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ARTICLE

Action video game play facilitates “learning to
learn”
Ru-Yuan Zhang1,2,3,13, Adrien Chopin4,5,6,13, Kengo Shibata4,5, Zhong-Lin Lu 7,8,9, Susanne M. Jaeggi10,

Martin Buschkuehl11, C. Shawn Green 12 & Daphne Bavelier4,5✉

Previous work has demonstrated that action video game training produces enhancements in a

wide range of cognitive abilities. Here we evaluate a possible mechanism by which such

breadth of enhancement could be attained: that action game training enhances learning rates

in new tasks (i.e., “learning to learn”). In an initial controlled intervention study, we show that

individuals who were trained on action video games subsequently exhibited faster learning in

the two cognitive domains that we tested, perception and working memory, as compared to

individuals who trained on non-action games. We further confirmed the causal effect of

action video game play on learning ability in a pre-registered follow-up study that included a

larger number of participants, blinding, and measurements of participant expectations.

Together, this work highlights enhanced learning speed for novel tasks as a mechanism

through which action video game interventions may broadly improve task performance in the

cognitive domain.
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A growing body of research indicates that training on
action video games enhances performance, not just on the
games themselves, but in a wide range of cognitive tasks

(see meta-analyses in ref. 1). The broad generalization of skills
generated by action video game play stands in contrast to the
benefits induced by many conventional lab-based perceptual/
cognitive training paradigms, which are often specific to trained
features. For example, the benefits of perceptual training often
disappear when minor changes are made to the trained stimulus,
such as its orientation or position2–4.

The mechanisms underlying how learning generalizes from
trained to untrained contexts is a fundamental issue in the study
of learning. Starting from the seminal studies of Thorndike at the
turn of the 20th century5, a number of distinct mechanisms that
may promote broad performance improvements have been sug-
gested. One such mechanism, termed “learning to learn”6, is at
play when information or skills gained by experience on one task
(or set of tasks) permits individuals to learn new tasks faster. Such
a mechanism has been of interest in a variety of learning domains,
including perceptual learning and novel shape categorization7,
education8, and machine learning9. It has also recently been
proposed as a possible route through which action video game
play produces broad generalization10. According to this view,
action video game training produces widespread cognitive
enhancements at least partially by enhancing the players’ ability
to learn new tasks, and, more specifically, by producing
improvements in the ability to quickly extract task-relevant
properties (e.g., templates for targets of interest or the timing of
events).

Consistent with this framework, a few studies point to more
efficient learning in habitual action video game players as com-
pared to non-action video gamers on perceptual tasks11–13.
However, these studies were cross-sectional (i.e., comparing
individuals who choose to play action video games as part of their
daily life against individuals who choose to seldom play video
games). Therefore, they could not speak to whether a causal
relationship exists between the act of playing action video games
and faster learning. Furthermore, one of the key predictions based
on the “learning to learn” framework is that its benefits should
extend beyond the perceptual sub-domain. However, no work has
examined whether such faster learning extends to domains other
than learning in the perceptual domain. Here we directly assessed
the hypothesis that action video game experience results in
“learning to learn” in the context of both a “lower-level” per-
ceptual learning task (a Gabor orientation discrimination task
which we refer to below as the “orientation learning task”) and a
“higher-level” cognitive learning task (a dual N-back task which
we refer to below as the “working memory learning task”). A
working memory learning task was chosen partially because such
tasks are known to involve a number of core constituents of
executive function, such as the maintenance of information and
distraction inhibition14–16. Because individual differences in such
functions predict a host of real-world outcomes (e.g., academic
and job-related success, see refs. 17,18), and act as key behavioral
markers of several psychiatric disorders19,20, methods to improve
such functions may have significant translational utility.

Here we report the results of two intervention studies con-
ducted at two distinct geographic locations, investigating whether
action video game experience improves the ability to learn new
tasks. The first study was a small-scale (N= 25) initial interven-
tion study, while the second was a larger-scale pre-registered
replication intervention study (N= 52) that extended the first
study by implementing a number of methodological improve-
ments such as experimenter blinding and assessments of parti-
cipant expectations.

To summarize, we show that individuals who were trained on
action video games subsequently exhibited faster learning in the
two cognitive domains that we tested, as compared to individuals
who trained on non-action games. In the follow-up study, we
confirmed that the causal effect of action video game play on
learning ability is not due to participant’s attention control,
expectations, intrinsic motivation or flow state during the
intervention.

Results
Study 1—initial intervention study, establishing the causal
impact of action video game play on “learning to learn” across
cognitive domains. We investigated whether action video gaming
facilitates “learning to learn” by selecting two representative
learning tasks in cognitive science—an orientation learning task
(perceptual, Fig. 1b) and a working memory learning task (cog-
nitive, Fig. 1d). On both tasks, cross-sectional work has shown
that habitual action video game players learn the tasks faster than
non-video game players (orientation learning task data published
in ref. 11; cross-sectional study using the working memory
learning task, presented here in Supplementary Notes 1 and 4,
Supplementary Fig. S1). In order to assess whether this observed
relation between action video game play and improved learning
of new tasks is causal, we conducted two long-term intervention
studies. In the initial intervention study, 33 participants were
recruited at the University of Rochester and randomly assigned to
play either a set of 3 action video games (n= 18) or a set of 3
control video games (n= 15) for 45 h (15 h per game). A total of
25 participants (14 in the action video game group and 11 in the
control group) completed the initial intervention study. In order
to assess the impact of training on learning abilities, all partici-
pants underwent a baseline motion learning task before training
(to establish that no pre-existing differences in perceptual learn-
ing rate were seen between the randomly assigned groups), and
then an orientation learning task (perceptual) and a working
memory learning task (cognitive) after training (see Fig. 1). To
quantify group differences on the learning tasks, we performed a
hierarchical Bayesian analysis separately for each task. The
learning curves for the orientation learning and the baseline
motion learning tasks (Fig. 1c) were modeled as a power function
of training sessions with three free parameters: initial perfor-
mance, final performance, and learning rate (adapted from
ref. 21). The learning curve for the working memory learning task
at post-training was modeled as a linear function with two free
parameters (Fig. 1e): learning rate (slope) and initial performance
(intercept).

