.d*(x,y) = —2arccos(z'y) ——tee
1— (aTy)?

=-2 Logw (y) .

Incidentally, this result verifies (4.4) for the particular case of S™ 1.

Example. Consider a tuple X = (zg, 21, o2) on the unit sphere S"~!. The associated
energy functional is

B(X) = LX) = (d(zo.21) + d(a1,2))

whose Riemannian gradient with respect to the junction point z is

grad, B(X) = —2(d(xo, 21) + d(x1, 2)) (Logm(:ﬂo) Logxl(x2)>

d(.’L‘Q,iL‘l) d((l?l,mg)

lexo lexg )
[Py ol [Py 22

ify) Z2
= -2 (arccos(wgwl) +arccos(””{x2)) Pwl(np o] * P lel) '
Tl 1

= -2 (arccos(xgxl) + arccos(a:{aa)) (

Then steepest descent uses the direction n = — grad, E(X).
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4.2. Comparison between steepest descent and leapfrog

For a direct comparison, let us compute the leapfrog update vector. With the tangent

vector
Pxo T2

o = Log,, (72) = arccos(xfxa) TPouzall’

the midpoint map gives the new point

‘%1 = EprO(%i‘o)

. Zo . .
= 20 COS(%HSCOH) =+ ||3.70H Sln(%on”)
_ 1 T Prora . -
= x¢ cos (5 arccos(xgxa)) + TP, 2ol sin (3 arccos(zgr2))
o

— :CSJJQ +1 n Pyoz2 1-— xgxg
Vo2 [Paoza| 2

where we used trigonometric formulas to develop the second-last line. Finally, the leapfrog
update vector is given by

~1
~ T~ Imx

mr = LOg 1) = arCCcos\xr1r1)~——=——=-
:v1( ) ( 1 )”P lxIH

This example shows that the direction of the leapfrog update is different from the direction
of steepest descent.
To illustrate this difference even further, let us focus on the special case of the unit sphere
S? embedded in R3. The points on S? are parametrized according to spherical coordinates,
namely,
sin ¢; cos 6;
x; = |sing;sinb; | , 0; € [0,27), ¢; € [0,7).

Cos ¢;

Here, 6 is the azimuthal angle, while ¢ is the polar angle. Let us fix some 6y, ¢q for xg and
02, ¢o for x9, and let 6; € [0,27) and ¢1 € (o, ¢2). Figure 4.3 shows the Riemannian
gradient vector field (in blue) and the leapfrog update vector field (in red) for some points on
the unit sphere S2. The thick green line is the minimizing geodesic connecting xg and 5.

Let us define the quantity

o[ edy E@)
[rad,, B[ Tl )

which provides a measure of the angle between the Riemannian gradient grad,, F/(x1) and
the leapfrog update vector mjs. A value of & equal to zero means that these two directions are
perpendicular to each other. In Figure 4.4, the quantities ||grad y, F(X1)|| and & are plotted
as a function of 61, ¢;.

From Figures 4.3 and 4.4 it is evident that if x; approaches the geodesic, then a — 0,
in other words, the vectors grad,, F/(x1) and 7;; are nearly perpendicular. As we mentioned
above, this situation is due to the fact that the two methods try to achieve two different aims:
steepest descent is just looking for the minimizing geodesic, no matter the location of 1,
while leapfrog also tries to place 1 at the midpoint of the geodesic.
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4. EXTENSIONS ON LEAPFROG
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Figure 4.3 — Gradient and leapfrog vector fields on the unit sphere S2.
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Figure 4.4 — Contours on S? for the gradient norm and @ as a function of 01, ¢;.
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4.2. Comparison between steepest descent and leapfrog

4.2.2 Gradient-related sequence in Euclidean space

In this section, we will explicitly verify that, in a Euclidean space with the standard inner
product (z,y) = 'y, the sequence of update directions generated by the leapfrog algorithm
is gradient related. In other words, we will verify that the term (gradyw E(X®)), 1)
appearing in (4.6) is strictly negative for all k¥ > 1.

The motivation to do this comes from the fact that, for embedded submanifolds with a
Riemannian metric inherited from the embedding space, the Euclidean distance is equal to
the Riemannian distance up to third-order terms (see Appendix D.1).

Given x,y € R", the logarithm Log, (y) is the vector pointing to y with base point z,
namely,

Log,(y) =y — =.

As usual, the distance between x and y is the norm of the logarithm
d(z,y) = || Log, (y)|| = lly — =],
whose Euclidean gradient with respect to z is

Vod(r,y) = _Log,(y) _ y—ux

d,y) — y—zl’

Now let us consider a piecewise path (a, x, b) in R?, as illustrated in Figure 4.5.

Y

Figure 4.5 - Leapfrog update vector in R?.

The energy of this path is given by
2
E(z) = L*(z) = (la— || + b - «])".

The gradient of F/(x) with respect to x is given by

V.E(@) = ~2(la — o] + b - al) (12— boo ).

la =z[| b -]

Observe that the direction of V,E(z) coincides with the direction of the angle bisector of ,
where v denotes the angle opposite side b — a (see Figure 4.5).
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4. EXTENSIONS ON LEAPFROG

The midpoint map is simply given by

b
M(a,b) = ot ,
2
and hence the leapfrog update vector is
b
me = Log, M(a,b) = a—21— — .

We want to check whether the quantity @ = (V,E(z), ny) is strictly negative or not.

N a—x b—x a+bd
a:—zwa—ﬂwww—ﬂn< —x>

+ 5
la ==~ flo—=l" 2

=C>0
__2C<<a—:1:,a+b>_<a—x,x> <b—x,a+b>_(b—x,az>>
2[|la — x| la—z| 2[|b — | b=zl /-

After some manipulations, we get

& o0 (IIGII2 + 2]l2]® — 3(a, 2) + {a,b) = (b,2)  [bI* +2])2]* = 3(b, ) + (a,b) — <a7w>) .

2|l — =] 2[|b — 2|

Using the law of cosines ||a —z||? = ||a||?+||z> —2(a, z), ||b—=z|* = ||b||> +||z||> —2(b, x),
and the properties of the inner product {a, b)—(a, ) — (b, ) +||z||* = (a,b—z)— (z,b—x) =
(a —x,b—x) = |la — z||||b — z|| cos 7, one can obtain

4— _o0 <Ha —al” + lla — 2|[[|b — x| cosy L b= z|? + lla — 2|Ib — =] COSV)

Zlla = al 2016 — <]
— _9C (Ha —z| + H2b— x|l cosy + b — x| + H2a — x| cos*y)

= —C*(1 + cos”).
Finally, one gets the condition
—C?(14cosy) <0 <= (14cos7)>0 — ~#m.

Thus, when considering Euclidean space, the sequence of update directions generated by the
leapfrog algorithm is always gradient related, unless x; lies already on a geodesic, which
is the case when v = 7. But this is the case of a critical point, to which the definition of
gradient-related sequence does not apply. Indeed, in such a case, the problem is already
solved and there is nothing to do.

What we did in the last section is indeed a big simplification. We only considered R?
and only one junction point as a variable (i.e., only two subintervals), hence ignoring what
happens when we have more than one junction point. However, this big simplification did
allow us to verify two main things, namely: that the leapfrog update vector is different from
the negative gradient of the energy functional, and that the leapfrog update vector remains
gradient related.
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4.3. Convergence to uniformly distributed tuple

4.3 Convergence to uniformly distributed tuple

One of the main properties of leapfrog is the convergence to a uniformly distributed tuple.
In other words, at convergence, the broken geodesic not only is a globally C! geodesic, but
its junction points are also equally spaced from each other. Here, we reformulate the result
of [Noa98, Lemma 3.2] for convenience.

Lemma 4.1 (Convergence to uniformly distributed tuple). Let wx be a geodesic ~y. Then the
sequence of iterates generated by leapfrog converges to the uniformly distributed m-tuple

(Xo,’y(ﬁ),y(%), . ,’y(ﬁ), .. ,Xm_1>.

To further investigate this property, let us consider the tangent vectors associated to this
tuple, ie., (£0,&1,---,&m—1). Then the result of Lemma 4.1 is equivalent to saying that, at
convergence, the tangent vectors all have the same length, i.e.,

&l = |€aall, i=0,...,m—3.

The main assumption of Lemma 4.1 is that wy is already a geodesic «y. This implies that its
length L, = L(X) does not vary under further leapfrog iterations, but only the distribution
of the points X; along the geodesic v may change. So another way to define the junction
times at iteration & is

w  Sib e (k) (k)
£ zgiﬁfo, i=1,...,m—1, with tg =0t , =1 Vk  (47)
Y

Here, we are going to verify the recursion
k k k—1

which appears in the proof of [Noa98, Lemma 3.1]. Observe that the midpoint map acts on
the lengths of the geodesic segments as

169 = 211+ 1E501) 0 i=0, o m—2, with €% =gV k>0
(4.9)
Starting from

k k—
X)) = 111,

and using the identities

i—2 i—2 i i
SUER ST 1EP = 31 = S e,
j=0 j=0 j=1

j=—1

i—2 i i—2 i

k k— k k—
STIEE ST = S0 )+ 3 ey,
j j=1 j=0 j=0

Jj=-1

rearranging indices we get
i—1 i—1 i—2 i
k k-1 k k—1
S+ 2N I =11+ X e
J=0 J=0 j=0 j=0
Using (4.9) on the left-hand side
i—1 i—2 i
k k k—1
23 1g5™ 1 =2 1gP I+ 3 llgg I,
J=0 j=0 i=0

then dividing by L., and using the definition (4.7), we get the recursion (4.8).
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4. EXTENSIONS ON LEAPFROG

4.3.1 The stochastic matrix

Let us make some further considerations on the leapfrog algorithm. The midpoint map guar-
antees the following recursive inequality concerning the lengths of the geodesic segments:

=D g > 0.

1P < 31X + 1571, i=0,m =2, with €9 =g
This is almost the same as (4.9), the only difference being the equality replaced by the in-
equality since, in general, wx is not a geodesic. The inequality is more general than (4.9),
and always true due to the way the leapfrog iterates are constructed.
Making the recursion explicit, one can obtain the following inequalities (the < sign has
to be interpreted elementwise)

- L -
M e(k+1) 117 2 2 r k)
&gl A 5”1
k+1 4 4 2 k
&) A &1
8 8 1 2
< :
k+1 ‘ ' k
([l N U O GRS G S O N [
k+1 k
[[saeyl L 1 L | Lighsll
L ogm—2 om—2 om—3 om—4 2
Denoting the vector by é and the matrix by 7', we compactly rewrite
s < 75k, (4.10)

The matrix 7' € RO™=D*(m=1) has a Hessenberg structure and several other interesting
properties:

« It is a doubly stochastic matrix [BP94, p. 48], i.e.,
m—1 m—1
Vi,j Ty eRy, Y Ty=1 Vi, > Ty=1 Vi
Jj=1 i=1

o Itis irreducible [BP94, p. 29], i.e.,
Vi,j, 3N €N suchthat (T%);; > 0.

For our matrix, N = m — 2 to obtain a nonzero coefficient 77 ,,—1 on the upper right
corner. To show this, first we observe that since all the matrix coefficients are positive,
by taking matrix powers they stay positive. Moreover, at each multiplication, a diago-
nal gets filled with strictly positive coefficients. So it takes a power of N = m — 2 to
make the coefficient T} ,,—1 strictly positive.

« The Perron root (or Perron-Frobenius eigenvalue) of T"is r = 1.

o It exists a vector v such that Tv = rv and whose components are all strictly positive.

. o 1 T - . . . .
For our matrix, v = N (1,...,1)", i.e, a normalized right eigenvector associated

with 7 = 1. It also exists a vector w such that w'T = rw' and whose components
are all strictly positive. For our matrix, w = v.
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4.4. Broken geodesic shooting method

Let us now consider the “shadow sequence” with the equality sign associated with (4.10),
namely

541 — o),
By recursively applying this equality one obtains

g(k+1) _ Tk+1g(0) )

Using the fact that (1) is an upper bound on §**1) one can write

sk < TR0,

By the Perron-Frobenius theorem [BP94, p. 45], it holds

Tk
lim — = va,
k—oco T

where v and w are normalized such that w'v = 1. The matrix vw? is the projection onto
the eigenspace associated with the Perron root 7. In our case, the above limit becomes

1
lim TF =vo' = —— 11,
k—ro0 m—1
where 1,,_; is an all-ones square matrix of size m — 1. This implies that, in the limit for
k — oo,

_ 1 _ 1 m—1 5
0 <o = ——1, ,60 = — Z ) (1,..., 1"
1 m—1 s 7

m —

This result tells us that, at convergence, each component of § (> is bounded by an arithmetic
mean of all the components of §(?). Nonetheless, it remains an open problem to find a lower
bound in order to prove convergence in this way.

4.4 Broken geodesic shooting method

In this section, we propose an alternative shooting algorithm which exploits the idea of bro-
ken geodesics introduced by [Noa98, KN08] and discussed in Section 4.1. The main difference
between this method and multiple shooting is that it produces a continuous curve at each
iteration.

As before, let us consider m points, corresponding to m — 1 subintervals. The base point
of each subinterval is found by using the geodesic equation with base point from the previous
subinterval. Hence, only the m — 1 tangent vectors &;, ¢ = 0,...,m — 2, are unknowns of
the problem. We adopt the notation

Xo=X, X;=v(Xi-1,&i-1,t=1), X;=%(Xi—1,&-1,t=1), i=1,...,m—1,
with 7; being the geodesic that realizes &;_1, with base point X; ;. Figure 4.6 provides an
illustration of the problem statement and the notation adopted. Here, X3 depends on & and

X3, which depends on £; and X, and so on.
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&y

fO ’—\?Xl /’)éﬂ_\o
’ &1 x, 7
Y1(t) Y2(t) Y3(t)

Figure 4.6 — Broken geodesic shooting method.

Our system of nonlinear equations collects the mismatching for the tangent vectors and
for the arrival point

(-
F) = = _ &2 =0. (4.11)
r = Xm.—l -Y

The idea is very similar to multiple shooting, except that here only the continuity of the
derivative of the geodesic has to be enforced.
Now, consider a perturbation of the nonlinear system

F(€+06) =0, with 66=1[06 06 - Obmal'.
A linearization of this system yields
F(&) + J5% - 6¢ =0, (4.12)

with the Jacobian Jf; € Rm=Nnmpx(m=1)np haying a lower block-Hessenberg structure:

Ji Iy
TR, 73 —Inyp
Ty = :
TR I, JI
[T IR RIS IR TR IR

The blocks on the main diagonal are calculated as

{m—Q

(JS)i = Jf.;‘ﬂ, i=1,...,m—2 and (J&)m_1m-1=JE 2,

where J Si-1 denotes the Jacobian matrix of &;_; with respect to X The off-diagonal blocks

are given by

j+1
(Jp)ig = T3~ ( 11 J§§:1) JEN =1 m =2, 0<j<i,
‘ k=i—1

Jj+1
g%k - ‘
(JFWLJ ( H kl)J)%,l, j=1,....,m—2,
k= 1

m—
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4.4. Broken geodesic shooting method

where the matrix products are ordered products, and
(J2)ij = —Inp, j=i+1,  (J2)ij=Onp, j>i+1, i=1...,m—2

Observe that the last line of pr is built differently because it enforces the boundary condi-
tion at Y. Indeed, at convergence, X,,,_1 has to be equal to Y. Moreover, we emphasize that
we have all the analytic expressions for computing the smaller Jacobians appearing in Jg,
because these are the same as the Jacobians for single and multiple shooting (see Chapter 2
and Appendix C).

To gain insight into the above derivation, let us expand X; as

Xi=%(X; 1,6 1,t=1)
=Y (yic1(Xi—2, &imo, t = 1), &1, t = 1)
=i (Vi1 (Vie2(Xizs, &im3, t = 1), &0, t = 1), &1, t = 1)

=i %71(%72(%73(- o (m(Xo, &, t=1),&,t=1),...,& o, t = 1)752‘71715 = 1)-

%?01 is given by the chain rule

For instance, the Jacobian

0X; _ 0X; 0Xi1 90X, 90X,
06y 0Xi1 0X;_2 0X1 0&

that we can write in matrix notation as

o _ gXic1 X2 71Xy 760
= TR TR IR

At every iteration the method solves (4.12) for 6. Since Jf, can be quite big, it makes
sense to consider the same condensing strategy as the one adopted for multiple shooting (see
Section 2.4.1).

4.4.1 Condensing

The linear system (4.12) can be solved efficiently thanks to the structure of .J ¢, which allows
any 6&;,7 = 1,...,m — 2, to be expressed as a function of §£y. This condensing strategy can
be summarized as follows:

i i
w; = F; + Z(va)zg wj—1, M; = (J&)a + Z(me)zg M;_1, i=1,...,m—1,
=2 =2

W= W1, M= My_1.

Eventually, only one linear system of size np x np has to be solved to find §&:
M - 560 = —w,

and the remaining J¢; are obtained as

06 =F;+ Y (J5)ij 66—, i=1,...,m—2
j=1
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4. EXTENSIONS ON LEAPFROG

4.4.2 Complexity of the algorithm

Solving system (4.12) via the condensing strategy has an asymptotic complexity O(m?n3p3).

Without condensing, using MATLAB lu, the complexity is O(m?®n3p?). If the original problem
on St(n,p) is reduced to a problem on St(2p, p) (see Section 2.3.3), then we get with the
condensing strategy O(m?p®), and without condensing O(m?p%). As a consequence, for
large values of m, the broken geodesic algorithm with condensing strategy will be more
efficient than the MATLAB lu. Figure 4.7 provides an illustration of this fact for St(40, p)
with m = 6.

10! ‘
MATLAB lu 1
—e— Condensing
10°k o(r°) 3

time (s)

1074

10!
p

Figure 4.7 — Computational time of the broken geodesic algorithm for St(40, p) with m = 6.

By contrast, multiple shooting with condensing has a complexity O(mp®), i.e., the com-
plexity is linear in m. Hence this complexity analysis shows that multiple shooting is in
general more efficient than the broken geodesic shooting method.

4.4.3 Leapfrog revisited

With the notation introduced above, the leapfrog algorithm can be compactly rewritten as
follows. Starting from a broken geodesic whose junction points are

(x6”, x1% x{0, . x0), with X =X, X, =Y,

9 9 m—1 m—
the leapfrog algorithm computes, for k > 1,

i k—1 k k—1
WO, o fLog ()

k k .
Xi(Jr)l:EXpX_(k)(ﬁi( )), 1=0,...,m—3,

until a stopping criterion is satisfied. We recall that leapfrog assumes the subintervals to be
small enough so that the Riemannian logarithm can be computed via single shooting.

Leapfrog has the remarkable property of converging to a curve having continuous first
derivatives. In other words, at convergence the curve will be globally C:

lim X® —e® =0, i=1,... m-3

k—o0
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Observe that these equations are the same as those of the broken geodesic algorithm, as
stated in the nonlinear system (4.11).

4.5 Numerical experiments and applications

In this section, we present some simple numerical experiments about the leapfrog and the
multiple shooting algorithms. We report on their convergence behavior and discuss a couple
of applications.

From an algorithmic point of view, we propose the following scheme, summarized by
Figure 4.8:

« Since we do not know a priori whether Yy and Y; are very close or very distant, the first
attempt to solve the endpoint geodesic problem is always done with single shooting.

« If single shooting works?, then the problem is solved and we are done. In practice, we
perform single shooting and check whether it converges or not. If single shooting does
not converge, we start with leapfrog with two subintervals, i.e., with m = 3 points,
which is the smallest partition possible.

« If leapfrog with two subintervals does not work, i.e., if the single shooting behind
leapfrog does not work, we keep increasing the number of subintervals until it works.
The reason for this is that the single shooting behind leapfrog has to converge on each
subinterval.

« When leapfrog works, we perform a few iterations and then we use the iterate found
by leapfrog as an initial guess for multiple shooting.

« The problem is solved with multiple shooting, which converges quadratically to the
solution.

4.5.1 Leapfrog and multiple shooting

As a concrete example to demonstrate the leapfrog and the multiple shooting algorithms, let
us consider the Stiefel manifold St(12, 3). We fix one point X = [I3 Ogy3]", while the other
point Y is placed at a distance L* = 0.95 7 from X. This choice is made in order to have
two points that are far enough from each other; i.e., this problem is such that it cannot be
solved by using single shooting alone. Recall also that a lower bound on the injectivity radius
of St(n,p) is given by 0.89 7w [Ren13, Eq. (5.13)], so it makes sense to consider a distance
L* > 0.89 7 in order to test these algorithms. By using our numerical algorithms, we want
to recover this distance. As number of points we choose m = 4, i.e., the path between X and
Y is cut into 3 subintervals.

