
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1989 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Concurrency Issues in Object-Oriented Programming Languages

Papathomas, Michael

How to cite

PAPATHOMAS, Michael. Concurrency Issues in Object-Oriented Programming Languages. In: Object

oriented development = Développement orienté objet. Tsichritzis, Dionysios (Ed.). Genève : Centre

universitaire d’informatique, 1989. p. 207–245.

This publication URL: https://archive-ouverte.unige.ch/unige:159012

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:159012
https://creativecommons.org/licenses/by/4.0

Concurrency Issues in
Object-Oriented

Programming Languages
M. Papathomas

Abstract
The integration of concurrent and object-oriented programming, although promising,
presents problems that have not yet been fully explored. In this paper we attempt
to identify issues in the design of concurrent object-oriented languages that must be
addressed to achieve a satisfactory integration of concurrency in the object-oriented
framework. We consider the approaches followed by object-oriented languages for
supporting concurrency and identify six categories of concurrent object-oriented lan-
guages. Then, we review several concurrent object-oriented languages and examine
the interaction of their concurrency features with their object-oriented features and
with object-oriented software construction.

1 Introduction

Object-oriented programming and object-oriented programming languages (OOPLs) are
becoming increasingly popular for the construction of computer software. OOPLs inte-
grate a host of techniques that have proven useful for the development and maintenance
of software and that promote software reusability (GR83,Cox86,Mey88] . It is also ex-
pected that software development support systems will be more successful at developing
applications by configuring pre-packaged software, if they use object-oriented techniques
and are based on an object-oriented programming language [TN88].

Advances in computer hardware and the more widespread and demanding uses of
computers in various areas has increased the number of applications involving concurrent
programming. Applications that have to manage the interaction of multiple cooperating
users, distributed systems, exploit parallel hardware for increased performance or that
make use of multiple windows supported by modern workstations, are more easily written
in programming languages especially designed to support concurrency.

Although the integration of object-oriented and concurrent programming is promis-
ing for the development of software for such applications, the design of programming
languages that keep up with this promise is a difficult task. The concurrent features of a
language may interfere with its object-oriented features making them hard to integrate
in a single language or cause many of their benefits to be lost. For instance, encapsula-.
tion in sequential object-oriented programming languages protects the internal state of
objects from arbitrary manipulation and ensures its consistency. If concurrent execution
is introduced in a language independently of objects it will compromise encapsulation,

208 Concurrency Issues in Object-Oriented Programming Languages

since concurrent execution of the operations of objects may violate the consistency of
their internal state.

The approach taken for concurrency should also be 'carefully considered so that it is
compatible with the principles underlying object-oriented software development. A bad
choice concerning the concurrency features could cause objects to be designed in a way
that only fits the concurrency requirements of a particular application Therefore it would
be difficult to reuse these objects in different applications.

In this paper we will examine the interaction of the concurrency features and more
general the approaches for concurrency taken by Concurrent Object-Oriented Program-
ming Languages (COOPLs) with object-oriented features such as encapsulation, data
abstraction and inheritance, and object-oriented software construction.

The interaction of several object-oriented language features has been examined in
[Weg87]. Consistency of a set of features was defined as the possibility for the features
in the set to coexist in a language. A set of features were defined a.S orthogonal if for
every subset of the set, there is a language possessing the features in the subset and no
features in the complementary subset. Based on this definition concurrency was found
to be orthogonal with other object-oriented features. As for consistency, it was argued
that the existence of actor languages is an indication that object-oriented programming
is not inconsistent with concurrency, but there is a potential conflict between the sharing
required by inheritance and the autonomy of objects in COOPLs.

For the purposes of our discussion we will take a different approach for examining the
relationship between concurrency and object-oriented features. This will allow us to ob-
tain more insight concerning the nature of their interference and get a finer classification
of COOPLs.

Our approach for determining consistency of object-oriented features with concur-
reucy is 11ut l>ased only un the possibility for the features to coexist in a language; we
also examine whether this coexistence diminishes the power of a feature with respect
to its applicability and its intP.ndP.d purpoRP.~ . We hP.liPvP t.hat r.lPR.rly irlPnt.ifyine; th"
purpose of features results in better designed languages and makes the interference of
different features more apparent.

As an example for clarifying our approach we may consider the interference that
occurs between class inheritance and encapsulation when subclasses are allowed to access
freely the instance variables of the parent class [Sny86]. In this case we may say that
support for inheritance diminishes the degree of encapsulation that was achieved without
inheritance. In a language that supports inheritance in this way, it is more difficult to
modify the internal representation of a parent class without affecting its subclasses, since
their internal representation may depend on the one of their parent class.

In the next section we discuss the general approaches followed by COOPLs for inte-
grating concurrency in the object-oriented framework. We compare the role that objects
have with respect to concurrency. Based on this we obtain a first classification for
COOPLs and briefly discuss their advantages and disadvantages.

In Section 3 we survey several COOPLs belonging in each one of the categories

M. Papathomas 209

identified in section 2. The examination of COOPLs in section 3 reveals that a large
variety of concurrency features is used by languages in each of the categories of COOPLs
identified in section 2.

In section 4, we compare the concurrency features of the languages examined in
section 3. This comparison concentrates on whether the concurrency features promote
or hinder the development of object-oriented applications.

Section 5 discusses the need for data abstraction mechanisms in COOPLs, the limita-
tions of data abstraction mechanisms supported in sequential object-oriented languages
for COOPLs, and the possibility to extend these mechanisms so that they may capture
more information about the time-dependent behavior of objects.

In Section 6, we examine the interference of the concurrency features of COOPLs
with class inheritance. This reveals that the concurrency features of some languages are
incompatible with class inheritance. In other languages class inheritance is supported
but, depending on the concurrency features, it may be hard to use.

Finally, we present our conclusions and briefly discuss other important issues con-
cerning the integration of concurrency and object-oriented programming which are not
otherwise addressed in this paper.

2 Approaches in COOPLs

The approaches followed by COOPLs vary considerably with respect to what objects
stand for. Objects may be considei-ed as processes, shared passive abstract data types,
or as encapsulations of multiple processes and data.

In some languages objects do not have any predefined properties concerning concur-
rency. Objects are in ge.neral similar to those in sequential OOPLs. The concurrent
features of the language may be used to implement objects that have some properties
concerning concurrent execution. For instance, it is possible to implement objects that
protect their internal state by synchronizing concurrent invocations of their operations,
as it is also possible, to have objects whose internal state is not protected from concurrent
invocations of their operations. The language makes no dist inction between these differ-
ent ki.nds of objects. It is the responsibility of the programmers to design applications in
such a way that operations of "unprotected" objects, will not be invoked concurrently.

On the other hand, other languages take the approach that all objects have some
predefined p.ropert ies concerning concurrency. For instance, in some Jangu.ages objects
ax:e processes that communicate by exchanging mess11.ges, while in others objects have
the property that execution of their operations is serialized.

Based on these two approaches we identify two categories of COOPLs. We will call
orthogonal the category of languages where objects are unrelated to concurrency, and
non-orthogonal the category of languages where objects have some predefined properties
concerning concurrency.

The concept of object in languages belonging to the orthogonal category, is indepen-

210 Concurrency Issues in Object-Oriented Programming Languages

dent of concurrency. Programmers should take care to implement objects in such a way
that they may be used in concurrent applications, it is not possible to know whether an
object's operations may be invoked concurrently without knowing how it is implemented.

In languages belonging to the non-orthogonal category, objects are associated some
properties concerning concurrency. The property of objects that is common to all lan-
guages in this category, is that the internal state of objects is protected from concurrent
execution of their operations. This property alleviates the problems that may occur with
languages belonging to the orthogonal category if "unprotected" objects are used in a
concurrent environment. This is accomplished in two ways: either the internal state of all
objects is "protected" by default or there are objects of "protected" and "unprotected"
kinds. In the latter case, the language distinguishes between these kinds of objects and
disallows the use of "unprotected" objects in a context where their operations could be
invoked concurrently.

According to whether or not a language supports objects of different kinds, we will
further subdivide the category of non-orthogonal languages into the non-uniform and
uniform categories. Languages in the uniform category support only one kind of object
whereas languages in the non-uniform category split the object world into two kinds of
objects: those that serialize the execution of their operations and those that do not.

Concurrent execution may be expressed by explicitly creating new threads of control,
independently of objects, that communicate and synchronize by invoking the operations
of shared objects. Another approach is to consider objects as active entities and express
concurrent execution and synchronization by the creation of objects and their interac-
tion. We use these two approaches to subdivide the uniform category into the categories
integrated and non-integrated. For languages in the integrated category concurrent ex-
ecution is expressed by interaction of objects whereas in the non-integrated category
another concept like a process or activity is used for expressing concurrent execution.

COOPLs

Onhogonal

7·~
/'~ Noo·U.Umrn

Integrated Non-fntegrated

Figure 1:

M. Papathomas 211

The categories we have defined so far by examining general approaches taken by
COOPLs is shown in figure 1.

From a reusability point of view languages in the orthogonal category have the dis-
advantage that .in order to reuse object:;; one has to be aware whether their operations
may be invoked concurrently. In order to functio.n correctly objects depend on the en-
vfronment in which they are used. When designing new objects special attention has to
be paid for makin.g them reusable for concurrent applicatioas even if they wete oi:iginally
needed for a sequential application and are inherently sequential.

The non-o.rthogonal class has the advantage of preventing the problems that could
occur .by using "unprotected" objects in concurrent environment. Objects of sequential
nature may be implemented in much the same way as in sequential languages. The
mutually exclusive execution of the object's operations is hand.led automatically by the
language.

The distinction between different kinds of objects characterizing the non-uniform cat-
egory presents some disadvantages compared to the uniform one. The programmer has
to decide in advance if a certain object should be of the "protected" or "unprotected"
kind. Type hierarchies of "protected" and "unprotected" objects are typically kept dis-
joint, therefore objects having simil.ar behavior may have lo be defined twice introducing
a certain redundancy in the class hierarchy. This approach may, on the other hand, have
some performance gains. Unprotected objects may be implemented more efficiently, since
invocations of their operations are not synchronized

The integrated approach has the advantage that concurrent applications are struc-
tured in terms of objects which are the units of concurrent execution. The communication
and syncluonization of objects is expressed at the object interface which is olearly defined.
In contrast to this approach, the non-integrated approach tends to organize applications
in terms of processes that call shared passive objects for their communication and syn-
chronization. This obscures the points of interaction of processes with their envir"onment
and makes them harder to reuse.

