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Résumé

Cette thèse étudie les applications de techniques provenant des moules à la théorie de Kashiwara-
Vergne. Développée par Jean Ecalle, la théorie des moules s’est avérée particulièrement adaptée à
l’étude des Valeurs Zeta Multiples. L’isomorphisme conjectural entre les algèbres de Lie de double
shuffle et de Kashiwara-Vergne a naturellement amené à transférer les techniques mouliennes utilisées
d’un espace à l’autre.

∙ Le premier chapitre est consacré à la présentation des trois espaces jouant un rôle dans cette
thèse : l’algèbre de Lie de double shuffle ds provenant de la théorie des nombres, l’algèbre de Lie de
Grothendieck-Teichmüller grt1 liée à la topologie et l’algèbre de Lie de Kashiwara-Vergne .

∙ Le second chapitre constitue une introduction aux moules, avec des examples provenant de ds
and krv. Il y est ensuite expliqué comment traduire les propriétés définissant ces espaces dans ce nou-
veau language. Nous suivons ici les travaux de Leila Schneps. Le premier résultat de cette thèse est la
définition d’une version linéarisée de l’algèbre de Lie de Kashiwara-Vergne lkv, analogue à l’algèbre
de Lie ls, ainsi qu’une injection ls ↪ lkv.
Cela nous permet de montrer que les parties de profondeurs d = 1, 2, 3 de ces espaces sont isomorphes
pour tous degrés n, ce qui fournit les dimensions des parties bigraduées de lkv et grkrv en profondeurs
1, 2, 3 pour tout degré, ces dimensions étant connues dans le cas de ls.

∙ Le troisième et dernier chapitre est dédié à la version elliptique de krv et contient les principaux
résultats de cette thèse.
Nous définissons la version elliptique krvell comme un sous-espace des dérivations de l’algèbre de
Lie libre à deux générateurs, et nous prouvons qu’il est fermé pour le crochet de Lie des dérivations.
On définit également un morphisme de Lie injectif krv ↪ krvell analogue à celui grt ↪ grtell et à
l’application définie dans les moules ds ↪ dsell, ainsi qu’une application injective dsell ↪ krvell.

Enfin, nous démontrons que l’algèbre de Lie krv1,1 définie indépendamment pat Alekseev-Kawazumi-
Kuno-Naef, est égale à krvell.
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Summary

This thesis studies the applications of mould techniques to Kashiwara-Vergne theory. Developed by
Jean Ecalle, originally to the purpose of resurgence theory, mould theory proved to be particularly
well suited to the study of Multiple Zeta Values. The conjectural isomorphism between the double
shuffle and Kashiwara-Vergne Lie algebras naturally led to the transfer of mould techniques from one
space to the other.

∙ The first chapter is dedicated to presenting the three main spaces: the double shuffle Lie algebra
ds from number theory, the Grothendieck-Teichmüller Lie algebra grt1 related to topology and the
Kashiwara-Vergne Lie algebra from Lie theory.

∙ The second chapter introduces mould theory, using examples linked to ds and krv. It then ex-
plains how to translate the defining properties of these spaces into mouls, following Schneps’ works.
The first result of this thesis is the definition of a linearized version of the Kashiwara-Vergne Lie al-
gebra lkv analoguous to the existing ls, together with an injection lds ↪ lkv.
It allows us to show that the parts of these spaces of depths d = 1, 2, 3 are isomorphic for all weights
n, which yields the dimensions of the bigraded parts of lkv and grkrv of depths 1, 2, 3 in all weights,
since these dimensions are well-known for ls.

∙ The third and last chapter is dedicated to the elliptic versions of ds and krv and contains the main
results of this thesis.
We define the elliptic version krvell as a subspace of derivations of the free Lie algebra on two gener-
ators, and prove that it is closed under the Lie bracket of derivations.
We also define an injective Lie morphism krv ↪ krvell in analogy with the section map grt ↪ grtell
and the mould-theoretic double shuffle map ds ↪ dsell, as well as an injective map dsell ↪ krvell.
Finally, we show that the Lie algebra krv1,1 independently defined by Alekseev-Kawazumi-Kuno-Naef
is equal to krvell.
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Chapter I

Introduction to the different Lie algebras

This chapter is devoted to the introduction of the three main objects studied in this thesis.
In the first section, we state the main definitions, results and conjectures leading to the construction
of the double shuffle Lie algebra and its linearized version. In the second section, we give some
background on the origin of the Grothendieck-Teichmüller groups, then focus on the prounipotent
framework to introduce grt1. The third section is devoted to the Kashiwara-Vergne conjecture. After
detailing the original analytic story, we state the main definitions and results from [AT], culminating in
the definition of the Kashiwara-Vergne Lie algebra. Finally, we quickly recall the existing ties between
the main protagonists.
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I.1 The double shuffle Lie algebra ds

Much of this introduction to MZVs is inspired by the excellentMultiple zeta values : from numbers to
motives by José Ignacio Burgos Gil and Javier Fresán ([BF]), which was my own introduction to the
topic.
The aim of this section is to be able to define the Lie algebra of Doubles mélanges et régularisations
dmr0, also called formal double shuffle Lie algebra ds. Therefore, some important definitions, results,
proofs or conjectures might be missing if we did not feel they were essential for the understanding.

I.1.1 Riemann Zeta values

Definition I.1.1. TheRiemann Zeta values are the values taken by the Riemann Zeta function � (s) =
∑∞
n=1

1
ns

on positive integers equal or greater than 2.
Theorem I.1.2. (Euler, 1735.) The values of the zeta function at even positive integers are given by

� (2k) = (−1)k−1 2�
2k

2(2k)!
B2k,

where B2k are the Bernouilli numbers defined by their generating function
∞
∑

k≥0
Bk
xk

k!
= x
ex − 1

, |x| < 2�.

Quid of odd positive integers ? No such closed formulas are known. Actually, not much is known:
• In 1979, Apéry ([Ap]) proved the irrationality of � (3). Other proofs were found later, but none

of them seem to generalize to other odd numbers.
• In 2001, Rivoal and Ball ([BR]) showed that infinitely many of the � (2n + 1) are irrational and

even linearly independent over ℚ.
• Zudilin showed in 2001 ([Zu]) that amongst � (3), �(5), �(7) and � (9) at least one is irrational.
• One of the latest result (2018) by Rivoal and Zudilin ([RZu]) : there exist at least two irrational

numbers amongst the 33 odd zeta values � (5), �(7), ..., � (69)
The most important conjecture about zeta values is known as the transcendence conjecture :

Conjecture I.1.3. The numbers �, �(3), .., � (2k + 1) are algebraically independent i.e.

∀k ≥ 0, ∀P ∈ Z[x0, ..., xk] P (�, �(3), ..., � (2k + 1)) ≠ 0.

As the aforementioned results infer, the actual research is far from proving this conjecture.
It is rather natural to ask ourselves what happens if we multiply two such objects. Let us have a

look:

� (s1) ⋅ � (s2) = (
∞
∑

n1=1

1
ns11
)(

∞
∑

n2=1

1
ns22
)

=
∞
∑

n1,n2=1

1
ns11 n

s2
2

=
∞
∑

n2>n1≥1

1
ns11 n

s2
2

+
∞
∑

n1>n2≥1

1
ns11 n

s2
2

+
∞
∑

n=n1=n2≥1

1
ns1+s2

.

The last term is simply � (s1 + s2). The two other terms are a generalization of Riemann zeta values :
double zeta values. This leads us to defining multiple zeta values.
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I.1.2 Multiple zeta values

Definition I.1.4. A multi-index s = (s1, .., sl) ∈ ℤl is said to be positive if si ≥ 1 for all i and
admissible if it is positive and s1 ≥ 2.
Proposition I.1.5. If s is admissible, then

� (s) =
∑

n1>...>nl≥1

1
ns11 ...n

sl
l

,

ni ∈ ℕ is absolutely convergent.

Proof. We have
� (s) ≤ � (2, 1, ...1) =

∑

n1>...>nl≥1

1
n21n2...nl

.

Therefore,
� (s) ≤

∑

n1≥1

1
n21

(

n1
∑

k=1

1
k
)l−1 ≤

∑

n≥1

(1 + log(n))l−1
n2

,

and the latter converges since (1 + log(n))l−1n−2 < n−3∕2 for n sufficiently big.
Definition I.1.6. The multiple zeta value associated to an admissible multi-index s is defined as

� (s) =
∑

n1>...>nl≥1

1
ns11 ...n

sl
l

.

The integer s1 + ... + sl ∶= wt(s) is called the weight of s and l its length (also called depth, a term
we will use again in different contexts).
By convention, � (∅) = 1.

Here is a table of the first MZVs with respect to weight and length :
weight ⟍ length 1 2 3 4

2 � (2)
3 � (3) � (2, 1)
4 � (4) � (3, 1), � (2, 2) � (2, 1, 1)
5 � (5) � (4, 1), � (3, 2), � (2, 3) � (3, 1, 1), � (2, 2, 1), � (2, 1, 2) � (2, 1, 1, 1)

Definition I.1.7. We denote by  the ℚ-vector space generated by all multiple zeta values :
 = ⟨1, �(2), �(3), �(2, 1),… ⟩ℚ.

We also consider different subspaces associated to the weight and length of MZVS for given k, l ≥ 0 :
k ∶=⟨� (s)| wt(s) = k⟩ℚ

l ∶=⟨� (s)| l(s) ≤ l = k⟩ℚ
lk ∶=⟨� (s)| wt(s) = k, wt(s) = k⟩ℚ

Note that 0 = ℚ and 1 = {0}.
Remark I.1.8. There is an increasing filtration on  defined by the length :

ℚ = 0 ⊆ 1 ⊆ 2 ⊆…

9



We are naturally interested in the dimensions of these spaces.
Let us first count the number of admissible multi indices : for a given weight k and length l, there are

(

k − 2
k − l − 1

)

=
(

k − 2
l − 1

)

possibilities, since l + 1 elements are already fixed.
We then have

k−1
∑

l=1

(

k − 2
k − l − 1

)

= 2k−2

multi indices of weight k. This provides us with an upper bound for the dimension of k.
But some relations between MZVs of a given weight have been known for a long time.
Theorem I.1.9. (Sum theorem ). For any depth l ∈ ℕ and weight s > 1,

∑

s1+⋯+sl=s
s1>1

� (s1,… , sl) = � (s).

Example I.1.10. The case s = 3 was already shown by Euler :
� (2, 1) = � (3).

Remark I.1.11. All known relations are between MZVs of the same weight.
Here is the main conjecture regarding the dimension of k :

Conjecture I.1.12. (Zagier)
Let the integer sequence (dk)k∈ℕ be defined by the recursion

d0 = 1, d1 = 0, d2 = 1, dk = dk − 2 + dk − 3 (k ≥ 3).

Then
dimℚ(k) = dk.

The upper bound has been achieved by Goncharov and Terasoma. There is no non trivial lower
bound known.
Theorem I.1.13. (Terasoma([Ter]), Deligne-Goncharov([DG]).

dimℚ(k) ≤ dk.

The table below shows the conjectural bound for each weight up to 12, as well as the number of
admissible indices corresponding :

k 0 1 2 3 4 5 6 7 8 9 10 11 12
dk 1 0 1 1 1 2 2 3 4 5 7 9 12
2k−2 1 2 4 8 16 32 64 128 256 512 1024

The magnitude of dk is indeed far lower than 2k−2, hence there should be a very large number of
relations amongst MZVs. The example given clearly does not give rise to enough relations, so one of
the main goals of the MZVs theory is to find a generating set of relations.
In order to do this, remember our first naive multiplication of two zeta values

� (s1) ⋅ � (s2) = � (s1, s2) + � (s2, s1) + � (s1 + s2),

which first hinted at an additional algebra structure on .
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Theorem I.1.14. The multiplication of real numbers induces an algebra structure on  compatible
with length and weight filtrations :

l1k1 ⋅ l2k2 ⊆ l1+l2k1+k2 .

As mentioned earlier, there are no observed relations betweenMZVs of different weight i.e known
relations are homogeneous, which leads to the following conjecture :
Conjecture I.1.15. The weight defines a grading on  :

 =
⨁

k≥0
k.

The algebra structure defined on  raises some new questions, for example on the number of
algebra generators of .

I.1.3 The integral representation and double shuffle relations

So far, we have defined multiple zeta values as infinite series, and seen that  can be equipped with a
product (called harmonic or stuffle product), turning it into an algebra.
Here, we will define the integral representation of MZVs. The idea behind it is as follows :

∞
∑

k=1

zk

k
= −log(1 − z) = ∫

z

0

dt
1 − t

for z ∈]0, 1[. Although both the series and the integral diverge when z goes to 1, the equality suggests
something similar might exist for convergent series.
Here is an example :
Example I.1.16.

∫1≥t1≥t2≥0
dt1
t1

dt2
1 − t2

= ∫

1

0

(dt1
t1 ∫

t1

0

dt2
1 − t2

)

= ∫

1

0

(dt1
t1 ∫

t1

0

∑

n≥1
tn−12 dt2

)

= ∫

1

0

dt1
t1

∑

n≥1

tn1
n

=
∑

n≥1

1
n ∫

1

0
tn−11 dt1

=
∑

n≥1

1
n2
= � (2).

In order to describe the general integral representation of multiple zeta values, we need a few
preliminary definitions.
Definition I.1.17. For 0 ≤ t ≤ 1, we define :

Δp(t) = {(t1, ..., tp) ∈ ℝp
| t ≥ t1 ≥ t2 ≥⋯ ≥ tp ≥ 0}

and the two differential forms
!0(t) =

dt
t

!1(t) =
dt
1 − t

.
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Now let s be a positive multi-index, and ri = ∑i
k=1 sk. We define a differential form of degree rl =

wt(s) by :
!s = !0(t1) ∧⋯ ∧ !0(tr1−1) ∧ !1(tr1)

∧ !0(tr1+1)⋯ ∧ !0(tr2−1) ∧ !1(tr2)

∧ …
∧ !0(trl−1+1) ∧⋯ ∧ !0(trl−1) ∧ !1(trl ).

Here are two examples of such forms :
Example I.1.18.

!(2) = !0(t1) ∧ !1(t2) =
dt1
t1
∧

dt2
1 − t2

and
!(2,1) = !0(t1) ∧ !1(t2) ∧ !1(t3) =

dt1
t1
∧

dt2
1 − t2

∧
dt3
1 − t3

.

Theorem I.1.19. (Kontsevich)Let s = (s1, ..., sl) be an admissible multi-index. The multiple zeta value
� (s) can be obtained by a convergent improper integral:

� (s) = ∫Δwt(s)(1)
!s.

This new way of representing multiple zeta values allows the theory of MZVs to be linked to other
mathematical objects, such as period polynomials . In this thesis, we will simply use the fact that mul-
tiplying two such integrals yields a different MZV than the product of the two corresponding series,
providing us with a set of linear relations among MZVs.

Example I.1.20. Let us have a look at the simplest example of such a product :

� (2) ⋅ � (2) = ∫1≥t1≥t2≥0
dt1dt2
t1(1 − t2)

⋅ ∫1≥u1≥u2≥0
du1du2
u1(1 − u2)

= ∫ 1≥t1≥t2≥0
1≥u1≥u2≥0

dt1dt2du1du2
t1(1 − t2)u1(1 − u2)

=
6
∑

i=1
∫Ui

dt1dt2du1du2
t1(1 − t2)u1(1 − u2)

where the sets Ui are defined as follows :
U1 = 1 ≥ t1 ≥ u1 ≥ t2 ≥ u2 ≥ 0;
U2 = 1 ≥ t1 ≥ u1 ≥ u2 ≥ t2 ≥ 0;
U3 = 1 ≥ t1 ≥ t2 ≥ u1 ≥ u2 ≥ 0;
U4 = 1 ≥ u1 ≥ t1 ≥ u2 ≥ t2 ≥ 0;
U5 = 1 ≥ u1 ≥ t1 ≥ t2 ≥ u2 ≥ 0;
U6 = 1 ≥ u1 ≥ u2 ≥ t1 ≥ t2 ≥ 0.

Using the theorem, we obtain :
� (2) ⋅ � (2) = 4 ⋅ � (3, 1) + 2 ⋅ � (2, 2).
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When computing the product of the defining infinite series � (2)2, one gets :
� (2) ⋅ � (2) = 2� (2, 2) + � (4).

The example above thus yields the following equality :
� (4) = 4� (3, 1).

The two representations of multiple zeta values provide us with some new relations when com-
paring products. In order to be able to refer to one or the other, we will name the product of infinite
series the stuffle or harmonic product and denote it by ∗.
The product of integrals will be called shuffle product and denoted by ⧢.
Due to linear relations among MZVs, only the weight and length of multi indices are well defined :
the products therefore have to be defined at the level of indices.
The algebraic setup and the exact formulas describing both products will be described in the next
subsection, but it is already possible to state the double shuffle relations : for s1, s2 admissible :

� (s1 ∗ s2) = � (s1 ⧢ s2).

Remark I.1.21. The double shuffle relations provide us with a whole set of linear relations, but the
smallest weight in which such relations exist is 4. Therefore the relation � (2, 1) = � (3) cannot be
obtained this way, and double shuffle relations cannot be conjectured to describe all relations among
MZVs.

Still, let us persist in this direction by disregarding convergence conditions and compute � (1)⋅� (2).
The ∗ product yields � (1) ⋅ � (2) = � (1, 2) + � (2, 1) + � (3), where the ⧢ product gives us � (1) ⋅ � (2) =
2� (2, 1) + � (1, 2).
Equating these expressions, the divergent terms cancel out and we get back Euler’s relation.
It therefore seems that considering not only admissible multi-indices, but positive ones could provide
us with more relations. This theory of assigning real values to divergent MZV-like series and integrals
corresponding to mutli indices starting with 1 is called regularization.
We will now describe the algebraic setting defined by Hoffman in order to develop this idea of regu-
larization more rigorously.

I.1.4 Hoffman’s notations and regularization theory

Let h ∶= ℚ⟨x, y⟩ be the non-commutative polynomial algebra over the rationals in two indeterminates
x and y, and h1 and h0 its subalgebras ℚ + hy and ℚ + xhy respectively.
Let Z ∶ h0 ⟶ ℝ the evaluation map taking a monomial u1u2… ul to the multiple integral:

∫ ⋯∫1≥t1≥⋯≥tl>0
!u1(t1)…!ul (tl)

where !x(t) = dt
t
and !y(t) = dt

1−t .Since the word u1… ul belongs to h0, it starts in x and ends in y and the corresponding integral under
Z converges.
The theorem of integral representation of MZVs seen previously then yields :

Z(xs1−1yxs2−1y… xsl−1y) = � (s1, s2,… , sl).

The weight of the index s now corresponds to the total degree of the monomial xs1−1yxs2−1y… xsl−1y
and its depth to the y-degree.
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Let us write yk ∶= xk−1y. Then h1 is freely generated by the yk with k ≥ 1, corresponding to
positive multi indices, whereas words in h0 are in bijection with admissible multi indices.

We will now equip h1 with two different algebraic structures corresponding to the two products
on MZVs.
Definition I.1.22. The harmonic or stuffle product ∗ on h1 is defined inductively by

1 ∗ w = w ∗ 1 = w,

ykw1 ∗ ylw2 = yk(w1 ∗ ylw2) + yl(ykw1 ∗ w2) + yk+l(w1 ∗ w2),

for all k, l ≥ 1 and any words w,w1, w2 ∈ h1, and then extended by ℚ-bilinearity.
This product is associative and commutative.
Theorem I.1.23. (First law of multiplication of MZVs.)
The evaluation map Z ∶ h0 ⟶ ℝ is an algebra homomorphism with respect to the multiplication ∗:

Z(w1 ∗ w2) = Z(w1)Z(w2).

Example I.1.24. The stuffle product
yk ∗ yl = ykyl + ylyk + yk+l

corresponds to the identity
� (k)� (l) = � (k, l) + � (l, k) + � (k + l).

Definition I.1.25. We define a second commutative product called shuffle product on h. It corre-
sponds to the product of two integral representations of MZVs and is defined inductively by setting:

w⧢ 1 = 1⧢w = w,

uw1 ⧢ vw2 = u(w1 ⧢ vw2) + v(uw1 ⧢w2),

for any words w,w1, w2 ∈ h and u, v ∈ {x, y} and again extended by ℚ-bilinearity.
Theorem I.1.26. (Second law of multiplication of MZVs.)
The evaluation mapZ ∶ h0 ⟶ ℝ is an algebra homomorphism with respect to the multiplication⧢:

Z(w1 ⧢w2) = Z(w1)Z(w2).

By equating these two evaluation maps, we obtain the finite double shuffle relation :
� (w1 ∗ w2) = � (w1 ⧢w2)

for all w1, w2 ∈ h0.

As mentioned before, the finite double shuffle relations do not generate all relations between
MZVs. Extending such relations to non convergent indices seemed to be a solution. Ihara, Kaneko
and Zagier found extensions to words in h1.
Proposition I.1.27. We have two algebra homomorphisms

Z∗ ∶ h1 ⟶ ℝ[T ] and andZ⧢ ∶ h1 ⟶ ℝ[T ]

that are uniquely characterized by the properties that they both extend the evaluation mapZ ∶ h0 → ℝ
and send y to T .
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For a multi-index s, we write Z∗
s (T ) and Z⧢

s (T ) the images of the corresponding word zs1… zslby the maps Z∗ and Z⧢ respectively.

Remark I.1.28. If s is admissible, then Z∗
s (T ) = Z

⧢
s (T ) = � (s).Below are a few example on non-admissible indices:

s (1) (1,1) (1,2)
Z∗

s (T ) T 1
2
T 2 − 1

2
� (2) � (2)T − � (2, 1) − � (3)

Z⧢
s (T ) T 1

2T
2 � (2)T − 2� (2, 1)

Theorem I.1.29. Regularization theorem (Ihara, Kaneko, Zagier, [IKZ]).
For any multi index s, we have :

Z⧢
s (T ) = �(Z

∗
s (T )).

The map � ∶ ℝ[T ]→ ℝ[T ] is given by :

�(eT u) = A(u)eT u

with

A(u) = exp

( ∞
∑

n=2

(−1)n

n
� (n)un

)

.

Example I.1.30. Let us come back to the previous table and compare some values of Z∗
s (T ) and

Z⧢
s (T ). Note that �(T ) = T .Comparing the two entries for s = (1, 2) we get :

� (2)T − � (2, 1) − � (3) = � (2)T − 2� (2, 1)

which gives us back the Euler relation � (2, 1) = � (3) we could not obtain via double shuffle relations.
Let us look at more interesting case, i.e. when the role of � is not restricted to the identity. For
s = (1, 1, 2) we have :

Z⧢
s (T ) =

1
2
� (2)T 2 − 2� (2, 1)T + 3� (2, 1, 1)

and
Z∗

s (T ) =
1
2
� (2)T 2 − (� (3) + � (2, 1))T + 1

2
� (4) + � (3, 1) + � (2, 1, 1).

Now �(T 2) = T 2 + � (2), so from the regularization theorem we obtain 2 relations this time :
� (2, 1) = � (3)

again, and
2� (2, 1, 1) = � (2)2 + 1

2
� (4) + � (3, 1).

We call these relations the regularized (or extended) double shuffle relations. They are conjectured
to generate all algebraic relations over ℚ among MZVs.
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I.1.5 Formal MZVs and ds

We will now define one of the three main objects of this thesis : the double shuffle Lie algebra ds,
originally called dmr0 par Racinet ([R]) for Doubles Mélanges et Régularisation.
Definition I.1.31. Let  denote the ℚ-algebra generated by formal symbols Z(w) for all words w
subject to the extended double shuffle relations.We call it the algebra of formal MZVs.
For any admissible word w, we again write w = zs1… zsl and Z(s1,… , sl) = Z(w).
Conjecture I.1.32. There is an algebra isomorphism between the algebra of formal MZVs and the
algebra generated by real MZVs :

 ≃ .

Definition I.1.33. Following Furusho, we define the space of "new formal zetas"
nfz ∶= ()>2∕(>0)2,

where (>0)2 is the ideal generated by products of elements in () of weight at least 1. This space
is composed of algebraic generators of , called "new" by Furusho since they do not arise as the
product of two other MZVs.

We are indeed interested in the structure of nfz as a filtered, graded vector space. We can consider
it as an algebra, but its multiplication law is of course trivial.
Wewill in fact study the graded dual ofnfz: called ds, it is obtained by dualizing the defining equations
of nfz, which are simply linearized versions of the double shuffle equations. It can be endowed with
a Lie algebra structure: the original proof is very complex and due to Racinet ([R]), who named it
dmr0 for Double mélange et régularisation. Its structure can be given more economically in terms of
Lie algebra generators than nfz and the dimension of the graded pieces are indeed the same.
Definition I.1.34. The double shuffle Lie algebra ds is composed of elements f ∈ h of degree at
least 3 such that:

cu⧢v(f ) = 0 ∀u, v ∈ h

and
cu∗v(f ) = 0 ∀u, v ∈ h1 s.t. (u, v) ≠ (ym, yn)

where cw(f ) denotes the coefficient of the word w in the polynomial f (sometimes written (f |w)).
We will see later that the first condition (shuffle) on f ∈ h is equivalent to f being a Lie polyno-

mial. Therefore the definition of ds is sometimes given as:
ds ∶= {f ∈ (lie(x, y))≥3| cu∗v(f ) = 0}

for all u, v ∈ h1 such that u, v are not both powers of y.
Remark I.1.35. Several equivalent definitions of ds or dmr0 can be found in the literature. Some
of them translate more easily in mould language than others. The original definition by Racinet ([R])
necessitates more background that we are willing to give, but here is the closest form of it used by
Schneps:
Definition I.1.36. The Lie algebra ds is the dual of the Lie coalgebra nfz of new formal multizeta
values. It can be defined directly as the set of polynomials f ∈ h having the two following properties:
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(1) The coefficients of f satisfy the shuffle relations :
∑

w∈sℎ(u,v)
(f |w) = 0

where u, v are words in x, y and sℎ(u, v) is the set of words obtained by shuffling them. This con-
dition is equivalent to the assertion that f ∈ lie2.

(2) Let f∗ = �y(f ) + fcorr, where �y(f ) denotes the projection of f onto words ending in y and

fcorr =
∑

n≥1

(−1)n−1

n
(f |xn−1y)yn.

(When f is homogeneous of degree n, which we usually assume, then fcorr is just the monomial
(−1)n

n
(f |xn−1y)yn.) The coefficients of f∗ satisfy the stuffle relations:

∑

w∈st(u,v)
(f∗|w) = 0

where now u, v and w ∈ h1, considered as rewritten in the variables yi = xi−1y, and st(u, v) is the set
of words obtained by stuffling them.
Example I.1.37. The first known non-trivial element of ds is

f3 = [x, [x, y]] + [[x, y], y] = x2y − 2xyx + yx2 + y2x − 2yxy + xy2.

Let us first have a look at the shuffle condition : we have to consider all pairs of words u, v such that
some element of their shuffle has non zero coefficient in f .
Let u = x, v = xy. Then sℎ(u, v) = [x2y, x2y, xyx] and (f |x2y)+ (f |x2y)+ (f |xyx) = 1+1−2 = 0.
Similarly, let u = x2, v = y. Then sℎ(u, v) = [x2y, xyx, yx2] and (f |x2y) + (f |yx2) + (f |xyx) =
1 + 1 − 2 = 0. The remaining possibilities give the same result and f verifies the first condition.

To check the stuffle condition, let us first give the explicit expression of f ∗ in this case:

f∗ = �y(f ) + fcorr = x2y − 2yxy + xy2 +
−y3

3
.

Rewriting it in the variables yi, it yields

f ∗ = y3 − 2y1y2 + y2y1 +
1
3
y31.

Now here are the two possibles couples u, v and their associated stuffle :
st(y1, y2) = [y1y2, y2y1, y3]

gives
(f ∗|y1y2) + (f ∗|y2y1) + (f ∗|y3) = −2 + 1 + 1 = 0,

and
st(y1, y21) = [3y

3
1, y1y2, y2y1]

yields
(f ∗|3y31) + (f

∗
|y1y2) + (f ∗|y2y1) =

1
3
⋅ 3 − 2 + 1 = 0.
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Definition I.1.38. We define the Poisson or Ihara Lie bracket on the underlying vector space of lie2
by :

{f, g} = [f, g] +Df (g) −Dg(f )

where to each element f ∈ lie2 one associates the derivation Df such that Df (x) = 0 and Df (y) =
[y, f ].
This bracket corresponds to the Lie bracket on the derivations of lie2 in the sense that D{f,g} =
[Df , Dg].
Theorem I.1.39. (Racinet, [R]) The double shuffle space ds is a Lie algebra under the Poisson bracket.