To monitor the convergence behavior, two quantities have been considered:

Ly — L*

, where Ly, is the length of the piecewise geodesic at iteration k.

|F'(X))]||2, where F'(X}) is the nonlinear function of multiple shooting, as defined in
Section 2.4.

’In the experiments, we choose 10 as maximum number of single shooting iterations. We consider that single
shooting fails when this number is exceeded.
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[ Single shooting ]

!

Successful? e
[0
. m=3 )

!

4{ Leapfrog ]
l

m < m+1 o Successful?

yes

[ Multiple shooting ]

[ Return & ]<7

Figure 4.8 — Flowchart of the Stiefel Log algorithm.

Figure 4.9 reports on the convergence behavior of leapfrog. Leapfrog is stopped when
| F'(Z))]|2 reaches the threshold value of 1073 (this happens at the 28th iteration). We esti-
mate that at this threshold the iterates will fall in the so-called basin of attraction of Newton’s
method, so that multiple shooting will succeed when started with the iterate generated by
leapfrog. The linear convergence behavior of leapfrog is clearly visible.

Figure 4.10 reports on the convergence behavior of multiple shooting. Multiple shooting
is started from where leapfrog left the job; one can check this by comparing the last iteration
in leapfrog with the 0th iteration of multiple shooting. It is apparent the quadratic conver-
gence behavior and the onset of the plateau at around machine precision epacn ~ 1016,

|Ly, — L*| |Ly — L*|

0
10° —— [ F(Zk)ll2 4 . —= [ F(Z)l
- — -Linear 10 - — -Quadratic| |
1072
10-10 |
1074 1L T~ —
1071 ¢ 3
106 . . . . . . i ! I . |
0 5 10 15 20 25 30 0 1 2 3 4 5 6
iteration k of leapfrog iteration k& of multiple shooting

Figure 4.9 — Convergence of leapfrog for  Figure 4.10 — Convergence of multiple shoot-
St(12, 3), with m = 4. ing for St(12, 3), with m = 4.
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4.5.2 Riemannian center of mass on the space of univariate probability
density functions

We present an application that uses means on a Riemannian manifold M. Given N points
¢; € M, their Riemannian center of mass is defined by the optimization problem

1 2
o= argnin 5 ; d(p, 4:)*,
where d(p, ¢;) is the Riemannian distance between two points on M.

On manifolds of positive curvature there are in general many Riemannian centers of
mass. The Stiefel manifold has also positive curvature and an upper bound on its sectional
curvature is given by 5/4 [Ren13, p. 95].

The Riemannian center of mass, and hence the Riemannian distance, is used to calculate
an average probability density function (PDF). This is a simple problem since we consider the
unit n-sphere S™, which is a special case of Stiefel manifold, but it remains interesting be-
cause it allows for a nice visualization of the outcome. Before presenting a concrete example,
let us introduce some important notions.

Let P be the space of univariate PDFs on the unit interval [0, 1]

P ={g: [0.1] = Rso: ./019@3) de=1}.

By introducing the half-density representation of the elements of P

the set P can be identified with the space
Q={q: [0,1] = Rxo: [lql = 1}.

This identification allows us to attach a spherical structure to P, and the unit n-sphere S™ =
{x € R"! . ||z|| = 1} can be used to approximate the space of univariate PDFs on the unit
interval [0, 1]. We refer the reader to [SK16, §7.5.3] for further details.

Given a certain number of PDFs, one might be interested into computing summary statis-
tics of all them, and this can be given by their Riemannian center of mass. As a concrete
example, we consider three PDFs, sampled at 100 points. This discretization makes them
belong to St(100, 1), i.e., the unit sphere S%°. Figure 4.11 shows the three PDFs on the left
panel, and their Riemannian center of mass on the right panel. The resulting Riemannian
center of mass is a PDF that summarizes the features (e.g., peak locations, spread around the
peaks) of the three original PDFs.

4.5.3 Interpolation on the Stiefel manifold for model order reduction

In this section, we consider an example in the same order of ideas as in [AF11]. Specifically,
we look at the interpolation of linear parametric reduced-order models. It is beyond the scope
of this thesis to discuss reduced-order models (ROMs); for a comprehensive review of model
order reduction techniques, we refer the reader to [BGW15].
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Figure 4.11 — Riemannian center of mass of three PDFs.

Let us consider the dynamical model parametrized with respect to p = [p1, ..., pd]T

{X(t; p) = A(p) x(t;p) + B(p) u(t)
y(t;p) = C(p) x(t; p),

with x(¢; p) € R" the vector of state variables, u(t) € R™ the vector of inputs, and y(t) €
RY the vector of outputs. The system matrices are A(p) € R™*", B(p) € R™™, and
C(p) € RT*™,

The reduced dynamical system is

{icr(t; p) = A.(p) % (t;p) + Br(p) u(t)
y:(t;p) = Cr(P) X, (t; P),

with x,, = V'x the reduced-size vector, and system matrices A, = VAV, B, = V'B,
C, = CV,where V = V(p) € St(n,r). To obtain the matrix V, one needs to apply a ROM
technique. Here, we adopt a proper orthogonal decomposition (POD) with N snapshots
[BGW15, §3.3.1]. Let X be the snapshot matrix that collects N snapshots of the solution at
different times 1, ..., tN:

X = [x(t1;p), .-, x(tn; P)].

Then the POD basis V is chosen as the r left singular vectors of X that correspond to the r
largest singular values. In MATLAB notation:

[U,~,~]=svd(X), then V=U(,1:r).

The process of interpolation on manifolds is explained in [AF11, p. 2180] and [BGW15,
§4.2.1]. It can be summarized as follows, with Figure 4.12 as a reference illustration. For
each parameter in a set of parameter values {p1, ..., px }, one uses a model order reduction
technique to derive a reduced-order basis V; € St(n,r). This yields a set of local basis
matrices {V1, ..., Vi }. One of these matrices (V3 in the figure) is chosen as reference point
to expand a tangent space to St(n, 7). Then, given a new parameter value P, a basis V canbe
obtained by interpolating the local basis matrices on the tangent space. This process remains
the same also for general manifolds.
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Figure 4.12 — Interpolation on St(n, ).

As a concrete application, we consider the transient heat equation on a square domain

with 4 disjoint discs, which model four cookies lying on a square tray in an oven [Tob12,
p. 86]. The problem is discretized with a finite element mesh with piecewise linear basis

functions, resulting in a parametrized dynamical system of size n = 1169 of the form

x(t;p) = —A(p) x(t;p) + b,

where A
p=(p1, p2, p3, pa) €0, 1], A(p) = (Ao + ZpiAi)7
=1

., A4 contain the contributions from the corresponding disc. The

and the matrices Ay, ..
right-hand side b is obtained from the discretization of the source term f = 1. Figure 4.13

illustrates the discretized problem.

n
S5
%
RKAKARERRRL

Figure 4.13 — Mesh for 2 x 2 discs (from [Tob12, Fig. 4.13]).

In our example, p = (p1, 0.10, 0.15, 0.70), with p; € [0.12, 1], i.e, the first parameter
varies while the others are fixed. As ROM technique, we adopt a POD with 500 snapshots in

time, with a reduced-model size r = 4.

We monitored the following error quantities:
« The error between XA/p()D, the basis obtained by directly applying a POD, and ‘A/interp,

the basis obtained by interpolating on St(n, r) as described above:

err-interp = || Veop — Vingerp 2-
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« For the new operating point p = (p1, 0.10, 0.15, 0.70), with p; = 0.40, the relative
error on the output of the reduced model with respect to the output of the full model

(see [BGW15, §2.4]):
lyr(t, B) — y(t, D)L,

Iy (¢, D)l L.

err-y =

To perform the interpolation on the tangent space, the MaTLAB function interpl for 1D
interpolation was used with three different methods: piecewise linear interpolation (linear),
piecewise cubic spline interpolation (spline) and shape-preserving piecewise cubic interpo-
lation (pchip).

Figure 4.14 reports on the convergence behavior of err-interp with respect to the number
K of local basis matrices. It is clear that err-interp improves as we increase the number of
local basis matrices. Moreover, the spline method appears to be the most accurate among the

ones considered.

107 %¢
Method
‘ —¢—linear
1073 L —E6—spline | 4
pchip
2107 ‘
+~
R=
51001
10—()’
10*7 | | |
2 4 6 8 10

number of local basis matrices (K)

Figure 4.14 — Convergence of err-interp.

In the next example, we monitor the convergence behavior of err-y with respect to the
size r of the reduced model, » = 1,2, ...,20. We choose p = (0.12, 0.10, 0.15, 0.70) and
considered five different PODs, with an increasing number of snapshots, 10, 100, 500, 1 000,
2 500 respectively. We estimate that for applications in various fields of engineering, an err-y
of about 1% is already good enough. From Figure 4.15 one can observe that for reduced
models obtained from 500, 1000, 2500 snapshot PODs, the 1% error is achieved for a size
r = 4. When using less snapshots (like 10, 100), one needs r = 9, 10 to achieve err-y = 1%.
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Figure 4.15 — Convergence of err-y.

75






CHAPTER 5

Riemannian Hager-Zhang line
search

In optimization methods that only use first-order information, the convergence to station-
ary points is typically linear at best. In contrast to second-order algorithms like Newton’s
method, this makes it difficult to achieve high accuracy in finite precision arithmetic when
using standard line searches, like the weak Wolfe conditions. As we shall see, a more accurate
line search was proposed by Hager and Zhang [HZ05, HZ06] in the context of a new nonlin-
ear CG method. In this chapter, we explain in some detail how the Hager-Zhang line search
works. Most importantly, we generalize this line-search method to the Riemannian setting.
The algorithm obtained is applied to two optimization problems from [AMS08] in order to
illustrate the improved accuracy. More problems on the manifold of fixed-rank matrices are
presented in Chapter 7.

5.1 Inaccuracy in standard line search

The usual stopping criterion for line search is the weak Wolfe conditions, which we recall
here. Let f be a differentiable objective function. Let xj, be the current iterate, g, = V f(z)
the gradient, and dj, the search direction. The weak Wolfe conditions for the step size oy, > 0
are defined by

f(@g + ardy) — f(xr) < oy digr, diV f(zr, + ardy) = o digr,

with 0 < 0 < o < 1. The first inequality is known as sufficient decrease, or Armijo, condi-
tion, while the second represents a curvature condition. One can reformulate the weak Wolfe
conditions in terms of ¢(ay) = f(xx + apdy) as follows:

> ¢(ax) — ¢(0)

293

3 ¢'(0) ;W) =0 ¢(0), (5.1)
with 0 < § < o < 1. Since we are moving along a descent direction for f, we observe
that the slope ¢/(0) and the difference ¢(c;) — ¢(0) are negative. The first inequality is
thus asking for the decrease in ¢ at oy to be larger than ¢ ¢'(0). The second inequality is
asking for the slope of ¢ at i to be larger than o ¢'(0). Figure 5.1 illustrates the weak Wolfe
conditions in terms of ¢.

In finite precision arithmetic, the weak Wolfe conditions can be difficult to satisfy very
accurately due to roundoff error when z is very close to the local minimum of f. This is easy
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0 Qy «

Figure 5.1 - Weak Wolfe conditions in terms of ¢.

to see for a smooth objective function with a strict local minimum, like the one depicted in
Figure 5.2. The function f is locally quadratic and its minimum can only be determined by
the line-search method within |/ ach, With eqac, the machine epsilon.

6.7e 16

T
1-2.5e-8 1.0 14+2.5e-8

Figure 5.2 — Exact and numerical graphs of f(x) = 1 — 2z + 22 near = 1 (adapted from
[HZ05, §4]). The dotted line is the exact f, while the solid line is its representation in double
precision with epach = 1016,

Remark 5.1. Newton’s method with unitary step size does not have this problem of nu-
merical accuracy, since no line search is involved. Even if a line search is used far from
the optimum, eventually no line search will be used close to it, where we know that New-
ton’s method converges quadratically, and hence this problem will not arise. In a first-order
method with a fixed step this problem will not show up either. By this observation, we want
to stress that the problem of numerical accuracy is due to the line-search method adopted,
and in general it is not intrinsic to first-order methods.

5.2 Approximate Wolfe conditions

Hager and Zhang proposed in [HZ05, §4] to relax the weak Wolfe conditions (5.1) and for-
mulate the approximate Wolfe conditions based on the derivative of the objective function.
Using these conditions as stopping criterion for line search permits to reach an accuracy
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within the machine precision €myach. Roughly speaking, the idea is that finding the zero of
the derivative of a quadratic (which is just a straight line) is better conditioned numerically
than finding the minimizer of the quadratic itself.

The main observation of Hager and Zhang is that, in a neighborhood of a local minimum,
the first condition in (5.1) is difficult to satisfy since ¢(a) ~ ¢(0). This makes the subtraction
o(a) — ¢(0) relatively inaccurate [HZ06, §3]. To prevent this loss of accuracy, they introduce
the approximate Wolfe conditions [HZ05, Eq. (4.1)]

(26 —1)¢'(0) = ¢(an) = 0 ¢ (0), 0<8<05, §<o<l. (5.2)

Here, the first inequality is an approximation of the first condition in (5.1), but the second
inequality coincides with the second condition in (5.1).! The approximation comes from
replacing ¢ by its quadratic interpolant ¢ that satisfies the conditions ¢(0) = ¢(0), ¢’(0) =
¢'(0), and ¢'(ax) = ¢'(ar). In other words, the interpolant ¢ has the form

¢(a) =aad’*+ba+e, d(a) =2aa+0b,

with the conditions

¢ () =2aa+¢'(0)=¢ () = a=-—"—""">=.
So the quadratic model is

¢'(ar) — ¢'(0)

2ay;

ato) = ( )a?+ (0 + 00,

For oo = o, we have

qlay) = (¢’(ak)2— ¢'(0)
_ (¢’<ak>+¢’<0>
2

) o+ ¢'(0) g, + ¢(0)
)%+«w

hence

Q. 2 . '
The finite difference quotient on the right-hand side of the first Wolfe condition in (5.1) can
be approximated by (5.3)
¢lar) = ¢(0)  glaw) —q(0) _ ¢ (ax) +¢/(0)

~

ap (657 2

(5.4)

We emphasize that this expression is only valid for this specific interpolant ¢. With this ap-
proximation, the subtraction ¢(aj)—¢(0) can be computed more accurately as ¢’ (o) +¢'(0),
thereby circumventing the possible cancellation due to roundoff errors in the original differ-
ence ¢(ay) — ¢(0). Substituting (5.4) into (5.1) yields the first approximate Wolfe condition
in (5.2), namely,

(26— 1)6/(0) > & (o).

'For this reason, it would therefore be more appropriate to talk about the approximate Armijo condition
rather than the approximate Wolfe conditions, but we stick with the latter name as in [HZ05, HZ06].
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5.3 The Hager-Zhang bracketing

The algorithm for generating and updating the bracketing interval is based on the secant
and bisection methods, as described in [HZ06, §3]. This is similar to standard line-search
methods, except that the method tries to enforce the approximate Wolfe conditions (5.2). In
this section, we will only give an outline of the algorithm; we refer the reader to [HZ06] for a
more detailed description. We first describe the termination criteria, and then the line-search
procedure itself.

The Hager—Zhang line search is terminated whenever a step size oy, is generated such
that one of the following termination criteria is satisfied:

« T1: The original Wolfe conditions (5.1) are satisfied (with a standard Armijo procedure);

« T2: The approximate Wolfe conditions (5.2) are satisfied (approximation with an in-
terpolant as explained in the previous section) and the additional condition [HZ06,
Eq. (27)]

d(ax) < 6(0) + <, (5.5)

where 5, > 0 is an estimate for the error in the value of f at iteration k.

As in [HZ05, p. 182], for the numerical experiments we took

er = €| f(xn)], (5.6)

where ¢ is a small fixed parameter, ¢ = 10, Condition (5.5) allows for a small growth
in the value of the objective f. Roughly speaking, this criterion permits to terminate
the line search when the value of f at the accepted step (i.e., p(ax) = f(z + ardy) )
is not much larger than the value of f at the previous iterate (i.e., $(0) = f(zy)).

The method from [HZ06, §3] generates a nested sequence of bracketing intervals that are
guaranteed to contain an acceptable step length a. A typical interval [a, b] in this sequence
satisfies condition (5.5) and the opposite slope condition, i.e.,

¢(a) < 4(0) +ex,  ¢'(a) <0,  ¢'(b) >0. (5.7)

This is nothing else than the opposite sign condition of the bisection method translated to
the derivative, meaning that the derivative changes sign in the bracketing interval (and, thus,
must have a root). Figure 5.3 illustrates the opposite slope condition (5.7) for the function
¢(a), for a bracketing interval [a, b].

Given a bracketing interval [a, b] satisfying (5.7) and a point ¢ generated by either a secant
step or a bisection step, the update of the bracketing interval is performed according to the
procedure described in [HZ06, p. 123]. After completing this procedure, we have a new
interval

[@,b] C [a,b],
whose endpoints satisfy (5.7).

The input c for the update routine is generated by a secant step. Basically, this is a step
taken towards a local minimum of ¢(«), given by the recurrence relation of the secant method
applied to ¢'(a), i.e.,

_ad'(b) —b¢(a)
¢'(b) = ¢'(a)
This special secant step is used to achieve rapid convergence. However, if the secant step is
converging too slowly, then a bisection step is used instead. This is checked via the condition
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>
«

Figure 5.3 — The opposite slope condition together with the condition ¢(a) < ¢(0) + &.

(b —a) > ~(bj — a;). The choice v = 0.66 that we made in the numerical experiments
ensures that the length of the interval [a, b] decreases by a factor of 2/3 in each iteration of
the line-search algorithm.

A pseudocode for the Hager—Zhang line search algorithm is outlined in Algorithm 2.

Algorithm 2: Hager-Zhang line search

Generate a starting guess c;
Generate an initial interval [a, b] satisfying (5.7); set j = 0;
while T1 or T2 is satisfied do
Use a secant method to update the bracketing interval;
If the secant method is converging too slowly, use a bisection step
¢ = (@ + b)/2 and update the bracketing interval;
Increment j: j = 5+ 1;
end

5.3.1 Numerical examples

To illustrate the convergence behavior of the Hager—Zhang line search, we consider two
numerical examples in which we compare the results of steepest descent using weak Wolfe
conditions and the Hager-Zhang line search.

As in [HZ05, p. 186], we did not consider objective functions whose optimal cost is zero.
The reason is that if the optimal cost is zero, then the estimate (5.6) for the error in the
function value gets very poor as the iterates approach the minimizer (i.e., as f(xy) tends to
zero). Since we wish to obtain a decrease in the objective value, a small € = 1079 is chosen
for the error tolerance in (5.6). In all the numerical experiments with the Hager-Zhang line
search of this chapter we used the following parameter values:

§=0.1, o =0.9, e=1079, v = 0.66.

5.3.1.1 Quadratic cost function

In this first example, we consider the quadratic cost function f: R"*"™ — R, defined by
f(X) = § trace(XTAX) — trace(X ' B).

81



5. RIEMANNIAN HAGER-ZHANG LINE SEARCH

Here, we choose n = 100, the condition number of the symmetric positive definite matrix A
as K(A) = 10, and B = AX™, where X* is the exact solution to the problem AX = B. The
starting point of the optimization is a random initial guess X ().

From Figure 5.4, we see that the gradient norm stagnates at about 10~ for the weak Wolfe
conditions (WW). In contrast, the approximate Wolfe conditions used by the Hager-Zhang
line search (HZ) allow to reach an accuracy on the order of €,ch (R 10716 in double pre-
cision) in both the objective value and the gradient norm. The error || Xy — X.||/|| X«|| also
shows that a small gradient is needed, and a termination criterion based only on the objective
value is not sufficient.

o 3 O—fi = LI/If], WW | 351 [ WWLS | |
G © = llgsll/llgoll, WW I HZLS
B 0 [1Xi = X[/ X, ], WW "
*i —A—|fi— £.|/If.], HZ r
(o) " 8 = A = |gill/llgoll, HZ
10 | “a " -8 b || Xy - X|/I1X. ), BZ ] ] 25 ¢

A T Ugugogiigig 2

10-10 L

0 20 40 60 80 100 120 140 160 180 200 50 100 150 200

iteration k of steepest descent iteration k of steepest descent
Figure 5.4 — Convergence behavior of steep-  Figure 5.5 — Number of function evaluations
est descent with WW or HZ line search, for ~ per steepest descent iteration, for a quadratic
a quadratic cost function. cost function.

