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The full optimization of a quantum heat engine requires operating at high power, high efficiency, and high
stability (i.e., low power fluctuations). However, these three objectives cannot be simultaneously optimized—as
indicated by the so-called thermodynamic uncertainty relations—and a systematic approach to finding optimal
balances between them including power fluctuations has, as yet, been elusive. Here we propose such a general
framework to identify Pareto-optimal cycles for driven quantum heat engines that trade off power, efficiency,
and fluctuations. We then employ reinforcement learning to identify the Pareto front of a quantum dot-based
engine and find abrupt changes in the form of optimal cycles when switching between optimizing two and three
objectives. We further derive analytical results in the fast- and slow-driving regimes that accurately describe
different regions of the Pareto front.

DOI: 10.1103/PhysRevResearch.5.L022017

Introduction. Stochastic heat engines are devices that
convert between heat and work on the nanoscale [1–3].
Steady-state heat engines (SSHEs) perform work against
external thermodynamic forces (e.g., a chemical potential
difference) after reaching a nonequilibrium steady state [4],
whereas periodically driven heat engines (PDHEs) perform
work against external driving fields through time-dependent
cycles [5]. The performance of heat engines is usually
characterized by the output power and efficiency, and their op-
timization has been thoroughly addressed in literature [6–30].
However, in contrast to their macroscopic counterpart, the
performance of quantum and microscopic engines is strongly
influenced by power fluctuations. Although early works have
started optimizing power fluctuation [31–35], a framework to
fully optimize the performance of microscopic heat engines
that accounts for power fluctuations is currently lacking; this
Letter fills this void.

An ideal engine operates at high power, high efficiency,
and low-power fluctuations; however, such quantities usually
cannot be optimized simultaneously, but one must seek trade-
offs. In SSHEs, a rigorous manifestation of this trade-off is
given by the thermodynamic uncertainty relations [36–44].

*marti.perarnaullobet@unige.ch
†frank.noe@fu-berlin.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

For “classical” stochastic SSHEs (i.e., in the absence of quan-
tum coherence) operating between two Markovian reservoirs
at inverse temperatures βC (cold) and βH (hot), they read [38]

ξ ≡ 2

βC

〈P〉
〈�P〉

η

ηc − η
� 1, (1)

where 〈P〉 and 〈�P〉 are, respectively, the average power and
power fluctuations, η is the efficiency, and ηc ≡ 1 − βH/βC

is the Carnot efficiency. Such thermodynamic uncertainty re-
lations imply, for example, that high efficiency can only be
attained at the expense of low-power or high-power fluc-
tuations. The thermodynamic uncertainty relation inequality
(1) can be violated with quantum coherence [45–53] and in
PDHEs [54–59]. This has motivated various generalized ther-
modynamic uncertainty relations [60–65], in particular, for
time-symmetric driving [40,55] and slowly driven stochastic
engines [66,67].

Despite their importance, thermodynamic uncertainty rela-
tions provide an incomplete picture of the trade-off: whereas
high values of ξ may appear more favorable, this does not
give us any information on the individual objectives. Indeed,
Refs. [56,66] have shown that high values of ξ can be achieved
in the limit of vanishing power, whereas often the goal is to
operate at high power or efficiency.

In this Letter, we propose a framework to optimize
arbitrary trade-offs among power, efficiency and power fluc-
tuations in arbitrary PDHEs described by Lindblad dynamics
[68–71]; this framework enables the use of various optimiza-
tion techniques, such as the Pontryagin minimum principle
[72] or reinforcement learning (RL) [73] to find Pareto-
optimal cycles, i.e., those cycles where no objective can be
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FIG. 1. A quantum system (gray circle) is coupled to a thermal
bath (left box) characterized by a controllable inverse temperature
β(t ). The coupling produces a heat flux J (t ). Control parameters
�u(t ) allow us to control the state of the system and the power P(t )
extracted from the system.

