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Abstract

The aim of this paper is to show that Euler’s exponential formula limn→∞
(I−tA/n)−nx = etAx , well known for C0 semigroups in a Banach space X � x ,
can be used for semigroups not of class C0 , the sense of the convergence being
related to the regularity of the semigroup for t > 0 . Although the strong
convergence does not hold in general for not strongly continuous semigroups,
an integrated version is stated for once integrated semigroups. Furthermore by
replacing the initial topology on X by some (coarser) locally convex topology
τ , the strong τ -convergence takes place provided the semigroup is strongly τ -
continuous; in particular this applies to the class of bi-continuous semigroups
[9]. On the other hand, for bounded holomorphic semigroups not necessarily
of class C0 , Euler’s formula is shown to hold in operator norm, with the error
bound estimate O(lnn/n) , uniformly in t > 0 . All these results also concern
degenerate semigroups.

The Euler exponential formula limn→∞(I − tA/n)−n = etA (a special
case of the Post-Widder inversion formula) is well known as a useful method
to construct or to approximate C0 semigroups in the strong operator topology.
In particular, Euler’s approximation (I − tA/n)−n coincides with the solution
of the difference equation associated to the differential equation u′ = Au [13,
Remark 1.8.5].

It is known that this formula converges in the operator norm topology
for bounded holomorphic C0 semigroups (see [4] in a Hilbert space, and [3] in
a Banach space). This suggests that its convergence is related to the regularity
of the semigroup. On the other hand the class of C0 semigroups is not always
sufficient for the applications to evolution equations and this fact has motivated
various other theories: semigroups generated by multi-valued linear operators,
integrated semigroups, bi-continuous semigroups, etc.

In the first section we present some examples of Hille-Yosida operators
for which Euler’s approximation is, or is not, strongly convergent. The second
section deals with generalizations of Euler’s formula for integrated semigroups:
on the one hand an integrated version converges strongly to the integrated semi-
group, on the other hand if a k -times integrated semigroup is k -times strongly
τ -differentiable, then one obtains Euler’s formula in the sense of the strong τ -
convergence. This is a method to study τ -continuous semigroups, which are
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not easy to characterize. In the last part we consider bounded holomorphic
semigroups (not necessarily of class C0 ) and prove that Euler’s formula holds
in operator norm with an error bound estimate O(lnn/n), uniformly in t > 0.

Throughout this paper X denotes a Banach space with norm ‖ · ‖ , L(X)
denotes the space of all bounded linear operators on X with the operator norm
also denoted by ‖·‖ , and R(λ,A) = (λ−A)−1 is the resolvent of an operator A
at λ ∈ C . A sequence of bounded linear operators An is said to converge to A
in the strong operator topology if limn→∞ ‖Anx−Ax‖ = 0 for all x ∈ X . The
notions of strong continuity and strong differentiability without other indication
refer to the Banach space norm on X .

1. Euler’s formula in the strong operator topology

1.1. Hille-Yosida operators

Definition 1.1. A linear operator A in a Banach space X is called a Hille-
Yosida operator if its resolvent set ρ(A) contains a half-line (ω,+∞) and the
Hille-Yosida condition holds:

sup
λ>ω,n∈N

‖(λ− ω)n(λ−A)−n‖ <∞. (1.1)

In this definition we also admit multi-valued linear operators. These are
in one-to-one correspondence with the linear subspaces of X × X viewed as
graphs. The resolvent set is defined as the set of all complex numbers λ such
that (λ−A)−1 (as a graph) is the graph of an everywhere defined bounded linear
operator in X [14]. In place of a multi-valued Hille-Yosida operator A , one can
equivalently consider a pseudo-resolvent family {R(λ), λ ∈ Ω ⊂ C} ⊂ L(X),
with a possibly non trivial kernel kerR(λ) = A0, satisfying the condition (1.1).

In general, the Hille-Yosida condition (1.1) is not sufficient for A to
generate a C0 semigroup on X . However the part A| of A in dom(A) generates
a C0 semigroup on this closed subspace [14, Theorem 3.2]. Moreover X0 =
dom(A) +A0 is a topological direct sum in X [14, Theorem 2.4]. Thus Euler’s
formula holds in X0 :

Lemma 1.2. If A is a Hille-Yosida operator in X , then Euler’s approxima-
tion converges strongly in X0 = dom(A) + A0 , to the C0 semigroup generated
by A| in dom(A) and to 0 in A0 :

lim
n→∞

(I − tA/n)−nx = etA|P0x, x ∈ X0, t ≥ 0, (1.2)

where P0 is the projection from X0 = dom(A) +A0 on dom(A) .

Proof. Since A0 = ker(λ− A)−1 for any λ ∈ ρ(A), (I − tA/n)−nx = 0 for
any x ∈ A0. Since the convergence is well known for C0 semigroups, it remains
to observe that (I − tA/n)−1x = (I − tA|/n)−1x ∈ X0 for any x ∈ X0 .
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Following [1, Theorem 6.2], a Hille-Yosida operator generates a semigroup
on the full space X if X has the Radon-Nikodym property (the proof extends
clearly to the multi-valued case, with degenerate semigroups). For example,
reflexive spaces and separable dual spaces have this property. This leads to:

Theorem 1.3. Let X be a Banach space with the Radon-Nikodym property.
If A is a Hille-Yosida operator in X with ω ≤ 0 , then Euler’s approximation
converges strongly to a semigroup Tt which is strongly continuous for t > 0 .

Proof. By [1, Theorem 6.2] there exists a semigroup of bounded linear
operators (T (t))t>0 , strongly continuous for t > 0, such that ‖T (t)‖ ≤ M
and

R(λ,A) =

∫ ∞
0

e−λsT (s)ds, λ > ω. (1.3)

By the resolvent equation one obtains that

R(λ,A)n =
(−1)n−1

(n− 1)!
R(λ,A)(n−1) =

(−1)n−1

(n− 1)!

∫ ∞
0

(−s)n−1e−λsT (s)ds, (1.4)

and then, for n/t > ω ,

[n
t
R(n/t,A)

]n
=

1

(n− 1)!

∫ ∞
0

σn−1e−σT (σt/n)dσ. (1.5)

Since σn−1e−σdσ/(n − 1)! is a probability measure on (0,∞) with associated
mean n and variance n , one has for all x ∈ X and t > 0:

∥∥∥[n
t
R(n/t,A)

]n
x− T (t)x

∥∥∥
≤ 1

(n− 1)!

∫
|σ−n|>δ

σn−1e−σ‖(T (σt/n)− T (t))x‖dσ

+
1

(n− 1)!

∫
|σ−n|≤δ

σn−1e−σ‖(T (σt/n)− T (t))x‖dσ

≤ 2Mn

δ2
+ sup
|s−t|≤δt/n

‖T (s)x− T (t)x‖.

Let us set δn = nα for some α ∈ (1/2, 1): the first term goes to 0 as 2n1−2α

and the last term tends to 0 by the continuity of T (t)x , when n→∞ .

