
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2010                                     Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of 

the published version may differ .

A robust coefficient of determination for regression

Renaud, Olivier; Victoria-Feser, Maria-Pia

How to cite

RENAUD, Olivier, VICTORIA-FESER, Maria-Pia. A robust coefficient of determination for regression. In: 

Journal of statistical planning and inference, 2010, vol. 140, n° 7, p. 1852–1862. doi: 

10.1016/j.jspi.2010.01.008

This publication URL: https://archive-ouverte.unige.ch/unige:5672

Publication DOI: 10.1016/j.jspi.2010.01.008

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:5672
https://doi.org/10.1016/j.jspi.2010.01.008


A robust coefficient of determination for regression

Olivier Renauda,b and Maria-Pia Victoria-Feserc,1

a Methodology and Data Analysis, Psychology Department, University of Geneva, CH- 1211 Geneva 5

b Distance Learning University, CH- 3960 Sierre

c Faculty of Economics and Social Sciences, University of Geneva, CH- 1211 Geneva 5

1 Partially supported by Swiss National Science Foundation, grant #PP001-106465

postprint – Journal of Statistical Planning and Inference 140 (2010) 1852–1862

Abstract

To assess the quality of the fit in a multiple linear regression, the coefficient of determination
or R2 is a very simple tool, yet the most used by practitioners. Indeed, it is reported in most
statistical analyzes, and although it is not recommended as a final model selection tool, it
provides an indication of the suitability of the chosen explanatory variables in predicting the
response. In the classical setting, it is well known that the least-squares fit and coefficient of
determination can be arbitrary and/or misleading in the presence of a single outlier. In many
applied settings, the assumption of normality of the errors and the absence of outliers are
difficult to establish. In these cases, robust procedures for estimation and inference in linear
regression are available and provide a suitable alternative.

In this paper we present a companion robust coefficient of determination that has several
desirable properties not shared by others. It is robust to deviations from the specified regression
model (like the presence of outliers), it is efficient if the errors are normally distributed, it does
not make any assumption on the distribution of the explanatory variables (and therefore no
assumption on the unconditional distribution of the responses). We also show that it is a
consistent estimator of the population coefficient of determination. A simulation study and
two real datasets support the appropriateness of this estimator, compared with classical (least-
squares) and several previously proposed robust R2, even for small sample sizes.

1 Introduction

The regression model with response variable y and regressors x can be stated as y|x ∼ (
xT β;σ2

)
with β = (β0, β1, . . . , βq) a q + 1 dimensional vector that contains the regression parameters or
slopes with β0 the intercept and consequently x = (1, x1, . . . , xq)

T . For a sample of n observations,
this amounts to postulating

yi = xT
i β + εi, εi ∼

(
0, σ2

) ∀i = 1, . . . , n. (1)

The regression model is suitable if the underlying hypotheses are satisfied. In particular, the
linearity of the relationship between the response and (possibly some function of) the explanatory
variables holds, as well as the fact that the residual variance is constant.

Like for other models, given a dataset, it is important to be able to check the fit of the regression
model. There exists in fact several measures for goodness-of-fit assessment and variable selection
that are more or less routinely used in practice. These include for example the F -test, the Akaike
(1973) AIC criterion, Mallows (1973) Cp or cross-validation (Stone, 1974, Shao, 1993). AIC and Cp

belong to covariance penalty methods (see Efron, 2004) because they include a covariance penalty
that corrects an estimated prediction error. More specifically, let ŷi = xT

i β̂ be the predicted
value for yi at the model with p < q explanatory variables (based on a least-squares fit) and
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RSS =
∑n

i=1 (yi − ŷi)
2 be the corresponding residual sum of squares, then Γp, the true Cp, can be

written as

Γp =
E(RSS)
nσ2

+
2
nσ2

n∑

i=1

Cov(yi, ŷi)− 1 (2)

(see also Dupuis and Victoria-Feser, 2003 and Dupuis and Victoria-Feser, 2006). Efron (2004)
shows the link between covariance penalty methods and cross-validation and related nonparametric
bootstrap techniques.