further improved without sacrificing another one. We then
employ RL to fully optimize a quantum dot- (QD-) based heat
engine [74]. We characterize the Pareto front, i.e., the set of
values {〈P〉, 〈�P〉, η} corresponding to Pareto-optimal cycles,
and evaluate the thermodynamic uncertainty relation ratio ξ

on such optimal cycles. Furthermore, we derive analytical re-
sults for the Pareto front and ξ in the fast- [6,8,20,23,27,75,76]
and slow- [9,26,77–88] driving regimes, i.e., when the period
of the cycle is, respectively, much shorter or much longer than
the thermalization timescale of the system.

Multiobjective optimization of quantum heat engines. We
describe a PDHE as a quantum system coupled to a heat
bath whose inverse temperature β(t ) can be tuned in time be-
tween two extremal values βH and βC with βH � βC (Fig. 1).
The coupling produces a heat flux J (t ) from the bath to the
quantum system. The PDHE is further controlled by time-
dependent control parameters �u(t ) that allow exchanging work
with the system, producing power P(t ). A thermodynamic
cycle is then described by periodic functions β(t ) and �u(t )
with period τ . This framework includes standard PDHEs in
which the system is sequentially put in contact with two baths
[by abruptly changing the values of β(t )] and cases where
β(t ) varies smoothly in time [66,84,87,89–92]. We assume
that the dynamics of the system is described by a Markovian
master equation, i.e., that the reduced density matrix ρt of the
quantum system satisfies

ρ̇t = L�u(t ),β(t )ρt , (2)

where L�u(t ),β(t ) is the Lindbladian describing the evolution of
the system [70].

We are interested in characterizing the performance of
PDHEs computing the average power 〈P〉, average irreversible
entropy production 〈�〉, and average power fluctuations 〈�P〉
in the asymptotic limit cycle [66,89,90], i.e., in the limit of
infinite repetitions of the cycle. In such a limit, ρt becomes
periodic with the same periodicity τ of the control (see the
Supplemental Material [93]).

Given the density-matrix ρt , the calculation of 〈P〉 and
〈�〉 can be performed using the standard approach first put
forward in Ref. [94] (see the Supplemental Material [93] for
details). Defining the time-average 〈O〉 of an arbitrary quantity
O(t ) as 〈O〉 ≡ τ−1

∫ τ

0 O(t ) dt, we can calculate 〈P〉 and 〈�〉
by averaging

P(t ) = −Tr[ρt Ḣ�u(t )], �(t ) = −Tr[ρ̇t H�u(t )]β(t ). (3)

Note that we compute the entropy production �(t ) ≡
−J (t )β(t ) neglecting the entropy variation �S of the quantum
system since the periodicity of the state in the limiting cycle
implies that �S = 0 after each repetition of the cycle.

The average fluctuations 〈�P〉, however, cannot be ex-
pressed as a time average of a function of the state ρt since
they involve a two-point correlation function. Indeed, from
Ref. [82], we can express them as

〈�P〉 = lim
T →∞

1

T

∫ T

0
dt Tr[st Ḣ�u(t )], (4)

where we define

st ≡
∫ t

0
dt ′P(t, t ′)[Ḣ�u(t ′ )ρt ′] + 〈w〉tρt + H.c. (5)

In Eq. (5) P(t, t ′) ≡ ←−
T exp[

∫ t
t ′ dt ′′L�u(t ′′ ),β(t ′′ )] is the propa-

gator, 〈w〉t ≡ − ∫ t
0 dt ′Tr[ρt ′Ḣ�u(t ′ )] is the total average work

extracted between time 0 and t , and H.c. represents the com-
plex conjugate of the right-hand side.

Here, we overcome the difficulty of computing nested inte-
grals and two-point correlation function in Eqs. (4) and (5) by
noting that st is a traceless Hermitian operator that satisfies

ṡt = L�u(t ),β(t )st + {ρt , Ḣ�u(t )} − 2 Tr[ρt Ḣ�u(t )]ρt , (6)

and becomes periodic with period τ in the limiting cycle (see
the Supplemental Material [93]).

