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Sleep and Emotional Functions

Lampros Perogamvros and Sophie Schwartz

Abstract In this chapter, we review studies investigating the role of sleep in
emotional functions. In particular, evidence has recently accumulated to show that
brain regions involved in the processing of emotional and reward-related infor-
mation are activated during sleep. We suggest that such activation of emotional
and reward systems during sleep underlies the reprocessing and consolidation of
memories with a high affective and motivational relevance for the organism. We
also propose that these mechanisms occurring during sleep promote adapted
cognitive and emotional responses in the waking state, including overnight
performance improvement, creativity, and sexual functions. Activation across
emotional-limbic circuits during sleep also appears to promote emotional matu-
ration and the emergence of consciousness in the developing brain.
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1 Introduction

Recent neuroimaging and neurophysiological findings converge to suggest that
emotional and reward networks are activated during sleep (e.g., Braun et al. 1997;
Dahan et al. 2007; Lansink et al. 2008; Lena et al. 2005; Maquet et al. 1996;
Nofzinger et al. 1997). The main aim of this chapter is to consider how and why
such systems are activated during sleep while the organism does not interact with
its external environment. The recruitment of emotional and reward circuits during
sleep might reflect the affective and motivational components of the dreaming
experience. While a link with dreaming is plausible, this proposal may not fully
account for the fact that activation of these networks is present across many
different species (e.g., rats, humans), and can also be elicited in sleeping babies
from 3- to 7-month old of age (Blasi et al. 2011), that is, before the emergence of
dream consciousness (Hobson 2009). Here, we review a series of recent studies
supporting the hypothesis that the processing of emotional and reward-related
information is preserved during sleep, and may offer a major evolutionary
advantage for neurophysiological adjustments underlying waking behavioral
fitness and emotional well-being.

Sleep complements wakefulness by supporting important cognitive and emo-
tional functions (Desseilles et al. 2011; Stickgold 2005; Walker 2010). Based on
experimental data demonstrating that memory replay and consolidation processes
occur during all sleep stages (Diekelmann and Born 2010; Maquet 2001; Oudiette
et al. 2009; Stickgold 2005), we suggest that the activation of emotional and reward
systems during sleep underlies the reprocessing and consolidation of memories
with a high affective and motivational relevance for the organism (Perogamvros
and Schwartz 2012). We also explain how such activation during sleep contributes
to the regulation and preparation of adequate cognitive and emotional responses in
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the waking state, including overnight performance improvement, creativity, and
sexual functions. In addition, emotional activation during sleep may be a necessary
factor for emotional maturation, and the emergence and maintenance of
consciousness in the developing brain.

2 Activation of Emotional and Reward Brain Circuits
during Sleep

Robust evidence for the activation of emotional and reward networks during sleep
comes from neuroimaging and neurophysiological studies.

2.1 Activation of Emotional Networks

During non rapid eye movement (NREM) sleep, decreases in brain activity have
consistently been reported, in agreement with a homeostatic need for recovery.
More specifically, activity decreases in the brainstem, thalamus, basal ganglia,
basal forebrain and in several cortical areas including the medial prefrontal cortex
(PFC) and precuneus (Dang-Vu et al. 2010). However, recent functional MRI
studies have revealed event-related increases in activity during NREM sleep. In
particular, NREM sleep spindles (i.e., bursts of oscillatory brain activity with a
frequency of 12-14 Hz that are visible in the EEG) appear to be associated with
increased activity in the lateral and posterior thalamus, as well as in emotion-
related regions such as the anterior cingulate cortex (ACC), insula, and superior
temporal gyrus (Schabus et al. 2007). Slow waves (i.e., slow oscillatory brain
activity with a frequency <1 Hz, which is the most prominent EEG feature of
NREM sleep) have been associated with increased activity in the parahippocampal
gyrus, precuneus, and posterior cingulate cortex (Dang-Vu et al. 2008). In addi-
tion, bilateral increases in regional metabolism from waking to NREM have been
found in the ventral striatum, anterior cingulate cortex, and extensive regions of
the medial temporal lobe, including the amygdala and hippocampus (Nofzinger
et al. 2002).