3 A Closer Look at some Languages

3.1 Languages in the Orthogonal Category

Smalltalk-80
Smalltalk-80 [GR.83] supports concurrent programming by processes that communicate
through shared objects. The creation of processes is accomplished by sending a fork
message to a block context and semaphores are provided for their synchronization and
mutual exclusion.

Semaphores can be used in two ways. Either the calling process uses semaphores
before invoking the operations of shared objects or the execution of an object's operations
is synchronized by using semaphores in its implementation.

The solution of using semaphores before calling a shared object has the known disad-

212 Concurrency Issues in Object-Oriented Programming Languages

vantages of unstructured use of semaphores [AS83). Furthennore, for the development of
concurrent applications this approach gives more importance to processes than objects.
Finally, the implementation of objects has to be known in order to make sure that pro-
cesses are properly synchronized and that no problems will occur because of concurrent
accesses to shared objects.

The second use of semaphores presents otbei; disadvantages. Not all objects will use
semaphores to protect their internal state from concurrent execution of their operations.
Therefore, when reusing an object class one must find out if its implementation is such
that its instances may be shared by concurrent processes. Another problem with this
approach is that it may interfere with inheritaru:e and with the use of the pseudo variables
self and super. II a semaphore is used in methods for ensuring mutual exclusion, a call
to any of these methods from within the object by using self would lead to a deadlock.
When inheritance is used for defining a new class, whose instances could be shared
by concurrent processes, one should make sure that concurrent invocation of inherited
methods will not cause problems. This may be solved either by examining and modifying
all inherited classes or by overriding all inherited methods. The overridden methods
would just invoke the inherited method (using super) within a critical section.

Emerald

Emerald [BHJ•S7] is an object-oriented language for programming distributed appli-
cations. An object may be associated with a process that starts executing after the object
has been created and initialized. The operations of objects may be invoked concurrently
by their own process, if they have one, and by those of other objects. Synchronization of
processes and mutual exclusion is accomplished by using monitors !Boa74). A number of
monitors may be used in t.he implementation of objects and their operations may be im-
plemented as monitor procedures .. This approach is more flexible than viewing the whole
object as a singl,e monitor s.inc-e it allows operations that are not implemented as monitor
procedures or that are in different mon.itors to execute in parallel. For instance a s,ingle
object could be used for encapsulating a database that may be accessed concurrently by
reader& but nccdn cxcluaivc ncccoo by writCI'3. To solve the swnc problem if objects wt::J. <:
monitors would require a monitor for gaining the right to access the database in read or
write mode, an object encapsulating the database and finally a third object encapsulat-
ing the monitor and the database for ensuring that users of the database do not bypass
the locking protocol by calling directly the database. Other problems concerning the use
of monitors are nested monitors calls (AS83,Lis77,Par78] . Nested monitor calls may be
avoided by using monitors only when mutual exclusion is necessary for protecting the
object's state, but this means that the use of monitors within objects should be done
in a way that fits Lhe design of a particular application and not the mutual exclusion
requil'emento of iudiv-iduul objeds. Such an approach has the disadvantage that objects
may not be easily reused across applications.

Trellis/Owl

Trellis/Owl {MI<87] supports concurrent execution by explicjt creation of concurrent
threads called activities for the execution of an operation. Activities communicate by·
invoking the operations of shared objects. Objects of the type lock provide support for

M. Papathomas 213

mutual exclusion and objects of the type wait queue may be used for synchronization by
waiting and signaling. Objects of these types may be defined as instance variables of an
object and may be used in the implementation of the object's operations. For mutual
exclusion code blocks may be associated with locks. Combinations of lock blocks and
wait queues may be used for implementing objects similar to monitors [Hoa74], yet they
allow more flexibility than monitors, since some operations may be allowed to execute
concurrently.

There is also support for direct synchronization of activities. An activity may wait
until some other activity or set of activities terminate.

type_module Shared_char_Buffer

component me.mutex
component me.nonempty
component me.buffer

Lock;
wait_ Queue;
Char_ Queue;

operation create (Mytype) returns (Mytype)
is allocate
begin

end;

me.mutex := create(Lock);
me.nonemoty := create(Wait_Queue);
me.buffer := create(Char_queue);

operation insert(me, x: Char)
is begin

end;

lock me.mutex do
insert(me.buffer,x);
wakeup(me.nonempty);

end lock;

operation remove (me) returns (Char)
is begin

end;

lock me.mutex do
if(empty(me.buffer)) then

wait(me.nonempty)
end if;
return remove (me.buffer);

end lock;

end type_module;

Figure 2:

The use of locks and wait. queues is illustrated in figure 2 that shows the implementa-
tion of a character buffer of unbounded size that may be shared by concurrently executing
activities.

Guide

In Guide[DKM•89] threads, called activities, communicate by calling the operations
of shared passive objects. The syndu-onization med1anism consists of associating an ac-

214 Concurrency Issues in Object-Oriented Programming Languages

tivation condition with the object's operations which must be true before the execution
of an operation may take place. Activation conditions are boo.lean expressions that may
refer to arguments of the invoked operation, instance variables and a number of Jynchro-
nizatio11 counter$ and operation names. Synchronization counters are associated with an
opera.tion and record automatically the number of started, completed, pending and on-
going computations of an operation. For instance $tarted{ op) is the number of initiated
execution of operation op, completed{ op) is the number of terminated executions of op
and current{ op) is equivalent to ,tartcd(op) - complekd{op). Some keywords are used as
syntactic sugar for commonly used activation conditions. For ii1stance the keyword EX-
CLUSIVE may be used in the act.ivation condition of an operation for expressing mutual
exclusion. The same thing could also be done by having an activation condition stating
that the sum of cuTTent(op} over all operations op of the object must be equal to zero.
The keyword NOT followed by the name of an operation may be used for specifying that
there are not any ongoing executions of the specified operation.

TYPE boundedBuffer IS
METHOD Put(IN i: Item);
METHOD Get(OUT i: Item);

END boundedBuffer

CLASS FixedSizeBuffer IS
IMPLEMENTS boundedBuiffer;

CONST size = some constant
buffer: ARRAY[O .. size-1] of Item;
nbr , first, last: Integer= 0, 0, 0;

METHOD Put(IN i: ITEM);
BEGIN

... code for put ...
END Put;

METHOD Get(OUT i: Item);
BEGIN

... code for get ...
END Get;

CONTROL
Put: NOT Get AND NOT Put AND nbr < size;
Get: NOT Get AND NOT Put ANU nbr > 0

end FixedSizeBuffer

Figure 3:

The use of activation conditions is illustrated in figure 3 that shows the implementa-
tion of a bounded buffer in Guide.

The CONTROL clause specifies the activation conditions for the operations Get and
Put. The term " NOT Get AND Put" specifies mutual exclusion of botb operations. This
term could actua.Uy be repla.ced by the keyword EXCLUSIVE for obtaining the sam
effect. The term "nbr < size '' in the activation condition 'for Put prevents the exe-

M. Papatbomas 215

cution of Put when the buffer is full. Similarly nbr > 0 prevents the execution of Get
when the buffer is empty. The code of the operations Put and Get does not include any
synchronization primitives.

As activation conditions are specified separately from the code of the methods and the
methods do not contain any synchronization primitives, this mechanism seems promising
for inheritance. The code of the methods could be inherited separately from the activation
conditions and in some cases it could be possible to inherit the activation conditions
for methods. In fact, as it will be shown in section 6, this mechanism interferes with
inheritance mainly because of the way it is implemented.

ConcurrentSmalltalk

ConcurrcntSmalltalk (YT87a] is an extension of Smalltalk-80. The aims in the design
of this language were to provide a better integration of concurrent programming with
objecls than it is the case with processes and semaphores in Smalllalk-80.

The concurrent features introduced are: asynchronous method invocation, allowing
methods execution to proceed after returning a result, Cbox objects for synchronization
and an atomic object class.

Asynchronous method invocation is specified by terminating the method invocation
expression by the symbol "&". An ·asynchronous method invocation expre55ion returns a
newly created CBox obje.ct. The caller may bind the CBox object to a variable and use it
late.r for receiving the result of an asynchronous method invocation. The result associated
with the CBox object is obtained by invoking a 'receive method defined on CBox objects.
If the result is not available when receive is invo)!:ed the invoker is suspended. CBox
objects are use.cl for synahi-onizing the caller of an asynchronous method invocation with
the called object and as a private communication channel for getting the reply. Without
CBox objects, it would be diffi.cult for the sender of an a.sync:hronouB message to tell
apart the reply from the other messages sent to it.

The atomic object class is used to define subclasses whose instances have the property
that execution of their methods is mutually exclusive. This is needed for preventing
problems that may be caused by concurrent execution of an object's methods.

A problem with the concurrency features of ConcurrentSmallta.lk is that the)(provide
limited support for condition synchronization. There are no means for selective accep-
tance of messages and no way to suspend the execution of method without resorting to
Smalltalk-80 semaphores. We will further discuss this in section 4.3.

SR

SR (Synchronizing Resoui-ces) [AOC88] is a programming language for clistributed
applications. Although i ~ is not advertised as an OOPL it supports several object-
oiiented features. Programs are structured in terms of resources. A resou.rce encapsulates
varic~bles and processes. Resource specifications declare operations that are used for
interacting with a resource. A resource may be implemented as an abstract data type,
by specifying a procedure for each operation, or by one or more processes. A resource
implementing a queue of integers as an abstract data type is shown in figure 4.

216 Concurrency Issues in Object-Oriented Programming Languages

resource Queue
op insert(item: int)
op remove() returns item: int

body Queue(size: int)
var store[O .. size-1) : int
var front := 0, rear := O, count :=O

proc insert(item)

end

if count< size-> store[rear] :=item; rear:=(rear+1)%size;
count++;

[) else -> itake action appropriate for overflow
fi

proc remove() returns item

... implementation 0£ remove . ..
end

end Queue

Figure 4:

Resources implemented as processes may selectively service operation invocations by
using in statements. This is similar to Ada.'s select/accept [ANSI83) but more powerful
since it allows guards to depend on the arguments of the invocation.

Resources are typed and may be created dynamically. Inheritance is supported by
an e:i:tend construct which is used to reline a resource speci£cation and provide different
implementations of the resource's operations. It is possible to define ab~tract resources
consisting on.ly of a specificat.ion. Figure 5 shows the implementation of a resource that
extends the queue given in figure 4 and implements it by a single process so that it can
be used as a bounded bufl'er.

Capability variables to abstract resources may be used to refer to any concrete re-
source that extends an abstract resource by providing a body. It should be noted that
this inheritance mechanism may not be used for inhering methods in the way it is done
in languages like Smalltalk-80, but operates solely at the specificativu l.:vd.