Therefore, by considering (ρt , st ) as an “extended state”
satisfying the equations of motion in (2) and (6) in the time-
interval [0, τ ] with periodic boundary conditions, we can
compute 〈P〉, 〈�〉, and 〈�P〉 as time averages of P(t ), �(t ),
and �P(t ), where P(t ) and �(t ) are defined in Eq. (3), and
where

�P(t ) ≡ Tr[st Ḣ�u(t )]. (7)

Note that these are now linear functionals of the extended
state.

To identify Pareto-optimal cycles, we introduce the dimen-
sionless figure of merit

〈F 〉 = a
〈P〉
Pmax

− b
〈�P〉

�P(Pmax)
− c

〈�〉
�(Pmax)

, (8)

where a, b, c � 0 are three scalar weights, satisfying a + b +
c = 1, that determine how much we are interested in each
of the three objectives, and Pmax, �P(Pmax), and �(Pmax)
are, respectively, the average power, fluctuations and entropy
production of the cycle that maximizes the power. Note that,
given the relation between entropy production and efficiency,
cycles that are Pareto optimal for {〈P〉, 〈�P〉, η}, are also
Pareto optimal for {〈P〉, 〈�P〉, 〈�〉} (see the Supplemental
Material [93]). The positive sign in front of 〈P〉 in Eq. (8)
ensures that we are maximizing the power, while the negative
sign in front of 〈�P〉 and 〈�〉 ensures that we are minimizing
power fluctuations and the entropy production. Interestingly,
if convex, it has been shown that the full Pareto front can be
identified repeating the optimization of 〈F 〉 for many values
of a, b, and c [95,96].

Since 〈F 〉 is a linear combination of the average thermody-
namic quantities, using Eqs. (3) and (7) we can express 〈F 〉 as
a time integral of a function of the extended state (ρt , st ) and
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of the controls �u(t ) and β(t ),

〈F 〉 =
∫ τ

0
G[ρt , st , �u(t ), β(t )]dt, (9)

where G[ρt , st , �u(t ), β(t )] is a suitable function. The opti-
mization of 〈F 〉 in this form is precisely the type of problem
that can be readily tackled using optimization techniques,
such as the Pontryagin minimum principle [72] or RL [73].
In this Letter, we employ the latter.

QD heat engine. In the following, we compute Pareto-
optimal cycles in a minimal heat engine consisting of a
two-level system coupled to a fermionic bath with flat den-
sity of states. This represents a model of a single-level QD
[6,10,74]. The Hamiltonian reads

Hu(t ) = u(t )
E0

2
σz, (10)

where u(t ) is our single control parameter, E0 is a fixed
energy scale, and σz is a Pauli matrix. Denoting with |1〉
the excited state of Hu(t ), and defining pt ≡ 〈1|ρt |1〉 as the
probability of being in the excited state, the Lindblad equa-
tion (2) becomes ṗt = −γ (pt − π�u(t ),β(t ) ), where γ −1 is the
thermalization timescale arising from the coupling between
system and bath, and π�u(t ),β(t ) = f [β(t )E0u(t )] is the excited
level population of the instantaneous Gibbs state, with f (x) ≡
(1 + ex )−1 [23].

Optimal cycles with RL and analytical results. We optimize
〈F 〉 of the QD heat engine using three different tools: RL,
analytics in the fast-driving regime, and analytics in the slow-
driving regime.