Rapid eye movement (REM) sleep is characterized by the activation of several
emotion-related brain regions, including the bilateral amygdala, the medial
temporal lobe with the hippocampal formation, the medial PFC, and the ACC
(Braun et al. 1997; Maquet et al. 1996; Nofzinger et al. 1997) (Fig. 1). On the one
hand, the amygdala, along with the brainstem, is involved in the cardiovascular
regulation during sleep (Desseilles et al. 2006), and may thus reflect autonomic
regulation in response to intense emotions, in particular fear and anxiety that are
often experienced in dreams (Schwartz and Maquet 2002; Smith et al. 2004). On the
other hand, amygdala connections with the hippocampus, thalamus, medial PFC,
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Fig. 1 Functional neuroanatomy of human REM sleep. Brain regions more activated during
REM sleep are indicated with an upward red arrow, and those less activated are indicated with a
downward blue arrow. Data from studies using PET imaging (Braun et al. 1997, 1998; Maquet
et al. 1996, 2000; Nofzinger et al. 1997). PPT penduculopontine tegmental nuclei. Adapted from
Perogamvros and Schwartz (2012)

and ACC have an important role in assigning affective values to stimuli and thus
potentially strengthening stimulus-outcome associations (see Sect. 3.5 below).

Contrasting with the activation of emotion-related regions, several structures
implicated in executive and attentional functions during wakefulness are signifi-
cantly deactivated during REM sleep, including the dorsolateral PFC, precuneus,
orbitofrontal cortex, and the inferior parietal cortex (Braun et al. 1997; Maquet
et al. 1996, 2000, 2005; Nofzinger et al. 1997). Deactivations in these regions may
be responsible for several typical features in the dream experience such as
disorientation, illogical thinking, reduced attention and cognitive control, and
impaired working memory in dreaming (Hobson et al. 1998; Schwartz 2004;
Schwartz and Maquet 2002). Regional cerebral activations and deactivations
during REM sleep are shown in Fig. 1.

Taken together these studies suggest substantial activation of emotional net-
works during all stages of sleep that may be more persistent and less variable
during REM sleep than during NREM sleep.

2.2 Activation of Reward Networks

The reward system contributes to the development and monitoring of goal-directed
and adaptive behaviors in all mammals, including humans. The reward system is
responsible for the processing of rewards or punishers, which typically serve
respectively as positive or negative signals for behavioral adaptation and learning. In
this way, reward processing is often associated with the feeling of anticipation while
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seeking a reward and the pleasure when obtaining it. On the other hand, punishers
can induce emotional states such as anger or fear and elicit withdrawal behavior. In
addition to brain regions involved in emotional regulation, brain areas that are more
specifically involved in the regulation of reward are also activated during sleep,
including the ventral tegmental area (VTA) and the nucleus accumbens (NAcc) (see
Fig. 3). These activations during sleep likely contribute to the reprocessing of
memories with a high emotional or motivational relevance, in coordination with
emotion-related circuits (for a review, see Perogamvros and Schwartz 2012).

Two studies have demonstrated that dopaminergic neurons in the VTA of rats
increase their bursting activity during REM sleep, which results in a large synaptic
dopamine release in the NAcc shell (Dahan et al. 2007; Maloney et al. 2002). This
activity is significantly higher during REM sleep as compared to NREM sleep and
relaxed or quiet wakefulness. In fact, VT A activation during REM sleep is com-
parable in intensity and duration to VTA activation during feeding or sex. A
second important region for reward processing is the NAcc, whose activity is
typically greatest for large rewards (Cooper and Knutson 2008). Activity in the
NAcc is increased during REM sleep (Lena et al. 2005). Other reward-related
regions, like the ventromedial PFC (Haber and Knutson 2010) and the ACC, which
assign a positive or negative value to future outcomes (Bush et al. 2002; Take-
nouchi et al. 1999), are activated during REM sleep, in both animals and humans
(Lena et al. 2005; Maquet et al. 1996, 2000). In addition, neuronal activity in the
hippocampus displays a theta rhythm (i.e., an oscillatory pattern in EEG with a
frequency range of 5-12 Hz in behaving rats and 4-7 Hz in humans) during REM
sleep in both animals (Popa et al. 2010; Winson 1972) and humans (Cantero et al.
2003) studies. This latter finding is remarkable considering that increased theta
oscillations have been reported during novelty-seeking, exploratory and instinctual
behaviors, which are also seen in REM sleep behavior disorder and other para-
somnias (Perogamvros et al. 2012). Finally, the orexin/hypocretin neurons in the
lateral hypothalamus have transient discharges during REM sleep (Mileykovskiy
et al. 2005; Takahashi et al. 2008). The orexin/hypocretin system is particularly
interesting because it plays a key role in both the regulation of sleep—wake states
and emotional/motivated behaviors, via strong functional interactions with the
mesolimbic dopamine circuitry (Harris et al. 2005; Ponz et al. 2010a, b; Schwartz
et al. 2008; Thompson and Borgland 2011).

