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Motor improvement estimation and task 
adaptation for personalized robot‑aided 
therapy: a feasibility study
Christian Giang1* , Elvira Pirondini2,3†, Nawal Kinany1,2,3†, Camilla Pierella1†, Alessandro Panarese4, 
Martina Coscia5, Jenifer Miehlbradt6, Cécile Magnin7, Pierre Nicolo7,8, Adrian Guggisberg7,8 
and Silvestro Micera1,4

Abstract 

Background: In the past years, robotic systems have become increasingly popular 
in upper limb rehabilitation. Nevertheless, clinical studies have so far not been able to 
confirm superior efficacy of robotic therapy over conventional methods. The person-
alization of robot-aided therapy according to the patients’ individual motor deficits has 
been suggested as a pivotal step to improve the clinical outcome of such approaches.

Methods: Here, we present a model-based approach to personalize robot-aided 
rehabilitation therapy within training sessions. The proposed method combines the 
information from different motor performance measures recorded from the robot 
to continuously estimate patients’ motor improvement for a series of point-to-point 
reaching movements in different directions. Additionally, it comprises a personalization 
routine to automatically adapt the rehabilitation training. We engineered our approach 
using an upper-limb exoskeleton. The implementation was tested with 17 healthy 
subjects, who underwent a motor-adaptation paradigm, and two subacute stroke 
patients, exhibiting different degrees of motor impairment, who participated in a pilot 
test undergoing rehabilitative motor training.

Results: The results of the exploratory study with healthy subjects showed that the 
participants divided into fast and slow adapters. The model was able to correctly 
estimate distinct motor improvement progressions between the two groups of par-
ticipants while proposing individual training protocols. For the two pilot patients, an 
analysis of the selected motor performance measures showed that both patients were 
able to retain the improvements gained during training when reaching movements 
were reintroduced at a later stage. These results suggest that the automated training 
adaptation was appropriately timed and specifically tailored to the abilities of each 
individual.

Conclusions: The results of our exploratory study demonstrated the feasibility of the 
proposed model-based approach for the personalization of robot-aided rehabilita-
tion therapy. The pilot test with two subacute stroke patients further supported our 
approach, while providing encouraging results for the applicability in clinical settings.
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Trial registration This study is registered in ClinicalTrials.gov (NCT02770300, registered 30 
March 2016, https ://clini caltr ials.gov/ct2/show/NCT02 77030 0)
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Background
With the increase of life expectancy, it is estimated that stroke-related impairments will 
be ranked fourth most important cause of disability in Western countries by 2030 [1]. 
Despite early rehabilitative interventions, 55% to 75% of the patients still suffer from 
upper limb impairments in the chronic state of the injury [2–4]. The recovery of reach-
ing and grasping movements is therefore a crucial therapeutic goal in stroke rehabilita-
tion [5].

Post-stroke rehabilitation usually relies on task-oriented repetitive movements that 
help improving motor function and training new control strategies. In this regard, the 
amount of goal-directed and challenging practice, rather than daily intensity alone, 
seems to be the most effective factor in neurorehabilitation [6]. In the last two decades, 
robot-aided motor training has shown potential for the recovery of lost motor abili-
ties in upper limbs after stroke [7–9]. While providing intense and highly repeatable 
motor training, robotic devices also offer means to control and quantify movement per-
formance. Despite this strong potential, controlled clinical trials have so far not been 
able to confirm whether robotic therapy is more effective than conventional methods in 
restoring motor abilities [10–12]. It has been argued that this might be related to satu-
ration effects in the patients’ motor performances and a lack of automatic methods to 
promptly detect them [13]. Indeed, a recent review analyzing 38 studies on this topic 
[14] concluded that robotic therapy had rather small effects on patients’ motor control 
compared to other interventions.

The automatic and personalized adaptation of the rehabilitation training has been sug-
gested as a pivotal step to improve the outcome of robot-aided rehabilitation and the 
clinical relevance of such solutions [15]. As a matter of fact, motor learning is known 
to be maximized when the difficulty level of the training task matches the patient’s level 
of ability [16]. Recent advances in the field of personalized robotic rehabilitation have 
therefore focused on the design of customized training protocols, including individu-
alized selection of upper limb movements [17]. One of the pivotal aspects underlying 
the development of a personalized rehabilitation training is the definition of perfor-
mance measures that can correctly capture the different aspects of motor recovery, as 
well as their specific dynamics. Different measures have been used to assess the patient’s 
“status” during training (i.e., motor performance, engagement, etc.) in order to adjust 
the proposed tasks accordingly. Kinematic performance measures, such as movement 
accuracy, smoothness, velocity, inter-joint coordination, range of motion and stiffness 
[18–24], game-related statistics [13, 25], measures of muscle activity [18], or the combi-
nation of kinematic and psychophysiological measurements [26–28] have been among 
the measures used for the design of patient-tailored training protocols. However, those 
approaches either focused on a single performance measure describing a specific aspect 
of rehabilitation or used multiple measures, but lacked the ability to meaningfully syn-
thesize the information from these variables. Integrating this information into a single 
measure, yet representative of the patient’s multidimensional rehabilitation response, 

https://clinicaltrials.gov/ct2/show/NCT02770300
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would facilitate the monitoring of the multifaceted progress of the patient and provide a 
way to trigger task adaptation while enormously simplifying the design of personalized 
rehabilitation training.

A first approach addressing this issue was presented in our previous work [29]. Previ-
ously, we have used a state-space model to merge the information from different kin-
ematic measures and, in this way, estimated motor improvement (MI) of chronic stroke 
patients exercising with a planar robotic device for upper limb rehabilitation. In this pre-
vious work [29], we used four performance measures to estimate the MI: (1) the move-
ment velocity (MV); (2) the movement accuracy (nMD); (3) the movement smoothness 
(nPK); (4) the percentage of successful tasks executed during each session (%SUCC). 
Following post hoc analyses on the recorded performance measures, we showed that 
such model would be capable of mimicking decision rules applied by physical therapists 
regarding the adaptation of the task difficulty. In most cases, the model even appeared 
to be faster than the therapists in detecting when the patients’ motor performance had 
reached a plateau and when more challenging tasks should have been proposed. Yet 
an automatic task adaptation based on such a model was lacking from our previous 
implementation.

In the current study, we therefore build on these results to implement a method able to 
continuously detect patient’s motor improvement and adapt the training task for three-
dimensional movements using an upper-limb exoskeleton. Indeed, most of the adap-
tive approaches mentioned before were restricted to planar workspaces, hindering their 
applications to functional movements exploring three-dimensional workspaces that 
better resemble those performed during daily life activities. Evaluating and estimating 
motor improvement is particularly complex in three-dimensional training workspaces, 
where the visual evaluation of motor performance becomes more challenging. Under 
these circumstances, a method able to autonomously estimate patient training progress, 
in particular for movements in different directions, could provide fundamental support 
to therapists. In contrast to our previous work, here we employed a continuous imple-
mentation of the motor improvement estimation and the training adaptation routine. 
Indeed, the immediate task adaptation within the same training sessions could not only 
increase patients’ engagement, but also foster their attention control, possibly leading to 
improved reaching performances [30].

