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Abstract
The TOR (target of rapamycin) serine/threonine kinases are fascinating in that they influence many different
aspects of eukaryote physiology including processes often dysregulated in disease. Beginning with the
initial characterization of rapamycin as an antifungal agent, studies with yeast have contributed greatly
to our understanding of the molecular pathways in which TORs operate. Recently, building on advances
in quantitative MS, the rapamycin-dependent phosphoproteome in the budding yeast Saccharomyces
cerevisiae was elucidated. These studies emphasize the central importance of TOR and highlight its many
previously unrecognized functions. One of these, the regulation of intermediary metabolism, is discussed.

EN APXH ˜,ην ραπαμυκινη (In the
beginning was rapamycin; John 1:1 with
modification)
Ancient civilizations knew well the medical value of natural
products: indigenous South Americans, for example, used
cinchona bark to treat fevers for many centuries while records
for analgesic preparations from willow and other salicylate-
rich plants date back to 3000 BCE. Building on such ob-
servations, systematic ‘bioprospecting’ expeditions, often to
remote corners of the globe, were initiated in modern times
to try to exploit Nature’s pharmacopoeia. Indeed, the history
of TOR (target of rapamycin) started with the efforts of a
Canadian expedition, in the 1960s, to Easter Island (Rapa
Nui in the native language) to gather plant and soil samples
for subsequent analyses.

Importantly, one of these soil samples contained the
bacterium Streptomyces hygroscopicus that was found to
produce a secondary metabolite, now known as rapamycin,
with potent antifungal activity [1,2]. Not long after its
initial characterization as an antifungal agent, rapamycin was
found to possess cytostatic activity not only against lower
eukaryotes but also against mammalian cells, particularly
immune cells and human tumour cells xenografted into
rodents [3,4]. These impressive characteristics of this novel
macrocyclic lactone led to the question: what is the target of
rapamycin?

The Big Bang
Although most appreciated at the time for its anti-cancer
and immunosuppressive potential, it was the antifungal
property of rapamycin that led to the discovery of its
molecular target [5]. This was achieved using a simple, yet
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elegant, selection of spontaneous mutants of the budding
yeast Saccharomyces cerevisiae for the ability to form
colonies on plates containing a cytostatic concentration of
rapamycin. Three classes of mutants were recovered in
this selection with the most populous class demonstrating
recessive resistance to rapamycin. These mutants harboured
defects in the FPR1 gene, which encodes a non-essential
proline isomerase that is an obligate cofactor required for
rapamycin toxicity. The two other loci yielded dominant
resistance to rapamycin and they were named TOR1 and
TOR2. Cloning and sequencing of these genes demonstrated
that they encode huge paralogous (a quirk of yeast)
kinases that resemble phosphatidylinositol kinases [6,7].
Today we know that TORs are conserved in nearly all
eukaryotes (metazoans encode only a single TOR gene)
and that they function not as lipid kinases, but rather as
serine/threonine protein kinases [8,9].

Flavours and colours
Biochemical purification of Tor1 and Tor2 from yeast
demonstrated that these proteins function in at least
two distinct multiprotein complexes named TORC (TOR
complex) 1 and TORC2 [10,11]. Each complex appears to be
conserved in higher eukaryotes [10,12–15] and each appears
to perform one or more essential functions [10,16–19]. Table 1
provides a summary of the proteins that make up TORC1
and TORC2 in budding yeast and in mammals (humans).
Importantly, rapamycin only binds to TOR in TORC1, and
thus only the kinase activity of TORC1 is inhibited following
acute treatment with rapamycin. As indicated in Table 1, not
all components of these complexes are stably associated with
the core complex, suggesting that these two ‘flavours’ of TOR
each also come in different ‘colours’.

Space, time
The two TORCs influence many aspects of eukaryote
physiology. Much of this influence, it seems, is a direct
consequence of the ability of the TORCs to regulate growth.
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Table 1 Summary of TOR and TOR-associated proteins found in

the two TORCs

For each TORC, the yeast and mammalian (human) orthologues are given

in the same row [8,20–27]. Underlined proteins are found associated with

the complex only under specific conditions. Multiple isoforms of mSin1

additionally define distinct forms of mTORC2 [28]. Raptor, regulatory

associated protein of mTOR; rictor, rapamycin-insensitive companion of

mTOR.