Activation of reward-related regions is, in some cases, also observed during
NREM sleep. In particular, a spontaneous reactivation (or replay) of neuronal
firing patterns occurs in the ventral striatum of rats after a reward searching
behavior (Lansink et al. 2008; Pennartz et al. 2004). This off-line replay is induced
by hippocampal ripples and seems to be related to linking a memory trace to a
motivational or emotional value during sleep (Lansink et al. 2009). Whether
a similar neural mechanism exists in humans is still unclear, but brain imaging
studies have demonstrated that the hippocampus and the ventral striatum are
also activated during NREM sleep (Nofzinger et al. 2002), and that increased
hippocampal activity may relate to subsequent performance improvement
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(Peigneux et al. 2004). Some other reward-related regions are also found to be
activated during NREM sleep, like the posterior insula, ACC (Schabus et al. 2007),
and the amygdala (Nofzinger et al. 2002).

3 Implications of Emotional/Motivational Networks
Activation during Sleep

3.1 Emotional Maturation

The function of the brain which is most influenced by sleep is the memory; not that it
entirely ceases; but it is brought back to a condition of imperfection, such as everyone may
have experienced in pre-historic times, whether asleep or awake (Friedrich Nietzsche,
1878, “Human, All Too Human”, section one: “Of First and Last Things”, aphorism #12).

According to Nietzsche, the mind in sleep regresses to an archaic state of
waking reasoning and consciousness, resembling that of early mankind. More than
one century later, Jaak Panksepp claimed that an archaic affective state is
expressed in REM sleep and dreams (Panksepp 1998), while Allan Hobson sug-
gested that REM sleep is a protoconsciousness state preceding the maturity of the
waking consciousness (Hobson 2009, see also Koukkou and Lehmann 1993).

Recent studies support the role of sleep in emotional maturity of the human.
Since as early as the 13th week of gestation and neonatal period, smiles and other
expressions are extremely common, especially during active REM sleep (Dondi
et al. 2007; Emde and Koenig 1969; Messinger et al. 2002). The recent work of
Messinger and collaborators showed that neonatal smiles, in particular Duchenne
smiles that involve cheek raising and index positive emotion (Ekman 1992), are
more frequent, stable, and enduring during active sleep (corresponding to adult
REM sleep, Roffwarg et al. 1966) than during other behavioral states (Dondi et al.
2007; Messinger and Fogel 2007) (Fig. 2). These authors put forward the inter-
esting hypothesis that such smiles could relate to the activation of the amygdala
and limbic structures during REM sleep (see Sect. 2 above), and may foster the
functional coordination of facial motor programs with neural structures supporting
the emotional and social expression of smiling later in development (at about
2 months of age) (Dondi et al. 2007).

Recent imaging data in 3- to 7-month olds infants also revealed specific brain
responses to emotional human vocalizations during sleep, involving the orbito-
frontal cortex and insula (Blasi et al. 2011). Furthermore, it is noteworthy that
active (or REM) sleep occupies the biggest portion of a child’s sleep and occurs
much earlier in human development than proper dreaming (Foulkes 1993). Alto-
gether, these data suggest that REM sleep of infants is likely to subserve crucial
emotional (Berger et al. 2012; Perogamvros 2012) and learning functions (Fifer
et al. 2010), much like what is found in adults (Sterpenich et al. 2009; Wagner
et al. 2001) (see Sect. 3.5). However, these data should not eclipse the possible
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Fig. 2 Smile of a 42-hour-
old sleeping infant. Typical
Duchenne smile with cheek
raising which is thought to
relate to the experience of
positive emotion (see main
text). Reproduced from
Messinger et al. (2002) with
permission

contribution of sleep structure and NREM sleep (quiet sleep in newborns) to these
important functions. Indeed, a recent study tested whether sleep—wake transitions
in the neonatal period might predict emotional and cognitive development in
premature infants during the first 5 years of life (Weisman et al. 2011). Sleep states
at a gestational age of 37 weeks, emotional regulation during infant-mother and
infant—father interactions at 3 and 6 months, cognitive development at 6, 12, and
24 months, as well as verbal IQ, executive functions, and symbolic competence at
5 years were assessed. It was shown that sleep-state transitions characterized by
shifts between quiet sleep and wakefulness (contrary to rapid cycles between states
of high arousal, such as active sleep and cry) are important for an optimal emo-
tional and cognitive development, at least in premature infants.

