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Review Article

Evolving enzymatic electrochemistry with rare or
unnatural amino acids
Selmihan Sahin1 and Ross D. Milton1,2

Abstract
Proper orientation of oxidoreductases on electrodes is impor-
tant for efficient electron transfer in bioelectrochemical studies.
Site-directed mutagenesis confers the ability to control the
orientation of enzymes on electrodes in addition to modifying
enzyme catalytic properties and understanding native electron
transfer mechanisms and protein–protein interactions.
Although numerous improvements have been achieved in the
site-directed immobilization of enzymes, they are limited to the
use of the 20 “standard” amino acids of the protein. This
opinion considers the utilization of unnatural amino acids
(UAAs) to introduce unique functional groups to proteins for
their site-specific immobilization and subsequent enzymatic
electrochemistry studies. Moreover, the importance of the site-
specific incorporation of selenocysteine is described due to its
potential to improve/alter the electrochemical properties.
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Introduction
The field of enzymatic electrochemistry concerns itself
with the use of enzymes as biocatalysts at electrode
surfaces. Specifically, oxidoreductases (enzymes cata-
lyzing the transfer of electrons between substrates) are

enzymes of primary interest, where an electrode can

replace one of an enzyme’s substrates. This enables, in
the case of electroenzymatic sensing, the generation of
an electrocatalytic current in response to an enzyme’s
substrate and analyte of interest, such as glucose.
Alternatively, renewable electricity can be supplied to
an electrode-confined enzyme for the electroenzymatic
synthesis of products of interest, such as molecular
hydrogen (H2). Both systems require the efficient

transfer of electrons between oxidoreductases and
electrodes, specifically with at least one of an enzyme’s
redox-active cofactors [1e3].

For decades, electron transfer between proteins, as well
as between two or more cofactors within proteins, has
been rationalized with interpretations of Marcus theory
(Eq. (1)) [4].

kET ¼ 2p

Z

H2
DA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4plRT
p e

�ðDrG0þlÞ2
4lRT (1)

In brief, semi-classical Marcus theory for non-adiabatic
electron transfer relates the rate constant for electron
transfer (kET) to (i) electronic coupling between donors/

acceptors (HDA), (ii) the Gibbs energy for the reaction
(DrG

0, also known as the thermodynamic driving force),
and (iii) the nuclear reorganization energies of the
donor/acceptor [4,5]. Importantly, the matrix coupling
Hamiltonian HDA decays exponentially as a function of
the distance (rDA) and the medium (amino acids/sol-
vent, termed an electron transfer decay parameter, ß)
between the donor and acceptor (Eq. (2)).

H2
DA ¼ ðH0

DAÞ
2
e�bðrDAÞ (2)

Dutton and coworkers subsequently examined the X-ray
crystal structures of 31 redox proteins alongside their
experimentally determined values of kET, concluding

that nature has primarily selected for proteins with
redox cofactors <14 Å for robust, physiologically rele-
vant electron transfer. In the case of enzyme/protein
electrochemistry, this is often colloquially translated to
“protein cofactors must be located<14 Å of an electrode
surface.” Two important points must be kept in mind:
(i) the consideration of solely X-ray crystal structures
discards any dynamic nature of proteins (and, thus,

Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Electrochemistry

www.sciencedirect.com Current Opinion in Electrochemistry 2022, 35:101102

mailto:Ross.Milton@unige.ch
mailto:Selmihan.Sahin@unige.ch
https://www.sciencedirect.com/journal/current-opinion-in-electrochemistry/special-issue/10RHP24JN8V
https://doi.org/10.1016/j.coelec.2022.101102
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coelec.2022.101102&domain=pdf
www.sciencedirect.com/science/journal/24519103
www.sciencedirect.com/science/journal/24519103


variation(s) in kET) and (ii) electron transfer reactions
do not immediately cease at distances >14 Å [6].

Keeping the importance of distance vs. kET in mind,
many great efforts have been developed for enzymatic
electrochemistry. First, mediated electron transfer
(MET) employs diffusive redox-active species to shut-
tle electrons between electrodes and enzyme cofactors.

Alternatively, these mediators can be covalently grafted
to polymeric supports (yielding redox polymers) to both
immobilize enzymes to electrode surfaces while also
introducing a non-diffusive MET pathway. Second,
much work has sought to control the orientation of en-
zymes on electrode surfaces for minimized electron
transfer distances (and improved kET). This has pri-
marily been achieved by modifying surfaces to be com-
plementary to regions of charge or hydrophobicity/
hydrophilicity on protein surfaces. Researchers have
even designed electrode surfaces with functionalities to

immobilize enzymes on electrode site selectively by
using natural amino acids, such as lysine, tyrosine, and
cysteine amino acids on protein surfaces. Among them,
cysteine is arguably the most useful due to (i) its
chemical reactivity, (ii) it being less abundant on protein
surfaces than amino acids, such as lysine, and (iii) it can
be also translocated or “mutated” to different positions
on protein surfaces [7e9]. While attractive, this be-
comes moot in the case of proteins with multiple cys-
teines on their surfaces.