However, in order to enable the use of such methods for clinical applications, it is 
first necessary to validate their feasibility and safety under controlled experimental con-
ditions. The main objective of this exploratory study was hence to demonstrate feasi-
bility and safety for the proposed method and to comprehend whether such approach 
could possibly be applied in clinical settings. We, therefore, devised an experiment to 
test our model in a group of healthy subjects. In order to mimic the recovery of motor 
performance observed in stroke patients, we inverted the visual feedback for the point-
to-point reaching movements that the healthy subjects had to perform in a three-dimen-
sional training environment using a robotic upper-limb exoskeleton. Previous studies 
on visually manipulated motor tasks showed that most people could cope with similar 
manipulations after training [31–35]. Accordingly, we hypothesized that performances 
would drop after the introduction of the inverted visual feedback (i.e., movements would 
become slower and jerkier), but would then gradually improve and eventually reach a 
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plateau—with temporal dynamics resembling the ones occurring in robot-aided reha-
bilitation of stroke patients [29, 36, 37]. Moreover, previous work has demonstrated that 
for reaching movements in planar setups, participants showed better performance for 
targets lying on the axis perpendicular to the inversion [32, 38]. Though in this study we 
used a three-dimensional setup, we also hypothesized that participants would have less 
difficulties with the targets lying on one of three coordinate axes (on-axis targets), as 
they involved inversions in only one dimension (in contrast to inversions in two dimen-
sions for off-axis targets, i.e., targets not lying on the axes). Using this setup, we tested 
whether our model was capable of tracking individual motor improvement induced by 
motor adaptation, and whether it was able to personalize the training by identifying 
“recovered” (i.e., adapted) movements in real-time.

To provide further evidence about the clinical usability of the presented approach, we 
finally performed a pilot test with two subacute stroke patients. The objective of this 
pilot test was to evaluate the model in an authentic clinical context and with two patients 
exhibiting different degrees of motor impairment. The patients underwent 4  weeks of 
robot-aided rehabilitation training, performing the same point-to-point reaching move-
ments as the healthy subjects. In this case however, visual feedback was provided nor-
mally, without inversion. We hypothesized that the model would suggest two distinct 
training adaptation schemes for the patients, optimizing their motor recovery by pro-
posing reaching movements that match the individual abilities of each patient.

Results
Experimental validation with healthy participants

The model was first tested with 17 healthy subjects, who performed a point-to-point 
reaching task using an upper-limb exoskeleton (ALEx, Fig. 1a, b). As an additional con-
straint, the healthy subjects had to complete the task with a vision inversion implemented 
in the blocks  B1–5 (Fig. 1c). During these five blocks, we tested whether our model was 
capable to continuously adapt the reaching task according to the performances of each 
individual. For each participant, the performance measures recorded by the exoskeleton 
were deployed in a state-space model to continuously estimate the motor improvement 
(MI) for each direction of movement independently. When the MI values for a move-
ment direction passed a certain threshold and remained stable for a given time window 
(see “Training adaptation routine” section), the movement was replaced with a new tar-
get from the training queue (Fig. 1e). The latter contained 18 directions of movement 
(i.e., targets) and it was generated for each individual at the beginning of the training 
based on a semi-randomized procedure (see “Healthy participants” section).

Task adaptation at subject level

Despite a general improvement for all participants, the healthy subjects differed consid-
erably in their adaptation speed, as quantified by the number of new targets introduced 
during the inversion blocks  B1–5. Since this study was exploratory in nature, we did not 
expect a priori such a variety of adaption speeds. However, a post hoc analysis of the 
number of new introduced targets allowed to identify two groups of participants using a 
median split. Specifically, participants were classified into fast adapters (n = 9, 7.7 ± 1.1 
new targets) and slow adapters (n = 8, 2.6 ± 2.0 new targets). This result emerged as an 
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unforeseen opportunity to highlight the model’s capability to differentiate varying motor 
adaptation rates. As hypothesized, the performance measures [i.e., movement velocity 
(MV), movement smoothness (SAL) and task completion rate (%SUCC)] degraded for 
both groups after the introduction of the vision inversion in  B1 (Fig. 2a–c).

c

d

e

ba

Fig. 1 Experimental setup and protocols. a Schematic overview of experimental setup. b Design of the 
three-dimensional point-to-point reaching task. Eighteen targets (representing the different subtasks) are 
positioned over a sphere of 19 cm of radius (equally distributed on the three planes). The empty circle 
represents the center of the workspace (starting position). c Experimental protocol for healthy participants. 
Experiments were completed in a single session and were divided into blocks (one initial assessment 
block  AI,1–3, five inversion blocks  B1–5, one final assessment block  AF,1–3). The assessment blocks consisted 
of three runs, each composed of 18 reaching movements (one towards each target). The inversion blocks 
consisted of five runs, each composed of eight reaching movements. The training targets for the inversion 
blocks were automatically selected by the implemented personalization routine. Breaks were allowed 
between the blocks to prevent fatigue. d Experimental protocol for the patient. During the initial  (AI,1–2) and 
final  (AF,1–2) assessment sessions, all 18 targets were presented to the patient. For each treatment session 
eight training targets were selected by the implemented personalization routine. The total number of 
repetitions performed in each session was determined by the physical therapist. e Schematic overview of the 
different steps performed for the adaptive scheduling of the reaching task with vision inversion for healthy 
participants and the reaching task without vision inversion for patients
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Participants in both groups gradually improved from  B1 to  B5, although they did not 
reach their initial motor performances (i.e., performances during  AI,1–3). Friedman tests 
confirmed the differences between the blocks  AI,1–3,  B1 and  B5, for both groups and for 
all performance measures (Table 1). Post hoc analyses were performed using Wilcoxon 
signed-rank tests with Holm–Bonferroni corrections for three comparisons. The analy-
ses confirmed pairwise differences between different pairs of blocks  (AI,1–3 and  B1,  B1 
and  B5,  AI,1–3 and  B5,) within both groups and for all performance measures, except for 
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Fig. 2 Analysis of performance measures for the experiment with healthy participants. Average values of 
mean velocity (MV, panel a), spectral arc length (SAL, panel b) and rate of success (%SUCC, panel c) for each 
run (eight reaching movements) of fast (red) and slow (grey) adapters. Measures were averaged for all targets 
presented during a run and for all subjects of a group. Shaded areas depict standard error of the mean (sem). 
Vertical bars (panel d) depict the percentage of subjects in each group for which a target was replaced in 
 B3–5 or was not replaced at all. No targets were replaced in and  B1–2 due to lack of data needed for proper 
estimation of motor improvement

Table 1 Within-group comparisons of healthy subjects at three different time points

Performance measures 
(mean ± standard error of the mean, 
sem)

Friedman’s test Wilcoxon signed-rank test 
with Holm–Bonferroni 
correction (for three 
comparisons)

AI,1–3 B1 
(inversion)

B5 
(inversion)

Chi-square 
(2)

P value pcorr
AI,1–3–B1

pcorr
B1–B5

pcorr
AI,1–3–B5

Fast adapters (n = 9)

 MV (m/s) 0.16 ± 0.01 0.13 ± 0.01 0.15 ± 0.01 10.89 0.0043 0.0156 0.0117 0.3594

 SAL − 2.81 ± 0.07 − 3.77 ± 0.12 − 3.09 ± 0.19 16.22 0.0003 0.0117 0.0078 0.0117

 %SUCC 97.1 ± 1.1 55.8 ± 3.4 85.4 ± 2.8 18.0 0.0001 0.0117 0.0117 0.0117

Slow adapters (n = 8)

 MV (m/s) 0.17 ± 0.01 0.10 ± 0.01 0.12 ± 0.01 13.0 0.0015 0.0156 0.0156 0.1094

 SAL − 3.13 ± 0.10 − 6.39 ± 0.34 − 3.82 ± 0.11 16.0 0.0003 0.0234 0.0234 0.0234

 %SUCC 94.7 ± 1.5 16.3 ± 3.9 57.0 ± 5.6 16.0 0.0003 0.0234 0.0234 0.0234
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MV between  AI,1–3 and  B5. When introduced to the vision inversion in  B1, fast adapt-
ers outperformed slow adapters as measured by all performance measures. A statisti-
cal comparison of the performance measures in  AI,1–3 between the two groups (Table 2) 
showed that there were no statistically significant differences for SAL and %SUCC (sta-
tistical power of 0.99 and 0.85, respectively), while no conclusions could be drawn for 
MV (statistical power 0.42). The performance difference was still observable in  B5, the 
last block with vision inversion.