The proof contained in Racinet’s thesis is extremely complicated. Salerno and Schneps ([SS])
gave in 2015 an elegant mould theoretic version of this theorem, which we will mention in Chapter 2
.
Note that ds inherits from lie2 a grading by weight or degree n given by the number of letters x and
y in the Lie word, and a filtration by depth, the minimal number of ys in a Lie polynomial f .
Conjecture I.1.40. The Lie algebra ds is freely generated by one generator of weight n for each odd
n ≥ 3.

The existence of the depth filtration on ds brings the necessity to study the associated graded al-
gebra gr(ds), and to see what becomes of the defining property of ds when truncated to their lowest
depth part.
The shuffle is an operation that respects depth, therefore the first property remains untouched. How-
ever, the stuffle produces terms of the same depth (given by the shuffle) and additional terms of higher
depths which disappear when truncating to the lowest depth part (see II.2.8 for an example). This
yields the definition of the linearized double shuffle space ls.
Definition I.1.41. The linearized double shuffle space ls is defined to be the set of polynomials f in
x, y of degree ≥ 3 satisfying the shuffle relations (as mentioned earlier, this is equivalent to f being
in lie2) and :

∑

w∈sℎ(u,v)
(�y(f )|w) = 0

where as above, �y(f ) is the projection of f onto the words ending in y, rewritten in the variables
yi = xi−1y, u, v are words in the yi and w belongs to their shuffle in the alphabet yi.
However, we exclude from ls all (linear combinations of) the depth 1 even degree polynomials, namely
ad(x)2n+1(y), n ≥ 1.

The space ls is bigraded by weight and depth, since the shuffle relations respect the depth. We
will give a simple mould theoretic proof by Salerno and Schneps of the following result in Chapter 2 :
Proposition I.1.42. The space lsdn of weight n and depth d is zero if n ≠ d mod 2.
In particular, the graded quotient dsdn∕ds

d+1
n which lies inside it is zero if n ≠ d mod 2.
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I.2 The Grothendieck-Teichmüller Lie algebra

In this section, we give some background on how the profinite version of the Grothendieck-Teichmüller
group arises from the study of the absolute Galois group of ℚ, then define its prounipotent version
and the associated Lie algebra grt1.

I.2.1 The absolute Galois group Gal(ℚ)

Let K be a perfect field, i.e. every irreducible polynomial over K has distinct roots.
Let K̄ be the algebraic closure of K. The absolute Galois group of K is :

Gal(K) ∶= Gal(K̄∕K)
= Aut(K̄∕K)
= {'|' ∈ Aut(K̄), '(x) = x ∀x ∈ K}

Example I.2.1. The absolute Galois group of ℝ is
Gal(ℝ) = Gal(ℂ∕ℝ) = ℤ∕2ℤ,

where the non-trivial element is complex conjugation.
The absolute Galois group of ℂ is indeed trivial.

What about Gal(ℚ)? This is actually a very difficult and obscure problem to tackle : as of today,
the only explicitly defined elements are the identity and complex conjugation.
The idea of Alexander Grothendieck ([Gr]) was to look at this group via its action on simpler objects,
i.e. understandAut(O) for some type of objectsO then find a map fromGal(ℚ̄∕ℚ)→ Aut(O) (ideally
an isomorphism).

More precisely, Grothendieck suggested to consider the outer action of Gal(ℚ) on the algebraic
fundamental groups of the moduli spaces of closed genus g curves defined over ℚ with n marked
pointsg,n.
In particular, taking the variety0,4 = ℙ1 − {0, 1,∞} we obtain a morphism

Gal(ℚ)→ Out(�̂1(0,4)) = Out(F̂ ree(x, y))

where �̂1(0,4) = F̂ ree(x, y) is the profinite completion of the free group on two generators and
Out() denotes the group of outer automorphisms.
Theorem I.2.2. (Belyi [B]). The morphism

Gal(ℚ)→ Out(F̂ ree(x, y))

is injective.

Therefore, in order to understand Gal(ℚ), we should then study its image in Out(F̂ ree(x, y)), which
is a subgroup characterized by some equations explicited by Drinfel’d in [Dr].

I.2.2 The profinite Grothendieck-Teichmüller group

From these equations, we get the following definition:
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Definition I.2.3. (Drinfel’d, 1991) The profinite Grothendieck Teichmüller group, denoted ĜT , is the
subgroup of Aut(Free(x, y)) consisting of automorphisms � such that :

�(x) = x� �(y) = f−1y�f

where � ∈ ℤ× and f ∈ F̂ ree(x, y) satisfies
f (y, x) = f (x, y)−1

f (z, x)zmf (y, z)ymf (x, y)xm = 1 for xyz = 1

f (x12, x23x24)f (x13x23, x34) = f (x23, x34)f (x12x13, x24x34)f (x12, x23)

where the last equation takes values in the pro-finite completion of the pure braid group P̂ B4 with
generators xij .
Theorem I.2.4. (Drinfeld [Dr]). The outer action of Gal(ℚ) on F̂ ree(x, y) factors through ĜT , i.e.
there is an injective morphism Gal(ℚ)↪ ĜT making this diagram commute :

Gal(ℚ) F̂ ree(x, y)

ĜT

Conjecture I.2.5. The map Gal(ℚ)↪ ĜT is an isomorphism.

I.2.3 The pro-unipotent setting and GT/GRT

However, in the same seminal article [Dr] Drinfel’d also defines a version of the Grothendieck Teich-
müller group in the prounipotent setting. While its ties with the course of action defined above are
looser, it is a very interesting object in itself, linked to a variety of important mathematical objects,
including MZVs and kashiwara-Vergne theory as we will see in section 4.
Definition I.2.6. The (prounipotent) Grothendieck Teichmüller group GT (K) is defined as the set of
pairs (�, f ) with � ∈ K∗ and f ∈ K⟨x, y⟩ such that:

f (y, x) = f (x, y)−1, (I.2.1)

f (z, x)e
�−1
2 zf (y, z)e

�−1
2 yf (x, y)e

�−1
2 x = 1 (I.2.2)

where exeyez = 1, and
f (x12, x23x24)f (x13x23, x34) = f (x23, x34)f (x12x13, x24x34)f (x12, x23) (I.2.3)

Here the last equation takes place in the pro-unipotent completion of the pure braid group, xyz = 1
and m = (� − 1)∕2. The group structure on GT (K) is defined by considering the pairs (�, f ) as an
automorphism F of the pro-unipotent completion of the free group in two generators x, y by setting
x→ x� and y→ f−1y�f . Concretely, it is given by the equation :

(�, f ) ⋅ (�′, f ′) = (��′, fF (f ′)).
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Definition I.2.7. We denote by GT1 the kernel of the group homomorphism :
GT (K)→ K
(�, f )↦ �.

Definition I.2.8. The Kohno-Drinfeld Lie algebra tn is generated by n(n − 1)∕2 elements tij = tji,
where 1 ≤ i ≠ j ≤ n and relations

[tij , tkl] = 0

[tij + tik, tjk] = 0

for all i, j, k, l all distinct.
Definition I.2.9. Consider group-like elements Φ ∈ K⟨⟨X, Y ⟩⟩ satisfying the following equations :

Φ(Y ,X) = Φ(X, Y )−1 (I.2.4)
e
�
2ZΦ(X, Y )e

�
2XΦ(Y ,Z)e

�
2 YΦ(Z,X) = 1 (I.2.5)

Φ(t12, t23 + t24)Φ(t13 + t23, t34) = Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23) (I.2.6)
where for equation (I.2.5) X + Y +Z = 0 and the last equation takes values in the t4 .

The set of pairs (�,Φ) solving these equations with � ≠ 0 is called the set of Drinfeld associators
DAss .
The set of solutions Φ of these equations for � = 0 is called the graded Grothendieck-Teichmüller
group GRT1 .
Theorem I.2.10. (Drinfel’d, [Dr]) The set of associators DAss is non-empty.

I.2.4 The Grothendieck-Teichmüller Lie algebra grt1
We are now able to introduce the corresponding graded Lie algebra grt1. Let K be a field of charac-
teristic zero and let lie2 be the free Lie algebra over K on x, y.
Definition I.2.11. TheGrothendieck-Teichmüller Lie algebra grt1 is spanned by elements  in the
degree completion of lie2 satisfying the following relations :

 (x, y) = − (y, x) (I.2.7)
 (x, y) +  (y, z) +  (z, x) = 0 if x + y + z = 0 (I.2.8)

 (t12, t2,34) +  (t12,3, t34) =  (t23, t34) +  (t1,23, t23,4) +  (t12, t23) (I.2.9)
where the last equation takes values in t4 and tij,k ∶= tik + tjk.
The Lie bracket on grt1 is the Ihara bracket given by :

{ 1,  2} = D 1( 2) −D 2( 1) + [ 1,  2]

where D 1(x) = 0, D 1(y) = [y,  ].The Lie algebra grt1 inherits a grading from lie2 given by the degree or weight (i.e. total number of
x and y of any Lie monomial).
Remark I.2.12. 1. The defining equations of grt1 admit no solutions in degree 1 and 2.

2. The third equation is often referred to as the pentagon equation. In 2010, Furusho ([F1]) proved
that the pentagon equation actually implies the two others.
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Conjecture I.2.13. (Deligne-Drinfeld-Ihara)
TheGrothendieck-Teichmüller Lie algebra grt1 is isomorphic (up to completion) to the free Lie algebra

lie(�3, �5, �7,⋯)

generated by elements �2n+1 of odd degree given by :

�2n+1 =
2n
∑

k=1

(2n + 1)!
k!(2n + 1 − k)!

adk−1x adn−ky [x, y].

This conjecture has been verified up to degree 16, and a further step in that direction is given by
the following theorem.
Theorem I.2.14. (Brown, [Br]) There is an injection

lie(�3, �5, �7,⋯)↪ grt1.

Example I.2.15. [Ih2] The two following examples are the degree 3 and 5 potential generators, nor-
malized to have integer coefficients.

�3 = [x, [x, y]] − [y, [y, x]].
�5 = 2[x, [x, [x, [x, y]]]] − 2[y, [y, [y, [y, x]]]] + 4[x, [x, [y, [x, y]]]] − 4[y, [y, [x, [y, x]]]]−

−3[[x, y], [x, [x, y]]] + 3[[y, x], [y, [y, x]]].

Remark I.2.16. The Lie algebra corresponding to GRT = K× ⋉ GRT1 may be written as the semi-
direct product grt ∶= t2 ⋉ grt1.

23



Bibliography

[B] G. V. Belyi,OnGalois Extensions of aMaximal Cyclotomic Field, Math. USSR Izv., 14, 247-256,
(1979)

[Br] F. Brown, Mixed Tate motives over ℤ, Ann. of Math. (2), 175 (2012), 949-976.
[Dr] Drinfeld V., On quasitriangular quasi-Hopf algebras and on a group that is closely connected

with Gal(Q∕Q), Leningrad Math. J. 2 (1991), no. 4, 829–860.
[F1] H.Furusho, Pentagon and hexagon equations, Ann. of Math., 171 (2010), 545-556.
[Gr] A. Grothendieck,Esquisse d’un programme, unpublished, (1984).
[Ih2] Y. Ihara, Some arithmetic aspects of Galois actions on the pro-p fundamental group of P 1 −

{0, 1,∞}, in Proceedings of Symposia in Pure Mathematics, 70, (2002), 247-273.

24



I.3 The Kashiwara-Vergne Lie algebra

In 1978, Kashiwara and Vergne conjectured in [KV] a universal property on the Baker-Campbell-
Hausdorff formula of a real finite dimensional Lie algebra g.
As a corollary, this conjecture gives a simple proof of the Duflo isomorphism and extends it to germs
of invariant distributions.

• 1978: Kashiwara and Vergne give a proof of their conjecture for solvable Lie algebras.
• 1981 : Rouvière shows that the conjecture holds for sl2(ℝ).
• 1999 : Michèle Vergne proves it for quadratic Lie algebras.
• 2005 : the conjecture is settled positively by Alekseev andMeinrenken using deformation quan-

tization techniques.
• 2008 : Alekseev and Torossian link the KV problem to Drinfeld’s theory of associators, giving

a new proof of the conjecture.
In the next pages, we introduce the basic notions necessary to the understanding of the conjecture,

explain its different forms then describe the formalism needed to define the Kashiwara-Vergne Lie
algebra.

I.3.1 The Baker-Campbell Hausdorff formula

Let g be a finite dimensional Lie algebra over ℝ.
Lie’s third theorem states the existence of a simply connected real Lie group G of Lie algebra g,
together with an exponential mapping

exp ∶ g → G.

The exponential map defines a diffeomorphism from a neighbourhood of 0 in g to a neighbourhood
of the identity in G.

One can then read the multiplication on law on G in exponential coordinates, i.e. there exists a
infinite series cℎ(x, y) in g such that :

expg(x) ⋅G expg(y) = expg(cℎ(x, y)).
The series cℎ(x, y) is called the Baker-Campbell-Hausdorff formula (also denoted V (x, y) in [Rou]
and Z(x, y) in [T]).
Its first few terms are given by :

cℎ(x, y) = log(exey) = x + y + 1
2
[x, y] + 1

12
([x, [x, y]] + [y, [y, x]]) +…

where… indicate higher order brackets of x and y.

I.3.2 A motivation to the Kashiwara-Vergne conjecture : the Duflo isomorphism

Definition I.3.1. First, we construct the tensor algebra of the Lie algebra g :

Tg ∶=
∞
⨁

k=0
T kg =

∞
⨁

k=0
g⊗⋯⊗ g
⏟⏞⏞⏞⏟⏞⏞⏞⏟

k times

.
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The universal enveloping algebra of g is the quotient
Ug ∶= Tg∕

where  is the two-sided ideal generated by g ⊗ ℎ − ℎ ⊗ g − [g, ℎ] with g, ℎ ∈ Tg.
The symmetric algebra of g is the quotient

Sg ∶= Tg∕

where  is the two-sided ideal generated by g ⊗ ℎ − ℎ ⊗ g with g, ℎ ∈ g.
Both spaces are filtered by the number of generators. Note that Sg is indeed commutative, whereas

Ug is not. Still, one can relate the two spaces via the PBW map as follows.
Theorem I.3.2. (Poincaré-Birkhoff-Witt).
The symmetrization map

IPBW ∶ Sg ⟶ Ug

x1… xn ⟼
1
n!

∑

�∈Sn

x�(1)… x�(n)

is an isomorphism of filtered vector spaces.

Due to the non commutativity of Ug, this is not an isomorphism of algebras unless g is abelian.
We denote by ad the adjoint representation from g to End(g). Now, one can extend the adjoint action
ad of g on itself to Sg : for any x, y ∈ g and n ∈ ℕ∗ ,

adx(yn) = n[x, y]yn−1.

There is also an adjoint action of g on Ug: for any x ∈ g and u ∈ Ug,
adx(u) = xu − ux.

Let us denote by U g
g = Z(Ug) the center of the universal enveloping algebra of g, i.e the set of

elements commuting with all other elements of Ug.
Similarly, we consider the elements of Sg that are invariant by the adjoint action :

Sg
g ∶= {f ∈ Sg | adx(f ) = 0 ∀x ∈ g}.

One can easily see that adx◦IPBW = IPBW ◦adx for all x ∈ g. Therefore IPBW restricts to an isomor-
phism (of vector spaces still) from S(g)g to the centerZ(U (g)).We are now dealing with commutative
algebras on both sides, but the IPBW fails to respect the product.
Duflo’s theorem provides us with the solution:
Theorem I.3.3. Duflo [Duf],77. There is an isomorphism of algebras :

Z(Ug) ≅ (Sg)g

given by the composition :

 ∶= IPBW ◦)J 1∕2 ∶ (Sg)g → Z(Ug),

where J ∶= det
( 1−e−ad

ad

)

is the Duflo element .
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The Duflo element J 1
2 is a serie in Sg∗ of infinite order. It can therefore be seen as a differential

operator of infinite order on g∗ with constant coefficients, denoted )J 1∕2 .
We refer the reader to the lectures notes by Calaque and Rossi ([CR]) for a proof based on defor-

mation theory and (co)homological algebra and of course to Duflo ([Duf]) for the original proof.

The Kashiwara-Vergne method provides another proof of the Duflo isomorphism uniquely based
on the exponential map and BCH formula properties.

In order to understand how, we shall shed a different light on the Duflo isomorphism. Let us start
with Ug:
Theorem I.3.4. (Schwartz) The universal enveloping algebra Ug is isomorphic to :
- the algebra of differential operators on G invariant by right translations
- to the algebra of distributions on G supported at the identity e D′

e(G), with the convolution product
as multiplication.

To each element x ∈ g, associate the right-invariant vector fieldLx onG, which can be considered
as a first order differential operator. This gives us a linear map from g into differential operators on
G invariant by right translations. Then any such differential operator D can be written in the form
Df = T ∗ f with T ∈ D′

e(G).

One can identify the symmetric algebra Sg to the algebra of differential operators with constant
coefficients on g : for an element P in Sg, we denote the associated differential operator by P ()x).Similarly, each of these operators defines a distribution supported at 0 on g.

In terms of differential operators, the Duflo map then reads :

(P )('(g)) = P)x(j

1
2 (x))'(gex)||

|x=0

where P ∈ Sg, g ∈ G and ' is a function on G.
The Duflo isomorphism then transfer the distribution given by the convolution product of two distri-
butions at 0 on g to the convolution product of two distributions supported at e on G.
This is a particular case of the original problem defined in the next part.

I.3.3 The original problem

We follow here the exposition of the first chapter of [Rou].
Let G be a real, finite dimensional Lie group and g its Lie algebra.

Definition I.3.5. Convolution products.

The convolution of two distributions u, v on the vector space g is the distribution u ∗g v defined
by:

⟨u ∗g v, f⟩ ∶= ⟨u(x)⊗ v(y), f (x + y)⟩

where x, y are elements in g, ⟨, ⟩ denotes the duality between distributions and functions and f is
an arbitrary test function (smooth and compactly supported) on g.

Similarly, the convolution of two distributions U, V on G is defined by:
⟨U ∗G V , '⟩ ∶= ⟨U (g)⊗ V (ℎ), '(gℎ)⟩

with g, ℎ in G and ' an arbitrary test function on G.
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The product ∗g is commutative whereas in general ∗G is not.
We would now like to relate both convolution products via the exponential map.

Definition I.3.6. We first define the transfer f → f̃ of a function f from G to g by the following
formula :

j(x)1∕2f̃ (ex) = f (x)

where j(x) ∶= det(1−e−adx
adx

) is the Jacobian of exp.
By duality the transfer u→ ũ of a distribution u from G to g is defined by :

⟨ũ, f̃⟩ = ⟨u, f⟩.

Definition I.3.7. A distribution u on g is said to G-invariant if for all f, g ∈ G and x ∈ g:
⟨u(x), f (Adg(x)⟩ = ⟨u(x), f (x)⟩

where Ad denotes the adjoint action of G on g.
We are now able to state the original problem that led to the Kashiwara-Vergne conjecture :

Problem. Prove that :
(u ∗g v)̃ = ũ ∗G ṽ (I.3.1)

for any G-invariant distributions u, v on g (with suitable supports).
Requiring the distributions u, v to be G-invariant is necessary to ensure the commutativity of the

convolution product on G.
Applying the LHS of equation (I.3.1) to a test function f̃ and using the BCH formula, the equation
becomes :

⟨u(x)⊗ v(y), f (x + y)⟩ =
⟨

u(x)⊗ v(y),
(

j(x)j(y)
j(Z(x, y))

)
1
2
f (cℎ(x, y))

⟩

. (I.3.2)
The idea behind theKashiwara-Vergnemethod is to prove this equality by deformation: we endow

g with the bracket [ , ]t defined by [x, y]t ∶= t[x, y] with t ∈ [0, 1] and write gt for (g, [, ]t). Therefore
g0 is abelian, and g1 = g.
This deformation yields a "scaled" version of the Baker-Campbell-Hausdorff formula, given by:

cℎt(x, y) = t−1cℎ(tx, ty) = x + y +
t
2
[x, y] + t2

12
([x, [x, y]] + [y, [y, x]]) +…

for t ≠ 0, and Z0(x, y) = x + y.
It will therefore suffice to prove that for any G-invariant distributions u, v on g and any test function
f :

)
)t

⟨

u(x)⊗ v(y),
(

j(tx)j(ty)
j(tZt(x, y))

)
1
2
f (cℎt(x, y))

⟩

= 0 (I.3.3)
since the LHS and RHS of (I.3.2) correspond respectively to the cases t = 0 and t = 1 above.

This leads to the formulation of the two equations known as the combinatorial conjecture, which
imply (I.3.3).
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Theorem I.3.8. (KV Conjecture, ’78)(Alekseev-Meinrenken [AM] ’05)
For any finite dimensional Lie algebra g, there exist series A(x, y) and B(x, y) in the free lie algebra
lie2 such that A,B give convergent power series at the neighbourhood of (0, 0) ∈ g2 and :

x + y − log(expg(y) ⋅ expg(x)) = (1 − e−adx)A(x, y) + (eady − 1)B(x, y)) (I.3.4)

trg(adx◦)xA + (ady◦)yB) =
1
2
trg

(

adx
eadx − 1

+
ady

eady − 1
−

adcℎ(x,y)
eadcℎ(x,y) − 1

− 1
)

(I.3.5)
where tr denotes the trace in the adjoint representation and )xA(x, y) ∈ End(g) is the linear map :

u→ )
)t
|

|

|

|t=0
A(x + ut, y)

This conjecture was solved positively in 2006 in by Alekseev andMeinrenken, using Kontsevitch’s
quantization deformation theory and results. Details can be found in the orginal article [AM] and in
[Rou].
Equation (I.3.3) was also solved independently from the conjecture in [ADS].

I.3.4 Alekseev-Torossian approach and the Kashiwara-Vergne Lie algebra

We are mainly concerned with the algebraic approach explored by Alekseev and Torossian in [AT] ,
’08. In this paper, the authors establish a relation between the KV conjecture and Drinfel’d’s theory
of associators, briefly mentioned in the previous section. While studying the uniqueness issue for the
KV problem, they re-prove the conjecture using the existence of associators.
Along the way, they define the Kashiwara-Vergne Lie algebra, which is our main subject of study.
This approach relies on a reformulation of the Kashiwara-Vergne problem in the algebraic setting
defined below.

Definitions and notations.

Let K be a field of characteristic zero. Let lie2 be the free Lie algebra over K on x, y. By an abuse of
notation, we denote similarly its degree completion (where the generators x and y have degree one)

lie2 =
∞
∏

k=1
liek(x, y).

Example I.3.9. We write liek2 for the k-th graded piece, spanned by words in k letters : lie⦓1(x, y) is
spanned by x and y, lie22(x, y) by [x, y], lie32(x, y) by [x, [x, y]] and [x, y], y].

Recall that if a Lie algebra g is finite dimensional, then one can associate to it via the exponential
map a connected and simply connected Lie group G.

Now lie2 is not, but it is positively graded with all grade components of finite dimension : we can
associate to lie2 a group coinciding with lie2 as a set and whose group multiplication is given by the
CBH formula. We keep denoting exp the map from lie2 to its associated group exp(lie2.)
Definition I.3.10. An automorphism of lie2 is called inner automorphism if it is of the form Adg,
where g is an element of exp(lie2) and Ad the adjoint action.
An automorphism F of lie2 is said to be tangential if there exists F1, F2 inner automorphisms of lie2
such that F (x) = F1(x) and F (y) = F2(y). We denote TAut2 the group of tangential automorphisms.
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Definition I.3.11. A derivation on an Lie algebra g is a linear operator u ∶ g → g such that
u([g1, g2]) = [g1, u(g2)] + [u(g1), g2] ∀g1, g2 ∈ g

Let der2 be the algebra of derivations on lie2. It is a Lie algebra under the Lie bracket given by
the commutator of maps.
An element u ∈ der2 is entirely determined by its values on the generators x, y.
Definition I.3.12. A derivation u is said to be tangential if there exists a, b ∈ lie2 such that u(x) =
[x, a] and u(y) = [y, b].

In what follows, we will denote a tangential derivation u by (a, b), since tangential derivations are
in one-to-one correspondence with pairs of elements of lie2 (a, b) such that a has no linear term in x
and b has no linear term in y.
Proposition I.3.13. The tangential derivations tder2 form a Lie subalgebra of der2.

The universal enveloping algebra of lie2 is the free associative algebra on two non-commuting
variables K⟨x, y⟩, sometimes denoted by Ass or Ass2 in the literature.
Every element a ∈ ℚ⟨x, y⟩ admits a unique decomposition

a = a0 + ()xa)x + ()ya)y

where a0 ∈ K and )x is a linear operator ℚ⟨x, y⟩ → ℚ⟨x, y⟩ such that

)x(u1… uk−1uk) =
{

u1… uk−1 if uk = x
0 otherwise

The operator )y is similarly defined. In the next chapters, we will favour the notation
a = a0 + axx + ayy

as it the one used in most of L.Schneps papers.
Example I.3.14. Let a ∈ ℚ⟨x, y⟩, a = xy − yx. Then )x(a) = −y and )y(a) = x.
Definition I.3.15. The vector space tr2 is defined in [AT] as the following quotient

tr2 = ℚ⟨x, y⟩+∕⟨(ab − ba)⟩

with a, b ∈ ℚ⟨x, y⟩, where ℚ⟨x, y⟩+ and ⟨(ab − ba)⟩ is the K-linear subspace of ℚ⟨x, y⟩ spanned by
commutators.

We denote by
tr ∶ ℚ⟨x, y⟩ → tr2

the natural projection.
Following the definition of tr2, we have tr(ab) = tr(ba) for all a, b ∈ ℚ⟨x, y⟩.
Not that he vector space tr2 is not an algebra, but comes with an action of tder2 (which extends from
lie2 to ℚ⟨x, y⟩ and descends to tr2.
Example I.3.16. Graded components trk2 of tr2 are spanned by words of length k modulo cyclic
permutations : tr12 is spanned by tr(x), tr(y) and tr22 by tr(x2), tr(xy) and tr(y2).
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Definition I.3.17. We define a "divergence" map by :
div ∶ tder2 ⟶ tr2
u = (a, b)⟼ tr(x)xa + y)yb)

Example I.3.18. Let u = ([x, y], [x, [x, y]]) be a tangential derivation, meaning that u(x) = [x, [x, y]]
and u(y) = [y, [x, [x, y]]].
To compute its divergence, one must first inject a and b into ℚ⟨x, y⟩ and obtain a = xy − yx, b =
x2y − 2xyx + yx2.
The divergence of u is then :

div(u) = tr(x)x(xy − yx) + y)y(x2y − 2xyx + yx2)) = tr(−xy + yx2).

Proposition I.3.19. The divergence is a 1-cocycle, i.e

div([u, v]) = u ⋅ div(v) − v ⋅ div(u).

Definition I.3.20. The Lie algebra cocycle div gives rise to a "Jacobian" group cocycle j ∶ TAut2 →
tr2 uniquely defined by

j(id) = 0 (I.3.6)
and

d
dt
(j(exp(tu)))|t=0 = div(u) (I.3.7)

verifying the cocycle condition : j(gℎ) = j(g) + g ⋅ j(ℎ).

The generalized KV problem

We can now enunciate the generalized KV problem:
Find a tangential automorphism F of lie2 such that :

F (x + y) = cℎ(x, y) (I.3.8)
j(F ) = tr(f (x) − f (cℎ(x, y)) + f (y)) (I.3.9)

for some f in x2K[x].
It is linked to the original formulation of the KV problem by the following theorem:
Theorem I.3.21. ([AT], 2008) An element F ∈ TAut2 is a solution of the generalized KV problem if
and only if u = �(F ) = (A(x, y), B(x, y)) satisfies :

x + y − cℎ(y, x) = (1 − exp(−adx))A(x, y) + (exp(ady) − 1)B(x, y) (I.3.10)
and

div(u) = tr (−f (x + y) + f (x) + f (y)) (I.3.11)
with f ∈ tr1, where �(u) = id − gidg−1 .

Remark I.3.22. As its name infers, the generalized KV problem actually implies the original KV
problem (I.3.8), in which the function f had to be even.