More traditionally, for the linear regression model, a very simple fit indicator is, however, given
by the coefficient of determination R2. If x is considered as random, it can be defined as the
(population) parameter that is the squared correlation between y and the best linear combination
of the x (Anderson, 1984, p. 40):

φ2 = max
β
Corr2(y,xT β). (3)

If the regressors are considered as fixed, the same type of definition can be carried out (Helland,
1987); see also more details in the appendix. It is important to note that normality is not assumed,
merely the existence of the second moments. Compared to covariance penalty methods, although
the R2 is solely based on the covariance penalty, it plays an important role in model fit assessment.
It should certainly not be used as a unique model fit assessor, but can provide a reasonable and
rapid model fit indication.

The R2 is usually presented as the quantity that estimates the percentage of variance of the re-
sponse variable explained by its (linear) relationship with the explanatory variables. It is computed
by means of the ratio

R2 =
ESS

TSS
= 1− RSS

TSS

= 1−
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

(4)

where ESS, TSS and RSS are respectively the explained, total and residual sum of squares. When
there is an intercept term in the linear model, this coefficient of determination is actually equal to
the square of the correlation coefficient between yi and ŷi, i.e. (see e.g. Greene, 1997, p. 253)

R2 =




∑n
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)
√∑n

i=1 (yi − ȳ)2
∑n

i=1

(
ŷi − ¯̂y

)2




2

(5)

with ¯̂y the mean predicted responses. Equation (5) has a nice interpretation in that R2 measures
the goodness of fit of the regression model by its ability to predict the response variable, ability
measured by the correlation. Further, this expression shows that the (unconditional) distribution
of the response does not need to be Gaussian to allow for the interpretation of R2. It also shows
that it is a direct estimator of the population parameter (3). In finite samples, the R2 is biased
upward and is often adjusted, e.g. R2

adj = 1− (1−R2)
(

n−1
n−q

)
.

In a classical framework, all the fit criteria work well as summary measures because the postu-
lated model is assumed to be the exact generating process. But what happens if e.g. the errors
are not normal, but instead the data have actually been generated through a model that is in a
neighborhood of the assumed model? This is the fundamental assumption in robust statistics that
consequently provides a set of robust estimators, testing procedures, goodness-of-fit measures built
upon the hypothesis that the postulated model is only an approximated model. The most com-
mon types of model deviation are outliers, and robust procedures prevent the latter from biasing
the regression parameter estimates, the testing procedures as well as the goodness-of-fit criteria.
For example, Ronchetti (1982) (see also Ronchetti, 1997) proposes a robust version for the AIC,
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Ronchetti and Staudte (1994) propose a robust version for the Cp and Ronchetti et al. (1997) ro-
bustify the Shao (1993) cross-validation based method. Indeed, any goodness-of-fit criteria should,
at its level, give a summary indication of the fit of the data to the postulated model. If the later
is assumed to be only an approximation of the reality, then the measure should give an indication
of the fit for the majority of the data, possibly leaving aside a few outlying observations. In other
words, the (robust) goodness-of-fit criterion is used to choose a good model for the majority of the
data rather than an “average” model for all the data.

Several robust R2 have been proposed in the literature (see next section). However, no simu-
lations are reported that assess their properties in some way, and as it will be shown through two
examples and by means of simulations, the available robust R2 can be misleading in assessing the
fit of the regression model to the (majority of) data. In this paper, we propose an alternative robust
estimator that we present as a robust version of the correlation coefficient between yi and ŷi that
makes no assumption on the (unconditional) distribution of the responses. We show that it can be
reformulated as a weighted version of (4). We also show how to obtain a consistent estimator of
the population coefficient of determination. A simulation study and the analysis of two datasets
illustrate that it better represents the fit of the model to the data than the available robust R2 and
that it is robust to model misspecification such as outliers, contrarily to the classical (least-squares)
R2.