Figure 5.5 reports on the number of function evaluations per steepest descent iteration.
For this example, when using the approximate Wolfe conditions the number of function eval-
uations is about 55% less than the one attained by using the weak Wolfe conditions. This is
most likely because the standard line search wastes a lot of effort in bracketing the function
¢ () that becomes noisy due to roundoff error when « is close to a stationary point.

5.3.1.2 Rosenbrock function

The second example deals with the minimization of the Rosenbrock function, a standard test
function in optimization. A two-dimensional Rosenbrock function is given by the following
expression

2(z,y) =100 (y —23)* + (1 — 2)* + 1,

that has a unique minimum value of 1 which is attained at the point [1, 1]. Figure 5.6 illus-
trates this Rosenbrock function from two different angles?, with the global minimum repre-
sented by a red disk. As one can see, the global minimum lies inside a long, narrow, deeply
curved flat valley. To find the valley is trivial; however, it is very difficult to converge to the
global minimum.

For the numerical experiments, we minimize the above two-dimensional Rosenbrock
function starting from an initial guess very close to the exact solution, using 200 steepest
descent iterations. From Figure 5.7, we see that the gradient norm stagnates very early for
the weak Wolfe conditions, at about 10~2. In contrast, the approximate Wolfe conditions

?A log scaling f(x,y) = log(1 + z) has been applied in order to obtain a decent visualization.
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Figure 5.6 — Log-scaled 2D Rosenbrock function.

allow us to achieve a better accuracy in the gradient norm, even if this stagnates at around
10~?, which remains far from the &0, (= 10716 in double precision). This might be due to
the nature of the valley where the global minimum is lying, and that we are not using any sec-
ond-order information about the valley. However, the error in the solution || X — X.|| /|| X«||
stagnates at around 10~% with the weak Wolfe conditions, while it reaches 1013 with the
Hager-Zhang line search.

Figure 5.8 shows that the number of function evaluations per steepest descent iteration
is in general higher when using the weak Wolfe conditions. This makes the Hager-Zhang
line search not only more accurate, but also cheaper than the standard line search.
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Figure 5.7 - Convergence behavior of steep-
est descent with WW or HZ line search, for
the 2D Rosenbrock function.

CIWWLS
0l s | |
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Figure 5.8 - Number of function evaluations
per steepest descent iteration, for the 2D
Rosenbrock function.

5.4 Riemannian Hager-Zhang line search

The Hager-Zhang line search explained in the previous sections can be readily extended to
Riemannian manifolds by applying it to the retracted objective function ¢(t) = f(R.(t- 1))
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along the search direction n € T, M with ¢ > 0 the step length (see Section 1.2.2). We call
this generalization Riemannian Hager—Zhang line search. The function ¢ considered in the
line-search procedure is given by a composition of the objective f and the retraction chosen.
Since ¢’ is needed in order to apply the approximate Wolfe conditions, we have to compute
the derivative of the retraction dR, (¢ - ) /dt, which is cumbersome for general retractions
R,. Fortunately, in Riemannian optimization we can choose a retraction that better suits our
needs. Moreover, some programming languages (e.g., C++, Python) allow for easy derivation
with automatic differentiation.

Here we state the problem more formally. Let M be a Riemannian manifold, z € M
and R, the retraction at x. Let f: M — R be an objective function. Observe that, for a
fixed tangent vector 7, one has R, : R — M, defined by ¢ — R, (tn). Hence let ¢p: R — R,
defined by t — ¢(t) = f(Rxz(tn)). By chain rule, one can get the derivative of ¢(¢) as

¢/(t) = (VF(Ro(tn)), 5 Ra(tn)) = trace(V f(Ry (tn))" 5 Raltn) ),

where V f is the Euclidean gradient of f.

The retraction R, and its derivative %Rx(tn) depend on the choice of the manifold. In
Section 7.3.8, we will see how to apply the Riemannian Hager-Zhang line search on the
manifold of fixed-rank matrices in the context of a new multilevel Riemannian optimization
algorithm. In the rest of this chapter, we already present two examples to illustrate that
the Riemannian Hager-Zhang line search does provide more accurate results than the ones
obtained when using standard line-search techniques on manifolds. The two examples dis-
cussed below are the Rayleigh quotient on the sphere [AMSO08, p. 73], and the Brockett cost
function on the Stiefel manifold [AMS08, p. 80].

5.4.1 Numerical examples

For both the examples presented in this section, we first detail how to compute the deriva-
tives of the retractions by explicit formulas, and then we switch to the associated numerical
experiments.

5.4.1.1 Derivative of the retraction on the unit sphere
Consider the retraction on the unit sphere S™~! (see Section 1.2.1.1, and [AMS08, p. 57])

T+ 1tn

Ry(tn) = ——1_
) = Tl

defined for all € T,,S™ ! and ¢ € R. Perturbing ¢ with a small ¢ > 0 gives

x4+ (t+e)n
R, ((t =
A+ ) = T ol
1 (z+tn)"n
=——— |z+tn+en—(x+tn) ———5¢|.
|+ tnll2 ( -+ tn]3

From the first-order terms in €, we can identify the derivative

. () (= + tn)T
n
[l + tnll2 2 + tml]3

%Rx(tn) =
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The asymptotic complexity of computing R, is O(n). The derivative %Rgg can be computed
at an additional cost of O(n) via the formula:

(z+tn)n

d Ui
TR (tn) = 7—— — Rz(tn) - +——75-
G ta(01) ) el

|z + tnll2

The O(n) complexity is due to the calculation of the scalar product (x + t1)"7, whose cost
is =~ 2n.

5.4.1.2 Rayleigh quotient on the sphere

We consider the problem of computing a dominant eigenvector of a symmetric matrix A™*".
Let A; be the largest eigenvalue of A, and v; the associated normalized eigenvector. The
largest eigenvalue ); is a maximum value of the function f: S"~! — R, defined by

z — x' Az,

which is known as the Rayleigh quotient on the sphere. The global maximizers of the Rayleigh
quotient are +v;. We refer the reader to [AMS08, p. 74] for a complete characterization of
the critical points of the Rayleigh quotient.

In our numerical experiment, we consider n = 1000, and 600 steepest descent iterations.
We compare the results for steepest descent using the standard Manopt line search with
Armijo condition® versus the Hager-Zhang line search.

Figure 5.9 reports on the convergence behavior of the gradient norm. As in the Euclidean
examples that we discussed in the previous sections, it is apparent that the Riemannian steep-
est descent with Hager—Zhang line search leads to a more accurate result, allowing to reach
double precision with €501 ~ 1016,

100 o losl/lo, SA]
—a—lgi]/lgul, B2

107° +

10 10 |

107 L

0 50 100 150 200 250 300 350 400 450 500 550 600
iteration k of steepest descent

Figure 5.9 - Convergence behavior of steepest descent with standard Armijo (SA) or
Hager-Zhang (HZ) line search when applied to the Rayleigh quotient on the sphere. The
horizontal dashed lines indicate /emach and emach-

*See [BMAS14].
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5.4.1.3 Derivative of the QR retraction on the Stiefel manifold

The next numerical example deals with a cost function defined on the Stiefel manifold, so we
need to compute the derivative of a retraction on St(n, p). We choose the retraction based
on the QR factorization (see Section 1.2.1.3, and [AMS08, Eq. (4.8)])

Rx (t§) = af (X +t€), (5.8)

where qf (A) denotes the @ factor of the decomposition of A € Ry ? as A = QR, where Q
belongs to St(n, p) and R is an upper triangular p-by-p matrix with strictly positive diagonal
elements. This choice makes this decomposition unique.

An explicit formula for the directional derivative D qf (X)[£] of (5.8) is given in the cal-
culations of [Cha12, Eq. (17)]. Here, we rewrite it in the form

SRx(t8) = R = Qup|RTETQ+ QTR

where up is defined for any matrix M € R™*™ as [Chal2, Eq. (1)]

ML miz e mip

1 .
up(M) = triu(M) — diag (3 diag(M)) = a2z - Man
%mnn

Here, triu denotes the operator that extracts the upper triangular part of a matrix, while diag
extracts the main diagonal from a matrix if its argument is a matrix, or builds a diagonal
matrix from a vector if its argument is a vector.

The computational complexity of the thin QR factorization involved in the retraction Ry
is 4p?(n — p/3) [Hig08, p. 337]. Once the retraction has been computed, the derivative & Ry
can be calculated at an additional cost of O(np?).

The derivative of the QR retraction is used in the following section to apply the Rieman-
nian Hager-Zhang line search on the Stiefel manifold.

5.4.1.4 Brockett cost function on the Stiefel manifold

We consider a cost function defined as a weighted sum ), ,uia:}i)Ax(i) of Rayleigh quotients

on the sphere under an orthogonality constraint, x{i)x(j) = 0;;. This function can be written

in matrix form as
f:St(n,p) = R: X — trace(XTAXN),

where A € R™" is symmetric and N = diag(p1,...,tp), with 0 < pg < ... < pp. This
function is known in the literature as the Brockett cost function [Bro93]. Its Euclidean gradient
is given by Vf = 2AX N. We refer the reader to [AMS08, p. 81] for a characterization of the
critical points of the Brockett cost function.

In our numerical experiment, we consider n = 10, p = 3, and 700 steepest descent
iterations. As in the previous example, we compare the results for steepest descent using the
standard Manopt line search with Armijo condition versus the Riemannian Hager-Zhang
line search. Figure 5.10 reports on the convergence behavior of the gradient norm. As in
the case of the Rayleigh quotient on the sphere, the steepest descent with Hager—Zhang line
search is clearly more accurate, allowing to reach double precision &0, &~ 10716,
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10° O— llgxl/llgoll, SA |1
= \gi]l/llg0ll, HZ
107° +
10 10 |
1077 ¢
0 100 200 300 400 500 600 700

iteration k of steepest descent

Figure 5.10 — Convergence behavior of steepest descent with standard Armijo (SA) or
Hager-Zhang (HZ) line search when applied to the Brockett cost function on the Stiefel
manifold.

5.5 Observations and open problems

An open problem for the Hager-Zhang line search is to prove convergence of the method
that employs it. In [HZ05, p. 190], the authors proved global convergence of their conjugate
gradient method only under the standard Wolfe conditions.

One observation is that the quadratic interpolant introduced in Section 5.2 is actually an
instance of a more general interpolation problem known as Hermite-Birkhoff interpolation
[Fin08]. This is a kind of interpolation problem in which one prescribes the function values
and/or derivative values at the given interpolation points. In our setting, we are concerned
with the Hermite-Birkhoff interpolant where the given information contains function values
and/or only first derivative values at given interpolation points. Let us recall that the condi-
tions for the quadratic interpolant ¢ introduced in Section 5.2 are ¢(0) = ¢(0), ¢'(0) = ¢/(0),
and ¢'(a) = ¢ (ax), and let us define the error e(«) as

e(a) = ¢(a) — g(a).

A bound for the error term is given by [Fin08, Eq. (23)]. By applying the theory in [Fin08] to
our case, we obtain the error bound

%)w®wﬂ
—

()] < o (Ja - arl + 5

where ¢ is in the interval spanned by all the interpolation points, i.e., ¢ € [0, ag].
This means that when replacing the quotient

¢(ax) — ¢(0) with q(ou) — q(0)
Qg Qp

in Equation (5.1), we are actually committing an error e(cy,) /g, that can be bounded by
le(ar)] < 15 0 [9(@)].
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5. RIEMANNIAN HAGER-ZHANG LINE SEARCH

The issue here is that we do not know a priori the expression ¢, nor the expression of ¢
(which depends on the interpolation knots).

As we observed in Section 5.3, the condition (5.5) allows for a small increase in the ob-
jective function. This suggests that the Hager-Zhang bracketing might be viewed as a non-
monotone line-search procedure [GLL86]. In the Riemannian framework, [GSAS20] recently
proposed a new Riemannian gradient descent with a nonmonotone line search.
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CHAPTER 6

Multigrid methods

Multigrid methods are a class of methods for discretizing and solving PDEs and, in particular,
they are among the most efficient numerical schemes for the solution of elliptic PDEs. The
underlying ideas of multigrid methods lend themselves to several generalizations in which
grids are not necessarily used, like multilevel, multiscale and multiresolution methods. The
algebraic multigrid method is another generalization which extends the fundamental multi-
grid ideas to matrix problems in a purely algebraic manner.

In this chapter, we will introduce standard multigrid and describe the classical multigrid
components. We will also present some concrete numerical examples along the way. The aim
is to provide an easy introduction to multigrid methods before Chapter 7, where we extend
the multigrid ideas to optimization on Riemannian manifolds. Most of this chapter is based
on [TOS00, BHMO00, Hac03].

6.1 Some notation

The continuous boundary value problem (BVP) is

{Lgu(x) 2 x) xecn,

L'u(x) = fl'(x) = el =0, 61)

where L is an elliptic operator and L' is a boundary operator. In this chapter, u always
denotes the exact solution of the continuous problem, and uj, the exact solution of the discrete
problem. Moreover, we always consider two-dimensional BVPs, which is sufficient for the
applications in Chapter 7. For the discretized quantities, we use the term of discrete differential
operator, and of grid functions and grid operators instead of vectors and matrices, respectively.
The discrete boundary value problem is

{quh(fc,y) = [i(z,y) (x,y) € 2, 62)
Lguh(xay) :f}{(xvy) (xay) GFh:tha
where h is the discretization parameter, and

Uh(l’,y) = uh(xzayj) = uh(thujhy)

For the sake of notation, often we simply write u; j. These coefficients are collected in a
matrix U.
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6. MULTIGRID METHODS

Remark 6.1. The discrete elliptic operator Lf and the discrete boundary operator Lf; are
grid operators, i.e., they are mappings between spaces of grid functions.

We usually write the discrete boundary value problem in the shortened form
Lyup = fa in {2y,
where uj, and f, are grid functions on (25, and Ly, is a discrete linear operator
Ly G(£20) = G(£21),

G({2p,) being a finite dimensional vector space of grid functions on {2;,.

6.1.1 Inner products and norms

We define the following inner product for grid functions [TOS00, §1.3.3]:

where #(2;, denotes the number of grid points in §2,. The scaling factor (#2;,) ! allows
us to compare grid functions living on different grids, and also the corresponding continuous
functions on (2. The induced norm is

1 1
lunlla = | 7= D wi(®) =/ 25 lunllr, (6.3)
#2n wgh " #2
where || - || denotes the usual Frobenius norm of a matrix. We point out that (6.3) is just the

discrete analogue of the L?-norm of a two-dimensional continuous function, i.e.,

fulls =/ [ v(@)da.

For the discrete operators Ly, on G({2), the operator norm is defined as the spectral norm

| Brlls = \/ p(BrB}),

where By, is any linear operator Ly, : G(£2;) — G({21,), and p is the spectral radius.

6.1.2 Stencil notation

The so-called stencil notation is used to represent discrete operators Ly. We first define it
for an infinite grid. A general stencil [sy, s, ] defines an operator on the set of grid functions
wp, by
[Sfﬂ@}hwh(wv y) = Z s,ﬂ,@wh(x + K1hg, y+ K2hy)'
K1,K2

Since we are usually interested in discrete operators defined only on finite grids (25, in order
to identify L{* with its stencil representation we need to restrict the stencil [sy, ., )5 to 2.
This implies that only a finite number of coefficients [s,x,]n are nonzero. In practical ap-
plications, the five-point stencil or the compact nine-point stencil are commonly used; they
are, respectively,

50,1 $-11  So,1  S1,1
$-1,0 800 S1,0| > $-10 S0,0 51,0
50,—1 A §-1,-1 S0,-1 S1,-1],
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Close to the boundary points, the stencils may need to be modified to include an appropriate
treatment of boundary conditions.

In this multigrid presentation, in order to fix our ideas, we will often refer to the following
model problem.

6.1.3 Poisson’s equation

Poisson’s equation is a classical model for a discrete elliptic boundary value problem. We
consider the two-dimensional discrete Poisson equation with Dirichlet boundary conditions
{—Ahuh(x,y) = [l (@y) (z,y) € O, 64)

Uh(l',y) :f}{(xvy) (:E?y) EFh'

Here, 2 = [0,1]> € R?, with h = 1/n,n € N, and L;, = —A, is an approximation of the
partial differential operator L, defined by Lu = —Au = —uy,; — uyy, on the square grid Gj,.

6.2 Principles and properties

6.2.1 Fundamental principles

In this section we introduce the two fundamental principles of a multigrid method using
problem (6.4). Let us consider a grid function uZ”H (xi,y;j) which is updated from its neigh-
boring points using a lexicographical Gauss—Seidel method (1 is the iteration index):

m 1 m m
up (i ) = 4 (22 (i ) + (s =y yy) + w2 + by yy) 65
+Uhm+1($i, Yj — h) + u}f(:ci,yj + h)} .

Figure 6.1 illustrates the stencil for the lexicographical Gauss—Seidel method. The approxima-
tion at (z;,y;) (black dot in the middle) is updated from its four neighboring points. Among
these, the two points in the lower-left corner (represented by the red dots) have already been
updated; the other two points (represented by the white dots) still have to be updated.

m
ouh
um+1 umn
h ) ® Te) h
Liy Yj
(]
uzlJrl

Figure 6.1 — Stencil of the lexicographical Gauss—Seidel method.

Let e} be the error of the approximation at iteration m with respect to the exact discrete
solution, defined by

en' (i, y5) = unl@i, y;) — wp' (24, ;).
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6. MULTIGRID METHODS

If one applies the Gauss—Seidel method (6.5) to Poisson’s equation (6.4), one can observe that,
after a few steps, the error of the approximation becomes smooth. It does not necessarily
become small, but it does become smooth. This is illustrated in Figure 6.2, where we have
reported the error for a random initial guess, the error after 5 iterations, and the error after 10
iterations. The smoothness of the error after 10 iterations, even when starting with a random
initial guess, is striking.

(0) e

Figure 6.2 — Error of lexicographical Gauss—Seidel applied to problem (6.4): (a) random initial
guess; (b) after 5 iterations; (c) after 10 iterations.

Hence, the iteration formula (6.5) can be interpreted as an error averaging process. We
now introduce the two basic ideas, or principles, underlying every multigrid (or even multi-
level) scheme.

g \

Two basic principles of multigrid:

1. Smoothing principle. Many classical iterative methods (e.g., Gauss—Sei-
del) when applied to discrete elliptic problems show a strong smoothing
effect on the error of any approximation.

2. Coarse-grid correction principle. A smooth error term can be well rep-
resented on a coarse grid. Indeed, a grid function that is sufficiently smooth
on a given grid can be transferred on a coarser grid without any significant
loss of information.

\. J

To analyze this behavior, we look at the Fourier expansion of the error e}, = €}'. Ata
given iteration m, this can be written as (we omit the superscript m for readability)

n—1
k¢
en(z,y) = > arepy (z,y), (6.6)
k,f=1

where cpZ’E(x, y) = sin(kmz) sin(¢my) are the eigenfunctions of the discrete Laplacian Ay,. The
fact that ej, becomes smooth after some iterations means that the high-frequency components
in (6.6), i.e., the terms o, ¢ gofl’é(m, y) with k or ¢ large, become small after a few iterations,
whereas the low-frequency components hardly change.

Let us consider a grid (2, with discretization parameter h = 1/n and a coarser grid 27
with mesh size H > h. For example, we can choose H = 2h, which corresponds to what is
called standard coarsening. One can observe that, for (z,y) € 245, it holds

P z,y) = " " (2, y). (6.7)

n—k,f( k,n—[(

e (x,y) = = T,y) = —¢
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6.2. Principles and properties

In other words, on the coarse grid (2o}, these four eigenfunctions coincide. To verify this,
take for instance —¢™ %*(z, ), and observe that

—p" Rz, y) = —sin((n — k)mz) sin(fry)

= —sin (21'71' — k71'2z) sin <€7r2]>
n n

24 27
= Sin(k’ﬂ'Z> sin (EWJ) = oMz, y),
n n

where in the second line we used the fact that for (z,y) € (29 one has ¢ = iH = 2i/n
and y = jH = 2j/n, while in the third line we used the trigonometric formula sin(a —
B) = sin acos 8 — cos acsin 3 to simplify the first factor. Similar calculations can be carried
out to show the other equalities in (6.7). Moreover, note that for k or ¢ equal to n/2 the
above eigenfunctions vanish on {2, because sin(i7) and sin(j7) vanish for all 4, j. So in
the context of model problem (6.4), it is reasonable to separate low and high frequencies as
follows.

Definition 6.2. For k, £ € {1,...,n — 1}, we say that ©* is an eigenfunction (or a compo-
nent) of low frequency if max(k,¢) < n/2, or of high frequency if n/2 < max(k,¢) < n.

Legend:

® coarse-grid points

e fine-grid points

o sampling of the eigenfunc-
tion on the coarse grid

gl
PE3E

(a) low-frequency components (b) high-frequency components

Figure 6.3 — Low- and high-frequency components for a 1D example (N = 4, n = 8). Adapted
from [TOS00, p. 18].