We denote the set of solutions to the generalized KV problem by SolKV (SolK̂V in [AT]).
As seen previously, one can deform or rescale these equations by introducing a parameter t : one

then ask for F (x + y) = cℎt(x, y) and j(F ) = tr(f (x) − f (cℎs(x, y) + f (y)).
For t = 0, Sol0KV is the Kashiwara Vergne group KRV :
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Definition I.3.23. The Kashiwara Vergne groupKRV is composed of tangential automorphism F of
lie(x, y) such that :

F (x + y) = x + y (I.3.12)
j(F ) = tr(f (x) − f (x + y) + f (y)) (I.3.13)

for some f in x2K[x].
Theorem I.3.24. ([AT], 2008) The group KRV acts on SolKV by multiplication on the right. This
action is free and transitive.

The Kashiwara-Vergne Lie algebra is the Lie algebra of the symmetry group KRV of the KV
problem.
Definition I.3.25. The corresponding Lie algebra is the Kashiwara-Vergne Lie algebra krv′ given by:

krv′ ∶= {u = (a, b) ∈ tder2 ∶

[x, a] + [y, b] = 0, (I.3.14)
div (u) = tr (−f (x + y) + f (x) + f (y))} (I.3.15)

for some element f ∈ tr1.
Example I.3.26. 1. The element t = (y, x) belongs to krv′ with f = 0.

2. Let u = ([y, [y, x]], [x, [x, y]]) ∈ tder2. Let us check that u is in krv′. We have :
u(x) + u(y) = [x, [y, [y, x]]] + [y, [x[x, y]]] = 0

by using Jacobi’s identity on the first term of the sum.
One then computes

)xa = )x(y2x − 2yxy + xy2) = y2

and
)yb = )y(x2y − 2xyx + yx2) = x2.

Therefore
div(u) = tr(xy2 + yx2) = 1

3
tr(x3 + y3 − (x + y)3)

and u is indeed an element of krv′.
Remark I.3.27. The original notation in [AT] for the Kashiwara-Vergne Lie algebra was k̂v2, changed
into krv in [AET].
For us, it will be more convenient to let krv denote the elements of degree at least 3 of krv′ :

krv′ = Kt ⊕ krv.

From now on, we will work with krv instead of krv′.
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I.4 Relating theGrothendieck-Teichmüller, Double shuffle andKashiwara-
Vergne Lie algebras

The following diagram summarizes the existing maps between the double shuffle, Grothendieck-
Teichmüller and Kashiwara-Vergne different spaces.

Torsor Assoc(k) Form.MZV s SolKV

Group GRT1(k) DS KRV

Lie algebra grt1(k) ds krv

Furusℎo Scℎneps

There are natural injections from grt1 and ds to tder2, simply given by :
grt1 ⟶ tder2
 ⟼ D = (0,  )

where D (x) = 0 and D (y) = [y,  ], and similarly

ds ⟶ tder2
f ⟼ Df = (0, f ).

All three Lie algebras can then be seen as subalgebras of derivations of lie2, and come equipped
with the same grading by the weight (total number of x and y’s). They also inherit from lie2 a filtration
by depth.
Following the notation from the third section, the three Lie algebras have no elements of degree 1 or
2.
The three Lie morphisms defined below respect both the grading and filtration.
Theorem I.4.1. (Furusho, 2008) The map

f (x, y)↦ f (x,−y)

gives an injective Lie algebra homomorphism from grt to ds.

Theorem I.4.2. (Alekseev-Torossian [AT], 2008) The map

� ∶  ↦ ( (−x − y, x),  (−x − y, y))

is an injective Lie algebra homomorphism mapping grt1 to krv.

Theorem I.4.3. ([S2], 2013) The map

f (x, y)↦ (f (−x − y,−x), f (−x − y,−y))

is an injective Lie homomorphism from ds to krv.

Conjecture I.4.4. The three spaces are isomorphic :

grt1 ≅ ds ≅ krv.
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Chapter II

Moulds

They rejoice in the mellifluous
names of ARI//GARI, ALI//GALI,
ALA//GALA, ILI//GILI,
AWI//GAWI, AWA//GAWA,
IWI//GIWI.
Jean Ecalle, Combinatorial tidbits
from resurgence theory and mould

calculus.

The "elaborate toolbox" of moulds, as Jean Ecalle refers to it in some papers, first emerged from
his work on resurgence theory.
The mould setting then appeared extremely suited to what Ecalle calls dimorphy : the existence of
two encodings and two multiplication rules for one object. Indeed, the main example of dimorphy is
the theory of MZV introduced earlier.
Ecalle’s plan was to replace multizetas by suitable generating functions, one for each of the two dif-
ferent encodings, such that the multiplications rules and the correspondence between both encodings
should be given by simple operations on the generating functions.
He found the framework of the algebra ARI and its group GARI together with the involution swap
connecting the two encodings to be extremely suitable.
Over the years, Ecalle has written different survey-type articles on moulds, some of them focusing on
the multizeta dimorphy. Notations can vary from one article to the other : we try to mention them all,
even though he mentioned having fixed them in the latest survey [?].

We will here only be using but a very small part of the toolbox, and we refer the reader to all of
Ecalle’s work (but especially [E1],[E2]) to get a better picture of the complexity and diversity of the
system he discovered and is still exploring.
We restrict to presenting the material useful to the study of the Lie algebras ds and krv defined previ-
ously. For most proofs, I will refer to the very detailed text by Schneps [S2]. J. Cresson’s text Calcul
Moulien[C], more directed to the study of analysis, will be of help to us as well. Finally, it is important
to keep in mind throughout the rest of this thesis that:
(i) all these operators given in mould-theoretic terms can be applied to a much wider class of moulds
than merely polynomial-valued moulds, which permits a number of proofs of results on polynomial-
valued moulds (and thus polynomials in x, y) that are not accessible otherwise
(ii) there are some very important mould operators that are not translations of anything that can be
phrased in the polynomial situation; this is where the real richness of mould theory comes into play.
We do not use any of these in this chapter, but some of them will play a key role in the next .
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II.1 Definitions and dictionary with the non-commutative framework

II.1.1 Definition

Ecalle describes moulds as "functions of a variable number of variables", depending on sequences
! ∶= (w1,… , wr) of arbitrary length r.
Example II.1.1. We define the mould T ∙ by :

T (∅) = 0, T (w) = 0 ∀w ∈ Ω.

T (w1,… , wr) =
1

(w2 −w1)
⋯

1
(wr−1 −wr)

.

Remark II.1.2. The notationM! is the one favored by Ecalle, due to the existence of objects named
co-moulds N! that can be contracted with moulds. We will prefer to use M(!), since we are not
concerned with comoulds and believe the notation to be more explicit. We therefore generally write
M forM ∙.

The definition and notations we will use most frequently are the ones given by Schneps in ([S1],
[S2], [SS]):
Definition II.1.3. Let (u1, u2,…), (v1, v2,…) be two infinite sequences of indeterminates. A bimould
M is a collection of functions

Mr
( u1 u2 … ur
v1 v2 … vr

)

for each r ≥ 0, with eachMr a function on the 2r variables ui and vi. We callMr the depth r part of
the mouldM . Note thatM(∅) ∶=M0 is a constant.
A mould is a bimould that is actually only a function of the ui, and a v-mould is a function only of
the vi .
The space of all bimoulds is denoted BIMU .
Remark II.1.4. While we will mostly work with moulds, the definition of bimoulds is important to
understand some of the operations defined by Ecalle which mix up the two sequences in ui and vi.
Most moulds encountered in this thesis will be either polynomial or rational with at most a very precise
denominator. In addition to these already severe restrictions, we will very often work with moulds
concentrated in a certain depth r, i.eMr(u1,… , ur) is non zero only for a given r.
One should keep in mind that the properties discovered by Ecalle apply to a larger set of objects than
what we often restrict them to.
Example II.1.5. 1. The moulds Log and Exp are given by

Log(∅) = Exp(∅) = 0

Logr(!) = Log(w1,… , wr) =
(−1)r+1

r

Expr(!) = Exp(w1,… , wr) =
1
r!

2. The two v-moulds pic and poc will be useful later :
pic(∅) = poc(∅) = 1

pic(v1,… , vr) =
1

v1… vr

poc(v1,… , vr) =
1

v1(v1 − v2)… (vr−1 − vr)
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II.1.2 Correspondence maps

We now need to understand the connection between moulds and the non-commutative world in which
the Lie algebras we are interested in are defined.

Let us consider formal power series ℚ⟨⟨x, y⟩⟩ in non-commutative variables x, y. There is a de-
creasing filtration onℚ⟨⟨x, y⟩⟩ induced by the y-degree, called the depth filtration. Then every power
series P ∈ ℚ⟨⟨x, y⟩⟩ can be uniquely decomposed as :

P =
∑

r≥0
P (r).

Definition/Proposition II.1.6. There is a ℚ-linear isomorphism from the space of non-commutative
power series in words y-degree r (denoted byℚr

⟨⟨x, y⟩⟩) to the complete R-module of power series in
r + 1 commuting variables:

�X ∶ ℚr
⟨⟨x, y⟩⟩ ⟶ ℚ[[z0,… , zr]]

xi0y… yxir ⟶ zi00 z
i1
1 … zirr

By applying this isomorphism to each P (r), we can uniquely represent a power series in ℚr
⟨⟨x, y⟩⟩ by

an infinite sequence of power series �X(P (r)) ∈ ℚ[[z0,… , zr]] for all r ≥ 0.

Definition II.1.7. Let f ∈ ℚ⟨x, y⟩ be a polynomial in the non commutative variables x, y. We write
f r for the depth r part of f , i.e the monomials containing exactly r ys, and

f =
∑

a=(a0,…,ar),r≥1
fax

a0y… yxar .

The mould vimof is uniquely defined by
vimorf = �X(f

r) =
∑

a=(a0,…,ar)
faz

a0
0 … zarr

Example II.1.8. Let f = x2y + yxy + 2y2x. Then
vimo0f (z0) = 0

vimo1f (z0, z1) = z
2
0

vimo2f (z0, z1, z2) = z1 + 2z2.

All other vimorf are 0.
This is the simplest way to go from the non-commutative world to the commutative one, but it

is not the most useful one for us. From now on, we will often work with non-commutative variables
other than x and y.
Definition II.1.9. Let Ci = ad(x)i−1(y), ℚ⟨C⟩ be the subring of ℚ⟨x, y⟩ generated by the Ci, and let
ℚ⟨C⟩n denote the vector subspace of polynomials in ℚ⟨C⟩ of homogeneous degree n in x and y
We denote ℚ⟨C⟩r the subspace of polynomials of homogeneous degree r (i.e. linear combinations of
monomials of the form Ca1…Car), and ℚ⟨C⟩rn the intersection.The space ℚ⟨C⟩ is bigraded. If f ∈ ℚ⟨C⟩, we write fn for its weight n part and f r for its depth r
part.
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The following lemma provides us with a way to distinguish elements of f ∈ ℚ⟨C⟩ by their image
in moulds.
Lemma II.1.10. If f ∈ ℚ⟨x, y⟩, then f ∈ ℚ⟨C⟩ if and only if

vimof (z0, ..., zr) = vimof (0, z1 − z0, z2 − z0, ..., zr − z0) (II.1.1)
for r ≥ 1.

Example II.1.11. Let us consider two polynomials inℚ⟨x, y⟩, f1 = yx2+xyx and f2 = x2y−2xyx+
yx2. Both are of degree 3 and depth 1, and their images under vimo are given by :

vimof1(z0, z1)) = z
2
1 + z0z1,

vimof2(z0, z1) = z
2
0 − 2z0z1 + z

2
1.

We see that
vimof1(0, z1 − z0) = z

2
1 − 2z0z1 + z

2
0 ≠ vimof1(z0, z1)

whereas
vimof2(0, z1 − z0) = z

2
1 − 2z0z1 + z

2
0 = vimof2(z0, z1).

Indeed, f1 cannot be rewritten in the Ci, whereas f2 = C3.
Definition II.1.12. We denote fC the polynomial f rewritten in the variables Ci, and fY the polyno-
mial �(�Y (f )), where � is the "backward writing" operator and �Y (f ) the projection of f onto words
starting in y and written in the variables yi.
We then define the two maps :

�Y ∶ ya1… yar ⟶ va1−11 … var−1r

�C ∶ Ca1…Car ⟶ ua1−11 … uar−1r

from monomials in ℚr
⟨⟨x, y⟩⟩ to monomials in commutative variables in v and u. From them, we

construct the moulds maf and v-mould mif as follows:
maf (u1,… , ur) = (−1)r+n�C (f rC )
mif (v1,… , vr) = �Y (f rY )

The maps ma and mi are related to vimo as follows :
Lemma II.1.13. (Schneps, [S2], Lemma 3.2.1). The moulds maf and mif are obtained from vimof
by the formulas

maf (u1,… , ur) = vimof (0, u1, u1 + u2,… , u1 +⋯ + ur) (II.1.2)
mif (v1, ..., vr) = vimof (0, vr, vr−1, ..., v1) (II.1.3)

Therefore, if f ∈ ℚ⟨C⟩, vimof , maf and mif are simply different encodings of the same infor-
mation.
Here is an example we will follow through the different sections :
Example II.1.14. Let

f = [x, [x, y]] + [[x, y], y] = x2y − 2xyx + yx2 + xy2 − 2yxy + y2x.
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We have fY = y3 + y2y1 − 2y1y2 and fC = C3 − C1C2 + C2C1.
The Lie polynomial f is of weight 3 and has monomials of depth up to 2.

vimof (z0) = 0

vimof (z0, z1) = z20 − 2z0z1 + z
2
1

vimof (z0, z1, z2) = z0 − 2z1 + z2
vimof (z0, z1, z2, z3) = 0

maf (∅) = 0

maf (u1) = u21
maf (u1, u2) = −u1 + u2
maf (u1, u2, u3) = 0

mif (∅) = 0

mif (v1) = v21
mif (v1, v2) = v1 − 2v2
mif (v1, v2, v3) = 0

Remark that the degree d of polynomials maf are given by d = n − r with n the weight of f and
r its depth.
Of these three maps,mawill be the most useful one to go back and forth between the commutative and
non-commutative worlds: it will directly provide us with different Lie algebra isomorphisms between
moulds and the non-commutative setting.

II.1.3 Operations on moulds

We first introduce basic binary and unary operations on moulds, including the fundamental swap
operator, then describe the Lie bracket ari and its ties to the Poisson bracket. Finally, we give the
definitions of alternality and its corresponding description for non-commutative words.
Definition II.1.15. Basic binary moulds operations.
LetM,N ∈ BIMU . The addition of moulds is defined by :

(M +N)(!) =M(!) +N(!).

The multiplication (mu or ×) of moulds is associative, but non-commutative :
(M ×N)(!) = mu(M,N)(!) =

∑

(uuu,vvv) s.t.
uuuvvv=!

M(uuu) ⋅N(vvv) =
∑

0≤i≤r
M(w1,… , wi)N(wi+1,… , wr).

The identity is the mould with value 1 on ∅ and 0 in all other depths.
We denote by invmu(M) the inverse ofM for the mu multiplication.
Example II.1.16. LetM ,N be two moulds on Ω and w1, w2 ∈ Ω. Then

mu(M,N)(w1, w2) =M(∅)N(w1, w2) +M(w1)N(w2) +M(w1, w2)N(∅)
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Proposition II.1.17. (BIMU,+,×) is an associative, non-commutative algebra.

Definition II.1.18. Let BARI (resp. ARI , ARI) be the space of bimouldsM (resp. moulds, resp
v-moulds) such thatM0 ∶=M(∅) = 0.
We define a Lie bracket on these vector spaces by :

limu(M,N) = mu(M,N) − mu(N,M).

The bracket limu is sometimes denoted by lu and BARI sometimes called BIMU∗.
Proposition II.1.19. The vector space BARI (resp. ARI , ARI) equipped with the operation limu
forms a Lie algebra.

We write ARIpol for the susbspace of ARI of polynomial moulds.
Theorem II.1.20. The map :

ma ∶ ℚ⟨C⟩ → ARIpol

is a ring isomorphism, where ℚ⟨C⟩ is equipped with the ordinary (concatenation) multiplication of
polynomials, and ARIpol with the multiplication mu.

Proof. From the definition of �c and ma, one sees that ma gives an isomorphism of vector spaces from
ℚ⟨C⟩ to ARIpol.
Let f = Ca1…Car and g = f = Cb1…Cbs in ℚ⟨C⟩ (by additivity, it is enough to assume that f and
g are monomials in the Ci) :

mafg = (−1)r+su
a1−1
1 … urar−1u

b1−1
r+1 … ubs−1r+s = mu(maf , mag)

as both moulds are concentrated in depth r and s respectively.
Definition II.1.21. Frequently used unary operations. The following linear operations on BIMU
are involutions :

neg(M)(w1,… , wr) =M(−w1,… ,−wr)
anti(M)(w1,… , wr) =M(wr, wr−1,… , w1)

mantar(M) = (w1,… , wr) = (−1)r−1M(wr, wr−1,… , w1)

The pusℎ operator is a cyclic permutation of order r + 1 on each BIMUr :
pusℎ(M)

( u1 … ur
v1 … vr

)

=M
( −u1⋯ − ur u1 … ur−1

−vr v1 − vr … vr−1 − vr

)

.

A (bi)mouldM is said to be pusℎ (resp neg, anti, mantar)-invariant if pusℎ(M) =M (resp neg, anti,
mantar).

These first four operators can be considered as operators on ARI or ARI by forgetting about the
variables ui or vi.
Definition II.1.22. The swap operator, though, exchanges the variables ui and vi.

swap(M)
( u1 … ur
v1 … vr

)

=M
( vr vr−1 − vr … v1 − v2
u1 +⋯ + ur u1 +⋯ + ur−1 … u1

)

It can still be seen as an operator from ARI to ARI where
M(u1,… , ur)↦ (swapM)(v1,… , vr) =M(vr, vr−1 − vr,… , v1 − v2)

or indeed as an operator from ARI to ARI with :
M(v1,… , vr)↦ (swapM)(u1,… , ur) =M(u1 +⋯ + ur, u1 +⋯ + ur−1,… , u1).
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Ecalle defines a (bi)mouldM to be dimorphic if bothM and swap(M) belong to a certain sym-
metry type (not necessarily the same).
Remark II.1.23. From the definitions of ma and mi and equations II.1.2 and II.1.3, one easily obtains
the relation :

swap(maf ) = mif .

Example II.1.24. Coming back to example II.1.14, in depth 2 we had maf (u1, u2) = −u1 + u2. Then
swap(maf )(v1, v2) = maf (v2, v1 − v2) = −v2 + v1 − v2 = v1 − 2v2 = mif (v1, v2).

This relation between maf and mif gives us a way to translate properties of a non-commutative
polynomial f into (potentially) a dimorphic property of the associated mould.

II.1.4 The Lie algebra ARI

The ari-bracket

The limu bracket defined previously is the first and easiest Lie algebra structure one can define on
moulds, but Ecalle introduced a different Lie bracket called ari which turns out to be extremely im-
portant for us.
In order to construct the ari bracket, we will introduce the essential building blocks of operations on
bimoulds, called flections, or flexions, or sequence contractions (all Ecalle’s terms).
Definition/Example II.1.25. The four flectors are denoted by the symbols ⌉, ⌈, ⌋,⌊ and depend on the
factorisation of a given sequence

! = (!1,… , !r) =
( u1 … ur
v1 … vr

)

.

For the formal definition, we refer you to [S1], 2.2, Flexions.
We prefer to provide the reader with some enlightening examples :

Let ! = ab with a =
( u1 u2 u3
v1 v2 v3

)

and b =
( u4 u5 u6
v4 v5 v6

)

. Then

a⌋ =
( u1 u2 u3
v1 − v4 v2 − v4 v3 − v4

)

⌈b =
( u1 + u2 + u3 + u4 u5 u6

v4 v5 v6

)

a⌉ =
( u1 u2 u3 + u4 + u5 + u6
v1 v2 v3

)

⌊b =
( u4 u5 u6
v4 − v3 v5 − v3 v6 − v3

)

.

Remark II.1.26. The definitions of flexions on ARI (resp. ARI) are restricted to modifications of
the ui (resp. vi).

We first give an explicit definition of the ari product, then give another presentation using the
derivation arit.
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Definition II.1.27. The product ari on BARI is explicitely defined by :
ari(M,N)(!) ∶=limu(M,N)(!)+

∑

!=bcd
(M(⌊c)N(b⌉d) − (N(⌊c)M(b⌉d))+

∑

!=abc
(M(a⌉c)N(b⌋) −N(a⌉c)M(b⌋))

with b, c ≠ ∅.
Example II.1.28. LetM,N ∈ BARI and ! = (w1, w2). Then

ari(M,N)(!) =M(w1)N(w2)) −N(w1)M(w2)

+M
( u2
v2 − v1

)

N
(u1 + u2

v1

)

−N
( u2
v2 − v1

)

M
(u1 + u2

v1

)

+M
(u1 + u2

v2

)

N
( u1
v1 − v2

)

−N
(u1 + u2

v2

)

M
( u1
v1 − v2

)

.

Now letM,N ∈ ARI and ! = (u1, u2). We simply get :
ari(M,N)(!) =M(u1)N(u2)) −N(u1)M(u2)

+M(u2)N(u1 + u2) −N(u2)M(u1 + u2)
+M(u1 + u2)N(u1) −N(u1 + u2)M(u1).

Remark II.1.29. The definition on ARI (resp. ARI) is given by the same formula with no lower
flectors (resp. upper).

The Lie bracket ari is traditionally constructed from derivations (anit, amit, arit) built from the
above flexions themselves.
Definition/Proposition II.1.30. For any bimould B ∈ BIMU , the operators anit(B) and amit(B)
are defined by :

anit(B) ⋅ A =
∑

abc
a,b≠∅

A(a⌈c)B(⌋b), (II.1.4)

amit(B) ⋅ A =
∑

abc
b,c≠∅

A(a⌉c)B(b⌊). (II.1.5)

Finally, the operator arit(B) is given by :

arit(B) ⋅ A = amit(B) ⋅ A − anit(B) ⋅ A (II.1.6)
All three operators are derivations for the bracket limu ([S2], prop 2.2.1).
The ari- bracket can then be written as :

ari(A,B) = arit(B) ⋅ A − arit(A) ⋅ B + limu(A,B). (II.1.7)
Proposition II.1.31. The ari bracket is a Lie bracket, therefore ARI , ARI and BARI are Lie alge-
bras under ari.
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From now on, we will write ARI for ARIari, i.e equipped with the Lie bracket ari (similarly for
ARI). If we want to work with a different Lie bracket (such as limu or the yet to be defined Dari), it
will be indicated as a subscript.

Let us now relate the ari-bracket to the non-commutative world, and see why it will have a central
place in the study of mould theoretic ds and krv spaces.
Proposition II.1.32. Let f ∈ ℚ⟨C⟩n be of homogeneous depth r and g ∈ ℚ⟨C⟩m of homogeneous
depth s. Let Df be as usual the derivation of ℚ⟨C⟩ defined by Df (x) = 0, Df (y) = [y, f ]. Then

maDf (g) = −(arit(maf )) ⋅ (mag). (II.1.8)
This allows us to state the following result linking the Poisson bracket to the ari-bracket.

Corollary II.1.33. As above, let f ∈ ℚ⟨C⟩n be of homogeneous depth r and g ∈ ℚ⟨C⟩m of homoge-
neous depth s. Then :

ma{f,g} = ari(maf , mag). (II.1.9)
Remark II.1.34. Note that this only applies to polynomials in the Ci, whereas the ari-bracket is
defined on a much bigger space. One should then be very careful and precise in which setting the ari
and Poissn bracket are "the same".

The group GARI

Since we have turned the space ARI into a Lie algebra, we now construct the associated Lie group.
Definition II.1.35. We denoteGARI (resp. GARI) the set of moulds (resp. v-moulds) with constant
term 1, and GBARI the set of bimoulds with constant term 1.

For each mould B in GBARI we can associate an automorphism of GBARI denoted garitB by
the formula:

garitB ⋅ A =
∑

w=a1b1c1…asbscs
bi≠∅,aici+1≠∅

A(⌈b1⌉… ⌈bs⌉)B(a1⌋)…B(as⌋)invmu(B)(⌊c1)… invmu(B)(⌊cs)

(II.1.10)
with s ≥ 1. As for ari, the expression for garitB on GARI resp. GARI are obtained by ignoring the
lower resp. upper flexions.
We denote by invgari(B) the inverse of a mould B for the group law gari.
Definition II.1.36. The group law on GARI , denoted gari, is given by :

gari(A,B) = mu(garitB ⋅ A,B). (II.1.11)

We call expari the standard exponential map on the Lie algebra ARI , and logari its inverse map.
One retrieves the group law gari on GARI via the BCH formula :

gari(expari(M1), expari(M2)) = expari(cℎ(M1,M2)).

GARI acts on its Lie algebraARI by the standard adjoint action, denotedAdari (sometimes adari
in Ecalle’s work or Adari in [S3]), by :

Adari(A) ⋅ B =
d
dt
|t=0(gari(A, expari(tB), invgari(A))

=B + ari(logari(A), B) + 2ari(logari(A), ari(logari(A), B)) +⋯
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II.1.5 Alternality

We present here one of fundamental mould symmetry, alternality, and give its relation to the non-
commutative framework.
Definition II.1.37. Let u, v be two sequences. The shuffle sℎ(u, v) is given by the set of sequences !
obtained by shuffling the elements of the two sequences u and v while preserving the internal order
of the elements in these sequences.
Example II.1.38. Let u = (w1, w2) and v = (w3).Then

sℎ(u, v) = {(w1, w2, w3), (w1, w3, w2), (w3, w1, w2)}.

Definition II.1.39. AmouldM ∈ ARI or ARI is said to be alternal if for all pairs of sequences u, v
in the ui :

∑

!∈sℎ(u,v)
M(!) = 0. (II.1.12)

A mouldM ∈ GARI or GARI is symmetral if for all pairs of sequences u, v in the ui, we have :
∑

!∈sℎ(u,v)
M(!) =M(u)M(v).

Note that alternality is a property preserved by depth, so to prove that a mould is alternal one
"only" needs to check II.1.12 for each depth.

Remark II.1.40. In depth 2, the definition yields the following equation:
M(w1, w2) +M(w2, w1) = 0,

In depth 3, there are two possible shuffles to consider : sℎ((w1, w2), w3) and sℎ(w1, (w2, w3)), yielding
the two equations :

M(w1, w2, w3) +M(w1, w3, w2) +M(w3, w1, w2) = 0

M(w1, w2, w3) +M(w2, w1, w3) +M(w2, w3, w1) = 0

The second equation is in fact automatically satisfied if the first is, by using the change of variables
w1 ↦ w3, w2 ↦ w1 and w3 ↦ w2.
It is actually enough to check the relation for the pairs (!1,!2) = (w1,… , ws), (ws+1,… , wr) for
1 ≤ s ≤ [ r

2 ] since all shuffle relations can be deduced from these by a change of variables.
Example II.1.41. 1. Take A to be the mould concentrated in depth 3 given by

A(u1, u2, u3) =
1
u1u2

− 2
u1u3

+ 1
u2u3

.

Then
A(u1, u2, u3) + A(u1, u3, u2) +M(u3, u1, u2) = 0.

2. The mould B given by B(∅) = 1, B(u1,… , ur) =
1

u1(u1+u2)…(u1+⋯+ur)
is symmetral. In depth 2,

one sees that:
1

u1(u1 + u2)
+ 1
u2(u1 + u2)

=
u2 + u1

u1u2(u1 + u2)
= 1
u1u2

= B(u1) ⋅ B(u2).

One proves the result for all depths by a simple recurrence.
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3. The mould T defined in example II.1.2 is alternal, see [C], 6.1 for the full proof.
4. The mould lopil in ARIari defined by :

lopil(v1,… , vr) = cr
v1 +⋯ + vr

v1(v1 − v2)⋯ (vr−1 − vr)vr

is alternal.
Proposition II.1.42. (see [S2], prop 2.6.1) We have

expari(ARIal) = GARIas.

Now, let us see why the alternality is such an important property for our purposes.
Definition/Proposition II.1.43. Let lieC denote the degree completion of the Lie algebraL[[C1, C2,…]]
on the Ci. By Lazard elimination, lieC is free on the Ci and

lie2 ≃ ℚ[x]⊕ lieC . (II.1.13)
Thus, Lazard elimination shows that every polynomial b ∈ lie2 having no linear term in x can be
written uniquely as a Lie polynomial in the Ci.

Now, let Δ denote the standard cobracket on ℚ⟨C⟩, defined by
Δ(Ci) = Ci ⊗ 1 + 1⊗Ci.

Then lieC , seen as a subspace of ℚ⟨C⟩, is the space of primitive elements for Δ, i.e. elements satis-
fying

Δ(f ) = f ⊗ 1 + 1⊗ f.