2 Robust coefficients of determination

It is rather obvious that the R2 (4) can be driven by extreme observations, not only through the
LS estimator β̂ used to compute the predicted responses, but also through the average response ȳ
and the possible large residuals or deviations yi − ȳ. For the slope parameter, one can choose a
robust estimator β̂, for example in the class of M -estimators (Huber, 1964) defined generally (for
the regression model) by the solution in β of

min
β

n∑

i=1

ρ (ri) ,

where ri = (yi − xT
i β)/σ, or alternatively by the solution in β of

n∑

i=1

ψ (ri)xi = 0, (6)

with ψ (z) = ∂/∂zρ (z). The functions ρ and ψ actually generalize, respectively, the log-likelihood
and the score associated with the postulated model. For the resulting M -estimator to be robust
to small amounts of model deviations (small amounts of outliers), a sufficient condition is that the
function ψ is bounded. Redescending ψ functions improve the robustness of the M -estimator to
larger amounts. Such a function is given by the popular Tukey’s (Beaton and Tukey, 1974) biweight
function:

ψ[bi](ri; c) =

{
ri

((
ri

c

)2 − 1
)2

if |ri| ≤ c

0 if |ri| > c.

Note that it can be written as

ψ[bi](ri; c) = w(ri, c)ri with w(ri, c) =

{ ((
ri

c

)2 − 1
)2

if |ri| ≤ c

0 if |ri| > c.
(7)

To compute β̂, one needs an estimate of σ and an iterative procedure with a suitable starting point.
One first computes a starting consistent (very robust) estimator β̂

0
together with a robust residual

scale estimator σ̂2 and uses β̂
0

as starting point in an iterative procedure to find the solution β̂bi
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in β of
∑n

i=1 ψ[bi](ri; c)xi = 0 with σ2 replaced by σ̂2. This estimator is actually an MM -estimator
(Yohai, 1987). The efficiency with respect to the LS estimator can be chosen with a suitable value
for c in (7) (see also Yohai et al., 1991). At the (exact) regression model, c = 4.685 leads to an
MM -estimator with 95% efficiency compared to the LS estimator.

Given then a choice for the ρ-function, Maronna et al. (2006), p. 171, propose a robust equivalent
for the R2 (4) given by

R2
ρ = 1−

∑n
i=1 ρ

(
yi−xT

i β̂
σ̂

)

∑n
i=1 ρ

(
yi−µ̂

σ̂

) (8)

where µ̂ is a robust location estimate of E(y), solution of

min
µ

n∑

i=1

ρ

(
yi − µ

σ̂

)
(9)

and β̂ and σ̂ are robust estimators for β and σ (for the full model) based on the chosen ρ function.
Independently, Croux and Dehon (2003) propose a class of robust R2 which generalizes (4) given
by

R2
S = 1− Sn(yi − xT

i β̂)
Sn(yi − µ̂)

(10)

where Sn is a robust scale estimator. For example, using the L1 regression estimator one defines

R2
L1

= 1−
( ∑n

i=1 |yi − xT
i β̂L1

|∑n
i=1 |yi −medianiyi|

)2

(11)

and for the least median of squares (LMS) regression estimator (Rousseeuw, 1984) one has

R2
LMS = 1−

(
mediani|yi − xT

i β̂LMS|
SHORT

)2

(12)

where SHORT stands for half of the length of the shortest interval covering half of the yi responses.
Although (8) and (10) are direct generalizations of (4) to the robust framework, they suffer

from an important drawback: in practice they are often biased. We will illustrate this point with a
simulation study and two datasets in Sections 3 and 4. One possible reason why this phenomenon
happens is that in computing R2

ρ or R2
S , one uses two “models”: the regression model through

yi − xT
i β̂, and a location model through the term in the denominator (yi − µ̂, yi − medianiyi or

SHORT). These two quantities are not influenced by model deviations in the same way, so that
bounding these quantities directly and separately is not necessarily appropriate in the regression
model framework. More specifically, suppose that the regressor x is a dummy variable (representing
a category of a categorical variable) or binary, and hence the response is split into two groups, then
when the two groups are very different, i.e. the response is bimodal, a robust location estimator (9)
will consider most of the responses (i.e. residuals) as extreme. Similarly, the SHORT might exclude
totally the responses of one category, underestimating the total variability and thus the coefficient
of variation, see the second row of Figs 1–3. It should be noted that Croux and Dehon (2003) made
it very clear that their proposed robust R2

S class is suitable under the assumption that the marginal
distribution of the response variable is a location-scale transformation of the conditional or error’s
distribution. This means in practice that it is symmetric and unimodal, so that the dummy variable
example above does not satisfy this rather strong hypothesis.