TORC1 TORC2

Humans S. cerevisiae Humans S. cerevisiae

mTOR Tor1 or Tor2 mTOR Tor2

mLst8 Lst8 mLst8 Lst8

Raptor Kog1 Rictor Avo3

PRAS40 – – Avo2

– Tco89 mSin1 Avo1

Deptor Iml1? Deptor Iml1?

Protor1/2 Bit61/Bit2

Growth, i.e. the accumulation of mass, must be regulated in
both time and space and there are now numerous examples
of how the two TORCs operate in this regard.

The initial observation that TOR regulates growth was
made in yeast with the demonstration that rapamycin-
sensitive TORC1 promotes protein synthesis when nutrient
conditions are favourable for yeast growth [29]. However,
the ability of TORC1 to couple nutrient cues to the
growth machinery is limited neither to yeast nor to single
cells. TORC1 in the Drosophila fat body responds to
amino acid cues to alter the growth of the entire larva
[30]. In honey bees too, hyperactivation of TORC1 in
larvae a fed on royal jelly is necessary for the subsequent
development of these larvae into queens rather than workers
[31]. TORC1 also regulates growth at a ‘sub-organismal’
level. Load-bearing exercise induces a TORC1-dependent
increase in muscle mass in vertebrates [32], and elegant
studies in sea slugs and crayfish have demonstrated that
TORC1-dependent de novo neuronal protein synthesis
is required for long-term facilitation (long-term memory
formation) [33]. Consistent with this later observation, recent
evidence suggests that TORC1 plays a role in additional
complex cognitive functions such as pregnancy-induced food
preferences in fruitflies [34]. Furthermore, preliminary data
suggest that hyperactivation of TORC1 in the prefrontal
cortex could be an efficacious way of treating human
depression [35]. In contrast, too much TORC1 activity,
as seen in patients that have inherited/acquired a defective
copy of any number of tumour suppressors that normally
function to antagonize mammalian TORC1 activity, results
in the development of hamartomas. Hamartomas are benign
tumours of multiple tissues characterized by the presence of
huge dysmorphic cells [36]. Indeed, given the number
of oncoproteins and tumour suppressors that respectively
activate and antagonize its activity, mammalian TORC1 is
thought to be hyperactive in a majority of cancers [8]. Lastly,

although mechanistic details are still unclear, reduced TORC1
activity increases lifespan in yeast, nematode worms, fruitflies
and rodents [37].

Lacking a rapamycin-equivalent tool with which to
interrogate its function, understanding of the pathways
downstream of TORC2 has lagged in comparison with
TORC1. Genetic studies have suggested that TORC2 plays
a prominent role in regulating spatial aspects of cell growth
(reviewed in [38]). For example, depletion of TORC2 in S.
cerevisiae and Dictyostelium discoideum or knockdown of
mammalian TORC2 components leads to defects in actin
organization. Furthermore, in slime moulds and human tissue
culture cells, TORC2 regulates migratory responses and
organelle distribution [39–41].

Additional functions of TORC2 have also been described.
In S. cerevisiae and Caenorhabditis elegans, TORC2 regulates
lipid synthesis [42–44], while in Drosophila melanogaster it
controls the dendritic tiling of sensory neurons [45]. In the
fission yeast, Schizosaccharomyces pombe, TORC2 influences
both stress responses as well as cell-cycle progression
[46].

Black hole
Although TORC1, by coupling growth decisions to envir-
onmental cues, and TORC2, by directing mass deposition to
discreet loci, generally appear to regulate temporal and spatial
aspects of cell growth, it is far from clear, at the molecular
level, how the many readouts now ascribed to these two
complexes are controlled. Indeed, very few direct substrates
of the TORCs are known.