This condition on f is given explicitly on the coefficients of f by the family of shuffle relations :
∑

u∈sℎ(Ca1…Car ,Cb1…Cbs )
(f |u) = 0,

But these conditions are exactly equivalent to the alternality relations
∑

u∈sℎ((a1,…,ar),(b1…bs))
(f |u) = 0.

Together with Theorem II.1.20 and Corollary II.1.33, this yields :
Proposition II.1.44. The map

ma ∶ lieC → ARIpolal (II.1.14)
is an isomorphism of Lie algebras, where lieC is equipped with the Poisson bracket and ARI with the
bracket ari.

Remark II.1.45. The Lie algebra lieC equipped with the Poisson bracket is often denotedmt for the
Twisted Magnus Lie algebra.
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II.1.6 Subalgebras of ARI

Notations

We use the notationARIa∕b for the space of moulds having property a and whose swaps have property
b; for example, ARIal∕al denotes the space of alternal moulds with alternal swap.
The slightly more general notation ARIa∗b denotes the space of moulds having property a and whose
swap has property b up to adding on a constant-valued mould; thus, we write ARIal∗al for the space
of alternal moulds whose swaps are alternal up to adding on a constant-valued mould.
Finally, the notation ARIa∕b denotes the subspace of ARIa∕b of moulds that are even functions of u1
in depth 1.
Example II.1.46. An example of a mould inARIal∗al is the mouldΔ−1(A), whereA is the polynomial
mould concentrated in depth 3 given by

A(u1, u2, u3) = −
1
4
u31u2 +

1
4
u31u3 −

1
4
u21u

2
2 +

1
2
u21u

2
3 +

1
4
u1u

3
3 −

1
4
u22u

2
3 −

1
4
u2u

3
3

− 1
12
u21u2u3 +

1
6
u1u

2
2u3 −

1
12
u1u2u

2
3

and Δ−1(A)(u1, u2, u3) = 1
u1u2u3(u1+u2+u3)

A(u1, u2, u3). It is easy to check that Δ−1(A) is alternal, but its
swap is not alternal unless one adds on the constant 1∕3.
Proposition II.1.47. The subspace ARIpol of polynomial-valued moulds in ARI forms a Lie algebra
under the ari bracket.

This follows immediately from the definition of ari, since the flexion operations are polynomial.
Theorem II.1.48. (Ecalle, Schneps) The subspaces ARIal and ARIal are Lie algebras under the Lie
bracket ari.

We refer the reader to [S2], Annex A5 for the proof. The following theorem will prove extremely
important for the next section.
Theorem II.1.49. ([SS], Theorem 3.3) The subspacesARIal∕al andARIal∗al form Lie algebras under
the ari bracket.

The proof of this theorem, not too complicated but technical, is based on two following properties:
Proposition II.1.50. ([SS], 3.4) If A ∈ ARIal∗al, then A is neg-invariant and pusℎ-invariant.

Proposition II.1.51. ([SS], 3.5)
If A,B are pusℎ-invariant moulds in ARI , then

swap(ari(swap(A), swap(B))) = ari(A,B).

We are now equipped to tackle the study of ls and ds in the mould framework.
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II.2 The mould double shuffle Lie algebra

II.2.1 Introduction

In [SS], Salerno and Schneps reproved Racinet’s theorem stating that ds is a Lie algebra under the
Poisson bracket using the moulds machinery. In this section, we give the mould theoretic versions of
ls and ds and state some important results leading to Salerno and Schneps’ proof.
The mould pal defined by equation (II.2.2) is key to this proof : it is instrumental in proving the
existence of a Lie algebra isomorphism between dimorphic moulds al ∗ al and moulds with the
al ∗ il dimorphy, the latter containing ds.

II.2.2 The linearized double shuffle space ls

Recall the definition of ls :
Definition II.2.1. The linearized double shuffle space ls is defined to be the set of polynomials f in
x, y of degree ≥ 3 satisfying the shuffle relations and :

∑

w∈sℎ(u,v)
(�y(f )|w) = 0

where �y(f ) is the projection of f onto the words ending in y, rewritten in the variables yi = xi−1y,
u, v are words in the yi and w belongs to their shuffle in the alphabet yi.

The previous subsection on alternality provided us with the tools to state the following theorem :
Theorem II.2.2. ([S2], Theorem 3.4.3)
The map f → maf yields a Lie algebra isomorphism

ls → ARIpolal∗al.

As promised in the introduction, this description of ls in moulds allows for a very simple proof of
the property below.
Proposition II.2.3. The space lsdn of weight n and depth d is zero if n ≠ d mod 2.

Proof. We first translate this statement into the mould language : it means that ifM ∈ ARIpolal∕al is a
homogeneous mouldM(u1,… , ud) of odd degree n− d thenM must be zero. But we saw previously
that elements of ARIal∕al are neg-invariant, i.e

M(−u1,… ,−ud) =M(u1,… , ud).

IfM is homogeneous of odd degree and respects the equation above thenM is zero.

II.2.3 The second defining condition of ds and alternility

Recall the definition of ds given in Chapter 1 :
Definition II.2.4. The Lie algebra ds is the set of polynomials f ∈ ℚ⟨C⟩ having the two following
properties :

(1) The coefficients of f satisfy the shuffle relations :
∑

w∈sℎ(u,v)
(f |w) = 0
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where u, v are words in x, y and sℎ(u, v) is the set of words obtained by shuffling them. This con-
dition is equivalent to the assertion that f ∈ lie2.

(2) Let f∗ = �y(f ) + fcorr, where �y(f ) denotes the projection of f onto words ending in y and

fcorr =
∑

n≥1

(−1)n−1

n
(f |xn−1y)yn.

(When f is homogeneous of degree n, which we usually assume, then fcorr is just the monomial
(−1)n

n
(f |xn−1y)yn.) The coefficients of f∗ satisfy the stuffle relations:

∑

w∈st(u,v)
(f∗|w) = 0

where now u, v and w ∈ h1, considered as rewritten in the variables yi = xi−1y, and st(u, v) is the
stuffle of two such words.

In order to translate these defining properties in the moulds language, we rephrase the definition
of ds slightly:
Lemma II.2.5. ([S2], 3.4.5) The Lie algebra ds is equal to the set of f ∈ lie2 of degree ≥ 3 such that
fY , rewritten in the variables yi, satisfies all the stuffle relations except for those where both words
in the pair (u, v) are powers of y.

Indeed, we have already translated the first defining condition of ds : for f to be a Lie word, maf
must be alternal (see proposition II.1.44).
The second condition will translate as a condition on swap(maf ) called alternility.

The alternility property relates, of course, to the stuffle product : to each stuffle sum, it associates a
alternility sum. Let us start with an example, which is the only alternility sum associated to the stuffle
of two letters.
Example II.2.6. Remember that the stuffle of two elements u, v is given by the set st(u, v) = {(u, v), (v, u), (u+
v)}. The associated alternility sum is

M(v1, v2) +M(v2, v1) +
M(v1) −M(v2)

v1 − v2
= 0

The LHS above is called the alternility sumM1,1. Alternility sums do not depend on the sequences
that are "stuffled" but entirely on their length, hence the notation.

Definition II.2.7. A mouldM in ARI is said to be alternil if it satisfies the alternility relation
Mr,s = 0

for all pairs of integers 1 ≤ r ≤ s.
To defineMr,s, let Y = (y1,… , yr) and Y ′ = (yr+1,… , yr+s) be a couple of sequences of length r and
s respectively.
To each term (yi1 ,… , yir+s) of length r + s in the stuffle we associate the termM(vi1 ,… , vir+s).
Other terms containing contractions yj+k are associated to terms 1

vj−vk
(M(… , vj ,…)−M(… , vk,…)).

The expressionMr,s is then given by the sum of all these terms (one for each in the stuffle sum).
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Note that ifM is a polynomial-valued mould, then the alternility sums are polynomials.
Example II.2.8. Let us detail one of the alternility sums given by the stuffle of four terms,M2,2. The
stuffle st((yi, yj)(yk, yl)) is given by the sum of the following 13 terms :

{(yi, yj , yk, yl), (yi, yk, yj , yl), (yi, yk, yl, yj),
(yk, yi, yj , yl), (yk, yi, yl, yj), (yk, yl, yi, yj),
(yi, yj+k, yl), (yi+k, yj , yl), (yi, yk, yj+l),
(yi+k, yl, yj), (yk, yi, yj+l), (yk, yi+l, yj), (yi+k, yj+l)}

The associated alternility sum for a mould M will therefore be composed of 6 terms involving the
depth 4 part ofM M4, corresponding to the 6 first terms (which are similar to the shuffle terms for the
same elements), 6 terms involvingM3 corresponding to the 6 terms with one contraction, and finally
one term withM2.

M2,2 =M(v1, v2, v3, v4) +M(v1, v3, v2, v4) +M(v1, v3, v4, v2)
+M(v3, v1, v2, v4) +M(v3, v1, v4, v2) +M(v3, v4, v1, v2)

+ 1
v2 − v3

(M(v1, v2, v4) −M(v1, v3, v4)) +
1

v1 − v3
(M(v1, v2, v4) −M(v3, v2, v4))

+ 1
v2 − v4

(M(v1, v3, v2) −M(v1, v3, v4)) +
1

v1 − v3
(M(v1, v4, v2) −M(v3, v4, v2))

+ 1
v2 − v4

(M(v3, v1, v2) −M(v3, v1, v4)) +
1

v1 − v4
(M(v3, v1, v2) −M(v3, v4, v2))

+ 1
(v1 − v3)(v2 − v4)

(M(v1, v2) −M(v1, v4) +M(v3, v2) −M(v3, v4)).

The definition of alternility now allows us to state the main theorem of this section :
Theorem II.2.9. ([SS], Theorem 4.3) The map ma restricts to a Lie algebra isomorphism between the
spaces :

ma ∶ ds → ARIpolal∗il. (II.2.1)
Whereas it is relatively easy to prove the existence of a vector space isomorphism between ds and

ARIpolal∗il, proving that ARIpolal∗il is indeed a Lie algebra requires some additional work, and the use of
more advanced results and tools from Ecalle. It provides a proof that ds is a Lie algebra under the
Poisson bracket, different from Racinet’s and Furusho’s. Before presenting the necessary material, let
us come back to example II.1.14 and see that it belongs to ARIpolal∗il.
Example II.2.10. Let us once more consider the polynomial f = x2y−2xyx+yx2+xy2−2yxy+y2x.
We previously showed that it belongs to ds, see I.1.37.
We have seen in II.1.14 that maf and mif are only non zero in depth 1 and 2 :

maf (u1) = u21 maf (u1, u2) = u2 − u1,

mif (v1) = v21 mif (v1, v2) = v1 − 2v2.

First observe that in depth one, both maf and mif are given by even functions.
The alternality condition in depth 2 is simply antisymmetry, which is verified by maf .
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Recall that the first alternility sum is given in depth 2 by :
M(v1, v2) +M(v2, v1) +

M(v1) −M(v2)
v1 − v2

.

In this case, it yields
v1 − 2v2 + v2 − 2v1 +

v21 − v
2
2

v1 − v2
= 0,

which shows that mif = swap(maf ) is alternil.
The element f therefore belongs to ARIpolal∗il with constant 0.

II.2.4 The mould pal and its adjoint action

We now introduce some necessary theory in order to state the theorem allowing us to prove that
ARIpolal∗il is a Lie algebra.
Definition II.2.11. Let dupal ∈ ARI be the mould defined explicitly as follows: dupal(∅) = 0 and
for each r ≥ 1,

dupal(u1,… , ur) =
Br
r!

1
u1… ur

( r−1
∑

i=0
(−1)i

(

r − 1
i

)

ui+1

)

.

Remark II.2.12. Note that dar ⋅ dupal is a polynomial-valued mould, given explicitely as the image
of a power series under ma by :

dar ⋅ dupal = ma

(

x −
ad−y

ead−y − 1
(x)

)

.

Definition II.2.13. The mould pal ∈ GARI is then defined recursively by pal(∅) = 1 and :
dur ⋅ pal = mu(pal, dupal). (II.2.2)

The first terms are given by
pal(∅) = 0

pal(u1) =
1
2u1

pal(u1, u2) =
u1 + 2u2

12u1u2(u1 + u2)

pal(u1, u2, u3) =
−1

24u1u3(u1 + u2)
.

We denote invpal its inverse invgari(pal) in GARI for the group law gari.
Theorem II.2.14. (Ecalle, Schneps, [SS] thm 7.2)
The adjoint map Adari(pal) induces a Lie isomorphism of Lie subalgebras of ARIari:

Adari(pal) ∶ ARIal∗al → ARIal∗il.

Since we know ARIpol and ARIal∗al to be Lie algebras (see proposition II.1.47 and theorem
II.1.49), this powerful theorem yields as a corollary :
Corollary II.2.15. ARIpolal∗il forms a Lie algebra under the ari-bracket.

The map Adari(pal) and the isomorphism it induces will appear again in Chapter 3, as we will use
it in more details in the construction of the injection krv ↪ krvell.

50



II.3 Reformulation of krv and definition of the linearized Lie algebra
lkv

In this section, we first describe the defining properties of the Kashiwara Vergne Lie algebra in terms
of combinatoric properties of non-commutating words in x, y. All results in this first parts are due
to Leila Schneps ([S1]). We then define the linearized Kashiwara-Vergne space and give its mould
theoretic version. This finally allows us to compare it to ds and ls, stating isomorphisms results and
conjectures.

II.3.1 Special derivations and the push-invariance property

The concept of push-invariance described in this subsection is linked to special derivations, i.e. deriva-
tions u = (a, b) ∈ tder2 such that

u(x + y) = [x, a] + [y, b] = 0.

We would like to consider properties of a or b and therefore be able to work with a certain set of Lie
polynomials and the associated depth filtration. In [S1], Leila Schneps defines the "specialness" of a
Lie polynomial as follows :
Definition II.3.1. Let k ≥ 3 and f ∈ liek2 . Set b = f (−x− y, y). Then f is said to be special if there
exists a unique a ∈ lie2 such that

[x, a] + [y, b] = 0.

Example II.3.2. Let us give a simple example by working backwards : we know the derivation u =
([[x, y], y], [x, [x, y]]) to be special, since

[x, [[x, y], y]] + [[x, [x, y]]] = 0

by Jacobi’s identity.
Now the associated special f is given by f = b(−(x + y), y) i.e

f = [x, [x, y]] + [y, [x, y]].

Following Schneps ([S1]), we define some combinatorial properties of monomials in ℚ⟨x, y⟩.
Definition II.3.3. Let w = xa0yxa1y...yxar a monomial of depth r in ℚ⟨x, y⟩. We define

anti(xa0yxa1y...yxar) = xaryxar−1y...yxa0

to be the palindrome or backwards writing operator, and the pusℎ operator by :
pusℎ(xa0yxa1y...yxar) = xaryxa0y...yxar−1 .

Extending these operators to Lie polynomials by linearity, we then say that a polynomial f ∈ lie2 of
degree k ≥ 3 is push-invariant if

pusℎ(f ) = f.

It is said to be palindromic if f = (−1)k−1anti(f ), and antipalindromic if
f = (−1)kanti(f ).
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Example II.3.4. 1. Let f = [x, y] = xy − yx = x1yx0 − x0yx1. Then
pusℎ(f ) = yx − xy = −f

and we see that f is not push-invariant.
2. All Lie words are antipalindromic.

Proposition II.3.5. [Schneps, [S1]] Let n ≥ 3 and let b ∈ lieC ; write b = bxx + byy = xbx + yby.
Then the following are equivalent:

(i) There exists a unique element a ∈ lieC such that [x, a] + [y, b] = 0;
(ii) b is push-invariant;
(iii) by = by.

Proof. Let )x denote the derivation ofℚ⟨x, y⟩ defined by )x(x) = 1, )x(y) = 0. For any polynomial
ℎ in x and y, set

s(ℎ) =
∑

i≥0

(−1)i

i!
)ix(ℎ)yx

i and s′(ℎ) =∑

i≥0

(−1)i

i!
xiy)ix(ℎ).

It is shown by Racinet in [R] that for f ∈ lie2 with usual decomposition we have f = s(fy) and in a
similar way we have f = s′(f y).

(i)⇒ (iii) If f is special, there exists a unique a ∈ lie2 such that [x, a] + [b, y] = 0. Setting
T = yb − by = ax − xa and using the decompositions a and b , we get :

T = ybyy + ybxx − ybyy − xbxy = xaxx + yayx − xaxx − xayy.

Comparing the terms starting with x and ending with y, we find that −xbxy = −xayy, so bx = ay.
Now since b is a Lie word, we must have b = s(ay) = s(bx) = s′(bx).

(iii)⇒ (i) Since by = by, we get
b = ybyy + ybxx − ybyy − xbxy = ybxx − xbxy

Therefore b has no terms starting and ending in y. By proposition 2.2 in [S1], there exists a ∈ (lie2)n−1
such that T = ax − xa. But then the derivation Da,b is special, so b is special.

(ii)⇒ (iii) Let us assume that b is push invariant, and show that by = by. By assumption ,we have :
(b|xa0y...yxar) = (b|xaryxa0y...yxar−1).

In particular, for all words with ar = 0, we have (b|xa0y...y) = (b|yxa0y...yxar−1), i.e :
(byy|xa0y...y) = (yby|yxa0y...yxar−1),

so
(by|xa0y...xar−1) = (by|xa0y...yxar−1).

Thus by = by.

(iii)⇒ (ii) Since b is a Lie polynomial such that by = by, we have b = s(by) = s′(by) = s′(by), i.e.

b =
∑

i≥0

(−1)i

i!
)ix(by)yx

i =
∑

i≥0

(−1)i

i!
xiy)ix(b

y) =
∑

i≥0

(−1)i

i!
xiy)ix(by).
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Using the second and fourth term of the previous equation, we compute the coefficient of a word in b
as

(b|xa0y...yxar) =
(−1)ar
(ar)!

()arx (by)yxar|xa0y...yxar)

=
(−1)ar
(ar)!

()arx (by)|xa0y...yxar−1)

=
(−1)ar
(ar)!

(xary)arx (by)|xaryxa0y...yxar−1)

= (b|xaryxa0y...yxar−1).

Thus b is push-invariant.

Thanks to this proposition, we can now reformulate the first defining condition of krv as follows:
the pair of polynomials a, b ∈ lieC satisfies [x, a] + [y, b] = 0 if and only if b is push-invariant and a
is its partner.

II.3.2 Push-constance and the trace property.

Definition II.3.6. A polynomial f ∈ ℚ⟨x, y⟩ is said to be push-constant if there exists a constant A
such that

∑

v∈Pusℎ(w)
(f |v) = A

for allw ≠ yn, and (f |yn) = 0. The list Pusℎ(w) contains the r+1words obtained fromw by iterating
the pusℎ operation (some words can occur more than once in this list).
Example II.3.7. The simplest example of a push-constant polynomial is the sum of all monomials of
a given depth, for example

b = xayxbyxc + xcyxayxb + xbyxcyxa + xayxcyxb + xbyxayxc + xcyxbyxa.

IndeedPusℎ(xayxbyxc) = [xayxbyxc , xcyxayxb, xbyxcyxa] and one easily sees that b is push-constant
for the value 3. More interesting push-constant polynomials can be obtained from elements  ∈ grt
by taking the projection of  onto the words ending in y and writing this as by. In this way we obtain
for example:

b = 2x2y2 − 11
2
xyxy + 9

2
xy2x − 1

2
yx2y + 2yxyx − 1

2
y2x2.

Take u = x2y2, then Pusℎ(u) = [x2y2, yx2y, y2x2] and
∑

v∈Pusℎ(u)
(f |v) = 2 + −1

2
+ −1
2
= 1

Similarly, for u = xyxy, Pusℎ(u) = [xyxy, yxyx, xy2x] and one obtains
∑

v∈Pusℎ(u)
(f |v) = −11

2
+ 2 + 9

2
= 1.

We see that b is push-constant for the constant 1.
Remark II.3.8. Let us denote by C(w) the list of the n words obtained by cyclic permutations of w,
and let v = uy be a word ending in y.
We define Cy(v) to be C(v)−{words ending in x}. Writing Cy(v) = {u1y,… , ury}, one obtains
{u1,… , ur} = Pusℎ(u).
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Example II.3.9. Let v = x2yxy, v = uywith u = x2yx. ThenC = {x2yxy, xyxyx, yxyx2, xyx2y, yx2yx}
and Cy = {x2yxy, xyx2y}. Indeed, Pusℎ(u) = {xyx2, x2yx}.
Theorem II.3.10. (Schneps,[S1]) A special derivation u = (a, b) satisfies the trace equation of krv if
and only if by − bx is push-constant for the constant (b|xn−1y).

Proof. Recall the second defining equation of krv given by:
tr(xax + byy) = tr (−f (x + y) + f (x) + f (y))} (II.3.1)

for some f ∈ x2K[[x]]
First, we observe that tr(f ) = 0 for any Lie polynomial, and therefore tr(a) = tr(axx + ayy) = 0,

yielding tr(axx) = −tr(ayy). Secondly, we use the specialness of u to obtain ay = bx and by = by by
antipalindromy (see proof of thm 1, first implication). The LHS then reads :

tr(xax + byy) = tr(byy − ayy) = tr(byy − bxy) = tr((by − bx)y) = tr((by − bx)y).

With only a slight rewriting of the RHS, we will now work with the trace equation
tr((by − bx)y) = Atr((x + y)n) − xn − yn)

for some constant A and n ≥ 2.
To show that the equality of both sides is equivalent to the push-constance of by − bx, we need to look
at it in terms of coefficients of each equivalent class C of cyclic words :

∑

v∈C
((by − bx)y|v) = |C|A.

Since the higher degree terms cancel out in the RHS, the coefficient of yn in the LHS has to be zero,
and we get (by − bx|yn−1) = 0. Now for any word v = uy, v ≠ yn, we have :

|C|A =
|C|
n

∑

v∈C

((by − bx)y|v) =
|C|
n

∑

v∈Cy

((by − bx)y|v) =
|C|
n

∑

u′∈Pusℎ(u)
(by − bx|u′).

This is equivalent to
∑

u′∈Pusℎ(u)
(by − bx|u′) = nA

for all u′ ≠ yn−1. Together with the fact that (by− bx|yn−1) = 0, this is exactly the definition of by− bx
being push-constant (for the constant nA).
It remains to prove that nA = (b|xn−1y). If r = 1, then w is of depth 1, |cw| = n and xn−1y is the only
word in cw ending in y. Thus it comes down to

(

(by − bx)y | xn−1y
)

= nA.

But since b is a Lie polynomial, we have (b|xn) = (bx|xn−1) = 0, so using by = by, we also have
(

(by − bx)y | xn−1y
)

= (by − bx | xn−1) = (by|xn−1)

= (by|xn−1) = (byy|xn−1y) = (b|xn−1y),

which proves that nc = (b|xn−1y) as desired. Note that this condition means that if b has no depth 1
part, then by − bx is push-neutral.
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Definition II.3.11. Let Vkrv be the vector space spanned by polynomials b ∈ lieC of homogeneous
degree n ≥ 3 such that

(i) b is push-invariant, and
(ii) by − bx is push-constant for the value (b | xn−1y)},

equipped with the Lie bracket
{b, b′} = [b, b′] + u(b′) − u′(b)

where u = (a, b), u′ = (a′, b′) and a, a′ are the (unique) partners of b and b′ respectively.

The aforementioned properties show that the map
krv

∼
→ Vkrv

u = (a, b) ↦ b (II.3.2)
is an isomorphism of vector spaces. Since krv is known to be a Lie subalgebra of sder2, the bracket
on Vkrv is inherited directly from this and makes Vkrv into a Lie algebra.
Example II.3.12. Recall the example (2) from chapter 1 : the derivation u = ([y, [y, x]], [x, [x, y]]) is
indeed an element of krv.
Now let us check that u satisfies the properties defined above. The special Lie polynomial associated
to u is given by

f = b(−x − y, y) = [x, [x, y]] + [y, [x, y]].

The Lie word b = [x, [x, y]] = x2y − 2xyx + yx2 is push-invariant:
pusℎ(x2y − 2xyx + yx2) = yx2 − 2xyx + x2y.

Let us check the push-constance of by − bx = x2 − xy + 2yx. We only have two words to consider:
- for u = x2 the list Pusℎ(u) is given by x2 alone and (by − bx|x2) = 1
- for u = xy, Pusℎ(u) = [xy, yx] and (by − bx|xy) + (by − bx|yx) = −1 + 2 = 1,
which confirms the push-constance of by − bx for the constant (b|x2y) = 1.
Remark II.3.13. We will not translate these properties straight away in terms of moulds. As one will
see in the next paragraph, the push-invariance is easily translated, but the push-constance is a bit less
tractable.

This description of krv is the one used by Schneps to show the existence of an injection form ds
to krv, see [S1].

II.3.3 The linearized Kashiwara-Vergne Lie algebra lkv

This part of the thesis follows the article by Leila Schneps and the author ([RS1]).

Definition

We now consider the depth-graded versions of the defining conditions of Vkrv, i.e. determine what
these conditions say about the lowest-depth parts of elements b ∈ Vkrv.
The push-invariance being a depth-graded condition, the lowest depth part of b is still push-invariant;
in particular, by Proposition II.3.5 it admits of a unique partner a ∈ lieC such that [x, a] + [y, b] = 0,
i.e. such that the associated derivation u = (a, b) lies in sder2.
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For the second condition, let us consider two possibilities.
If b is of degree n and depth r = 1 and b1 denotes the lowest-depth part of b, then (b1)y = xn−1, so the
push-constance condition on b1 is empty since (b1)y = (b|xn−1y)xn−1.
If r > 1, however, then (b|xn−1y) = 0 and so the push-constance condition on by−bx is actually push-
neutrality (i.e A = 0). In by − bx, the part of minimal depth r− 1 is given by (br)y, so the condition is
the push-neutrality of (br)y.

The property of push constance relate to the non-commutative word by − bx, which is not ideal.
In the following definition, we reformulate this as a property of b.
Definition II.3.14. A polynomial b ∈ ℚ⟨C⟩ of homogeneous degree n is said to be circ-constant if,
setting c = (b|xn−1y), we have b = b0 + c

n
yn where by0 is push-constant for the value c .It is circ-neutral if c = 0.

Example II.3.15. Consider the polynomial b = x2y− xy2 + 2yxy+ 1
3y
3. Using Example (II.3.7), we

see that b is circ-constant for the constant c = 1.
This leads to the following definition :

Definition II.3.16. The linearized Kashiwara-Vergne Lie algebra is defined by
lkv =

{

b ∈ lie2
|

|

|

(i) b is push-invariant
(ii) b is circ-neutral if b is of depth > 1,

}

,

Theorem II.3.17. ([RS1]) The space lkv is bigraded by weight and depth, and forms a Lie algebra
under the Poisson bracket.

The proof of Proposition II.3.17 above, that lkv is closed under the proposed Lie bracket, is de-
ferred to the next section : it comes as a byproduct in the construction of krvell.
Proposition II.3.18. ([RS1]) There is an injective Lie algebra morphism

gr krv ↪ lkv.

This is proven by the very fact that the defining properties of lkv are properties held by the lowest-
depth parts of elements of krv, since this means precisely that there is an injective linear map

gr krv ↪ lkv,

which is a Lie morphism as both spaces are equipped with the Lie bracket coming from sder2. It is,
however, an open question as to whether these two spaces are equal, since it is not clear that an element
satisfying the defining conditions of lkv necessarily lifts to an element of krv. It would be interesting
to try to prove equality by starting with a polynomial lkv of depth r > 1 and finding a way to construct
a depth by depth lifting to an element of krv.

Translating the defining properties of lkv into mould language.

Recall the push-operator on moulds in ARI defined by :
(pushM)(u1,… , ur) =M(u0, u1, ..., ur−1)

where u0 = −u1 − u2 −⋯ − ur.
A mouldM is push-invariant if pusℎ(M) =M .

The following proposition shows that this definition is precisely the translation into mould terms
of the property of push-invariance for a Lie polynomial given previously.
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Proposition II.3.19. Let b ∈ lieC . Then b is a push-invariant polynomial if and only if ma(b) is a
push-invariant mould.

Proof. If b = y, then ma(b) is concentrated in depth 1 with value ma(b)(u1) = 1, so these are both
clearly push-invariant.

Now let b ∈ (lieC )r−1n with n ≥ r ≥ 2. We write
b =

∑

a=(a1,…,ar)
ka x

a1y⋯ yxar .