To remedy this problem, we propose instead to measure the goodness of fit of the model by its
ability to predict the response using the correlation between the response and its prediction (5),
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which in the robust case is given by

R2
w =




∑n
i=1 wi (yi − ȳw)

(
ŷi − ¯̂yw

)
√∑n

i=1 wi (yi − ȳw)2
∑n

i=1 wi

(
ŷi − ¯̂yw

)2




2

, (13)

where ȳw = (1/
∑
wi)

∑
wiyi, ¯̂yw = (1/

∑
wi)

∑
wiŷi and the weights wi and the predicted values

ŷi are those produced by the robust regression estimator, for example Tukey’s biweight wi = w(ri, c),
with ri = (yi − ŷi)/σ̂2 as defined in the paragraph below (7) and ŷi = xT

i β̂bi. Since these weights
are used to estimate the model (1), they downweight observations based on their residuals, not
on their y value. This is a different rationale as for example simply using a robust correlation
estimator such as one in the class proposed by Huber (1981), or the one proposed by Gnanadesikan
and Kettenring (1972) (and studied by Devlin et al., 1981). Indeed, in both cases, like with R2

ρ

and R2
S , observations are downweighted (or even trimmed) when yi− ȳ and/or ŷi− ¯̂y is large (with

respect to the underlying normal model), and as explained above with the dummy variable example,
with respect to the regression model, the “wrong” observations can be pinpointed. It is therefore
important to base a weighting scheme on the regression model as is done with our proposed robust
R2

w in (13).
With the same weights and predictions, another robust R2

w can be based on its explained versus
total sum of squares version (4):

R̃2
w = 1−

∑n
i=1 wi (yi − ŷi)

2

∑n
i=1 wi (yi − ȳw)2

. (14)

It turns out, as will be shown in Theorem 1 below, that the two robust coefficients of determinations
are equal. A more general formulation is given by

Ř2
w,a =

∑n
i=1 wi

(
ŷi − ¯̂yw

)2

∑n
i=1 wi

(
ŷi − ¯̂yw

)2 + a
∑n

i=1 wi (yi − ŷi)
2
, (15)

which allows for a possible correction factor a for consistency considerations.

Theorem 1 The two robust coefficients of determinations given in (13) and (14) are equal to (15)
with a = 1. Moreover, with no assumption on the distribution of the explanatory variables (and
therefore no assumption on the unconditional distribution of the responses), but under the assump-
tion of normality of the errors and for a consistent estimator of the residual scale σ̂, a consistent
estimator of the population coefficient of determination (3) is obtained when a = E(w(r))/E(ψ(r))
in (15). In particular, for the biweight with c = 4.685 (95% efficiency), a = 1.2076.

The proof of this theorem is given in the appendix. As a robust and consistent σ̂, we propose to
use the S-estimator with biweight ρ-function (see Rousseeuw and Yohai, 1984). For small samples
and a relatively large number of covariates, using the same rationale than for the classical R2, the
robust coefficient might benefit of being adjusted, hence leading to the adjusted coefficient

Ř2
adj,w,a = 1− (1− Ř2

w,a)
(
n− 1
n− q

)
. (16)

A simulation study and two datasets provide further evidence on the appropriateness of the
proposed robust R2.

3 Simulation study

A simulation study was carried out to compare all the R2 estimators presented in this paper. The
aim is to evaluate their consistency, their variability and their robustness.
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Small association Large association
no contam. x contam. y contam. no contam. x contam. y contam.
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Figure 1: Boxplots of R2 for samples of size n=30. Four settings for the x’s: a unique dummy with
probability 50%-50% (Dummy 50-50), with probability 70%-30% (Dummy 70-30), four-dimensional
correlated Gaussian (4 Gauss.) and three-dimensional correlated Gaussian plus an uncorrelated
dummy (3 Gauss.+dum.). Eight estimators: least-squares R2 (LS and LSadj), S-type robust es-
timators using the L1 criterion (L1) and the LMS criterion (LMS), S-Plus/R implemented robust
(Rrho), and the proposed robust in the uncorrected (Rw) version and corrected version (RwCorr
and RwCadj). The strength of the association is either small or large, the data are either not
contaminated (no contam.), or the x’s are contaminated (x contam.), or the responses are contam-
inated (y contam.). Overall the proposed corrected method seems to be the only method that is
consistent.