A problem with resources is that no distinction is made between resources that are
implemcntecl as sequential data types whose oper_ations should not be called concurrently,
a.n,d resources that control activation of t11eir operations which can may therefore be
invoked concurrently. This may cause problems if a resource of the former kind is used
in a concurrent Ctlvironment.

3.2 The Non-Uniform Category

PAL

The programming language PAL, used in AVANCE system [BB88] supports two kinds

M. Papathomas

resource Bounded8uffer
extend Queue

body BoundedBuffer(size: int)
var store[O .. size-1] : int
var front := O, rear := O, count :=O

process bb

in insert(item) and count< size->

store[rear] :=item; rear:=(rear+l)%size; count++;

[] remove() returns item and count>O ->

item:~ store[front]; front:= (front+l)%size; count--
ni

end
end BoundedBuf fer

Figure 5:

217

of objects: packe~ and datatype 11a.lv.e4. Packets are associated w1th persistence, re-
siliency, synchronized access and independent existence. Da,tatype values a.re instances
of abstract data types. Datatype values may oD.!y be used within a packet so that they
are protected from concurrent access by the serialized e.xecution of the operations of the
enclosing packet. A new process in PAL may be created for the execution of any PAL
expression. Execution of an expression in a new process creates an instance of a pro-
cess data type that may be used in wa,y sirnilar to ConcurrentSmalHalk's Cbox objects
for obtaiJliug the computed result. Process communication takes place by invoking the
operations of shared packets.

The distinction between packets and data.types in PAL was ma.de mainly because of
the implementation overhead associated w1th. the execution of packets. The implemen-
tation of datatype values has less overhead since execution of their operations does not
have to synchronized. By restricting the use of datatype values within packets, datatype
values are protected from concurrent access.

Tbe disadvantage of this approach is that datatypes and packet types form two sepa-
rate type hierarchies that could contain objects with similar functionality: code tha,t was
written to operate on data.types may not be used for packettypes and vice versa. Tbe de-
cision of implementing an object as a packettype or a datatype is left to the programmer,
and it may depend on the intended use of an object in a particular application.

An Extension to Eiffel

Ca.ro.mel [Car89] has proposed a conc~rrent extension to the programming language
Eiffel [Mey88] that also takes the approach of separating the object world into two kinds
of objects: proct3& and ~a.tlr. object.,_ Process objects are associated to a single thread of
control that executes the code of their live routine. A proces~ object accepts operation
invocations explicitly by using a Serve within its live routine. The Serve primitive is

218 Concurrency Issues in Object-Oriented Programming Languages

non-blocking. For accept.ing a request this primitive is called by specifying the name of
the operation to be accepted. If there is a pending request for the specified operation,
it is accepted and the specified operation is executed. Otherwise the Serve primitive
has no effect and the execution of the live routine proceeds at the next statement. The
operations of process objects are invoked asynchronously. An approach somewhat similar
to ConcurrentSmalltalk's CBoxes and ABCL/l's future type messages is taken for cases
where operations return a result. When such an operation is invoked an object repre-
senting the result is returned immediately. The caller is suspended when it attempts to
use a result that is not yet available.

Data objects do not have a live routine and their operations are invoked es ordinary
procedure calls. They may only be used within a process object so that their operations
are never invoked concurrently.

Operations of objects, other than the live routine for process objects, do not contain
any concurrent constructs. This is interesting for class inheritance. A class may inherit
all the methods of another class and override just the live routine for changing the
concurrent behavior of the object.

As both the Serve primitive and operation invocations are non blocking, it is rather
difficult to synchronize process objects. The only ways are to use busy-waiting or to
use the result returned by operations. For instance, if a process object wants to accept
a message before proceeding with the execution of its live routine, the serve primitive
specifying U1:e operation has to be included in a loop.

This weak form of synchronization may lead to complex solutions to synchroniza-
tion problems, where unneeded return values are used merely for synchronization, and
complicate the protocols for object interaction.

ACT++
ACT++ [KL88J is a object oriented language that extends c++ [Str86] with concur-

rency features derived from the actor model [Agh86]. Although we do nuL have a detailed
J.e~crivLiou uf Lhii; lau~uage iL is worth pi:ei;euting some of its features.

ACT++ supports two kind of objects: actors and passive objects. Actors are active
objects that serialize concurrent invocation of their operations. Passive objects are or-
dinary C++ objects. They are constrained to be used only within actors so that their
operations may not be invoked concurrently. Any C++ object may be an actor if its
class is defined as a subclass of a predefined actor class.

Two primitives reply and become are described in [KL88] for concurrent execution.
The reply primitive is used within an operation to return a reply to the caller. Statements
following the reply state1nen.t iu an opei'atiun a.re:: ~xecuLed .i11 !Ja.nillel wit.Ii Lhe <.;a.ller. Tlie
become primitive is inspired from the replacement behavior in the actor model. An actor
object may use the become primitive to specify a behavior name that is used to indicate
what message it is willing to accept next. Once the replacement behavior has been
specified, processing of messages may start according to the new behavior and in parallel
with the statements following the become primitive in the old behavior. The old and
new behaviors may not share the actor's internal state so no interference may take place

M. Papathomas 219

because of the parallel execution of behaviors.

Behaviors are specified, in the definition of an actor class, in terms of the operations
that they may process.

Figure 6 sketches the definition of an actor class that implements a bounded buffer
of integers.

The behavior part defines three behavior names for bounded buffers. The empty_buffer
behavior accepts and processes the operation put. The beha.vior fulLbuffer accepts
onJy get operations and the behavior partial accepts both get and put operation in-
vocations.

Operation get illustrates the u.se of lhe primitives reply and become. The next
item in the bu:ffer is immediately returned to the caller by the reply statement, then
the caller and bhe bu:ffer proceed in parallel. The buffer e.xamines its intern.al state and
chooses its replacement behavior. The replacement behavior is specified by using the
become primitive with t he associated behavior name. The idea of behavior abstraction
is interesting because it extends the data abstraction mechanis.m of sequential languages
by including some information on the temporal aspects of an objects behavior.

Another interesting aspect of behavior abstraction is that it may be combined with
class inheritance. We will further discuss this point in section 6.

3.3 The Integrated Category

ABCL/1

In ABCL/l [YSTH87] objects are active entities that encapsulate a single thread of
control and communicate by message passing. An object may be in one of the modes:
dorma.nt, active or waiting. Obje<lts are created and remain in the dormant mode until
they receive and start processing a message. While they are pi:ocessing a message objects
are in the active mode. From the active mode they may go back to the dormant or enter
the waiting mode. An object goes from the act ive mode to dormant mode, when it has
finished processing a message and no further messages have arrived. An object goes
from the active mode to the waiting mode when it has to wait for a message satisfying
a particular constraint to be received before it may do anything else.

Object interactions may have the form of remote procedure calls called now iype me,, .
.sage pa.1.1ing, asynchronous message passi.ng called pa&t ty71e me&.sa.ge pa.1.1ing, and fv.ture
type meuage paJsing. Future type message passing is similar to the CBox objects feature
of ConcurreutSmalltalk [YT87a] . For future type messages a special future variable is
specified for storing the result to be returned by the receiver. The sender may continue
executiiig in parallel with the receiver and obtain the result when needed by using this
special variable. If the result is not available yet, the sender is suspended. It is also
possible for the sender to test if the result is available.

Objects are defined in terms of their state and their script. The state of an object
contains the definitions of its permanent variables which can only be accessed from

220 Concurrency Issues in Object-Oriented Programming Languages

class bounded_buffer: Actor

in_array buff(MAX];
in in, out;

behavior:
empty_buffer =I put()]
full_buffer = { get() J
partial_?uffer - {get(), put() I

public:

buffer()
{

initialisation of the buffer .. .

become empty_buffer;

void put(in item)
{

insert an item
if the buffer is now full

become full_buffer;
else

become partial_buffer;

l
in get()

return the next item

reply buff[out++];

if the buffer is now empty

become empty_buffer;
else

become partial_buffer;

Figure 6:

M. Papatbomas 221

within the script. The script specifies the messages the.t are accepted by the object and
the actions to be executed upon receipt of a message. The specification of an acceptab.Je
message consists of the specification of the mode in which the message is acceptable, a
message pattern, an optional reply destination, and an optional constraint.

The reply destination may be saved and a reply may be sent latter using a past
type message. This allows an object to decide when to process requests even if .they
were issued by now type ml)SSa,ges. Even if a now type message has been accepted by
an object further messages may be accepted and processed before replying to the first
message.

object buffer
(state [s = (create-storage 3)])
(script

(•> [:put aProduct]
(if (full? s) then

(select
(-> [:get]

! (fetch s)

store aProduct s)
!"done" ; return "done" as an acknowledgment

~> [:get]@R
(case (fetch s)

(is :empty
(select

(=> [:put aProduct]
; sent to the consumer

[R <= aProduct]
; confirmation to producer

!"done"

is aStoredProduct
[R <= aStoredProduct

Figure 7:

Figure 7 shows a bounded buffer object that illustrates some of these features. In
the dormant mode the buffer accepts messages that match the message pattems :put
aProduct and :get. Accepting a :put message binds the variable aProduct to what
follows : put in the message. When a put message is accepted if the buffer is full it goes
into waiting mode by executing the _,elect form. This allows the buffer object to wait

222 Concurrency Issues in Object-Oriented Programming Languages

until a get message is received. When a get message arrives an item is removed from
the store of bhe buffer and is sent to the object that sent the get message, then the item
to be put in the buffer is inserted in the storage and an acknowledgment is seot to the
sender of put.

If a get message is accepted when the object is in the dormant mode the reply des-
tination for this ·message is bound to the variable R. If the buJfer is empty the object
goes in the waiting mode waiting for a put message. When a put message arrives the
item contained in the put message is immediately sent to the r.eply destination of the get
mess.age, saved in variable- R, and an acknowledgment is returned to the object that sent
tbe put message.

The reply destination of a message is determined impUcitly for now .type messages
and future type messages. In general for past type me$Sage there is no reply destination
since no reply is expected, but it possible to explicitly specify a reply destination for past
type messages. This is very useful when an object wants to forward a request sent to it,
with a now type message, to another object.

Another interesting feature supported is ezpre.1! mode messages. A message sent in
express mode has the effect of interrupting processing of a message tha.L was sent in
ordin4ry mode. Aft,er the express message has been processed the object may choose to
resume its previous activity or aborting it. This feature is very useful when there is a
need to ioterrupt an object while it is executing.