Beyond the event horizon
From the discussion above, it is hopefully clear that a
more complete understanding of the molecular pathways
downstream of the two TORCs is not only academically
interesting, but also potentially clinically interesting. To
this end, our group, together with Ruedi Aebersold’s
group, has recently employed a novel MS approach to
ascertain the rapamycin-sensitive (and thus presumably
the TORC1-dependent) phosphoproteome in budding
yeast [47]. Specifically, we employed a novel label-free
yet quantitative MS approach to define the rapamycin-
sensitive phosphoproteome in an unbiased manner. In a
complementary study, the arguably more standard SILAC
(stable isotope labelling with amino acids in cell culture)
MS approach was similarly employed to characterize the
rapamycin-sensitive phosphoproteome of budding yeast [48].
Although these MS approaches suffer from high false-
negative rates, false-positive rates appear to be quite low and
thus they nonetheless yield considerable insight into novel
distal readouts downstream of TORC1. As many of the
known readouts downstream of TORC1 have been reviewed
recently [49,50], for the remainder of the present mini-review
I focus on an underappreciated target of TORC1-dependent
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signals suggested by these two phosphoproteome studies: the
regulation of intermediary metabolism.

A role for yeast and mammalian TORC1 in the regulation
of metabolism was first suggested by transcriptomics
studies [51,52]. Subsequent transcript profiling experiments
confirmed and extended these results, demonstrating that
mammalian TORC1 activates a range of genes encoding
enzymes involved in glycolysis, the pentose phosphate
pathway and de novo lipid biosynthesis [53]. However, in
addition to this regulation at the transcriptional level, the
elucidation of the rapamycin-sensitive phosphoproteome of
yeast suggests that many of these enzymes are directly
regulated by TORC1 at the post-translational level.

TORC1-dependent regulation of glucose and
nitrogen intermediate metabolism
Glucose is the preferred carbon source for budding yeast,
and glucose fermentation, rather than respiration, is the
main metabolic pathway for both energy and carbon
intermediates [54]. In this regard, yeast metabolism is
rather similar to that of many tumour cells that likewise
abandon oxidative phosphorylation in preference for ‘aerobic
glycolysis’ known as the Warburg effect [55]. Arguably,
the rate-limiting step of glycolysis is the unidirectional
conversion of fructose 6-phosphate+ATP into fructose 1,6-
bisphosphate+ADP catalysed by phosphofructokinase. In
yeast, phosphofructokinase is an 835-kDa hetero-octamer
made up of four α (Pfk1) and four β (Pfk2) subunits in a
β2α4β2 configuration [56]. The activity of the holoenzyme
is extensively regulated by allosteric interactions (up to
20 different compounds affect its activity [57]), with
ATP inhibiting the enzyme and AMP and fructose 2,6-
bisphosphate reversing the inhibition. Point mutations in
either α or β subunits that render phosphofructokinase
insensitive to allosteric regulation suggest that regulation of
the enzyme is important for growth under changing nutrient
conditions [58]. Interestingly, both subunits appear to be
differentially phosphorylated upon rapamycin treatment,
with Pfk1 becoming dephosphorylated and Pfk2 becoming
hyperphosphorylated [47]. Although these preliminary
observations obtained in a high-throughput screen need still
to be confirmed, they suggest the very interesting possibility
that TORC1 signals directly impinge upon this key node of
glycolysis.

Phosphofructokinase is not the only glycolytic enzyme
apparently targeted by TORC1; phosphorylation of Fba1
(fructose-1,6-bisphosphate aldolase) appears also to be
decreased upon rapamycin treatment [47]. Fba1 catalyses the
conversion of fructose 1,6-bisphosphate into glyceraldehyde
3-phosphate and dihydroxyacetone phosphate during glyco-
lysis and the reverse reaction during gluconeogenesis [59]; it
is tempting to speculate that the phosphorylation status of
Fba1 may tip this balance.