We used four different settings for the explanatory variables: a unique dummy explanatory
variable, generated with probability of 50% of being 0 (Dummy 50-50); a unique dummy explana-
tory variable, generated with probability of 70% of o being 0 (Dummy 70-30); four correlated
Gaussian variables (4 Gauss.); three correlated Gaussian plus an uncorrelated dummy variable (3
Gauss.+dum.). In all cases, y is generated according to model (1). The sample size is either n=30
for Fig. 1 or n=100 for Fig. 2 or n=10,000 for Fig. 3.

Eight estimators are tested. The first two are least-squares R2 (eq. (4), LS) and (LSadj),
respectively, without and with adjustment for small sample. The middle ones are S-type robust
estimators using, respectively, the L1 criterion (eq. (11), L1) and the LMS criterion (eq. (12),
LMS), S-Plus/R implemented robust R2

ρ (eq. (8), Rrho). The last three are the proposed robust
R2

w = Ř2
w,1 (eq. (13), Rw) in the uncorrected version, Ř2

w,1.2 (eq. (15), RwCorr) and Ř2
adj,w,1.2

(eq. (16), RwCadj) in the corrected version with a = 1.2, respectively, without and with adjustment
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Figure 2: Same settings as in Fig. 1, but with n=100 observations for each sample.

for small sample. Two additional characteristics of the simulation were varied. The strength of the
association is either small (φ2 in (3) close to 0.2) for the boxplots on the left side of the panel or
strong (φ2 around 0.9) for the boxplots on the right side of the panel. Finally, in the “no contam.”
columns all the errors are normally distributed with unit variance; in the “y contam.” columns,
the errors have a probability of 5% to have a standard deviation 10 times larger (hence of 10); in
the “x contam.” for the two first rows, the value of the dummy variable has a probability of 5% to
be switched (0–1 or conversely); for the two last rows, the value of the first explanatory Gaussian
variable has a probability of 5% to have a standard deviation 10 times larger. In each case, 1000
samples have been generated. The horizontal line displays the population φ2.

If we first look at the simulation with no contamination (columns with “no contam.”), we see
that in all cases only the estimators of the coefficient of determination by least-squares (LS) and
the proposed corrected robust (RwCadj) are unbiased. For the small sample size (30) and several
predictors (two last rows of Fig. 1), the adjusted versions (LSadj and RwCadj) reveal to be useful.
Moreover, the proposed robust coefficient does not seem to be more variable than the LS, indicating
a good efficiency at the model. All the other methods are somehow biased at the model, sometimes
to a large extent. Concerning contamination on the response (columns with “y contam.”), even 5%
of contamination hamper the least-squares estimate up to an important amount, the other robust
methods are also biased. Only the proposed corrected robust (RwCadj and possibly RwCorr)
stays unbiased in all the settings. A 5% of contamination in not unrealistic in practice and the
proposed method brings a good safeguard. Finally, if one contaminates the explanatory variables
(columns with “x contam.”), the same conclusions hold, except for sample size n=10,000, small
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Figure 3: Same settings as in Fig. 1, but with n=10,000 observations for each sample.

association and only one dummy (two first rows of Fig. 3). In that case, the contamination seems
to perturb even the proposed corrected robust (RwCorr). Actually, this design (small association
and contaminated dummy variables) appears to be a difficult one also for the robust approach,
even with smaller sample sizes. The boxplots in the 2 first rows of the second column of Fig. 1
in Fig. 2 show that the R2 are not quite centered, but their variance is relatively large, while
with n = 10, 000 the bias appears because the variance becomes small enough. It therefore seems
that the breakdown of the R2 is reached at 5% of contaminated data in that type of setting, and
consequently, the proposed corrected robust (RwCorr) shows the same performance as the classical
R2 based on the LS.

However, as a general conclusion of this simulation study, overall the proposed corrected robust
estimator Ř2

w,1.2 (eq. (15), RwCorr), or for small samples and a relatively large number of covariates
its adjusted version (Ř2

adj,w,1.2, eq. (16), RwCadj), are the only one that meet the three aims of
consistency, efficiency and robustness. Empirically, the proposed coefficient is remarkably unbiased,
even for small sample sizes.