Remark 6.3. On the coarse grid (255,, only the low frequencies are visible, because all high
frequencies coincide with a low frequency. This can be seen from (6.7) where, if max(k, ¢)
is low (i.e., smaller than n/2), then ©* is a low frequency and " %"~ is a high fre-
quency. The phenomenon of high frequencies coinciding with low ones is called aliasing of
frequencies. Figure 6.3 illustrates some low- and high-frequency components and the alias-
ing phenomenon. It is clear from panel (b) that the undersampling on the coarser grid makes
the high-frequency components (solid black lines) indistinguishable from the low-frequency
components (dashed gray lines).
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6. MULTIGRID METHODS

Remark 6.4. The terms “high” and “low” frequency are related to both the fine grid {2, and
the coarse grid {2y considered. They are not absolute notions.

6.2.2 Multigrid features and properties

The combination of the multigrid iteration together with an appropriate smoother leads to a
highly efficient Poisson solver. The most desirable property of a multigrid method is the A-
independent convergence. It can be observed numerically that the convergence of a multigrid
Poisson solver is essentially independent of the size of the finest grid in the multigrid cycle.
We show this property through a numerical experiment in Section 6.3.5.1.

As confirmed by mathematical theory, multigrid methods work well for elliptic PDEs
with a sufficient degree of regularity and formulated on nice domains. However, in practical
applications, for example for PDE systems with non-elliptic features and nonlinear terms,
such a theory is usually not so widely available.

The typical components of a multigrid method are the smoothing procedure, the coarsen-
ing strategy, the coarse-grid operators, the intergrid transfer operators and the cycle type.

Concerning the grids, a hierarchy of coarse grids is needed for multigrid. Assume n is a
power of 2, n = 2P, p € N*, then the discretization parameter is h = 27P. Then we can form
the grid sequence

Oy opy apy ooy g,

where (2, is the coarsest grid. From the multigrid point of view, unstructured grids are a
complication. Usually finite differences and finite volumes are used with Cartesian grids,
while finite element methods are used with unstructured grids.

Multigrid can be used as an iterative linear solver for a discrete elliptic BVP. It can also
be used as a solver for the differential problem itself, i.e., the error is computed with respect
to the differential problem. This version is called full multigrid (FMG). The FMG can be
optimal: the number of operations is O(N), where N is the number of unknowns in the
problem considered. From a practical point of view, efficiency means that the proportionality
constants in this asymptotic term O(/N') are moderately small.

Multigrid methods have a wide range of applications, as they are not restricted to a certain
discretization approach, but can be used in connection with any type of grid-based discretiza-
tion, and also finite element meshes. Adaptive versions of multigrid are possible, in which
finer and finer grids are only constructed in those parts of the domain where the current
discretization error is significantly large. For one-dimensional problems, multigrid usually
degenerates to well-known optimal solvers, so it does not really make much sense to discuss
it in the 1D case, unless for analysis purposes.

6.3 Going into more detail of multigrid

As we mentioned above, multigrid is based on two main principles: error smoothing and
coarse-grid correction. In this section, we discuss these two aspects in more detail.

6.3.1 Error smoothing

Classical iterative solvers like Jacobi or Gauss—Seidel exhibit smoothing properties that de-
pend on the choice of a relaxation parameter value. For the Gauss—Seidel method, they also
depend on the ordering of the grid points. Iterative methods of Jacobi or Gauss—Seidel type
are also called relaxation methods (or smoothing methods, or smoothers) when they are used
for the purpose of error smoothing.
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There exist many classical iterative solvers for the solution of a linear system Au = f.
The general iteration of an iterative solver for this equation can be recast as

u™ = Mu™ + s, m=20,1,...,

where M is called iteration matrix. So the original equation Au = f is equivalent to the fixed
point equation u = Mu + s. There are several ways of specifying M, e.g., as an approximate
solution of the defect equation, via splitting, or preconditioning.

The asymptotic convergence speed is characterized by the spectral radius of M, i.e.,

p(M) = max{|\;|: \; eigenvalue of M }.

In other words, the spectral radius is the asymptotic convergence factor of the iteration, i.e.,
for m — oo,
N e
lim ——
m=00 lu —um||

< p(M).

6.3.1.1 Jacobi type iteration
If we apply the w-Jacobi method to our model problem (6.4), we get the iteration

m+l _ . m wh? wh? 2

up, up' = g (Lnup’ = fa) = wp® = == Lyu” + - fa
wh? h? wh?
= (Ih — 4Lh> uzn + th = Sh(cu) u? + Tfh,

where we defined the iteration matrix Sp(w) = I}, — ‘”ThQLh. To study the convergence
properties of the method, we need the eigenfunctions of Sy, which are given by

9027£(a:) = sin(kmx) sin({7y),
with (z,y) € 2,and k, £ =1,...,n— 1. It is well known that the asymptotic convergence
speed of w-Jacobi is p(Sy,) = 1 — O(wh?), which is unsatisfactory [Saa03]. Nonetheless,
w-Jacobi becomes more valuable if we look at it as a smoother, and not as an iterative solver.

Indeed, if w is appropriately chosen, then the highly oscillatory eigenfunctions are reduced
much more quickly.

6.3.1.2 Smoothing properties of Jacobi relaxation

In this section, we recall some results for the Jacobi relaxation. Let wy, and wj, denote the
approximation before and after one relaxation step, respectively. The errors e, and €, before
and after one relaxation step are defined by

€ = Up — W, and en = Up — W,

Since the eigenfunctions of the operator form a basis for the space of grid functions, we can
expand these errors into discrete eigenfunction series

n—1 n—1

k.0 _ k.t k.t

=D kepyts En= D X ke
k=1 k=1
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For the analysis, we need to look at the factors Xﬁ’ﬁ appearing in the expansion of €;,. More-
over, we need to distinguish between low and high frequencies. We emphasize that this
distinction depends on the coarser grid {255, used. The smoothing factor associated to the
iteration matrix Sj(w) is given by the worst factor among all Xﬁ’g, i.e., the greatest in abso-
lute value among those associated to high frequencies. This is formalized by the following
definition.

Definition 6.5 (Smoothing factor of Sj,(w)). The smoothing factor is the worst factor by
which high-frequency error components are reduced per relaxation step, defined as

p(h;w) = maxc{[x;;" (@)[: /2 < max(k, £) <n — 1},

high frequencies

and its supremum p* over h

p*(w) = sup p(h;w),
heH

where H denotes a set of reasonable mesh sizes.

The smaller the smoothing factor, the better are the properties of a given relaxation pro-
cedure. It turns out that w-Jacobi has no smoothing properties (i.e., (h;w) > 1) forw < 0
or w > 1. Conversely, for 0 < w < 1 the smoothing factor is strictly smaller than 1, indepen-
dently of h. The optimal choice of w is given by the value 4/5, which attains the minimum

wg[l()f:ﬂu (w) = p"(4/5).

This means that one step of w-Jacobi with w = 4/5 reduces all high-frequency error compo-
nents by at least a factor of 3/5 (independently of the mesh size h).

Remark 6.6. Gauss—Seidel with over-relaxation parameter w* has asymptotic convergence
speed p(w*-GS) = 1 — O(h), instead of p(GS) = 1 — O(h?). For model problem (6.4), we
have the factor ;1(GS-LEX) = 0.50 for lexicographical Gauss—Seidel, corresponding to the
choice of relaxation parameter w = 1.

6.3.2 Transfer operators

We describe the intergrid transfer operators on the interval [0, 1] referring to Figure 6.4 for
illustration. Let the finer level be /¢ = 3, so that we have the discretization parameter h =
273, then the number of interior grid points on the finer level is m = 23 — 1 = 7. For
the coarser level, /, = 2, one has the discretization parameter H = 272 = 2hand M =
22 — 1 = 3 interior grid points. On the finer level, we consider the grid function u =
(ug,ug,. .. ,U7)T € R7, which we transfer on the coarser level to obtain the grid function
v = (v1,vg, 1)3)T € R3. For the restriction operator, one option is to adopt the full-weighting
(FW) restriction (panel (a) of Figure 6.4). In our example, this is an operator R: R” — R3,
defined by

11 1 u1l
U1 1 2 1
U
v | = 101 1 2
2 = 1 2 1
U3 11 1
1 2 a4l |y
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Another choice for the restriction is the injection operator (panel (b) of Figure 6.4)

uy
o] 010 .
v | = 010
vs 010},

For the prolongation, the most common choice is to use linear interpolation. In our example,
the prolongation operator P: R — R is defined by

NI— N

N[— D[

Observe that we have the relationship P = 2R'. Prolongation by linear interpolation is
illustrated in panel (c) of Figure 6.4.

() (b) (©)

Figure 6.4 — Some intergrid transfer operators for the example described in Section 6.3.2: (a)
full-weighting restriction; (b) injection; (c) prolongation by linear interpolation.

We now have all the necessary multigrid components to describe the basic two-grid cycle.

6.3.3 Two-grid cycle

The two-grid cycle is the natural basis for any multigrid algorithm, and lends itself to be
easily generalized. We describe it for the solution of a discrete linear elliptic BVP

Lpup = fa,
on a grid §2;,. Let the defect, or residual, be defined as
d;zn = fh - Lhu;Lna
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where uy, is the exact discrete solution, and uj' is an approximation of the solution wy, at
iteration m. In a (linear) multigrid method, one usually solves the defect equation

LhBZL = d;ln
for the error e}'. The defect dj' is transferred to the coarse grid {2y by using the restriction
operator }IL{

m o Hdm

H = 1p ap -
Then one has to solve the coarse-grid correction equation

for the correction €%}, with Ly : G(£25) — G(f21). The correction is then transferred to the
fine grid (2), by using the interpolation (or prolongation) operator I7;:

~m __ Th sm
€h _IHeHv

and used to correct the approximation wy,.
The iteration operator associated to the two-grid cycle is given by

Mp: G(£2s) = G($2,), My = I — CpLp,
where C}, = 1 I}EIL;; IH . So the approximate solution at iteration m is given by:
upt = (I, — M) Ly, o

The pseudocode for the two-grid cycle is presented in the following box.

fori=1,2,...,do
(1) Pre-smoothing: iy, = SMOOTH" (u\"), Ly, f»)

(2) i. Compute residual: d;, = f, — Lpuy,
ii. Restrict the residual: dg = I f? dp,
iii. Solve Lyey = dy for ey
iv. Prolong the coarse-grid correction: e, = I}ey

v. Apply the correction: 4y = up + ey,
(3) Post-smoothing: ugjﬂ) = SMOOTH"?(ap, Ly, fr)

end for

6.3.4 Multigrid cycle

As mentioned earlier, the two-grid cycle can be easily generalized to more complex cycles. By
recursively applying the same idea to coarser and coarser grids, one can obtain the multigrid
cycle. Let us consider the sequence of coarser and coarser grids {25, i.e.,

thfa 'thf_l, RN thc’
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where /¢ denotes the finest level, /. the coarsest level, and ¢, < ¢ < /¢. Moreover, let the
restriction and prolongation operators be

I G(2) = G(20),  Ti1: G(21) — G(20).
The multigrid algorithm, or (¢; 4+ 1)-grid cycle, is described in the box below [TOS00, p. 47].

7

u2n+1 = MGCYC(& s uznv Ly, fo, 11, VZ)
(1) Pre-smoothing: u;* = SMOOTH"* (u}*, Ly, f;)
(2) i. Compute defect: dJ* = f, — Loup®

ii. Restrict the defect: J}ﬁ_l = Igild’f

iii. Solve L,_1&}" | = d* | for & | by:
o If / = /., use a direct or fast iterative solver;

o If / > /., by performing ~y (> 1) ¢-grid cycles, using the zero grid
function as a first approximation:

ety =MGCYCY(£ —1,7,0, L, gz’il’ vi,2)

iv. Prolongation of the coarse-grid correction: € = I, f_lézn_l

v. Apply the correction: uT’after CoC _ap + ey

(3) Post-smoothing: u’Z’“H = SMOOTH"2 (u’Zl’after CGC L., fe)

The parameter 7 is called the cycle index. In practice, only v = 1 (V-cycle) and v = 2
(W-cycle) are used [BHMOO, p. 42]. Figure 6.5 illustrates a V- and a W-cycle with v = 2,
when using four grid levels. The black bullet ® denotes a smoothing step, while o represents
a direct solution step on the coarsest level /..

2h
4h
8h

Figure 6.5 — Illustration of a V- and a W-cycle with cycle index v = 2 and four grid levels.

6.3.5 Laplace equation on the unit square

Let us have a look at a concrete example by applying the multigrid cycle to the two-dimen-
sional Laplace equation on the unit square {2 = [0, 1]?

U= + (6.8)

—Au= f(z,y) (z,y) € £, A, Pu Pu
u(z,y) =0 (z,y) € 012, ox2 " oy2’
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We discretize this problem with a uniform grid of m = 2% — 1 interior grid points in each

direction with h = # = 27% The forcing term is

+1
fig = f(xi,y5)

fori,j=1,...,m,witha; =ih, y; = jh and u; j; = u(z;, y;).
Using centered finite differences to discretize the second derivatives give

7z (TUi-1 + 2y — i g) + o5 (Suigon + 2uig — i) = fig

fori,j =1,...,m. Example fort = j = 1:

1 1
ﬁ(—um + 2uy1 —ug1) + ﬁ(—ulo + 2u1y — ui2) = fi1.

Let U be the matrix that collects all the unknowns at the grid points. The boundary conditions
do not enter in the matrix U, and they are moved to the right-hand side. For example, the
previous expression is rewritten as

1 1 1 1
ﬁ@un —ug1) + ﬁ(2uu —ui2) = fi1 + o1 + 7,3 10

The coefficients u1; and ug; appear on the first column of U, while w1, and w12 appear on
the first row of U, and so on. This suggests the compact matrix form, known as Lyapunov
equation,

AlDU + UAlD == C, (69)

where

and C' contains the samplings of the function f(x,y) on our grid plus the boundary condi-
tions. By applying vectorization, (6.9) becomes

(I ® Ap+ Aip @ I)vec(U) = vec(C).

For a two-dimensional problem, the discretized second derivative is

4 -1 -1
-1 4 -1

It is easy to see that there is a relationship between A;p and Ayp since
Ap=1®Ap+Ap®I.
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6.4. The Full Approximation Scheme (FAS)

6.3.5.1 Numerical example

Here, we consider the model problem (6.8) with f(x,y) = 0 and a non-homogeneous Dirich-
let boundary condition at the upper side of the square domain, given by

u(z,1) =1,

and a homogeneous Dirichlet condition elsewhere on the boundary. We solve this problem
using full-weighting restriction, linear interpolation and a multigrid V-cycle with a smoother
based on w-Jacobi. The initial guess is a random grid function that satisfies the Dirichlet
boundary conditions. A total of 20 multigrid V-cycles are carried out.

Figure 6.6 shows the solution and error surfaces at the 10th iteration with discretization
level ¢¢ = 5, corresponding to a total of 1089 grid points. One can observe that the error is
smooth, with a peak on the order of 1075,

Solution - MG iteration 10 Error - MG iteration 10

—
=_—<
—
S
S
=

0.5

Figure 6.6 — Solution and error surfaces at the 10th iteration for the problem described in
Section 6.3.5.

Figure 6.7 shows the convergence behavior of the error norm! for different finest levels,
lr =17,8,9,10. It appears that twenty multigrid iterations permit to achieve an error norm
in the order of 10~ 1!, The convergence behavior is essentially independent of the size of the
finest grid in the multigrid cycle. As we mentioned above, this is one of the most desirable
properties of multigrid.

6.4 The Full Approximation Scheme (FAS)

Although multigrid methods were originally introduced to solve large-scale linear systems
deriving from the discretization of PDEs, they can also be used to solve nonlinear problems
[TOSO00, p. 147]. Generally speaking, there are two approaches to do this:

o Global linearization method. For example, in Newton’s method applied to a nonlinear
problem, at each iteration step one has to solve a linear system. Multigrid can be used
to solve each of these linear problems.

"The norm considered here is the induced norm of a grid function as defined in Section 6.1.1, Equation (6.3).
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10°

1010

0 ) 10 15 20
iteration 7 of multigrid V-cycle

Figure 6.7 — The mesh-independent convergence of (linear) multigrid for the problem de-
scribed in in Section 6.3.5. All lines are almost on top of each other.

« Apply multigrid directly to the nonlinear problem. The two multigrid principles (error
smoothing and coarse-grid correction) are not restricted to linear problems but can
be immediately extended to nonlinear problems. This leads to the Full Approximation
Scheme (FAS). For linear problems, the FAS reduces to the linear multigrid we discussed
above. FAS also constitutes the basis of a number of advanced numerical techniques,
and can be generalized to optimization problems, as we will see in Chapter 7.

In this section, we are going to illustrate the FAS by means of the model problem

{N(u) = f? ing,

B(u)=fI' onT, (6.10)

where N indicates a nonlinear elliptic differential operator, while B is a boundary operator.
By discretizing (6.10) on a finite-dimensional grid (2, with discretization parameter A, one
gets a nonlinear system of discrete equations

Nip(un) = fns (6.11)

where N}, is the discrete nonlinear operator. On the coarse grid, we have the usual coarse
discretization of this operator, denoted by Ny.

Remark 6.7. In (6.11), boundary conditions have been eliminated so that they are now im-
plicitly contained in the discrete right-hand side f}.

6.4.1 FAS two-grid cycle

We describe one iteration cycle of the nonlinear (h, H) two-grid method for solving (6.11).
The main difference with respect to linear multigrid is that here we do not work with the
errors, but with the full approximations to the discrete solution themselves. The residual
equation on (2, reads

Nu(wp) = rn + Np(up), (6.12)
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6.4. The Full Approximation Scheme (FAS)

where wy, = @y, + ey, is the full approximation, uy, is the smoothed approximation and ey, is
the error. We point out that since the discrete operator IV}, is nonlinear, we have generally
Np(up+ep) # Np(up)+ Np(en). This is the reason why it is not sufficient to work with the
errors ey, but we need to use the full approximations wy, = uy, + ej, instead. On the coarse
grid 2f, Equation (6.12) is approximated by

Nu(ww) =75 + Nu (i), (6.13)

wyg = upy + ey being the full approximation on the coarse grid, and uy = I }{{ uyp,. This
equation has to be solved for the coarse-grid correction ep. After solution on the coarse
grid, the coarse-grid correction ey is computed as the difference of @y and wy, and then it
is transferred to §2;, by using the prolongation operator I%.

Observe that in FAS the restriction operator I ,{f for the relaxed approximation uy, is usu-
ally different from 77, which is used to transfer the residual 7, to the coarse grid. The most
common choice for I H s injection, for vertex-centered grids, while for I} a full-weighting
restriction operator is used.

The FAS two-grid cycle is described in the box below. Here, SMOOTH stands for a
nonlinear relaxation procedure having appropriate error smoothing properties, such as, for
instance, nonlinear Gauss—Seidel or Jacobi method, and their weighted versions.

fori=1,2,...,do
(1) Pre-smoothing: iy, = SMOOTH" (u\"”, Ny, f,)

(2) i. Compute residual: r;, = f, — Np,(up)
ii. Restrict the residual: rg = I f T
iii. Restrict the smoothed approximation: ugy = I,
iv. Solve Ny (uy + ey) =rg + Ny(ug) for ey
v. Prolong the coarse-grid correction: e, = I%ey

vi. Apply the correction: 4y, = up, + ep,
(3) Post-smoothing: ugﬂ) = SMOOTH"? (4, Np, fr)

end for

6.4.2 Formulating FAS for a 2D BVP

We are now ready to show how to apply FAS for the solution of a concrete nonlinear boundary
value problem. Consider the two-dimensional boundary value problem [BHMO00, p. 102]

{-Au(x, y) +yule,y) e ) = f(r,y) in g2, (6.14)

u(z,y) =0 on 042,

with £2 = [0, 1]2. We consider a uniform grid with n = 2% +1 grid points in each dimension,
(xi,yj) = (th, jh) for 0 < i,j < n—1. As before, we discretize the second derivatives using
second-order accurate centered finite differences. This leads to the discretized problem

—Ui—1, + 2Uij — Uit1j 4 T + 2ui 5 — Ui i1
h? h?

.
+yui e = fi;
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for 0 < 4,5 < n—1. Moreover, we consider the homogeneous Dirichlet boundary conditions

Up,j = Un—1,j = Uj,0 = U;n—1 = 0forall, j, whenever these terms appear in the equations.
Because the nonlinear component equations of the system are nonlinear, the nonlinear

Gauss—Seidel method uses scalar Newton’s method to solve the (i, j)th equation for u; ;:

AU — Uip1,j — Uim1,j — Uij—1 — Uij+1
h2

We get the following nonlinear equation

+yuig e = fij.