The RL-based method allows us to numerically optimize
〈F 〉 without making any approximations on the dynamics,
exploring all possible (time-discretized) time-dependent con-
trols β(t ) and u(t ) subject to the constraints β(t ) ∈ [βH, βC]
and u(t ) ∈ [umin, umax] (thus, beyond fixed structures, such
as Otto cycles), and identifying automatically the optimal
period. The RL method, based on the soft actor-critic algo-
rithm [97–99] and generalized from [100,101], additionally
includes the crucial impact of power fluctuations and identi-
fies Pareto-optimal cycles (see the Supplemental Material [93]
for technical details and for benefits of using RL). Machine
learning methods have been employed for other quantum ther-
modynamic [102–104] and quantum control [105–117] tasks.

The fast-driving regime assumes that τ � γ −1. Interest-
ingly, without any assumption on the driving speed, we show
[93] that any trade-off between power and entropy production
[b = 0 in Eq. (8)] in the QD engine is maximized by Otto
cycles in the fast-driving regime, i.e., switching between two
values of β(t ) and u(t ) “as fast as possible” [23,27]. We thus
expect such “fast-Otto cycles” to be nearly optimal in the high
power or efficiency regime. Moreover, we derive analytical
expressions to compute and optimize {〈P〉, 〈�P〉, 〈�〉} effi-
ciently in arbitrary systems in the fast-driving regime [93].

The slow-driving regime corresponds to the opposite limit,
i.e., τ � γ −1. Since entropy production and power fluctu-
ations can be minimized by considering quasistatic cycles
(see, e.g., Refs. [56,66]), we expect this regime to be nearly
optimal in the low-power regime, i.e., for low values of a
in Eq. (8). To make analytical progress in this regime, we
maximize Eq. (8) assuming a finite-time Carnot cycle (see

FIG. 2. Optimization of 〈F 〉 at different values of a and c with
b = 1 − a − c, for a QD-based PDHE. Each dot in panel (a) displays,
as a function of c and a, whether 〈F 〉RL > 〈F 〉FAST (blue dots) or
not (red dots). Points with a ∼ 0 are not displayed since, in such a
regime, optimal cycles become infinitely long (to minimize entropy
production and fluctuations) and the RL method does not converge
reliably [93]. (b) Contour plot of 〈F 〉RL, as a function of c and a,
using the data points of (a). The black line represents the curve below
which 〈F 〉FAST = 0. (c)–(e) cycles, described by piecewise constant
values of β (black dots) and u (blue dots) as a function of t , identified
at the three values of a and c highlighted in black in panel (a) (respec-
tively, from top to bottom). The inset in panel (c) represents a zoom
into the corresponding cycle, which is a fast-Otto cycle. Parameters:
βC = 2, βH = 1, umin = 0.2, umax = 1.1, and E0 = 2.5.

the Supplemental Material [93]). The obtained results nat-
urally generalize previous considerations for low-dissipation
engines [9,10,13,14,21,22,26] to account for the role of fluc-
tuations (see also Ref. [32]). The main technical tool is the
geometric concept of “thermodynamic length” [77,86], which
yields the first-order correction in (γ τ )−1 from the quasistatic
limit.

We now present the results. Each point in Fig. 2(a) cor-
responds to a separate optimization of 〈F 〉 with weights c
and a displayed on the x-y axis. Since b = 1 − a − c, points
lying on the sides of the triangle (highlighted in yellow) cor-
respond to optimizing the trade-off between two objectives,
whereas points inside the triangle take all three objectives into
account. Denoting the figure of merit optimized with RL and
with fast-Otto cycles with 〈F 〉RL and 〈F 〉FAST, in Fig. 2(a),
we show blue (red) dots when 〈F 〉RL > 〈F 〉FAST (〈F 〉RL �
〈F 〉FAST), whereas Fig. 2(b) is a contour plot of 〈F 〉RL. As ex-
pected, there are red dots when b = 0 (along the hypotenuse),
but it turns out that fast-Otto cycles are optimal also when
c = 0. However, as soon as all three weights are finite,
the optimal cycles identified with RL change abruptly and
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FIG. 3. Pareto front found optimizing 〈F 〉 with fast-Otto cycles
in the limit of small temperature differences [panel (a)], optimizing
〈F 〉 in the slow-driving regime [panel (b)], and numerically using
RL [panel (c)]. The system parameters are as in Fig. 2. All panels
display 〈�P〉/�P(Pmax) as a function of 〈P〉/Pmax (x axis) and of
η/ηc (color). The black curve represents the outer border of the
Pareto front derived analytically in the Supplemental Material [93].