1.2. Counterexample

We will show by an example that Euler’s formula does not necessarily hold (in
the sense of the Banach space norm) for vectors x /∈ X0 (when X does not have
the Radon-Nikodym property). Let X = Cb(R) the Banach space of bounded
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continuous functions R→ C with the sup-norm, and let T (t)f(·) = f(·+ t) be
the left translation semigroup. By the integral (for Reλ > 0)

[R(λ)f ](u) =

∫ +∞

0

e−λsf(u+ s)ds, (1.6)

this semigroup is associated to a resolvent which clearly satisfies the condi-
tion (1.1) with ω = 0. R(λ) can be identified as the resolvent of the generator

by considering the once integrated semigroup S(t) =
∫ t

0
T (τ)dτ (see section 2.1

below). The subspace of strong continuity is X0 = Cub(R), the set of uniformly
continuous and bounded functions. Let us consider a function f ∈ X\X0 , de-
fined by f(u) = min{1, p|u − p| : p ∈ N} , and prove that Euler’s formula does
not hold on f for the uniform convergence on R , for any t > 0. We denote by
Fn(u) the difference (for some fixed t > 0)

(n
t
R(n/t)

)n
f(u)−T (t)f(u) =

∫ +∞

0

nn

(n− 1)!
sn−1e−ns(f(u+ st)− f(u+ t))ds

and consider the sequence un = n − t . It will be shown that Fn(un) does not
converge to 0 as n → ∞ , which means that supu∈R |Fn(u)| does not converge
to 0. Let rn(s) =

nn

(n−1)!s
n−1e−ns , so that

Fn(un) =

∫ ∞
0

rn(s)f(n+ (s− 1)t)ds, (1.7)

and dρn = rn(s)ds is the associated probability measure on (0,∞). Then we
observe that

sup
s≥0

rn(s) = rn

(
1− 1

n

)
= n

(n− 1)n−1

(n− 1)!
e−(n−1) =

n√
2π(n− 1)

(1− o(1)),

(1.8)
and thus

ρn([1− 1/nt, 1 + 1/nt]) ≤ 2

nt
sup
s≥0

rn(s) ≤
2/t√

2π(n− 1)
(1− o(1)). (1.9)

On the other hand, by the Chebychev inequality, we have for sufficiently large
n :

ρn([1− 1/2t, 1 + 1/2t]) ≥ 1− 4t2

n
, (1.10)

which leads to

ρn([1− 1/2t, 1− 1/nt]∪ [1+ 1/nt, 1+ 1/2t]) ≥ 1− 4t2

n
− 2/t√

2π(n− 1)
(1− o(1)).

(1.11)
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Since f(n+ (s− 1)t) = 1 on these intervals for any n ≥ 3, one concludes that
Fn(un) ≥ 1− o(1), hence Fn(un) does not converge to 0 as n→∞ .

However it can be shown that limn→∞ Fn(u) = 0 for each u ∈ R (in fact,
ρn converges (weak-∗) to the Dirac measure at 1, see the proof of Theorem 1.3),
or even uniformly on the compact subsets of R . This suggests that when Euler’s
exponential formula does not hold in the strong topology, one could find some
weaker topology on X ensuring the convergence.

2. A generalization of Euler’s formula

In order to study semigroups such as the translation semigroup in the previous
example, which are not strongly continuous for the Banach space norm (but
perhaps for some coarser topology on X ), we shall use integrated semigroups.
By this way we clarify the sense in which the generator is understood.

2.1. Integrated semigroups

The semigroup property T (t + s) = T (t)T (s) corresponds to the resolvent
equation for the Laplace transform: similarly in [1] one considers operator
families whose Laplace transform are of the form R(λ)/λk , where R(λ) is a
pseudo-resolvent. This leads to another functional equation which characterizes
integrated semigroups. The following definition [2, Def 3.2.1] states the relation
between the integrated semigroup and its generator.

Definition 2.1. Let A be an operator on a Banach space X and k ∈
N ∪ {0} . A is called the generator of a k -times integrated semigroup if there
exist ω ≥ 0 and a strongly continuous function S: R+ → L(X) having a
Laplace transform for λ > ω , such that (ω,∞) ⊂ ρ(A) and

R(λ,A) = λk
∫ ∞

0

e−λtS(t)dt (λ > ω). (2.1)

In this case S is called the k -times integrated semigroup generated by A .

The particular case of a 0-times integrated semigroup coincides with
the notion of C0 semigroup. The generators of integrated semigroups are
characterized as follows [1, Theorem 4.1]:

Proposition 2.2. Let k ∈ N ∪ {0} , ω ∈ R , M ≥ 0 . A linear operator A is
the generator of an (k + 1)-times integrated semigroup (S(t))t≥0 satisfying

lim sup
h↓0

1

h
‖S(t+ h)− S(t)‖ ≤Meωt (t ≥ 0) (2.2)

if and only if there exists a ≥ max{ω, 0} such that (a,∞) ⊂ ρ(A) and

‖(λ− ω)n+1[R(λ,A)/λk](n)/n!‖ ≤M (2.3)

for all λ > a , n = 0, 1, 2, . . .
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Here are some preliminaries in order to generalize Euler’s formula for
integrated semigroups.

Lemma 2.3. Let S(t) be an exponentially bounded k -times integrated semi-
group on X : ‖S(t)‖ ≤ Meωt . Let R(λ)/λk =

∫∞
0
e−λtS(t)dt be its Laplace

transform for λ > max{ω, 0} , where R(λ) is a pseudo-resolvent. Then Euler’s
approximation for n sufficiently large can be written as

[(n/t0)R(n/t0)]
n =

(n/t0)
k+1

(n− 1)!

∫ ∞
0

(
nt

t0

)n−k−1

Pn,k(nt/t0)e
−nt/t0S(t)dt,

(2.4)
where t0 > 0 and Pn,k denotes the polynomial (for n > k )

Pn,k(λ) =

k∑
�=0

(−1)�
(
k
&

)
λk−�

(n− 1)!

(n− &− 1)!
. (2.5)

Remark. The polynomials Pn,k are related to the Laguerre polynomials by

Pn,k(λ) = (−1)kk!Ln−k−1
k (λ). (2.6)

Proof. For a given t0 > 0, let n be such that n/t0 > ω and n > k . By the
resolvent equation one obtains

[(n/t0)R(n/t0)]
n =

(
n

t0

)n
(−1)n−1

(n− 1)!

dn−1

dλn−1
R(λ)

∣∣∣∣
λ=n/t0

,

and thus

[(n/t0)R(n/t0)]
n =

(
n

t0

)n
(−1)n−1

(n− 1)!

∫ ∞
0

dn−1

dλn−1
(λke−λt)

∣∣∣∣
λ=n/t0

S(t)dt.

Then by the Leibniz formula,

[(n/t0)R(n/t0)]
n

=
(−1)n−1

(n− 1)!

k∑
�=0

(
n− 1
&

)
k!

(k − &)!

(
n

t0

)n+k−� ∫ ∞
0

(−t)n−�−1e−nt/t0S(t)dt

=
(n/t0)

k+1

(n− 1)!