4 Application to real datasets

The first dataset we consider here is about the measurement or estimation of glomerular filtration
rate (GFR) by means of Serum Creatinine (CR). Several models have been proposed to explain the
logarithm of the GFR by means of the CR and possibly other explanatory variables such as AGE
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Figure 4: Estimated regression lines for the model log (GFR) = β0 + β1CR−1.

and SEX (see e.g. Rule et al., 2004). The data we consider here are the GFR and CR measured
on a random sample of 30 men out of the 180 in the Brochner-Mortensen et al. (1977) study of
renal function, and analyzed in Ingelfinger et al. (1987) (Table 9b-2, p. 229) as well as in Heritier
et al. (2009), chapter 3. For the purpose of comparing different (robust) versions of coefficients of
determination, we will consider the following (simple) model

log (GFRi) = β0 +
β1

CRi
+ εi . (17)

The parameter β is estimated using the biweight MM -estimator and the estimated regression lines
together with the LS estimated regression lines with and without observation no. 2 are presented
in Fig. 4; see also Heritier et al. (2009), chapter 3. The corresponding R2 are for the LS on all the
data of 0.73, for the LS without observation no 2 of 0.85, for the robust R2

ρ in (8) of 0.68 and for the
robust R2

w = Ř2
w,1 in (13) of 0.86 in the uncorrected version and of Ř2

w,1.2 = 0.84 in the corrected
version (a = 1.2). The adjusted versions for small sample are less than 1% smaller than the above
(non-adjusted) version, due to the fact that there is a unique predictor. Since the coefficient of
determination is an indicator of the fit of the regression model to the data, it should reflect how
the data (or the majority of the data for the robust version) evolve around the regression line. The
robust estimator clearly leads to a better fit (except for the two extreme observations no 2 and 16)
than the LS estimator, but this is not reflected by the R2 in (8). Without observation no 2, the R2

corresponding to the LS is the largest and it is also the case for the robust Ř2
w,1.2, and hence better

reflects the nature of the robust fit as illustrated in Fig. 4. Note finally that a small curvature is
visible in Fig. 4. However, both classical and robust R2 are not built to measure the appropriateness
of the linearity assumption, but instead to what extend the responses are well predicted by their
estimated linear predictor.

The second dataset is in the field of psychology, where two tasks have been assigned individually
to 54 primary school children (Fürst et al., 2010). Originality, appropriateness and creativeness
scores have been graded and standardized. The matrix plot is given in Fig. 5. This dataset
is interesting as there are no clear far outliers, but still many points lie outside the core of the
majority of points, as exemplified in the scatter plot between original and appropriate1. It would
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Figure 5: Matrix plot of 5 scores for 54 children.

then be almost impossible to adopt a strategy to decide which observation(s) to remove before
fitting a regression model. In this situation, only a robust approach can handle the situation by
weighting appropriately each observation. Concerning the multiple regression of original on the four
other variables, diagnostics show indeed that the residuals are not Gaussian and many observations
may be influencing the results. The robust fit gives a residual scale estimate of 0.47 while the LS
residual scale estimate is 0.70. However, the original robust R2

ρ = 0.16 is substantially smaller than
the LS R2 = 0.23. This seems somehow contradictory, since a better fit (higher R2) is interpreted
as smaller unexplained error. The robust coefficients of determination proposed in this paper give
a value of Ř2

w,1 = 0.36 in the uncorrected version and of Ř2
w,1.2 = 0.32 in the corrected version

(a = 1.2). This example seems to support the simulation results showing that R2
ρ and the R2

are probably biased downward in the presence of outliers. The same comparison can be made on
coefficients adjusted for small sample. Here, R2

adj = 0.17 and Ř2
adj,w,1.2 = 0.26, which shows that

after adjusting for small sample, the proposed robust R2 gives again a more adequate indication of
fit.