Let f = yb, so that b = f y. Recalling that y = C1, the associated moulds are related by the formula
ma(f )(u1, ..., ur) = ma(C1b) = u01ma(b)(u2, ..., ur) = ma(b)(u2, ..., ur). (II.3.3)

Since b ∈ (lieC )n, we have �(b) = (−1)n−1b. Set
g = �(yf y) = �(yb) = (−1)n−1by = (−1)n−1

∑

a
ka x

a1y...yxary.

As described in , we have
swap

(

ma(f )
)

(v1,… , vr) = (−1)n−1
∑

a
ka v

a1
1 ...v

ar
r .

Looking at
pusℎ(b)y =

∑

a
ka x

aryxa1y⋯ xar−1y,

we see that pusℎ(b)y is obtained from by by cyclically permuting the groups xaiy.
Since b = pusℎ(b) if and only if k(a1,…,ar) = k(ar,a1,…,ar−1) for each a, this is equivalent to

swap
(

ma(f )
)

(v1, ..., vr) = swap
(

ma(f )
)

(vr, v1,… , vr−1). (II.3.4)
Using the definition of the swap, we rewrite (II.3.4) in terms of ma(f ) as

ma(f )(vr, vr−1 − vr,… , v1 − v2) = ma(f )(vr−1, vr−2 − vr−1,… , vr − v1) (II.3.5)
We nowmake the change of variables vr = u1+...+ur, vr−v1 = ur, v1−v2 = ur−1,… , vr−2−vr−1 = u2,
vr−1 = u1 in this equation, obtaining

ma(f )(u1 +⋯ + ur,−u2 −⋯ − ur, u2,… , ur−1) = ma(f )(u1, u2,… , ur).

Finally, using relation (II.3.3), we write this in terms of ma(b) as
ma(b)(−u2 −⋯ − ur, u2,… , ur−1) = ma(b)(u2,… , ur).

Making the variable change ui ↦ ui−1 changes this to
ma(b)(−u1 −⋯ − ur−1, u1,… , ur−2) = ma(b)(u1,… , ur−1),

which is just the condition of mould push-invariance ma(b) in depth r − 1.

Let us now show how to reformulate the second defining property of elements of lkv in terms of
moulds.
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Definition II.3.20. Let circ be the mould operator defined on moulds in ARI by
circ(B)(v1,… , vr) = B(v2,… , vr, v1).

A mould B ∈ ARI is said to be circ-neutral if for r > 1 we have
r
∑

i=1
circi(B)(v1,… , vr) = 0.

If B is a polynomial-valued mould of homogeneous degree n (i.e. the polynomial B(v1,… , vr) is
of homogeneous degree n − r for 1 ≤ r ≤ n), we say that B is circ-constant if

r
∑

i=1
circi(B)(v1,… , vr) = c

(

∑

a1+⋯+ar=d
ai≥0

va11 ⋯ varr
)

for all 1 < r ≤ n, where B(v1) = cvn−11 . (If c = 0, then a circ-constant mould is circ-neutral.)
Example II.3.21. Let  ∈ grt be homogeneous of degree n. Then as we saw in example (II.3.7), the
polynomial  y is push-constant, so  yy is circ-constant. For example if n = 5, then  yy is given by

 yy = x4y − 2x3y2 + 11
2
x2yxy − 9

2
xyx2y + 3yx3y + 2x2y3 − 11

2
xyxy2 + 9

2
xy2xy

−1
2
yx2y2 + 2yxyxy − 1

2
y2x2y − xy4 + 4yxy3 − 6y2xy2 + 4y3xy

which is easily seen to be circ-constant.
For an example of a circ-constant mould, we take B = swap(ma( )), which has the same coeffi-

cients as  yy: it is given by
B(v1) = v41
B(v1, v2) = −2v31 +

11
2
v21v2 −

9
2
v1v

2
2 + 3v

3
2

B(v1, v2, v3) = 2v21 −
11
2
v1v2 −

1
2
v22 +

9
2
v1v3 + 2v2v3 −

1
2
v23

B(v1, v2, v3, v4) = −v1 + 4v2 − 6v3 + 4v4.

One easily sees that
B(v1, v2) + B(v2, v1) = v31 + v

3
2 + v

2
1v2 + v1v

2
2

B(v1, v2, v3) + B(v2, v3, v1) + B(v3, v1, v2) = v21 + v
2
2 + v

2
3 + v1v2 + v2v3 + v1v3

4
∑

i=1
circi(B)(v1, v2, v3, v4) = v1 + v2 + v3 + v4.

The following result proves that the circ-constance of a polynomial b and that of the associated
mould ma(b) are always connected as in the example II.3.21 By additivity, it suffices to prove the
result for b a homogeneous polynomial of degree n, so that the circ-constance of b is relative to just
one constant cn = c = (b|xn−1y).
Proposition II.3.22. Let b ∈ ℚ⟨C⟩ be of homogeneous weight n ≥ 3. Then b is a circ-constant
polynomial if and only if swap

(

ma(b)
)

is a circ-constant mould, and b is circ-neutral if and only if
swap

(

ma(b)
)

is circ-neutral.
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Proof. Let � be the backwards-writing operator on ℚ⟨C⟩ (or anti). Write b = xbx + yby, and let
g = �(yby) = �(by)y. For r ≥ 1, let gr denote the depth r part of g. If we write the polynomial gr as

gr = �
(

(by)r−1
)

y =
∑

a=(a1,…,ar)
ka x

a1y⋯ yxary, (II.3.6)

then we saw in that
swap

(

ma(b)
)

(v1,… , vr) =
∑

a=(a1,…,ar)
ka v

a1
1 ⋯ varr . (II.3.7)

Observe that a polynomial is push-constant if and only it is also push-constant written backwards,
so in particular, by is push-constant if and only if �(by) is. Suppose that b is circ-constant, i.e. that
by and thus �(by) are push-constant for the value c = (b|xn−1y). In view of (II.3.6), this means that
∑

a′ ka′ = c when a′ runs through the cyclic permutations of a = (a1,… , ar) for every tuple a, and
this in turns means precisely that the mould swap(ma(b)) is circ-constant. As for the circ-neutrality
equivalence, it follows from the circ-constance, since circ-neutrality is nothing but circ-constance for
the constant 0.

The notion of circ-constance will play a role again later, but in this section we only need circ-
neutrality. Indeed, we showed that a polynomial b lies in lkv, i.e. b is a Lie polynomial that is push-
invariant and circ-neutral, if and only if the associated mould ma(b) is alternal, push-invariant (by
Proposition II.3.19) and its swap is circ-neutral (by Proposition II.3.22). In other words, we have
shown that
Proposition II.3.23. The map ma gives a vector space isomorphism :

ma ∶ lkv
∼
→ ARIpolal+pusℎ∕circneut, (II.3.8)

where the right-hand space is the subspace of ARI of polynomial-valued moulds in ARI that are
alternal and push-neutral with circ-neutral swap. In fact this map is an isomorphism

lkvrn ≃ ARI
r
n−r ∩ ARI

pol
al+pusℎ∕circneut, (II.3.9)

of each bigraded piece, where in general we writeARI rd for the subspace of polynomial-valued moulds
of homogeneous degree d concentrated in depth r.

We will show in Chapter 3 below that ARIpolal+pusℎ∕circneut is a Lie algebra under the ari-bracket,and thus by the compatibility (II.1.33) of the ari-bracket with the Poisson bracket, we will then be
able to conclude that lkv is also a Lie algebra, proving Proposition II.3.17 of this paper.

II.3.4 Relation to ls and ds

The injective Lie algebra morphism from ds to krv yields a corresponding bigraded injective map:
gr ds ↪ gr krv. (II.3.10)

Our next result extends this map to the more general linearized spaces ls and lkv.
Theorem II.3.24. ([RS1]) The Lie injection (II.3.10) extends to a bigraded Lie injection on the asso-
ciated linearized spaces, giving the following commutative diagram:

gr ds ↪ gr krv.

↓ ↓

ls ↪ lkv.
For all n ≥ 3 and r = 1, 2, 3, the map is an isomorphism of the bigraded parts

lsrn ≃ lkvrn.

59



Theorem II.3.24 can be stated very simply in terms of moulds as
ARIpolal∕al ⊂ ARI

pol
al+pusℎ∕circneut.

We will actually prove the more general result without the polynomial hypothesis.
Theorem II.3.25. ([RS1]) There is an inclusion of mould subspaces

ARIal∕al ⊂ ARIal+pusℎ∕circneut,

Moreover in depths r ≤ 3, we have

ARI r ∩ ARIal∕al = ARI r ∩ ARIal+pusℎ∕circneut.

Proof. It is well-known that every alternal mould satisfies
A(u1,… , ur) = (−1)r−1A(ur,… , u1)

(cf. [S2], Lemma 2.5.3) and that a mould that is al∕al and even in depth 1 is also push-invariant
(cf. [S2], Lemma 2.5.5). Thus in particular ARIal∕al ⊂ ARIal+pusℎ. It remains only to show that
a mould in ARIal∕al is necessarily circ-neutral. In fact, since the circ-neutrality condition is void in
depth 1, we will show that even a mould inARIal∕al is circ-neutral; the condition of evenness in depth
1 is there to ensure the push-invariance, but not needed for the circ-neutrality.

The first alternality relation is given by
A(u1,… , ur) + A(u2, u1,… , ur) +⋯ + A(u2,… , ur, u1) = 0.

Since A is push-invariant, this is equal to
pusℎrA(u1,… , ur) + pusℎr−1A(u2, u1,… , ur) +⋯ + pusℎA(u2,… , ur, u1) = 0.

But explicitly considering the action of the push operator on each term shows that
pusℎiA(u2,… , ur−i, u1, ur−i+1,… , ur) = A(ui+1,… , ur, u0, u2,… , ui)

= circr−iA(u0, u2,… , ur),

where u0 = −u1 −⋯ − ur, so this sum is equal to
r−1
∑

i=0
circiA(u0, u2,… , ur) = 0,

which proves that A is circ-neutral. This gives the inclusion.
Let us now prove the isomorphism in the cases r = 1, 2, 3. The case r = 1 is trivial since the

alternality conditions are void in depth 1. A polynomial-valued mould concentrated in depth 1 is a
scalar multiple of ud1 , which is automatically in ARIal∕al, and lies in ARIal∕al if and only if d is even.
Such a mould is automatically alternal and the circ-neutral condition is void; it is push-invariant thanks
to the evenness of d. This shows that in depth 1, both spaces are generated by moulds ud1 for even d,and are thus isomorphic.

Now consider the case r = 2. Let A ∈ ARIpolal+pusℎ∕circneut be concentrated in depth 2. The circ-
neutral property of the swap is explicitly given in depth 2 by swap(A)(v1, v2) + swap(A)(v2, v1) = 0.
But this is also the alternality condition on swap(A), so A ∈ ARIal∕al. The isomorphism in depth 2
is thus trivial.
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Finally, we consider the case r = 3. Let A ∈ ARIpolal+pusℎ∕circneut be concentrated in depth 3, and
let B = swap(A). Again, we only need to show that B is alternal, which in depth 3 means that B must
satisfy the single equation

B(v1, v2, v3) + B(v2, v1, v3) + B(v2, v3, v1) = 0.

The circ-neutrality condition on B is given by
B(v1, v2, v3) + B(v3, v1, v2) + B(v2, v3, v1) = 0.

It is enough to show that B satisfies the equality
B(v1, v2, v3) = B(v3, v2, v1),

since applying this to the middle term of (II.3.4) immediately yields the alternality property (II.3.4)
in depth 3. So let us show how to prove (II.3.4).

We rewrite the push-invariance condition in the vi, which gives
B(v1, v2, v3) = B(v2 − v1, v3 − v1,−v1) (II.3.11)

= B(v3 − v2,−v2, v1 − v2) (II.3.12)
= B(−v3, v1 − v3, v2 − v3). (II.3.13)

Making the variable change exchanging v1 and v3, this gives
B(v3, v2, v1) = B(v2 − v3, v1 − v3,−v3) (II.3.14)

= B(v1 − v2,−v2, v3 − v2) (II.3.15)
= B(−v1, v3 − v1, v2 − v1). (II.3.16)

By (II.3.11), the termB(v2−v1, v3−v1,−v1) is circ-neutral with respect to the cyclic permutation
of v1, v2, v3, so we have

B(v2 − v1, v3 − v1,−v1) = −B(v3 − v2, v1 − v2,−v2) − B(v1 − v3, v2 − v3,−v3). (II.3.17)
But the circ-neutrality of B also lets us cyclically permute the three arguments of B, so we also have

−B(v3 − v2, v1 − v2,−v2) = B(−v2, v3 − v2, v1 − v2) + B(v1 − v2,−v2, v3 − v2).

Using (II.3.11) and substituting this into the right-hand side of (II.3.17) yields
B(v1, v2, v3) = B(−v2, v3 − v2, v1 − v2)

+ B(v1 − v2,−v2, v3 − v2) − B(v1 − v3, v2 − v3,−v3). (II.3.18)
Now, exchanging v1 and v2 in (II.3.16) gives

B(v3, v1, v2) = B(−v2, v3 − v2, v1 − v2),

and doing the same with (II.3.14) gives
B(v3, v1, v2) = B(v1 − v3, v2 − v3,−v3).

Substituting these two expressions as well as (II.3.15) into the right-hand side of (II.3.18), we obtain
the desired equality (II.3.4). This concludes the proof of Theorem II.3.24.
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Remark. We conjecture that the inclusion of Theorem II.3.25 is an isomorphism. But even the proof
of the simple equality (II.3.4) is surprisingly complicated in depth 3, let alone in higher depth. Com-
puter calculation does lead to the general conjecture:
Conjecture. If A ∈ ARIal+pusℎ∕circneut and B = swap(A), then B is mantar-invariant, i.e. for all
r > 1, we have

B(v1,… , vr) = (−1)r−1B(vr,… , v1). (II.3.19)

The above mantar invariance of B would also yield the following useful partial result, which is
the mould analog for lkv of the well-known result for ls, namely that the bigraded part lsrn = 0 when
n ≢ r mod 2.
Lemma II.3.26. Fix 1 ≤ r ≤ n. Let A ∈ ARI rn−r ∩ARI

pol
al+pusℎ∕circneut and let B = swap(A). Assume

that B satisfies (II.3.19). Then if n − r is odd, A = 0.

Proof.Recall the operator on moulds in ARI (resp. ARI) defined by
mantar(A)(u1,… , ur) = (−1)r−1A(ur,… , u1) (II.3.20)

(resp. the same expression with vi instead of ui) and the identity
neg◦pusℎ = mantar◦swap◦mantar◦swap,

where
neg(A)(u1,… , ur) = A(−u1,… ,−ur).

Let A ∈ ARIal+pusℎ∕circneut; then A is push-invariant, so applying the left-hand operator to A gives
neg(A). Assuming (II.3.19) for B = swap(A), i.e. assuming that B = mantar(B), we see that apply-
ing the right-hand operator to A fixes A since on the one hand swap◦swap = id and on the other,
mantar(A) = A for all alternal moulds (cf. [S2], Lemma 2.5.3). Thus A must satisfy neg(A) = A,
i.e. if A ≠ 0 then the degree d = n − r of A must be even.

This implies the following result, which is the analogy for lkv of the similar well-known result on
ls.
Corollary II.3.27. If the swaps of all elements ofARIpolal+pusℎ∕circneut aremantar-invariant, thenARI

r
d∩

ARIpolal+pusℎ∕circneut = 0 whenever d is odd, i.e. by (II.3.9),

lkvrn = 0 when n ≢ r mod 2.
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Chapter III

The Elliptic story
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III.1 Introduction

Asmentioned in Chapter 1, Grothendieck-Teichmüller theory was intended to study the automorphism
groups of the profinite mapping class groups – the fundamental groups of moduli spaces g,n with
the goal of discovering new properties of the absolute Galois group Gal(ℚ).
However, due to the ease of study of the genus zero mapping class groups, which are essentially
braid groups, the genus zero case garnered most of the attention, starting from the definition of the
Grothendieck-Teichmüller group ĜT by V.G. Drinfel’d ([Dr]) and of the Grothendieck-Teichmüller
Lie algebra grt ([I]) in 1991.
The extension of the definition to a Grothendieck-Teichmüller group acting on the profinite mapping
class groups in all genera was subsequently given in 2000 by A. Hatcher, P. Lochak, L. Schneps and
H. Nakamura (cf. [HLS], [NS]). The higher genus profinite Grothendieck-Teichmüller group satisfies
the two-level principle articulated by Grothendieck, which states that the subgroup of ĜT consisting
of automorphisms that extend to the genus one mapping class groups with one or two marked points
will automatically extend to automorphisms of the higher mapping class groups.

It has proved much more difficult to extend the Lie algebra Grothendieck-Teichmüller construction
to higher genus. Indeed, while the genus zero mapping class groups have a natural Lie algebra analog
in the form of the braid Lie algebras, there is no good Lie algebra analog of the higher genus mapping
class groups. The only possible approach for the moment seems to be to replace the higher genus
mapping class groups by their higher genus braid subgroups, which do have good Lie algebra analogs.
An early piece of work due to H. Tsunogai ([Ts]) in 2003 computed the relations that must be satisfied
by a derivation acting on the genus one 1-strand braid Lie algebra (which is free on two generators)
to ensure that it extends to a derivation on the genus one 2-strand braid Lie algebra, in analogy with
the derivations in grt, shown by Ihara to be exactly those that act on the genus zero 4-strand braid Lie
algebra and extend to derivations of the 5-strand braid Lie algebra.

After this, the next real breakthrough in the higher genus Lie algebra situation came with the work
of B. Enriquez ([E], 2014).
In particular, using the same approach as Tsunogai of replacing the higher genus mapping class groups
with their higher genus braid subgroups, Enriquez was able to extend the definition of grt to an elliptic
version grtell, which he identified with an explicit Lie subalgebra of the algebra of derivations of the
algebra of the genus one 1-strand braid Lie algebra that extend to derivations of the 2-strand genus
one braid Lie algebra. He showed in particular that there is a canonical surjection grtell → grt, and a
canonical section of this surjection, 
 ∶ grt → grtell.

An answer was proposed for the double shuffle Lie algebra in [S3], which proposes a definition of
an elliptic double shuffle Lie algebra dsell based on mould theory and an elliptic interpretation of a
strong theorem due to Ecalle.
The elliptic double shuffle Lie algebra is compatible with Enriquez’s construction; in particular there
is an injective Lie algebra morphism 
 ∶ ds ↪ dsell which extends Enriquez’s section in the sense
that the image of the Lie subalgebra grt ⊂ ds is equal to Enriquez’s image 
(grt).

One interesting aspect of themould theoretic approach is that it reveals a close relationship between
the elliptic double shuffle Lie algebra and the associated graded of the usual double shuffle Lie algebra
for the depth filtration.
In the second section of this chapter, we show that an analogous approach works to construct an elliptic
version of krv, denoted krvell, which is given by two defining mould theoretic properties, and again
has the key features of:
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∙ being naturally identified with a Lie subalgebra of the derivation algebra of the free Lie algebra on
two generators;
∙ being equipped with an injective Lie algebra morphism 
 ∶ krv ↪ krvell which extends the
Grothendieck-Teichmüller and double shuffle maps;
∙ having a structure closely related to that of the associated graded of krv for the depth filtration.

In independent work, A. Alekseev et al. ([AKKN2]) took a different approach to the construc-
tion of higher genus Kashiwara-Vergne Lie algebras krv(g,n) for all g, n ≥ 1, following the classical
approach to the Kashiwara-Vergne problem which focuses on determining graded formality isomor-
phisms between prounipotent fundamental groups of surfaces and their graded counterparts (i.e. the
exponentials of the associated gradeds of their associated Lie algebras).

More precisely, if Σ denotes a compact oriented surface of genus g with n + 1 boundary com-
ponents, the space g(Σ) spanned by free homotopy classes of loops in Σ carries the structure of a
Lie bialgebra equipped with the Goldman bracket and the Turaev cobracket. The Goldman-Turaev
formality problem is the construction a Lie bialgebra homomorphism � from g(Σ) to its associated
graded gr g(Σ) such that gr � = id. In order to solve this problem, Alekseev et al. defined a family
KV (g, n + 1) of Kashiwara-Vergne problems. In the particular situation where (g, n) = (1, 0), the
surface Σ is of genus 1 with one boundary component, and its fundamental group is free on two gen-
erators X, Y , with the boundary loop being given by C = (X, Y ). The prounipotent fundamental
group is then free on two generators ex, ey with a boundary element ec satisfying ec = (ex, ey). The
associated Lie algebra is free on generators x, y and the logarithm of the boundary loop is given by

c = cℎ
(

cℎ
(

cℎ(x, y),−x
)

,−y
)

= [x, y] + higher order terms,

where cℎ denotes the Campbell-Hausdorff law on lie2. To define the genus one Kashiwara-Vergne
Lie algebra krv(1,1), Alekseev et al. first defined the space of derivations u of lie2 that annihilate the
boundary element c and further satisfy a certain non-commutative divergence condition, and then took
krv(1,1) to be the associated graded of the above space, which comes down to using the same defining
conditions with c replaced by [x, y]. They showed that the resulting space is a Lie algebra under the
bracket of derivations, and also that, like krvell, it is equipped with an injective Lie algebra morphism
krv ↪ krv(1,1) that extends the morphism grt ↪ grtell constructed by Enriquez.

The last part of this thesis is dedicated to the comparison of these two elliptic Kashiwara-Vergne
Lie algebras.
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III.2 The elliptic double shuffle Lie algebra

An elliptic version dsell of the double shuffle Lie algebra ds was constructed in [S3] using mould
theory, and it is shown there that like grtell, dsell is a Lie subalgebra of oder2, and that there is an
injective Lie morphism 
̃ ∶ ds → dsell that makes the diagram

grt ↪ ds


 ↓ ↓ 
̃

grtell dsell
⧵ ∕

oder2
commute.

III.2.1 The Δ operator and the Dari bracket

The construction of krvell is modelled on dsell. We present here some definitions and facts about
moulds that will be used in both this section and the next.
In this chapter, we will not be restricted to polynomial moulds any more, but to rational moulds with
a "controlled" denominator.
Definition III.2.1. The operators dar, dur and Δ. We define the following operators on moulds :

dar(M)(u1,… , ur) = u1⋯ urM(u1,… , ur) (III.2.1)
dur(M)(u1,… , ur) = (u1 +⋯ + ur)M(u1,… , ur) (III.2.2)

Δ(M)(u1,… , ur) = u1⋯ ur(u1 +⋯ + ur)M(u1,… , ur) (III.2.3)
for r ≥ 1, and let ARIΔ denote the space of rational-function moulds A such that Δ(A) is a

polynomial mould (i.e. the denominator of the rational function A is "at worst" u1⋯ ur(u1+⋯+ ur)).
WewriteARIΔ∗ for the space ofmoulds inARIΔ∩ARI∗, where ∗may represent any (or no) properties
on moulds in ARI .

The next lemma describes the action of the operators dar, dur and Δ on non-commutative poly-
nomials.
Lemma III.2.2. [R]

Let f ∈ ℚ⟨C⟩n. Then for 0 ≤ r ≤ n, we have :

ma[x,f ](u1,… , ur) = −(u1 +⋯ + ur)maf (u1,… , ur). (III.2.4)
i.e

ma[f,x] = dur(maf ).

Similarly, for f ∈ (lieC )n :

maf (x,[y,x])(u1,… , ur) = u1… urmaf (u1,… , ur) (III.2.5)
i.e.

maf (x,[y,x]) = dar(maf ).

Finally,
ma([f (x,[y,x]),x]) = Δ(maf ). (III.2.6)
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Proof. Let us denote f r the depth r part of f , and write
f r =

∑

a caCa1…Car with a = (a1,… , ar). Then

[x, f r] =
∑

a
ca[x, Ca1…Car]

=
∑

a
ca

r
∑

i=1
Ca1…Cai−1[x, Cai]Cai+1…Car

=
∑

a
ca

r
∑

i=1
Ca1…Cai−1Cai+1Cai+1…Car

It yields :

ma[x,f ](u1,… , ur) = (−1)r+n+1
∑

a
ca

r
∑

i=1
ua1−11 … uaii … uar−1r

= −(u1 +… ur)(−1)r+n
∑

a
cau

a1−1
1 … uar−1r

= −(u1 +… ur)maf (u1,… , ur).

This concludes the proof of equation (III.2.4).

For equation (III.2.5), note that replacing y with [y, x] in Ck yields −Ck+1. Therefore the substi-
tution o making the substitution in a monomial Ck1…Ckr gives (−1)rCk1+1…Ckr+1 and we get:

ma((−1)rCk1+1…Ckr+1) = (−1)
r(−1)nu1… urma(Ck1…Ckr).

Equation (III.2.6) is easily derived from (III.2.4) and (III.2.5).
Example III.2.3. Let f = [x, y] ∈ lie2, f = C2. The mould maf is concentrated in depth 1 and
maf (u1) = u1. Now

dur(maf )(u1) = dar(maf )(u1) = u21
and

[f, x] = [[x, y], x] = −C3,

so ma[f,x](u1) = u21. Similarly f (x, [y, x]) = [x, [y, x]] = −C3. Finally,
[f (x, [y, x]), x] = [x, [x, [x, y]]] = C4

which corresponds under ma to the mould
Δ(maf )(u1) = u31.

III.2.2 Definition of the elliptic double shuffle Lie algebra

Definition III.2.4. The elliptic double shuffle Lie algebra dsell is the set of Lie polynomials which
map under ma to polynomial-valued Δ-bialternal moulds that are even in depth 1, i.e.

dsell = ma−1
(

Δ(ARIΔal∗al)
)

.

As in the mould-theoretic proof that ds is a Lie algebra, the mould pal and its inverse for gari play
a major role, through theorem (II.2.14). However, to prove that dsell is a Lie algebra, one also need
the following theorem by Baumard.
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Theorem III.2.5. ([B], Thms. 3.3, 4.35] The space ARIΔ forms a Lie algebra under the ari-bracket,
and we have an injective Lie algebra morphism :

Adari(invpal) ∶ ARI
pol
al∗il ↪ ARIΔ

with both spaces equipped with the ari bracket.

The moulds pal and invpal are again key to the proof. We will see in the next section how they
come of use in the case of the elliptic Kashiwara-Vergne Lie algebra.
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III.3 The elliptic Kashiwara-Vergne Lie algebras

In this section we follow the procedure of [S3] for the double shuffle Lie algebra to define a natural
candidate for the elliptic Kashiwara-Vergne Lie algebra, closely related to the linearized Kashiwara-
Vergne Lie algebra, and give some of its properties.

III.3.1 Special types of derivations of lie2
As in the previous chapters, let lie2 denote the degree completion of the free Lie algebra over ℚ on
non-commutative variables x and y. We write (lie2)n for the graded part of weight n, (lie2)r for the
graded part of depth r, and (lie2)rn for the intersection, which is finite-dimensional.

For a, b ∈ lie2, we write Db,a for the derivation defined by x ↦ b and y ↦ a. The bracket is
explicitly given by

[Db,a, Db′,a′] = Db̃,ã (III.3.1)
with

b̃ = Db,a(b′) −Db′,a′(b), ã = Db,a(a′) −Db′,a′(a). (III.3.2)
∙ Let oder2 denote the Lie subalgebra of der2 of derivations D = Db,a that annihilate the bracket
[x, y] and such that neither D(x) nor D(y) have a linear term in x. The map oder2 → lie2 given by
D ↦ D(x) is injective (see Corollary III.3.3).
∙ Let tder2 denote the Lie subalgebra of der2 of tangential derivations, previously mentioned in the
definition of the Kashiwara-Vergne Lia algebra. In this chapter, we denote such derivations Ea,b with
elements a, b ∈ lie2 such that a has no linear term in x and b has no linear term in y, such that there
exists c ∈ lie2 such that setting z = −x − y,

Ea,b(x) = [x, a], Ea,b(y) = [y, b] and Ea,b(z) = [z, c].

The Lie bracket is explicitly given by
[Ea,b, Ea′,b]] = Eã,b̃ (III.3.3)

where
ã = [a, a′] + Ea,b(a′) − Ea′,b′(a), b̃ = [b, b′] + Ea,b(b′) − Ea′,b′(b). (III.3.4)

∙ Let sder2 denote the Lie subalgebra of tder2 of special tangential derivations, i.e. derivations such
that Ea,b(z) = [x, a] + [y, b] = 0.
∙ Let ider2 be the Lie subalgebra of tder2 of Ihara derivations, which are those that annihilate x, i.e.
those of the form db = E0,b. The derivation db is defined by its values on x and y

db(x) = 0, db(y) = [y, b]. (III.3.5)
The Lie bracket on ider2 is given by [db, db′] = d{b,b′}, where {b, b′} is the Poisson (or Ihara) bracket
given by

{b, b′} = [b, b′] + db(b′) − db′(b), (III.3.6)
i.e. the second term of (III.3.4).
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We have the following diagram showing the connections between these subspaces:
oder2 ↪ der2 (III.3.7)

↑

tder2
∕ ⧵

sder2
∼
→ ider2

The isomorphism between sder2 and ider2 is given in Lemma III.3.14.