This feature could be simulated in languages tha.t allow objects to peek at messages
sent to them. Still, it would be painful to program it explicitly. Every now and then the
code of ordinary messages should examine the message queue and take the appropriate
action.

The usefulness of thls feature is illustrated in [YSTH87) by an example of a team of
problem G01vci:s working on a. problem in panalld . Wht:u Llie first of them finds a solution
the others a.re interrupted by sending them a mr.~~n.ge in express mode.

Siuce arbitrary Interleaving of processes that share variables may cause problems, an
object explicitly specifies what messages may be received ill express mode. Aiso, atomic
blocks may be used for making sure that certnin sensitive blocks of code are execuled
atom.ical)y i.e. they may not be interrupted by express mode messages. ABCL/l does
not support classes or types of objects, but it is possible to define generator objects ~hat
a.re used to create several. objects from the same object description. This is illustrated
in figw·e 8 which shows an object that is used to create bounded buffer obJect!1.

M. Papathomas

object create-buffers
(script

(=> :new
! [object

. .. state and script as in figure 7

Figure 8:

POOL-T and POOL2

223

In POOL-T [Ame87b] objects are considered as processes that .communicate and
synchronize by extended rendez-vous like in Ada [ANSI83]. Each object encapsulates a
single thread of control that is created and activated at object creation. The sequence of
statements executed by this thread is specified in a body. Acceptance of requests is done
explicitly by use of an answer statement within the body. The answer statement is used
to accept messages and execute the requested method; it is the only means for synchro-
nization. Methods may have a post-processing section that is executed after the method
has returned. The synchronization mechanisms are similar to those used in Ada and
present the same limitations as other languages combining synchronous communications
with static process structure. These are discussed and illustrated with examples in Ada
in (LHG86]. Asynchronous message passing was later introduced in POOL2, another
language of the POOL family.

The approach that an object encapsulates exactly one process causes some difficulties
for providing concurrent implementations of objects. The functionality of these objects
has to be implemented by several objects. Objects that are using this functionality may
have to be aware of several objects that are used in the implementation and often the
protocols become more complex. These problems may be solved by using unit3. Units
are similar to modules or Ada packages, they may be used for hiding complex interactions
between objects that are needed for achieving the desired parallelism. An example in
[Ame87a] of a parallel search in a symbol table illustrates this use of units.

Hybrid

Hybrid (Nie87] is based on a model that combines features from message passing
between objects with threads that communicate by invoking the operations of shared
objects.

The units of concurrency are called domains. A domain consists of a process that
encapsulates a collection of related objects. The collection of objects corresponds to an
independent "top-level" object and its sub-objects. Domains communicate by exchang-
ing messages. Message passing operations are structured as remote procedure calls. A
message may be a request for executing an operation of an object of the domain or a
retum mes~age containing the results of a previous call. The calling domain is blocked

224 Concurrency Issues in Object-Oriented Programming Languages

until it receives the corresponding return message. Call messages transfer control from
one domain to another. The thread of control identified by a sequence of calls is called
an activity. Every message is associated with exactly one activity. New activities are
created by calling operations called i·efl.exes that start a new thread of control.

Domains may be active, idle or blocked. A domain is active when it processes a
call message associat.ed with an activity. A domain is blocked when some object in
the domain bas sent a call message to an object in another domain and waits for the
reply. A domain that is neither blocked nor active is id.le. A blocked domain may
accept messages associated with the activity that blocked it . An id.le domain may accept
mes5ages associated with any activity. Messages that ru:e not accepted by a. domain are
stored in a message queue associated with the domain.

An activity is active if a message associated with it is being processed by some domain.
It is suspended if it is not active.

An activity is an abstraction that results from the structure imposed on domain.s and
on message passing oper.ations between domains. Hybrid constructs may be understood
both in terms of activities or in terms of message passing operations between domruns.

Delay q-ueue6 allow objects to selectively respond to incoming messages. A delay
queue ma,y be associated with an operation by declaring the operation as using tbe delay
queue. A delay queue may be closed or open. When it is closed messages concerning
the associated operation are delayed until the queue is again open. Delay queues may
be closed and opened by invoking the close and open operations defined on delay queues
within the operations of the object. Figure 9 illustrates the use of delay queues for
implementing a . bounded buffer in Hybrid. The operations put and get are associated
with the delay ·queues putDelay and getDelay. The two delay queues are opened and
closed by the operations get and put in such a way that no invocations of put or get
are accepted when the buffer is respectively full or empty.

This med1aniiim is not very powerful for handling condition synchronization. The
r.lP.r:isioo of delaying n call can not be based on the arguments of the invocation. The
condition that must be satisfied for accepting a call is only te.">ted when the delay queue
is opened and there is no guarantee that the call waiting for the condition will be ac-
cepted next. The programmer must explicitly close the delay queue when because of the
acoeptance of other calls the condition becomes false. It i.s difficult to ex:press preference
of certain invocations over others. For instance when programming a disk head scheduler
we would l.ike to accept messages concerning the cylinder that is closest to current posi-
tion of the disk bead. Solutions to these problems may actually be expressed in Hybrid
by combining delay queues with the delegated co.II mechanism.

The delegated call mechanism allows a domain to switch its attention t:o another
activity, while a call issued by the current activity is processed by another domain.
The execution of the activity is resumed, in the domain that issued the delegated call,
sometime after the call has returned depending on whether the domain is busy with other
activities.

M. Papathomas

type boundedBuffer
abstract{

);

init : ->;
put : string ->; uses delay;
get : -> string; uses delay;

private

var putDelay, getDelay
var buffer : strarray;

init : ->;

putDelay.open();
getDelay.close();

delay;

get : -> string; uses getDelay;
(

get an item.
if the buffer is now empty

getDelay.close();

putDelay.open();

put: string->
I

uses putDelay;

insert an item
if the buffer is now full

putDelay.close();

getDelay. open() ;

Figure 9:

225

226 Concurrency Issues in Object-Oriented Programming Languages

SINA

Object interaction in SINA [TASS] takes place by remote procedure cnlls. Messages
sent to objects are stored in an interface queue of unspecified length. Each object has
a system defined object manager that manages the interface queue and selects messages
to be processed by the object. The object manager of an object 0 is denoted TO and
i~ supports the operations hold() and accept(). These operations have the effect of
setting the object's interface in the kold and accept state respectively. While the interface
is in the hold state messages are not processed by the object, they are instead delayed in
the interface queue until the object's interface returns to the accept state. In the accept
state the object's interface alternates between the sub-states blocked and free. In the free
state a message is removed from the interface queue, a proc!'.ss is created for processing
the message and the interface moves to the blocked stale. No further messages are
processed while the interface is in the blo·cked state. The interface goes back to the free
state when the process that caused the interface to go in the blocked state terminates.
With these scheme messages are processed serially an.d only one process js executing in
an object at a time. A detach() primitive offers the possibility to process messages
concurrently. Whe.n a process invokes trus primitive the interface of the object goes to
the free state. So that another process may be created for processing the next message
concurrently.

Objects in SINA may be methods or data objects. Data objects may be primitive
objects such as integers or instances of user defined types. Methods are asso_ciated with
a. process desaription (i.e. tihe code of the method). Each time a message is sent to a
method object, a p·rocess is created for exeouting the process description with the formal
parameters bound to the objects contwned in the message.

New object types are defined by grouping other data objects and methods together in
a type definition. A type definition specifies which objects (usually mebhods) are visible
to other objects which determines the type's interface. Objects contained within a type
definilion may invoke the hold() and accept() operations on object managers of other
objects contained within the type. This nllows to realize various forms of syncllronization.

Although this model at first may appear extr.em.ely complex the resulting language
is rather simple. Type de.'initions resemble to types or classes in other hu1guag"s &.ml
method execution may be understood as in other languages. This is illustrated in figure
10 by an example of a bounded buffer type in SINA.

The initial statement is a pl'ocess description for a process that is executed at the
creation of an instance of this type. After this process has terminated the interface of the
object is in the free state and messages may be processed. The execution of fget .hold()
by this process sets the interface of the method get to the holJ :s ~ate Ly iuvvkiui; Lhe
operation hold'() on its object manager. The iuterface of get is now in the hold state
which means that messages sent to get will be queued until its interface goes in the
accept state. The interface of put is in the accept state so messages sent to put may be
processed.

When a message is sent to put, a process is created that executes the code of the
method put . The code of this method appends an item to the buffer and if the buffer

M. Papathomas

type buffer interface is
begin

end;

method put(integer as item) returns nil;
method get() returns integer;

type buffer local is
begin

end;

objects integer as itemcount, head, tail, buff(NJ;

initial
begin head
end

methods
put:
begin

O; tail O; itemcount

itemcount := itemcount +1;

0; hget. hold();

if itemcount = N then hput.hold();
buff[tail] := item; tail := (tail+l) mod N;
hget.accept();
return val;

end;

get: objects integer as val
begin ... code for get ... end;

Figure 10:

227

becomes full it sets the interface of put at the hold state so that no more messages will
be processed by put, then it sets the interface of get to the accept state by invoking the
accept operation on its object manager. After the execution of the method terminates
messages to get may be processed.

4 Concurrent Programming

The examination of COOPLs in the previous section reveals that, independently of the
classification of section 2, a variety of approaches and notations are taken for concurrency.

In [AS83] a number of notations for concurrent programming have been surveyed and
concurrent programming languages have been classified in the three categories: procedure-
oriented, message-oriented and operation-oriented. The characteristic of procedure-oriented
languages is that processes communicate through shared variables, synchronization con-
structs, as for instance monitors, are used for synchronization and mutual exclusion. The
last two categories are based on message passing for communication and synchronization.
The difference between these two categories is identified by the explicit use of primitives
for sending and receiving messages in message-oriented languages, and structured im-
plicit message passing, like remote procedure calls or rendez-vous, in operation-oriented
languages.

228 Concurrency Issues in Object-Oriented Programming Languages

Languages in each of these ca,tegories a:re roughly equivalent in expressive power.
Languages in the procedure.oriented category a:re not suitable for distributed systems
because of the cost of simulating shared memory when there is none. Operation-oriented
and message-oriented languages may be implemented both on shared memory systems
and distributed systems. Operation-oriented languages are better suited for program-
ming client/server forms of process interaction while message-oriented are best suited for
pipelin.ed computations.

Andrews and Schneider conclude that although the basic problems of concurrent pro-
gramming are understood and mechanisms for solving these problems have been devel-
oped, the approp1'iate combination of language coDStructs deserves further examination.
The examination of the concurrency constructs that we undertake in this section goes
along this direction, although we are more specifically interes ted in the combination of
constructs that provide better support for object-oriented programming.