∫ ∞
0

k∑
�=0

(
k
&

)
(−1)�

(
nt

t0

)n−�−1

× (n− 1)!

(n− &− 1)!
e−nt/t0S(t)dt, (2.7)

which leads to (2.4).
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Lemma 2.4. The polynomials Pn,k obey the following relations for
n > k > 0 :

Pn,k+1(λ) = (λ− n+ k + 1)Pn,k(λ)− λkPn,k−1(λ) (2.8)

P ′n,k(λ) = kPn,k−1(λ) (2.9)

Pn,k(λt)λ
n−k−1e−λt =

dk

dλk
(λn−1e−λt). (2.10)

Proof. From the identity (for any numbers a0, . . . , ak+1 ):

k+1∑
�=0

(
k + 1
&

)
(−1)�a� = a0 +

k∑
�=1

((
k

&− 1

)
+

(
k
&

))
(−1)�a� + (−1)k+1ak+1

=

k∑
�=0

(−1)�
(
k
&

)
(a� − a�+1),

one deduces

Pn,k+1(λ) =

k∑
�=0

(−1)�
(
k
&

)
λk−�

(n− 1)!

(n− &− 1)!
(λ− n+ k + 1− (k − &))

= (λ− n+ k + 1)Pn,k(λ)− λ
k−1∑
�=0

(−1)�k!
&!(k − 1− &)!λ

k−1−� (n− 1)!

(n− &− 1)!

= (λ− n+ k + 1)Pn,k(λ)− λkPn,k−1(λ)

which gives (2.8). By (2.5) one finds directly (2.9):

P ′n,k(λ) =

k−1∑
�=0

k!(−1)�
&!(k − 1− &)!λ

k−1−� (n− 1)!

(n− &− 1)!
= kPn,k−1(λ).

Relation (2.10) is clearly verified for k = 1. Suppose that it holds for some
integer k : then by

[Pn,k(λt)λ
n−k−1e−λt]′

= {λt[P ′n,k(λt)− Pn,k(λt)] + (n− k − 1)Pn,k(λt)}λn−k−2e−λt

= Pn,k+1(λt)λ
n−k−2eλt

(where we use (2.8)) one deduces that (2.10) holds for k + 1, and thus for any
k < n by induction.

2.2. Integrated Euler’s formula

It will be shown that a once integrated semigroup can be approximated in the
strong operator topology by integration of Euler’s approximation.
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Theorem 2.5. Let (S(t))t≥0 be an exponentially bounded, once integrated
semigroup on X : ‖S(t)‖ ≤ Meωt . The associated pseudo-resolvent family
is R(λ) = λ

∫∞
0
e−λtS(t)dt for λ > ω , and one defines F (t) = t−1R(t−1) ,

0 < t < ω−1 . Then for any t0 > 0

s− lim
n→∞

s− lim
ε→0

∫ t0

ε

F (τ/n)ndτ = S(t0). (2.11)

Proof. Since the pseudo-resolvent is holomorphic in the half-plane Re z > ω ,
the function t �→ F (t) = t−1R(t−1) is holomorphic in the open disc of diameter
[0, ω−1] . In particular F (t/n)n is strongly continuous and bounded on [ε, t0] if
n is sufficiently large. This implies that the integral in (2.11) is well defined.
By the representation (2.4) one has

∫ t0

ε

F (τ/n)ndτ =

∫ t0

ε

(n/τ)2

(n− 1)!

∫ ∞
0

(
nt

τ

)n−2

e−nt/τ (nt/τ − n+ 1)S(t)dτdt.

(2.12)
Then by setting λ = n/τ , and by using Fubini’s theorem:

∫ t0

ε

F (τ/n)ndτ =

∫ nε−1

nt−1
0

n

(n− 1)!

∫ ∞
0

(λt)n−2e−λt(λt− n+ 1)S(t)dλdt

=

∫ ∞
0

ntn−2

(n− 1)!
S(t)

∫ nε−1

nt−1
0

λn−2e−λt(λt− n+ 1)dtdλ

=

∫ ∞
0

ntn−2

(n− 1)!
S(t)

[
−λn−1e−λt

]nε−1

nt−1
0

dt.

Since s− limt→0 S(t) = 0, one has

s− lim
ε→0

nn

(n− 1)!

∫ ∞
0

S(t)(t/ε)n−2e−nt/ε
dt

ε

= s− lim
ε→0

nn

(n− 1)!

∫ ∞
0

S(εu)un−2e−nudu = 0

by Lebesgue’s theorem, for each n sufficiently large. It remains to show that

s− lim
n→∞

nn

(n− 1)!

∫ ∞
0

S(t)(t/t0)
n−2e−nt/t0

dt

t0
= S(t0).

This follows from the argument in the proof of Theorem 1.3 with n′ = n − k ,
and the observation that nn

(n−1)! ∼
n′n
′

(n′−1)!e
k when n→∞ .

Remark. It follows clearly from the last argument that the limits can be
inverted in (2.11):

s− lim
ε→0

s− lim
n→∞

∫ t0

ε

F (τ/n)ndτ = s− lim
ε→0

[S(t0)− S(ε)] = S(t0). (2.13)
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Remark. The natural generalization to k -times integrated semigroups is
not straightforward. We do not know whether the integral corresponding to
(2.11) converges for arbitrary k -times integrated semigroups (k > 1).

2.3. Euler’s formula for differentiable integrated semigroups

Let the Banach space X be endowed with a topology τ , coarser than the norm
topology, such that (X, τ) is a locally convex topological vector space, which is
sequentially complete on norm-bounded sets. This topology is given by a family
of seminorms {pi}i∈I , and we can assume that pi(x) ≤ ‖x‖ for all x ∈ X and
i ∈ I . The completeness ensures that the τ -Riemann integral is well defined
for τ -continuous functions [a, b]→ (X, τ) which are norm-bounded.

Theorem 2.6. Let x: (0,∞) → X be an exponentially norm-bounded, τ -
continuous function, ‖x(t)‖ ≤ Meωt (M > 0 , ω ∈ R). Suppose that, for
some k ∈ N and some t0 > 0 with ωt0 ≤ k , there exist x0, . . . , xk ∈ X and
ε: (0,∞)→ X such that:

x(t) =

k∑
m=0

(t− t0)m
m!

xm + (t− t0)kε(t), ∀t > 0, (2.14)

with τ − limt→t0 ε(t) = 0 and supt>0 ‖ε(t)‖ ≤Meωt . Then

τ − lim
n→∞

(
n

t0

)k
1

(n− 1)!

∫ ∞
0

σn−k−1Pn,k(σ)e
−σx(σt0/n)dσ = xk. (2.15)

The following lemmata are useful for the proof of the theorem:

Lemma 2.7. Let k ∈ N . For any integer n ≥ k + 1 :

1

(n− 1)!

∫ ∞
0

σn−k−1+mPn,k(σ)e
−σdσ =

{
0 for m = 0, 1, . . . , k − 1
k! for m = k

(2.16)

Proof. Since
∫∞

0
σpe−σdσ = p! , the left hand side of (2.16) equals

k∑
�=0

(−1)�
(
k
&

)
(n− 1− &+m)!