3.2 Dreaming

Recent empirical research on dreaming favors a relatively broad definition of
dreaming as corresponding to any internally generated sensory, motor, emotional
or cognitive subjective experiences that occur during sleep. Our neurobiological
knowledge about human dreaming derives primarily from the study of REM sleep,
because this sleep stage has initially been linked to dreaming activity (Dement and
Kleitman 1957). However, dreaming may occur in any sleep stage (i.e., both REM
and NREM sleep stages) (Foulkes 1996; Oudiette et al. 2012), although distinct
phenomenological characteristics differentiate REM from NREM dreaming. For
example, dream reports are on average more vivid, bizarre, with complex narra-
tives, i.e., more ‘dream-like’, after awakenings from REM sleep than from NREM
sleep (Fosse et al. 2001; Strauch and Meier 1996). In addition, REM dreaming is
characterized by content with emotional and motivational value (e.g., socializing,
fighting, or sexual activity). Note that daily routine activities such as typing,
washing dishes, or buying food at the supermarket are generally not frequent in
dream reports (Schredl 2010). Motivational and emotional content is more
prominent in REM than in NREM dreaming (Smith et al. 2004). This is consistent
with the finding that several limbic and mesolimbic dopaminergic regions are
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selectively activated during REM sleep, amygdala activity and burst firing in
the VTA being significantly higher in REM sleep compared to NREM sleep.
Moreover, lesion studies abolishing REM sleep muscle atonia in cats, revealed a
predominance of seeking (e.g., spatial exploration) and emotional behaviors (e.g.,
anger) during enacted behaviors in REM (or paradoxical) sleep (Jouvet 1965).
Similarly, aggressive behaviors, but also seeking types of behaviors (such as
mimicking eating, drinking, smoking a cigarette, etc.), are also frequent in patients
with REM sleep behavior disorder, who act out their dreams (Oudiette et al. 2009).

To account for the high prevalence of fear-related experiences in dreams, the
psychologist and philosopher Revonsuo (2000) proposed the Threat Simulation
Theory, according to which dreaming allows an organized and selective offline
simulation of threatening events that promotes the development and maintenance of
threat-avoidance skills during wakefulness. Realistic threatening experiences in a
dream would thus activate threat-related brain circuits, in particular the amygdala,
and would lead to improved performance in real life situations (Valli and Revonsuo
2009). Interestingly, individuals suffering from post-traumatic stress disorder
simulate threatening events in their dreams more often than controls (Valli et al.
2005), and REM sleep deprivation impairs threat avoidance skills in waking life
(Martinez-Gonzalez et al. 2004). Actually, it has been proposed that experiencing
threatening stimuli (objects, situations, thoughts, memories, and physical sensa-
tions) in a totally safe context during dreaming may resemble exposure therapy for
anxiety disorders (Desseilles et al. 2011; Pace-Schott et al. 2009). Nightmares such
as in post-traumatic stress disorder would by contrast reflect the failure of an
adaptive fear memory extinction process, in the presence of temporary (e.g., daily
concerns) or more persistent (e.g., trauma) increases in affect load (Nielsen and
Levin 2007). Yet, whether the off-line reprocessing of emotional information
requires conscious experience such as in dreaming remains unresolved.

We previously proposed the Reward Activation Model for sleep and dreaming
(Perogamvros and Schwartz 2012), according to which emotional memories are
prioritized for offline reprocessing (see Sect. 3.5) through the activation during
sleep (and not necessarily in dreams) of the SEEKING system. The latter corre-
sponds to an emotional and motivational system of the mammalian brain, which is
related to approach behaviors and to the intense feeling of anticipation while
seeking a reward (Panksepp 1998). More specifically, sleep would favor the
activation of stimulus representations or behaviors of high emotional and moti-
vational relevance, which induce instinctual behaviors or drives (such as feeding,
mating, fighting, fleeing, etc.), as well as approach and avoidance behaviors. In our
model, emotionally relevant experiences (including threat-related information)
have a higher probability of being activated during sleep and have a preferential
access to sleep-related memory consolidation processes. It is thus proposed here
that one of the main functions of dreaming is to expose the sleeper to rewarding or
aversive stimuli, in order to maintain and improve offline memory consolidation
processes and performance in real life situations, while also contributing to
emotion regulation processes. The reader may refer to Perogamvros and Schwartz
(2012) for a detailed description of the Reward Activation Model.
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3.3 Sexuality in Sleep