The approach taken in their survey concentrates on how concurrent execution is ex-
pressed and how concurrent threads communicate and syndu:onize. In order to compare
the concurrency features of the languages that we examined we will take a rather different
view. We will center our attention on the concurrent properties of objects since object.-
oriented systems s.hould be structured in terms of objects rather than. concurrent threads
of control. Instead of considering the synchronization of threads that call the operations
of objects, we will consider the means by which objects may handle concurrent requests
made by their environment. To make this more precise, instead of taking the view that
processes in say Trellis/Owl or Smalltalk-80 communicate by using shared memory (i .e.
the instance variables shared by concurrent invocations of an objects operations) which
corresponds to the procedure-oriented model, we will consider t.hat objeds receive re•
quests from their environment and for handling such requests a new process is created
automatically when a request is received, which corresponds to the operation-oriented
category.

The reason for taking thi~ vi~w iH that it allows us to concentrate on the concurrent
properties of objects and provides a common basis for ~0mparing the apprMrhr" t.Rkrn
for concurrency by the languages examined in section 3.

A somewhat similar vi<:w of concurrency has been taken in [Weg87j and [LHG86J.
They both have examined and compared concurrent programming languages with re-
spect to the process s.tructure of their modules. Liskov et al. have also considered the
combination of the process structure of modules with primitives for module interaction.
They have also fonnulated concurrency requirements for modules of distributed programs
and examined in detail the program structures needed to satisfy these requirements in
languages with static process structure and synchronous comm\micntion primitives.

4.1 Process Structure of Objects

The process structure of objects determines the nun1ber of processes that may be active
within an object at the same time, and how they are created and synchronized.

Liskov et al. distinguish between 3tatic and dynamic process structure. A module

M. Papathomas 229

has a sta"tic procus .ttructurc if the number of threads that may be executing within a
module is fixed. The programmer is responsible for multiplexing requests among this
fixed number of threads. A module has a dynamic 'proceJs st.ruciTLre if the number of
processes that may be executing within a module is variable. Processes are scheduled by
the system and the programmer synchronizes access to shared vadables. With this defi-
nition we could say that an Ada task [ANSl83] is a module with static process structure
whereas an Ada package is a module having dynamic process structure.

Wegner uses the term process for a concurrently executing object in a concurrent
object-based language. A thrCc11d is defined as what, more traditionally, would be called
a sequential process from an operating systems point of view. A thread consists of a
thread control block, a locus of control and an e.xecution stack. Processes a.re classified
with respect to the properties of their threads into the cat.egories: seguential, qiiaJi-

concurrent and concitM'cnt. Sequential processes have a single thread of control, quasi-
concurrent processes bave several threads of control but only one thread may be executing
at a time. Execution of threads in quasi-concurrent processes is muttiplexed in a way
similar to coroutines. Concurren.t processes have severaJ threads t.hat may be executing
concurrently.

We will say that an object has a dynamic procC.S$ $trucfare when a variable num-
ber of p1·ocesses may be executing concurrently within an object and they are created
automatically by an operation invocatio11. With this definitio11 all languages in the or-
thogonal category support objects with dynamic process structure. For languages like
SINA and ACT++ which support objects with a variable number of processes, but where
the processes are not created automatically by operation invocations, we will say that
they support objects with concurrent processes or more simply concurrent object3.

We will use the terms .single-proct.M object and qua..si-concurrent object in the place
of sequential proce3.s and quasi-concurrent proce.s.s, while we are going to use the term
concurrent object for objec~s with concurrently executing threads that are not created
automatically by operation invocations.

4.2 Conc1:1rrency Requirements for Objects

The main requirement expressed by Liskov et al. (LHGS6) is that modules should be
able to turn their attention to another activity if the currently executing activity has to
be delayed.

· They identify two different situations in which this is needed: local delay and remote
delay. The first situation arises when a server may not proce:;s immediately a client's
request, for instance, because of the temporary unav.ailability of some local resource.
In t his situation the server should be able to put aside the current request and turn
its att.ent.ion to other requests that could be processed immediately. Remote delay is
encountered when a server, in order to process a client's request, invokes another module.
The module called by the server may not be able to process the request immediately o.r
it could take a lot of time. In the meanwhile the server could accept requests from other
clients.

230 Concurrency Issues in Object-Oriented Programming Languages

Another reason for dealing with remote delays is for avoiding unnecessary deadlocks.
In a system where inter-module communic.ation paths are organized hierarchically a
local delay in a lower level modu.le produces problems similar to the problem of nested
monitor calls (Lis77]. Liskov et al. closely examine the solutions that may be expressed
to these problems by languages that combine modules with static process structure with
synchronous remote procedure calls and conclude that this combination does not provide
sufB.cient expressive power for coping with these problems.

In the rest of this section we will compare the approaches followed in COOPLs with
respect to the process structure of their objects and t.heir primitives for commuruca-
tion and synchronization. We will exam.ice the support provided for coping with local
and remote delays, scheduling of requests, dealing with mutual exclusio.n problems and
providing concurrent implementations of objects.

Languages in the orthogonal category do not impose any a priori restrictions on the
process structure of objects. This has the advantage that it i& flexible for expressing
solutions to synchronization problems and it makes it easy to implement objects concur-
rently. The main disadvantage is that the programmer has to deal explicitly with mutual
exclusion problems because of the dynamic process structure.

Languages in the non-orthogonal category are more restrictive with respect to the
process structure of objects. The main objective of this approach is to make it easier
to handle mutual exclusion problems. In some languages mutual exclusion problems are
eliminated, in others one has to be concerned with mutual exclusion only when there is
explicit interleaving of threads or when the creation of concurrent processes for executing
the operations of objects is explicitly requ.ested. On the other hand, depending on the
restrictions imposed and the choice of communication and synchroniza.tion primitives it
may become more clifficult to deal with some concurrency problems.

4.3 Languages in the Orthogonal Category

In Emerald monitors may be used for coping with local delays by suspending threads
in condition variables. Scheduling o! reques ts may be done by using a combination of
monitors and the process associated to an object. For example, the threads executing
an object's operations could be suspended in a monitor and the process associated with
the object could wake them up according to some scheduling algorithm. Concurrent
implementations of objects are possible, since operations that a.re not implemented as
monitor procedures may be executed concurrently. It may however be more difficult to
deal with remote delays and there is a possibility of deadlocks because of nested monitor
caiis. It is possible to design objects so that nested monitor calls do not occur but this
is contrary to encapsulation since objects have to be designed in a way that depends on
the implementation of other objects in an application.

CBox objects and asynchronous operation invocation.s in ConcurrentSmalltalk pro-
vide a satisfactory solution for coping with remote delays. If an object does not want
to be suspended when invoking the operation of another object it may invoke it asyn-
chronously and use a CBox object for obtaining the result later. No support is provided

M. Papathomas 231

for coping with local delays, scheduling and selective acceptance of requests. To some
extent this could be accomplished by using CBox objects and asynchronous calls but this
would often lead to complex solutions. It could also be possible to use the Smalltalk-80
semaphores but the aims in the design of ConcurrentSinalltalk was to provide higher
level synchronization mechanisms.

The limitations of the synchronization mechanisms of ConcurrentSmalltalk for coping
with local delays is illustrated by an example of a bounded buffer presented in [YT87a).
In this example a bounded buffer has methods deposit and remove for depositing and
removing items. With the synchronization mechanisms of ConcurrentSmalltalk there is
no easy way for the buffer to suspend or avoid the execution of the deposit or remove
method invoked by a producer or consumer when it is respectively full or empty. The
solution that is given in [YT87a) solves that problem in the following way: when the
buffer is full/empty invocation of the methods deposit/remove return a value that in-
dicates this fact. The producer/consumer has to check the return value and suspend its
activity if the buffer is full/empty. When the buffer is at a state that .the activity of the
consumer/producer may be resumed it invokes one of their methods for waking them up.

This solution has the disadvantages that the buffer requires that the producer and
the consumer have a certain method fixed in advance for waking them up and that they
are well behaved. Protocols for object interaction become more complex and objects are
more difficult to understand and reuse.

The limitations of the synchronization mechanisms were identified and corrected in
a latter version of ConcurrentSmalltalk (YT87b) by the introduction of the concept of
a 3ecretanJ. A secretary is an object that may be associated with any other object and
handles receipt and execution of its methods. An object may request its secretary to sus-
pend the execution of method until some condition is met. The resulting synchronization
mechanism is similar to monitors [Hoa74).

The synchronization mechanisms of SR provide support for all of these problems.
Explicit acceptance of messages with guards, that may depend on the state of a resource
and arguments of the call, can be used to cope with local delays and scheduling. Remote
delays may be handled by using asynchronous operation invocations, by using multiple
processes for handling requests, or by creating new resources that handle requests to
remote servers. Mutual exclusion may be handled by implementing a resource by a
single process, or by synchronizing the execution of processes that share the state of
resource through calls to other resources that are especially designed for this purpose.

Guide's activation conditions provide a satisfactory mechanism for dealing with local
delays. Remote delays may also be handled since multiple processes are allowed to be
active within an object. However it is difficult to control the mutual exclusion of these
processes after they have completed their remote call. This synchronization mechanism
provides limited support for scheduling requests.

232 Concurrency Issues in Object-Oriented Programming Languages

4.4 The Non-Orthogonal Category

There are mainly three approaches with respect to the restrictions imposed on the process
structure of objects in this category.

The most restrictive one views objects as sequential processes. In this case no prob-
lems may occur because of access to shared variables since on1y one process has access
to an object's instance variables. It is also easier to prove the correctness of operations
since they are executed sequentially. We will name this approach .,ingle-procc.,, object.,.

A second approach is to permit multiple threads of control to execute within an
object in a quasi-concurrent fashion with only one thread that is active at a time. The
interleaving of threads occurs in well defined points and it is controlled explicitly. We
will name this approach quaJi-concuTrent object3.

The most permissive approach permits multiple threads to be active at the same time
within an object. Taking this approach ma.y require that additional synchronization
p1•imitives h&.vti Lo Le iutro<luct!<l for controlling the inted'erence of threads that share
the instance variables of an object. We will say that this approach supports concurrent
objecu. It should be noted that the difference between this approach and the dynamic
process structure of objects in the ortbogonal category is that in the orthogonal category
threads are created automatically at receipt. of a message whereas in ~his case the object
conkols e."-plici~ly when and for which messages new threads are created.