(n− 1− &)! . (2.17)

Since n ≥ k+1, the product (n−1−�+m)!
(n−1−�)! = (n− &)(n+1− &) · · · (n+m− 1− &)

is a polynomial of degree m in the variable & . We first show that

k∑
�=0

(−1)�
(
k
&

)
Pm(&) = 0 (2.18)

for each polynomial Pm of degree m = 0, 1, . . . , k − 1, which implies (2.16) for
these values of m . To check (2.18) we use the basis: P0(&) = 1,
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P1(&) = &, . . . , Pm(&) = &(& − 1) · · · (& −m + 1). By observing that Pm(&) = 0
for & = 0, 1, . . . ,m − 1 and Pm(&) = &!/(& −m)! for & = m,m + 1, . . . , the left
hand side of (2.18) becomes

k∑
�=m

(−1)�
(
k
&

)
&!

(&−m)!
=

k∑
�=m

(−1)� k!

(k − &)!(&−m)!

=
(−1)mk!
(k −m)!

k−m∑
�′=0

(−1)�′ (k −m)!

&′!(k −m− &′)! = 0,

where &′ = & − m and (2.18) is proved. Similarly, one has for Pk(&) = &(& −
1) · · · (&− k + 1)

k∑
�=0

(−1)�
(
k
&

)
Pk(&) = (−1)kk! (2.19)

Since (n− &)(n+1− &) · · · (n+k−1− &) = (−1)kPk(&)+Q(&) where the degree
of Q is k − 1, one obtains the result for m = k .

Lemma 2.8. The integral
∫∞

0
σn−k−1

(n−1)! e
−σ|(σ−n)kPn,k(σ)|dσ is bounded in-

dependently of n > k , for each fixed k ≥ 0 .

Proof. Let φn(σ) =
σn−k−1

(n−1)! e
−σ(σ − n)kPn,k(σ) for a given integer k . By

Lemma 2.7 the integral
∫∞

0
φn(σ)dσ = k! is bounded independently of n > k .

Since the function φn(σ) has no constant sign, we consider its positive part φ
+
n

and its negative part φ−n such that |φn| = φ+
n + φ−n = φn + 2φ−n . Therefore

one has to estimate the negative part of the function, in order to prove that
its contribution to the integral is also bounded independently of n > k . Since
(σ−n)kPn,k(σ) goes to +∞ as σ → ±∞ , the negative part φ−n has support in
the interval between the smallest and the largest root of (σ−n)Pn,k(σ) (except
for the trivial case k = 0).

Let us observe that the degree of Pn,k(n) as a polynomial in n is [k/2] =
sup{p ∈ N, p ≤ k/2} . Indeed Pn,0(n) = 1, Pn,1(n) = 1, and by (2.8) one has
Pn,k+1(n) = (k + 1)Pn,k(n) − nkPn,k−1(n). Thus the observation follows by
induction on k . By Taylor’s formula and relation (2.9) one has for any a ∈ R

Pn,k(σ) =

k∑
�=0

(
k
&

)
(σ − a)�Pn,k−�(a). (2.20)

Let {αn}n>k>0 be a sequence of roots for a given k : Pn,k(αn) = 0, and let

βn = (αn − n)n−1/2 . Then by (2.20) for a = n , Pn,k(αn) = nk/2P̃n,k(βn),

where P̃n,k is a polynomial of degree k with coefficient of order & :

(
k
&

)
n−

k−�
2 Pn,k−�(n) = O(1)
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when n→∞ . Thus βn as root of P̃n,k is bounded independently of n > k > 0.
This leads to |αn − n| ≤ O(n1/2).

Let an , bn be the smallest and the largest root of (σ−n)Pn,k(σ), then for
any σ ∈ [an, bn] one has |σ−n| ≤ max{|an−n|, |bn−n|} ≤ O(n1/2). Thus one
has |Pn,k(σ)| ≤ O(nk/2), σ ∈ [an, bn] , and then supσ∈[an,bn] |(σ−n)kPn,k(σ)| ≤
O(nk). This leads to the estimate for φ−n :

φ−n (σ) ≤ O(nk)
(n− k − 1)!

(n− 1)!

σn−k−1

(n− k − 1)!
e−σ. (2.21)

Finally one obtains

∫ ∞
0

σn−k−1

(n− 1)!
e−σ

∣∣(σ − n)kPn,k(σ)∣∣ dσ
≤ k! +O(nk) (n− k − 1)!

(n− 1)!

∫ ∞
0

σn−k−1

(n− k − 1)!
e−σdσ,

which shows that the integral on the left hand side is bounded independently
of n > k .

Proof of Theorem 2.6. Inserting the expression (2.14) into the integral,
one obtains for the left hand side of (2.15)

k∑
m=0

xm
m!

(
n

t0

)k−m
1

(n− 1)!

∫ ∞
0

σn−k−1Pn,k(σ)e
−σ(σ − n)mdσ (2.22)

+
1

(n− 1)!

∫ ∞
0

σn−k−1Pn,k(σ)e
−σ(σ − n)kε(σt0/n)dσ. (2.23)

By Lemma 2.7 the terms with power in σ less than k vanish in (2.22), thus
only xk remains for this line. Line (2.23) can be rewritten as

∫∞
0
rn,k(s)ε(st0)ds

where the function

rn,k(s) =
nne−ns

(n− k − 1)!
sn−k−1(s− 1)k

k∑
�=0

(
k
&

)
(−1)�nk−�sk−� (n− k − 1)!

(n− &− 1)!
,

(2.24)
defined for s ≥ 0 and n > k , converges pointwise to 0: limn→∞ rn,k(s) = 0 for
any s ≥ 0. This can be seen as follows:

nk−�
(n− k − 1)!

(n− &− 1)!
≤
(

n

n− k

)k−�
−→
n→∞

1, hence is bounded. (2.25)

Setting n′ = n− k − 1 one has:

nn

n′!
= nk+1

( n
n′

)n′ n′n′
n′!

∼
n→∞

(n′e)k+1en
′

√
2πn′

(2.26)
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thus
|rn,k(s)| ≤ C|s2 − 1|ke−(k+1)sn′

k+1/2
en
′(1−s+log s) (2.27)

where the constant C depends only on k . Since 1 − s + log s < 0 for any
s ∈ (0,∞)\{1} , one obtains the convergence for these values of s , and finally
rn,k(0) = rn,k(1) = 0. Moreover let δ ∈ (0, 1): for |s − 1| > δ , one has
s−1−log s > ε > 0 which shows that the convergence is uniform on (0,∞)\(1−
δ, 1 + δ), and dominated by the integrable function C̃|s2 − 1|ke−(k+1)s .