2 Wi j 2
F(uij) = 4uij +yh uij e — h™fij — wip1j — vio1j — uij—1 — ijp1 =0,

that has to be solved for u; ;. The fixed-point iteration function of Newton’s method is

QNewton(:E) =T —

Since the derivative of F'(u; ;) with respect to u; ; is
F’(ui,j) =4+ ’7h2(1 + u@j)e“ivﬂ',
we obtain the update

2 i i 2
duij +yh uij e — W7 fi i — wig1j — wic1j — Uij—1 — Ui
44 yh2(1 + u; j)etiy '

Wij = Wij —

On the coarsest level /. = 1, we have a 3 x 3 grid with only one interior point u; 1. The
equation that has to be solved for u; ; is

16”1’1 + "Y’Ulel euLl = le.

This equation is nonlinear in uy 1, so its solution on the coarse grid can be obtained by using
Newton’s method. The corresponding Newton’s iteration function is
162 + ’yxew — f171
16+~ (1+xz)er

PNewton (.%') =

6.4.2.1 Numerical example

For problem (6.14), let us consider the forcing term

fly) =2((x —2*) + (y — v*)) +v(z — 2%)(y — y*) e@=e*)y—v?)

which corresponds to the exact solution

u(z,y) = (x —2°)(y — y°).

We choose /¢ = 5, corresponding to a total of 1089 grid points. We solve this problem
using full-weighting restriction, linear interpolation and a FAS V-cycle with a smoother based
on nonlinear Gauss—Seidel. The initial guess is a random grid function that satisfies the
homogeneous Dirichlet boundary conditions. A total of twenty FAS V-cycles are carried out.
Figure 6.8 illustrates the shape of the solution and the error at the last iteration. It is clear
the smoothness of the solution and of the error, which is in the order of 10712,

Figure 6.9 reports on the convergence behavior of the error norm for several finest levels,
4 = 7,8,9,10. As it appears from the numerical experiments, FAS also exhibits a nice
mesh-independent convergence behavior, and 20 iterations allow to reach a plateau in the
error norm at around 10712,
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Figure 6.8 — FAS solution and error surfaces at the 10th iteration for the problem described
in Section 6.4.2.
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Figure 6.9 — The mesh-independent convergence of FAS for the problem described in Sec-
tion 6.4.2. All lines are almost on top of each other.
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CHAPTER 7

Multilevel Riemannian
optimization for low-rank problems

7.1 Introduction

The topic of this chapter is the efficient solution of certain large-scale variational problems
arising from the discretization of elliptic PDEs. We combine in particular Riemannian op-
timization on the manifold of fixed-rank matrices with ideas from nonlinear multigrid and
multilevel optimization. The low-rank manifold will allow us to approximate the solution
with significantly less degrees of freedom. In addition, the idea of recursive coarse-grid cor-
rections from multigrid will lead to almost mesh-independent convergence of our algorithm
similar to classical multigrid algorithms.

Approximating very large matrices by low rank is a popular technique to speed up nu-
merical calculations. In the context of high-dimensional problems, this is done in so-called
low-rank matrix and tensor methods, where tensors are the higher order analog of two-di-
mensional matrices [Hac12]. One of the early examples are low-rank solvers for the Lya-
punov equation, AX + XAT = C, and other matrix equations; see [Sim16] for a recent
overview. In order to approximate the unknown solution X by low rank, an iterative method
has to be used that directly constructs the low-rank approximation. Of particular importance
for this thesis are methods that accomplish this via Riemannian optimization [AMS08]: the
minimization problem (obtained after a possible reformulation of the original problem) is
restricted to the manifold of fixed-rank matrices thereby guaranteeing a low-rank represen-
tation of critical points. Examples of such methods are [MMBS13, Van13, Ste16] for matrix
and tensor completion, [SWC12] for metric learning, [VV10, MV14, KSV16] for matrix and
tensor equations, and [RO18, RNO19] for eigenvalue problems. In the context of discretized
PDEs these optimization problems are very ill-conditioned, making simple first-order meth-
ods like gradient descent unmanageably slow. In [VV10, KSV16, RO18], for example, the
gradient is therefore preconditioned with the inverse of the local Hessian. Solving these
Hessian equations is done by a preconditioned iterative scheme, thereby mimicking the class
of quasi or truncated Newton methods. We also refer to [UV19] for a recent overview of
geometric methods for obtaining low-rank approximations.

Multilevel optimization is the extension of multigrid, and in particular, the full approx-
imation scheme (FAS) to unconstrained optimization. In the MG/Opt method from [Nas00,
LNO5], the idea was introduced how to modify the objective functions on each scale so that
they correspond to FAS coarse-grid corrections. Several extensions and theoretical conver-
gence proofs were proposed, including optimization with trust-regions [TTWMO09] and line
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searches [WG09]. Related to this chapter is the low-rank multigrid method from [GH07] for
matrix equations arising from the discretization of elliptic PDEs. It applies a low-rank ap-
proximation after every step of the classical multigrid algorithm from [Pen97] for the linear
Sylvester matrix equation. A similar multigrid approach with truncation of the matrix iter-
ates to low rank is used by [ES18] for the solution of large linear systems of equations arising
from the finite element discretization of stochastic PDEs. Our proposed method is different
in the sense that it is closer to MG/Opt and other multilevel optimization algorithms and that
it works directly with the manifold of fixed-rank matrices.

This chapter is structured as follows. We first recall important ideas from multilevel op-
timization and the geometry of fixed-rank matrices that will be needed later on. The main
contribution is in Section 7.3 where we present our new algorithm entitled Riemannian multi-
grid line search (RMGLS). The presentation will be sufficiently general to be applicable to any
multilevel hierarchy of manifolds but the implementation will be explained only for low-rank
matrices. Numerical experiments for both a linear and a nonlinear variational problem are
presented in Section 7.4. Finally, in Section 7.5, we compare our method to other low-rank
and multilevel methods.

7.2 Preliminaries on multilevel optimization and geometry
of fixed-rank matrices

As mentioned above, our algorithm is a generalization of known (Euclidean) multilevel algo-
rithms to Riemannian manifolds. It will then be able to calculate low-rank approximations
for the variational problems discussed in Section 7.4 by minimizing a cost function over the
manifold of fixed-rank matrices. Before we present this algorithm in Section 7.3, we briefly
recall two important concepts for its derivation: MG/Opt [Nas00], a variant of multigrid for
optimization problems, and retraction-based Riemannian optimization [AMS08], a local op-
timization method well suited to minimize over the set of fixed-rank matrices.

7.2.1 Multilevel optimization in Euclidean space

The full approximation scheme (FAS) presented in Section 6.4 can be generalized to a multi-
level algorithm for minimizing a differentiable objective function f. The original idea goes
back to the MG/Opt [Nas00, LN05]. We briefly explain the main idea for two grids since the
algorithm on more grids is recursively defined from it and we will explain the algorithm for
Riemannian manifolds in more detail in Section 7.3. Let the subscripts -1, -7 denote quan-
tities on the fine (2}, ~ R™ and the coarse grid 2y ~ RN, respectively. Let f,: 2, — R
be our original objective function f that we optimize with an initial guess z, € (2, that is
sufficiently smoothed. As in FAS, we introduce a modification to the coarse-grid objective
function fg. Let gE(zl, 29) == Z-{ZQ denote the Euclidean inner product and /| ,fl 2 — Qg
the restriction operator. At iteration ¢ of MG/Opt, let :U%) = I’z € 2y be the iterate on
the coarse grid. Then by minimizing the model ©f: 2y — R, defined by

v = Yu(ry) = fulen) — 6% (2, ku), (7.1)
with 4
ki =V fa (@) — I fu(@n), (7.2)

one obtains a two-grid cycle for optimizing f3. On the coarser level, the minimization of (7.1)
(1)

starts at the smoothed approximation x;, hence we can rewrite (7.1) in the following way:
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find an update ey such that

%{@Ev? +epg) = fH(ﬂUET? +en) — QE(HJ([? +emn, ki) (7.3)
is sufficiently minimized at a:gflﬂ) = x%) +ep. This coarse-grid update ey is then transported

back to the fine grid using the interpolation operator 1% : 2y — 2}, and used to correct Zy,.

The linear modification (7.1) to fx is one of the central tenets of multilevel optimiza-
tion, as proposed in the MG/Opt method of [Nas00, LN05] and similar multilevel algorithms
in [GST08, WG09]. The model ¥ is actually a generalization of the coarse-grid correction
equation of the FAS scheme in the context of optimization. Indeed, applying FAS for solv-
ing the nonlinear critical point equation V f(xz) = 0 at the approximation $§; gives the
coarse-grid correction [TOS00, Chap. (5.3.4)]

Via(@W +ew) = V() = =17V f(z)

that has to be solved for eg. A solution of this equation can be trivially written as

V() +en) — (Vin@y) — IV fa(@) ) =0,

which is exactly a critical point of (7.3) with definition (7.2) for k.

As in classical multigrid methods, the error has to be smooth in order to be representable
on the coarse grid. For classical multigrid or FAS, iterative methods such as weighted Jacobi
and Gauss—Seidel, and their nonlinear versions, can be used to smooth the error. Analo-
gously, in the optimization framework, one can use cheap first-order optimization methods.
Practice has shown that weighted versions of steepest descent, coordinate search and limited
memory BFGS are effective smoothers for a wide range of large-scale multilevel optimization
problems; see, e.g., [GMS™10].

Except for the introduction of the model (7.1), the principle behind the multigrid two-grid
cycle remains the same in the optimization context. Figure 7.1 illustrates the two-grid cycle
of a multilevel optimization scheme. The initial guess at iterate ¢ is denoted by xs) and the
pre-smoothing update by py, likewise py, is the post-smoothing update, resulting in the next
iterate x,(frl). In the next section, we will generalize this two-grid optimization cycle (and
figure) to Riemannian manifolds.

7.2.2 The manifold of fixed-rank matrices

Computing a rank-k approximation to a matrix X € R™*" can be seen as an optimization
problem on the manifold of fixed-rank matrices

My ={X € R™*": rank(X) = k}.
Using the SVD, one has the equivalent characterization

My, ={UXVT: U € St(m, k), V € St(n, k),
) = diag(al,ag, ... ,Jk) (S Rka, o1 =2 =20 > 0},
where St(m, k) is the Stiefel manifold of m x k real matrices with orthonormal columns
(see Section 1.1.6.1), and diag(cy, 09, ...,0%) is a square matrix with oy, 09, ..., 0 on its

diagonal. The following proposition shows that M, is indeed a smooth manifold and has a
compact representation for its tangent space.
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minelélh fh(l"h)
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TH €QH

Figure 7.1 — A two-grid cycle for minimizing an objective function.

Proposition 7.1 ([Van13, Prop. 2.1]). The set M, is a smooth submanifold of dimension (m +
n — k)k embedded in R™*™, Its tangent space Tx My, at X = UXVT € M, is given by

kxk kx(n—k
TxMy = [U UJ_] [R(Iik)xk O(fk)(x(n)k)] [V VJ_} " (7.4)
In addition, every tangent vector & € T'x M, can be written as
E=UMVT+UVT+ UV, (7.5)
with M € R**F U, € R™* vV, € R™F such that UTU = V]V = 0.

Observe that since Mj, C R"*", we represent tangent vectors in (7.4) and (7.5) as matri-
ces of the same dimensions. The Riemannian metric is the restriction of the Euclidean metric
on R™*"™ to the submanifold My,

gx(&,m) = (£,n) = trace(¢'n), with X € My and &, 1 € Tx Mj..

The Riemannian gradient of a smooth function f: My — R at X € My is defined as the
unique tangent vector grad f(X) in T'x M}, such that

(grad f(X),&) =D f(X)[§] forall £ € Tx My,

where D f denotes the directional derivatives of f. More concretely, for embedded subman-
ifolds, the Riemannian gradient is given by the orthogonal projection onto the tangent space
of the Euclidean gradient of f seen as a function on the embedding space R™*"; see, e.g.,
[AMS08, Eq. (3.37)]. Defining Py = UUT and Py = I — Py for any U € St(m, k), the
orthogonal projection onto the tangent space at X is [Vanl3, Eq. (2.5)]

Prom,: R™™ — Tx My, Zw— PyZPy+PyZPy+PyZPy.

Then, denoting V f(X) the Euclidean gradient of f at X, the Riemannian gradient is given
by
grad f(X) = Pryum, (V(X)). (7.6)
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7.2.3 The orthographic retraction

A retraction is a smooth map from the tangent space to the manifold, Rx : Tx M — M,
used to map tangent vectors to points on the manifold (see Section 1.2.1). It is, essentially, any
smooth first-order approximation of the exponential map of the manifold; see, e.g., [AM12,
Definition 1]. In order to establish convergence of the Riemannian algorithms, it is sufficient
for the retraction to be defined only locally.

In our setting, we have chosen the orthographic retraction on Mj. The reason for this
choice is that for the orthographic retraction we have explicit expressions for the retraction
and its inverse. Given a point X = UXVT € M}, and a tangent vector ¢ in the format (7.5),
the retraction of £ at X is given by [AO15, §3.2]

Rx(&) =[UX+M)+Up] (X+ M) [(Z+ MV +V]]. (7.7)

Figure 7.2 illustrates the orthographic retraction. As a special case, observe that if X is full
rank, then UUT = UTU = ] and VVT = VTV = I, therefore U, =0and V,, = 0, so
Rx)=UX+MVT=X+¢

X

£
P -

My,
Y = Rx(§)

Figure 7.2 — The orthographic retraction.

The inverse of the orthographic retraction is simply given by the orthogonal projection
of Y — X on Tx My, :

=Ry Y)=Prom, (Y — X) =Pro g, (V) — X. (7.8)
Equivalently, this can be written in tangent vector format (7.5) with the factors
M=UYV -5, Uye=I-UUYYV, Voe=I-VVHY'U.

When implementing Rx and Ry, it is important to exploit the factored forms of the
rank-k matrices X and Y, and the parametrization (7.5) of the tangent vector £. In that case,
the flop counts of Ry and Ry are both O(nk? + k?). See also [AO15, §3.2].

7.3 Riemannian multigrid line search for low-rank matrices

In this section, we describe the central contribution of this chapter: a Riemannian multilevel
linesearch algorithm, called RMGLS, for the approximate low-rank solution of optimization
problems. We detail how the two-grid optimization cycle of MG/Opt can be generalized to
the retraction-based framework for the geometry of fixed-rank matrices, both of which were
described in the previous section.

Our algorithm involves the classical components of multigrid (smoothers, prolongation
and restriction operators, and a coarse-grid correction) and Riemannian optimization (line
search, retractions, gradients). Since this generalization is possible for other types of mani-
folds, we have presented it with general manifolds in mind. However, remarks on the imple-
mentation apply only to the manifold of fixed-rank matrices.
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7.3.1 Description of the scheme

min Yy(ry) \jecursive CyC]inV
rgEMpy

Figure 7.3 — The Riemannian multigrid line search (RMGLS) scheme. The coarse-grid correc-
tion is computed either directly or by a recursive application of RMGLS. It is instructive to
compare this figure to the Euclidean version in Figure 7.1.

We first describe the algorithm for a two-grid cycle, making reference to Figure 7.3. Recall
that quantities related to the fine grid and to the coarse grid are denoted by the subscripts
-p, and - 7, respectively. For example, M}, and My are the fine and coarse-scale manifolds,
respectively.

(4)

Starting from an approximation x;,” on M}, we first perform some pre-smoothing steps,

then the smoothed approximation 7y, is restricted to M. This gives us x%), for which we
compute a correction ng on Mpy. If My is a sufficiently small manifold, ng is computed
directly with a trust-region method to minimize 1 f. Otherwise, it is the inverse retraction of
the result :EEZI+1) obtained from the recursive application of the two-grid scheme with M as
fine-scale manifold. In the figure, the latter option is depicted for illustration, including the
steps performed on M. In both cases, the interpolation 7, of the coarse-scale correction

Ny to the fine scale is applied to xj via line search. The updated approximation Zj, is then
post-smoothed and we finally obtain ZL‘E:—H) as result of one iteration of RMGLS.

An important difference compared to multilevel optimization on Euclidean space is the
explicit difference between the approximations acgf) ,Th, Th, x%z“) , xg) , :):E_IIH) that are points
on the manifolds M}, and Mz, and the updates and corrections py,, Dn, Nn, i that are tan-
gent vectors on the tangent spaces of M), and M g. This is also clearly visible in Figure 7.3

where the approximations are depicted as full circles and tangent vectors as arrows.

In the next subsections, we will explain every component of the algorithm, except for
the line search, which has been explained in Chapter 5. The final algorithm in pseudocode is
listed in Section 7.3.7.
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7.3.2 Tensor-product multigrid

Observe that a matrix in R”*" can be regarded as an element of the tensor-product space
R" @ R™ ~ R™ ", Starting from this observation, it is possible to construct a multigrid
algorithm by taking tensor products of standard multigrid components. This approach is
known as tensor-product multigrid [RW95, Pen97].

For example, let //7: R" — RY and I}, : RV — R™ denote the standard restriction and
prolongation operators for a linear multigrid algorithm with R™ the fine and R" the coarse
grid. Let /¢ denote the fine-scale level, h = 27t H=9hn=2%—1,and N = 26— — 1,
Then in 1D the restriction / ,{L{ could be the NV X n injection matrix defined as

1, if j = 24
IH R ) ’
T {0, otherwise.

Some concrete instances of transfer operators in 1D are given in Section 6.3.2.

Higher-order extensions for 177 and %, like full weighting and linear interpolation, are
defined analogously; see [TOS00]. Following the tensor-product idea, we can then easily
construct a restriction operator on the space of matrices by applying I/’ to the rows and
columns of X,

TH. R 5 RVN D X TH X (1T, (7.9)

Likewise, an interpolation operator for matrices is constructed as
h RN R X TR X(T)T.

Hence, we have obtained transfer operators between the fine and coarse grids R"*" and

RNXN respectively.

7.3.3 Riemannian transfer operators

In our setting, the transfer operators from above are to be applied to rank-k matrices. Let us
denote these manifolds by M¥ C R™" and M, ¢ RV*N,

First, we can directly compute the restriction from M¥ to M¥%, by (7.9) since both man-
ifolds are embedded in matrix space. It is clear from (7.9) that rank(Z/? (X)) < k if X}, is
a rank-k matrix. In numerical calculations, the rank of Z}?(X},) is always equal to k, but if
it were strictly less we could simply reduce the defining rank of the coarse manifold.! The
computation of Z/? (X},) is carried out directly on its factorized SVD form, and followed by a
reorthogonalization to preserve the SVD format of the result. The entire procedure is sum-
marized in the following box.

Restriction of X; = UhEthT € ./\/lfi:
(1) Compute compact QRs: QuRy = I}{{Uh and Qv Ry = I{L{Vh
(2) Compute compact SVD: ULvT = RyZwR],
(3) Compute factors: Uy = QuU, Zy =%, Vg =QyV

Resultis Xy = Ug Xy V} € MEH in SVD form, with k = rank(Xp).

'In the next step of our algorithm RMGLS, the rank of the coarse iterate will typically grow after smoothing
and we can then again continue with M¥; as our coarse manifold.
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Figure 7.4 illustrates the restriction procedure on the low-rank format.

X
N xn nxk kxk kxXn nx N
N\ -
I . 2h
Un (10"
N x k kxk kx N
N
Restriction AU, 2
Reorthogonalization ~— (i I Ry Xh Ry,
Fsvdd
Qu I 0 5 P
h/_/
vy
Un X

Xu

Figure 7.4 — Restriction operator on the low-rank format.

Next, when transferring tangent vectors between manifolds of different scales, the result
of the transfer operators is not necessarily in the tangent space at the transferred points. We
therefore follow the transfer operators by an orthogonal projection onto the new tangent
space,

TH H Th h
Ih = PTXHMH 9] Ih |TXth and IH = PTXhMH 9] IH}TXHMH' (710)

This projection step is related to the so-called vector transport in retraction-based Rieman-
nian optimization and can be seen as a first-order approximation of parallel transport in
Riemannian geometry; see [AMS08]. As explained in the box below, the computation of the
interpolation f,{{ exploits the factored form of tangent vectors. The implementation of the
restriction f}@I is similar and omitted.
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7.3. Riemannian multigrid line search for low-rank matrices

Interpolation of £y = Ug M Vi + Uy gV + Un V) € Tx, Mi;
Required: X), = U, XV, € M} and Xy = Ug XV} € MY,

(1) Compute factors: i\[p,h = I]’Z'IUp’H, ]/\Ih = My, ‘Z,,h = II’LZI‘/RH

(2) Normalize: U, j, = (I — UyUY) Uy, Vo = (I = Vi VD) Vi
My, =UfU, , + V;Ith + My,

Result is &, = UpMpVi, + Up n V] + UnV,), € Tx, M in the form (7.5).