III.3.2 Definition of the elliptic Kashiwara-Vergne Lie algebra

The Kashiwara-Vergne Lie algebra

Definition III.3.1. The mould elliptic Kashiwara-Vergne vector space is the subspace of polynomial-
valued moulds

Δ
(

ARIΔal+pusℎ∗circneut
)

.

The elliptic Kashiwara-Vergne vector space is the subspace krvell ⊂ lieC such that
ma

(

krvell
)

= Δ
(

ARIΔal+pusℎ∗circneut
)

. (III.3.8)

The operator Δ trivially respects push-invariance of moulds, so the space krvell lies in the space
liepusℎC of push-invariant elements of lieC . We will now show that the subspace krvell is actually a
Lie subalgebra of liepusℎC , which is itself a Lie algebra thanks to the following lemma, of which a more
explicit version (with a formula for the partner) is proved in [S3] (Lemma 2.1.1).
Lemma III.3.2. Let b ∈ lieC . Then b ∈ liepusℎC if and only if there exists a unique element a ∈ lieC
(the partner of b), such that if Db,a is the derivation of lie2 defined by x ↦ b, y ↦ a, then Db,a
annihilates [x, y].

By identifying liepusℎC with the space of derivations that annihilate [x, y], this lemma shows that
liepusℎC is a Lie algebra under the bracket of derivations. We state this as a corollary.
Corollary III.3.3. The map b↦ Db,a gives an isomorphism

) ∶ liepusℎC → oder2 (III.3.9)

whose inverse is Db,a ↦ Db,a(x) = b, and this becomes a Lie isomorphism when liepusℎC is equipped
with the Lie bracket

⟨b, b′⟩ = [Db,a, Db′,a′](x) = Db,a(b′) −Db′,a′(b). (III.3.10)

Thus we know that liepusℎC is a Lie algebra and it contains the elliptic Kashiwara-Vergne space
krvell as a subspace. This leads to our first main result on krvell.
Theorem III.3.4. ([RS1]) The subspace krvell ⊂ liepusℎC is a Lie subalgebra.
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A new bracket on ARI : Dari.

In order to prove Theorem III.3.4, we need to define a new Lie bracket on ARI .
Definition III.3.5. LetM be a mould. We define the operator Darit(M) as:

Darit(M) = −dar(arit(Δ−1(M)) − ad(Δ−1(M)))◦dar−1.

It is a derivation of ARIlu for allM , since arit(M) and ad(M) are derivations of ARIlu and dar is
an automorphism.
Remark III.3.6. The derivation Darit(M) preserves ARIpol ifM is polynomial-valued.
Definition III.3.7. Using the definition of Darit, we define the Lie bracket Dari on ARI by :

Dari(A,B) = Darit(A) ⋅ B −Darit(B) ⋅ A

We denote ARIDari the Lie algebra with underlying space ARI and bracket Dari.
Proposition III.3.8. ( Schneps,[S3], Proposition 3.2.1.) The operatorΔ is a Lie algebra isomorphism
from ARIari to ARIDari :

Dari(A,B) = Δ(ari(Δ−1(A),Δ−1(B))). (III.3.11)
Finally, we compare the Dari-bracket to the bracket ⟨ , ⟩ on liepusℎC given in Corollary III.3.3.

Proposition III.3.9. The map
ma ∶ liepusℎC → ARIDari,

is a Lie algebra morphism, i.e.

ma
(

⟨b, b′⟩
)

= Dari
(

ma(b), ma(b′)
)

.

Proof. The main point is the following result [BS] (see Theorem 3.5): if D1 and D2 lie in oder2,
then the map

oder2 → ARIari
D ↦ Δ−1

(

ma
(

D(x)
))

,

is an injective Lie morphism, i.e.
Δ−1

(

ma
(

[D1, D2](x)
)

)

= ari
(

Δ−1
(

ma(D1(x))
)

,Δ−1
(

ma(D2(x))
)

)

.

Applying Δ to both sides of this and using (III.3.11), this is equivalent to
ma

(

[D1, D2](x)
)

= Dari
(

ma
(

D1(x)
)

, ma
(

D2(x)
)

)

,

which in turn means that
ma ∶ oder2 → ARIDari (III.3.12)

is a Lie algebra morphism. By composition with the Lie isomorphism liepusℎC
∼
→ oder2 given in

Corollary III.3.3,

b ↦ Db,a
Ψ
↦ Δ−1

(

ma(Db,a(x))
) Δ
↦ ma(b)

is an injective Lie morphism liepusℎC → ARIDari, which proves the result.
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A well-needed lemma

The last result we need to prove Theorem III.3.4 and obtained the long-delayed proof that lkv is a Lie
algebra is the following.
Lemma III.3.10. The space ARIcircneut of circ-neutral moulds A ∈ ARI forms a Lie algebra under
the ari-bracket.

Proof. Let A,B ∈ ARIcircneut. We need to show that
r
∑

i=1
ari(A,B)(vi,… , vr, v1,… , vi−1) = 0,

where the formula for the ari-bracket on ARI is given by the expression
ari(A,B) = lu(A,B) + arit(B) ⋅ A − arit(A) ⋅ B

= lu(A,B) + amit(B) ⋅ A − anit(B) ⋅ A − amit(A) ⋅ B + anit(A) ⋅ B.

We will show that this expression is circ-neutral because in fact, each of the five terms in the sum is
individually circ-neutral. Let us start by showing this for the first term, lu(A,B).

Let � denote the cyclic permutation of {1,… , r} defined by
�(i) = i + 1 for 1 ≤ i ≤ r − 1, �(r) = 1.

By additivity, since the circ-neutrality property is depth-by-depth, we may assume that A is concen-
trated in depth s and B in depth t, with s ≤ t, s + t = r. In this simplifed situation, we have

lu(A,B)(v1,… , vr) = A(v1,… , vs)B(vs+1,… , vr) − B(v1,… , vt)A(vt+1,… , vr).

We have
r−1
∑

i=0
lu(A,B)(v�i(1),… , v�i(r))

=
r−1
∑

i=0
A(v�i(1),… , v�i(s))B(v�i(s+1),… , v�i(i))

− B(v�i(1),… , v�i(t))A(v�i(t+1),… , v�i(i−1)),

=
r−1
∑

i=0
A(v�i(1),… , v�i(s))B(v�i(s+1),… , v�i(i))

− A(v�i+t(1),… , v�i+t(s))B(v�i+t(s+1),… , v�i+t(r))
=0

as the terms cancel out pairwise.
We now prove that the second term
(

amit(B) ⋅ A
)

(v1,… , vr) =
s
∑

i=1
A(v1,… , vi−1, vi+t,… , vr)B(vi − vi+t,… , vi+t−1 − vi+t)

is circ-neutral. Fix j ∈ {1,… , s} and consider the term
A(v1,… , vj−1, vj+t,… , vr)B(vj − vj+t,… , vj+t−1 − vj+t).
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Thus for each of the other terms
A(v1,… , vi−1, vi+t,… , vr)B(vi − vi+t,… , vi+t−1 − vi+t)

in the sum, with i ∈ {1,… , s}, there is exactly one cyclic permutation, namely �j−i, that maps this
term to

A(v�j−i(1),… , v�j−i(i−1), v�j−i(i+t,… , v�j−i(r))B(vj − vj+t,… , vj+t−1 − vj+t).

For fixed j ∈ {1,… , s}, the values of k = j − i mod s as i runs through {1,… , s} are exactly
{0,… , s − 1}. Therefore, the coefficient of the term B(vj − vj+t,… , vj+t−1 − vj+t) in the sum of the
cyclic permutations of amit(B) ⋅ A is equal to

s−1
∑

k=0
A(v�k(1),… , v�k(i−1), v�k(i+t),… , v�k(r)),

which is zero due to the circ-neutrality of A. Thus the coefficient of the term B(vj −vj+t,… , vj+t−1−
vj+t) in the sum of the cyclic permutations of amit(B) ⋅A is zero, and this holds for 1 ≤ j ≤ s, so the
entire sum is 0, i.e. amit(B) ⋅A is circ-neutral. The proof of the circ-neutrality of the term anit(B) ⋅A
is analogous. By exchangingA andB, this also shows that amit(A) ⋅B and anit(A) ⋅B are circ-neutral,
which concludes the proof of the lemma.

Proof that krvell is a Lie algebra

This subsection is devoted to the proof of Theorem III.3.4, i.e. that the subspace krvell ⊂ liepusℎC is
closed under the bracket ⟨ , ⟩.

From Proposition III.3.9, ma gives an injective Lie algebra morphism
liepusℎC → ARIDari.

Thus it is equivalent to prove that the image of the subspace krvell ⊂ liepusℎC is closed under the
Dari-bracket. Since we saw above that

Δ−1 ∶ ARIDari → ARIari,

it is equivalent to show that ARIΔal+pusℎ∗circneut is a Lie subalgebra of ARIari.

Step 1. Since liepusℎC is the space of push-invariant Lie polynomials, we have
ma(liepusℎC ) = ARIpolal+pusℎ.

But we saw in Proposition III.3.9 that liepusℎC is a Lie algebra under ⟨ , ⟩, soARIpolal+pusℎ is a Lie algebraunder Dari.
Step 2. The space ARIΔal+pusℎ is a Lie algebra under ari. Indeed, the definition of Δ shows that
this operator does not change the properties of push-invariance or alternality, i.e. Δ−1(ARIal+pusℎ) =
ARIal+pusℎ. Restricted to polynomial-valued moulds, we haveΔ−1(ARIpolal+pusℎ) = ARI

Δ
al+pusℎ. Since

Δ is an isomorphism fromARIari toARIDari by virtue of (III.3.11) andARIpolal+pusℎ is a Lie subalgebra
of ARIDari by Step 1, its image ARIΔal+pusℎ under Δ−1 is thus a Lie subalgebra of ARIari.
Step 3. Wecan now complete the proof of Theorem III.3.4 by showing that the spaceARIΔal+pusℎ∗circneutis a Lie algebra under ari.
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Proof. Let A,B lie in ARIΔal+pusℎ∗circneut, and let us show that ari(A,B) lies in the same space. By
Step 2, we know that ari(A,B) ∈ ARIΔal+pusℎ, so we only need to show that swap(ari(A,B)) is *circ-
neutral. But we will show that in fact this mould is actually circ-neutral.
To see this, let A0 and B0 be the constant-valued moulds such that swap(A) +A0 and swap(B) + B0
are circ-neutral.
By Lemma III.3.10, we have

ari
(

swap(A) + A0, swap(B) + B0
)

∈ ARIcircneut.

Using the identity swap(ari(M,N)
)

= ari
(

swap(M), swap(N)
), valid whenever M and N are

push-invariant moulds (cf. [S], (2.5.6)), as well as the fact that constant-valued moulds are both push
and swap invariant, we have

ari
(

swap(A) + A0, swap(B) + B0
)

= ari
(

swap(A + A0), swap(B + B0)
)

= swap ⋅ ari(A + A0, B + B0)
= swap ⋅ ari(A,B) + swap ⋅ ari(A,B0) + swap ⋅ ari(A0, B) + swap ⋅ ari(A0, B0)
= swap ⋅ ari(A,B)

since the definition of the ari-bracket shows that ari(C,M) = 0 whenever C is a constant-valued
mould. Thus swap ⋅ ari(A,B) is circ-neutral, which completes the proof of Theorem III.3.4.

The following easy corollary provides the promised proof of Proposition II.3.17 stating that lkv is
a Lie algebra.
Corollary III.3.11. The subspace

ARIpolal+pusℎ∕circneut ⊂ ARI
Δ
al+pusℎ∗circneut

is a Lie algebra under the ari-bracket. Thus, by the correspondance between Poisson and ari bracket
((II.1.33)), the space

lkv = ma−1
(

ARIpolal+pusℎ∕circneut

)

a Lie algebra under the Poisson bracket.

Proof. By the definition of ari, ARIpol is a Lie subalgebra of ARI . Also, Lemma III.3.10 shows
that the space ARIcircneut of circ-neutral moulds is a Lie subalgebra of ARI∗circneut.
Thus ARIΔal+pusℎ∕circneut is a Lie algebra inside ARIΔal+pusℎ∗circneut. So the intersection

ARIpol ∩ ARIΔal+pusℎ∕circneut = ARI
pol
al+pusℎ∕circneut

is one as well.

III.3.3 The map from krv → krvell
In this subsection we prove our next main result on the elliptic Kashiwara-Vergne Lie algebra, which is
analogous to known results on the elliptic Grothendieck-Teichmüller Lie algebra of [E] and the elliptic
double shuffle Lie algebra of [S3]. The subsection III.3.4 below is devoted to connections between
these three situations.
Theorem III.3.12. ([RS1])There is an injective Lie algebra morphism

krv ↪ krvell (III.3.13)
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The proof constructs the morphism from krv to krvell in four main steps as follows.
Step 1. We first consider a twisted version of the Kashiwara-Vergne Lie algebra, or rather of the
associated polynomial space Vkrv of Definition II.3.11, via the map

� ∶ Vkrv
∼
→ Wkrv (III.3.14)

f ↦ �(f ), (III.3.15)
where � is the automorphism of ℚ⟨x, y⟩ defined by

�(x) = z = −x − y, �(y) = y. (III.3.16)
In paragraph III.3.3, we prove thatWkrv is a Lie algebra under the Poisson or Ihara bracket, and give
a description ofWkrv via two properties, the “twisted” versions of the two defining properties of Vkrv
given in Definition II.3.11.
Step 2. In paragraph III.3.3, we study the mould space ma(Wkrv

). Thanks to the compatibility of the
ari-bracket with the Poisson bracket, this space is a Lie subalgebra ofARIari. Just as we reformulated
the defining properties of lkv in mould terms, proving that ma(lkv) = ARIpolal+pusℎ∕circneut, here we
reformulate the defining properties ofWkrv in mould terms: explicitly, we show that

ma
(

Wkrv
)

= ARIpolal+sen∗circconst, (III.3.17)
the space of polynomial-valued moulds that are alternal, satisfy a certain senary relation (III.3.23)
introduced by Écalle (see below), and whose swap is circ-constant up to addition of a constant-valued
mould.

We observe that if B ∈ ARI is a polynomial-valued mould of homogeneous degree n whose
swap is circ-constant up to addition of a constant-valued mould, then the constant-valued mould B0 is
uniquely determined as being the mould concentrated in depth n and taking the value c∕n there, where
B(v1) = cvn−11 .
Step 3. For this part, we use again the mould pal previously defined in (II.2.2) and the adjoint operator
Adari(invpal) on ARIari.
Letting Ξ denote the map

Adari(invpal)◦pari ∶ ARIari → ARIari,

we show that it yields an injective Lie morphism
Ξ ∶ ARIpolal+sen∗circconst → ARIΔal+pusℎ∗circneut (III.3.18)

of subalgebras of ARIari.
Step 4. The final step is to compose (III.3.18) with the Lie morphism Δ ∶ ARIari → ARIDari,
obtaining an injective Lie morphism

ARIpolal+sen∗circconst → Δ
(

ARIΔal+pusℎ∗circneut
)

,
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where the left-hand space is a subalgebra of ARIari and the right-hand one of ARIDari. Since the
right-hand space is equal to ma(krvell), the desired injective Lie morphism krv → krvell is obtained
by composing all the maps described above, as shown in the following diagram:

krv

by (II.3.2) ↓
Vkrv

by (III.3.14) ↓ �

Wkrv krvell
by (III.3.17) ↓ ma ma−1 ↑ by (III.3.8)

ARIpolal+sen∗circconst
Ξ

⟶ ARIΔal+pusℎ∗circneut
Δ

⟶ Δ
(

ARIΔal+pusℎ∗circneut
)

by (III.3.18)

Step 1: The twisted spaceWkrv

Proposition III.3.13. LetWkrv = �(Vkrv). ThenWkrv is a Lie algebra under the Poisson bracket.

Proof. The key point is the following lemma on derivations.

Lemma III.3.14. Conjugation by � induces an isomorphism of Lie algebras

sder2
∼
→ ider2 (III.3.19)

Ea,b ↦ d�(b).

Proof. Recall that Ea,b ∈ sder2 maps x ↦ [x, a] and y ↦ [y, b], and d�(b) ∈ ider2 is the Ihara
derivation defined by x↦ 0, y ↦ [y, �(b)] .

Let us first show that d�(b) is the conjugate of Ea,b by �, i.e. d�(b) = �◦Ea,b◦� (since � is an
involution). It is enough to show they agree on x and y, so we compute

�◦Ea,b◦�(x) = �◦Ea,b(z) = 0 = d�(b)(x)

and
�◦Ea,b◦�(y) = �◦Ea,b(y) = �

(

[y, b]
)

= [y, �(b)] = d�(b)(y).

This shows that �◦Ea,b◦� is indeed equal to d�(b). To show that d�(b) lies in ider2, we check that
d�(b)(z) is a bracket of z with another element of lie2:

d�(b)(z) = �◦Ea,b◦�(z) = �◦Ea,b(x) = �([x, a]) = [z, �(a)].

The same argument goes the other way to show that conjugation by � maps an element of ider2 to
an element of sder2, which yields the isomorphism (III.3.19) as vector spaces. To see that it is also
an isomorphism of Lie algebras, it suffices to note that conjugation by � preserves the Lie bracket of
derivations in der2, i.e.

�◦[D1, D2]◦� = [�◦D1◦�, �◦D2◦�],

since � is an involution. Since the Lie brackets on sder2 and ider2 are just restrictions to those sub-
spaces of the Lie bracket on the space of all derivations, conjugation by � carries one to the other.
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We use the lemma to complete the proof of Proposition III.3.13. Write
krv� = {�◦E◦� |E ∈ krv} ⊂ ider2.

By restricting the isomorphism (III.3.19) to the subspace krv ⊂ sder2, we obtain a commutative
diagram of isomorphisms of vector spaces

krv → krv� ,

↓ ↓

Vkrv
�
→ Wkrv,

where the left-hand vertical arrow is the isomorphism (II.3.2) mapping Ea,b ↦ b, and the right-hand
vertical map sends an Ihara derivation df to f .
Equipping Wkrv with the Lie bracket inherited from krv� makes this into a commutative diagram of
Lie isomorphisms. But this bracket is nothing other than the Poisson bracket since krv� ⊂ ider2.

We now give a characterization of Wkrv by two defining properties which are the twists by � of
those defining Vkrv. Recall that � is the the backwards operator.
Proposition III.3.15. The spaceWkrv is the space spanned by polynomials b ∈ lieC , of homogeneous
degree n ≥ 3, such that

(i) by − bx is anti-palindromic, i.e. �(by − bx) = (−1)n−1(by − bx), and
(ii) b + c

n
yn is circ-constant, where c = (b|xn−1y).

Proof. Let f = �(b), so that f ∈ Vkrv. Then the property that by − bx is anti-palindromic is
precisely equivalent to the push-invariance of f (this is proved as the equivalence of properties (iv)
and (v) of Theorem 2.1 of [S1]). This proves (i).

For (ii), we note that since f ∈ Vkrv, f y − fx is push-constant for the value c = (f |xn−1y) =
(−1)n−1(b|xn−1y). We have

b(x, y) = xbx(x, y) + yby(x, y),

so
f (x, y) = b(z, y) = zbx(z, y) + yby(z, y) = −xbx(z, y) − ybx(z, y) + yby(z, y).

Thus since f (x, y) = xfx(x, y) + yf y(x, y), this gives
fx = −bx(z, y) and f y = −bx(z, y) + by(z, y),

so
f y − fx = by(z, y) = �(by).

Thus to prove the result, it suffices to prove that the following statement: if g ∈ ℚ⟨C⟩ is a polynomial
of homogeneous degree n that is push-constant for (−1)n−1c, then �(g) is push-constant for c, since
taking g = f y − fx then shows that �(g) = by is push-constant for c. The proof of this statement is
straightforward using the substitution z = −x− y (but see the proof of Lemma 3.5 in [S1] for details).
Since c = 0 if f ∈ Vkrv is of even degree n, this proves (ii).

77



Step 2: The mould version ma(Wkrv)

The space ma(Wkrv) is closed under the ari-bracket by (??), since Wkrv is closed under the Poisson
bracket.

Let b ∈ Wkrv and let B = ma(b). Then since b is a Lie polynomial, B is an alternal polynomial
mould. Let us give the mould reformulations of properties (i) and (ii) of Proposition III.3.15. The
second property is easy since we already showed, in Proposition II.3.22, that a polynomial b is circ-
constant if and only if swap(B) is circ-constant.

Expressing the first property in terms of moulds is more complicated and calls for an identity
discovered by Écalle. We need to use the mould operators mantar and pari defined by

mantar(B) = (u1,… , ur) = (−1)r−1B(ur, ur−1,… , u1) (III.3.20)
pari(B)(u1,… , ur) = (−1)rB(u1,… , ur). (III.3.21)

The operator pari extends the operator y↦ −y on polynomials to all moulds, and mantar extends
the operator f ↦ (−1)n−1�(f ). Above all, we need Écalle’s mould operator teru, defined by taking
the mould teru(B) to be equal to B in depths 0 and 1, and for depths r > 1, setting

teru(B)(u1,… , ur) = (III.3.22)
B(u1,… , ur) +

1
ur

(

B(u1,… , ur−2, ur−1 + ur) − B(u1,… , ur−2, ur−1)
)

.

Lemma III.3.16. Let b ∈ lieC . Then the following are equivalent:

(1) by − bx is anti-palindromic;
(2) B = ma(b) satisfies the senary relation

teru◦pari(B) = pusℎ ◦ mantar ◦ teru ◦ pari(B). (III.3.23)
Proof. The statement is a consequence of the following result, proved in A.3 of the Appendix of

[S1]. Let b̃ ∈ lieC and let B̃ = ma(b̃). Write b̃ = b̃xx + b̃yy as usual. Then for each depth part
(b̃x + b̃y)r of the polynomial b̃x + b̃y (1 ≤ r ≤ n − 1), the anti-palindromic property

(f̃x + f̃y)r = (−1)n−1�(f̃x + f̃y)r (III.3.24)
translates directly to the following relation on B̃:

teru(B̃)(u1,… , ur) = pusℎ ◦ mantar ◦ teru (B̃)(u1,… , ur). (III.3.25)
Let us deduce the equivalence of (1) and (2) from that of (III.3.24) and (III.3.25). Let b̃ be defined by
b̃(x, y) = b(x,−y). This implies that bx = (−1)rb̃x, by = (−1)r−1b̃y, and B̃ = pari(B). Thus by − bx is
anti-palindromic if and only if b̃y + b̃x is, i.e. if and only if (III.3.24) holds for b̃, which is the case if
and only if (III.3.25) holds for B̃, which is equivalent to (III.3.23) with B̃ = pari(B). This proves the
lemma.

The following proposition summarizes the mould reformulations of the defining properties (i) and
(ii) ofWkrv.
Proposition III.3.17. Let ARIpolal+sen∗circconst denote the space of alternal polynomial-valued moulds
satisfying the senary relation (III.3.23) and having swap that is circ-constant up to addition of a
constant-valued mould. Then we have the isomorphism of Lie algebras

ma ∶ Wkrv
∼

⟶ ARIpolal+sen∗circconst ⊂ ARIari.
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Mould background: the ganit automorphism and Ecalle’s fundamental identity

The next stage of our proof, the construction of a Lie algebra morphism
ARIpolal+sen∗circconst → ARIΔal+pusℎ∗circneut, (III.3.26)

is the most difficult, and requires some further definitions .
Definition III.3.18. For any mould Q ∈ GARI , we define an automorphism ganit(Q) of the Lie
algebra ARI lu Set v = (v1,… , vr), and letWv denote the set of decompositions dv of v into chunks

dv = a1b1⋯ asbs (III.3.27)
for s ≥ 1, where with the possible exception of bs, the ai and bi are non-empty. Thus for instance,
when r = 2 there are two decompositions in Wv, namely a1 = (v1, v2) and a1b1 = (v1)(v2), and
when r = 3 there are four decompositions, three for s = 1: a1 = (v1, v2, v3), a1b1 = (v1, v2)(v3),
a1b1 = (v1)(v2, v3), and one for s = 2: a1b1a2 = (v1)(v2)(v3).

Écalle’s explicit expression for ganit(Q) is given by
(

ganit(Q) ⋅ T
)

(v) =
∑

a1b1⋯asbs∈Wv

Q(⌊b1)⋯Q(⌊bs) T (a1⋯ as), (III.3.28)

where if bi is the chunk (vk, vk+1,… , vk+l), then we use the notation
⌊bi = (vk − vk−1, vk+1 − vk−1,… , vk+l − vk−1). (III.3.29)

We are now ready to introduce the fundamental identity of Écalle, which is the key to the con-
struction of the desired map (III.3.26).
Definition III.3.19. Let constants cr ∈ ℚ, r ≥ 1, be defined by setting f (x) = 1− e−x and expanding
f∗(x) =

∑

r≥1 crx
r+1, where f∗(x) is the infinitesimal generator of f (x), defined by

f (x) =
(

exp
(

f∗(x)
d
dx

)

)

⋅ x.

Let lopil be the mould in ARIari defined by the simple expression

lopil(v1,… , vr) = cr
v1 +⋯ + vr

v1(v1 − v2)⋯ (vr−1 − vr)vr
(III.3.30)

Set pil = expari(lopil) where expari denotes the exponential map associated to preari, and set pal =
swap(pil).

The mould lopil is easily seen to be both alternal and circ-neutral. It is also known (although
surprisingly difficult to show) that the mould lopal = logari(pal) is alternal (cf. [Ec2], or [S2], Chap.
4.). Thus the moulds pil and pal are both exponentials of alternal moulds and therefore symmetral.
The inverses of pal (in GARI) and pil (in GARI) are given by

invpal = expari(−lopal), invpil = expari(−lopil).

The key maps we will be using in our proof are the adjoint operators associated to pal and pil,
given by

Adari(pal) = exp
(

adari(lopal)
)

, Adari(pil) = exp
(

adari(lopil)
)

, (III.3.31)
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where adari(P ) ⋅Q = ari(P ,Q). The inverses of these adjoint actions are given by
Adari(invpal) = exp

(

adari(−lopal)
)

, Adari(invpil) = exp
(

adari(−lopil)
)

. (III.3.32)

These adjoint actions produce remarkable transformations of certain mould properties into others,
and form the heart of much of Écalle’s theory of multizeta values. Écalle’s fundamental identity relates
the two adjoint actions of (III.3.31). Valid for all push-invariant mouldsM , it is given by

swap ⋅ Adari(pal) ⋅M = ganit(pic) ⋅ Adari(pil) ⋅ swap(M), (III.3.33)
where pic ∈ GARI is defined by pic(v1,… , vr) = 1∕v1⋯ vr (see [Ec], or [S2], Theorem 4.5.2 for
the complete proof).

For our purposes, it is useful to give a slightly modified version of this identity. Let poc ∈ GARI
be the mould defined by

poc(v1,… , vr) =
1

v1(v1 − v2)⋯ (vr−1 − vr)
. (III.3.34)

Then ganit(poc) and ganit(pic) are inverse automorphisms of ARI lu (see [B], Lemma 4.37). Thus,
we can rewrite the above identity (III.3.33) as

ganit(poc) ⋅ swap ⋅ Adari(pal) ⋅M = Adari(pil) ⋅ swap(M), (III.3.35)
and lettingN = Adari(pal) ⋅M , i.e. M = Adari(invpal) ⋅N , we rewrite it in terms ofN as

Adari(invpil) ⋅ ganit(poc) ⋅ swap(N) = swap ⋅ Adari(invpal) ⋅N, (III.3.36)
this identity being valid wheneverM = Adari(invpal) ⋅N is push-invariant.