4.4.1 Single-Process Objects

From the languages that we have presented in section 3, POOL-T, POOL2, ABCL/1
and the extension to Eiffel proposed by Caromel follow this approach.

The synchronization mechanisms in the extension to Eiffel provide limited support
for coping with local delays and scheduling. The Serve primitive may be used for coping
with local dclo.yo by not accepting a i·cquc3t tho.t would be delayed, but this decision m&.y
not be based on the arguments of the request. In some cases the arguments of the request
are necessary for determining if a request should be delayed. Asynchronous operation
invocations combined with data driven synchronization may be used for handling remote
delays. This would be even better if the result returned by an asynchronous call could be
passed to other process objects and if it would be possible to test if the result is ready.
A problem with this proposal is that it is difficult to synchronize objects.

POOL-T provides support for local delays by explicit acceptance of messages but
the decision for accepting a message can not be based on the values of the arguments
supplied to a call. Remote delays are not easy to handle because once a request has been
accepted by an object a reply must be returned to the caller before accepting another
request. Solution to these problems may be expressed by creating a new objects with
predetermined behavior for handling the requests.

ABCL/1 provides more flexible solutions to all these problems by supporting powerful
guards and by allowing to explicitly program scheduling and multiplexing of messages by
manipulating messages and reply destination as data. It may be argued that the resulting

M. Papathomas 233

p1·ograms lac.le structure and a.re hard to understand. It may also be argued that because
of the existen.ce of express mode messages ABCL/1 its objects should be considered
quasi-concurrent. We have classified it under t;h1s category because we considered that
express mode messages are more a mechanism for banclliug exceptional situations than
for controlling the multiplexing of quasi-concurrent processes.

4.4.2 Quasi-Concurrent Objects

Hybrjcl is the only language from the languages examined in section 3 that belongs to
the non-orthogonal category and supports quasi-concurrent objects. The delegated call
mecl1anism of Hybrid provides a powerful means for coping with remote delays [LHG86].
This use of delegated calls is illustrated in [Nie87) and (I<NP88J by programming an
administrator (GenSl]. Wl1en the administrator accepts a call from a client object it
selects a worker object , implemented as a separate domain, and issues a delegated call to
it supplying information about the work to be done. The delegated call does not block
the administrator object. It allows it to accept more calls from other clients while the
job of the first client is processed by the worker. The two requests a.re· executed in the
administrator by quasi- concurrent proce5ses which results t-0 a clean program structure.

The delegated call mechanism may also be combined with dela.y queues for providing
a better way for coping with local delays than it is possible with the sole use of delay
queues. Yet the solution is complex and we believe that some more direct means should
be provided for dealing with local delays.

The interaction of activities, domains and delegated calls causes some problems for
controlling the interleaved execution of threads. With Hybrid's execution model inter-
leaved execution of an object's operations may occur because of cyclk invocations and
delegated calls. Cyclic invocations occur when an object calls another object's operation
which calls back an operation of its caller. This is allowed for providing support for a
form of recursive calls. In other languages with synchro.nous operation invoca.tio11, POOL
for instance, this situation would cause a local deadlock.

4.4.3 Concurrent Objects

ACT++ and SINA are languages in the non-orthogonal category that support concurrent
objects.

The support provided by ACT++ for dealing with local delays is limited because
a decision for accepting a request may not be based on the actual parameters of an
invocations. The multiple threads created by the become primitive may in some cases be
used for coping with remote delays but not in all cases since after the become primitive
has been executed the thread may not access the object's state.

SINA also provides limited support for local delays. In order to delay a request after
it has been accepted the process must call an object whose interface is in the hold state.
This may be accomplished easily since it is possible to access the object manager of
objects defined within a type and set their interface in the hold state. This feature may

234 Concurrency Issues in Object-Oriented Programming Languages

also be used for scheduling. The possibility to have multiple concurrent processes within
an objects is satisfacto•y for dealing with remote delays and for implementing objects
concurrently.

4.5 Discussion

The controlled execution of concurrent threads within an object is a net advantage of
the non-orthogonal approaeh. The question of whether a langu.age should support si.nglc-
process, quasi-concurrent or concurrent objects is debatable. The advantage of the single-
process approach as supported by POOL-T, POOL2, ABCL/1 and Ca.romel's concurrent
extension to Eiffel, comes from the fact that objects are internally sequential, but th.is
also has some drawbacks. For dealing with sync;hronization problems with the concurrent
extension to Eiffel, the interfaces of objects may become more complex and objects
should be used in a disciplined w.-.y. In POOL-T and POOL2 units may be used for
providing simple .interfaces and enforcing the p.rotocols but &he solution may require
multiple objects and may be rather complex.

The sequential and quasi-concurrent approach also limit the potential for parallelism
by not allowing concurrent execution to take place within an object. T his problem may
be solved by implemellting the functionality oi an object by a collection of objects tJ1at
execute concurrently, but this has some disadvantages. There a.re cases where it may
not be nat~ral to decompose objects, by decomposing objects we may get a number of
new classes that may not be useful for reusing on their own. If the number of such
classes becomes important i t may be more difficult lo locate useful classes. The objects
obtained by such a decomposition may need to cooperate more closely with each other
than with other independent objects. In this case we should be able to provide different
levels of interfaces. One level for independent objects and another for objects that are
more intimaLdy n::lult.::J. IC WJ. object is decomposed to a set of concurrently executing
objects we may n~d other ways for controlling non interference and for coordinating
them This may be done either by using moce complex protocolo or by atomic actions
that may involve sets of objects. These solutions are more complex than if objects could
use multiple threads for the execution of requests from other objects.

We believe that using multiple processes for implementing objects may in some c:nsl'.~
provide cleaner and more skuctured solutions. What seems more import1tnt. t.hM the
problems of i11terference within a single object is the choice of concurrent programming
features that provide satisfactory solutions for implementing objects in vatjous ways,
without affect ing the way in which they are used and without having to depend on the
implementation of other objects in a particular application.

5 Data Abstraction in COOPLs

Most of the la.i:1gua.ges that we have e."amined support data abstraction. The benefits of
data abstraction have been recognized long ago (Par72,LZ74J and support for program-
ming with abstract data types (ADTs) has been provided by several languages starting

M. Papathoma.s 235

with Clu [LSAS77] and Alphard [SWL77].

One of the benefits of data abstraction is the development of abstractions that more
closely model physical or conceptual entities occurring in an application domain and
promotes higher level programming. The effective realization of the absrract data type
is hidden behiud an interlace. Operations defined at the interface capture the bchavior
of the entity modeled by the ADT and protect the internal state used to implement the
ADT from inconsistent use. This separates the concerns of realiziug the abstractions
and programming by specifying interactions between the abstractions which model the
entities of an application domain. The implementation of an ADT may be replaced,
extended, without affecting applications making use of the ADT.

The mod.ular decomposition that occurs by programs developing in terms of ADTs
provides modular units that are more likely to be reused than modules resulting from an
arbitrary decomposition of a sys.tems functionality for mana.gerial purposes.

5.1 Support in Programming Languages

Many of the benefits of data abst raction seem to be overstated when one examines what
actually happens in programming langu.ages. The information that is available at the
interface consists of a set of operation names and arguments together with the types of
arguments and retw·n values in the case of typed languages. This information may in.
many cases be insufficient for reflecting the semantics of the data type. Several authors
have shown this problem by taking as example an ADT representing a queue and a stack.
Both of these ADT support get and put operations, yet their sem.antics are different.

Thi.s problem may be addressed by an appropriate choice of names for the types
and their operations, by comm.ents, by some foanal specification of the beha.vior, or by
examination of the implementation.

Relying on comments or other infonnal descriptions of the beha.vior of an ADT has
the disadvantages that such informal description may be imprecise and incomplete. Some
things that may seem trivial or irrelevant to the implementor may be essential for certain
uses of the data type that where not anticipated by its impleme11tor.

Formal techniques for specifying the behavior of ADTs, such as algebraic specifica-
tions solve some of the problems of informal descriptions. The disadvantages of these
approaches is that they may be hard to understand for programmers and are event harder
to write correctly. Also, it. is hard to guarantee that implementations correctly implement
the specifications and that changes are propagated to specifications the implementation
is changed. Assertions included in the code like in Eiffel (Mey88) attempt to solve these
problems.

If all of the previous approaches fail to provide enough information for reusing an
ADT the remaining solution, assuming that the code is available, is to examine its im-
plem.entation. This may be hard and time consuming. The implementations ma~ be
based on a number of other ADT. Then the problem of understanding the behavior of
;in ADT is replaced with a greater number of instances of the same problem. For under·

236 Concurrency Issues in Object-Oriented Programming Languages

standing the implementation one may need to understand the behavior of the ADTs used
in it. The properties of the ADT that a.re discovered by examining the implementation
may not be propert.ies of the ADT but of the particular implementation.

5.2 Data Abstraction for COOPLs

The presence of concurrency in COOPLs makes the problems examined above even
harder. The bchavior of objects includes a time dimension. This can not be captured by
the names of operations and the types of their arguments. For example figure 11 shows
what could be the interface specification of an object modeling a vending machine in the
language Hybrid [Nie87).

Type VendingMachine:
abstract{

selectitem: itemType -> ;
insertAmount: amountType ->
getitem: -> itemType;
cancel: ->;
getChange: -> amountType;

Figure 11:

The problem with such an interface specification is that it does not contain infor-
mation as in what order the operations should be invoked. Should one first make a
selection then insert the amount, or the other way around? Also what should happen if
~he operations where called concurrently?

Some of these problems could be solved by an informal descriptions of the behavior,
but in COOPLs such descriptions are more likely to be imprecise and incomplete than
for the sequential case.

Concerning formal specifications, there is no consensus for formal methods for spec-
ifying the externally visible behavior of concurrent systems. Further.m.ore such methods
may have the same problems as algebraic specifications for ADTs. Determining proper-
ties of objects by examini11g lhe implementations presents the disadvantages mentioned
above for ADTs, and concurrent systems are harder to understand.

For evaluating which abstraction mechanisms are adequate for COOPLs it is essential
to identify what information should be captured and what should be hldden. Examining
how objects relate to concurrency is important in order to characterize the relevant
information. We may identify three main ways:

• An object's representation may need to be protected from concurrent invocation
of its operation.

M. Papathomas 237

• The object is used to model a real world process or an entity with time varying
behavior.

• The object is implemented in a concurrent fashion although the modeled entity
may not be inherently concurrent.

The first and third points address issues that are more related with an object's represen-
tation. The first issue was discussed in section 2 and we have seen that there languages
that ensure that the representation of objects is protected from concurrent execution.
In these languages the object abstraction is powerful enough to hide this representation
issue.