5 Conclusion

Assessing the model fit is an important step in data analysis. This can be achieved by means
of the computation (estimation) of some criterion such as the coefficient of determination for the
regression model. The chosen measure should indicate to what extend the data fit the postulated
model, and when the later is supposed to be just an approximation of the reality, in particular by
allowing the presence in the data of a few extreme observations, then the fit should be measured
for the majority of the data. In this paper we illustrate this point by means of the analysis of two
real datasets, propose an alternative robust estimator for the coefficient of determination and show
analytically and by means of simulations its consistency, efficiency, robustness and unbiasedness
even for small samples.
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A Proof of Theorem 1

To show the equality of the three forms, we need to define the following quantities. Let first
y∗i =

√
wiyi, y∗ = [y∗i ], x∗i =

√
wixi and X∗ = [x∗i ] with weights wi given in (7). With this notation

and (7), equation (6) can thus be written as

X∗T
(
X∗β̂bi − y∗

)
= X∗T (ŷ∗ − y∗) = 0, (18)

where ŷ∗ = [
√
wixiβ̂bi] = X∗β̂bi. Define w1/2 = [

√
wi], and the projection matrix

Mw = In − 1∑
i wi

w1/2wT/2

Then we have

Mwy∗ = y∗ − 1∑
i wi

w1/2wT/2y∗

= y∗ −w1/2yw,

and similarly Mwŷ∗ = ŷ∗ −w1/2 ¯̂yw. We also have that

Mw (y∗ − ŷ∗) = (y∗ − ŷ∗)− 1∑
i wi

w1/2wT/2 (y∗ − ŷ∗)

= (y∗ − ŷ∗) . (19)

The last equation is due to the fact that the first column of X∗ is w1/2, so that the first row in (18)
is wT/2 (ŷ∗ − y∗) = 0. With the above, the matrix form of the coefficients (13), (14) and (15) are

R2
w =

[
ŷ∗TMwy∗

]2
y∗TMwy∗ŷ∗TMwŷ∗

R̃2
w =

y∗TMwy∗ − (y∗ − ŷ∗)T
Mw (y∗ − ŷ∗)

y∗TMwy∗
=

2ŷ∗TMwy∗ − ŷ∗TMwŷ∗

y∗TMwy∗

Ř2
w,a =

ŷ∗TMwŷ∗

ŷ∗TMwŷ∗ + a · (y∗ − ŷ∗)T
Mw (y∗ − ŷ∗)

Showing that ŷ∗TMwŷ∗ = ŷ∗TMwy∗ will prove that these three terms are equal (with a = 1 for
the last one). Using (19) then (18), we have

ŷ∗TMwŷ∗ = ŷ∗TMwy∗ − ŷ∗TMw (y∗ − ŷ∗)

= ŷ∗TMwy∗ − β̂
T

biX
∗T (y∗ − ŷ∗)

= ŷ∗TMwy∗,

which proves the first statement of the theorem.
For the consistency, we first need to rewrite the parameter φ2 in (3). Let x̃ and β̃ be x and

β without the first (intercept) element. Then, the solution of (3) is β̃ = Σ−1
x̃x̃Σyx̃ (see Anderson,

1984, p. 40) and φ2 can be written in the following equivalent forms (see e.g. Gurland, 1968)

φ2 =
β̃

T
Σx̃x̃β̃

Σyy
=

β̃
T
Σx̃x̃β̃

β̃
T
Σx̃x̃β̃ + σ2

(
=

(ΣT
yx̃β̃)2

Σyyβ̃
T
Σx̃x̃β̃

=
ΣT

yx̃Σ−1
x̃x̃Σyx̃

Σyy

)
, (20)

where the Σ are the covariance matrix of the indices. The second equality comes from model (1).
Note that normality is not assumed here, merely the existence of the second moments. If the
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regressors are considered as fixed, using a sequence of models as in equation (1) indexed by n, can
lead to the same results, see Helland (1987).

Let us now rewrite Ř2
w,a as

Ř2
w,a =

ŷ∗TMwŷ∗

ŷ∗TMwŷ∗ + a · (y∗ − ŷ∗)T
Mw (y∗ − ŷ∗)

=
β̂

T

biX
∗TMwX∗β̂bi

β̂
T

biX∗TMwX∗β̂bi + a · (y∗ − ŷ∗)T
Mw (y∗ − ŷ∗)

=
β̂

T

bi

(P
i wi

n2 X∗TMwX∗
)

β̂bi

β̂
T

bi

(P
i wi

n2 X∗TMwX∗
)

β̂bi + a
P

i wi

n2 · (y∗ − ŷ∗)T
Mw (y∗ − ŷ∗)

. (21)