Step 3: Construction of the map Ξ

In this section we finally arrive at the main step of the construction of our map krv → krvell, namely
the construction of the map Ξ given in the following proposition.
Proposition III.3.20. The operator Ξ = Adari(invpal)◦pari gives an injective Lie morphism of Lie
subalgebras of ARIari:

Ξ ∶ ARIpolal+sen∗circconst ⟶ ARIΔal+pusℎ∗circneut. (III.3.37)
Proof. We have already shown that both spaces are Lie subalgebras of ARIari, the first in Propo-

sition III.3.17 and the second in III.3.2. Furthermore, since pari and Adari(invpal) are both invertible
and respect the ari-bracket, the proposed map is indeed an injective map of Lie subalgebras. Thus it
remains only to show that the image of ARIpolal+sen∗circconst under Ξ really lies in ARIΔal+pusℎ∗circneut.
We will show separately that if B ∈ ARIpolal+sen∗circconst and A = Ξ(B), then

(i) A is push-invariant,
(ii) A is alternal,
(iii) swap(A) is circ-neutral up to addition of a constant-valued mould,
(iv) A ∈ ARIΔ.

Proof of (i). Écalle proved that Adari(pal) transforms push-invariant moulds to moulds satisfying
the senary relation (III.3.25) (see [Ec] (3.58); indeed this is how the senary relation arose). Since
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B satisfies (III.3.23), B̃ = pari(B) satisfies (III.3.25), so Adari(invpal)(B̃) = Ξ(B) = A is push-
invariant.
Proof of (ii). Recall that ARIal is closed under ari and expari(ARIal) is the subgroup of symmetral
moulds GARIasgari of GARIgari.The pal is known to be symmetral (cf. [Ec2], or in more detail [S2], Theorem 4.3.4).
Thus, since GARIasgari is a group, the gari-inverse mould invpal is also symmetral. Therefore the
adjoint action Adari(invpal) on ARI restricts to an adjoint action on the Lie subalgebra ARIal of
alternal moulds. If B is alternal, then pari(B) is alternal, and so A = Ξ(B) is alternal. This completes
the proof of (ii).

For the assertions (iii) and (iv), we will make use of Écalle’s fundamental identity in the version
(III.3.36) given in III.3.33, withN = pari(B) (recall that (III.3.36) is valid wheneverAdari(invpal)⋅N
is push-invariant, which is the case for pari(B) thanks to (i) above). The key point is that the operators
ganit(poc) and Adari(pil) on the left-hand side of (III.3.36) are better adapted to tracking the circ-
neutrality and the denominators than the right-hand operator Adari(invpal) considered directly.
Proof of (iii). Let b ∈ Wkrv, and assume that b is of homogeneous degree n. Let B = ma(b). Then
by Proposition III.3.15 and Proposition II.3.22, swap(B) is circ-constant, and even circ-neutral if n is
even.

We need to show that swap ⋅Adari(invpal) ⋅ pari(B) is *circ-neutral. To do this, we use (III.3.36)
withN = pari(B), and in fact show the result on the left-hand side, which is equal to

Adari(invpil) ⋅ ganit(poc) ⋅ pari ⋅ swap(B)

(noting that pari commutes with swap). We prove that this mould is *circ-neutral in three steps. First
we show that the operator ganit(poc) ⋅ pari changes a circ-constant mould into one that is circ-neutral
(Proposition III.3.21). Secondly, we show that the operator Adari(invpil) preserves the property of
circ-neutrality (Proposition III.3.23). Finally, we show that ifM is a mould that is not circ-constant
but only *circ-constant, and ifM0 is the (unique) constant-valued mould such thatM +M0 is circ-
constant, then

Adari(invpil) ⋅ ganit(poc) ⋅ pari(M) +M0

is circ-neutral. Using (III.3.36), this will show that swap ⋅ Adari(invpal) ⋅M is *circ-neutral.
Proposition III.3.21. Fix n ≥ 3, and letM ∈ ARI be a circ-constant polynomial-valued mould of
homogeneous degree n. Then ganit(poc) ⋅ pari(M) is circ-neutral.

Proof. Let c = (

M(v1) | vn−11

), and let N = pari(M), so that N(v1) = −cvn−11 . Let v =
(v1,… , vr), and let Wv be the set of decompositions dv of v into chunks dv = a1b1⋯ asbs as in
(III.3.27). For any decomposition dv, we let its b-part be the unordered set {b1,… ,bs}, its a-part the
unordered set {a1,… , as}, and we write la for the number of letters in the a-part, i.e. la = |a1|+⋯+
|as|.

Let
W =

∐

i
W�ir(v)

,

where the �ir(v) are the cyclic permutations of v = (v1,… , vr), and let Wb denote the subset of
decompositions in W having identical b-part. The decompositions in W having identical b-part to a
given decomposition dv ∈Wv are as follows: there is exactly one decomposition in W�i−1r (v) for each
i such that vi is one of the letters in the a-part of v, which is obtained from dv by placing dividers
between the same letters. For example, if r = 5 and dv = a1b1a2b2 = (v1, v2)(v3)(v4)(v5) then the
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two other decompositions having the same b-part {(v3), (v5)} are given by (v2)(v3)(v4)(v5)(v1) and
(v4)(v5)(v1, v2)(v3). Thus if b denotes the b-part of a given decomposition dv of v = (v1,… , vr),
thenWb contains exactly la decompositions, more precisely exactly one decomposition of each cyclic
permutation (vi,… , vr, v1,… , vi−1) with vi in the a-part of dv.

Also, for each n ≥ 1, let Wa
n denote the set of monomials w of degree n − la in the letters ly-

ing in the a-part of dv. For instance in the example above dv = (v1, v2)(v3)(v4)(v5), the a-part is
{(v1, v2), (v4)} and Wa

5 consists of all monomials of degree 2 in the three letters v1, v2, v4, i.e. Wa
5 =

{v21, v
2
2, v

2
4, v1v2, v1v4, v2v4}. Note in particular thatWa

n = {1}when |a| = n andWa
n = ∅when r > n.

We now consider themouldN = pari(M), of fixed homogeneous degree n, withN(v1) = −cvn−11 .
SinceM is circ-constant for c, we have

N(v1,… , vr) +⋯ +N(vr, v1, ..., vr−1) = (−1)rc
∑

w
w. (III.3.38)

By the explicit formula (III.3.28), we have
(

ganit(poc) ⋅N
)

(v1,… , vr) =
∑

Wv

poc(⌊b1)⋯ poc(⌊bs)N(a1⋯ as), (III.3.39)

so adding up over the cyclic permutations of v, we have
r−1
∑

i=0

(

ganit(poc) ⋅N
)(

�ir(v)
)

=
∑

W
poc(⌊b1)⋯ poc(⌊bs)N(a1⋯ as)

=
∑

b={b1,…,bs}

∑

Wb

poc(⌊b1)⋯ poc(⌊bs)N(a1⋯ as)

=
∑

b={b1,…,bs}
poc(⌊b1)⋯ poc(⌊bs)

la−1
∑

j=0
N
(

�jla(a1⋯ as)
)

= (−1)lac
∑

b={b1,…,bs}
(−1)la poc(⌊b1)⋯ poc(⌊bs)

∑

w∈Wa
n

w (III.3.40)

where the last equality follows from (III.3.38).
If c = 0, the expression (III.3.40) is trivially equal to zero in all depths r > 1, so we obtained

the desired result that ganit(poc) ⋅ pari(M) is circ-neutral. In order to deal with the case whereM is
circ-constant for a value c ≠ 0, we use a trick and subtract off a known mould that is also circ-constant
for c.
Lemma III.3.22. For n > 1 and any constant c, let T nc be the homogeneous polynomial mould of
degree n defined by

T nc (v1,… , vr) =
c
r
P nr ,

where P rn is the sum is over all monomials of degree n − r in the variables v1,… , vr for 1 ≤ r ≤ n.
Then T nc is circ-constant and ganit(poc) ⋅ pari(T nc ) is circ-neutral.

The proof of this lemma is annoyingly technical, so we have relegated it to Appendix 2. Consider
the mould N = M − T nc . The mould N is circ-constant since M and T nc both are, but N(v1) = 0,
so by the result above, we know that ganit(poc) ⋅ pari(N) is circ-neutral. But Lemma III.3.22 shows
that ganit(poc) ⋅ pari(T nc ) is circ-neutral, so the mould ganit(poc) ⋅ pari(M) is also circ-neutral, as
desired.

We nowproceed to the second step, showing that the operatorAdari(invpil) preserves circ-neutrality.
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Proposition III.3.23. IfM ∈ ARI is circ-neutral then Adari(invpil) ⋅M is also circ-neutral.

Proof. By (III.3.32), we have

Adari(invpil) = exp
(

adari(−lopil)
)

=
∑

n≥0

(−1)n

n
adari(lopil)

n. (III.3.41)

The definition of lopil in (III.3.30) shows that lopil is trivially circ-neutral. Thus, since M is circ-
neutral, adari(lopil) ⋅M = ari(lopil,M) is also circ-neutral by Lemma III.3.10, and successively so
are all the terms adari(lopil)n(M). Thus Adari(invpil) ⋅M is circ-neutral.

Finally, we now assume that swap(B) is a *circ-neutral polynomial-valued mould in ARI of
homogeneous degree n. Let B0 be the (unique) constant-valued mould such that swap(B) + B0 is
circ-neutral. Then by Propositions III.3.21 and III.3.23, the mould

Adari(invpil) ⋅ ganit(poc) ⋅ pari(B + B0)

is circ-neutral. This mould breaks up as the sum
Adari(invpil) ⋅ ganit(poc) ⋅ pari(B) + Adari(invpil) ⋅ ganit(poc) ⋅ pari(B0),

but the operatorAdari(invpil) ⋅ganit(poc) preserves constant-valued moulds (cf. [S], Lemma 4.6.2 for
the proof). Thus

Adari(invpil) ⋅ ganit(poc) ⋅ pari(B + B0) = Adari(invpil) ⋅ ganit(poc) ⋅ pari(B) + B0,

so
Adari(invpil) ⋅ ganit(poc) ⋅ pari(B) = swap ⋅ Ξ(B)

is *circ-neutral, completing the proof of (iii).
Proof of (iv). Wewill again use the left-hand side of (III.3.36), this time to track the denominators that
appear in the right-hand side. By (III.3.36), if B is a polynomial-valued mould satisfying the senary
relation, and if A = Ξ(B) = Adari(invpal) ⋅ pari(B), then A lies in ARIΔ if and only if

swap ⋅ Adari(invpil) ⋅ ganit(poc) ⋅ swap
(

pari(B)
)

∈ ARIΔ. (III.3.42)
Wewill prove that this is the case, by studying the denominators that are produced, first by applying

ganit(poc) to a polynomial-valued mould, and then by applying Adari(invpil). The first result is that
the denominators introduced by applying ganit(poc) are at worst of the form (v1 − v2)⋯ (vr−1 − vr).
Lemma III.3.24. LetM ∈ ARI

pol
. Then

swap ⋅ ganit(poc) ⋅M ∈ ARIΔ.

Proof. The explicit expression for ganit(Q) given in (III.3.28) shows that the only denominators
that can occur in ganit(poc) ⋅M come from the factors

poc(⌊b1)⋯ poc(⌊bs) (III.3.43)
for all decompositions dv = a1b1⋯ asb2 of v = (v1,… , vr) into chunks as in (III.3.27), and

⌊bi = (vk − vk−1, vk+1 − vk−1,… , vk+l − vk−1)
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(for k > 1) as in (III.3.29). Since poc is defined as in (III.3.34), the only factors that can appear in
(III.3.43) are (vl − vl−1) where vl is a letter in one of bi, and these factors appear in each term with
multiplicity one. Since the sum ranges over all possible decompositions, the only letter of v that never
belongs to any bi is v1; all the other factors (vi−vi−1) appear. Thus (v1−v2)(v2−v3)⋯ (vr−1−vr) is a
common denominator for all the terms in the sum defining ganit(poc) ⋅M . The swap of this common
denominator is equal to u2⋯ ur, so this term is a common denominator for swap ⋅ ganit(poc) ⋅M ,
which proves the lemma.

Lemma III.3.25. LetM,N ∈ ARI∗circneut be two moulds such that swap(M) and swap(N) lie in
ARIΔ. Then swap

(

ari(M,N)
)

also lies in ARIΔ.

Proof. In Proposition A.1 of the Appendix of [BS], it is shown that ifM andN are alternal moulds
in ARI such that swap(M) and swap(N) lie in ARIΔ, then swap(ari(M,N)

) also lies in ARIΔ. In
fact, it is shown in Proposition A.2 of that appendix that alternal mouldsM whose swap lies in ARIΔ
satisfy the following property: setting

M̌(v1,… , vr) = v1(v1 − v2)⋯ (vr−1 − vr)vrM(v1,… , vr),

we have
M̌(0, v2,… , vr) = M̌(v2,… , vr, 0). (III.3.44)

In fact, the proof that swap(ari(M,N)
) lies in ARIΔ does not use the full alternality ofM and N ,

but only (III.3.44). Therefore, the same proof goes through whenM andN are *circ-neutral moulds
such that swap(M) and swap(N) lie in ARIΔ, as long as we check that every *circ-neutral mouldM
such that swap(M) ∈ ARIΔ satisfies (III.3.44).

To check this, letM be such a mould; by additivity, we may assume thatM is concentrated in a
single depth r > 1. This means that there is a constant CM such that

M(v1,… , vr) +M(v2,… , vr, v1) +⋯ +M(vr, v1,… , vr−1) = CM ,

which we can also write as
M̌(v1,… , vr)

v1(v1 − v2)⋯ (vr−1 − vr)vr
+

M̌(v2,… , vr, v1)
v2(v2 − v3)⋯ (vr−1 − vr)(vr − v1)v1

+

⋯ +
M̌(vr, v1,… , vr−1)

vr(vr − v1)⋯ (vr−2 − vr−1)vr−1
= CM

where the numerators are polynomials. If we multiply the entire equality by v1 and set v1 = 0, only
the first two terms do not vanish, and they yield precisely the desired relation (III.3.44).
Corollary III.3.26. IfN ∈ ARI is a *circ-neutral mould such that swap(N) ∈ ARIΔ, then also

swap ⋅ Adari(invpil) ⋅N ∈ ARIΔ. (III.3.45)
Proof. The lemma shows that swap ⋅ ari(lopil,N) ∈ ARIΔ since the mould lopil is circ-neutral

and swap ⋅ lopil ∈ ARIΔ by (III.3.30). In fact, applying the lemma successively shows that swap ⋅
adari(lopil)

n(N) ∈ ARIΔ for all n ≥ 1. Since Adari(invpil) ⋅N is obtained by summing these terms
by (III.3.41), we obtain (III.3.45).

To conclude, we setM = swap ⋅ pari(B); then by Lemma III.3.24 we have
swap ⋅ ganit(poc) ⋅ swap ⋅ pari(B) ∈ ARIΔ.
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By Proposition III.3.21 this mould is *circ-neutral, so we can apply Corollary III.3.26 with N =
ganit(poc) ⋅ swap ⋅ pari(B) to conclude that

swap ⋅ Adari(invpil) ⋅ ganit(poc) ⋅ swap ⋅ pari(B) ∈ ARI
Δ.

Thus thus by (III.3.36) withN = pari(B), we finally find that
Adari(invpal) ⋅ pari(B) = Ξ(B) ∈ ARIΔ,

which completes the proof of (iv).
We have thus finished proving Proposition III.3.20. Backtracking, this means we have completed

the details of Step 3 of the proof of Theorem III.3.12. Step 4, the final step in the proof, is very easy
and was explained completely just before paragraph III.3.3. Thus we have now completed the proof
of Theorem III.3.12, i.e. we have completed the construction of the injective Lie algebra morphism
krv ↪ krvell.

III.3.4 Relations with elliptic Grothendieck-Teichmüller and double shuffle

Our next result is the proof of the commutativity of the diagram
grt ↪ ds ↪ krv

↓ ↓ ↓

g̃rtell ↪ dsell ↪ krvell
⧵ ↓ ∕

oder2.

. In fact, this result is simply a consequence of putting together the results of the previous sections
with known results. Indeed, the commutativity of the diagram

grt ↪ ds

↓ ↓

g̃rtell ↪ dsell (III.3.46)
⧵ ∕

oder2,

where Adari(invpal) ∶ ds → dsell is the right-hand vertical map as shown in [S3].
By (10), the injective map ds ↪ krv is given by

b(x, y)↦ b̂ = b(z,−y)

, or more precisely to the derivation in krv given by a↦ b̂, [a, b]↦ 0.
If b(x, y) ∈ ds, then b(x,−y) lies inWkrv and b(z,−y) lies in Vkrv, so this map unpacks to

ds
y↦−y
→ Wkrv

x↦z
→ Vkrv → krv,
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where the last map comes from (II.3.2). We can thus construct a commutative square
ds → krv

↓ ↓ (III.3.47)
dsell ⊂ krvell

given in detail by
ds

y↦−y
→ Wkrv ≃ krv

ma ↓ ↓ ma

ARIpolal∗il
pari
→ ARIpolal+sen∗circconst

Adari(invpal) ↓ ↓ Adari(invpal)◦pari

ARIΔal∗al ⊂ ARIΔal+pusℎ∗circneut
Δ ↓ ↓ Δ

Δ(ARIΔal∗al) ⊂ Δ(ARIΔal+pusℎ∗circneut)

ma−1 ↓ ↓ ma−1

dsell ⊂ krvell.

The first line of this diagram comes from the injection ds ↪ krv and the definition of Wkrv. The
second line is the direct mould translation of the top one, as the left-hand space is exactly ma(ds), the
right-hand space isma(Wkrv) by (III.3.17), and the map pari restricted to polynomials is nothing other
than y↦ −y. The vertical morphism

Adari(invpal) ∶ ARI
pol
al∗il → ARIΔal∗al

is proven in [S3], and the vertical morphism
Adari(invpal)◦pari ∶ ARI

pol
al+sen∗circconst → ARIΔal+pusℎ∗circneut

comes from Proposition III.3.20. Since pari is an involution, this proves that the horizontal injection
in the third line of the diagram is nothing but an inclusion. Finally, the last line of the diagram comes
from the definitions dsell = Δ(ARIΔal∗al) ([S3]) and krvell = Δ(ARIΔal+pusℎ∗circneut) by Definition
III.3.1.

This diagram shows that the diagram (III.3.46) above can be completed by the diagram (III.3.47)
to the commutative diagram of III.3.4.

III.3.5 Comparison of the two independently defined elliptic Kashiwara-Vergne Lie
algebras

This last part follows the exposition given by Leila Schneps and the author given in the article [RS2].
After defining the other elliptic construction by Alekseev-Kawazumi-Kuno-Naef from [AKKN2], we
reformulate their defining properties to reformulate it in terms similar to the ones use in Chapter II
Section 3.
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The elliptic Kashiwara-Vergne Lie algebra from Aleksee-Kawazumi-Kuno-Naef

Let lie(1,1) be the free Lie algebra on two generators Lie[x, y], to be thought of as the Lie algebra
associated to the fundamental group of the once-punctured torus.
We set c = [x, y] so that the relation [x, y] = c holds in lie(1,1). Let lie(1,1)n denote the weight n part
of lie(1,1), where the weight is the total degree in x and y, and let lie(1,1)n,r denote the weight n, depth r
part of lie(1,1), where the depth is the y-degree.

For any element f ∈ lie(1,1), we decompose it as
f = fxx + fyy = xfx + yf y = xfxx x + xf

x
y y + yf

y
xx + yf

y
y y.

Let der(1,1) denote the Lie subalgebra of Der lie(1,1) of derivations u such that u(c) = 0. Let der(1,1)n
denote the subspace of der(1,1) of derivations u such that u(x), u(y) ∈ lie(1,1)n .

Let f ∈ lie(1,1)n for n > 1. Then f is the value on x of a derivation u ∈ der(1,1)n if and only if f
is push-invariant, in which case u(y) is uniquely defined. If u ∈ der(1,1) and u(x) = f , u(y) = g, we
sometimes write u = Df,g.

Let tr2 be the quotient of lie(1,1) by the equivalence relation: two words w and w′ are equivalent
if one can be obtained from the other by cyclic permutation of the letters.

The elliptic divergence div ∶ der(1,1) → tr2 is defined by
div(u) = tr(fx + gy)

where u = Df,g. Since u([x, y]) = [x, g] + [f, y] = 0, we have
xgxx + xgyy − xgxx − ygyy = yfxx + yfyy − xfxy − yf yy.

Comparing the terms on both sides that start with x and end with y shows that gy = −fx. Thus we
can write the divergence condition as a function of just f :

div(u) = tr(fx − fx).

Definition III.3.27. The elliptic Kashiwara-Vergne Lie algebra krv(1,1) defined in ([AKKN2]) is the
ℚ-vector space spanned by the derivations u ∈ der(1,1)n , n ≥ 3, such that

div(u) =

{

K tr
(

c
n−1
2
) for some K ∈ ℚ if n is odd

0 if n is even. (1)

It is closed under the bracket of derivations.

A reformulation of the div condition.

Observe that the Lie algebra krv(1,1) is bigraded by the weight and depth. We write krv(1,1)n,r for the
vector subspace of krvell spanned by derivations u such that u(x) ∈ lie(1,1)n,r and u(y) ∈ lie(1,1)n,r+1. Let
u ∈ krv(1,1)n,r , let f = u(x) and g = u(y), and write

f =
∑

i=(i0,...,ir)
ci x

i0yxi1y⋯ yxir .

Then
fx =

∑

i s.t. ir≠0
ci x

i0yxi1y⋯ yxir−1
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and
fx =

∑

i s.t. i0≠0
ci x

i0−1yxi1y⋯ yxir .

For any word w in x, y, let C(w) denote the trace class of w, i.e. the set of words obtained by
cyclically permuting the letters of w. The trace of a polynomial ℎ is given by

∑

C(w)

(

tr(ℎ) |C(w)
)

⋅ C(w)

where the sum runs over the trace classes of words and the coefficient (tr(ℎ) |C(w)) of the class C(w)
in tr(ℎ) is given by

(

tr(ℎ) |C(w)
)

=
∑

v∈C(w)
(ℎ|v),

where (ℎ|v) denotes the coefficient of v in ℎ.
Fix a word w of weight n − 1 and depth r and consider the coefficient of C(w) in tr(fx − fx):

(

tr(fx − fx) |C(w)
)

=
∑

v∈C(w)
(fx|v) − (fx|v)

=
∑

v∈C(w)
(fxx|vx) − (xfx|xv)

=
∑

v∈C(w)
(f |vx) − (f |xv).

(2) For all words v ∈ C(w) that start in x, the word v′ ∈ C(w) obtained from v by taking the first x
of v and putting it at the end satisfies vx = xv′ and thus (f |vx) = (f |xv′). Thus the corresponding
terms in (2) cancel out, i.e. writing Cx(w) (resp. Cy(w), Cx(w), Cy(w)) for the terms in C(w) that
start with x (resp. start with y, end with x, end with y), we have

∑

v∈Cx(w)
(f |vx) −

∑

v∈Cx(w)
(f |xv) = 0,

so (2) reduces to
(

tr(fx − fx) |C(w)
)

=
∑

v∈Cy(w)
(f |vx) −

∑

v∈Cy(w)
(f |xv).(3)

Since for any word v of length n − 2, if v = yu ∈ Cy(w) then uy ∈ Cy(w), we can write (3) as
(

tr(fx − fx) |C(w)
)

=
∑

u s.t. yu∈Cy(w)
(f |yux) −

∑

u s.t. uy∈Cy(w)
(f |xuy).(4)

For any word u = xi0y⋯ yxir of depth r, we define
pusℎ(u) = xiryxi0y⋯ yxir−1

and
pusℎsym(u) =

r
∑

i=0
pusℎi(u),

and extend the operators pusℎ and pusℎsym to polynomials by linearity. If u is a word of weight n−2
and depth r − 1 such that yu ∈ Cy(w), then uy ∈ Cy(w) and we have

{

Cy(w) = {y pusℎi(u) | 0 ≤ i ≤ r − 1}
Cy(w) = {pusℎi(u) y | 0 ≤ i ≤ r − 1}.
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Note that Cy(w)may be of order less than r (in fact strictly dividing r) whenw has a symmetry under
the push.
In this case, summing over the set of pushes of u from 0 to r − 1 comes down to summing r∕|Cy(w)|
times over the set Cy(w) or Cy(w).
Using this, we rewrite (4) for w = uy as

∑

yu∈Cy(w)
(f |yux) −

∑

uy∈Cy(w)
(f |xuy)

∑

yu∈Cy(w)
(f yx |u) −

∑

uy∈Cy(w)
(fxy |u)

=
|Cy(w)|

r

r−1
∑

i=0

(

f yx | pusℎ
i(u)

)

−
|Cy(w)|

r

r−1
∑

i=0

(

fxy | pusℎ
i(u)

)

=
|Cy(w)|

r
(

pusℎsym(f yx − f
x
y ) | u

)

.

This allows us to rewrite the divergence condition (1) on an element f ∈ krv(1,1)n,r as the following
family of relations for all words u of weight n − 2 and depth r − 1:

(

pusℎsym(f yx − f
x
y )|u

)

=

{ Kr
|Cy(uy)|

∑

v∈C(uy)
(

[x, y]r | v
) for some K ∈ ℚ if n = 2r + 1

0 if n ≠ 2r + 1. (5)

This is the version of the divergence condition that we will use for comparison with the Lie algebra
krvell.

The comparison

Let F ∈ krvell be a mould of depth r and degree d, so that it corresponds under the bijection ma to
a polynomial f ∈ lie(1,1)n,r with n = d + r. The polynomial push-invariance of f implies that there
exists a unique polynomial g ∈ lie(1,1)n,r+1 such that setting u(x) = f , u(y) = g, we obtain a derivation
u ∈ der(1,1)n . The Lie bracket on krvell corresponds to the Lie bracket on krv(1,1), namely bracketing
of the derivations u.
Thus, in order to prove that krvell is in bijection with krv(1,1), it remains only to prove that the circ-
constance condition on Δ−1(swap(F )) is equivalent to the divergence condition (5) on f .

Since
Δ−1(F )(u1,… , ur) =

1
(u1 +⋯ + ur)u1⋯ ur)

F (u1,… , ur),

we have
swap

(

Δ−1(F )
)

(v1,… , vr) =
1

v1(v1 − v2)⋯ (vr−1 − vr)vr
swap(F )(v1,… , vr),

so the circ-constance condition is given explicitly by
swap(F )(v1,… , vr)

v1(v1 − v2)… (vr−1 − vr)vr
swap(F )(v2,… , v1)

v2(v2 − v3)… (vr − v1)v1
+…

+
swap(F )(vr,… , vr−1)

vr(vr − v1)… (vr−2 − vr−1)vr−1
= Kr
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for all depths r ≥ 2. Putting this over a common denominator gives the equivalent equality
swap(F )(v1, v2,… , vr)v2… vr−1(vr − v1)
+swap(F )(v2,… , vr, v1)v3⋯ vr(v1 − v2) +⋯
+swap(F )(vr,… , vr−1)v1… vr−2(vr−1 − vr)
= Krv1⋯ vr(v1 − v2)⋯ (vr − v1).

The left-hand side expands to
v2… vr−1vr swap(F )(v1,… , vr) − v1v2… vr−1 swap(F )(v1,… , vr)
+v1v3… vr swap(F )(v2,… , vr, v1) − v2v3… vr swap(F )(v2, .., vr, v1) +…
+v1… vr−1 swap(F )(vr,… , vr−1) − v1… vr−2vr swap(F )(vr,… vr−1).

Fix a monomial vi1+11 vi2+12 … vir+1r . Calculating its coefficient in the above expression yields
(

swap(F )(v1,… , vr)|v
i1+1
1 vi22 … virr

)

−
(

swap(F )(v1,… , vr)|v
i1
1 v

i2
2 … vir+1r

)

+
(

swap(F )(v2,… , vr, v1)|v
i1
1 v

i2+1
2 … virr

)

−
(

swap(F )(v2,… , vr, v1)|v
i1+1
1 vi22 … virr

)

+⋯

+
(

swap(F )(vr, v1,… , vr−1)|v
i1
1 … vir+1r

)

−
(

swap(F )(vr, v1,… , vr−1)|v
i1
1 … vir−1+1r−1 virr

)

=
(

swap(F )(v1,… , vr)|v
i1+1
1 vi22 … virr

)

−
(

swap(F )(v1,… , vr)|v
i1
1 v

i2
2 … vir+1r

)

+
(

swap(F )(v1,… , vr)|v
i2+1
1 vi32 … vi1r

)

−
(

swap(F )(v1,… , vr)|v
i2
1 v

i3
2 … vi1+1r

)

+…

+
(

swap(F )(v1,… , vr)|v
ir+1
1 … vir−1r

)

−
(

swap(F )(vr, v1,… , vr−1)|v
ir
1 … vir−1+1r

)

,

where the equality is obtained by bringing every term back to a coefficient of aword in swap(F )(v1,… , vr).
The circ-constance condition on swap(Δ−1(F )) can thus be expressed by the family of relations

for every tuple (i1,… , ir):
(

swap(F )(v1,… , vr)|v
i1+1
1 vi22 … virr

)

−
(

swap(F )(v1,… , vr)|v
i1
1 v

i2
2 … vir+1r

)

+
(

swap(F )(v1,… , vr)|v
i2+1
1 vi32 … vi1r

)

−
(

swap(F )(v1,… , vr)|v
i2
1 v

i3
2 … vi1+1r

)

+⋯

+
(

swap(F )(v1,… , vr)|v
ir+1
1 … vir−1r

)

−
(

swap(F )(vr, v1,… , vr−1)|v
ir
1 … vir−1+1r

)

=Kr
(

(v1 − v2)… (vr − v1) | v
i1
1 … virr

)

.