outperform fast-Otto cycles. Furthermore, we note that
whereas 〈F 〉RL is positive for all values of the weights,
〈F 〉FAST = 0 below the black curve shown in Fig. 2(b) (see
the Supplemental Material [93] for its analytic expression).

To visualize the changes in protocol space, in Figs. 2(c)–
2(e) we show the cycles identified with RL at the three
different values of the weights highlighted by a black circle
in Fig. 2(a) (respectively, from top to bottom). Since RL
identifies piecewise constant controls, the cycle is displayed
as dots corresponding to the value of β(t ) (black dots) and
u(t ) (blue dots) at each small time step. First, we note that
the inverse temperature abruptly switches between βH and βC

for all values of the weights so that, in this engine, no gain
arises when smoothly varying the temperature. As expected,
the cycle identified by RL in Fig. 2(c), corresponding to the
black point on the hypotenuse in Fig. 2(a), is a fast-Otto cycle
(a “zoom” in a short-time interval is shown in the inset). How-
ever, moving down in weight space to the black dot at a = 0.6
and c = 0.2, we see that the corresponding cycle [Fig. 2(d)]
now displays a finite period with linear modulations of u(t ) at
fixed temperatures and a discontinuity of u(t ) when switching
between βH and βC. The cycle in Fig. 2(e), corresponding
to the lowest black dot at a = 0.2 and c = 0.4, displays an
extremely long period τ ≈ 125γ −1, which is far in the slow-
driving regime. Optimal cycles, therefore, interpolate between
the fast- and the slow-driving regimes as we move in weight
space [Fig. 2(a)] from the sides to the lower and central region
(i.e., switching from two to three objectives).

In Fig. 3, we display the Pareto front, i.e., we plot the
value of P/Pmax, �P/�P(Pmax), and of the efficiency η/ηc,
found maximizing 〈F 〉 for various values of the weights.

Figure 3(a) is derived in the fast-driving regime assuming a
small temperature difference, whereas Fig. 3(b) is derived in
the slow-driving regime. The RL results, shown in Fig. 3(c),
correspond to the points in Fig. 2(a). First, we note that, by
definition of the Pareto front, the “outer border” corresponds
to points where we only maximize the trade-off between the
two objectives 〈P〉 and 〈�P〉. Since these points are optimized
by fast-Otto cycles, the black border of Fig. 3(a), also shown
in Figs. 3(b) and 3(c), is exact and given by (see the Supple-
mental Material [93] for details)

〈P〉
Pmax

= 2

√
〈�P〉

�P(Pmax)
− 〈�P〉

�P(Pmax)
. (11)

Moreover, in this setup, we can establish an exact mapping
between the performance of a SSHE and of our PDHE op-
erated with fast-Otto cycles (see the Supplemental Material
[93]). Since SSHEs satisfy Eq. (1), also fast-Otto cycles have
ξ � 1. Furthermore, for small temperature differences ξ = 1.
This allows us to fully determine the internal part of the Pareto
front in the fast-driving regime using the thermodynamic un-
certainty relations, i.e., P/Pmax = [�P/�P(Pmax)](ηc − η)/η.
Indeed, the linear contour lines in Fig. 3(a) stem from the
linearity between P and �P, the angular coefficient being
determined by the efficiency.

Comparing Figs. 3(a) and 3(b), we see where the fast-
and slow-driving regimes are optimal. As expected, the slow-
driving Pareto front cannot reach the black border, especially
in the high-power area where fast-Otto cycles are optimal.
However, in the low-power and low fluctuation regime, cycles
in the slow driving substantially outperform fast-Otto cycles
by delivering a higher efficiency [purple and blue regions in
Fig. 3(b)].