We first confirmed that the two training groups had
comparable perceptual learning performance before video game
training. In the baseline motion learning task at pre-test, none of
the three estimated parameters differed between the groups
(learning rate, t(23) = 0.29, p= 0.77, Hedge’s g= 0.12, BF01=
2.62; final performance, t(23) = 0.03, p= 0.98, Hedge’s g= 0.01,
BF01= 2.704; initial performance, t(23) = 1.91, p= 0.07, Hedge’s
g= 0.77, BF01= 0.751). The two groups also had comparable
performance in the baseline N-back task (t(23) = 0.98, p= 0.34,
Hedge’s g= 0.41, BF01= 1.91; Supplementary Fig. S2).

We then tested our core hypothesis that the action-trained
video game group would show faster learning than the control-
trained video game group following training. Consistent with the
“learning to learn” hypothesis, action video game trainees showed
higher learning rates than control video game trainees in the
orientation learning task (Fig. 2a, b; t(23) = 2.16, p= 0.041,
Hedge’s g= 0.91, BF01= 0.536). Action video game trainees also
performed better from the start on this task (Fig. 2c; t(23) = 2.27,

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02652-7

2 COMMUNICATIONS BIOLOGY |          (2021) 4:1154 | https://doi.org/10.1038/s42003-021-02652-7 | www.nature.com/commsbio

www.nature.com/commsbio


p= 0.033, Hedge’s g= 0.95, BF01= 0.458). However, there was
no significant group difference in the estimated final perfor-
mance, suggesting the two groups eventually reached equal
performance (Fig. 2d; t(23) = 1.95, p= 0.064, Hedge’s g= 0.82,
BF01= 0.713). The action video game group also showed a higher
learning rate than the control group in the working memory
learning task (Fig. 2e, f; t(23) = 4.42, p= 0.0002, Hedge’s
g= 1.85, BF01= 0.009). Initial performance as measured by the
intercept parameter was not statistically different between the two
groups (Fig. 2g; t(23) = 0.93, p= 0.363, Hedge’s g= 0.39,
BF01= 1.974).

These results are consistent with the view that action video
game training facilitates “learning to learn”. In other words,
playing action video games improves the speed of future learning
to a greater degree as compared to control games.

Study 2—replication intervention study, larger-scale pre-
registered follow-up of enhanced “learning to learn”. A number

of methodological concerns ranging from small sample sizes to
lack of experimenter blinding have recently been raised in the
field of cognitive training22,23. To address these concerns, we thus
sought to replicate the findings above using a similar protocol as
the initial intervention study, but with a number of methodolo-
gical improvements. First, we used a larger sample—69 partici-
pants were recruited at the University of Geneva, with 52 who
completed the full study (27 in the action video game group and
25 in the control group). Second, the experimenters who collected
participant data at the pre- and post-tests were blinded to par-
ticipants’ group assignments. The participants were also blinded
to the purpose of the study/intent of their assigned condition, as
well as to the existence of any condition other than their own.
Additionally, this replication study was pre-registered on an open
science platform (https://osf.io/629yx) and the methods were
executed according to the pre-registered plan, except for one
aspect of the data analysis where the observed structure of the
final observed dataset necessitated a divergence from the pre-

C GK V G V

Time

b

a

d

c

e

750ms 33ms 33ms 33ms

Time Session

C
on

tra
st

 th
re

sh
ol

d

Session

 N
-b

ac
k 

le
ve

l
 (#

 o
f b

ac
ks

) = 0.8

= 0.4

= 0.2

= -1

= -3

= -0.1
=1

=3

1 week (multiple sessions) ~10 weeks 1-2 weeks (multiple sessions)

Pre-test
Baseline Motion Learning

Baseline N-back

Attentional Control 

Post-test
Orientation Learning

 Working Memory Learning
Attentional Control
Baseline N-back

Action Games (45 hrs)

Control Games (45 hrs)

Action
Game1

Action
Game2

Action
Game3

Control
Game1

Control
Game2

Control
Game3

Fig. 1 Intervention protocol, learning tasks, and learning models. a illustrates the design of the protocol employed in both the initial (Study 1) and the
replication (Study 2) intervention studies. During a pre-test, participants were assessed on a baseline motion learning task (perceptual), an attentional
control task, and a baseline N-back task (Fig. S1A for additional task detail). Participants were then randomly assigned to one of two training groups – the
action video game training group or the control video game training group. In each group, participants underwent three games each of 15 h. After a 45-h
video game intervention, participants were assessed at post-test on the same attentional control task and baseline N-back task administered at pre-test,
followed by an orientation learning task (b) and a working memory learning task (d). In the orientation learning task (b), participants were presented with a
Gabor stimulus in one of four quadrants of the screen, and the Gabor stimulus was preceded and followed by two noise patterns. Participants pressed a
button to report the direction of rotation (i.e., clockwise or counterclockwise) relative to a reference angle. In the working memory learning task (d),
participants monitored two streams of simultaneously presented information – one auditory (letters) and one visual (blue squares) stimuli. They were
asked to indicate, for each stream, whether the current stimulus matched the stimulus presented N trials back in their respective sequences (N=2 in the
provided example). Stimuli marked by an arrow indicate targets, either because of a visual or an auditory match. We modeled the learning curve in the
orientation learning task (b) as a power function with three parameters—learning rate (ρ), initial performance (λ), and final performance (α). The different
curves in (c) illustrate the impact of different values of the learning rate parameter (ρ), as each curve has the same initial performance and final
performance values, but different learning rates. Note that a learning rate of −1 corresponds to a linear progression, while values increasing from −1 to
+infinity correspond to progressively steeper learning curves. The learning curve in the working memory learning task (d) was modeled as a linear function
with two free parameters—slope (a) and intercept (b). The different curves in (e) have the same initial performance (i.e., intercept b) but different learning
rates (i.e., slope a). “Learning to learn” predicts learning curves with steeper slopes at post-training in the action video game training group as compared to
the control video game training group.
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registered analysis. Specifically, the pre-registered analysis was a
2(training group: action/control) × 2(time: pre-test/post-test)
repeated measures ANOVA based upon the expectation that
perceptual learning performance at pre-test (i.e., the baseline
motion learning task) and post-test (i.e., the orientation learning
task) would correlate (and thus could be considered as “repeated
measures” of a common construct). Such a correlation between
the two tasks was not observed (Supplementary Note 3). Given
that the data violated the assumptions inherent in the pre-
registered analysis, we instead opted to conduct a t-test on post-
test measures only (i.e., the same analysis that was reported for
the initial intervention study above; note that we nonetheless
report the pre-registered analysis in Supplementary Note 3 to
ensure compliance with our preregistration).