The second point addresses the problem of objects with time varying behavior. Such
objects are able to decide whether and when they will respond to incoming messages.
These decisions may be based on information concerning the past object's history, its
state and the request. This behavior is characteristic of an abstract object and not of a
particular representation. Knowledge of this behavior is essential for the development of
applications involving collections of cooperating objects. Object interactions have to be
properly synchronized on the basis of this information.

In most COOPLs the behavior of such objects is expressed by using the concurrency
constructs of the language. The design of concurrent coDstructs of languages vary in their
ability to convey information about the abstra.ct behavior without detailed examination
of the representation, and with respect to their expressive power.

Support for mechanisms similar to data abstraction in COOPLs is even more badly
needed than in sequential languages but also is hard to provide. Ideally the data ab-
straction mechanism provided by COOPLs should separate the aspects of concurrent
execution relevant to an object's implementation from the concurrent behavior of the
abstraction. The complexity of the analysis and design of systems of concurrent objects
would be reduced if it would be possible to suppress details concerning particular real-
izations. Replacing and extending the representation of objects could be done without
requiring reexamination of the whole system. It would in principle be enough to ensure
that the "new objects" have compatible behavior. For reaching such goals we would need
a way for describing the externally observable behavior of objects, be able to prove and
automatically clieck that the realization of objects satisfies the specifications.

This goal seem unreachable in the near future. It would be more reasonable to provide
compromises by designing abstraction mechanisms that capture more information about
the behavior of active objects than abstract data types. A parallel to this approach may
be drawn with the way ADTs are used in sequential programming languages and the use
of assertions instead of supporting algebraic specifications and automatic verification of
programs.

5.3 Support for Data Abstraction in COOPLs

The data abstraction mechanisms supported by most of the languages examined in section
3 are not any different than in sequential languages. We may however say that the

238 Concurrency Issues in Object-Oriented Programming Languages

languages in the non-orthogonal category extend the data abstraction mechanism of
sequential languages since objects are associated with concurrent behavior.

The approach taken in ACT++ extends signatures with a behavior specification that
provides some limited information about temporal aspects of the bebavior of objects.
It provides the information that the object may be in states where only a subset of
operations defined at its interface are acceptable. This is rather limited because it does
not specify how and when the object may change its state.

An early proposal for an abstraction mechanism capturing synchronization informa-
tion for abstract data types was path expressions [CH74]. Tne idea in path expressions
is that an expression in a regular language specifies synchronization constraints on the
invocations of operations of an abstract data type.

Type VendingMachine:
path
selectitem (cancel , (insertAmount; getitem; getchange))

end
abstract{

selectitem: itemType -> ;
insertAmount: amountType ->
getitem: -> itemType;
cancel: ->;
getChange: -> amountType;

Figure 12:

Using the notation introduced in [CH74] the signature of the vending machine type
of figure 11 is e.'l:tended to tho one chown in figure 12. The path constr-uct <lesc.ribe~

the sequences in which the operation invocation.s are accepted by objects of Ute type
VendingMachine . The operator ";" is used to indicate sequencing of operations whil
the operator ",'' indicates alternation. The path in figure 12 specifies that the vend.ing
machine first ae<:epts a selection then it either accepts a cancel operation or the sequence
of the operations insertAmount, getitem and getChange. This provides a lot more
information about the behavior of instances of VendingMa.chine than did the signature
in figure ll.

It should b~ noted that the bchavior specified by a. path expression is effectively
observed by an implementation of an abstract data type since no other synchronization
mechanisms may be used in the implementation of its operations.

The main problem of this synchronization mechanism is it.s expressive power. It is
not powerful enough for specifying condition synchronization [AS83). Synchronization
decisions can not be based on arguments of the invoked operation. In some cases the
previous history of the object as captured by path e>..-pression may not be enough to
convey information about the object's state.

M. Papathomas 239

6 Inheritance

Several authors have mentioned the interference of inheritance as a code sharing mech-
anism with concurrency. America (Ame87a] discusses the difficulties for integrating in-
heritance in the languiige POOL-T and concludes that inheritance would be of little
use in this language. Wegner examined the consistency of object-oriented features and
mentions a potential inconsistency between the independence of objects emphasized by
concurrency and the sharing of code required by inheritance (Weg87J. Decouchant d
a.I. (DKM*89] dfacuss the inte.rference of the synchronization mechanism.s of Guide with
inheritance. ICafura and Lee [l<L88] examine mo1·e gener-ally the problem of integrating
inheritance in COOPLs. They compare and classify the approaches taken by various
languages and propose their solution for the language ACT++. Briot and Yonezawa
(BY87) discuss inheritance for COOPLs assuming no shared memory. They take the
approach to support inheritance by delegation [Lie86] and show that the messages used
!or delegation heavily interfere wiih normal processing causing difficult synchroni2ation
problems.

In the following we will discuss the interference of class inheritance with concurrency
based on the languages that we have examined in section 3. Then we will attempt to
draw more general conclusions.

Clearly the first requirement for a language to support class inheritance is that il
supports some notion of class. Although not a.11 languages tnat we examined have a
notion of class we will abstriM:t this fact and examine in what ways the synchronization
mechanisms would interfere with inheritance.

ABCL/l and SR do not support class inheritance and actually it would be difficult
to do so because of the internal skucture of their objects. ABCL/1 objects are not
structured in te1ms of methods. The message acceptance forms may associate different
actions with a message depending on where the message pattern appears wit:hin an
object's script. In !act an object's script may cons1st of a single unit of code because of
the use of select and nested acceptance of messages. Th.is makes it difficult to use class
inheritance, Like say in Smalltal.k-80, since in many cases it would be reduced to ecliting
this single block of code. SR presents similar problems since often the implementation
of objects is a single sequential block of code containing message acceptance statements.

Emerald does not support classes and class inheritance. The main difficulty for sup-
porting class inheritance in Emerald would be whet.her and how to inherit the process
that may be associated with an object and because of the use of monitors for synchro-
nization. In order t-0 synchronize new operations added by a subclass with operations
that were defined in the superclass the monitor would have to be completely redefined
in the subclass.

Trellis/Owl supports class inheritance but its effective use presents several difficulties
when the classes involved use the synchronization primitives. A first preblem comes
because of mutual exclusion. When a new method is added in a subclass all inherited
methods must be examined to check if the new method interferes with any inherited
methods. lf such methods are found they should be overridden in the subclass by methods

240 Concurrency Issues in Object-Oriented Programming Languages

that are mutually exclusive with the method added in the subclass.

OU1er problems are caused by condition synchronization. If threads executing the
methods added in a subclass are suspended until some condition becomes true about the
state of the object, inherited methods that make tMs condition true should be located
and modified so that t.hey wake the suspended thread by signaling the corresponding wait
queue. The same thing should also be done in the opposite s.ense, the threads executing
methods added by the subclass should wake threads that were sus.pended by executing
an inhe.rited method.

In Hybrid the situation is better for mutual exclusion, since method execution is by
defaul t mutually exclusive, but in the case of condition synchronization the situation is
worse. When a delay queue is open it means that the necei;sary conditions are met for
executing a method associated with the delay queue. Threads that execu~e a method do
not check if the necessary conditions are satisfied. This means that besides the situation
described above for Trellis/Owl, in Hybrid we also have to make sure that, if the execution
of a method added in the subclass invalidates the conditions necessary for the exe<:ution
of inherited methods, the associated delay queues are closed. This problem may be
i1h1strated with the e:-cample of the bounded buffer presented in section 3. lniagine a
subclass of the buffer that supports an additional operation that checks if the buffer is
empty and, if not, removes an item from the buffer. If this 0peration removes the last
item in the buffer it invalidates the necessary condition for the execution of the inherited
operation get , namely that the buffer is not empty, so it should close the delay queue
associated with get .

The languages POOL.2 and POOL-T do not support inheritance. Although classes
are structured in terms of methods there is a problem concerning the body of the class.
America [Ame87a) explains that they have considered several ways of inhering the body
of a class but none of them provided a satisfactory solution.

Caromel in his proposal takes the approach that the live routine of an object class
should be systematicaJly overridden in subclasses. Inheritance for other metboclB works
as in sequential languages because met.hods other than the live method arc not aJlowcd
to use synchronization primitives.

The synchronization mechanism of Guide interferes with inheritance in several ways.
The separation of the activation conditions from the code of methods and the fact that
methods do not contain any synchronization primitives, suggest·s that methods and ac-
tivation conditioru; could be inherited independently. This is not the case because of
the way that this synchronization mechanism is implemented. The code generated for
methods by the compiler includes code that checks the activation condition and suspends
the th:-oad by using o=«ph(m:s. As ~ ::cs:.:lt eYen if ju~t the a::t:v2.tb:i ::cnditions of 2.

method are modified in a subclass a ne\v method has to be generated for the subclass.

Another prnblem is that the activation conditions may refer to names of methods.
This has the effect that when new methods are added in a subclass the activation con-
ditions of inherited methods may have t-0 be modified for referring to the n.ew methog
names. For example, if we defined a subclass of the bounded buffer and added an ad-
ditional method that should be executed in mutual exclusion with inherited operations

M. Papathomas 241

the activation conditions of these methods would have to be rewritten. By contrast,
in Trellis/Owl the new method could use the lock used by the inherited methods, and
mutual exclusion would be achieved without modifying the inherited methods.

A problem that should be noticed with the languages we have examined so far is
that in order to synchronize the execution of methods of a subclass with those of its
superclasses the subclass has to access instance variables of its superclasses. This may
not be desirable since it weakens encapsula tion [Sny86,Ame87a].

A rather different approach to inheritance that alleviates some these problems has
been taken in ACT++. The conditions under which a method may be activated are
expressed in te.rms of a beha.vior name of the behavior abstraction associated with a
class. The operations that a.re added by a subclass may be associated with a behavior
name, defined in the subclass, that redefines an inherited behavior name. When the
inherited behavior name is used with the become primitive in an inherited method it
will, enable all t!ie operations associated with its redefinition in the subclass.

class extended_buffer public bounded_buffer{

behavior:
extended_full_buffer ={ get(), getrear())

redefines full_buffer,

extended__partial_buffer = { get(), put(), getrear() J
redefines partial_buffer,

public:

int getrear ()

implementation of getrear . . .