Interestingly, the RL points in Fig. 3(c) capture the best
features of both regimes. RL can describe the high-power and
low fluctuation regime displaying both red and blue/green
dots near the lower border. The red dots are fast-Otto cycles
that are optimal exactly along the border but deliver a low effi-
ciency. The blue/green dots instead are finite-time cycles that
deliver a much higher efficiency by sacrificing a very small
amount of power and fluctuations. This dramatic enhancement
of the efficiency as we depart from the lower border is another
signature of the abrupt change in optimal cycles.

Violation of thermodynamic uncertainty relation. At last,
we analyze the behavior of the thermodynamic uncertainty
relation ratio ξ , which represents a relevant quantity com-
bining the three objectives, computing it on Pareto-optimal
cycles (recall that ξ � 1 for classical stochastic SSHEs but
PDHEs can violate this bound [54–59]). In Fig. 4(a), we show
a contour plot of ξ , computed with RL as a function of a and c.
Because of the mapping between SSHEs and fast-Otto cycles
[93], we have ξ = 1 along the sides of the triangle where only
two objectives are optimized. However, this mapping breaks
down for finite-time cycles, allowing us to observe a strong
increase in ξ in the green/purple region in Fig. 4(a). As shown
in Fig. 2, this region corresponds to long cycles operated in
the slow-driving regime where violations of thermodynamic
uncertainty relations had already been reported [56,66]. In
Figs. 4(b)–4(d) we show a log-log plot of ξ , respectively, as
a function of P/Pmax, �P/�P(Pmax), and �/�(Pmax) with
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FIG. 4. (a) Contour plot of the SSHE thermodynamic uncer-
tainty relationship ratio ξ as a function of c and a. (b)–(d) log-log
plot of ξ , color mapped as in panel (a) as a function of 〈P〉/Pmax,
〈�P〉/�P(Pmax), and 〈�〉/�(Pmax), respectively. Every point corre-
sponds to the same RL optimization performed in Fig. 2. The black
line is the behavior of ξ derived analytically in the Supplemental
Material [93] in the slow-driving regime for small values of 〈P〉,
〈�P〉, and 〈�〉.

the same color map as in Fig. 4(a). We see that ξ diverges
in the limit of low power, low fluctuations, and low entropy
production as a power law. Indeed, using the slow-driving
approximation, we analytically prove that ξ diverges as 〈P〉−2,
〈�P〉−1, and 〈�〉−1. Such relations, plotted as black lines,
nicely agree with our RL results.

Conclusions. We introduced a general framework to iden-
tify Pareto-optimal cycles among power, efficiency, and power

fluctuations in quantum or classical stochastic heat engines,
paving the way for their systematic optimization using op-
timal control techniques, such as the Pontryagin minimum
principle [72] or reinforcement learning [73]. As opposed
to previous literature reviewed above, we account for the
crucial impact of power fluctuations. We then employed RL
to optimize a quantum dot-based heat engine, solving its ex-
act finite-time and out-of-equilibrium dynamics, providing us
with new physical insights. We observe an abrupt change in
Pareto-optimal cycles when switching from the optimization
of two objectives where Otto cycles in the fast-driving regime
are optimal, to three objectives where the optimal cycles have
a finite period. This feature, which shares analogies with
the phase transition in protocol space observed in Ref. [96],
corresponds to a large enhancement of one of the objectives
whereas only slightly decreasing the other ones. Furthermore,
we find an exact mapping between Otto cycles in the fast-
driving regime and SSHEs, implying that a violation of the
thermodynamic uncertainty relation ratio ξ in Eq. (1) requires
the optimization of all three objectives. We then find that ξ

becomes arbitrarily large in the slow-driving regime. Cycles
found with RL display the best features analytically identified
in the fast- and slow-driving regimes.
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