The same hierarchical Bayesian analysis used in the initial
intervention study was applied to the data of the replication
intervention study. We first confirmed that the two groups did
not differ in the learning rates in the baseline motion learning
task at pre-test (t(49) = 0.11, p= 0.92, Hedge’s g= 0.03,
BF01= 3.54) or in terms of final performance (t(49) = 1.0,
p= 0.32, Hedge’s g= 0.29, BF01= 2.36; Supplementary Fig. S2).
The two groups, however, were not perfectly matched at pre-test,
as the action video game group exhibited better initial
performance than the control group (Supplementary Fig. S2;
t(49) = 2.07, p= 0.04, Hedge’s g= 0.59, BF01= 0.64). We did not

observe significant differences in the baseline N-back task prior to
training (t(50) = 0.92, p= 0.36, Hedge’s g= 0.26, BF01= 2.53).

Consistent with the results of our initial study, after training,
the action video game group showed significantly faster learning,
as quantified by the learning rate parameter, compared to the
control group in the orientation learning task (Fig. 3a, b; t(50) =
2.95, p= 0.005, Hedge’s g= 0.83, BF01= 0.117). Parameter fits of
initial and final performance were not significantly different
across groups (Fig. 3c, d; initial performance: t(50) = 0.03,
p= 0.974, Hedge’s g= 0.02, BF01= 3.59; final performance: t(50)
= 0.07, p= 0.942, Hedge’s g= 0.01, BF01= 3.584). The same
outcome was found in the working memory learning task, where
the action video game group showed a higher learning rate than
the control group (Fig. 3e, f; t(50) = 4.06, p < 0.001, Hedge’s
g= 1.15, BF01= 0.007) with the same initial performance (Fig. 3g;
t(50) = 0.7, p= 0.49, Hedge’s g= 0.2, BF01= 2.941).

This replication substantiates the effects of action video games
in enhancing “learning to learn”.

Controlling for the role of expectations in behavioral inter-
vention studies. We next sought to examine the role of partici-
pant expectations and whether these could explain any of our
results. Indeed, unequal game commitment or differences in
expectations have been recently raised as possible confounds in
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Fig. 2 Action video game training produces “learning to learn”. (a) shows the impact of video game training on the orientation learning task (lower
contrast thresholds represent better performance), while (e) shows the impact of video game training on the working memory learning task (higher N-back
levels represent better performance). In (a, e), the dashed and solid lines are learning curves plotted using the group averaged estimated parameters (i.e.,
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higher learning rates (b, f) in the action video game trainees compared with the control video game trainees. Note that the learning rates in the orientation
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**p < 0.01; ***p < 0.001. Black and gray circles correspond to each participant individual data. These conventions are kept for all figures in this paper.
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video game training studies22,24,25. The design of the replication
intervention study controlled for experimenters’ expectations but
not necessarily for the participants’ expectations. Indeed,
although the currently recognized best practices with respect to
participant blinding in behavioral experiments were employed in
the replication study (i.e., participants were not made aware of
either the intent of their training or the presence of another
training group), it is still necessarily the case that participants
were aware of their actual video game experiences. As such, it is
possible that they could have formed expectations with respect to
the type of games that they played23. To examine whether such
possibilities could have had an impact on our results, we admi-
nistered a debriefing questionnaire to assess participants’ moti-
vations and expectations at the completion of the initial
intervention study. In the replication intervention study, a similar
expectation questionnaire based on ref. 26 was administered, this
time before the start of the intervention, but after having been
introduced to their training game.

In the initial intervention study, we tested the subjects’ belief
that learning improvements, or performance on each pre- and
post-test task, were induced by or related to their respective
assigned games. The proportions of specific responses to the
questionnaire were compared between groups. Importantly, we
found no significant group differences in such expectations about
the two learning tasks (Fisher’s exact test, orientation learning,
p= 0.24, φ= 0.28, working memory learning, p= 0.21, φ= 0.33;
Supplementary Note 2). Such a result fails to support the
contention that any observed differences in learning rates were
caused by differences in expectation.

In the replication intervention study, we assessed participants’
expectations regarding the possible effects of training with their
assigned video games in a variety of domains. Of primary interest

here were expectations regarding the impact of training on their
cognitive ability (the other domains assessed were mood, work
productivity, and physical fitness; details in Supplementary
Note 3). Participants self-reported their beliefs on the effects of
the intervention on a Likert scale. Unlike in the initial study, a
significant group difference was observed with regard to the
expected impact on their cognitive ability. The individuals in the
action group indicated a stronger expectation of improvement in
cognitive ability as a result of playing their assigned game than
did the individuals in the control group (t-test, t(50) = 3.27,
p= 0.002, Hedge’s g= 0.91, BF01= 0.06). Given such a group
difference in expectations, we then probed whether the expecta-
tions could potentially explain individual differences in the actual
outcomes of interest by correlating expectations with learning
rates at post-test. No significant correlations were found between
expectations of cognition and actual learning rates (orientation
learning task: r= 0.08, p= 0.67 in the action video game group,
r=−0.04, p= 0.85 in the control video game group; working
memory learning task: r=−0.32, p= 0.10 in the action video
game group, r=−0.06, p= 0.76 in the control video game
group). Finally, neither the nature of the motivation to play nor
the presence of a flow state during gaming was associated with a
faster learning rate at post-test (Supplementary Note 3). Taken
together, our data do not provide evidence for the possibility that
group differences in expectations induced the observed benefits of
“learning to learn”.

Discussion
Consistent with the “learning to learn” hypothesis, we found that
action video game play induces higher learning rates on novel
tasks in both lower-level perceptual and higher-level cognitive
domains. The effects were consistent across two separate
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Fig. 3 Enhanced “learning to learn” after action video game intervention in the replication intervention study. Similar to Fig. 2, (a) shows the impact of
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controlled intervention studies—an initial intervention study and
a pre-registered replication intervention study. Evidence for such
“learning to learn” invites a possible re-interpretation of a num-
ber of results in the literature on action video games. Specifically,
the variety of cognitive domains impacted by action video game
play may reflect the facilitation of learning new tasks within these
domains, rather than heightened skill levels across all these
domains from the outset. While the focus in much of the cog-
nitive training literature to date has been on inducing immediate
transfer, our results suggest that the capacity to learn to perform
new tasks may be a useful and complementary target for future
cognitive training studies.