Task adaptation at subtask level

We then analyzed which initial training targets were replaced by the algorithm during 
the inversion blocks and when this replacement occurred (Fig. 2d). The insertion of new 
targets did not start before  B3, as in  B1–2 the amount of data for each training target was 
not sufficient to obtain proper MI estimations (see “Motor improvement model” sec-
tion). Overall, movements towards the off-axis targets (Fig. 1b) seemed to be more dif-
ficult: the algorithm replaced these targets for 13% of the slow adapters and for 77% of 
the fast adapters. The on-axis targets instead, were replaced for 38% of the slow adapters 
and 87% of the fast adapters. However, we also observed differences within the on-axis 
targets: targets 3, 5 and 13 were replaced for 13% of the slow adapters and for 74% of 
the fast adapters, while the replacement for targets 1, 7 and 10 was achieved by 63% of 
the slow adapters and by 100% of the fast adapters. Following this analysis, we classified 
the targets into easy (1, 7 and 10) and difficult (3, 5, 13 and off-axis) subsets. The results 
suggested that despite the differences in the overall performance, the subsets of easy and 
difficult targets appeared to be similar for both groups. Nevertheless, we observed an 
earlier replacement of the easy targets for the fast adapters: 56% of the easy targets were 
replaced in  B3 (4% for slow adapters), 33% were replaced in  B4 (38% for slow adapters), 
and 11% were replaced in B5 (21% for slow adapters). In contrast, for the difficult targets, 
the fast adapters also needed more time to achieve a replacement (if they were replaced 
eventually): 26% of the difficult targets were replaced in  B3 (3% for slow adapters), 35% 

Table 2 Between-group comparisons of healthy subjects at three different time points

Fast adapters (n = 9) Slow adapters (n = 8) Wilcoxon rank-sum test 
with Holm–Bonferroni 
correction (for three 
comparisons)

Performance measures in  AI,1–3 (mean ± sem) pcorr

 MV (m/s) 0.16 ± 0.002 0.18 ± 0.003 0.2359

 SAL − 2.69 ± 0.03 − 3.03 ± 0.04 0.0619

 %SUCC 99.3 ± 0.5 97.3 ± 1.0 0.2973

Performance measures in  B1 (mean ± sem) pcorr

 MV (m/s) 0.11 ± 0.002 0.10 ± 0.002 0.0360

 SAL − 3.77 ± 0.06 − 6.34 ± 0.18 0.0002

 %SUCC 55.6 ± 2.9 16.0 ± 2.3 0.0002

Performance measures in  B5 (mean ± sem) pcorr

 MV (m/s) 0.15 ± 0.002 0.12 ± 0.002 0.0360

 SAL − 3.09 ± 0.04 − 3.82 ± 0.07 0.0002

 %SUCC 85.4 ± 2.1 57.3 ± 3.1 0.0002
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were replaced in  B4 (5% for slow adapters) and 14% were replaced in  B5 (5% for slow 
adapters).

To illustrate the behavior of individual participants at subtask level, we present the 
data of one exemplary subject from each group for the movements towards the same 
two targets (Fig. 3). We selected one target from the subset of the easy (target 10) and 
one target from the subset of the difficult (target 13) targets. The examples illustrate the 
different adaptation rates observed between subjects and targets. For the easy target, 
the performance measures for the fast adapter quickly improved and approached a pla-
teau. The slow adapter, instead, showed difficulties until the fourth repetition, reflected 
particularly by SAL and SUCC. Nonetheless, starting from the fifth repetition, they also 
managed to adapt the movements to the visual inversion and finally reached the con-
ditions for the target replacement at the twelfth repetition. The difficult target instead, 
appeared to be more challenging for both subjects. For this target, the fast adapter 

Fig. 3 Examples of MI estimates and performance measures at subtask level. Data are presented for a fast 
adapter and a slow adapter for the same two targets. Repetitions for each target are concatenated for all 
inversion blocks and presented in chronological order. Data for mean velocity (MV), spectral arc length (SAL) 
and MI were low pass filtered for visualization purposes (raw data shown in light red/grey). Dotted lines 
depict one of the necessary conditions (MI > 0) for triggering a target replacement. Green areas indicate the 
time span where the model detected a performance plateau and triggered a target replacement. Estimated 
model parameters (αj, βj) for each target and subject are presented next to the corresponding MI curves (a 
summary and analysis on the model parameters can be found in Additional file 1)
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showed an improvement in all performance measures only after the tenth repetition and 
finally reached the conditions for the target replacement after 18 repetitions. In contrast, 
the slow adapter did not manage to satisfy the conditions for a replacement. Despite a 
trend of improvement, the motor performance was not yet sufficient to trigger a replace-
ment of the target.

Pilot test with subacute stroke patients

To provide further evidence about the feasibility of the presented approach in clinical 
settings, we finally performed a pilot test with two subacute stroke patients, who com-
pleted 4 weeks of personalized robot-aided training complementing standard rehabili-
tation therapy (Fig.  1d, see “Subacute stroke patients” section for details). During the 
robot-aided training, the patients performed the reaching tasks without vision inversion 
and the set of targets was automatically adapted based on a continuous evaluation of the 
MI estimates for each training target.

Based on the initial assessment of their scores on the Fugl-Meyer assessment for 
upper extremities (FMA-UE), we observed a remarkable difference in the degree of 
motor impairment of patient P01 (22 points at  AI,2, Fig.  4a) compared to patient P02 
(59 points at  AI,2). This difference was equally reflected by the number of movements 

a b

c

Fig. 4 Summary of the results from the pilot test with two subacute stroke patients. a The first three rows 
show the mean values for mean velocity (MV), spectral arc length (SAL) and rate of success (%SUCC) for 
each assessment and treatment session of both patients. Measures were averaged for all targets presented 
during a session, shaded areas depict standard error of the mean (sem). The fourth row shows number of 
movements performed by the patients in each session. The fifth row shows the scores on the Fugl-Meyer 
scale for upper extremities (FMA-UE) for initial  (AI,1–2) and final  (AF,1–2) assessment sessions. The dotted 
line indicates the maximum achievable score for FMA-UE (66 points). b Summary of the training targets 
presented to the patients in each treatment session. Targets are listed by the order as presented to the 
patients (first eight targets from the top are the initial training set). c Analysis of performance measures for 
two different time points (before replacement and after reinsertion). Values are compared between the last 
four movements towards a training target before its replacement and the first four movements towards the 
target after it has been reinserted for training. The data show the mean improvement for MV, SAL and %SUCC 
averaged for all targets at both time points. Improvements were calculated with respect to the mean values 
obtained from the first four movements towards each target in  AI,2. Error bars depict standard error of the 
mean (sem). P-values of Wilcoxon signed-rank tests are reported above the bars
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(nMov) performed in the initial assessment sessions, which was notably lower for P01 
(31 movements compared to 69 movements for P02 at  AI,2). The different degrees of ini-
tial impairment allowed us to evaluate the feasibility of our approach for two patients 
exhibiting disparate initial motor abilities.