Herein, we review how unnatural amino acids (UAAs)
with physiologically incompatible chemistries can be
introduced to proteins to specifically improve electron
transfer reactions. We then highlight the possible func-
tion of selenocysteine (Sec) mutation in the enzyme
electrochemistry with the advance in the incorporation of
Sec in enzymes by the genetic code expansion.

Unnatural amino acids for enzymatic
electrochemistry
A more advanced approach that is attracting much

attention is to introduce amino acid chemistries that go
beyond the 20 “standard” proteinogenic amino acids.
Specifically, researchers are increasingly turning
toward the introduction of these UAAs to facilitate the
specific anchoring of enzymes to electrodes or to intro-
duce artificial electron-mediating amino acids. The
“genetic code expansion” approach permits the incor-
poration of UAAs in the place of virtually any existing
amino acids of a protein, providing a unique functional
group that can be used to control enzyme orientation
toward an electrode surface [10,11]. To achieve this, the

“Amber codon suppression method” is mostly used, in
which an orthogonal tRNA-aminoacyl tRNA synthetase
pair is essential to decode an UAG amber stop codon for
the incorporation of an UAA in the targeted position of
the protein/enzyme [10,12]. Although the amber stop
codon is used for the termination of mRNA translation

in Escherichia coli (arguably the most relevant the enzyme
electrochemists at this moment in time), it is possible to
use modified E. coli strains that have had their endoge-
nous amber codons recoded and relevant termination
machinery removed (also known as amberless E. coli).
This repurposes the amber codon (mutated in the gene
sequence to a specific position) to have a single role: the
specific insertion of a UAA [13e16].

UAAs with different functional groups, such as azides,
alkynes, alkenes, and tetrazines, can be utilized for site-
directed immobilization of enzymes/proteins on the
functionalized surfaces through biorthogonal ligation
with higher efficiency and specificity under mild con-
ditions (pH 7, 37 �C) (Figure 1). The copper(I)-
mediated cycloaddition (CuAAC) reaction, also known
as the “click reaction,” is a widely used biorthogonal
reaction between azides and alkynes [17].

Amir et al. demonstrated the CuAAC reaction between
para-azido-L-phenylalanine (AzF) incorporated within
surface-displayed alcohol dehydrogenase II enzymes of
living bacteria and gold electrodes functionalized with
alkyne moieties [18]. Cyclic voltammograms of this
UAA-containing enzyme and the wild-type enzyme (for
non-specific immobilization), both of which were
surface-displayed on E. coli, were analyzed, and the
catalytic current for ethanol oxidation was found to in-
crease approximately x10-fold. Their results also showed
that there is an improvement of the heterogenous kET
between alcohol dehydrogenase II and the electrode.
Schlesinger et al. incorporated an alkyne-containing
propargyl-L-lysine (PrK) residue in the blue copper ox-
idase enzyme CueO, which enabled its specific immo-
bilization on glassy carbon electrodes functionalized
with pyrene-diethyleneglycol-azide (PDAz) moieties by
the CuAAC reaction (Figure 2a). Multistep amperom-
etry was used to determine the heterogenous kETof the
mutant and wild-type enzyme on the electrode. The
authors demonstrated that the wild-type enzyme (non-
specific orientation) adsorbed to the electrode with a
mixed orientation. Importantly, the CueO containing

PrK around the Cu I site showed better catalytic current
(increased by up to w8x-fold) and improved kET
(9.92 s�1) than the wild type (1.57 s�1) [19]. Similarly,
Algov et al. recently designed two different PrK-
incorporated mutants of a flavin-adenine dinucleotide-
dependent glucose dehydrogenase (FAD-GDH) fused
to a minimal cytochrome c domain (MCD) (yielding
“FGM”) for immobilization on electrodes functional-
ized with pyrene-diethyleneglycol-azide (PDAz) by
CuAAC (Figure 2b). One of the mutants enables the
enzyme to be covalently immobilized on the electrode

close to its MCD, while the second enables covalent
immobilization close to its FAD binding site. The au-
thors also used a pyrene-carboxylic acid linker (PCA) for
the non-specific immobilization of this FGM on elec-
trodes used as a control. Remarkably, the mutant
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immobilized specifically at the MCD site demonstrated
the largest kET (13.4 s�1) and catalytic current
(9.8 mA cm�2), which were 2.5 and 10 times higher than
that of the non-specifically oriented FGM, respectively
(Figure 2c). Moreover, this permitted the authors to
study the function of cofactors in the electron transfer
mechanism of FGM in this study [20].