Our work further speaks to a number of recent critiques
questioning whether the positive effects of action video games
observed in the literature to date are due to confounding factors,
such as participant or experimenter expectations24,27,28. Here we
followed several recommendations put forward in these critiques,
such as experimenter blinding, participant blinding to conditions
other than their own, and assessments of participant expectations.
In particular, while participants did in some cases indicate
expectations regarding the possible cognitive impact of their
training conditions, these expectations were found to be unrelated
to the actual learning improvements in the cognitive task used.
Furthermore, we followed our pre-registered methodology, except
for one analysis that diverged. This divergence highlights a key
difficulty that is inherent to assessing the impact of training on
learning rates in new tasks—namely that different learning tasks
must be employed at pre- and post-tests to be considered novel
tasks. While our expectation was that learning performance on
the perceptual learning tasks at pre- and post-tests would be
reasonably well correlated, this was not in fact the case. As such,
although the groups were matched in terms of learning rate on
the pre-test measure, it is impossible to confirm that they would
have been similarly matched on the post-test measure in the
absence of any training. A possible way forward to address this
difficult methodological issue could be to more systematically
include a no-training control, test-retest group in all training
studies, as discussed in ref. 23.

The increased learning rate that we report is indicative of
“learning to learn” as a consequence of action video game
training; yet, one intriguing question concerns the cognitive
constructs underlying this mechanism. We did not find consistent
and conclusive evidence supporting the role of (i) attention
control (measured by the Multiple Object Tracking task, (ii) the
flow state during the intervention (measured by the Flow State
Scale), or (iii) intrinsic motivation following the intervention
(measured by the Intrinsic Motivation Questionnaire) in greater
learning rates across studies, training groups, and/or tests (Sup-
plementary Notes 2 and 3). Similarly, our measures of expecta-
tions suggest that possible differences in expectations concerning
the training are unlikely to account for the differences in the
learning rate that we report. In previous work, we have proposed
that increased attention control could be one of the mechanisms
through which improved learning occurs, whether for perceptual
or cognitive learning10,29. In this view, attentional control pro-
cesses, which encompass cognitive flexibility and working mem-
ory, act as a guide to identify and to keep track of task-relevant
features, and thus facilitate learning23. This is in line with recent
computational approaches to learning which also highlight the
pivotal role of attention30. Here, however, we did not find evi-
dence that improved learning, as measured by learning rates, was
correlated with improved attention control, as measured by the
Multiple Object Tracking task. While the role of attentional
control on learning rate remains a promising avenue, it could also
be the case that a general learning ability exists, that is involved in
many unrelated tasks, including orientation and working memory

learning tasks31. It will be for future studies to further address
these important issues.

In sum, the present work documents a pathway for cognitive
training to act whereby cognitive training facilitates learning in
new tasks. It also highlights the importance in future studies of
considering both immediate skill performance and learning rate
as potentially independent and complementary ways that cogni-
tive enhancements may be promoted in practical applications.

Methods
Initial intervention study
Participants. 36 participants were recruited for this study, with the idea of
recruiting as many as possible in an experimental timeframe between September
2014 and December 2015. Prior to being enrolled, all participants were contacted
through flyers mentioning playing video games and screened for (i) video game
usage; (ii) normal or corrected to normal vision; and (iii) media multitasking index
(MMI). Participants were excluded if they did not have normal or corrected-to-
normal vision or if they qualified as high media multitaskers (media multitasking
index >5.9 as defined by ref. 29). Three participants were excluded due to high
MMI. In addition, to qualify for this initial intervention study, participants needed
to have logged (1) no more than 1 h/week playing first/third-person shooter,
action/action sport games or simulation games in the past year and in the year
before; (2) no more than 3 h/week of play in any other video game genres in the
past year; (3) no more than 5 h/week of play of any other video game genres in the
year before the past year. After enrollment, participants were assigned to either the
experimental (action video game) training regimen or the control (life/business
simulation video game) training regimen. The assignment was done in a pseudo-
random fashion so as to balance gender across training groups. Six participants
failed to comply with the at-home video game training protocol; one action trainee
withdrew due to game-induced motion sickness; one control trainee was excluded
because of technical problems with the apparatus. The final sample thus consisted
of 14 participants in the action video game group (7 women; 18–34 years old, mean
age 23 years) and 11 participants (9 women; 19–56 years old, mean age 24.3 years)
in the control video game group. Data from one session of the orientation learning
task was missing in one action video game trainee due to a technical issue: we
interpolated the missing data by duplicating the data from the preceding session.
This study was run under a protocol approved by the University of Rochester
Research Subjects Review Board. Informed written consent was obtained from
participants during their first visit to the lab.

All participants were pre-tested in the laboratory in three 1-h sessions over
3 days, and then asked to play their assigned video games at home for a total of
45 h over a period of about 10 weeks. Finally, participants were post-tested again in
the laboratory in seven 1.5-h sessions distributed over 7 days.

Video game training and questionnaires. Participants completed their 45 h of
training by playing 15 h on each of the three assigned games administered in a
randomized order (Action trainees - Call of Duty: Black Ops 1, Call of Duty: Black
Ops 2, and Half-life 2; Control trainees—Sims 3, Zoo Tycoon 2013, and Viva
Piñata 2006). Participants were asked to play for about 5 h per week with at least
3 h and at most 8 h per week, distributed over at least 4 different days. Gaming
progress was monitored through an experimenter-assigned Microsoft Xbox
account from which the participants were required to play. In addition, partici-
pants were asked to complete an online questionnaire after every play session.
Participants were also asked to log the session date, starting time, ending time and
a brief statement about the game experience they had. Their game play was thus
monitored throughout the training period via the online game log and their
Microsoft Xbox online game statistics.

In addition, participants’ gaming skills were evaluated by assessing their gaming
ability on assigned games at several points throughout the study. These pre- and
post-training measures were obtained in the laboratory at the following time
points: (1) on Day 3 of pre-test, before the 1st game training day, (2) after 15 h of
training, when the participants switched from the first to the second training game,
(3) after 30 h of training, when the participants switched from the second to the
third training game, and (4) on Day 1 of post-test, i.e., after having completed their
third training game assignment.