We will show the convergence in probability of each term separately to the terms in the second
expression of (20). First, since β̂bi is (Fisher) consistent (Yohai, 1987), it converges in probability
to β. By assumption, we also have the same property for σ̂. Second, given that the weights
wi := wi(θ̂) with θ̂ = (β̂

T

bi, σ̂)T can be approximated by a Taylor series expansion as wi(θ̂) =
wi (θ) + ∂

∂θwi (θ) (θ̂ − θ) with

∂

∂θ
wi (θ) =

4
c

(
1−

( εi

σc

)2
) ( εi

σc

) [
xi
1

σ2 εi

]

and given that the observations and the errors εi are iid, the weights wi are asymptotically inde-
pendent. Note that a similar argument holds for the residuals ri.

For the middle term, we then have
{∑

i wi

n2
X∗TMwX∗

}

j,l

=
∑

i wi

n2

(
x∗Tj x∗l −

∑

i

wix̄jwx̄lw

)

=
1
n2

(∑

i

∑

k

wiwkxkjxkl −
∑

i

∑

k

wiwkxijxkl

)

=
1
n2

∑

i

∑

k 6=i

wiwk(xkj − xij)xkl.

which expectation converges to

1
n2

∑

i

∑

k 6=i

E2(w(r))(xkj − xij)xkl =
1
n2

∑

i

∑

k

E2(w(r))(xkj − xij)xkl

=
E2(w(r))

n2

(
n

∑

k

xkjxkl −
∑

i

xij

∑

k

xkl

)

= E2(w(r))Σ̂j,l (22)

If X is random, the computation leads to E2(w(r))Σj,l, since the wi are independent of X.
Let r∗ = [

√
wiri] = (y∗ − ŷ∗)/σ̂. For the second term in the denominator of (21), we do the

same computation:

aσ̂2
∑

i wi

n2
r∗TMwr∗ =

aσ̂2

n2


∑

i

∑

k 6=i

wiwkrkrk −
∑

i

∑

k 6=i

wiwkrirk




=
aσ̂2

n2


∑

i

∑

k 6=i

wi(rkψ(rk))−
∑

i

∑

k 6=i

ψ(ri)ψ(rk)



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Since the ri are asymptotically independent, the two expressions in the summand have a covari-
ance that converges to zero, which implies that the expectation of their product converges to the
product of the two expectations. The expectation of the above equation thus converges to

aσ2

n2


∑

i

∑

k 6=i

E(w(r))E(rψ(r))−
∑

i

∑

k 6=i

E2(ψ(r))


 =

aσ2(n− 1)
n

E(w(r))E(rψ(r)),

since E(ψ(r)) = 0 by symmetry.
All the above terms have a variance that converges to 0, and multiple applications of the mul-

tivariate version of Slutsky theorem proves the convergence of (21) to

E2(w(r))βT Σxxβ

E2(w(r))βT Σxxβ + aE(w(r))E(rψ(r))σ2
=

E2(w(r))β̃
T
Σx̃x̃β̃

E2(w(r))β̃
T
Σx̃x̃β̃ + aE(w(r))E(rψ(r))σ2

.

The last equality comes from the fact that the first line and row of Σxx (corresponding to the
intercept) contain only zeros. It is clear now that if a = E(w(r))/E(rψ(r)), the above is equal to
the second expression of (20) and hence Ř2

w,a is consistent.
Finally, for the computation of a for the biweight, we have

E(w(r)) =
∫ c

−c

((r
c

)2

− 1
)2

dΦ(r)

=
1
c4

∫ c

−c

r4dΦ(r)− 2
1
c2

∫ c

−c

r2dΦ(r) +
∫ c

−c

dΦ(r)

where Φ is the standard normal distribution, and

E(rψ(r)) =
∫ c

−c

r2
((r

c

)2

− 1
)2

dΦ(r)

=
1
c4

∫ c

−c

r6dΦ(r)− 2
1
c2

∫ c

−c

r4dΦ(r) +
∫ c

−c

r2dΦ(r)

The truncated moments of the standard normal distribution
∫ c

−c
rkdΦ(r) can be found in Heritier

et al. (2009), appendix B. Replacing these in the expressions above for c = 4.685, leads to a = 1.2076.
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