PRPP (phosphoribosyl pyrophosphate) represents an
important link between carbon and nitrogen metabolism.
PRPP is a biosynthetic precursor of histidine and tryptophan,

and it is also required for the de novo and salvage
pathways of purine, pyrimidine and pyridine (NAD+,
NADP+) nucleotides. It is generated by the transfer of
pyrophosphate from ATP to ribose 5-phosphate catalysed by
PRPS [5-phosphoribosyl-1(α)-pyrophosphate synthetase].
PRPS is an important enzyme in the industrial production
of riboflavin and, like other metabolic enzymes, is subject to
allosteric regulation [60]. Mutations in human PRPS genes
are associated with different hereditary disorders, including
hyperuricaemia, mental retardation, developmental delay and
other neurological pathologies [61–63]. In budding yeast,
there are five related PRPS enzymes which function in
heteromultimeric complexes [64]. One of these enzymes,
Prs5, appears to be hyperphosphorylated upon rapamycin
treatment [47], although the biological significance of this
phosphorylation remains to be established.

Gdh2 (glutamate dehydrogenase) also appears to be
hyperphosphorylated in cells following rapamycin treatment
[48]. NAD-dependent Gdh2 degrades glutamate, yielding
ammonia and oxaloacetate. The liberated ammonia can
subsequently be reacted with a second molecule of glutamate
to generate glutamine. In budding yeast, the amino group of
glutamate and the amide group of glutamine are the source
of nitrogen for biosynthesis of all other macromolecules
[65]. Oxaloacetate is an important tricarboxylic acid cycle
intermediate as anapleurotic reactions can feed into the cycle
at this juncture. Thus, in regulating glutamate, glutamine,
ammonia and oxaloacetate levels, Gdh2 plays a role of central
importance in nitrogen metabolism. Consistent with such
a central role, the activity of Gdh2 has been proposed
to be regulated by (potentially TORC1-dependent [66])
phosphorylation which appears to inactivate the enzyme [67].

TORC1-dependent regulation of nucleotide and
amino acid synthesis
Amd1 is a tetrameric enzyme that catalyses the deamination
of AMP to form IMP and ammonia. Upon transition from
respiration to fermentation (for example, upon the addition of
glucose to a yeast culture respiring a non-fermentable carbon
source) there is a dramatic fall in ATP levels. Owing to the
action of adenylate kinase activity, this would normally lead
to an increase in AMP levels that would, through allosteric
interactions, have a significant, and in this case inappropriate,
effect on subsequent glycolytic steps. To circumvent this,
during this transition, AMP is rapidly converted into IMP
by the action of Amd1 [68]. The observation that Amd1 is
dephosphorylated upon rapamycin treatment [47,48] might
suggest that, in response to environmental cues, TORC1
regulates Amd1 activity to allow cells to manage AMP
levels. Such a regulation may also play a role in humans,
as individuals harbouring defective alleles of AMP deaminase
display deficiencies in physical performance [69].

The uridine kinase Urk1p is also dephosphorylated upon
rapamycin treatment [48]. Urk1 phosphorylates uridine into
UMP and cytidine/deoxycytidine into CMP/dCMP in the
pyrimidine (deoxy)ribonucleotide salvage pathway [70,71].
These two pathways provide pyrimidines required for nucleic
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acid synthesis, amino acid synthesis and energy [71]. The
physiological significance of this phosphorylation remains to
be determined.

Unlike mammalian cells, yeast cells can synthesize tetra-
hydrofolate (vitamin B9) and subsequent folate derivatives
which are essential cofactors in one-carbon transfer reactions,
including the synthesis of methionine and purines. The Fol1
gene of yeast has dihydropteroate synthetase, dihydro-6-
hydroxymethylpterin pyrophosphokinase and dihydrone-
opterin aldolase activities and thus catalyses three separate
steps in folate synthesis [72]. Fol1 is dephosphorylated
upon rapamycin treatment [47], raising the possibility
that its activity is regulated by TORC1. Interestingly,
Fol1 is found in the mitochondria [72], whereas TORC1
localizes predominantly to the vacuolar membrane [49].
It will be interesting to see if, how and why TORC1
signals cross the mitochondrial membranes to influence Fol1
phosphorylation.

Lastly, several additional enzymes involved in the
biosynthesis of amino acids are differentially phosphorylated
upon rapamycin treatment and thus also appear to be
potentially regulated by TORC1 signals [47,48]: Ser33,
required for serine and glycine synthesis; Met2 and Met12,
required for methionine synthesis; Hom3, required for
methionine and threonine synthesis; and Lys12, required for
lysine synthesis.