Given the story-based structure of the action games, the gaming performance of
action video games was evaluated by tabulating checkpoints achieved during a 30-
min session of a pre-selected game episode. We chose the fifth episode (S.O.G) in
Call of Duty: Black Ops 1, the third episode (Old Scar) in Call of Duty: Black Ops 2,
and the fourth episode (Water Hazard) in Half-life 2 as the testing regimes, based
on their moderate difficulties and full coverage of necessary skills. For the control
games, we initiated a completely new character in The Sims 3 and recorded how
many “challenges” participants could achieve within 30 min. For Zoo Tycoon and
Viva Piñata, the number of animals that participants created, purchased, and/or
attracted within 30 min of play was tabulated. These game-based parameters were
used to quantify the participants’ gaming improvement once training was
completed, and they provided an additional check that participants indeed had
played their assigned games.
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Apparatus. The attentional control task, the baseline motion learning task, and the
orientation learning task were programmed in MATLAB using Psychophysics
Toolbox30,31. The baseline N-back and the working memory learning tasks were
programmed in E-prime 1. All pre- and post-test tasks were run under a Windows
XP operating system and presented on a CRT monitor (22-inch MITSUBISHI-
Diamond Pro 2070SB, 1024 × 768 resolution, 85 Hz) with linearized gamma. A
video switcher was used to combine two 8-bit output channels of the graphics card
so that the display system could produce gray levels with 14 bits of resolution32.
Participants were tested in a dimly lit room, with the mean display luminance set to
58 cd/m2. Monitor gamma was calibrated by fitting the best power function to the
measured luminance level (Minolta Chromameter, CS-100) of 10 different gray-
level settings (from 0 to 240) of the monitor (full field). Viewing was binocular at a
58 cm distance (around 2.3 arcmins per pixel) and enforced using a chin and
forehead rest.

Pre-test stimuli and procedures. The 3 days of pre-testing consisted of a baseline
motion learning task in Days 1 and 2 and then on Day 3, an attentional control task
followed by a baseline N-back task intended as a baseline for the working memory
learning task. These tasks are described in turn below.

Baseline motion learning task: We measured baseline motion learning by
repeating a motion identification task that was identical to the one used in ref. 33.
The target stimulus consisted of a parafoveally presented drifting grating embedded
in white 16%-RMS-contrast Gaussian image noise. Each stimulus frame lasted for 5
frames of 33 ms (165 ms) and the next stimulus always appeared 600 ms after the
last response button press. The stimulus was a noisy grid (spatial frequency = 3
cycle/degree, diameter = 1.55 degrees, speed = 2.5 degrees/sec) drifting leftward or
rightward. Participants indicated the direction of movement (left/right) using a
keypress and received auditory feedback (high pitch if correct, low pitch if
incorrect). Stimulus contrast across trials was adaptively adjusted by randomly
interleaved 2/1 and 3/1 staircases (160 trials each), allowing us to derive a 75%
accuracy threshold. In the first session, the initial contrast was set to 0.76
Michelson contrast for each staircase. Thereafter, for each session, the initial
contrast values of the two staircases were set as the final contrast values of the two
staircases from the previous session. Participants performed eight such sessions
(four sessions on Day 1 and four sessions on Day 2). The dependent measure was
contrast threshold.

Baseline N-back task: The baseline N-back task measures working memory
ability. It was identical to the one used in ref. 34. It consisted of a series of yellow
shapes (among 8 different complex shapes) sequentially presented at the center of
the screen. Each shape lasted 500 ms and was followed by a 2500 ms ISI.
Participants had to indicate for each shape whether or not it matched the shape
that was seen N trials before using key ‘A’ if it matched and key ‘L’ otherwise. Each
keypress was given a neutral auditory feedback tone. Each test block consisted of
20+N stimuli (i.e., trial), which included 6 target trials. Participants completed
three levels of difficulty (2-back, 3-back, and 4-back) with three blocks at each N-
back level administered in a sequential order. The dependent variable was the
proportion of hits minus the proportion of false alarms averaged across all three N-
back levels. Before the task, participants went through practice trials consisting of
one block of each level of difficulty (2-back, 3-back, and 4-back) in a
sequential order.

Attentional control task: The attentional control task was a Multiple Object
Tracking (MOT) task using similar parameters as the ones described in ref. 35,
except for a few changes listed below. Briefly, participants monitored 1 to 6 targets
among a total of 16 moving stimuli. Targets were initially cued as blue sad moving
faces (smileys; radius = 0.4 degree, speed = 5 degrees/s) among yellow happy
moving faces for the first 2 s of a trial. Targets then turned into yellow happy faces
for 4 s. Participants were asked to continue tracking the initially blue sad targets
throughout a trial. The dots moved within a circular area (diameter= 20 degrees),
avoiding a central area (diameter= 4 degrees). The dots followed a random
trajectory, where at each frame a dot had a 60% chance of changing direction by an
angle drawn from a normal distribution with a standard deviation of 12 degrees.
Colliding dots and dots reaching area limits reverted directions (i.e., the dots
“bounced” off one another and the aperture edge). At the end of a trial, one of the
faces was cued and participants indicated by keypress whether it was among the
blue sad targets cued in the beginning of the trial. A method of constant stimuli was
used, with the task consisting of 65 trials in total, with 12 trials at set sizes of 2–6
targets, and 5 trials at set size of 1 target (randomized order of trial). No feedback
was given, except the average score after 16 trials. All participants started with a
short practice session before the measurement session. The practice session
consisted of 8 trials with 2 trials at each set size from 2 to 5, presented in sequential
order. The dots moved at 2 degrees per second and instant feedback was provided.
The dependent measure was performance accuracy.

Post-test stimuli and procedures. After having completed their 45 h of video game
training, participants returned, at least 48 h after the end of their training and no
more than a week later, to the laboratory for a series of post-tests distributed over
7 days. On post-test Day 1, participants were administered the attentional control
task followed by the baseline N-back task (both in the same manner as during the
pre-test). The orientation learning task, as described in ref. 11, was then adminis-
tered on post-test Days 2 and 3 (see details below). On post-test Day 4, one session

of a pilot task that measured the transfer of orientation learning across stimulus
orientation and location were administered (this exploratory session is not reported
here), followed by the first session on the working memory learning task. From
Days 5 to 7, participants continued the working memory learning task, with
2 sessions per day, for a total of 7 sessions. Finally, after having completed their last
working memory learning session, participants were given a debriefing expectation
questionnaire.