Following the training, both patients showed improvements for MV, SAL, and %SUCC 
(Fig.  4a). Comparing the performances between the second initial assessment session 
 AI,2 and the first final assessment session  AF,1 we found that both patients improved on 
all measures (Table 3). One month after the training, both patients performed a follow-
up assessment  AF,2. During this session, we observed that both patients managed to 
retain the improvements observed in  AF,1. These differences were confirmed by Fried-
man tests between the three sessions  (AI,2,  AF,1, and  AF,2) for both patients, except for 
the %SUCC measure for P02. This can be related to the fact that the values for %SUCC 
for patient P02 already started at a very high level (98.6% at  AI,2) and thus left smaller 
room for improvement. Post hoc Wilcoxon tests with Bonferroni correction for mul-
tiple comparisons (i.e., two pairwise comparisons), confirmed the differences between 
 AI,2 and  AF,1 for the performance measures for both patients. For comparisons between 
 AF,1 and  AF,2 (i.e., differences between end of treatment and follow-up 1 month later), the 
only statistically significant difference was found for MV values of P01. Though no clear 
differences could be observed between  AF,1 and  AF,2 for the other measures, no further 
conclusions can be drawn due to the low statistical power of the tests (smaller than 0.8).

Along with the improvements of the performance measures, we also observed 
higher FMA-UE scores for both patients following the training. In that respect, we 
observed a lower increase for patient P02 (+ 3 points between  AI,2 and  AF,1) compared 
to patient P01 (+ 8 points). Both patients further improved their FMA-UE scores 
when assessed in the follow-up session  AF,2. Finally, we also observed an increase in 
the number of performed movements per session (nMov) for both patients. As for 
this measurement, patient P02 (+ 40 movements at  AF,1 and + 76 movements at  AF,2 

Table 3 Performance measures of the two stroke patients (P01 and P02) before and after 
the treatment sessions

Performance measures by session 
(mean ± sem)

Friedman’s test Wilcoxon signed-rank test 
with Holm–Bonferroni 
correction (for two 
comparisons)

AI,2 AF,1 AF,2 Chi-
square 
(2)

P-value pcorr
AI,2–AF,1

pcorr
AI,2–AF,2

pcorr
AF,1–
AF,2

P01

 MV 
(m/s)

0.08 ± 0.004 0.11 ± 0.005 0.13 ± 0.005 32.44 9.01e−08 5.89e−04 5.89e−04 0.015

 SAL − 6.92 ± 0.65 − 5.31 ± 0.26 − 5.15 ± 0.23 6.33 0.041 0.035 0.031 0.892

 %SUCC 77.8 ± 7.3 100 ± 0.0 94.4 ± 5.6 10.18 0.006 0.031 0.033 > 0.99

P02

 MV 
(m/s)

0.09 ± 0.003 0.12 ± 0.002 0.11 ± 0.004 18.78 8.36e−05 0.001 0.002 0.586

 SAL − 5.49 ± 0.29 − 4.04 ± 0.21 − 3.99 ± 0.19 16.33 0.0003 0.004 0.003 0.844

 %SUCC 98.6 ± 1.4 100 ± 0.0 100 ± 0.0 4.0 0.1353 > 0.99 > 0.99 > 0.99
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compared to  AI,2) improved more than patient P01 (+ 23 movements at both  AF,1 and 
 AF,2 compared to  AI,2).

Both patients progressed during the rehabilitation training and eventually achieved 
a replacement of all 18 training targets. However, the temporal dynamics of these 
replacements appeared to be strongly different (Fig. 4b). In line with the lower degree 
of motor impairments observed from the performance measures and the FMA-UE 
scores, patient P02 achieved a replacement of all training targets after only two train-
ing sessions. Patient P01, instead, needed considerably more time to achieve the 
replacement of all 18 targets. While some of the initial training targets (i.e., targets 9 
and 12) were already replaced after two treatment sessions, other targets (i.e., targets 
1, 7 and 15) needed more than 4 training sessions to trigger a replacement. It was only 
after eleven treatment sessions that all eighteen training targets were presented to 
patient P01. These observations emphasized the ability of our model to differentiate 
between both subject- and subtask-specific time courses of motor improvement, also 
in a real clinical setting. The examples illustrate how the model adapted the training 
schedules according to the patients’ individual abilities, granting patient P01 enough 
time to practice certain movements, and at the same time, responding to the fast 
recovery of patient P02 by continuously introducing new training targets.

Upon completion of the full set of training targets (i.e., when all targets had been 
replaced at least once), the therapy was carried on by reintroducing all targets and 
presenting them alternatingly in the order in which they were replaced. This allowed 
us to assess whether the patients’ performance was retained once a training target 
was reintroduced, so as to validate that the replacements orchestrated by the algo-
rithm had occurred when the movements towards the targets had actually recovered. 
In order to do so, we compared the mean values for MV, SAL, and %SUCC from the 
last four repetitions of a movement before a target was replaced by the algorithm with 
the mean values of the four repetitions of the same movement after the first rein-
sertion as a training target (Fig.  4c). Both values are calculated with respect to the 
mean values obtained from the first initial four repetitions of the movements towards 
a training target. The overall analysis for all 18 targets showed that compared to the 
initial movements towards the targets, all values for the three performance meas-
ures were higher right before the targets were replaced by the algorithm. Moreover, 
both patients retained the improvements gained during the training or even further 
improved their performance for a movement when the corresponding training target 
was reintroduced at a later stage. Using a Wilcoxon signed-rank test, we did not find 
statistically significant differences (P > 0.24) for any value of the three performance 
measures of both patients between the two time points (i.e., before replacement and 
after reinsertion). However, no further conclusions can be drawn due to the low sta-
tistical power of the tests (smaller than 0.8). Nevertheless, the results indicate that 
the algorithm only replaced training targets when motor performance had stably 
improved and that patients’ performances did not degrade when training targets were 
reintroduced at a later stage.
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Discussion
In this study, we demonstrated the feasibility of a model-based approach for the person-
alization of robotic rehabilitation training based on motor performance during three-
dimensional training tasks. Differently from previous work in this field, the model was 
designed to allow estimation of motor improvement (MI) in subacute stroke patients, 
allowing to capitalize on the enhanced potential for plasticity in the early stage after the 
injury [39, 40]. A first experimental validation in healthy subjects demonstrated the abil-
ity of our model to capture MI linked to visual motor adaptation. The results were fur-
ther validated by a clinical pilot test with two subacute stroke patients, in which motor 
recovery was tracked and harnessed by our adaptive personalization routine.