Since copper has the potential to inhibit enzyme activity,

copper-free biorthogonal reactions (strain-promoted
azido-alkyne cycloaddition (SPAAC) and inverse electron
demand DielseAlder (IEDDA)) have also been used as
an alternative for the immobilization of enzymes/proteins
on electrodes [21]. Guan et al. used the SPAAC reaction
for site-specific immobilization of AzF containing-small
laccase from Streptomyces coelicolor on electrodes modi-
fied with a cyclooctynyloxyethyl-1-pyrenebutyrate linker
[22]. Ray et al. showed the immobilization of 3-amino-L-
tyrosine-incorporated myoglobin on gold electrodes via
an IEDDA reaction to form a homogeneous monolayer

[23]. Although all these studies have shown improved
kET, multiple challenges remain for the wider use of ge-
netic code expansion for enzymatic electrochemistry,
such as (i) low expression yields of unnatural enzymes,
(ii) the cost of UAAs (when commercially available), and
(iii) the need for 3D enzyme structural information to
inform the positioning of UAAs [15,24]. In the case of the
latter, homology-based modeling or computational
structure predictions are expected to become increas-
ingly employed and are expected to soon (in not already)
negate this requirement [25,26].

One further use for UAAs in enzymatic electrochemistry
(somewhat less relevant to non-catalytic protein

electrochemistry) concerns the possibility of intro-
ducing redox-active amino acids, which serve to mimic
typical diffusive electron mediators. In one example,
Alfonta et al. demonstrated that the redox-active UAA
3,4-dihydroxy-L-phenylalanine (similar to o-hydroqui-
none electron mediators) could be incorporated within
myoglobin [27]. Similarly, Yu et al. incorporated a
different redox-active tyrosine analog (3-methoxy tyro-
sine) within myoglobin to introduce cytochrome c
oxidase-like activity. Its lower E0’ (179 mV more nega-
tive than tyrosine) resulted in an increase in myoglobin’s
oxidase activity, with the 2e� reduction of O2 to H2O2

being decreased by w4x-fold and the 4e� reduction of
O2 to H2O being increased byw5x-fold [28]. This could
be envisaged as a strategy to produce enzymes
containing redox mediators at the protein level,
although it would presumably be necessary to introduce
redox-mediating amino acids that provide sufficient
driving force for the electron transfer reaction (much
like the use of diffusive electron mediators). Thus,

there would be no need to use toxic mediators in solu-
tion or within a redox polymer in electrochemical system
to mediate ET between (metallo)enzymes and elec-
trodes. However, it is very important to adjust the pKa

and E0’ of redox-active amino acids depending on the
target reaction. It is also important to note that the final
E0’ of redox-active UAAs could significantly differ once
buried within a protein’s secondary/tertiary structure,
depending on effects such as solvation as well as con-
tributions (electrostatics, H-bonding, etc.) from neigh-
boring amino acids.

This would likely require the evolution of individual
tRNA-aminoacyl tRNA synthetase pairs for each

Figure 1

Strategies for the site-directed immobilization of UAA-modified enzymes through biorthogonal reactions.
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electron-mediating amino acid, which potentially im-
pedes development in this area. In another study by
Drienovská et al., a metal-chelating 2,20-bipyridine-like
UAA was incorporated to yield a Cu-chelating metal-
loenzyme [29]. This is exciting since different metals
could potentially be chelated by this UAA (i.e., Fe,
thereby modulating E0’s), and the quaternization of the
bipyridyl nitrogen groups would also yield electron
mediators resembling viologens (and derivates thereof),
which are electron mediators of interest to electro-
chemists studying enzymes such as hydrogenases [30].
This approach has the potential to improve kET between
redox-active cofactors and electrodes by effectively
shortening rDA between individual redox-active centers

via the UAA “stepping-stone,” a principle employed in
nature [6].