TORC1-dependent regulation of metabolic
reserves
Accumulation of carbohydrates and lipids is an important
response to starvation [73]. It is perhaps not surprising
therefore that TORC1 inhibition with rapamycin, which
in many regards causes cells to behave as if they were
starved of nutrients (particularly nitrogen) [49], alters the
phosphorylation of enzymes involved in mobilization of
metabolic reserves.

Sterols are essential lipids for eukaryote cells. Free
sterols are synthesized in the endoplasmic reticulum but
are concentrated in the plasma membrane. Steryl esters
accumulate in intracellular lipid bodies and serve as a storage
form of sterols and fatty acids. Three membrane-anchored
lipases have recently been described to be necessary to
hydrolyse steryl esters and thus mobilize free sterols [74].
One of these, Tgl1, is dephosphorylated upon rapamycin
treatment [48], suggesting that TORC1 plays a role in sterol
mobilization.

Tgl5 becomes hyperphosphorylated upon rapamycin
treatment [47], suggesting that TORC1 also plays a role in the
mobilization of TAGs (triacylglycerols). Interestingly, Tgl5
has both a TAG lipase domain as well as a lysophosphatidic
acid acyltransferase domain. Thus this enzyme can function in
both anabolic and catabolic pathways [75]; perhaps TORC1-
dependent phosphorylation favours one over the other.

In addition to lipid reserves, carbohydrate reserves are also
known to be influenced by TORC1 activity. For example,
inhibition of TORC1 is well known to result in glycogen
accumulation [49]. In budding yeast, glycogen, a branched

polysaccharide of high molecular mass, is catabolized to
glucose 1-phosphate by the glycogen phosphorylase Gph1.
gph1-null cells accumulate glycogen, suggesting that the
increase in Gph1 phosphorylation observed upon rapamycin
treatment [48] may lead to inactivation of the enzyme.

In yeast, the disaccharide trehalose functions not only as
a carbohydrate reserve, but also probably as a molecular
chaperone required for surviving thermal, osmotic, oxidative
and ethanol stress [76]. Trehalose is synthesized from
uridine-5′-diphosphoglucose and glucose 6-phosphate by the
trehalose-6-phosphate synthase/phosphatase complex. This
complex is composed of Tps1, the synthase subunit, Tps2, the
phosphatase subunit and two redundant regulatory subunits
Tps3 and its paralogue Tsl1. Both regulatory subunits are
hyperphosphorylated upon rapamycin treatment [48], which
may help begin to explain how yeast cells accumulate
trehalose following TORC1 inhibition [77].

Metabolism: the final frontier
With the advent of ultrahigh-throughput sequencing techno-
logies, genomic and transcriptomic studies have now become
routine. Recent MS advances have also made proteomic and
lipidomic studies much more feasible. In contrast, identifying
the hundreds of distinct small-molecule metabolites in a given
cell and quantifying the flux of their synthesis still remains
rather challenging [78]. Many observations, however, suggest
that it is critically important that researchers are able to
acquire high-quality metabolomics data. For example, for
more than 50 years it has been known, but not understood,
that tumour cells display an altered metabolism, typically
an increase in aerobic glycolysis [79]. On the basis of this
observation, the idea of targeting tumour cell energy metabol-
ism, the so-called ‘metabolic therapy’, as a cancer therapy has
been advanced [55]. More recently, nutrient excess coupled
with reduced physical activity in Western societies has led
to a dramatic increase in the metabolic syndrome, diabetes
and cancer [80]. One might hope that metabolic profiling of
such patients will enable better diagnoses and treatments.
To this end, fluorodeoxyglucose-based positron emission
tomography is already used in the clinic to monitor tumour
response to chemotherapeutics [81]. In the meantime, as
aberrant hyperactivation of mammalian TORC1 appears to
be a common molecular event in hamartomous tumour syn-
dromes, cancers and obesity, the elucidation of the metabolic
targets of TORC1 is of particular interest. Furthermore,
given that core metabolic pathways are robustly conserved
in eukaryotes and that tumour cell energy metabolism has
been suggested to share several common features with yeast
metabolism [55], studies in budding yeast are well positioned
to make significant contributions in this regard.
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