Direction-dependent training adaptation for three-dimensional reaching movements

We first sought to validate the model’s ability to continuously track MI and dynamically 
adapt the training task under controlled conditions. To this end, we tested our approach 
in a group of 17 healthy subjects. In order to mimic the motor deficits observed in stroke 
patients, we introduced a manipulation of the visual feedback, by inverting the direc-
tions of the 3D environment. While the physiological mechanisms underlying motor 
adaptation and motor recovery are most likely not equivalent, the main objective of 
this experimental design was merely to obtain an adaptation curve that resembles post-
stroke motor recovery, on which we could validate the efficacy of our model. Our results 
suggest that motor adaptation to vision inversions in healthy subjects may exhibit simi-
lar temporal dynamics for the selected performance measures as previously observed for 
stroke patients undergoing robot-aided rehabilitation [29, 41]. Indeed, when introduced 
to the vision inversion (during the blocks  B1 to  B5), the performance of the participants 
dropped drastically and gradually improved throughout the training (Fig. 2).

During the experiments, the MI model tracked when a movement towards a target 
was performed efficiently despite the vision inversion, and dynamically adjusted the 
training by replacing this target with a more difficult one from the training queue. Based 
on the number of new inserted training targets, we divided the healthy population into 
two separate clusters: fast and slow adapters. The analysis on the performance meas-
ures showed that the fast adapters learned to cope with the manipulated environment 
very quickly, while the slow adapters needed considerably more time to reach similar 
performances (Fig. 3). The MI model was able to capture these individual performance 
differences for different movement directions and introduced new training targets in 
a well-timed manner, i.e., targets were replaced when subjects reached a performance 
plateau. The advantages of monitoring motor improvement at subtask level were sup-
ported by additional post hoc analyses (see Additional file  1). The analyses illustrated 
that if motor improvements were estimated for the reaching task overall (i.e., chronolog-
ically combining the recorded data for movements in all directions), improvements for 
individual subtasks would have been obscured by inferior performances of other, more 
difficult, subtasks. Moreover, the detection of performance plateaus would not corre-
spond to the actual performances for each subtask. As a result, some subtasks would 
be kept too long, while others would be replaced too soon, potentially leading to a less 
efficient training schedule. Likewise, individual training progressions for specific sub-
tasks were also observed for the two stroke patients participating in this study (Fig. 4b). 
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We therefore, believe that the current study further supports the approach to specifically 
consider MI estimation at subtask level, as it has been proposed in our previous work 
[29]. The results of the current study suggest that this subtask dependency does not only 
apply to planar movements, but also extends to three-dimensional movements. In order 
to optimize robotic treatment protocols, future studies should therefore specifically aim 
at evaluating motor performance at subtask level.

When comparing the performances for each subtask, we observed that off-axis targets 
were replaced less often than on-axis targets and they, thus, seemed to be more difficult 
(Fig. 2d). This finding appears to be in line with results from similar studies involving 
vision inversion in planar setups [32, 38]. These studies demonstrated that participants 
showed better performance for reaching movements lying on the axis perpendicular to 
the inversion. The present study extends these insights to three-dimensional reaching 
movements. However, the results showed that there were also remarkable performance 
differences among the on-axis targets. An analysis on the replaced training targets dem-
onstrated that the subsets of easy (1, 7 and 10) and difficult (3, 5, 13 and off-axis) tar-
gets appeared to be similar for both types of adapters. Easy targets were mostly replaced 
earlier and more frequently than the difficult ones (Fig. 2d). It could be that the medial 
and proximal movements towards targets 7 and 10 tended to be easier for the partici-
pants. However, since these tendencies were not observed in the patients or the healthy 
subjects involved in the preliminary study (see Additional file 1), we presume that the 
performance differences for the on-axis targets could be linked to the visually inverted 
environment. Previous studies have investigated vision inversion in reaching movements 
and suggested that the adaptation to such manipulations involves a complex mixture of 
implicit and cognitive processes [32, 42]. For instance, it has been argued that for reach-
ing tasks involving left–right reversal, new control policies need to be acquired by the 
motor system, as opposed to visual rotations (i.e., rotating the visual feedback around the 
movement origin in one direction by less than 90°), which only require a recalibration of 
an existing control policy [43]. The implicit adaptation to such inversions has previously 
been assessed by aftereffects [44]. In the current study, we have observed that especially 
fast adapters had more initial difficulties in readapting their movements when the vision 
inversion was removed (between  B5 and  AF,1). Although this was mainly observed for 
a few initial movements after removing the inversion, it could suggest that fast adapt-
ers were more likely to learn the new control policy through implicit adaptation and 
therefore, were more successful in completing the inverted reaching task. However, to 
this day, these phenomena have only been investigated for planar reaching movements, 
mostly involving a one-dimensional inversion (mirror-reversal). Further research would 
be necessary to examine these phenomena in three-dimensional reaching movements 
involving multi-dimensional inversions. In this context, it would also be interesting to 
determine why the reaching movements towards some on-axis targets appeared to be 
more challenging in the inverted environment, independent from the individual adapta-
tion speed of the subjects.

Finally, we would also like to raise the question of motivational implications result-
ing from the automated training adaption. From informal observations made during 
the experiments with the healthy subjects, we noticed that many participants showed 
increased motivation and verbalized satisfaction when new training targets were 
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introduced. Motivation is known to be a crucial factor in rehabilitation and finding ways 
to maintain and improve it has always been a matter of interest [45–47]. With regard to 
this issue, it seems like the automated character of our approach, enabling dynamic and 
well-timed task adaptation, may have positive impacts on training engagement.

Personalization of rehabilitation therapy

The potential of our implementation was finally evaluated in a clinical pilot test with two 
subacute stroke patients, who completed 4 weeks of robot-aided rehabilitation training 
following our adaptive approach. Based on the devised method, the training of these two 
patients was continuously monitored and the point-to-point reaching task was adapted 
in real-time to match their level of ability.

The results obtained from these two patients suggested that in general, the selected 
performance measures (MV, SAL and SUCC) appeared to be suitable for the esti-
mation of motor improvement in subacute stroke patients. Moreover, the temporal 
dynamics of the performance measures (Fig.  4a) appeared to be similar to the ones 
previously reported for chronic stroke patients [29, 41]. In past studies, the selected 
measures have been shown to correlate with clinical scores [48] and they have been 
linked to distinct post-stroke deficits and mechanisms of recovery [41, 49]. Specifi-
cally, the percentage of accomplished tasks was mostly associated to paresis (i.e., 
the decreased ability to volitionally modulate motor units activation [50]), whereas 
movement velocity and smoothness were related to an abnormal muscle tone [49]. 
Although continuous adaptation of the difficulty for reaching tasks has been explored 
before [13, 21, 25], the decisions to change task difficulty were mainly based on one or 
multiple task completion variables, measuring whether the patient was able to com-
plete tasks or not. The present study extends the decision rules by additionally inte-
grating two variables related to movement kinematics, namely movement velocity and 
smoothness, which also characterized the neuro-biomechanical status of the patients 
[51]. Nevertheless, some tuning of the parameters could be considered to further 
enhance the efficacy of the motor improvement model. For instance, we observed that 
the patient with a lower degree of initial impairments (P02) barely made use of the 
robotic assistance provided by the exoskeleton, leading to almost no variance in the 
variable SUCC. In this regard, future studies may explore other performance meas-
ures and models, to achieve a more exhaustive evaluation of the patients’ status. In 
this context, the use of a model-based approach, such as the one proposed in the cur-
rent work, can facilitate the integration of other measures which have been explored 
before, such as for example muscle activity [18] or psychophysiological signals [28].