Surprisingly, although sexual content is prominent in dreams (Freud 1900; Schredl
2010), to our knowledge no neurophysiological interpretation of sexual dreaming
has yet been proposed. The sexual content of dreams can be regarded as an
expression of the activation of reward-related functions during sleep and thus be
viewed under the scope of the Reward Activation Model (Perogamvros and
Schwartz 2012). Mesolimbic activation during sleep would indeed create a favor-
able neurophysiological environment for the elicitation of approach behaviors,
including those triggered by primary rewards such as sex. Recent neuroimaging
studies on sexual stimulation and orgasm in humans confirmed activations across
reward and emotional networks (VTA, striatum, insula), but also revealed simul-
taneous deactivations in structures related to monitoring and cognitive control
(prefrontal and orbitofrontal cortex) (Georgiadis et al. 2007; Holstege and Geor-
giadis 2004; Holstege and Huynh 2011). Notably, these activation/deactivation
patterns are also typically observed during REM sleep (see Sect. 2 above).
Therefore, activation of reward-related structures (VTA, insula) may favor the
elicitation of primary rewards, including sex, in the dreams, whereas deactivation of
attentional and cognitive control structures (e.g., parietal cortex, dorsolateral PFC;
Sect. 2.1) and the partial disconnection from external sensory inputs, may support
relaxation of sexual behavior from social or moral constraints.

Interestingly, testosterone levels in humans increase during the first part of the
night, peaking during the first REM periods, and are then stable until awakening
(Luboshitzky et al. 1999). This hormonal modulation depends on sleep and not on
circadian factors since testosterone levels in young men rise during daytime sleep
just as in nighttime sleep, while the levels fall upon waking (Axelsson et al. 2005).
The picture is much less clear for women because of the complexity of measuring
hormonal levels across the menstrual cycle and many other confounding factors,
such as the use of birth control pills. The data available so far point to a direct
effect of sleep on the activity of the neuroendocrine reproductive control, ulti-
mately improving sexual satisfaction (Andersen et al. 2011).

Taken together these findings suggest that increased dopaminergic and hor-
monal activity, and decreased PFC monitoring may contribute to both promoting
sexually relevant content in dreams and eliciting sexual arousal during REM sleep.
Yet, future correlation studies among dream content, sexual arousal, and hormonal
activation are needed to clarify whether the occurrence of spontaneous sexual
arousal during REM sleep (Bancroft 2005; Fisher et al. 1983; Karacan et al. 1975)
and sexual dreams are independent expressions of a common underlying neuro-
physiological mechanism (Lamid 1986), whether sexual content of dreams may
trigger physiological sexual arousal, or whether the latter may infiltrate the content
of the dreams.
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3.4 Insight and Creativity

The role of sleep in problem solving and creativity is more than a folk belief.
Indeed, in addition to its deleterious impact on reward and emotional functions
(Sect. 4), sleep deprivation (SD) impairs affectively guided decision making
(Pace-Schott et al. 2012), moral reasoning (Killgore et al. 2007), insight (Wagner
et al. 2004), and creativity (Cai et al. 2009; Home 1988). Based on the ‘carry-over
effect’ after awakening (during which performance is altered as a result of the
brain’s slow transition to full wakefulness), elegant studies by Stickgold and
colleagues showed that subjects awoken from REM sleep had a 32 % advantage in
the number of anagrams solved (Walker et al. 2002) and also showed greater
priming by weak primes (e. g., thief-wrong) than by strong primes (e.g., hot—cold),
contrary to the pattern of priming observed during wakefulness (Stickgold et al.
1999). These data are consistent with a hyperassociative state of the mind during
REM sleep.