Orientation Learning Task: The orientation learning task measures how
participants learn an orientation identification task that was identical to the one in
ref. 21. A 2.1-deg-diameter circular Gabor signal temporally sandwiched between
two 3-deg-diameter external noise circular patches (RMS contrast: 16%), each
lasting 33 ms. The 64×64 pixel noise patch was made of individual 2×2 pixel
elements. It was presented in the visual periphery (eccentricity= 5.67 degrees) at
one of two locations (in the NE or SW quadrants for half the participants and in
the NW or SE quadrants for the other half). Participants were presented with a
2-cpd Gabor stimuli oriented at ±12° around a reference angle of either −35° or 55°
(counterbalanced across participants) and were asked to decide if the Gabor was
oriented clockwise or counter-clockwise relative to the reference angle. Auditory
feedback was provided after the participants’ choice (high pitch noise for correct,
low pitch noise for incorrect). The contrast of the Gabor stimuli across trials was
adapted with high precision via two independent and randomly interleaved
staircases at each of the two positions (i.e., one ‘1-up-2-down’ 72-trials staircase
and one ‘1-up-3-down’ 84-trials staircase at both positions). During the session,
signal contrast was decreased by 10% of its value after two or three successive
correct responses (depending on the staircase) and increased signal contrast by
10% of its value after every error. In the first session, the initial contrast value for all
staircases was set at 0.9 Michelson Contrast. For each subsequent session N, the
initial contrast was set to the average contrast of all reversals (except the first three)
from session N–1 (computed separately for each staircase type). The overall
contrast threshold for each session was computed by averaging the thresholds
across all four staircases—thereby converging to the 75% correct threshold. Each
participant underwent a total of eight sessions, four sessions per day over 2 days,
with 312 trials per session, with 10 additional practice trials at session 1. In
addition, one single transfer session using a different Gabor orientation and
different locations was carried out in the initial intervention study (but not in the
replication intervention study) and will not be reported here.

Working memory learning task: The working memory learning task measures
how participants learn a dual-stream N-back task. It duplicated parameters from
the procedures of previous studies34,36. Participants had to perform two
independent N-back tasks in parallel, one in the auditory modality (listening to a
stream of letters) and one in the visual modality (viewing a square moving from
one location to another on the screen). The letters and squares were synchronously
presented at the rate of 3 s per stimulus (duration= 500 ms, ISI= 2500 ms).
Participants had to indicate for each trial whether the current stimulus matched the
one that was presented N trials back in the sequence. Participants responded with
key ‘A’ for visual targets, and key ‘L’ for auditory targets; no response was required
for non-targets. Participants were informed of the N-back level at the beginning of
each block with the N-back level remaining fixed within a block. Each block
consisted of 20+N trials that included 6 targets per modality, with the first N trials
being discarded for scoring (e.g., 22 trials for a 2-back block—the first two trials
would not be counted for performance due to the absence of targets). The N-back
level was adapted across blocks such that it increased by 1 if participants made
fewer than three errors in both modalities, and decreased by 1 if they made more
than five errors in either modality. In all other cases, the N-back level remained the
same as in the previous block. A session included 15 such blocks and lasted about
25 min. Note that the first block of the first three sessions started at a 1-back level,
with the following blocks changing in difficulty level according to the adaptive
procedure described above. From session 4 onward, the first block of each session
started at a 2-back level. The averaged N-back levels across the 15 blocks
per session served as the dependent variable.

Debriefing Questionnaire: We developed a short questionnaire to assess the
extent to which participants’ expectations were related to their performance in this
study. The questionnaire was administered after participants completed all
experimental tasks on the last day of post-test.

Replication intervention study
Participants. Our pre-registered target sample size was 50 participants. We sent
invitations every month to 20 eligible participants, and we stopped offers when 64
participants had completed the pre-test part of the study, which allowed for an
attrition rate of approximately 20%.

Over 300 participants were contacted through flyers mentioning playing video
games, and screened for (i) video game usage; (ii) vision; and (iii) media
multitasking index. Participants were not included if they did not have normal or
corrected-to-normal vision as defined by binocular vision better than 20/32 on the
3m-distant SLOAN chart. They were also not included if they qualified as high
media multitaskers (media multitasking index > 5.9 as defined by ref. 29).
Participants who qualified as tweeners (an intermediate profile between action
video gamers and non-video gamers) were selected using the Bavelier lab video
game questionnaire. Note that this questionnaire was updated mid-recruitment
with an experimenter error occurring during this update, resulting in three

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02652-7 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1154 | https://doi.org/10.1038/s42003-021-02652-7 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


different questionnaires being used (22 using questionnaire #1, 3 using
questionnaire #2 and 50 using questionnaire #3). The questionnaires and criteria
are available on the project registration website: https://osf.io/4xe59/. All
participants with psychiatric disorders, taking significant psychotropic medications
or with high levels of alcohol consumption (>40 units per week) were ineligible for
this study. We only selected participants who were first or second language French
speakers, and those with an English comprehension self-rated at 7 out of 10 at least,
as most of the experiment was conducted in French but some computer tasks
required understanding English. Included participants needed to be in the age
range of 18 to 35 years old.

After screening, we contacted 80 participants and 69 agreed to participate in the
study. Eight participants dropped out during the study, six were excluded before
training as they demonstrated no learning in the motion discrimination task (pre-
training estimated learning rate of 0), another 3 had to be excluded (1 because of
age outside of decided limits, 1 because they were not naive to the conditions, and 1
because they failed to comply with the procedures of the study), leaving 52
participants. The final sample thus consisted of 27 participants in the action video
game group (11 women; 19–35 years old, mean age 23 years) and 25 participants
(11 women; 18–33 years old, mean age 22.8 years) in the control video game group.
One participant was removed from the analysis of the results in the baseline
motion learning task because of a technical issue at the end of their first session;
testing continued with session 2 but we could not interpolate the result of session 1.
This study was run under a protocol approved by the University of Geneva
Research Subjects Review Board. Informed written consent was obtained from the
participants during the first visit to the lab.