The results for the two patients showed as well that targets were replaced by the 
model at appropriate moments, i.e., when the patients’ performance had improved 
and started to saturate. Indeed, it could be argued that a replacement of a subtask 
occurring too soon would have led to degraded motor performances in further eval-
uations. However, motor performances of both patients were retained when targets 
were reintroduced (Fig.  4c), indicating that the estimated recovery was preserved. 
Nevertheless, other methods for task scheduling could be introduced to further opti-
mize the training progression. Indeed, previous work has suggested that effective 
scheduling of multitask motor learning should be based on prediction of long-term 
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gains rather than on current performance changes [52]. Along these lines, we have 
implemented the time window of the last four repetitions, which are always taken into 
account for the evaluation of motor performance. However, it should be acknowl-
edged that other, more sophisticated, methods to adapt the schedules may lead to 
higher gains in rehabilitation and are therefore worth exploring. For instance, task 
difficulty could be increased by introducing new subtasks depending on more com-
plex movements within the same workspace, in order to exploit generalization effects 
[53, 54]. Another possible approach could be a semi-automatic implementation of the 
training adaptation, where the physical therapists remains in charge of the task adap-
tation, in order to benefit from their expertise, while in parallel harnessing the real-
time MI estimates provided by the model as a decision support. Such solutions could 
further improve engagement and enhance the rehabilitative treatment by providing 
training tasks specifically adapted to the ability level of the patient.

The retention of improvements at target reinsertion together with the increase in 
FMA-UE scores for both patients are promising indications for the usability and effi-
cacy of the presented approach in clinical settings. Nevertheless, it has to be acknowl-
edged, that it is also known that subacute patients often report motor improvements 
even with limited training [55]. Therefore, at the current state of this research, it can-
not be presumed that improvements were merely elicited by the adaptive robot-aided 
therapy. However, several pieces of evidence suggested that the period immediately 
after the lesion, normally characterized by spontaneous neurological recovery, repre-
sents the critical time window in which the delivery of high dose and intense neurore-
habilitation can elicit crucial improvements in functional tasks [56, 57]. Therefore, 
more and more robot-aided rehabilitation trainings should be targeting subacute 
stroke populations. In this context, our results illustrate the feasibility of using a per-
sonalization method to continuously monitor the status of both mild and severely 
impaired subacute stroke patients and to automatically adapt their motor retraining 
within practice sessions by continuously challenging their neuromuscular system.

Limitations of the study

Although the results of this study suggest that the proposed approach might be 
interesting for clinical applications, the limited sample size as well as the lack of an 
experimental control group receiving standardized robotic therapy, constrains the 
generalizability of the reported results. Yet clinical efficacy was not probed in this 
work. Moreover, the very different severities of initial impairment observed in the 
two patients of the pilot study do not allow for a controlled comparison. Therefore, 
further studies including larger cohorts of participants would be necessary to draw 
meaningful conclusions about the clinical relevance of the presented approach. Yet 
the results obtained from the present study may provide a useful basis for the design 
and implementation of such clinical studies. In this context, it would be particularly 
interesting to compare the clinical outcomes of the personalized approach presented 
in this study with non-adaptive robotic or conventional rehabilitation trainings. This 
is important, since previous work has suggested that pseudo-random scheduling of 
multiple tasks may be almost as effective as adaptive scheduling approaches [52].
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Conclusions
In this work, we presented a model-based approach to personalize robot-aided reha-
bilitation therapy within rehabilitation sessions. The feasibility of this approach was 
demonstrated in experiments with seventeen healthy subjects and a pilot test with 
two subacute stroke patients providing promising results. However, due to the lim-
ited sample size, larger studies would be needed to demonstrate clinical relevance of 
the presented approach. While we implemented the proposed method for the use in 
upper limb rehabilitation of stroke patients, the usage is certainly not limited to such 
applications. The presented model can be adapted for the use with other robotic reha-
bilitation devices and training tasks, exploiting different performance measures and/
or different observation equations. The real-time functionality and the identification 
of subject-specific abilities at subtask level could enhance robot-aided rehabilitation 
training, making it more purposive and efficient for the patients.

Methods
In the current study, we developed a model to continuously estimate motor improve-
ment (MI) in three-dimensional workspaces using kinematic performance measures, 
based on the results of our previous work [29]. Moreover, we designed a personaliza-
tion routine, that automatically adapts the difficulty of the rehabilitative motor task 
(i.e., a point-to-point reaching task) based on the MI estimates. Both the MI model 
and the personalization routine were integrated in the control algorithm of an upper-
limb exoskeleton and tested with a group of 17 healthy participants. The presented 
approach was then tested with two subacute stroke patients.

Participants

Healthy participants

Seventeen right-handed subjects (eight males, nine females, 25.4 ± 3.3 years old) par-
ticipated in the experimental validation of our approach. The participants did not 
present any evidence or known history of skeletal and neurological diseases and they 
exhibited normal ranges of motion and muscle strength. All participants gave their 
informed consent to participate in the study, which had been previously approved by 
the Commission Cantonale d’Éthique de la Recherche Genève (CCER, Geneva, Swit-
zerland, 2017-00504).

Subacute stroke patients

Two subacute stroke patients from the inpatient unit of the Hôpitaux Universitaires 
de Genève (HUG, Geneva, Switzerland) were included in the study. A summary of the 

Table 4 Demographics and information of the stroke patients included in the study

Patient Gender Age Weight (kg) Height (cm) Hand 
dominancy

Stroke diagnosis Enrolment 
after lesion

P01 Male 86 66 165 Right Ischemic, middle cerebral 
artery left, cerebellum 
right

3 weeks

P02 Male 65 81 180 Right Ischemic, corona radiata left 2 weeks
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patient information is reported in Table 4. Both patients suffered from a right hemiple-
gia with at least 10° of residual motion in shoulder and elbow joints. The patients were 
enrolled in the study within 2–8 weeks after the stroke. Both patients received standard 
therapy at the stroke unit during the acute phase, and an individually tailored multidisci-
plinary rehabilitation program in the subacute and chronic phases. The patients received 
two times 30 min of physical therapy per day on 5 days per week and five times 30 min of 
occupational therapy per week on an inpatient basis for 8 to 16 weeks, followed by out-
patient treatment of 1 to 4 h of physical and occupational therapy per week. Therapy was 
adapted by the therapists to the current capacities of the patients by choosing from a list 
of appropriate exercises comprising upper-extremity relaxation techniques, unilateral 
task-specific mobilizations, bilateral upper limb exercises with a wand, ball exercises, 
active ante/retropulsion exercises, active pronation/supination exercises and grasping 
exercises. Therapists were assigned to the patients based on their availability; hence dif-
ferent therapists took care of the patients throughout the therapy sessions. In addition to 
the standard therapy, the patients received robot-aided treatment following the adaptive 
robotic rehabilitation protocol described in  the “Subacute stroke patients” section. All 
patients gave their informed consent to participate in the study. This study is registered 
in ClinicalTrials.gov (NCT02770300) and the experimental protocols were approved by 
Swissmedic and Swissethics.