Like in [WG09], we will use injection and linear interpolation in the numerical exper-
iments. In that case, the flop counts for computing TH Iﬁ,, and I}{{ in factored form as
explained above are both O(nk? + k?) for M§ C R,

7.3.4 Smoothers

In the context of optimization on manifolds, a smoother can be any cheap first-order opti-
mization method for minimizing f,: given xﬁf), it returns a tangent vector &, such that, after
retraction, the error of the new iterate ), = qu) (&) is smooth. In the Euclidean multilevel

algorithm of [WG09], for example, a few steps gf L-BFGS are used.

In our experiments, we simply use a fixed number of steps of Riemannian steepest de-
scent; see [AMS08]. In addition, we halve the step length found by the line-search method
so that the resulting step better approximates one step of the Richardson iteration in linear
multigrid.

7.3.5 The Riemannian coarse-grid correction

Similar to Euclidean multilevel optimization, explained in Section 7.2.1, we also modify the
objective function in the Riemannian setting. To illustrate the generalization to the manifold
case, let us first rewrite the Euclidean model (7.3) as

w%lclidean: R" — R, Ty — w%lclidean(J:H) — fH(xH) _ gE(ﬂfH, K/H)a (7'11)
where v = x%) + e is the full approximation. In the following, we describe how we turn
this model into a function on manifolds. '

Let us assume that the algorithm at the coarse level starts at x%) € M¥,. We consider as
optimization variable a point on the manifold z; € M%,. In the Riemannian setting, such a
point z 7 cannot be evaluated as in (7.11) since the inner product g (z 7, 7) is only defined
for tangent vectors. We will therefore lift x5 to the tangent space at x I? by means of the
inverse retraction when evaluating the inner product.? A coarse objective function suitable
for Riemannian optimization is therefore given by

k -1
Yp: My =R, g —Yy(ery) = faler) — gmg(Rmm (xw),km), (7.12)
H
where R_&) is the inverse retraction at ZL‘SZI), 9,0 denotes the Riemannian metric at x%), and
Ty H
Ky € Tx(i)M]}:{ is defined as
H

ki = grad frr(23)) — Zf (grad f,(71)). (7.13)

®Recall from Section 7.2.3 that this inverse is easy to compute for the orthographic retraction.
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Here, grad denotes the Riemannian gradient and 7?,{{ (grad fr(Zp)) is the restricted Rieman-
nian gradient coming from the fine-scale manifold. The restriction operator Z} is defined as
in (7.10), and the subtraction of the two tangent vectors is carried out in the factored format

(7.5). Let us denote by xgﬂ) the approximate minimizer of 157, and define the tangent vector
R R*l (i+1)
NH = 4L G (z H )-
TH

7.3.6 Gradient of the coarse-grid model

During the optimization process, we need the Riemannian gradient of the coarse-grid cor-
rection function 1p. Recall from (7.6) that this is simply the orthogonal projection of the
Euclidean gradient onto the tangent space.

To this end, let us simplify the notation by omitting - 5 in (7.12) to denote 5 as

Y(z) = f(z) = g, (R;&) (), k), (7.14)

where z,2() € M, and where the tangent vector k € T,; M), does not depend on z;
see (7.13). The only difficulty is thus the Euclidean gradient of the second term in (7.14).
Thanks to our choice of Riemannian metric on M}, we have

gx(i)(R;(i) (7),K) = <R;(1) (7), k),

where (-,-) denotes the Frobenius inner product of two matrices. By the chain rule, the
Euclidean gradient of ( R;&) (x), k) can therefore be written as the directional derivative

V<R;&) (7), k) = <VR;<1i)($)a K) = DR;&) (z)[~].
For the orthographic retraction R, we know from (7.8) that its inverse satisfies
R (x) = Pr () — 2.

Since this is an affine linear function in =, its Fréchet derivative is simply the orthogonal
projection. We therefore obtain

since k € T iy M}, by construction. Combining, we finally obtain the Riemannian gradient
of 1 as

grad ¥(z) = Pr , ag, (V(2)) — .

Remark 7.2. In the Euclidean multilevel optimization method from [WG09, Eq. (2.6)], an
important property called first-order coherence is introduced. In our Riemannian setting, it
amounts to

9oy (grad ¥y (zH),EH) = gu, (grad fr(zh), &),

for any search direction (g € T, , Mpy with zg = I,{{(xh) and &, = Z’&I({H) This is
a desirable property since it ensures the same slope of the objective functions on the fine
and coarse grids. Practically, this equation imposes a relation between the intergrid transfer
operators in the multilevel algorithm. In our setting as explained in Section 7.3.3, one can
show that it requires I7; = (I }Ij )T. This is indeed a typical choice in multigrid algorithms. It
is, for example, satisfied for the injection 17, and linear interpolation I}7.
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7.3. Riemannian multigrid line search for low-rank matrices

7.3.7 Final algorithm: Riemannian multigrid line search

In the following box, we have listed the final Riemannian multigrid line search algorithm to
optimize an objective function on a Riemannian manifold. The smoother is denoted by the
function SMOOTH and corresponds to 11 or v, steps of steepest descent for fj,.

One RMGLS iteration starting at acg) to minimize fp,.
(1) Pre-smoothing: z;, = SMOOTH" (J:S), In)
(2) Coarse-grid correction:

(a) Restrict to the coarse manifold: :ng_? =T (zp)

(b) Compute the linear correction term:
ki = grad fa(zy ) — I (grad fu(Zn))
(c) Define the coarse-grid objective function

Vi(en) = fu(an) = 9,0 (B o @n), mr)

TH

(d) Compute an approximate minimizer x starting at x%) to min-

imize 1 using either

(i+1)
H

« a Riemannian trust-region method (if M g is small)
« one recursive RMGLS iteration (otherwise)
(i+1))

(e) Compute the coarse-grid correction: ng = R:Z? (xy

(f) Interpolate to the fine manifold: n, = fﬁ,(n i)

(g) Compute the corrected approximation on the fine manifold:

Zp, = Rz, (o np) with o* obtained from line search

(3) Post-smoothing: x,(fﬂ) = SMOOTH"?(Zp, fn)

Remark 7.3. The RMGLS algorithm above is very similar to the way one FAS multigrid
iteration is presented in [TOS00, p. 157].

Remark 7.4. For efficiency reasons, it is crucial to implement the algorithm without forming
full matrices, i.e., always exploiting the low-rank format explicitly, also when evaluating the
objective function f. More details will be given in Section 7.4.

7.3.8 Riemannian Hager-Zhang line search

The Riemannian Hager—Zhang line search explained in Chapter 5 can be immediately used
on the manifold of fixed-rank matrices M. As mentioned above, we have chosen the ortho-
graphic retraction because it has an explicit inverse; see Section 7.2.3. Let us show that its
derivative can also be efficiently calculated.
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Let X € My, and Ry the orthographic retraction. Recall that f: Mj — R. By the chain
rule, we get for ¢(t) = f(Rx(tn)) that

¢'(t) = (Vf(Rx(tn)), §Rx (tn)) = trace(V f(Rx(tn) " Rx (), (7.19)
where V f is the Euclidean gradient of f. Using (7.7), we can work out the standard derivative

SRx(tn) = (U(Z +tM) +tUp)(Z +tM) " (MV" + V)
— (U(EZ +tM) + tUp) (X +tM) "' M (X +tM) " (2 + tM)VT + V)
+ (Up + UM)(Z +tM) (2 + tM)VT +¢V]),
where X =UXVTandn = UMV + UpVT + UVpT as in (7.5).
In (7.15), we need to evaluate trace(A'B). For computational efficiency, we want to

avoid the naive multiplication A'B since it costs O(n?3) flops. A more efficient approach is
to rewrite the derivative in the factorized format %R x(tn) = GH' by defining

G=[ ~(U+tUp(Z+ M) YM(Z +tM)"" U+ tUp(Z+tM)™1 Up+ UM |

and

H=|V(Z+tM)T+tV,  VMT+V,  V4tVp(D+tM)T |

Observe that G, H € R"*3*_ Assuming a similar factorization for V f(Rx(tn)) = GH'
with G, H € R™*¥ the trace in (7.15) can then be computed as

¢ (t) = trace(HG'GH") = trace((G'G)(H'H))

at a cost of O((n + k)kk). In typical applications targeting low-rank approximations, % is
larger than k but significantly smaller than n. For example, in our numerical experiments
below, k = O(k?) showing a large reduction from O(n?) when k is small. Figure 7.5 provides
an illustration of this computational trick.

O(nk?) O(nk?)
n l k n J] k
- I k
G HT _
n G . n gl
k ‘ k
- O(k?) =

Figure 7.5 — The “trace trick”.

7.4 Numerical experiments for two variational problems

We report on numerical properties of the proposed algorithm, RMGLS, by applying it to the
variational problems presented in this section. These are large-scale finite-dimensional opti-
mization problems arising from the discretization of infinite-dimensional problems. Because
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7.4. Numerical experiments for two variational problems

of their underlying PDEs, these variational problems present a natural multilevel structure.
Variational problems of this type have been considered as benchmarks in other nonlinear
multilevel algorithms [Hen03, GST08, WG09]. For the theoretical aspects of variational prob-
lems, some good references are [BS07, LDL16].

The experiments below were performed by recursively executing RMGLS in a V-cycle
manner for both problems, as explained in Section 7.3.7. Unless otherwise noted, the Rie-
mannian version of the Hager-Zhang line search was used. The algorithm was implemented
in MATLAB and it is available on Yareta.

7.4.1 A linear problem (Lyapunov equation)

We consider the minimization problem

{muin Flw(z,y)) = /Q 3V, y)|* = (@ y) w(z,y) dedy (7.16)

such that w = 0 on 042,

where V = (8%7 8%)’ 2 = [0,1]? and 7 is a function that satisfies homogeneous Dirichlet
boundary conditions on 0f2. The variational derivative (Euclidean gradient) of F is
W

— = —Aw —~. (7.17)
ow

A critical point of (7.16) is thus also a solution of the elliptic PDE —Aw = 7.

7.4.1.1 Discretization of the objective function

We use a standard finite difference discretization for (7.16). In particular, {2 is represented at
level ¢ as a square grid

sz {(xzay]) | Ty :ihﬁa y] :jhfv 1::0,].,...,71(, jzoala"'an€}7 n€:2£7

yielding a square mesh of uniform mesh width hy = 1/ny. The unknown w on {2, is denoted
by w;; == w(x;,y;), and likewise for v;; := (x4, y;), where we have omitted the dependence
on { in the notation for readability. The partial derivatives are discretized as forward finite
differences

8wxij = %(wiﬂd — wm), 8wyi]. = %(wi,j+1 — w@j). (7.18)
The discretized version of F therefore becomes

2f-1
Fn = h? Z (%(Owiu + 81051_]_) — Yij wij). (7.19)
i,j=0

In order to find a low-rank approximation of (7.16) with RMGLS, the unknown w;; from
above will be approximated as the ijth entry of a matrix W}, € R"*" of rank k. For efficiency,
this matrix is always represented in the factored form W), = UXVT. Likewise, we gather all
7i; in a factored matrix I}, = UA,Z'WVVT of rank k. In the experiments below, k., = 5.

For reasons of computational efficiency, it is important to exploit these low-rank forms
in the execution of RMGLS. For the objective value F, this can be done as follows. First,
observe that the first term satisfies

2¢—1
L= 3 (0wl +0uj,)) = [OW=liE + 0W, I}, (7.20)
1,]=
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where OW,,, OW,, € R"*" contain the derivatives dwy,;, Owy, ;. Then it is easy to verify
from (7.18) that

-1 1

1 -1 1
OW, =LW,, and OW,=W,L" with L= &

Substituting this factorization and W, = UXVT in (7.20), we get
I =|(LU)Z|E + |(LV)Z| 3.
To recast the second term in (7.19) using matrices, observe that

IT = Z%’j wij = Z(Fh ® Wh)ij = trace(Iy Wp,) = trace(EW(UJU)E(VTVW)),

1] ,J

where © denotes the elementwise (or Hadamard) product of two matrices. Summing the
terms I and I, we finally obtain

Fo = (ILO) DI+ [(LV)Z[E = 2trace( £, (UT0) D(VTV5))),
which can be evaluated in O((n + k-)k+k) flops.
7.4.1.2 Discretization of the gradient
The discretization of (7.17) gives
Gp = h? (AW + WA —-1T), (7.21)

where A is the discretization of —A by a second-order central difference, i.e.,
A= — . (7.22)

Observe that G;, = 0 in (7.21) — and hence for W}, a critical point of (7.19) — coincides with
a solution to the Lyapunov equation AW}, + W, A = I,

Like for the discretized objective function above, we represent the discretized gradient
Gy, as a factored matrix. Using the same notation as above, this can be done as follows:

Gy, = h? (AUZVT LUSVA - Fh)
=12 ((AU)ZVT + US(VI) - U, 2, V)
.
=1 [AU U U, blkdiag(2, ¥, -2,) [V AV V],

where blkdiag(X, X, — X, ) is the block diagonal matrix created by aligning the matrices X,
X, and —X, along the main diagonal. The gradient G}, can be represented in only O(nk)
flops for computing AU and AV.
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We introduce the notation &, for the Riemannian gradient and recall that it is given by
the projection (7.6)
& = Pryy, it (Gh)-

Its norm || - ||p can be directly computed from the format (7.5) as

l€nlle = /1M1 + 1T 12 + Vo2

7.4.1.3 Discretized Hessian

On the coarsest level, where a Riemannian trust-region method is used, we need to provide
the directional derivative of the gradient, defined as

Hess f(2)[k] = D(grad f)(x)[1],

where x, h € £. Let 1) denote a tangent vector to MIfL at Wy, ie,n € TWthL. We consider
71 being factorized as UnZ‘nVnT. Then the directional derivative of the gradient is

Hess Fr,(Wp)[n] = hQ(AT] +nA),
and its factored form is

.
Hess Fi(Wh)[n] = h* [AU, U, blkdiag (3, 2,) [V, AV, .

7.4.1.4 Numerical results

As mentioned above, the unconstrained minimizer of Fj, over R™*™ is also a solution of a
Lyapunov equation. Restricted to M% and for small £, this is a typical benchmark problem
for low-rank methods; see, e.g., [Sim16, §4.4]. In particular, it guarantees the existence of an
approximation of rank

k = O(log(1/¢) log(k(A)) ky),

with error at most ¢ and x(A) the condition number of A. In the experiments, we have
ky =5 and

5
v(z,y) ="~ Z 29~ sin(jrx) sin(jmy). (7.23)
j=1
We now report on the behavior of RMGLS. In all cases, we used 5 pre- and 5 post-smooth-
ing steps, and coarsest scale /. = 5. To monitor the convergence behavior of RMGLS, we
have considered three quantities. In all formulas, -() indicates that a quantity was evaluated
at the ¢th outer iteration of RMGLS.

(a) The relative error of the discretized objective function Fp:
err-F(i) = |F = F11F).
Here, F, }(l*) is the minimal value over Mﬁ of the original objective function in (7.16). It
is approximated by minimizing Fj, on Mz with the Riemannian trust-region (RTR)
method [AMS08], terminated when the Riemannian gradient norm is smaller than

10713,
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(b) The Frobenius norm of the normalized Riemannian gradient:
Regrad(i) = €] [lr/116,” Il
(c) The relative error in Frobenius norm of the low-rank approximation:
erc- W (i) = W, = W e/ [ W7

Here, W}E*) is the minimizer of Fj, over R™*™. It is computed with a Euclidean trust-re-
gion method, terminated when the Euclidean gradient norm is smaller than 104, No
(*)

rank truncation was used for W, ’ and no problem with multiple local minima oc-
curred.?

In Figure 7.6, the convergence of the objective function and gradient norm are depicted for
RMGLS with finest scale /s = 8 and rank k = 5. We observe that the objective function has
converged already after 25 iterations, whereas the gradient norm continues to decrease until
iteration 35. This difference indicates that using a stopping criterion based on the objective
function alone can be misleading if we want the most accurate stationary point, and it is
better to use a criterion based on the gradient norm.

Presmoothing |
Postsmoothing
@ err-F
B R-grad
‘o emyn,
10-10 | . |
o
O.. =
... mE
(®) -]
) =
10741 Coc® U Fegi it
. E E . - .i
0 10 20 30 40 50

iteration 7 of RMGLS

Figure 7.6 — Convergence of err-F and R-grad for level ¢ = 8 and rank k& = 5, for the
problem of Section 7.4.1.

Figure 7.7 shows the convergence of err-W for increasing ranks k. We compare a line
search based on the new Hager—-Zhang conditions to the weak Wolfe conditions. The plateaus
in both panels are due to the fact that the approximate solution is computed in low-rank for-

mat and it is compared to the full-rank reference solution W,E*). The latter has good low-rank
approximations, which is confirmed by the later onset of the stagnation phase when increas-
ing the rank in RMGLS. Panel (b) of Figure 7.7 shows that a line-search procedure with weak
Wolfe conditions does not allow us to reduce err-W below y/Zmach ~ 107° in double preci-
sion arithmetic. This clearly makes the case that the Hager—Zhang line search is useful if we
want to obtain more accurate low-rank approximations, as it is visible in panel (a).

*For the linear problem, we can of course also directly solve the Lyapunov equation. However, this is not
feasible for the nonlinear problem below.
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Figure 7.7 — Convergence of err-W for level /; = 8, for the problem of Section 7.4.1.

To assess the accuracy of the solutions obtained for the Lyapunov equation, we also use
the standard residual

T’(Wh) = ||AWh + WA — FhHF-
We also consider the following relative residual based on the backward error [Sim07, Eq. (3.6)]

TBw(Wh) _ HAWh + WhA — FhHF
2([All2[[Whlle + [ hllr

Figure 7.8 compares the convergence behavior of R-grad for different fine-scale manifolds
with ¢f = 7,8,9, 10. The corresponding sizes of the discretizations are 16 384 (e), 65 536 (o),
262144 () and 1048 576 (e). Panel (a) corresponds to rank k£ = 5, while panel (b) refers to
k = 10. One can observe that the convergence behavior is not very dependent on the mesh
size, thereby confirming that RMGLS has an almost mesh-independent convergence typical

of multigrid methods. In Table 7.1, the final R-grad, err-W, backward error rgw(W},) and
residual 7(W},) of the Lyapunov equation are displayed.
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Figure 7.8 — Convergence of R-grad for several finest levels ¢, for the problem of Sec-
tion 7.4.1.

The numerical experiments presented in this section show that RMGLS, our Riemannian
multilevel optimization algorithm with Hager-Zhang line search, converges as we would ex-

pect from an effective multigrid method. Satisfying the approximate Wolfe conditions in the
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Table 7.1 - Final gradient norm and residuals for the problems of Figure 7.8. The error of the
best rank-5 approximation is =~ 8.73 x 10~%. The error of the best rank-10 approximation is

~ 1.41 x 1078,

r (100)
le size R-grad(100) %hm)) T(W}Eloo)) err-1W(100)

rew (W, ")
7(e) 16384 2.15x 107" 491 x107° 1.27x107* 8.73 x 1074
2l 8() 65536 3.76x1071  1.65x107° 6.34 x 1077 8.74 x 1074
S 9() 262144 555x1071* 557x 1076 3.17x107° 8.75 x 1074
10 (e) 1048576 1.10x 10713 1.97x107% 159 x 107> 8.75 x 10~*
o| 7() 16384  1.35x 107" 447 %1072 1.63x107% 1.52x1078
T | 8() 6553 1.83x 107" 1.54x1072 846 x 1079 1.54 x 1078
S| 9(s) 262144 243 x1071 525x10710 4.27x107° 1.55 x 1078
1 10(e) 1048576 1.12x 1071 1.82x 10710 214x107? 1.55x 1078

Hager-Zhang line search seems to be sufficient for the method to converge to local minima
that are accurate when measured in the relative error and residual norms.

7.4.1.5 Rank adaptivity

In the framework of Riemannian optimization, rank-adaptivity can be introduced by succes-
sive runs of increasing rank, using the previous solution as a warm start for the next rank. For
recent discussions about this approach see [UV15, KSV16]. An example is given for the prob-
lem described in this section, with (7.23) as right-hand side, again with finest level ¢y = 8
and coarsest level £, = 5, using 5 smoothing steps. Starting from rank k(®) = 5, we run
RMGLS for 10 iterations, and use the approximate solution to warm start the algorithm with
ranks k() = k(1D 45 4 =1,..., 4. Figure 7.9 compares the convergence behavior of this
adaptive strategy with the non-adaptive RMGLS, for a target rank k = 25. It is apparent that
the adaptive RMGLS is more efficient than its non-adaptive counterpart. For example, at the
30th iteration, T‘(nggo)) ~ 2.50 x 10~ for the non-adaptive RMGLS, whereas it is already

T(W}(L?’O)) ~ 4.57 x 1070 in the adaptive version.