Participants were assigned to either the experimental (action video game)
training or the control (life/business simulation video game) training. Training
group assignment was randomized using the minimization method. We applied the
Efron’s biased coin technique separately for each of the four following strata
combining age and gender: 18–26-year-old males, 27–35-year-old males, 18–26-
year-old females, 27–35-year-old females. Two independent groups of
experimenters were involved in the study to ensure that the experimenters
assessing performance at pre- and post-test were blinded to participant assignment.
One group of experimenters (unblinded) assigned participants to training groups
after pre-test, during the at-home visit (gaming material installation and start of the
training). They also administered the video game training and the questionnaires.
The other group of experimenters (blinded) collected all pre- and post-test
outcome measures. Additionally, participants were kept naive to the existence of
different training groups, and unaware of the other games that they could have
been assigned to.

All participants were pre-tested in the laboratory in two 1.5-h sessions over
2 days, and then asked to play their assigned video games at home for a total of
45 h (see video game training procedure below). Finally, participants were tested
again in the laboratory in two 1.5-h sessions followed by three one-hour sessions
distributed over 5 days.

The recruitment, training and laboratory measurements were conducted
between January 2018 and June 2018.

The complete preregistration details can be accessed via https://osf.io/629yx.
This preregistration website and the project website (https://osf.io/4xe59/) also
contains all administered questionnaires (e.g., video game experience
questionnaire, expectation questionnaires) and participant’s recruitment criteria for
both intervention studies.

Video game training and questionnaires. We conducted the same training proce-
dures as that in the initial intervention study, except for the following points.
Unlike the initial intervention study in which questionnaires were collected after
post-test, we administered several questionnaires over the course of the video game
training. First, we administered expectation questionnaires based on a translated-
to-French version of ref. 26 before the participants started the video game training.
We asked the participants to watch the trailer videos of each of the three games that
they were assigned to, and assessed with the questionnaire their expectation on
how playing these games would affect their cognition, their mood, their pro-
ductivity at work and their physical fitness. We were only interested in the
responses about the cognition domain but probed participants in the other
domains to prevent them from guessing what was our main interest. Second, we
collected the Intrinsic Motivation Questionnaire (IMI questionnaire) and Flow
State Scale questionnaires after a participant completed a training game (15 h of
gaming), yielding three samples of the two questionnaires in total for each parti-
cipant. Finally, despite informing the participants that gaming progress was
monitored through a Microsoft Xbox account from which they were assigned to
play, we could not access these data and monitored the self-reported logs instead.

Apparatus. All tasks were generated in MATLAB 2016a using the Psychophysics
Toolbox and were run under a Windows 7 operating system and presented on a
linearized high-performance industrial LCD glass monitor (22.5-inch ViewPixx
monitor, 1920(H) × 1080(V) pixels, 120 Hz). We used the Viewpixx’ M16 mode
allowing to combine two 8-bit output channels of the graphics card so that the
display system could produce gray levels with 14 bits of resolution32. Participants
were tested in dimly lit light, with a mean display luminance of 58 cd/m2. Monitor
gamma was calibrated by fitting the best power function to the measured

luminance using a photometer at 10 different gray-scale levels. Viewing was
binocular at a distance of 58 cm from the monitor, enforced using an adjustable
chin and forehead rest.

Pre-test stimuli and Procedures. We used the same pre-test tasks as those in the
initial intervention study albeit a different task arrangement. The pre-test here
spanned 2 days and was run by the experimenters who were blind to group
assignment. Because group assignment occurred only after pre-test, the participants
were also blind to their group assignment during the pre-test. On Day 1 of pre-test,
participants first completed the attentional control task and then four sessions of
the baseline motion learning task. Similarly, on Day 2, participants first completed
the baseline N-back task and four sessions of the baseline motion learning task. The
details of the attentional control and baseline N-back tasks are documented above.
In the motion learning task, signal and noise were spatially but not temporally
interleaved, while in the initial intervention study or ref. 33, it was both spatially
and temporally interleaved.

Post-test stimuli and procedures. The post-test was conducted at least 48 h after a
participant completed their 45 h of gaming intervention, and at most 36 days after
(mean: 7 days). We used the same tasks as those in the post-test phase of the initial
intervention study but with a number of differences in the task arrangement. First,
the post-test here spanned 5 days and was run by experimenters who were blind to
the participants’ group assignment. Second, on post-test Day 1, participants first
completed the attentional control task and continued with four sessions of the
orientation learning task. On Day 2, the baseline N-back task was administered and
another four sessions of the orientation learning task were run. Third, on Day 3 to
Day 5, participants completed 2 sessions of the working memory learning task
per day, yielding a total of only six sessions of this task. Fourth, we did not run the
transfer session of the orientation learning task as we did in the initial intervention
study. Fifth, different from the initial intervention study, we reprogrammed the
baseline N-back and working memory learning tasks using the Psychtoolbox 3.0 in
Matlab R2017a.

Data analysis, hierarchical Bayesian analysis of orientation and working
memory learning tasks. We performed a hierarchical Bayesian analysis to
quantify all learning tasks. The analysis was performed separately in each group, in
each task, and in each intervention study. The method of modeling for perceptual
learning (orientation and baseline motion learning tasks) applies to the initial
intervention study and the replication intervention study. The method of modeling
for the cognitive learning (working memory learning task) applies to all three
studies (i.e., the two intervention studies presented in the main text as well as the
cross-sectional study presented above).

Orientation/motion learning. We tested the participants’ ability to learn two per-
ceptual learning tasks: orientation and motion identification. We used a power
learning function to capture the decreasing trend of contrast threshold as learning
proceeds because of a clear floor in the learning curves of both perceptual learning
tasks (see Fig. 3 in the main text). Power learning curves have been used in the
literature on perceptual learning21. The power function of the ith participant
includes three parameters (1) ρi- learning rate; (2) λi—initial performance (at the
first session); (3) αi —final performance (at the last session). The threshold level
(ni,t) of the ith participant as a function of session (t) can be expressed as

ni;t ¼ αi þ ðλi � αiÞ �
t�ρi �m�ρi

1�m�ρi

� �
ð1Þ

where m is the maximum session number (e.g., m = 8 for the initial intervention
study). Three hyper distributions with six hyperparameters (ρi ~ Normal(ρu, ρσ), λi
~ Normal(λu, λσ), αi ~ Normal(au, aσ)) were set accordingly to constrain the three
individual learning parameters. We also gave flat priors in the range (−18, 8), (0,
13), (0, 1), (0, 4), (0, 1), (0, 4) to the six hyperparameters, respectively.