Robotic exoskeleton and motor task

We implemented the motor improvement model and the personalization routine in 
the robotic upper-limb exoskeleton ALEx (Wearable Robotics srl. [58, 59]). During the 
experiments, the patients and the healthy participants were instructed to perform point-
to-point reaching movements at their comfortable velocity (Fig. 1a). All reaching move-
ments started from the center of the workspace and the goal was to reach one of the 18 
targets equally distributed over the three planes of a sphere of 19 cm of radius (Fig. 1b). 
The selected radius of the sphere allows for a maximum exploration of the workspace, 
while maintaining the reaching movements executable for people of most body sizes. 
Each movement towards a target represented a subtask. This design allowed exploit-
ing an extensive three-dimensional workspace and provided means to easily identify all 
subtasks of the exercise. The sphere was positioned so that its center was aligned with 
the acromion of the right arm mid-way between the center of the target panel and the 
subject’s acromion. The targets were displayed on a screen mounted in front of the sub-
jects and visual feedback was provided by means of a cursor mapping the position of 
the exoskeleton’s handle to the screen. In order to preserve the depth perception, the 
dimensions of the target spheres were modified in accordance with their position in the 
3D space. If a subject was unable to reach a target (i.e., the subject did not move for more 
than 3  s), ALEx activated its assistance mode to guide the subject towards the target 
according to a minimum jerk speed profile [60].
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Experimental protocols

Healthy participants

The healthy participants attended a single experimental session, which comprised seven 
blocks of reaching movements (Fig.  1c). Breaks of 1  min were scheduled after each 
block to prevent fatigue. The session started with an initial assessment block consist-
ing of three runs  (AI,1–3). During each run all 18 targets were presented once and in a 
randomized order. The purpose of the assessment block was (i) to allow familiarization 
with the robotic system and the motor task and (ii) to record a baseline for the perfor-
mance measures. This block was followed by five blocks  B1–5 during which the visual 
feedback was inverted (i.e., an upward movement was displayed as downward and vice 
versa, likewise for left/right and forward/backward movements). This vision inversion 
was introduced to induce motor performances with temporal dynamics resembling the 
ones observed in robot-aided rehabilitation of stroke patients [29, 36, 37]. At the onset 
of the five inversion blocks, participants were not informed about the inversion of the 
visual feedback, but they were told that the task difficulty was changed. Each of the five 
inversion blocks  B1–5 consisted of five runs, each one composed of eight point-to-point 
reaching movements for a total of 40 reaching movements per block.

The initial set of training targets for each participant was generated following a 
semi-randomized procedure: based on the hypothesis presented in the Introduction, 
we expected movements towards on-axis targets (i.e., targets 1, 3, 5, 7, 10 and 13, see 
Fig. 1b) to be easier. Therefore, the initial set of training targets always contained all six 
on-axis and two randomly selected off-axis targets (i.e., targets 2, 4, 6, 8, 11, 14, 15, 16, 17 
and 18). The presentation order of the eight initial training targets was randomized. The 
remaining ten off-axis targets were placed randomly in the training queue.

During the five inversion blocks  B1–5, MI was continuously estimated for each training 
target and a target was removed from the current set of training targets if the MI estimates 
for this subtask satisfied the replacement conditions (see “Training adaptation routine” 
section). In this case, the target was replaced by the next one in the training queue. The 
inversion blocks  B1–5 were followed by a final assessment block which was composed of 
three runs  (AF,1–3) and followed the same procedure as the initial assessment block (i.e., nei-
ther vision inversion nor training adaptation were applied). The data acquired during the 
assessment blocks (i.e.,  AI,1–3 and  AF,1–3) were not considered for the motor improvement 
estimation.

Subacute stroke patients

The experimental protocol for the patients consisted of 4 weeks of robot-aided rehabilita-
tion therapy (Fig. 1d), with three sessions of 30 min per week. The training comprised the 
regular point-to-point reaching task (see “Robotic exoskeleton and motor task” section). In 
order to evaluate the outcome of their rehabilitation training, the patients completed two 
assessment sessions before  (AI,1–2) and after  (AF,1–2) the therapy. The initial assessment ses-
sions  AI,1–2 were completed 2 weeks and 1 week before the beginning of the therapy. The 
final assessment sessions  AF,1–2 were completed 1 week and 1 month after the end of the 
therapy. During the initial and final assessment sessions, all eighteen targets of the point-to-
point reaching task were presented to the patients in a randomized order. The total amount 
of reaching movements for each session was determined by the physical therapist while 
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encouraging the patient to perform as many movements as possible (numbers reported in 
“Pilot test with subacute stroke patients” section). Breaks of varying durations were sched-
uled based on the patient’s condition. In addition, the patients were evaluated using the 
upper extremity section of the Fugl-Meyer assessment (FMA-UE, [61]). The data acquired 
during the assessment blocks (i.e.,  AI,1–2 and  AF,1–2) were not considered for the motor 
improvement estimation.

For the treatment sessions, we first identified the patient-specific difficulty for each of the 
18 targets following the initial assessment sessions  AI,1–2. Specifically, we analyzed the mean 
values of the performance measures MV, SAL and %SUCC (see “Performance measures” 
section) for each of the 18 training targets. The targets were first ordered by descending 
values of %SUCC (i.e., starting from easier targets). If several targets had equal values for 
%SUCC, the order amongst them was determined by their mean values for MV and SAL, 
while giving both measures equal weight. The first eight targets of the resulting list were 
selected as the initial training targets. The remaining targets were placed in a training queue 
while conserving the determined order of difficulty. During the therapy (W1–W4, Fig. 1d), 
MI was continuously estimated for each training target separately. The replacement of a 
training target based on the MI estimates followed the procedure presented in “Training 
adaptation routine” section. The current set of training targets was saved after the com-
pletion of each training session, ensuring continuity between sessions. The total amount 
of reaching movements for each session was determined by the physical therapist while 
encouraging the patient to perform as many movements as possible. However, no decisions 
were taken by the therapist regarding the choice of the specific training targets. Breaks of 
varying durations were scheduled based on the patient’s condition.

Motor improvement model

In order to continuously track patients’ MI at subtask level (i.e., for a series of point-to-
point reaching movements in different directions), we used a state-space model. MI was 
modeled as a random walk:

where k are the different repetitions for a movement direction and ǫk are independent 
Gaussian random variables with zero mean and variance σ 2

ǫ  . A set of observation equa-
tions zj,k was defined in order to estimate MI. These equations related MI to continuous 
performance measures rj, which were computed from kinematic recordings provided by 
the robotic device (see “Performance measures” section for details on the performance 
measures). The continuous variables rj (with j = 1, . . . , J  representing the different per-
formance measures) were defined by the log-linear probability model

where δj,k are independent Gaussian random variables with zero mean and variance 
σ 2
δ,j . The use of log-linear models allowed capturing rapid increases (or decreases) of 

the performance measures during the training, as well as the expected convergence 
towards subject-specific upper (or lower) bounds at the end of the training. The suit-
ability of such probability models for motor performance measures in stroke patients 
was previously demonstrated [29, 41]. Similarly, an observation equation for a discrete 

(1)MIk = MIk−1 + ǫk ,

(2)zj,k = log
(

rj,k
)

= αj + βjMIk + δj,k ,
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performance measure nk was defined. The binary discrete variable nk∈ {0, 1} was used to 
track the completion of the exercised subtask, with 1 meaning that the subtask was per-
formed successfully and 0 meaning failure. The observation model for nk was assumed to 
be a Bernoulli probability model:

where pk, the probability of performing the subtask successfully at repetition k, was 
related to  MIk by a logistic function:

ensuring that pk was constrained in [0, 1]. Furthermore, this formulation guaranteed that 
pk would approach 1 with increasing MI.