Exploiting amber codon suppression for the
proteinogenic amino acid selenocysteine
Sec is known as the 21st amino acid genetically enco-
ded in nature, where the sulfur of cysteine is replaced
with a selenium atom. The pKa value of Sec is found to
be 5.2 and lower than that of cysteine (8.5). While able
to mimic cysteines by forming diselenide bonds in
proteins [30], Sec is also attractive to enzymatic elec-
trochemists due to its electrochemical and biocatalytic

properties. Sec is observed to have a more negative
reduction potential than cysteine (E0’Sec = �388 mV
vs. SHE, E0’Cys = �220 mV vs. SHE), and its depro-

tonation at physiological pH results in greater nucleo-
philicity and improved reactions with electrophiles
[32]. The majority of the known selenoproteins are
oxidoreductases, where Sec plays a role in their cata-
lytic activities. Importantly, the mutation of Sec resi-
dues to cysteines commonly results in the reduction of
catalytic activities by 10e100-fold [32e34]. Moreover,
Sec is found within certain hydrogenases and formate
dehydrogenases, which are of interest to enzymatic
electrochemists seeking to catalyze H2 production or
carbon dioxide (CO2) reduction [35,36]. However,

unlike mutagenesis of the 20 “standard” amino acids,
Sec cannot be simply introduced by only the intro-
duction of its corresponding opal (UGA) codon [32,34].
Although a review of Sec incorporation is beyond the
scope of this opinion, it is important to mention that
proteins containing Sec are obtained in low yield since
Sec is encoded by another stop codon, UGA (opal), and
employs a complex translation machinery that is in
competition with this Sec-encoding stop codon.
Importantly, however, the above-outlined amber codon
suppression approach has been adapted to permit the
site-specific insertion of Sec [31,37], which we believe

Figure 2

(a) Schematic illustration of the site-directed immobilized CueO on glassy carbon electrodes, (b) schematic illustration of the expected orientation of non-
specifically and site-directed immobilization of FGM on modified electrode surfaces, (c) CVs of non-specifically and site-specifically immobilized FGMs
before (black) and after (red, green, purple, and blue; different colors represent different site-specific immobilization sites) the addition of glucose as the
substrate (adapted with permission from Refs. [19,20]).
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holds promise for oxidoreductase engineering in the
domain of enzymatic electrochemistry. One recent
study has demonstrated the replacement of four
cysteine residues in a NiFe hydrogenase to Sec with
amber codon suppression, where it was reported that
Sec distorts the proton transfer pathway but improves
the oxygen sensitivity of the enzyme [38]. In another
study, a heme-coordinating cysteine residue in a cyto-

chrome P450 was converted to its more nucleophilic
Sec analog to determine the effect on enzymatic ac-
tivity. The mutation resulted in a two-fold decrease in
the catalytic activity, although substrate oxidation was
augmented due to increased electron donation by the
heme-cofactor [39]. We anticipate that the site-
specific incorporation of Sec within enzymes of inter-
est to the enzymatic electrochemistry community will
be of great interest in the near future, due to its lower
E0’ as well as its central role in enzymes that reduce
substrates such as Hþ and CO2.

Conclusions and future perspectives
The incorporation of UAAs with non-natural chemical
functionalities can introduce exciting biorthogonal
handles to proteins, which is expected to benefit enzy-
matic electrochemistry. UAA incorporation has been
exploited for different aims in biological applications
[10]. Regarding enzymatic electrochemistry, this
method can (i) help one study enzyme mechanisms, (ii)
introduce new functionalities, and (iii) also improve
catalytic properties and stability of enzymes, which have

possibility to contribute to the efficiency, sensitivity,
and stability of enzymes during electrochemical studies
and biotechnological application. We anticipate that,
with the development and commercialization of new
recombinant protein production methods, UAAs will
become increasingly attractive to enzymatic electro-
chemists seeking to optimize heterogeneous electron
transfer. Expanding on the outlined approaches of UAA
insertion, we anticipate that the use of amber codon
suppression for the relatively simplified site-specific
insertion of Sec will also be of importance to re-

searchers studying electroenzymatic H2 production and
CO2 reduction, as well as more generally to intraprotein
electron transfer. However, significant limitations
remain that should be considered for the application of
this technology for enzymatic electrochemistry. The low
activity and specificity of the orthogonal translation
machinery for UAAs (especially when the structure of a
UAA is significantly changed) can cause protein trun-
cation (because of the competing UAG stop codon) and
low UAA incorporation efficiencies, even if RF1-
depleted (amberless) bacteria is used [40,41]. Because

of this problem, low activities of mutant enzymes can be
obtained even if the protein yield is comparable
(misincorporated proteins), which also affects the
specificity of the electrochemical reactions. Further
improvement of the UAA incorporation efficiency and

fidelity is also possible with the engineering of orthog-
onal translation systems and ribosomes and will enable
an increasing number of studies for electrochemistry
research. Another limitation is the lack of advanced
high-resolution techniques (such as spectroscopic and
microscopic methods) to provide insight into
proteineelectrode interactions, important for demon-
strating the orientation, loading, and activities of

immobilized enzymes. Continued advances on these
fronts will aid the use of oxidoreductases and accelerate
the use of UAA- and Sec-inserted proteins in electro-
chemical applications.
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