7.4.2 A nonlinear problem

Next, we consider the variational problem from [WG09, Example 5.1] involving an exponen-
tial as nonlinear term:

(7.24)

min F(w) = / HIVw|? + Mw — 1) e¥ —ywdzdy
w 2
such that

w = 0on 02,
where A = 10, 2 = [0, 1]%, and
Y(z,y) = ((97* + )\e(’”Q_”Js)S‘in(‘%y))(x2 — %) + 62 — 2) sin(3my).
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Figure 7.9 - Rank-adaptivity for RMGLS applied to the problem of Section 7.4.1, with (7.23)
as right-hand side. Starting from rank 5, the rank is increased by 5 every 10 iterations, until
k = 25. The black crosses illustrate the behavior of non-adaptive RMGLS with rank k& = 25.

The variational problem (7.24) corresponds to the nonlinear PDE [Hen03, Eq. (5.4)]

{

2

—Aw + dwe” —y =0
on 0f2.

in (2,

w=20

The exact solution we, = (22 — %) sin(37y) has rank 1, making it less interesting as test
case for our low-rank method. In addition, a discretization of the exponential term e" does
not admit a good low-rank approximation for w close to the exact solution.

The following modification,

{

is better suited as test case: as we will show below, the nonlinearity w(w+1) can be computed
efficiently when w is low rank and the exact solution is full rank but has good low-rank
approximations.

—Aw+Aw(w+1)—y=0
w=0 ondf2,

in (2
s (7.25)

To obtain the variational problem corresponding to (7.25), —Aw gives rise to the term
3IVw||? in the integrand of the objective functional, as seen in Section 7.4.1. The term in
~ also remains the same. For the nonlinear term in the middle, we calculate the integral of
Aw(w + 1) with respect to w, which gives /\wQ(%w + %) Finally, we can formulate the
variational problem as

min F(w) = /Q HIVw|? + Mo? (3w + 3) —ywdzdy
w = 0 on 0f2.

(7.26)
such that

For 7y, we choose the same right-hand side adopted in (7.23).
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7. MULTILEVEL RIEMANNIAN OPTIMIZATION FOR LOW-RANK PROBLEMS

7.4.2.1 Discretization of the objective function

Discretizing (7.26) similarly as in Section 7.4.1.1, we obtain

2¢-1
Fn = h2 Z (%((%Ugij + 8?1];.].) + /\wfj(%wij + %) — ’yijwij) .
i,j=0

The first term and the third term have the same matrix form as the one seen in Section 7.4.1.1.
For the second term, we have

A A A
izj: o) w?j = 5trace(VV,IVV;L) = §||E||%a

and

A A
> 3 w); = 3 trace(W} (W), © Wh)). (7.27)
ij

For the term W}, © W}, we perform the element-wise multiplication in factorized form as
explained in [KT14, §7] and store the result in the format Ug X, V]

WLoW,=U+"U)(EeX)(V V) =Us2:V1,

where *' denotes a transposed variant of the Khatri-Rao product (see definition in [KT14,
§7]). Observe that rank (W, ® W},) < k2. As a consequence, the term (7.27) becomes

gtrace(wg(wh O W) = gtrace(V(UZ‘)TU@Z@Vg) = %trace(Z(UTU@)z@(VgV)).
Finally, the discretized functional in matrix form is
Fo =5 (ICLO) DI + I(LV)ZIE + A2
+ A trace(D(UTUs) To(VIV)) — 2trace(, (UTU) E(VTV,))),
which can be evaluated in O (nk(ky 4 k?) + k(k2 + k%)) flops.

7.4.2.2 Discretization of the gradient

The gradient of F is the functional derivative

(;—;7; = —Aw+ A w(w+ 1) —~.
The discretized Euclidean gradient in matrix form is given by
Gp = B> (AWy + WhA + AW), © Wy + AW}, — I},

with A as in (7.22). Substituting the formats Wj, = UXVT, W, © W}, = U@E@Vg, and
Iy, = UWEA,VVT , we get the factorized form

T
Gh=h[(A+MDU U Us U,|blkdiag(¥, 2,050, -5,) [V AV Vo V4]
The gradient G}, can be represented in only O(nk) flops for computing (A + A )U and AV
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7.5. Comparison with other methods

7.4.2.3 Discretized Hessian

The directional derivative of the gradient is

Hess F,(Wh)[n] = h2(An 4+ nA + 2AW, © n + An).
Let the Hadamard product W), ® 7 in factorized form be W), ©® n = Ug X V7. Then the
factored form of the directional derivative of the gradient is

.
W AU, U, Us Uy|blkdiag (2, Ty, 2050, A5 [Vy AV, Vo Vi)

7.4.2.4 Numerical results

We repeat the same set of experiments as for the previous problem to verify the convergence
of the error and residual functions defined in Section 7.4.1.4. The coarse level was again taken
as {. = 5. Comparing Figures 7.10, 7.11, 7.12, and 7.13 for this nonlinear problem to the ones
of the linear problem, we observe that the earlier conclusions remain virtually the same.

10° Presmoothing | 100 ranks k | |
% Postsmoothing e 5
@ err-F ° t e 10
—oT! 15
[ ® R-grad =,
e e 20
10 | L\ %
_ 2 Y
100} )
~
1010 L ]
L
®e .8 ™~
. | . \.
(]
10715 1 ”w W 10710 1 %
&o ° == =
5 5 5 5
0 10 20 30 40 50 60 70 80 90 100 0 25 50 75 100 125 150

iteration i of RMGLS

Figure 7.10 — Convergence of err-F and
R-grad for level ¢ = 8 and rank k = 5,
for the problem of Section 7.4.2.

iteration ¢ of RMGLS

Figure 7.11 — Convergence of err-W, with
Hager-Zhang line search, for ¢y = 8 and
the rank values £ = 5, 10, 15, 20.

7.5 Comparison with other methods

We compare Euclidean trust regions (ETR), Euclidean multilevel optimization (EML), EML
with low rank via truncated SVD, Riemannian trust regions (RTR) with fixed rank, and our
RMGLS with fixed rank. ETR and EML do not use any low-rank approximation, whereas the
other methods do.

All methods were implemented in MaTLAaB. ETR and RTR were executed using solvers
from the Manopt package [BMAS14] with the Riemannian embedded submanifold geometry
from [Van13] for RTR. EML was implemented by ourselves based on the same multigrid
components as RMGLS, as already explained in Section 7.4. EML with truncated SVD applies
truncation via the SVD with a fixed rank after every computational step in EML.

Table 7.2 summarizes the results for the linear problem described in Section 7.4.1. It
is apparent that the Euclidean algorithms soon become very inefficient as the problem size
grows. Hence we omit results for bigger problem sizes. For the smaller problems, the residual
of the final approximation was always very small since there was no rank truncation.
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Figure 7.13 — Rank-adaptivity for RMGLS applied to the problem of Section 7.4.2, with (7.23)
as right-hand side. Starting from rank 5, the rank is increased by 5 every 10 iterations, until
k = 25. The black crosses illustrate the behavior of non-adaptive RMGLS with rank k = 25.
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7.6. Conclusions

In the low-rank version of EML with truncated SVD, the algorithm was stopped before
stagnation in the residual norm started to occur, as determined by manual inspection. This
was done so that the algorithm certainly did not run longer than needed.* All the other
low-rank algorithms were stopped when the norm of the Riemannian gradient was below
the threshold value of 10712,

Observe that the accuracy achieved by EML with truncated SVD is not as good compared
to RTR and RMGLS. This was not due to our stopping condition but probably because of
the fixed-rank truncations throughout the multigrid cycle in EML. It is possible that a more
careful choice of ranks can improve on the accuracy, but we did not investigate this issue
since RTR and RMGLS are also using fixed-rank truncations.

The Riemannian algorithms on the manifold of fixed-rank matrices show a more efficient
behavior. For problems having a relatively small size (¢ = 10, 11), RTR is more efficient than
RMGLS, while for bigger problems, RMGLS is much more efficient that RTR. The fastest
computational time for a given level is highlighted in bold text. In particular, for ¢y = 14,
our RMGLS is almost 6 times more efficient than the RTR. This demonstrates that for very
big problem sizes the Riemannian multilevel strategy is the most advantageous.

An important observation is that the Riemannian algorithms can be terminated based
on the Riemannian gradient, since it provably can be made very small, as it is clear from
the tables and also from the figures in the previous section. This property allows us to stop
the algorithm when the local gradient is smaller than a certain threshold. On the contrary,
the EML low-rank algorithm does not have this property and, since the (Riemannian) gra-
dient might never become very small, the stopping criterion has to be based on stagnation
detection.

Another observation concerns the “multiplying factor” across the levels for different
methods. We are mostly interested in comparing the scaling factors for RTR and RMGLS
when enlarging the level /¢, since the other methods are visibly more expensive than these
two. From Table 7.2, we obtain on average scaling factors of 3.5 for RTR and 1.7 for RMGLS,
respectively. Finally, Table 7.3 shows that if we increase the rank, it is possible to achieve bet-
ter accuracy in the residuals T(W}Eend)) for both EML with rank truncation and RMGLS. In
addition, RMGLS is considerably faster than EML for the same rank and for the biggest prob-
lem. Table 7.4 summarizes the results for the nonlinear problem described in Section 7.4.2.
Similar considerations as above can be done for this problem. We point out that the higher
computational times in the low-rank algorithms are due to the calculations of the Hadamard
products in factored form. From Table 7.4 we can obtain the following average multiplying
factors across the levels: 4.3 for RTR, 2.0 for RMGLS. These are in good agreement with the
ones computed for the linear problem.

7.6 Conclusions

In this chapter, we have shown how to combine multilevel optimization with optimization
on low-rank manifolds. Compared to other approaches, no explicit preconditioning needs to
be performed to solve an ill-conditioned Newton equation. Numerical experiments demon-
strated that for two variational problems our method succeeds in computing good low-rank
approximations with an almost mesh-independent convergence behavior. In addition, we dis-
cussed how to apply the accurate Riemannian Hager-Zhang line search presented in Chap-
ter 5 to the manifold of fixed-rank matrices.

*Although in practice such a stopping condition can not be implemented.
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7. MULTILEVEL RIEMANNIAN OPTIMIZATION FOR LOW-RANK PROBLEMS

Table 7.2 — Comparisons of different methods for the problem described in Section 7.4.1. The

— means the Riemannian gradient & ,(lend) does not apply.
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lg size time (s) IIS }(Lend) ha T(W}(Lend))
ETR (no rank truncation, no multilevel)
9 262144 19 — 9.2451 x 10~ 1°
10 1048576 164 — 5.2284 x 1015
11 4194304 1787 — 1.0223 x 1014
EML (8 smoothing steps, £ = 7)
no rank truncation
9 262 144 16 — 6.2645 x 10713
10 1048576 77 — 3.4368 x 10713
11 4194304 459 — 4.2710 x 10712
truncation to rank 5
9 262 144 9 — 4.5166 x 10~°
10 1048576 35 — 2.2084 x 10~°
11 4194304 58 — 1.7780 x 10~
RTR - rank 5 (no multilevel)
10 1048576 6 1.5002 x 10714 1.5873 x 10~°
11 4194304 20 2.7687 x 1071*  7.9369 x 10~
12 16777216 66 6.6810 x 10~1*  3.9685 x 106
13 67108864 237  1.1654 x 107'%  1.9842 x 107°
14 268435456 929  2.6852 x 107 9.9212x 1077
RMGLS - rank 5 (8 smoothing steps, /. = 7)

10 1048576 18 6.1634 x 10713 1.5873 x 107°
11 4194304 26 2.5091 x 10713 7.9369 x 1076
12 16777216 52 6.5807 x 10713 3.9685 x 106
13 67108864 94 9.2574 x 10~13  1.9842 x 107
14 268435456 161  6.1323 x 10713 9.9212 x 107




7.6. Conclusions

Table 7.3 — Comparisons of EML with rank truncation and RMGLS for different ranks applied
to the problem described in Section 7.4.1. In both cases, 8 smoothing steps and coarsest level

f. = 7 are used.

EML RMGLS
L size  time (s) T(W,Eend)) time (s) It }(Lend) |7 T(W}Eend))

o| 9 262144 13 9.1637 x 1077 18 7.6740 x 10713 4.2704 x 107
410 1048576 55 3.3303 x 1079 31 5.0568 x 10713 2.1431 x 107
S| 11 4194304 451 4.9866 x 107> 76 3.1722 x 10713 1.0704 x 1079
w| 9 262144 43 47685 x 107 42 6.1597 x 1071 4.2953 x 1071!
|10 1048576 107 2.4681 x 10~ 11 103 6.1486 x 10713 2.1541 x 1011
S| 11 4194304 495 4.5356 x 10711 174  8.9919 x 10713 1.0940 x 101!
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7. MULTILEVEL RIEMANNIAN OPTIMIZATION FOR LOW-RANK PROBLEMS

Table 7.4 — Comparisons of different methods for the problem described in Section 7.4.2. The

— means the Riemannian gradient & ,(lend) does not apply.
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lg size time (s) IIS }(Lend) ha T(W}(Lend))
ETR: no rank truncation, no multilevel
9 262 144 23 — 8.8890 x 10~ 1°
10 1048576 196 — 6.0243 x 10710
11 4194304 1990 — 1.1352 x 1014
EML: /. = 7, 8 smoothing steps
no rank truncation
9 262 144 22 — 2.6912 x 10713
10 1048576 75 — 0.4184 x 10713
11 4194304 506 — 4.2292 x 10713
truncation to rank 5
9 262 144 11 — 4.4994 x 10>
10 1048576 47 — 5.0028 x 107
11 4194304 72 — 1.6216 x 1074
RTR: rank 5, no multilevel
10 1048576 11 1.3449 x 1071 1.5614 x 10~°
11 4194304 31 9.3240 x 10~ 7.8072 x 1076
12 16777216 151 5.9424 x 10~1*  3.9036 x 10~
13 67108864 554 1.1696 x 10713 1.9518 x 10~
14 268435456 3338  2.1950 x 10713 9.7591 x 107
RMGLS: rank 5, ¢, = 7, 8 smoothing steps

10 1048576 44 5.3255 x 10713 1.5614 x 10~°
11 4194304 51 4.0362 x 10713 7.8072 x 107
12 16777216 120  9.6698 x 10713 3.9036 x 1076
13 67108864 209  3.8296 x 10712  1.9518 x 1076
14 268435456 549  9.8448 x 10713 9.7591 x 107




7.6. Conclusions

Table 7.5 — Comparisons of EML with rank truncation and RMGLS for different ranks applied
to the problem described in Section 7.4.2. In both cases, 8 smoothing steps and coarsest level
f. = 7 are used.

EML RMGLS
L size  time (s) T(W,Eend)) time (s) It }(Lend) |7 T(W}Eend))
o9 262144 30 4.7324 x 1077 21 78437 x1071%  3.7321 x 1077
410 1048576 123 3.4975 x 1077 61 4.0398 x 10~ 1.8660 x 1077
S 111 4194304 797 1.2826 x 107° 153  5.5800 x 10713 9.3301 x 10~8
w9 262144 107 7.4928 x 10710 92 20183 x 10713 4.2886 x 10710
|10 1048576 380 0.6225 x 10710 207  6.5306 x 10713 2.6044 x 1019
S 11 4194304 3113 4.3682x 10719 532  1.3610 x 10713 8.3563 x 10~ 11
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APPENDIX A

Single shooting

A.1 Freedom in choosing the geodesic

As mentioned in Remark 2.2, the matrix Y;;| does not need to be orthonormal; in fact, its
only requirement is that it has to span Ji- = (span(Yp))*, the orthogonal subspace to Vy =
span(Y)). In this appendix, we are going to show this, starting from the geodesic

V() =Y You] equfgf 5K] t) l%ﬁw] |

Let M be any (n — p)-by-(n — p) invertible matrix, and define

M:[Ip M], fw’-l;[fp Ml], T NN 1,
Observe that

~_ I -
[Yo Yoo ] M~" = [¥o Yo, [p M_ll = [Yo YorM '],

(TL [))Xp (”‘ p)XP ( v p)Xp '
1

In the following steps, we use these facts together with the property M exp(A) M~ =
exp(M AM~1), which holds for any invertible matrix M.

- _KT —_ -
R e (L D A
n—p n

—p)Xp
— (N —KT| - I
| ] K Onyp O(n—p)xp
2 —K'M! I
= [Yy Yo, M~} t P )
[ 0 Yol ] eXP([MK On—p ] ) [O(n—p)xj

Since the matrix M is invertible, it can be regarded as a change of basis. Hence, it appears
from the last expression that there is freedom in choosing Yj |, since it can be any matrix
whose columns form a basis for Vg
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A. SINGLE SHOOTING

A.2 Smaller formulation

In this section, we prove that, when p < %, the geodesic problem on St(n, p) can be refor-
mulated into an equivalent problem on St(2p, p). We start from (2.2) with ¢t = 1, namely,

Q -KT 1
Vi = [Yo You] equx On—pD l()m—pmxp] |

Consider the QR decomposition of K

R

(n—2p)xp

K=[Q Q] lO ]—QR,

where [Q Q1] € R(—P)*(n=P) s the orthogonal factor of K, whose blocks Q € R("—P)*P,
Q. € RM=P)x(=2p) are orthonormal, and R € RP*P is upper triangular. Inserting this
decomposition in the matrix

2 —-KT

K o)

[~ R O][Q Q.]
o e o o ]: ¥

we get

N —-RT
Qau B O 0. ][I Qo)

Substituting this expression into the argument of the matrix exponential, and using the
property exp(QMQT) = Q exp(M)QT for any orthogonal matrix (), we get

Y1 = [Yo You] [Ip 1exp g _ORT [Ip T‘| [ L ] )
Q Q) A I R CReT Y R

Using the fact that the argument of exp is a block diagonal matrix, we can write

ox 2 —RT I,
Y, = [Yo Y0.@Q YOJ_QJ_} PUR o, Op
I(n—Zp) (n—2p)xp
We collect the matrices in order to make the products conformable
2 —RT I
Yo Y Yo p
Y, — l[ 0 Y01Q)] 0LQ1 1 exp([R OPD [Op]
cRnX2p cRnX(n—2p)

(n—2p)] LOn—2p)xp

Finally we have obtained the smaller formulation (2.10)

Yi = Y Yo.Q)] equg _OTD [é}j '
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APPENDIX B

Frechet derivatives

B.1 First-order Fréchet derivative of a matrix function

The Fréchet derivative of a matrix function f: C"*™ — C™*™ at X € C"*" is the unique
linear function D f(X)[-] of the matrix 2 € C"*", that satisfies

f(X + E) = f(X) = DF(X)[E] = o|| E)- (B.1)

The mapping itself is denoted by either D f(X)[-] or D f(X), while the value of the mapping
for direction E (i.e. the directional derivative) is denoted by D f (X)[E].
Since Df(X): C"*™ — C"™*" is a linear operator, one can write

vee(Df(X)[E]) = Jf vec(E) (B.2)

2 2

for some n° X n° complex matrix J ;( independent of E. We refer to J ;( as the Kronecker

representation of the Fréchet derivative, or simply as the Jacobian matrix.

B.2 Singular values of J f(

In this section, we report some results that are used in the analysis of the single shooting
method on the Stiefel manifold (see Section B.2.1). The operator norm of D f(X) for the
Frobenius norm is defined by

1700 e = g PLZHEAE — D100 21

By vectorizing D f(X)[Z] as in (B.2), and using the fact that the Euclidean norm of z =
vec(Z) equals the Frobenius norm of Z, we can also write

IDF(X)r = max |7 zll2 = |77 |l2 = Omax(J7 ),

[[2ll2=1

where oax (J f( ) is the largest singular value of J }X .
We have the following important theorem.