To complete the proof of the theorem, let pi be any continuous seminorm
on (X, τ). Since τ − limt→t0 ε(t) = 0, for any ε > 0 there exists δ > 0 such
that sup|s−1|<δ pi(ε(st0)) < ε . One has

pi

(∫ ∞
0

rn,k(s)ε(st0)ds

)
≤
∫ ∞

0

|rn,k(s)|pi(ε(st0))ds

≤ sup
t>0

e−kt/t0pi(ε(t))

∫
|s−1|>δ

eks|rn,k(s)|ds

+ ε

∫ ∞
0

|rn,k(s)|ds,

where supt>0 e
−kt/t0pi(ε(t)) ≤ supt>0 e

−ωt‖ε(t)‖ (since ωt0 ≤ k ) is bounded,∫
|s−1|>δ e

ks|rn,k(s)|ds tends to 0 when n → ∞ by Lebesgue’s theorem, and∫∞
0
|rn,k(s)|ds is bounded uniformly in n > k by Lemma 2.8. Hence the proof

is complete.

Theorem 2.9. Let A be a Hille-Yosida (multi-valued) operator on a Banach
space X . Let τ be another topology on X , coarser than the norm topology, such
that (X, τ) is a locally convex topological vector space, which is sequentially
complete on norm bounded sets. Let S(t) denote the associated once integrated
semigroup on X , and x ∈ X . If t �→ S(t)x is τ -differentiable at t0 > 0 then:

τ − lim
n→∞

(I − t0A/n)−nx = S′(t0)x. (2.28)

Moreover if S(·)x ∈ C1((0,∞), (X, τ)) for all x ∈ X , then (S′(t))t>0 is a
τ -continuous semigroup, (λ − A)−1x =

∫∞
0
e−λtS′(t)xdt as a generalized τ -

Riemann integral, and the Euler type formula (2.28) holds for the strong τ -
convergence.

More generally, if A is the generator of a k -times integrated semigroup
S(t) in X , ‖S(t)‖ ≤Meωt , and if S(t)x is k -times τ -differentiable at t0 > 0
for some x ∈ X , then:

τ − lim
n→∞

(I − t0A/n)−nx = S(k)(t0)x. (2.29)

Proof. A k -times integrated semigroup S(t) is related to its generator A
by the Laplace transform

(λ−A)−1 = λk
∫ ∞

0

e−λtS(t)dt. (2.30)
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Thus by Lemma 2.3 one has

(I − t0A/n)−nx =
(n/t0)

k+1

(n− 1)!

∫ ∞
0

(
nt

t0

)n−k−1

Pn,k(nt/t0)e
−nt/t0S(t)xdt.

Then the limit (2.29) for an exponentially bounded k -times integrated
semigroup follows from Theorem 2.6, after some verifications. A k -times inte-
grated semigroup is strongly ‖ · ‖-continuous, thus also strongly τ -continuous,
thus one takes x(t) = S(t)x . If ωt0 > k , one considers the k′ -times integrated
semigroup S̃(t), with k′ ≥ ωt0 , obtained by integration of S(t), and which is
clearly k′ -times τ -differentiable at x in t0 :

S̃(t) =

∫ t

0

(t− s)k′−k−1

(k′ − k − 1)!
S(s)ds. (2.31)

If the Hille-Yosida operator A generates a once integrated semigroup S(t)
such that S(·)x ∈ C1((0,∞), (X, τ)) for all x ∈ X , then by Proposition 2.2
lim suph↓0 ‖S(t + h) − S(t)‖/h ≤ Meωt and the linear operators S′(t) are

bounded by Meωt . Hence the strong τ -Riemann integral
∫ b
a
e−λsS′(s)ds is

well defined, and converges as a ↓ 0 and b → ∞ in operator norm. Then by
integration by parts

(λ−A)−1x = λ

∫ ∞
0

e−λsS(s)xds = [−e−λsS(s)x]∞0 +

∫ ∞
0

e−λsS′(s)xds (2.32)

one obtains that the resolvent of A is the Laplace transform of S′(t), and thus
S′(t) satisfies the semigroup equation S′(t)S′(s) = S′(t + s) by [1, Proposi-
tion 2.2].

2.4. Example: bi-continuous semigroups

Let A be a Hille-Yosida operator in a Banach space X . Assuming certain prop-
erties of the topological vector space (X, τ), F. Kühnemund was able to state
sufficient conditions for the τ -differentiability of the associated once integrated
semigroup F (t), and then construct the class of bi-continuous semigroups. The
following proposition [9, Theorem 16] summarizes this theory:

Proposition 2.10. Let A be a Hille-Yosida operator in X , and let F (t)
be the associated once integrated semigroup. In order that F (·)x ∈ C1((0,∞),
(X, τ)) for all x ∈ X and (F ′(t))t>0 is locally bi-equicontinuous, it is necessary
and sufficient that dom(A) is bi-dense and the family {(s − α)kR(s,A)k : k ∈
N, s ≥ α} is bi-equicontinuous for every α > ω . When these conditions are
satified, the operator A is said to generate a bi-continuous semigroup (F ′(t))t>0

on X .

Other results about bi-continuous semigroups can be found in [7, 9, 10].
Theorem 2.9 applies clearly to this class of semigroups and one obtains:
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Corollary 2.11. Let T (t) be a bi-continuous semigroup in X , then Euler’s
formula holds for the strong τ -convergence:

τ − lim
n→∞

(I − tA/n)−nx = T (t)x, x ∈ X.

For the example given in [9, Theorem 20], one obtains Euler’s formula for
a jointly continuous flow in the compact open topology (a direct proof of this
result can be found in [5]).

Corollary 2.12. Let φ: R+ × Ω → Ω be a jointly continuous flow on the
topological space Ω , and let the operator A in Cb(Ω) be its Lie generator. Then
for each f ∈ Cb(Ω)

(I + tA/n)−nf −→
n→∞

f ◦ φt

uniformly on the compact subsets of Ω .

3. Holomorphic semigroups

3.1. Real characterization

This section concerns holomorphic semigroups in the extended sense (cf [2,
definition 3.7.3], and [8] for the degenerate case):

Definition 3.1. A family {T (t)}t>0 ⊂ L(X) is a bounded holomorphic
semigroup of semi-angle θ if T (t)T (s) = T (t + s) for any t, s > 0, and the
function t �→ T (t) has a holomorphic extension in Sθ = {z ∈ C\{0}, |arg z| < θ}
which is bounded in each sector Sδ , for 0 < δ < θ , by a constant Mδ > 0.

Such a semigroup T (t) has a Laplace transform T̂ (λ) =
∫∞

0
e−λtT (t)dt

for Reλ > 0, and T̂ is a pseudo-resolvent by [1, Prop 2.2]. Thus a multivalued
linear operator A is said to generate the bounded holomorphic semigroup T if
T̂ (λ) = (λ−A)−1 , Reλ > 0. Here is a real characterization of the generators of
such semigroups, in fact a generalization of [13, Theorem 2.5.5] to semigroups
which are not in the class C0 .

Theorem 3.2. Let A be a multi-valued linear operator in a Banach space
X , such that (0,+∞) ⊂ ρ(A) . There exists θ > 0 such that A generates
a bounded holomorphic semigroup of semi-angle θ if and only if the family
{λR(λ,A) : λ > 0} is uniformly power bounded and uniformly analytic, i.e.

sup
λ>0,n∈N

‖[λR(λ,A)]n‖ <∞ and sup
λ>0,n∈N

n‖[λR(λ,A)]n(I − λR(λ,A))‖ <∞.