Brain activity during sleep may partly explain these findings. Mesolimbic
dopamine activation during sleep may influence novelty seeking and creative drive
(Perogamvros and Schwartz 2012). Indeed, the dopaminergic system is thought to
contribute to creativity, in particular divergent thinking, cognitive flexibility,
innovative insights, and associative thinking (Chermahini and Hommel 2010;
Flaherty 2005; Takeuchi et al. 2010). Further evidence comes from Parkinson’s
disease patients under dopaminergic treatment, who may show increased artistic
drive and productivity (Inzelberg 2013; Kulisevsky et al. 2009). Besides increased
dopaminergic activity, thalamic gating of external information and deactivation of
monitoring regions such as the dorsolateral PFC during (REM) sleep (Maquet et al.
1996), a structure that typically mediates volitional control of ongoing perfor-
mance, may also provide additional favorable conditions for creativity, by
suspending monitoring constraints on mental processes (de Manzano et al. 2010;
Limb and Braun 2008). Whether increased creative drive during sleep constitutes a
mechanism by which dreams may enhance creativity or facilitate the resolution of
emotional conflicts remains to be addressed in future studies (Desseilles et al.
2011; Schredl 2010).

3.5 Off-Line Processing and Consolidation of Emotional
Memories

Memory consolidation is an open-ended process by which new memories are
progressively reorganized and incorporated into pre-existing long-term memory
networks (Wang and Morris 2010). Several studies have shown that memory
replay and consolidation processes occur during all sleep stages (for reviews, see
Diekelmann and Born 2010; Maquet 2001; Oudiette and Paller 2013; Stickgold
2005). Both slow oscillations and sleep spindles during NREM sleep have been
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reported to be associated with memory (procedural and declarative) consolidation
and synaptic plasticity processes (Bergmann et al. 2008; Diekelmann and Born
2010; Fogel and Smith 2011; Huber et al. 2004; Marshall et al. 2006; Rosanova
and Ulrich 2005). In addition, neuroimaging studies in humans have demonstrated
that NREM and REM sleep may foster lasting neural changes as well as changes
in functional connectivity after perceptual, motor, or emotional learning tasks
(Magquet et al. 2003; Payne and Kensinger 2010; Schwartz et al. 2002; Sterpenich
et al. 2007). It is supposed that the neural traces coding for newly acquired
information are reactivated during subsequent periods of both NREM sleep
and/or REM sleep, thus promoting memory consolidation and reorganization
(Diekelmann and Born 2010; Maquet et al. 2000; Oudiette and Paller 2013; Rasch
et al. 2007; Rudoy et al. 2009). Below we report converging evidence suggesting
that the activation of limbic, paralimbic, and reward systems during sleep—with or
without concomitant dream experience—serves emotional regulation and memory
consolidation processes.

During NREM sleep, activation of the hippocampus and ventral striatum
enables the formation of a memory trace comprising contextual, emotional, and
motivational components (Lansink et al. 2009). The coordinated reactivation of
both the hippocampus and the ventral striatum during SWS provides a possible
mechanism for the consolidation of associative memory-reward information
(Fig. 3). In particular, the activation of neurons in the ventral striatum during SWS
would support the selection of memories with a high storage priority (Lansink
et al. 2008) and may lead to the optimization of adapted behavior during wake-
fulness. Consistent with this hypothesis, recent data in humans suggest that
overnight consolidation of declarative memory and skill learning is guided by
emotional relevance and motivational biases (Fischer and Born 2009; Sterpenich
et al. 2009; Wilhelm et al. 2011).

Active memory processing may also be consistent with sustained reward-
related bursting activity of the VTA (Dahan et al. 2007) and NAcc (Lena et al.
2005) observed in rodents during REM sleep. Phasic VTA dopamine signals
during REM sleep could indeed favor an off-line replay of recent emotional
memory traces during this sleep stage (Walker and van der Helm 2009). These
memories would then serve both as salient and novel stimuli for the penduculo-
pontine tegmental nuclei and VTA, because recent relevant memories (e.g.,
emotional events, current concerns) are activated in the absence of cognitive
control from dorsolateral PFC during REM sleep (Fosse et al. 2003; Schwartz
2003) (Fig. 3). This particular component of our original model still requires
support from future studies (Perogamvros and Schwartz 2012).