Theorem B.1 ([Hig08, Cor. 3.16]). If X € C™*™ is normal, then

Xy _
UmaX(Jf ) - /\7151612}1)(()() |f[)‘7:uH7 (B?’)
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B. FRECHET DERIVATIVES

where A(X) denote the eigenvalues of X, and f [\, 1] is the first-order divided difference defined

by

FO)=f (1)
— s AFM,

A
/()‘)7 A= p. B

f[)‘nu] :{

If Df(X) is invertible, we have a similar property for the minimal singular value:

Theorem B.2. If X € C™*"™ is normal, then

. X —_— -
Omin(J7 ) o | FIA 1]

Proof. We adjust the proof of [Hig08, Cor. 3.16] accordingly. We start from the variational
property [GVL13, Theorem 8.6.1]

Fun(J7) = min | DFCOLE]s

and we use Df(X)[E] = Z(Df(D)[E])Z_l, with D = diag()\;) and E = Z 'EZ, as in
[Hig08, Cor. 3.12]. Then

Omin(JF) = min |Z(Df(D)[E)Z Y |p = min ||Df(D)[E]|r = min|f[Xi, ],
IBlle=1 IElle=1 i

where for the last equality we used the same reasoning as in the proof of [Hig08, Cor. 3.13].
O
B.2.1 Analysis of Jé‘)‘(p( 4)

As we did in Section 2.3.1, let us denote

0 —KT
[ o)

the matrix in the argument of the exponential appearing in the geodesic (2.2), with {2 €
Sskew(p) and K € R(=P)%P_and let the Jacobian of exp(A) with respect to A be [Hig08]

Jomin = (exp(AT/2) ® exp(4/2)) sinch(3[AT @ (—A)]).

Since A is normal, we can apply the theorems presented above to bound the singular values
of the Jacobian J ;‘( p(A) of the matrix exponential of A.

Theorem B.3. Let A and Jé?(p(A) be as defined above, and let oo = || Al|2. We have

exp exp

amaX(JA (A)) =1 and amin(JA (A)) = [sincal.

Proof. Since A is a real skew-symmetric matrix, the eigenvalues of A are purely imaginary.
Hence we may denote them as iz and iy, with =,y € R. Let us rewrite (B.3) as

A A ..
[ espcallz = omax (Jipa) = max |expliz, i]]

where |z|, |y| < « because the absolute value of an eigenvalue of a normal matrix cannot
exceed any norm of that matrix. The maximum is attained for y = z, and using the definition
in (B.4), we get

A _ . . _ !/ _ . _
Tmax (Joxp(a)) = max | expliz, iz]| = max | exp/(iz)| = ﬁzﬁ |exp(iz)| = 1.
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This shows that the maximum singular value of J ;‘{p

i (4) is always 1.
For the minimum singular value, let us specialize Theorem B.2 to our case

A eix _ eiy

Omin (J = min |expliz,iy min |—

(Vespi) = min | = min, iz — iy
—_——

=:g(z,y)

The minima of g(z,y) are attained on the anti-diagonal at the corners, namely, when z =

o,y = —aand z = —a,y = «. This gives:
A gl — gl sin av .
Omin (Jexp(A)) = 2 la - ‘ - |SlnC Of‘ °
O

Figure B.1 illustrates the function [sinc «| for « in the interval [0, 5]
Kl
g

«
Figure B.1 — A plot of |sinc | for « in the interval [0, 5]
Observe that for & = 7 the sinc function is equal to zero, hence J, (4) becomes singular.
Since J, :)1( p(4) appears in the expression for the Jacobian of the geodesic, Equation (2.9),

‘]%1 = ([Ip OPX (n— P] ®Q) exp(A) T‘]A( )’

the above result is related to the cases in which single shooting fails

139






APPENDIX C

Jacobians for multiple shooting

In this appendix, we report the explicit formulas for the Jacobian matrices that are used in
the multiple shooting method on the Stiefel manifold St(n, p) (see Section 2.4).

Let 31 denote a base point and s its corresponding tangent vector as explained in Sec-
tion 2.4 and illustrated in Figure 2.4.

To compute the Jacobian matrices appearing in (2.16), we formulate the geodesic equation
(2.2) using the singular value decomposition of the base point X1, namely, 1 = USVT. Let
us consider the partitioned matrices (MATLAB notation)

Uy=U(:,1:p), U =U(:,p+1liend), V,=V(:,1:p), V. =V(:,p+1l:end),

and let Q = [¥; U,]. Then the SVD formulations of the geodesic and its derivative are

Z4(t) = Q exp(tA) lO r ] Zz(t)ZQGXP(tA)A[O i ]

(n—p)xp (n—p)xp
where
~ - T
A, 53) = L, 01Q"%,  —[[0 L,)Q"%] | _ [2122 —(UIEQ)T]
[0 I,_,]QT %, On—p UlY:  Onyp

C.1 Jacobians with respect to the base point

Let us first compute the Jacobians of the geodesic and its derivative with respect to the base
point X7, i.e.,
0Z
Tyl = ot
vo0X

We adopt for the functions involved the notation:

0Z

X 2

and J221 = 872’1

« 5(X1) = svd(X,), performs the SVD of ¥ and returns Uy, U, V,, V;
« G(s(Xh)=[21 U] = @, builds the matrix @ from Y7 and U ;

« h(G(s(X1))) = A, builds the matrix argument of exp;

« g(h(Q)) = exp(A), performs the matrix exponential of A.
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C. JACOBIANS FOR MULTIPLE SHOOTING

To compute % we have to consider the derivative of a product and the chain rule for a

composite function:

DZ,(51)[E) = Di(s(51), Ds(1)[E]) exp(A) H

+0 Dg(h(g(s(zl))), Dh[G(s(X1)), DG (s(Z), Ds(El)[E])]) [IO”] :

As in Appendix B, Df(A)[E] denotes the Fréchet derivative of f at the matrix A in the
direction of E. Vectorizing the last expression we get

vee(DZ1(321)[E]) = ([I, O] exp(4)T @ I,) vee(DG) + ([I, O] @ Q) vec(Dg). (C.1)

Here,
vec(Dg(A)[E]) = J4 (4 vec(Dh),

exp

with J e‘)‘(p ) the Jacobian of exp with respect to its argument. As we did for single shooting
(see Section 2.3.1), we introduce a linear map 7 that maps a block-wise vectorization into the
ordinary column-stacking vectorization. This is achieved by:

vec(Dh) = T - blkvec(Dh),

where
vec([I, O] DG'%s)
vec([O I,,_,| DG' %
blkvee(Dh) = (10 o) 2)T = JP vee(DG') = J& [T, vee(D§),
—vec([O I,—p] DG )
vec(Op—p)
with
el 0]
g5 53 ® [0 Iny]
=

_H(n*p)vp (Eg ® [O In—p])
O(n—p)2xn2

Observe that

~ [vee(Xy)
vec(Q) = vec([X) UL]) = lvec(UL)] ,
hence ( ) ;
q _ |veelD2) ) e ec(E) = JX vec
vee(DG(51)[E]) = [Vecmm] - [ Jl?i] vee(E) = P vee(B),  (C2)

where the Jacobian of U with respect to X'y can be derived from [Vac94] as:
It = (UL ® (U8, V) Moy

Eventually, the vectorization of Dg(A)[E] is

vec(Dg(A)[E)) = Japa) Ty Hnm 7 vec(E), (C.3)
~—_— —
::Jf1
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C.2. Jacobians with respect to the tangent vector

from which we identify the Jacobian of the exponential with respect to X', namely,

exp

Toxpt) = Texp(a) T

Substituting (C.2) and (C.3) into (C.1) and dropping vec(E), we obtain the Jacobian of the
geodesic with respect to Xy

Iz = (It Olexp()' @ 1) I + ([1y O] © Q) ISy

By using the same procedure, one can get the Jacobian of the derivative of the geodesic with
respect to X, i.e.,
X X A X
J70 = ([, O)ATexp(A) @ 1) I + ([I, O1AT @ Q) I )
+ ([Ip O] ® @exp(A)) Ji.

C.2 Jacobians with respect to the tangent vector

To obtain the Jacobians with respect to the tangent vector Y9, one can proceed in a very
similar way as in the previous section. The Jacobian of the geodesic with respect to X is
given by
2 A X
‘]Z12 = ([Ip O] ® Q) Jexi)(A)’

and the Jacobian of the derivative of the geodesic with respect to X5 is

Iy = ([ 0)© Q) [(AT @ L) 22 1) + (In @ exp(4))J3?] .

exp
Here,
Jf(;( 2= Topay s and Ty =TJ."2,
with
1, ([1, 01Q")
1,® ([0 L.-,]Q")
1 (—p),p (Ip ® [0 Iny] @T)

O(nfp)2 xXnp

Ty = € RTXM,
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APPENDIX

Proofs to Chapter 3

D.1 Proof of Remark 3.3

As we mentioned in Remark 3.3, from the expansion of the canonical distance in Equa-
tion (D.4) (see next section), it is clear that

de(X,Y) <|IX =Yl + O(IX = Y[E) for [X —Y][r— 0.
IfO(|| X — Y||%) is small enough, then d.(X,Y) < [| X — Y|p.

For the Riemannian distance d.(X,Y') based on the embedded metric, it is much easier
to see that || X — Y||r < de(X,Y), for any X, Y on a manifold M. Indeed, the Euclidean
distance is the minimum length of all possible paths in the embedding space, whereas the
Riemannian distance is the minimum length of all possible paths on the manifold (see Defi-
nition 1.26). Since the embedding space contains the manifold, the paths that are considered
in the second case are also paths in the first case, and that implies that the Euclidean distance
|| - ||r must be smaller than or equal to the Riemannian distance de. Figure D.1 illustrates this
fact for the Stiefel manifold St(10, 4).

_dc(va) | | 1
0.89 7 H—de(X,Y) |-mmmmmmmmmmm fo
[X =Yl

1.9702 ¢+

Figure D.1 - Comparison between embedded, canonical, and Euclidean distance for St(10, 4).
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D. Proors To CHAPTER 3

D.2 Proof of Lemma 3.9

The expansion (3.6) is simple to obtain once the Riemannian distance is related to the Eu-
clidean one.

Proof of Lemma 3.9. Take X,Y € St(n,p) sufficiently close so that we can define the Rie-
mannian logarithm £ = Logy (Y") (see Remark 3.3). By definition of the Riemannian distance
d. for the canonical metric g., we have

(X, Y) = [I€]12 = ge(, €)-

Writing a tangent vector as § = X 24+ X | K € TxSt(n, p) (see Section 1.1.9) and using (2.1),
we can evaluate g, as

9c(€,€) = trace(¢ (In — 5 XXT) €) = 5 [|QIIF + | KIF = €llF — 5 12I%.
Using 2 = X T§ , we also have
d(X,Y) = [IElfF — 5 1 XT€lIR (D.1)
Since £ is the initial velocity vector of the geodesic connecting X to Y, it follows that
§=Y =X +O(l¢ll7). (D2)
This can be seen by expanding the matrix exponential in the expression (2.2) of the geodesic:

+0(H§II%)> [O( " ]

X'¢ X,
XT& Ony

n—p)Xp

Y = [X Xl} (In+

= X+ [x x1] [x x.] €+ 0(l€lR).

We obtain (D.2) using the fact that {X X L} is an orthogonal matrix. In addition, [Bel03,
Lemma 4.2.1, p. 59] shows that

IElE = 1X = Y[§ +O(IX = Y|lg). (D.3)
Then inserting the equations (D.2) and (D.3) into (D.1) leads to
d2(X,Y) = [|X = Y[ = 31 X"(X = Y)|E + O(|X = Y[|). (D4)

Using this in (3.4), one obtains (3.6). O

D.3 Proof of Lemma 3.10

The aim is to compute L;; = VXiVXjJQ(Xi, X;) and D;j = V%Q(P(Xi, X;), where X €
St(n, p). Let us simplify notation and define
T
@ (X,Y) = |[PgiX — Ps,Y | — 3111, — (PsiX) PsY
+[1X = Pse X[} + Y = Pt Y[ + O([Pse X — PsyY|li).
Clearly, L;; = VxVyd?(X,Y) and D;; = V4 d?(X,Y) with X = X; and Y = X;. Recall

from Section 3.2.2 that we can specify the projector on the Stiefel manifold as Pg(Y) =
Y (YTY)~1/2, that is, the orthogonal factor of the polar decomposition of Y.
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D.3. Proof of Lemma 3.10

Proof of Lemma 3.10. Directly developing the whole of c?(X ,Y) we get

P(X,Y) = trace(gfp +XTX +YTY — (PgX) PgY — 2X Py X — 2Y TPgY
(D.5)
T T
— 1(PsiY) Py X (P, X) PV ) + O(|[Ps X — P,V [1£).

To compute the gradient and the Hessian of d? (X,Y), consider the perturbation X =X+E,
with X € St(n,p),
First of all, for a symmetric matrix A, one can easily show by diagonalizing that

E||r small, and expand the previous expression.

I+ A7 == A+ 342+ 0(AIP), [ Al =0,
from which we can obtain the expansion for the perturbed projector
Pg X = X(XTX)"1/?
=X+FE-3XX'E-JXE'X-3XE'E-JEX'E-JEE'X (D.6)
+3X(X'E)’ + 23X (E'X)? + 3XX'EE'X + 3XE'XX'E + O(|E||}).
After substituting the expansion (D.6) for PSt(f( ) in (D.5) and isolating first- and sec-
ond-order terms in F, we find the expressions for the gradient and the Hessian. Here, only

the final results are reported.
The gradient with respect to X is

Vxd(X,Y) = —(I, - 3XXT)Pg,Y + X (Ps;YV)' X — (I, - XX")Pg, Y (P, V)" X,
and the gradient with respect to Y is
Vyd(X,Y) = —(I, = LYY P X + 1V (Ps, X)'Y — (I, - YYT)Pg, X (P X) Y.
The Hessian matrix with respect to X is
VEE(X,Y) = sym[VIX @ Ly + (V1@ X) My + L0 YXT| = sym | (VTXXT © X) I,
+ (X7 XYTX) My + [, XXTYXT+YTX @ XX
+25ym[(XTYYT @ X) [y + 1, @ XXTYYT = (XTYYTXXT @ X) 11,
+ (X" X)), + [, XX~ LYY+ XYY'X®1,
~LeXXYY'XXT - XYY'X @ XX,

where sym(A) = (A + A")/2. In order to simplify V%JZ(X, Y), wewilltake Y = X + A
with ||A]| — 0. After some algebraic manipulations, we obtain!

VER(X, X +A) =2, + 2 (X" ®@ X) I, — (I, ® XXT) +
+3sym(XTA® I, + (AT ® X) II,,,,) + sym(I, ® AXT)
— Hsym(A'XXT® X) II,,, + ATX ® XXT)
—3sym((XT @ XATX) 1T, , + I, ® XXTAXT)
+ 2sym ((X'AAT @ X)II,, + I, ® XX'AAT — (XTAA'XXT® X)11,,.,,)
I, AAT + XTAATX @ 1, — [, @ XX'AATXXT — XTAAX @ XX

'We stress that Vic?z denotes the derivative with respect to the first argument of 2.
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D. Proors To CHAPTER 3

Observe that every term on the right-hand side above can be bounded by at most a second
power of ||A||2 since ||sym(A)|2 < ||A]l2, [|[A ® Bll2 = ||A||2]|B||l2 and X € St(n,p).
Hence, we obtain after some manipulation that

IV (X, X + 4) = VRd* (X, X)|l2 < 14] A1z + 10] AJ3.

Writing the result with X = X; and X + A = X, we recover the expression (3.7) for the
Hessian D;; = V%(icP(Xi, X;).

Next, for the term L;j, to obtain the gradient of V xd? (X, }7) with respect to X we can
expand Pg; X at first order in £

Py X = X(X'X) V2= X+ F-LXX"E - LXE'X + O(|E|3).

After some manipulations, we arrive at the mixed term

VxVyd(X,Y) ==Ly + (Lo YY) - 2L, o YY'XX") - 1(XT0YY"X) II,,
+ 3L XX+ (X' @ X))+ (YT @Y, — 2(Y'XX'®Y)II,,
LY X oYX+ (YT oYY X),, - (Y XX'®YY'X)I,,
Y XYY XX"+Y' XYY -(Y'@X),,+Y'XX"®X)II,,
+Y' X2 XXT-Y'X®I,.

Similarly, we can calculate the other mixed term, which is

VyVxd(X,Y) =L+ 21,0 XXT) - LI, o YY'XX) - LY XX " ®Y) [T, ,
+ LYY+ LYo Y),, + (X' ® X)II,, - 1(X ®@YY'X)II,,
LY XeYX)+ (Y XX"®X)I,, - (Y XX @YY'X)II,,
Y XYY XX +Y XXX - (Y 'eX)I,,+ Y @YY 'X)II,,
+Y' XYY -Y'X®I,.

Observe that, by swapping the arguments and taking the transpose, we have the equality
T
VyvxcP(X,Y) = (vay(fz(Y, X)) .

As above, in order to bound the spectrum of V XVyCP(X ,Y'), we expand it with Y =
X + A with ||A]| — 0. After some algebraic manipulations, we obtain

VxVyd(X,X +A) = — 2L, + 2(X" @ X) I, + (I, ® XXT)
I X" XATX) I, + (AT ® X) 1T, — 1 (ATXXT @ X) I,
+3AX@XX") - 2,0 XATXX) + 2([,2 XA) - A'X ® I,
—2AXX" @A) I, — 3(I, ® AATXXT) + 3(I, ® AAT)
+ATXQXAT+3(AT®A) T, — (A'XX' @ XA™X) I, ,,
— M XTQAAX) I, + (AT @ XATX) I, ,, — 1(ATX @ AXT)
~ATX @ XATXXT+ (A" @ AATX) T, + ATX @ AAT
~ATX @ AATXXT — (ATXXT @ AATX) IT,, ..

Observe that every term on the right-hand side above can be bounded by at most a third

power of || A||2. Hence, we obtain that

IVxVyd (X, X + A) = VxVyd* (X, X)|l2 < 2| All2 + 10| A3 + 4] A3

Writing the result with X = X; and Y = X, we recover the expression (3.8) for the gradient
Lij = Vx,Vx,d*(X;, X;). O
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D.4. Proof of Lemma 3.11

D.4 Proof of Lemma 3.11

We first start with ¢ = j, which corresponds to A;; = A;; = 0 in Lemma 3.10, and prove the
following auxiliary lemma.

Lemma D.1. Define the orthogonal matrix
0; = [IP®XZ» Ip®Xﬂ € O(np).

Then there exists an orthogonal matrix @, only depending on n and p, such that QQ; = QZ@
satisfies

QIDyiQi =D = [Ip@—”/ 2 (D.7)

2Imv—p(zo—l)/Q]
and
. ~pp-1)/2
Qz‘ Li;Qi=L= _2I(nfp)p : (D.8)
Op(p+1)2
Proof. By properties of the so-called vec-permutation matrices (see [HS81, Eq. (5), (6), (23)]),
there exists a permutation matrix II,,,, € R™P*"P that satisfies

(X @ Xi) Iy = X, @ X, I =115 .
This shows that (X ® X;) Iy, ,, = I, ,,(X; ® X]) is symmetric. Furthermore,
((XzT ® Xi) Hp,n)2 = (XzT ® Xi) Hp,n H;,n(Xi X XZT) = Ip ® XiXiT~
Denoting the symmetric matrix S; = (X] ® X;) II,, ,, we can then use Lemma 3.10 to write
Dji =2, + 48— 182, Ly =-2I,,+18;+ 352 (D.9)

It thus suffices to diagonalize .S;. Using the matrix Qz defined in the statement of the lemma,
direct calculation shows that

dso- [Mewmbex) I 1_g
O(n—p)p O(n—p)p

where we used that IT,, ,(I, ® X;) I, = X; ® I,,, with II, , € RP**P? another vec-permu-
tation matrix that is also symmetric (see [HS81, Eq. (6), (15)]). The matrix I above therefore
has the spectral decomposition
- ~ ~Lpp-1)2
I =QAQ", A= O(nfp)p , (D.10)

Ipp11) 2

for some orthogonal matrix Q that indeed does not depend on X, as claimed. By defining
the orthogonal matrix Q; = Q;(Q, we have thus shown that Q1.S;Q; = A, and by (D.9) also
that

QI DiQi = 2Ly + A — 34, QILiiQi = —2In, + 54+ 3 4%,
It is straightforward to verify that these matrices can be written as the claimed matrices D
and L. O
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Lemma 3.11 is now proven as a perturbation of the case above.

Proof of Lemma 3.11. From Lemma 3.10, we know that L;; = L;; + A;;. Lemma D.1 therefore
gives
QiLijQi = (Q; — Qi) "LijQi + Qi Li; Q;
=(Q; — Qi)'Li;Q; + L+ Q] A;;Q;.

Taking norms and recalling that §;; = ||QQ; — Q;|2, we obtain

1QFLi; Qi — Lll2 < 0i5(| Lill2 + [[ 45 12) + | Aij 2.

Since ||L;|l2 = ||L]|]2 < 2 by Lemma D.1, this shows (3.11). The bound (3.10) is similarly
proven. O
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