(3.1)
Moreover one has the representations, for t > 0 and Reλ > 0 ,

etA =
1

2πi

∫
γ

eµt(µ−A)−1dµ and (λ−A)−1 =

∫ ∞
0

e−λtetAdt, (3.2)

where γ is a smooth curve in Sπ/2+θ running from ∞e−i(π/2+δ) to ∞ei(π/2+δ)

for some θ > δ > 0 .
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The following lemma is not a new result (cf e.g. [11] and the references
therein), but we need a more precise statement with explicit bounds. In fact
the converse of this result is also known.

Lemma 3.3. Let T ∈ L(X) be power bounded and analytic: supn∈N ‖Tn‖ =
M <∞ , supn∈N n‖Tn(T−I)‖ = N <∞ . Then for θ = arcsin(min{1/4eN, 1})
and any δ < θ , one has

sup
z−1∈Sπ/2+δ

|z − 1|‖(z − T )−1‖ ≤ M

sin ε
+

1

(1− 4eN sin(δ + ε)) sin ε
(3.3)

where ε ∈ (0, θ − δ) .

Proof. First we estimate for each t > 0:

‖et(T−I)‖ ≤ e−t
∞∑
n=0

tn

n!
‖Tn‖ ≤M, (3.4)

‖t(T − I)et(T−I)‖ ≤ te−t
∞∑
n=0

tn

n!
‖Tn(T − I)‖ ≤ (1− e−t)2N ≤ 4N. (3.5)

Then we show that for each δ < θ , supz∈Sδ ‖ez(T−I)‖ <∞ . By the analyticity

of z �→ ez(T−I) one has (in particular for each t > 0):

ez(T−I) =

∞∑
n=0

(z − t)n
n!

dn

dtn
et(T−I)

= et(T−I) +

∞∑
n=1

(z − t)n
tn

nn

n!

[
t

n
(T − I)e tn (T−I)

]n
.

By using (3.5) and nne−n/n! ≤ 1, the series is dominated by a geometric series
if 4eN |z − t|/t < 1. If |arg z| ≤ δ < θ , we set t = |z|2/Re z , such that
|z − t|/t ≤ sin |arg z| ≤ sin δ < 1/4eN , and find the estimate

‖ez(T−I)‖ ≤M +
1

1− 4eN sin δ
= mδ. (3.6)

Then by the Laplace transform one has ‖(λ − eiδ(T − I))−1‖ ≤ mδ/Reλ for
Reλ > 0 and |δ| < θ , and thus for µ = λe−iδ ∈ Sπ/2+θ :

‖(µ+ I − T )−1‖ ≤ mδ

Re(µeiδ)
. (3.7)

Let argµ ∈ (0, π/2 + δ) for some δ ∈ (0, θ), one has for ε ∈ (0, θ − δ):
|µ|/Re(µe−i(δ+ε)) < (sin ε)−1 and thus

‖(µ+ I − T )−1‖ ≤ mδ+ε

|µ| sin ε . (3.8)

This gives the announced inequality (3.3).
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Proof of Theorem 3.2. By Lemma 3.3, the conditions of power bounded-
ness and analyticity of {λR(λ)} (uniformly in λ > 0) imply that there exists
θ > 0 such that for each δ ∈ (0, θ):

sup
z∈1+Sπ/2+δ

|z − 1|‖(z − λR(λ,A))−1‖ ≤ m̃δ <∞, (3.9)

uniformly for λ > 0. The Yosida approximation of A

An =
I − nR(n,A)

1/n
(3.10)

is known to converge in the norm resolvent sense to A (for the multi-valued
case, see e.g. [14, Lemma 3.1])

lim
n→∞

‖(λ−An)−1 − (λ−A)−1‖ = 0 (3.11)

for any λ ∈ ρ(A). Let us now estimate ‖(ζ −An)−1‖ :

‖(ζ −An)−1‖ = ‖n−1(ζ/n+ I − nR(n,A))−1‖ ≤ m̃δ

|ζ| (3.12)

for any ζ ∈ Sπ/2+δ by (3.9). Since this estimate is uniform in n , one obtains
‖(ζ − A)−1‖ ≤ m̃δ/|ζ| for any ζ ∈ Sπ/2+δ . Then one can define the semigroup
generated by A for t ∈ Sθ , as

etA =
1

2πi

∫
γ

eλt(λ−A)−1dλ (3.13)

where γ is a smooth curve in Sπ/2+θ running from ∞e−i(π/2+δ) to ∞ei(π/2+δ)

for some δ < θ . The boundedness, analyticity and semigroup property are
verified by standard arguments (see e.g. [6, Proposition II.4.3]). For the repre-
sentation of the resolvent as Laplace transform of the semigroup: let Reλ > 0
and consider a curve γ such that λ lies on the right of γ , then one has

∫ ∞
0

e−λtetAdt =
1

2πi

∫ ∞
0

∫
γ

e(z−λ)t(z −A)−1dtdz

=
1

2πi

∫
γ

(z −A)−1

∫ ∞
0

e(z−λ)tdzdt

=
1

2πi

∫
γ

(z −A)−1 dz

z − λ = (λ−A)−1

by Fubini’s theorem and by Cauchy’s integral theorem, closing the curve γ by
circles with increasing diameter on the right.

In order to prove the necessity of the conditions of power boundedness and
analyticity, let etA be some bounded holomorphic semigroup of semi-angle θ .
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By [2, Theorem 2.6.1], the Laplace transform R(λ,A) of etA has a holomorphic
extension to Sπ/2+θ and satisfies the estimate supz∈Sπ/2+δ

‖zR(z,A)‖ < ∞
for each δ ∈ (0, θ). Furthermore, one has the representation (3.13). By the
resolvent equation, one finds for λ > 0

dn

dλn
R(λ,A) = (−1)n

∫ ∞
0

tne−λtetAdt = (−1)nn!R(λ,A)n+1. (3.14)

Thus, for λ > 0,

‖[λR(λ,A)]n‖ ≤ λn

(n− 1)!

∫ ∞
0

tn−1e−λt‖etA‖dt ≤ sup
t>0
‖etA‖ (3.15)

which shows that {λR(λ,A)}λ>0 is uniformly power bounded. Furthermore,

[λR(λ,A)]n(I − λR(λ,A)) =
λn

(n− 1)!

∫ ∞
0

(
1− λt

n

)
tn−1e−λtetAdt

=
λn

n!

∫ ∞
0

tne−λt
(
d

dt
etA
)
dt

by integration by parts, using (tne−λt)′ = (ntn−1 − λtn)e−λt . Since

t

∥∥∥∥ ddtetA
∥∥∥∥ ≤ 1

2π

∫
γ

|ezt|‖z(z −A)−1‖|tdz|

≤ 1

2π
sup

z∈Sπ/2+δ

‖z(z −A)−1‖
∫
tγ

eReu|du| (3.16)

for any curve γ ⊂ Sπ/2+θ running from ∞e−i(π/2+δ) to ∞ei(π/2+δ) , one can

replace γ by γ/t and conclude that supt>0 t‖ ddtetA‖ is finite. Thus

‖[λR(λ,A)]n(I − λR(λ,A))‖ ≤ 1

n
sup
t>0

t‖ d
dt
etA‖ (3.17)

is bounded, which means that {λR(λ,A)}λ>0 is uniformly analytic.