The model parameters {αj, βj, σδ,j, σϵ, pk} were estimated for each individual subject 
using the recordings of rj,k and nk (i.e., kinematic recordings from the robotic device, see 
“Performance measures” section) and by applying Bayesian Monte Carlo Markov Chain 
methods. The estimation of the parameters resulted in an estimate for MI. In order to 
ensure accuracy of the model, it was necessary that the number of recordings of rj,k and 
nk exceeded the number of parameters. Based on simulations performed with varying 
number of data points (detailed description can be found in Additional file 1), the min-
imum number of data points for MI estimation was set to 8. In order to validate the 
capability of the proposed approach to appropriately capture variable dynamics of the 
performance measures, we simulated different rehabilitation scenarios under varying 
conditions (see Additional file 1). As we aimed at estimating MI at subtask level, separate 
MI models were used for each movement direction of the training exercise.

Performance measures

Previous studies have shown that mechanisms of post-stroke recovery can be described 
by factors related to movement velocity, smoothness, and efficiency [29, 41, 48]. Unlike 
physiological signals, these kinematic performance measures can be easily recorded and 
processed in real-time, promoting their use in clinical settings. In this study, we selected 
two continuous performance variables rj for the use with the MI model: (i) the mean 
velocity of a movement (MV) and (ii) the spectral arc length (SAL), a robust and con-
sistent measure of movement smoothness [62]. MV was calculated using the x, y, and 
z coordinates of the robotic handle recorded by the exoskeleton for each movement. 
SAL is a dimensionless measure quantifying movement smoothness by negative values, 
where higher absolute values are related to jerkier movements. It was calculated using 
the position of the robotic handle recorded by the exoskeleton for each movement and 
the mathematical equations presented in [62]. Regarding rehabilitation training, values 
of SAL close to zero are desirable, as well as high values of MV. The discrete variable 
nk, instead, was denoted as success (SUCC) and defined separately for the experiments 
with the healthy participants and the patients. For the patients, the value of SUCC was 
determined by the robotic assistance (i.e., SUCC = 1 if the patient performed the move-
ment without robotic assistance, SUCC = 0 otherwise). On the other hand, the healthy 

(3)Pr(nk |pk) = p
nk
k (1− pk)

1−nk ,

(4)pk =
exp (MIk)

1+ exp (MIk)



Page 21 of 25Giang et al. BioMed Eng OnLine           (2020) 19:33  

participants were expected not to rely on the robotic assistance, although it was also 
provided if necessary. This assumption was supported by preliminary experiments with 
healthy subjects (see Additional file 1). Therefore, in order to have an equivalent discrete 
variable for the experiment with healthy subjects, we defined the value of SUCC based 
on the execution time (i.e., SUCC = 1 if a healthy participant completed the movement 
within the time threshold tth, SUCC = 0 otherwise). The time threshold tth was set to 4 s 
based on preliminary experiments with healthy subjects (see Additional file 1).

Training adaptation routine

Using the model described in the previous section, MI was continuously tracked for each 
subtask (i.e., a movement towards a specific target) and used to implement a personal-
ized training routine (Fig. 1e). At the beginning of the training, we identified the sub-
ject-specific difficulty level for each subtask of the training exercise based on an initial 
assessment of the performance measures. The subtasks were then ordered by increas-
ing difficulty and the easiest ones were selected as the initial training set. During the 
training, a subtask was removed from the set of current training subtasks when the MI 
estimates for this movement exceeded a given threshold and approached a plateau. Spe-
cifically, the probability of performing the subtask successfully pk, had to be greater than 
0.5, and the difference between two consecutive MI values (i.e., between two repetitions 
of the same subtask) had to be smaller than 5% for at least four repetitions. Given the 
observation equation for pk, the former condition (pk > 0.5) can be equally expressed in 
terms of the motor improvement:  MIk > 0. Once these conditions were satisfied, the sub-
task was replaced by a more difficult one from the training queue. The removed subtask 
was placed back into the training queue, so that it could be reintroduced at a later stage.

Statistical analysis

Healthy participants were grouped into fast (n = 9) and slow (n = 8) adapters by a post 
hoc median split based on the total number of replaced targets during the inversion 
blocks.

For the healthy subjects, statistical tests were performed to support the following 
hypotheses:

 i. The introduction of the vision inversion degrades the performance of fast and slow 
adapters for the reaching movements.

 ii. Performances for reaching movements with vision inversion improve with training 
for both groups.

 iii. Even after training, performances for reaching movements with vision inversion of 
both groups do not reach the levels of the initial assessment (without inversion).

 iv. There is a performance difference between fast and slow adapters, which is observ-
able in the moment the vision inversion is introduced and also at the end of the 
vision inversion.

For the blocks  AI,1–3,  B1 and  B5, movements towards all presented training targets 
were combined to calculate mean values for MV, SAL and %SUCC for each healthy 
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subject. Each individual performed 54 movements in  AI,1–3 and 40 movements in  B1 
and  B5. Using the Shapiro–Wilk normality test, mean values for MV, SAL, %SUCC 
for fast and slow adapters were tested for normal distribution separately. The data 
were not normally distributed. In order to support the first three claims, a Friedman 
test was performed for the mean values of MV, SAL and %SUCC for the three time 
blocks (i.e., for  AI,1–3,  B1 and  B5). Following the Friedman tests, post hoc tests were 
performed between pairs of blocks using Wilcoxon signed-rank tests with Holm–
Bonferroni correction (for three comparisons) to illustrate the differences between 
the blocks. Specifically, point (i) was verified by comparison between  AI,1–3 and  B1; 
point (ii) was verified by comparison between  B1 and  B5; and point (iii) was verified by 
comparison between  AI,1–3 and  B5. To verify point (iv), we used Wilcoxon rank-sum 
tests with Holm–Bonferroni correction (for three comparisons) to compare the mean 
values of MV, SAL and %SUCC between fast and slow adapters in the blocks  AI,1–3,  B1 
and  B5.

For the patients, statistical tests were performed to support the following 
hypotheses:

 i. Motor performance in the reaching task improved for both patients following the 
completion of the robot-aided rehabilitation training.

 ii. The motor improvement is retained 4 weeks after the end of the training for both 
patients.

 iii. Motor performance right before the replacement of a target and after reinsertion 
of the same target is comparable.

For the assessment blocks, all movements performed by the patients in the session 
were combined, resulting in 36 observations for P01 in each block and 54 observa-
tions for P02, respectively. To verify the two first claims, Friedman tests were per-
formed for MV, SAL and %SUCC between the initial assessment session right before 
the treatment sessions  (AI,2), the final assessment session right after the training 
 (AF,1), and the follow-up session  (AF,2). Following the Friedman test, pairwise compar-
isons were performed, between these blocks using Wilcoxon signed-rank tests with 
Holm–Bonferroni correction (two comparisons). Specifically, we compared  AI,2 and 
 AF,1 to verify claim (i) and  AF,1 and  AF,2 to verify claim (ii). Friedman tests and pair-
wise comparisons were performed for each patient separately. To verify claim (iii), 
we analyzed the values of MV, SAL and %SUCC before the replacement of the tar-
gets and after their reinsertion. For each target, mean values of improvement were 
calculated with respect to the first four repetitions in  AI,2 for the last four repeti-
tions before replacement and for the first four repetitions after reinsertion. We then 
used Wilcoxon signed-rank tests to analyze differences in MV, SAL and %SUCC for 
all targets before replacement and after reinsertion. The analyses were performed for 
each patient separately. The power of the statistical tests was computed using z-tests 
and approximations of normal distributions of the data. All analyses were performed 
using MATLAB (The MathWorks, Natick, Massachusetts). The significance levels 
were set to alpha < 0.05 (type I error) and beta < 0.2 (type II error).
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