Furthermore, the psychometric function of the perceptual learning tasks was
described with the commonly used Weibull function:

pi;t;k ¼ 1� ð1� cÞ � e�
ω�consti;t;k

ni;t

� �
ð2Þ

where pi,t,k indicates the probability of the ith participant making a correct response
in the kth trial of the tth session. consti,t,k is the contrast of the stimulus in this trial.
ni,t is the ith participant’s contrast threshold in the tth session. Chance level c was
set to 0.5. The steepness s of the psychometric function was set to 237. w was
calculated by

w ¼ �log
1� θ

1� c

� �s�1

ð3Þ

where θ is the performance level that defines the threshold. In our perceptual
learning tasks, θ was 0.75 from the average of one 3/1 staircase and one 2/
1 staircase.

In the model, free parameters include learning parameters at both the group
and the individual levels. For example, in the initial intervention study, 14 action
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trainees produced 42 (3 ρi /λi /ai x 14 participants) estimated parameters at the
individual level and 6 (ρu, ρσ, λu, λσ, au, aσ) estimated parameters at the group level.

Equations 1–3 specify the complete generative model of behavioral choices
when performing the orientation learning task. Leveraging the generative process,
we inferred the free parameters in this hierarchical model using the Markov Chain
Monte Carlo (MCMC) method implemented in the statistical package Stan and its
python interface38. The hierarchical Bayesian analysis was separately applied to
each group. In the fitting process, four independent Markov Chains were
established, with each drawing 130,000 samples of each free parameter. The first
15,000 samples were discarded as the burn-in period, resulting in 115,000 valid
samples. We found that 130,000 samples for each parameter were sufficient, as
evidenced by the fact that the split R-hat statistics of all parameters for both groups
were 1 (a value below 1.1 indicates a successful sampling process for a parameter,
see ref. 38). Broad uniform priors were given to the group-level hyperparameters in
order to avoid bias: ρu ~ uniform(−18, 8), ρσ ~ uniform(0, 13), λu ~ uniform(0, 1),
λσ ~ uniform(0, 4), au ~ uniform(0, 1), σ ~ uniform(0, 4). We also bound ρi to (−18,
8), λi to (0, 5) and ai to (0, 2), in order to promote the MCMC sampling efficiency.
Note that all model settings were identical for the two groups in order to ensure no
additional bias was introduced. Thus, any difference between groups should be
attributed to the existing differences in the data.

We computed the learning parameters (i.e., ρi, λi, and ai) of a participant by
averaging the total 460,000 samples (4 chains × 115,000 valid samples) of each
parameter. Statistical differences across groups on learning rate, initial, and final
performance were assessed by two-sample t-tests (two-tailed) implemented in the
scipy python package (see results in the main text).

Working memory learning. The working memory learning task measures how
participants learn an adaptative dual N-back task. Individual participants’ progress
was indexed in term of N-back levels (e.g. 2-back, 3-back) which were modeled
using a linear function:

ni;t ¼ ai � t þ bi ð4Þ
where ni,t is the N-back level of the ith participant in the tth session (a session is 25
blocks). Two free parameters specify the learning curve of this participant: (1) ai—
learning rate (the slope of the linear function); (2) bi —initial performance (the
intercept of the linear function). The first three blocks of each session were
removed from the analysis because each session started back to N-back level 1, and
therefore no or less variability in the N-back level reached was observed during
these blocks. Given the range of our data (see Fig. 2 in the main text) and our focus
on detecting group difference, a linear function (only 2 degrees of freedom)
appeared sufficient to capture the characteristics of learning in this task.

Furthermore, we used a hierarchical Bayesian approach assuming that all
learning parameters (ai and bi) of individuals follow hyper normal distributions
that represent the group-level characteristics of learning: ai ~ N(Au, Aσ), bi ~ N(Bu,
Bσ).

Since a participant faced different N-back difficulty levels in different blocks
within a session, we described the probability of a correct response in a trial using a
power psychometric function:

pi;t;j;k ¼ g � T�si;t
i;t;j þ c ð5Þ

where pi,t,j,k indicates the probability of the ith participant making a correct
response in the kth trial of the jth block of the tth session. Similarly, Ti,t,j is the N-
back level that the participant faced in the jth block. g is the gain factor of the
psychometric function. We set g to 0.45, which is equivalent to set the guessing rate
to 0.05, to account for the observed guessing even in the easiest 1-back task. c is the
chance level 0.5. Si,t is the steepness of the psychometric function in the tth session.
The steepness is related to the participant’s N-back threshold ni,t and therefore
changes session by session:

si;t ¼ �
logðθ�c

g Þ
logðni;tÞ

ð6Þ

where θ is the accuracy corresponding to the N-back threshold, which was 0.85 in
this task given the adaptive stimulus setting in the experiment.

In the model, free parameters include learning parameters at both the group
and the individual levels. For example, in the initial intervention study, 14 action
trainees produced 28 (2 ai/bi x 14 participants) free parameters at the individual
level and 4 (Au, Aσ, Bu, Bσ) free parameters at the group level. Uniform priors were
given to the four hyperparameters with parameter values (0, 3), (0, 2), (0, 5), (0, 3)
respectively.

Each of 4 Markov chains drew 130,000 samples, with the first 30,000 samples
discarded as the burn-in period. We found 130,000 samples were sufficient for all
Markov chains for this model to converge, as evidenced by the fact that the split
R-hat statistics for all parameters in both groups were equal to 1.

Other statistics and reproducibility. For all statistics, n = 25 in the initial inter-
vention study and n = 52 in the replication intervention study, except for the
baseline motion learning task for which n = 51. All correlations were Spearman
correlations, and statistical tests were two-tailed tests with alpha level at 5%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data used to generate the statistics provided here are available at https://osf.io/
4xe59.

Code availability
All the codes used to generate the statistics provided here are available at https://osf.io/
4xe59. Matlab R2017a and SPSS 12.0 were used for most analyses. All Bayes factors for
two-sample comparisons were calculated using the Bayes Factor Toolbox (https://
klabhub.github.io/bayesFactor/). We used the function bf.ttest2 when investigating
differences between paired groups, and bf.anova with one between-subject factor when
investigating differences between independent groups, because this design is equivalent
to a t-test. Results were verified using the statistical software JASP 0.14 and the two tools
agreed. For the hierarchical model involving the Markov Chain Monte Carlo method, we
use the statistical package Stan and its python interface.
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