Corollary 3.4. Let A be a multi-valued linear operator in a Banach space
X , such that (0,+∞) ⊂ ρ(A) . Consider for each δ > 0

sup
λ∈Sδ,n∈N

‖[λR(λ,A)]n‖ = M̃δ (3.18)

sup
λ∈Sδ,n∈N

n‖[λR(λ,A)]n(I − λR(λ,A))‖ = Ñδ. (3.19)

The operator A generates a bounded holomorphic semigroup of semi-angle θ if
and only if M̃δ < ∞ and Ñδ < ∞ for each δ ∈ (0, θ) . Furthermore for each
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δ ∈ (0, θ) one has

M̃δ ≤ Mδ = sup
t∈Sδ
‖etA‖ <∞ (3.20)

Ñδ ≤ Nδ = sup
t∈Sδ

t

∥∥∥∥ ddtetA
∥∥∥∥ <∞. (3.21)

Remark. These inequalities extend to δ = 0 by replacing Sδ by (0,∞) in
the suprema. Since ‖nR(n,A)x−x‖ → 0 for each x ∈ dom(A) [14, Lemma 2.5],
one has also M̃δ ≥ M̃0 ≥ 1, and thus Mδ ≥M0 ≥ 1.

3.2. Euler’s Formula

The operator-norm convergence of Euler’s formula has been established in [4,
Theorem 5.1] (with the error bound O(lnn/n)) for m-sectorial generators in a
Hilbert space. Then this convergence has been extended in [3, Corollary 1.3]
to any bounded holomorphic C0 semigroup on a Banach space (without error
bound). It will be shown here that the operator-norm convergence holds for any
bounded holomorphic semigroup (in the sense of definition 3.1) with the error
bound estimate O(lnn/n).

Theorem 3.5. Let {R(λ)}λ∈Ω be a pseudo-resolvent family in Ω ⊃ (0,∞) ,
such that {λR(λ)}λ>0 is uniformly power bounded and uniformly analytic in
(0,∞) . Then the sequence [(n/t)R(n/t)]n converges in operator norm to a
bounded holomorphic semigroup, with the error bound estimate O(lnn/n) uni-
formly in t > 0 .

Corollary 3.6. Let A generate a bounded holomorphic semigroup in X ,
then Euler’s formula holds in operator norm with the estimate:

‖(I − tA/n)−n − etA‖ ≤ O(lnn/n).

uniformly for t > 0 .

The main estimate is similar to [4], but the case of a multi-valued operator
A requires a careful treatment, and A is not necessarily boundedly invertible.
For that reason, the preliminary estimates must be improved by the following
lemma.

Lemma 3.7. Let A generate a bounded holomorphic semigroup of semi-
angle θ in X . Then one has, uniformly for µ > 0

‖(µ−A)−1(etA − (I − tA)−1)‖ ≤ L1t (t > 0), (3.22)

‖(µ−A)−1(etA − (I − tA)−1)(µ−A)−1‖ ≤ L2t
2 (t > 0). (3.23)

Proof. One sets for simplicity R(λ) = (λ−A)−1 for any λ ∈ ρ(A) and first
proves for µ > 0 that limt↓0 ‖R(µ)(etA − I)‖ = 0. Let γ be a smooth curve as
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in (3.13), such that µ lies on the left of γ . By Cauchy’s theorem, closing the
curve γ on the left by increasing circles,

1

2πi

∫
γ

e(λ−µ)t

λ− µ dλ = 1.

Hence

R(µ)(etA − I) =
1

2πi

∫
γ

eλt
(
R(λ)R(µ)− e−µt

λ− µR(µ)
)
dλ

=
1

2πi

∫
γ

eλt

λ− µ
(
(1− e−µt)R(µ)−R(λ)

)
dλ

= (eµt − 1)R(µ)− 1

2πi

∫
γ

eλt

λ− µR(λ)dλ.

The first term tends clearly to 0 as t ↓ 0 and the last term also by Lebesgue’s
theorem, because the integrand is dominated by c|(λ − µ)λ|−1 supz∈Sπ/2+δ

‖zR(z)‖ (for some c > 0) and

1

2πi

∫
γ

1

λ− µR(λ)dλ = 0

by Cauchy’s theorem, closing the curve γ on the right by increasing circles.
Then in the operator norm topology,

lim
ε↓0

∫ t

ε

d

ds
R(µ)esAds = lim

ε↓0
R(µ)(etA − eεA) = R(µ)(etA − I). (3.24)

Let us now find another expression for R(µ)detA/dt :

R(µ)

(
µetA − d

dt
etA
)

=
1

2πi

∫
γ

eλt(µ− λ)R(µ)R(λ)dλ

=
1

2πi

∫
γ

eλt (R(λ)−R(µ)) dλ = etA, (3.25)

where one uses the resolvent equation and the fact that
∫
γ
eλtdλ = 0 by

Cauchy’s theorem (closing the curve γ on the left). It follows that

‖R(µ)(etA − I)‖ =
∥∥∥∥
∫ t

0

(µR(µ)− I)esAds
∥∥∥∥ ≤ (1 +M0)M0t. (3.26)

By the resolvent equation (for t �= µ−1 ):

R(µ)[(I − tA)−1 − I] = t

µt− 1
[t−1R(t−1)− µR(µ)]. (3.27)
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Let us consider the holomorphic function F (x) = (I − xA)−1 = x−1R(x−1) for
Rex > 0. One finds supx>0 ‖F (x)‖ ≤M0 , F

′(x) = x−2[x−1R(x−1)−I]R(x−1),
and then supx>0 ‖xF ′(x)‖ ≤ M0(1 + M0). For any µ > 0, this gives the
estimates:

sup
t>0,|µt−1|>1/2

‖(µt− 1)−1[F (t)− F (µ−1)]‖ ≤ 4M0 (3.28)

sup
t>0,|µt−1|<1/2

‖(µt− 1)−1[F (t)− F (µ−1)]‖ ≤ sup
1

2µ<x<
3

2µ

µ−1‖F ′(x)‖ (3.29)

≤ sup
1

2µ<x<
3

2µ

(xµ)−1‖xF ′(x)‖

≤ 2 sup
x>0
‖xF ′(x)‖ ≤ 2M0(1 +M0).

Thus one obtains ‖R(µ)[(I − tA)−1 − I]‖ ≤ 2M0(1 +M0)t and finally (3.22),
where L1 = 3(1 +M0)M0 is independent of µ .