);

Figure 13:

An example for illustrating this idea is to add a method getrear in a subclass of the
bounded buffer presented in section 3. that removes an item from the rear end of the
buffer. Figure 13 illustrates the definition of such a subclass called extended buffer.
The redefinition of the behavior names fulLbuffer and partiaLbuffer defined in the
superclasses has the effect that the execution of the statements become partiaLbuffer
and become fulLbuffer in inherited methods will also enable the execution of the
method getrear.

6.1 Discussion
I

First there are languages that by their construction are not suitable for supporting class
inheritance. These are languages like SR, Emerald and ABCL/1. For such languages

242 Concurrency Issues in Object-Oriented Programming Languages

delegation seems a reasonable alternative for code sharing, but it is not without problems
[BY87). In languages like Trellis/Owl and Hybrid inheritance is supported but it may be
difficult to use. In languages that separate the concurrency features from the implemen-
tation of methods, like Guide and Caromel's extension to Eiffel, it is easier to inherit the
sequential part of objects. The non-uniform approach has an additional problem because
there are separate inheritance hierarchies for the different kinds of objects.

7 Conclusion

Concurrency is not orthogonal to other aspects of object-oriented programming. Al-
though sever-al object-oriented languages that provide support for concurrent program-
ming h.ave been designed and implemented their concurrent features interfere with their
object-oriented features. Furthermore, the approaches taken for concurrency may have
a considerable impact on the structure of applications in a way that is contrary to the
principles underlying object-oriented programming.

Concerning the approaches taken for integrating concurrency in the object-oriented
framework we have identified six categories of languages with respect to the evolution
that undertook the concept of object for coping with the demanding requirements of the
concurrent world.

A great variety of concurrency features is used by COOPLs in each category for sup-
porting concurrent programming. Although notations for concurrent programming have
been extensively studied during the past two decades and several concurrent program-
ming languages have been designed and implemented, the combination and design of
concurrent programming features that are best suited for object-oriented programming
dt!*.l'vt:>J f11rLht:.1· t:xawiuatiou . We have a<l<lr~e<l these questions in two ways. First , by
comparing the concurrency features of some COOPLs based on an approach that differs
from the more traditional viewil of concurrency and that, we believe, is consistent and
better adapted to object-oriented programming. Second, by examining the interference
of the coneurrency features of COOPLs with class inheritance.

Although abstraction mechanisms conveying more information than ADTs about the
behavior of objects are badly needed in COOPLs, very little has been done in this
direction by COOPLs. This may be explained by the fact that it does not seem to exist
a consensus Oil formal models for the specification of the behavior of concurrent systems,
that would provide a basis for development of abstraction mechanisms that would extend
the data abstraction mechanisms to concurrent languages.

We have not addressed a number of other important issues which include: typing,
exception handling, persistence and transactions. At the current stage of development of
COOPLs it does not seems that typing could be used any differently than in sequential
OOPLs. We believe that the development of type systems for COOPLs is intimately
related to the development of formal models for the specification of the time dependent
behavior of objects, and the development of abstraction mechanisms that will extend
data abstraction to include more information about such behavior.

REFERENCES 243

Exception handling mechanisms are even more important in concurrent systems than
they are in sequential ones. The failure of a process should not entail the failure of the
whole system since other processes may be able to proceed.

Persistence is useful for the development of a host of applications. Providing support
for persistence in a programming language frees the application programmer from the
burden of explicitly managing persistence by using files. The atomicity properties of
transactions are especially attractive in a system that has to deal with long lived persis-
tent data. Although persistence on its own does not seem to interfere with concurrency
features of a language it is not the same concerning transactions. The noninterference
property of transactions seems contrary to the close interaction and communication of
processes that characterizes concurrent programming and the independence of objects
promoted by object-oriented programming.

The full integration of concurrency with all the other aspects of object-oriented pro-
gramming presents several problems that deserve more attention. In this paper we have
identified some of them and examined by comparing several langu;i,ges how language
design choices may make them more acute or eliminate them. However further work
is required for gaining more insight in the nature of these problems and for developing
languages that provide satisfactory solutions.

References

[ANSI83] American National Standards Institute, Inc., The Programming Language
Ada Reference Manual. Lecture Notes in Computer Science 155, Springer-
Verlag, 1983.

[Agh86] G.A. Agha. ACTORS: A Modd of Concurrent Computation in Di~tributed
Systems. The MIT Press, Cambridge, Massachusetts, 1986. 4.32 agh.

(Ame87a] P. America. Inheritance and Subtyping in a Parallel Object-Oriented Lan-
guage. BIGRE, (54):281-289, June 1987.

(Ame87b] P. America. POOL-T: A Parallel Object-Oriented Language. In M. Tokoro
A. Yonezawa, editor, Object-Oriented Concurrent Programming, pages 199-
220, The MIT Press, Cambridge, Massachusetts, 1987.

[AOC88] G.R. Andrews, R.A. Olsson, and M. Coffin. An Overview of the SR Language
and Implementation. TOP LAS, 10(1):51-86, January 1988.

(AS83] G.R. Andrews and F.B. Schneider. Concepts and Notations for Concurrent
Programming. ACM Computing Surveys, 15(1):3-43, March 1983.

[BB88] A. Bjornerstedt and S. Britts. AVANCE: An Object Management System.
SIGPLAN Notices, 23(11):206-221, November 1988.

(BHJ*87] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Ditribution and
Abstract Data Types in Emerald. Transactions on Software Engineering,
SE-13(1):65-76, Jan 1987.

244

[BY87]

[Car89]

[CH74]

[Cox86]

REFERENCES

J-P. Briot and A. Yonezawa. Inheritance and Synchronization in Concurrent
OOP. BIGRE, (54):35-43, June 1987.

D. Caramel. A General Model for Concurrent and Distributed Object-
Oriented Programming. SIGPLAN Notices, 24(4), April 1989.

R.H. Campbell and A.N. Habermann. The Specification of Process Synchro-
nization by Path Expressions. Lecture Notes in Computer Science, 16:89-102,
1974.

B.J. Cox. Object Oriented Proggramming: An Evolutionary Approach.
Addison-Wesley, 1986.

[DKM*89] D. Decouchant, S. Krakowiak, M. Meysembourg, M. Rivelli, and Rousset
de Pina. A Synchronization Mechanism for Typed Objects in a Distributed
System. SIGPLAN Notices, 24(4), April 1989.

[Gen81] W.M. Gentleman. Message Passing between Sequential Processes: the Reply
Primitive and the Administrator Concept. Software-Practice and Experience,
11:435-466, 1981.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and ita Implemen-
tation. Addison-Wesley, 1983.

[Hoa74] C.A.R. Hoare. Monitors : an Operating System Structuring Concept.
CACM, 17(10):549-557, October 1974.

[KL88] D.G. Kafura and K.H. Lee. Inheritance in Actor Based Concurrent Object-
Oriented Languages. Technical Report TR 88-53 Departement Of Computer
Science Virginia Polytechnic Institute and State University, 1988.

[KNP88] D. Konstantas, 0.M. Nierstrasz, and M. Papathomas. An implementation
nf hyhrir:1 Tn D TRirhrit.7.iR, P.nitnr, Ar.ti11P. nhjer.t F:n.11im11.m.P.11.t.~ TP.r.h.11.ir.n.l
Report, Centre Universitaire d'Informatique, University of Geneva, pages 61-
105, 1988.

[LHG86] B. Liskov, M. Herlihy, and L. Gilbert. Limitations of Synchronous Communi-
cation with Static Process Structure in Languages for Distributed Computing.
In Proceedings of the 19th ACM symposium on Principles of Programming
Languages, St. Petcrsburg, Florida, 1986.

[Lie86] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object Oriented Systems. AUM SIGPLAN Notices, Proceedings OOPSLA
'86, 21(11) :214-223, Nov 1986.

[Lis77] A. Lister. The Problem of Nested Monitor Calls. Operating Systems Review,
5-7, Jui. 1977.

[LSAS77] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction Mechanisms
in CLU. CACM, 20(8):564-576, Aug 1977.

M. Papathomas 245

[LZ74]

[Mey88]

[MK87]

[Nie87]

[Par72]

[Par78]

[Sny86]

[Str86]

[SWL77]

[TA88)

[TN88]

[Weg87]

JYSTH87]

[YT87a]

(YT87b]

B. Liskov and S. Zilles. Programming with Abstract Data Types. Proceedings
of the ACM Symposium on Very High Level Languages, SIGPLAN Notice3 ,
9(4):50-59, 197 4.

B. Meyer. Object-oriented Software Construction. Prentice Hall, New York,
1988.

J.E.B. Moss and W.H. Kohler. Concurrency Features for the Trellis/Owl
Langu<\ge. BIGRE, (54):223- 232, June 1987.

0. Nierstrasz. Active Objects in Hybrid. Object-Oriented Prog·ramming Sys-
tems Languages and Applications (OOPSLA}, Special Issue of SIGPLAN No-
tices, 22(12):243-253, Dec. 1987.

D.L. Parnas. A Technique for Software Module Specification with Examples.
CACM, 15(5):330- 336, May 1972.

D.L. Parnas. The non-problem of Nested Monitor Calls. Operating Systems
Review, 12(1):12-14, 1978.

A. Snyder. Encapsulat ion and Inheritance in Object-Oriented Programming
Languages. ACM SIGPLA.N Notice~, 21(11):38-4·5, Nov 1986.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

M. Shaw, W.A. Wulf, and R.L. London. Abstraction and Verification in Al-
phard: Defining and Specifying Iteration and Generators. Commu.nucations
of the ACM, 20(8):553-564, August 1977.

A. TrJpathi and M. Aksit. Communication, Scheduling, and Resource Man-
agement in Sina. JOOP, 24-36, Nov/Dec 1988.

D. Tsichritzis and 0.M. Nierstrasz. Application Development Using Objects.
Proc EUROINF0'88, 15-23, 1988.

P. Wegner. Dimensions of Object-Based Language Design. In Proceedings
OOPSLA '87, pages 168-182, ACM, Orlando, Florida, December 1987.

A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modelling and
Programming in an Object-Oriented Concurrent Language ABCL/1. rn A.
Yoneza.wa and M. Tokoro, editors, Object- Oricn.ted Corcurrcnt Programming,
pages 55-89, The MIT Press, Cambridge, Massachusetts, 1987.

Y. Yokote and M. Tokoro. Concurrent Programming in ConcurrentSmalltalk.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Corcurrent Program-
ming, pages 129-158, The MIT press, Cambridge, Massachusetts, 1987.

Y. Yokote and M. Tokoro. Experience and Evolution of ConcurrentSmalltalk.
In Proceedings OOPSLA '87, pages 406-415, ACM, Orlando, F lorida, Decem-
ber 1987.