We can now translate this equality directly back into terms of the polynomial f (x, y) corresponding
to the mould F . We can write the right-hand side of the above equation as
Kr

(

(v1 − v2)⋯ (vr−1 − vr)vr | v
i1
1 ⋯ virr

)

−Kr
(

(v1 − v2)⋯ (vr−1 − vr)v1 | v
i1
1 ⋯ virr

)

, (III.3.48)
or equivalently, setting B(v1,… , vr) = (v1 − v2)⋯ (vr−1 − vr)vr, as

Kr
(

B | vi11 ⋯ virr
)

− (−1)r−1Kr
(

B | vir1 ⋯ vi1r
)

, (III.3.49)
by numbering the vi in the second term of (III.3.48) in the opposite order.

We have [x, y] = ad(x)(y) = C2, so [x, y]r = Cr2, so the polynomial-valued mould corresponding
to [x, y]r is given by

A(u1,… , ur) = (−1)ru1⋯ ur.

The swap of this mould is given by
swap(A)(v1,… , vr) = −(v1 − v2)⋯ (vr−1 − vr)vr.
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Thus the mould B of (III.3.49) satisfies B = −swap(A), so the expression (III.3.49) reformulating the
RHS translates back to polynomials as to

−Kr
(

[x, y]r | xi1y⋯ xiry
)

+ (−1)r−1Kr
(

[x, y]r | xiry⋯ xi1y
)

. (III.3.50)
Using (7) to directly translate the left-hand side of (10) in terms of the polynomial f , we thus obtain
the following expression equivalent to the circ-neutrality property (10):

(

f | xi1+1yxi2y… yxiry
)

−
(

f | xi1yxi2y⋯ yxir+1y
)

+
(

f | xi2+1yxi3y… yxi1y
)

−
(

f | xi2yxi3y⋯ yxi1+1y
)

+⋯

+
(

f | xir+1yxi1y… yxir−1y
)

−
(

f | xiryxi1y⋯ yxir−1+1y
)

= −Kr
(

[x, y]r | xi1y⋯ xiry
)

+ (−1)r−1Kr
(

[x, y]r | xiry⋯ xi1y
)

.

Since f is push-invariant, we have (f |uy) = (f |yu) for every word u, so we can modify the negative
terms in (14):

(

f | xi1+1yxi2y… yxiry
)

−
(

f | yxi1yxi2y⋯ yxir+1
)

+
(

f | xi2+1yxi3y… yxi1y
)

−
(

f | yxi2yxi3y⋯ yxi1+1
)

+⋯

+
(

f | xir+1yxi1y… yxir−1y
)

−
(

f | yxiryxi1y⋯ yxir−1+1
)

= −Kr
(

[x, y]r | xi1y⋯ xiry
)

+ (−1)r−1Kr
(

[x, y]r | xiry⋯ xi1y
)

.

Now all words in the positive terms start in x and end in y, and all words in the negative terms start in
y and end in x, so we can remove these letters and write

(

fxy | x
i1yxi2y… yxir

)

−
(

f yx | x
i1yxi2y⋯ yxir

)

+
(

fxy | x
i2yxi3y… yxi1

)

−
(

f yx | x
i2yxi3y⋯ yxi1

)

+⋯

+
(

fxy | x
iryxi1y… yxir−1

)

−
(

f yx | x
iryxi1y⋯ yxir−1

)

= −Kr
(

[x, y]r | xi1y⋯ xiry
)

+ (−1)r−1Kr
(

[x, y]r | xiry⋯ xi1y
)

.

The left-hand side of this equal to
(

pusℎsym(fxy − f
y
x ) | x

i1y⋯ yxir
)

,

so to the left-hand side of the divergence condition (5) for the weight n − 2 word u = xi1y⋯ yxir . If
n ≠ 2r + 1, then the right-hand sides of (5) and (16) are both equal to 0. To prove that (5) and (16)
are identical, it remains only to check that the right-hand sides are equal when n = 2r + 1, which,
cancelling the factor Kr from both sides, reduces to the following lemma.
Lemma III.3.28. For each word u of depth r − 1 and weight 2r − 1, we have

1
|Cy(uy)|

∑

v∈C(uy)

(

[x, y]r | v
)

=
(

[x, y]r | uy
)

− (−1)r−1
(

[x, y]r | u′y
)

,

where u′ denotes the word u written backwards.

Proof. Observe that if ([x, y]r|uy) ≠ 0, then uy must satisfy the parity property that, writing uy =
u1⋯ u2r where each ui is letter x or y, the pair u2i−1u2i must be either xy or yx for 0 ≤ i ≤ r. The
coefficient of the word uy in [x, y]r is equal to (−1)j where j is the number of pairs u2i−1u2i in uy that
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are equal to yx. In other words, if a word w appears with non-zero coefficient in [x, y]r, then letting
U = yx and V = xy, we must be able to write w as a word in U, V , and the coefficient of w in [x, y]r
is (−1)m where m denotes the number of times the letter U occurs.

If w = uy = V r = (xy)r, then u′y = uy. The coefficient of V r in [x, y]r is equal to 1, so
the right-hand side of (III.3.28) is equal to 2 if r is even and 0 if r is odd. For the left-hand side,
C(uy) = {V r, U r} and Cy(uy) = {V r}, so |Cy(uy)| = 1. The coefficient of U r in [x, y]r is equal to
(−1)r, so the left-hand side is again equal to 2 if r is even and 0 if r is odd. This proves (III.3.28) in
the case uy = V r.

Suppose now that uy ≠ V r but that it satisfies the parity property. Write uy = Ua1V b1⋯UasV bs

in which all the ai, bi ≥ 1 except for a1, which may be 0. Then u′y is equal to xU bs−1V as⋯U b1V a1y.
If bs > 1, then the pair u2(bs−1)+1u2(bs−1)+2 is xx, so ([x, y]r|u′y) = 0. If bs = 1, then the word u′y
begins with xx and thus does not have the parity property, so again ([x, y]r|u′y) = 0. This shows that
if ([x, y]r|uy) ≠ 0 then ([x, y]r|u′y) = 0 and vice versa.

This leaves us with three possibilities for uy ≠ V r.
Case 1: ([x, y]r|uy) ≠ 0. Then uy has the parity property, so we write uy = Ua1V b1⋯UasV bs as
above. The right-hand side of (III.3.28) is then equal to (−1)j where j = a1 + ⋯ + as. For the
left-hand side, we note that the only words in the cyclic permutation class C(uy) that have the parity
property are the cyclic shifts of uy by an even number of letters, otherwise a pair xx or yy necessarily
occurs as above. These are the same as the cyclic permutations of the word uy written in the letters
U, V . All these cyclic permutations obviously have the same number of occurrences j of the letter U .
Thus, the words in C(uy) for which [x, y]r has a non-zero coefficient are the cyclic permutations of
the word uy in the letters U, V , and the coefficient is always equal to (−1)j . These words are exactly
half of the all the words in C(uy), so the sum in the left-hand side is equal to (−1)j|C(uy)|∕2. But
|Cy(uy)| = |C(uy)|∕2, so the left-hand side is equal to (−1)j , which proves (III.3.28) for words uy
having the parity property.
Case 2: ([x, y]r|u′y) ≠ 0. In this case it is u′y that has the parity property, and the right-hand side
of (III.3.28) is equal to (−1)r+j′ where j′ is the number of occurrences of U in the word u′y =
Ua1V b1⋯UasV bs , i.e. j′ = a1 + ⋯ + as. We have uy = xU bs−1V as⋯U b1V b1y. The word w =
U bs−1V as⋯U b1V b1U then occurs in C(uy), and the number of occurrences of the letter U in uy is
equal to j = b1+⋯+bs−1+bs. Since a1+b1+⋯+as+bs = r, we have j+j′ = r so j′ = r−j and the
right-hand side of (III.3.28) is equal to (−1)j . The number of words in C(uy) that have non-zero coef-
ficient in [x, y]r is |C(uy)|∕2 = |Cy(uy)| as above, these words being exactly the cyclic permutations
of w written in U, V , and the coefficient is always equal to (−1)j . So the left-hand side of (III.3.28)
is equal to (−1)j , which proves (III.3.28) in the case where u′y has the parity property.
Case 3: ([x, y]r|uy) = ([x, y]r|u′y) = 0. The right-hand side of (III.3.28) is zero. For the left-
hand side, consider the words in C(uy). If there are no words in C(uy) whose coefficient in [x, y]r is
non-zero, then the left-hand side of (III.3.28) is also zero and (III.3.28) holds. Suppose instead that
there is a word w ∈ C(uy) whose coefficient in [x, y]r is non-zero. Then as we saw above, w is a
cyclic shift of uy by an odd number of letters, and since all cyclic shifts of w by an even number of
letters then have the same coefficient in [x, y]r as w, we may assume that w is the cyclic shift of uy
by one letter, i.e. taking the final y and putting it at the beginning. Since w has non-zero coefficient
in [x, y]r, we can write w = Ua1V b1⋯UasV bs , where a1 > 0 since w now starts with y, but bs
may be equal to 0 since w may end with x. Then uy = xUa1−1V b1⋯UasV bsy, so we can write
u′y = U bsV as⋯U b1V a1−1xy = U bsV as⋯Uv1V a1 . But then u′y satisfies the parity property, so its
coefficient in [x, y]r is non-zero, contradicting our assumption. Thus under the assumption, all words
in C(uy) have coefficient zero in [x, y]r, which completes the proof of the Lemma.
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Appendices

A Appendix : Proof of Lemma III.3.22

Let us recall the statement of the technical lemma 31.
Lemma 31. For n > 1 and any constant c ≠ 0, let T nc be the homogeneous polynomial mould of
degree n defined by

T nc (v1,… , vr) =
c
r
P nr ,

where P rn is the sum is over all monomials of degree n − r in the variables v1,… , vr. Then T nc is
circ-constant and ganit(poc) ⋅ pari(T nc ) is circ-neutral.

Proof. The mould T nc is trivially circ-constant. Consider the proof of Proposition III.3.21 with
M = T nc , N = pari(M). In order to show that ganit(poc) ⋅ N is circ-neutral, we start by recalling
from the proof of Proposition III.3.21 that for each r > 1, the cyclic sum

ganit(poc) ⋅N(v1,… , vr) +⋯ + ganit(poc) ⋅N(vr, v1,… , vr−1)

is equal to the expression (III.3.40). Thus we need to show that (III.3.40) is equal to zero for all r > 1.
To show this, we will break up the sum

∑

b={b1,…,bs}
(−1)lapoc(⌊b1)⋯ poc(⌊bs)

∑

w∈Wa
n

w (.0.51)

into parts that are simpler to express.
We need a little notation. Let us write Vj = {1,… , j}. If B ⊂ Vr, let P dB denote the sum of of all

monomials of degree d in the variables vi ∈ B. We write P 0B = 1 for all B.We will break up the sum (.0.51) as the sum of partial sums S0 +⋯ + Sr, where S0 is the term
of (.0.51) corresponding to the empty set and Si is the sum over the b-parts containing vi but not
vi+1,… , vr, for each i ∈ {1,… , r}. Notice that the b-parts containing vi but not vi+1,… , vr are in
bijection with the 2i−1 subsets B ⊂ Vi−1, by taking b to be the set B′ = B ∪ {vi}, divided into chunks
consisting of consecutive integers. For example, if i = 5 and B = {1, 3} then B′ = {1, 3, 5} and the
associated b-part is (v1)(v3)(v5); if B = {1, 2} then B′ = {1, 2, 5} and the b-part is (v1, v2)(v5), and
if B = {1, 4} then B′ = {1, 4, 5} and the b-part is (v1)(v4, v5).

Setting v0 = vr, this means that S0 = P n−rVr
and for 1 ≤ i ≤ r,

Si =
∑

B⊆{1,…,i−1}

(−1)r−|B′|P n−r+|B
′
|

Vr⧵B′
∏

j∈B′(vj−1 − vj)
. (.0.52)

In order to prove that (.0.51) is zero, we will give simplified expressions for S1,… , Sr−1 in Claim 1,
a simplified expression for Sr in Claim 2, and then show how to sum them up in Claim 3.
Claim 1. For 1 ≤ i ≤ r − 1, we have vi+1,… , vr. Let v0 = vr. Then we have

Si =
(−1)r−iP n−r+i{i−1,i+1,…,r−1}

(vr − v1)(v1 − v2)⋯ (vi−1 − vi)
. (.0.53)

Proof. We will use the following trivial but useful identity. Let B ⊊ Vr, let vj ∉ B, and let B′ =
B ∪ {vj}. Then

P dB′ = P
d
B + vjP

d−1
B′ . (.0.54)
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Multiplying by the common denominator, we write (.0.52) as

(−1)r−i
i

∏

j=1
(vj−1 − vj)Si =

∑

B⊆Vi−1

(−1)i−|B′|
∏

j∈Vi−1⧵B
(vj−1 − vj)P

n−r+|B′|
Vr⧵B′

. (.0.55)

We will show below that for each 1 ≤ k ≤ i − 1, the right-hand side of (.0.55) is equal to the
expression

Qk =
∑

v1,…,vk∉B⊂Vi−1

(−1)i−|B|+k−1
(

∏

j∈Vi−1⧵(B∪{v1,…,vk}
(vj−1 − vj)

)

P n−r+|B
′
|+k

Vr−1⧵B′∪{v1,…,vk−1}
.

Taking k = i − 1 in this expression, the sum Qi−1 reduces to the single term corresponding to B = ∅,
which is just P n−r+ivi−1,vi+1,…,vr−1

. Thus by (.0.55), we obtain

(−1)r−i
i

∏

j=1
(vi−1 − vi)Si = P n−r+ivi−1,vi+1,…,vr−1

,

which proves (.0.53).
Let us prove that the right-hand side of (.0.55) is equal to Qk for all 1 ≤ k ≤ i − 1. We will use

induction on k. Let us do the base case k = 1 by showing that the right-hand side of (.0.55) is equal
to Q1. We start by breaking the right-hand side of (.0.55) into v1 ∈ B and v1 ∉ B, and compute

∑

v1∈B
(−1)i−|B′|

∏

j∈Vi−1⧵B
(vj−1 − vj)P

n−r+|B′|
Vr⧵B′

+
∑

v1∉B
(−1)i−|B′|

∏

j∈Vi−1⧵B
(vj−1 − vj)P

n−r+|B′|
Vr⧵B′

then setting C = B ⧵ {v1} in the first sum
=

∑

v1∉C
(−1)i−|C|

∏

j∈Vi−1⧵(C∪{v1})
(vj−1 − vj)P

n−r+|C|+2
Vr⧵(C∪{v1,vi})

+
∑

v1∉B
(−1)i−|B|−1

∏

j∈Vi−1⧵B
(vj−1 − vj)P

n−r+|B′|
Vr⧵B′

then renaming C = B and writing B1 = B ∪ {v1} and B′1 = B ∪ {v1, vi},
=

∑

v1∉B
(−1)i−|B|

∏

j∈Vi−1⧵B1

(vj−1− vj)P
n−r+|B|+2
Vr⧵B′1

−
∑

v1∉B
(−1)i−|B|

∏

j∈Vi−1⧵B1

(vj−1− vj) ⋅ (vr− v1)P
n−r+|B′|
Vr⧵B′

=
∑

v1∉B
(−1)i−|B|

(

∏

j∈Vi−1⧵B1

(vj−1 − vj)
)(

P n−r+|B
′
|+1

Vr⧵B′1
− (vr − v1)P

n−r+|B′|
Vr⧵B′

)

=
∑

v1∉B
(−1)i−|B|

(

∏

j∈Vi−1⧵B1

(vj−1 − vj)
)

P n−r+|B
′
|+1

Vr−1⧵B′
,

which is exactlyQ1. The last equality is obtained by using (.0.54) twice on the right-hand factor. This
proves the base case k = 1.

Now fix k < i − 1 and assume that Q1 = ⋯ = Qk. We will show by the same method that
Qk = Qk+1. We break the expression for Qk into vk ∈ B and vk ∉ B, and compute

∑

v1,…,vk∉B,vk+1∈B
(−1)i−|B|+k−1

(

∏

j∈Vi−1⧵(B∪{v1,…,vk})
(vj−1 − vj)

)

P n−r+|B
′
|

Vr−1⧵(B′∪{v1,…,vk−1}))

+
∑

v1,…,vk+1∉B
(−1)i−|B|+k−1

(

∏

j∈Vi−1⧵(B∪{v1,…,vk})
(vj−1 − vj)

)

P n−r+|B
′
|

Vr−1⧵(B′∪{v1,…,vk−1})
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then setting C = B ⧵ {vk+1}, Ck+1 = C ∪ {vk+1} = B, C ′k = C ∪ {vk+1, vi} = B′ in the first sum,

=
∑

v1,…,vk+1∉C
(−1)i−|C|+k

(

∏

j∈Vi−1⧵(C∪{v1,…,vk+1})
(vj−1 − vj)

)

P n−r+|C|+2Vr−1⧵(C ′∪{v1,…,vk−1,vk+1})

+
∑

v1,…,vk+1∉B
(−1)i−|B|+k−1

(

∏

j∈Vi−1⧵(B∪{v1,…,vk})
(vj−1 − vj)

)

P n−r+|B
′
|

Vr−1⧵(B′∪{v1,…,vk−1})

and renaming C = B,

=
∑

v1,…,vk+1∉B
(−1)i−|B|+k

(

∏

j∈Vi−1⧵(B∪{v1,…,vk+1})
(vj−1 − vj)

)

P n−r+|B|+2Vr−1⧵(B′∪{v1,…,vk−1,vk+1})

+
∑

v1,…,vk+1∉B
(−1)i−|B|+k−1

(

∏

j∈Vi−1⧵(B∪{v1,…,vk+1})
(vj−1 − vj)

)

(vk − vk+1)P
n−r+|B′|
Vr−1⧵(B′∪{v1,…,vk−1})

=
∑

v1,…,vk+1∉B
(−1)i−|B|+k

(

∏

j∈Vi−1⧵(B∪{v1,…,vk+1})
(vj−1 − vj)

)

×

(

P n−r+|B|+2Vr−1⧵(B′∪{v1,…,vk−1,vk+1})
− (vk − vk+1)P

n−r+|B′|
Vr−1⧵(B′∪{v1,…,vk−1})

)

=
∑

v1,…,vk+1∉B
(−1)i−|B|+k

(

∏

j∈Vi−1⧵(B∪{v1,…,vk+1})
(vj−1 − vj)

)

P n−r+|B|+2Vr−1⧵(B′∪{v1,…,vk})
,

again by (.0.54) applied twice. Thus Q1 = ⋯ = Qk+1, so by induction, Q1 = Qi−1 and thus the
right-hand side of (.0.55) equals Qi−1 as desired.

Unfortunately, the expression in Claim 1 for Si does not work for i = r due to the fact that when
i = r in (.0.55), the subset B = Vr−1 occurs in the sum and the corresponding polynomial PVr⧵B′ = 0.It turns out that the expression for Sr is actually simpler.
Claim 2. The term Sr is given by

Sr =
vn−1r−1

(vr − v1)(v1 − v2)⋯ (vr−2 − vr−1)
. (.0.56)

Proof. We will show that
r−1
∏

j=1
(vj−1 − vj)Sr = vn−1r−1 (.0.57)

starting from the equality (.0.55) for i = r, slightly rewritten as
r

∏

j=1
(vj−1 − vj)Sr =

∑

B⊆Vr−1

(−1)r−|B|−1
∏

j∈Vr−1⧵B
(vj−1 − vj)P

n−r+|B|+1
Vr−1⧵B

. (.0.58)

Let us write C = Vr−1 ⧵ B; this becomes
r

∏

j=1
(vj−1 − vj)Sr =

∑

B⊆Vr−1

(−1)r−|B|−1
∏

j∈C
(vj−1 − vj)P

n−r+|B|+1
C . (.0.59)
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We have P∅ = 0, and we may as well sum over the subsets C , so it becomes
r

∏

j=1
(vj−1 − vj)Sr =

∑

∅≠C⊆Vr−1

(−1)|C|−1
∏

j∈C
(vj−1 − vj)P

n−|C|−1
C . (.0.60)

We will prove the following formula, valid for 1 ≤ i ≤ r − 1 and n ≥ 1:
Rni =

∑

∅≠B⊆Vi

(−1)|B|−1
∏

j∈B
(vj−1 − vj)P

n−|B|
B = (vr − vi)vn−1i , (.0.61)

where we set P 0B = 1 and PmB = 0 if m < 0.
This equality suffices to prove the desired result (.0.57). Indeed, taking i = r−1, we see thatRnr−1is equal to the right-hand side of (.0.60), so

r
∏

j=1
(vj−1 − vj)Sr = Rnr−1 = (vr − vr−1)v

n−1
r−1 ,

and canceling out the factor (vr − vr−1) from both sides yields (.0.57).
Let us prove (.0.61) by induction on i. When i = 1, we have B = {vi} and for all n ≥ 1, we have

Rn1 = (v1 − vr)v
n−1
1 , proving the base case. Assume (.0.61) holds for i − 1 for all n ≥ 1. Fix n. We

break Rni into the sum over B containing vi and B not containing Vi, as follows:
Rni =

∑

∅≠B⊆Vi−1

(−1)|B|−1
∏

j∈B
(vj−1 − vj)P

n−|B|
B

−
∑

B⊆Vi−1

(−1)|B|−1
∏

j∈B
(vj−1 − vj)(vi−1 − vi)P

n−|B|−1
B,vi

= Rni−1 −
∑

B⊆Vi−1

(−1)|B|−1
∏

j∈B
(vj−1 − vj)(vi−1 − vi)P

n−|B|−1
B,vi

= Rni−1 + (vi−1 − vi)v
n−1
i − (vi−1 − vi)

∑

∅≠B⊆Vi−1

(−1)|B|−1
∏

j∈B
(vj−1 − vj)P

n−|B|−1
B,vi

The key point is that for B not containing vi, we can write
P n−|B|−1B,vi

= P n−|B|−1B + viP
n−|B|−2
B + v2i P

n−|B|−3
B +⋯ + vn−|B|−2i P 1B + v

n−|B|−1
i .

Using this, the equality becomes
= Rni−1 + (vi−1 − vi)v

n−1
i

− (vi−1 − vi)
∑

∅≠B⊆Vi−1

(−1)|B|−1
∏

j∈B
(vj−1 − vj)

(

P n−|B|−1B + viP
n−|B|−2
B +⋯ + vn−|B|−1i

)

= Rni−1 + (vi−1 − vi)v
n−1
i − (vi−1 − vi)

n−2
∑

k=0
vkiR

n−k−1
i−1

= (vr − vi−1)vn−1i−1 + (vi−1 − vi)v
n−1
i − (vi−1 − vi)

n−2
∑

k=0
vki (vr − vi−1)v

n−k−2
i−1
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= (vr − vi−1)vn−1i−1 + (vi−1 − vi)v
n−1
i − (vr − vi−1)(vi−1 − vi)

n−2
∑

k=0
vki v

n−k−2
i−1

= (vr − vi−1)vn−1i−1 + (vi−1 − vi)v
n−1
i − (vr − vi−1)(vn−1i−1 − v

n−1
i )

= (vr − vi−1)vn−1i + (vi−1 − vi)vn−1i

= (vr − vi)vn−1i .

This proves (.0.61) and thus completes the proof of Claim 2.
We can now prove that the expression (.0.51) is equal to zero by showing that S0 +⋯ + Sr = 0.

Claim 3. We have S0 +⋯ + Sr = 0.

Proof. The key point is the following computation of partial sums for i < r:

S0 +⋯ + Si =
(−1)r−iP n−r+ivi,…,vr−1

(vr − v1)(v1 − v2)⋯ (vi−1 − vi)
. (.0.62)

We prove it by induction on i. The base case i = 0 is just given by the formula for S0 (with
v0 = vr). Assume (.0.62) up to i − 1. Then

S0 +⋯ + Si = (S0 +⋯ + Si−1) + Si (.0.63)

=
(−1)r−i+1P n−r+i−1vi−1,…,vr−1

(vr − v1)⋯ (vi−2 − vi−1)
+
(−1)r−iP n−r+ivi−1,vi+1,…,vr−1

(vr − v1)⋯ (vi−1 − vi)
, (.0.64)

Using (.0.54) and multiplying (.0.63) by the denominator, we find
(−1)r−i(vr − v1)⋯ (vi−1 − vi)(S0 +⋯ + Si) = P n−r+ivi−1,vi+1,…,vr−1

− (vi−1 − vi)P n−r+i−1vi−1,…,vr−1

= P n−r+1vi−1,vi+1,…,vr−1
+ viP n−r+i−1vi−1,…,vr−1

− vi−1P n−r+i−1vi−1,…,vr−1

= P n−r+1vi−1,…,vr−1
− vi−1P n−r+i−1vi−1,…,vr−1

= P n−r+1vi,…,vr−1
.

Now, taking this equality for i = r − 1 yields

S0 +⋯ + Sr−1 =
−P n−1vr−1

(vr − v1)(v1 − v2)⋯ (vr−2 − vr−1)
=

−vn−1r−1
(vr − v1)⋯ (vr−2 − vr−1)

,

which is equal to −Sr by Claim 2. This proves Claim 3.
SinceS0+⋯+Sr is equal to (.0.51), we have finally shown that whatever the value of c, ganit(poc)⋅

N is circ-neutral, completing the proof of Proposition III.3.21.

99



B A Mould bestiary

A moulds bestiary
Who ? What? Tell me more ! Lives in...
alternal(ity) property equivalent to being a Lie polynomial, related to shuf-

fle
II.1.39

alternil(ity) property related to stuffle II.2.7
ARI Lie algebra (with

ari bracket)
moulds in variables ui withM(∅) = 0 II.1.18

ARI Lie algebra (with
ari bracket)

moulds in variables vi withM(∅) = 0 II.1.18

amit(M) operator derivation of ARIlu II.1.5
anit(M) operator derivation of ARIlu II.1.4
arit(M) operator derivation of ARIlu II.1.6
ari Lie bracket defined with flexions, closely related to the Poisson

bracket
II.1.27

ARIa∕b space moulds in ARI having property a whose swap have
property b

ARIa∗b space moulds in ARI having property a whose swap have
property b up to adding on a constant-valued mould

ARIa∕b space subspace of ARIa∕b of moulds that are even func-
tions of u1 in depth 1

BARI space bimoulds with B(∅) = 0 II.1.18
BIMU space all bimoulds II.1.3
Dari Lie bracket another bracket used on ARI III.3.7
Darit (M) operator derivation of ARIlu III.3.5
dar operator multiply by u1… ur, corresponds to the transforma-

tion y → [y, x] in f (x, y) ∈ ℚ⟨C⟩.
III.2.1

Δ operator multiply by u1… ur(u1 + ⋯ + ur), key to the con-
struction of dsell and krvell.

III.2.3

dur operator multiply by (u1 +⋯+ ur), corresponds to Lie brack-
eting with x

III.2.2

dupal mould in ARI used for the recursive construction of pal II.2.11
ganit(Q) operator automorphism of GARI lu III.3.28
GARI group moulds in variables ui withM(∅) = 1 II.1.35
GARI group moulds in variables vi withM(∅) = 1 II.1.35
invmu operation takes the inverse of a mould for themumultiplication
invpal mould in GARI inverse of pal for the group law gari II.2.2
limu Lie bracket commutator for the multiplication mu. Also denoted

lu.
II.1.18

lu Lie bracket see limu
mu binary operation multiplication of moulds II.1.15
pal mould in GARI key to Ecalle’s fundamental identity II.2.2
pari operator multiplies by (−1)r III.3.21
pic mould III.3.33
pil mould = swap(pal)
poc mould III.3.34
senary relation key to the construction of the map krv ↪ krvell III.3.23
symmetral(ity) property expari(M) ∈ GARI is symmetral ifM is alternal II.1.39
teru operator main ingredient of the senary relation III.3.22
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