In order to verify the estimate (3.23), one considers two parts:
D1 = R(µ)

[
R(µ)(etA − I)− t(µR(µ)− I)

]
and

D2 = R(µ)
[
R(µ)((I − tA)−1 − I)− t(µR(µ)− I)

]
. For the first part, one has

by using (3.26) twice:

D1 = R(µ)

∫ t

0

(µR(µ)− I)(esA − I)ds = (µR(µ)− I)2
∫ t

0

∫ s

0

e−s1Adsds1,

which leads to ‖D1‖ ≤ (1+M0)
2M0t

2/2. For the second part, by the resolvent
equation (for t �= µ−1 ):

D2 =
tR(µ)

µt− 1

[
t−1R(t−1)− I − µt(µR(µ)− I)

]

=
t2

(µt− 1)2
[
t−1R(t−1)− µR(µ)− (t− µ−1)µ2R(µ)(µR(µ)− I)

]

=
t2

(µt− 1)2
[
F (t)− F (µ−1)− (t− µ−1)F ′(µ−1)

]
.

One has
sup

|µt−1|>1/2

t−2‖D2‖ ≤ 8M0 + 2M0(1 +M0), (3.30)

and with F ′′(x) = 2x−3R(x−1)(I − x−1R(x−1))2 :

sup
|µt−1|<1/2

t−2‖D2‖ ≤ sup
1

2µ<x<
3

2µ

µ−2‖F ′′(x)‖ ≤ sup
1

2µ<x<
3

2µ

(xµ)−2‖x2F ′′(x)‖

≤ 4 sup
x>0
‖x2F ′′(x)‖ ≤ 8M0(1 +M0)

2. (3.31)

Thus ‖D1 −D2‖ ≤ O(t2), which gives (3.23) with L2 = 9M0(1 +M0)
2 .
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Proof of Theorem 3.5. By Theorem 3.2 the (multi-valued) operator A =
λ−R(λ)−1 generates a bounded holomorphic semigroup etA . Then

[(n/t)R(n/t)]n − etA =

n−1∑
k=0

[(n/t)R(n/t)]n−k−1[(n/t)R(n/t)− etA/n]ektA/n

= [(n/t)R(n/t)]n−1[(n/t)R(n/t)− etA/n]

+

n−2∑
k=1

[(n/t)R(n/t)]n−k−1[(n/t)R(n/t)− etA/n]ektA/n

+[(n/t)R(n/t)− etA/n]e(n−1)tA/n.

By (3.25) one has

ektA/n = R(µ)

(
−n
k

d

dt
ektA/n + µektA/n

)
, (3.32)

and by (3.27)

[(n/t)R(n/t)]n−k−1 =
n

t
(µt/n− 1)[(n/t)R(n/t)]n−k−2[(n/t)R(n/t)− I]R(µ)

−µ[(n/t)R(n/t)]n−k−2R(µ). (3.33)

Thus by Lemma 3.7, one obtains the estimates

‖[(n/t)R(n/t)]n−1[(n/t)R(n/t)− etA/n]‖

≤ ‖n
t
(µt/n− 1)[(n/t)R(n/t)]n−2[(n/t)R(n/t)− I]‖

× ‖R(µ)[etA/n − (n/t)R(n/t)]‖
+ µ‖[(n/t)R(n/t)]n−2‖‖R(µ)[etA/n − (n/t)R(n/t)]‖

≤ |µt/n− 1|N0L1

n− 2
+
µt

n
M0L1, (3.34)

‖[(n/t)R(n/t)− etA/n]e(n−1)tA/n‖

≤ ‖[(n/t)R(n/t)− etA/n]R(µ)‖‖ n

n− 1

d

dt
e(n−1)tA/n − µe(n−1)tA/n‖

≤ L1N0

n− 1
+
µt

n
L1M0, (3.35)

‖[(n/t)R(n/t)]n−k−1
[
(n/t)R(n/t)− etA/n

]
ektA/n‖

≤
∥∥∥(n

t
(µt/n− 1)[(n/t)R(n/t)]n−k−2[(n/t)R(n/t)− I]

− µ[(n/t)R(n/t)]n−k−2
)∥∥∥
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× ‖R(µ)[(n/t)R(n/t)− etA/n]R(µ)‖
∥∥∥∥
(
−n
k

d

dt
ektA/n + µektA/n

)∥∥∥∥
≤ |µt/n− 1| 2N2

0L2

(n− k − 1)k
+ L2M0N0

µt

n

(
2
|µt/n− 1|
n− k − 1

+
1

k

)

+ L2M
2
0

(µt)2

n2
, (3.36)

for any µ > 0. Since the left hand side of these inequalities does not depend
on µ , one can take µ ↓ 0 in the right hand side. Then one finds the announced
estimate

‖[(n/t)R(n, t)]n−etA‖ ≤ L1N0

n− 2
+
L1N0

n− 1
+

n−2∑
k=1

2N2
0L2

(n− k − 1)k
≤ O(lnn/n), (3.37)

by observing that
n−2∑
k=1

1

(n− k − 1)k
≤ 4

lnn

n
. (3.38)

Corollary 3.8. Let A generate a bounded holomorphic semigroup of semi-
angle θ , or equivalently M̃δ < ∞ and Ñδ < ∞ for each δ ∈ (0, θ) . Then
the sequence of bounded holomorphic functions [(n/t)R(n/t,A)]n converges in
operator norm to etA for any t ∈ Sθ with the error bound estimate O(lnn/n)
uniform on each sector Sδ , δ ∈ (0, θ) . Moreover the inequalities (3.20) and
(3.21) are in fact equalities: for each δ ∈ (0, θ) ,

sup
λ∈Sδ,n∈N

‖[λR(λ)]n‖ = sup
t∈Sδ
‖etA‖ (3.39)

sup
λ∈Sδ,n∈N

n‖[λR(λ)]n(I − λR(λ))‖ = sup
t∈Sδ

t‖ d
dt
etA‖. (3.40)

Proof. The convergence (with the error bound estimate) of F (t/n)n =
[(n/t)R(n/t,A)]n on the half-line {t = reiδ : r > 0} follows from Theorem 3.5
for e−iδA , i.e. for the pseudo-resolvent family R(λe−iδ), where the constants
M0 , N0 are just replaced by Mδ , Nδ . Since etA = limn→∞[(n/t)R(n/t)]n in
operator norm for any t ∈ Sδ , one has

‖etA‖ = lim
n→∞

‖[(n/t)R(n/t)]n‖ ≤ sup
λ∈Sδ,n∈N

‖[λR(λ)]n‖ (3.41)

and one obtains (3.39). By a classical result on holomorphic functions, one has
the convergence of all derivatives of F (t/n)n to the corresponding derivatives
of etA , uniformly on the compact subsets of Sθ . In particular

d

dt
etA = lim

n→∞
d

dt
[F (t/n)n] = lim

n→∞
n

t
(F (t/n)− I)F (t/n)n (3.42)

which leads to Nδ ≤ Ñδ and thus to (3.40).
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3.3. Concluding remark

One would naturally expect the error bound estimate O(1/n) instead of O(lnn/
n) in Theorem 3.5. This is actually true, by an induction argument of V.
Paulauskas [12]. From the same preliminary estimates, this new method allows
to skip the factor lnn in the final estimate, and thus to obtain the optimal
one. The author is grateful to V. Paulauskas for the early communication of his
work.
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