During REM sleep, robust activation of limbic circuits is thought to promote
neuronal reorganization of emotional memory traces. This reorganization involves
an enhancement of the functional connectivity between the amygdala, the medial
PFC, and the occipital cortex, as well as a progressive transfer of some memories
along a hippocampal-cortical route (Frankland and Bontempi 2005; Sterpenich
et al. 2009). Further supporting the role of REM sleep in neuronal potentiation
processes, REM SD impairs the induction of hippocampal long-term potentiation in
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Fig. 3 Schematic illustration the reciprocal interactions between emotion/reward-related regions
and hippocampal/prefrontal memory processes during NREM and REM sleep. a During NREM
sleep, hippocampal activation triggers a spontaneous reactivation (replay) in ventral striatum
neurons, which involves the transfer of novelty/relevance signals from the hippocampus to the
VTA (thick dashed blue arrow). VTA is activated during the transition from a NREM episode to
REM sleep, with induction of both tonic (hippocampus—VTA projection) and phasic (PPT-VTA)
increase of dopamine. b During all REM sleep, increased bursting activity (phasic response) in
the VTA may represent stimulus saliency and could fulfill reward-related functions, like stimulus-
reward associations and novelty-seeking. During REM sleep, several VTA projections are
activated, including the upward arc of hippocampal-VTA loop (dopaminergic input from the
VTA to the hippocampus; thick plain red arrow), the NAcc, the amygdala, the orexin/hypocretin
neurons, the ACC, and the PFC. All these regions have strong anatomical and functional links
with the hippocampus and VTA (among others). Activation of the upward arc of the
hippocampal-VTA loop contributes to synaptic plasticity and learning by enhancing long-term
potentiation (Lisman and Grace 2005). PPT penduculopontine tegmental nuclei, VS/NAcc ventral
striatum/nucleus accumbens, VTA ventral tegmental area. Adapted from Perogamvros and
Schwartz (2012)

the visual cortex (Shaffery et al. 2002) and in the dorsal hippocampus (Ravassard
et al. 2009) of rats. In addition, REM SD impairs hippocampal neurogenesis, which
is thought to play a role in memory formation (Meerlo et al. 2009).

Taken together, these results confirm that all stages of sleep contribute to the
consolidation of relevant memories involving lasting reorganization within cere-
bral networks.

4 Sleep Disturbance Causes Waking Emotional
Dysfunctions

Early studies have shown that sleep disturbances can affect stress coping and lead
to emotional and cognitive dysfunctions. In rats, suppression of REM sleep during
the second and third weeks of postnatal development was found to cause anxiety,
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decrease in sexual activity (see also Sect. 3.3 above), and structural reductions in
the cerebral cortex and brainstem weight in adulthood (Mirmiran et al. 1983).
In humans, adaptation to stress was found deficient after REM SD or total SD
(Kahn-Greene et al. 2007). In addition, chronic sleep disruption is associated with
cognitive performance deficits (Fortier-Brochu et al. 2012; Van Dongen et al.
2003), increased aggressiveness (Kamphuis et al. 2012), and negative mood states
(Zohar et al. 2005).

What may be the neurophysiological mechanisms underlying these adverse
effects of sleep disturbance? In the light of recent findings on the consequences of
total SD and REM SD on decision making and reward function (Gujar et al. 2011;
Hanlon et al. 2010; Venkatraman et al. 2007; Yoo et al. 2007), we suggest that
sleep contributes to maintaining the integrity of emotional and reward brain
networks (Sects. 2.1 and 2.2). Indeed, total or partial SD impairs the normal
functioning of these networks. For example, after SD, activation of the NAcc was
exacerbated for risky choices in a game-like task, while insular and orbitofrontal
responses to losses were reduced, denoting a diminished reactivity to punishment
(Venkatraman et al. 2007). These results convincingly demonstrate that SD may
disrupt competent decision making by modulating brain regions associated with
risky decision making and emotional processing, such as the NAcc and the insula.
Because the insular cortex is activated during both NREM (Nofzinger et al. 2002)
and REM sleep (Maquet et al. 2000), one could hypothesize that SD interferes with
emotional functions subserved by the insula. Moreover, decreases in D2/D3
receptor availability may account for impairments in performance, reward learn-
ing, and decision making after SD (Volkow et al. 2012). Indeed, insufficient sleep
is associated with changes in reward-related decision making: people take greater
risks (Harrison and Horne 2000) and are less concerned with the negative con-
sequences of their risky behaviors (Chee and Chuah 2008; Venkatraman et al.
2007, 2011).

SD was also found to cause a failure of top-down control from the medial PFC
on the amygdala. In one recent fMRI study, two groups of healthy subjects were
shown 100 images ranging from emotionally neutral to increasingly aversive
during a functional MRI session after one night of sleep deprivation (SD group,
n = 14) or after one night of sleep (control group, n = 12) (Yoo et al. 2007).
While both groups expressed similar amygdala activation levels for the neutral
pictures, the sleep-deprived subjects exhibited increased amygdala response to the
most negative picture stimuli compared to the control group. Importantly, a loss of
functional connectivity between the medial PFC and the amygdala in the SD group
was also observed. These results suggest that SD causes a reduction of prefrontal
control over the limbic system, resulting in an accentuation of emotional responses
to negative stimuli. SD may also lead to an amplified reactivity of reward networks
in response to positive emotional stimuli (Gujar et al. 2011). More specifically,
compared to a non sleep-deprived control group, sleep-deprived participants
judged pleasure-evoking stimuli as more pleasant, and showed increased activation
in the VTA, left putamen, amygdala and left insula. These regional increases were
associated with a reduction in functional connectivity in medial and orbitofrontal



L. Perogamvros and S. Schwartz

cortex. Together, these studies suggest that sleep loss may impose a bidirectional
affective imbalance, including increased behavioral and neural reactivity to both
positive and negative emotional stimuli.

While emotional functions are influenced by processes occurring during sleep,
as reviewed in the section above, the sleep/wake cycle also influences mood via two
other components: the circadian (circadian phase) and homeostatic processes
(duration of prior wakefulness) (Boivin et al. 1997). Even a minimal misalignment
between circadian phase and sleep phase can deteriorate mood (Danilenko et al.
2003), which may also in part explain mood-related problems (e.g., irritability) in
jet-lag (Waterhouse et al. 2005), and severity of unipolar depression (Hasler et al.
2010). Stress can also disrupt the circadian cycle (Meerlo et al. 2002), leading to
depressive episodes in vulnerable individuals (Ehlers et al. 1988). In addition, mood
deteriorates with increases in the duration of prior wakefulness (Birchler-Pedross
et al. 2009; Boivin et al. 1997). The nature of the circadian-homeostatic interaction
is such that moderate changes in the timing of the sleep—wake cycle may have
profound effects on subsequent mood. In addition, light, with its effects on circadian
and non-circadian systems, seems to play a primordial role in mood regulation
(Stephenson et al. 2012).

Collectively, these data suggest that sleep disturbance may impact reward brain
systems in ways that exacerbate behavioral problems (e.g., increased risk-taking,
reduced sensitivity to punishment) and induce emotional lability. Dysregulation of
the emotional and reward networks normally activated during sleep (see Sect. 2)
also likely explains why sleep disturbance may precede clinical depression by
facilitating the occurrence of the depressive reward-deficient symptomatology
(anhedonia, aboulia, impaired decision making) (Der-Avakian and Markou 2012;
Perogamvros and Schwartz 2012). Actually, insomnia represents an independent
major risk factor for the development of major depression (Buysse et al. 2008;
Johnson et al. 2006; Riemann and Voderholzer 2003; Roane and Taylor 2008).
Thus, sleep deprivation may have major health implications in adolescents and
adults, by altering reward and emotional processing.

5 Conclusions

In this chapter, we review evidence supporting that sleep is of critical importance
for emotional and reward functions. In particular, activation of emotional-limbic
and reward networks during NREM and REM sleep causes a selective replay and
consolidation of memories by prioritizing the processing of emotionally and
motivationally relevant information. This activation also contributes to emotional
maturation, enhanced creativity and insight, overnight performance improvement,
the generation of dreams, and may influence sexual functions. We also show that
recent findings converge to suggest that optimal mood regulation depends on
balanced activity and connectivity within limbic and prefrontal circuits (e.g.,
amygdala-medial PFC). Thus, sleep disturbance (e.g., insomnia, sleep deprivation)
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may result in emotional distress and reward-related dysfunction, which in turn may
precipitate mood disorders. The integration of existing data from various research
fields, as proposed in this chapter, provides a better understanding of the multi-
faceted role of sleep in emotional functions and demonstrates that sleep is a key
component of mental health and well-being. It also identifies major challenges and
questions that will keep clinicians and researchers busy for the next decade or so,
among which the reverberation of neural activity during sleep emerges as a central
mechanism promoting waking behavioral fitness as well as the recalibration of the
emotional mind.
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