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Summary 

 

 

 

The purpose of this thesis is to identify the vulnerabilities of the power system to ensure its 

robustness and resilience. Like any other critical infrastructure (CI), power systems are subject 

to disruptions, either unintentional or deliberate, that may have a significant impact on their 

performance. Hence, to protect and mitigate such vulnerabilities when CIs suffered from an 

event, first, one has to explore advanced tools for modeling the electric power grid and its 

components with respect to its vulnerability to disruptions. Then, trying to guarantee the correct 

flow of electricity from generation facilities to consumers using appropriate countermeasures. 

“Vulnerability analysis” in power systems is important for the first step, to determine how 

vulnerable a system is, and it is used to detect and rank the most critical elements of a power 

system under a variety of low-probability-high-consequence events such as multiple-

components outages. This thesis aims to address two main issues, i.e. (i) the systemic 

vulnerabilities of the power system under multiple contingencies and different operational 

uncertainties; (ii) the critical components which must be protected or fortified when the 

protective resources are limited. These goals are achieved in three parts: 

Part one introduces different definitions of the vulnerability concept and compares the state-of-

the-art methods in this field. Then, it highlights the advantages and disadvantages of the 

standard methods in the vulnerability analysis. In this part, we conclude that each method 

possesses its own limitations and a perfect method does not exist for all circumstances. Then, 

we provide a guide to choose the best and the most relevant method for different power system 

hazards and different levels of acceptable accuracy, computational burden, and required input 

data. 

Part two finds out the acceptable level of assumptions and available data to answer the 

reliability, vulnerability, and resilience questions. Afterward, the cascading failure is addressed, 

and a framework for the integration of security methods capable of viewing the problem from 
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different perspectives, e.g. integrating reliability and vulnerability analyses, is also developed. 

Although traditionally reliability indices have been adopted as reference metrics, we show that 

they miss some of the key features of the security concept, especially when we have to deal 

with low-probability-high-consequence events. Hence, we conclude that the vulnerability 

analysis can complement the reliability analysis for these events. Moreover, the analysis of five 

different IEEE-RTS topologies shows that a system considered from the vulnerability 

viewpoint could behave differently compared to a system considered from the reliability 

viewpoint. Furthermore, we conclude that the assumptions in the power flow equations can 

significantly affect the final results and may lead to inaccurate predictions. 

Part three introduces and develops a hierarchical leader-follower (bilevel) optimization problem 

where the upper level (leader) tries to maximize the damage, and the lower level (follower) tries 

to minimize the probable consequences. Thanks to this rational strategy, the critical components 

whose failures lead to the largest system loss can be determined. Afterward, our proposed model 

is extended to be used as a multi-period model, and as a model that immunizes the system 

analysis against the worst uncertainty. The proposed model is applied to the IEEE test systems 

and a real-life system i.e. modified Iran’s transmission network. The results show that our 

model is much more efficient than the previously reported one, where the approximated power 

flow equations are used in the lower level. Moreover, our model shows that Iran’s expanded 

network where only some lines are built is more robust in comparison with the existing network. 

At the end of this part, in order to guarantee the operational security of power systems with 

uncertainties, an adaptive robust trilevel optimization model for immunizing the system against 

the worst uncertainty has been carried out. The final one-level model has been applied to the 

IEEE 24-bus network and to modified Iran’s transmission network. Our simulation results show 

that the power system vulnerability assessment without considering uncertainties leads to 

optimistic results. We also observe two properties of our model and prove a lemma that 

improves the computational performance of our final mixed-integer linear program (MILP) 

model. 

In summary, the focus of the present thesis is on modeling, simulation, and optimization of the 

power systems with respect to their vulnerability to disruptions and hazards. The outcomes of 

our research can provide valuable inputs and tools of analysis to public and private decision-

makers and system operators. 

Keywords: Vulnerability assessment, Electric power system, Multi-level optimization problem, 

Optimal power flow.
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Résumé en Français 

 

 

 

Le but de cette thèse est d’identifier les vulnérabilités du système électrique afin d’assurer sa 

robustesse et résilience. Comme toute autre infrastructure critique (IC), les systèmes électriques 

sont sujets à des perturbations, involontaires ou délibérées, qui peuvent avoir un impact 

significatif sur leurs performances. Par conséquent, pour mitiger ces vulnérabilités lorsque les 

IC sont affectées par un événement, il est d'abord nécessaire d’explorer des outils avancés de 

modélisation du réseau électrique et de ses composants relativement à sa vulnérabilité. Ensuite, 

il faut essayer de garantir un flux adéquat d’électricité depuis les installations de production 

jusqu’aux consommateurs en utilisant des contre-mesures appropriées. 

“L'analyse de vulnérabilité” est importante dans la première étape, afin de déterminer le degré 

de vulnérabilité du système électrique. Elle est utilisée pour détecter et classer les éléments les 

plus critiques d’un tel système, compte tenu d’une variété d’événements ayant une faible 

probabilité de survenance mais des conséquences très importantes, telles que les pannes de 

plusieurs composantes. Cette thèse se focalise sur deux questions principales, à savoir (i) les 

vulnérabilités systémiques du système électrique compte-tenu de contingences multiples et 

différentes incertitudes opérationnelles; (ii) les composants critiques qui doivent être protégés 

ou renforcées. Ces objectifs sont réalisés en trois parties. 

La première partie présente différentes définitions du concept de vulnérabilité et compare les 

méthodes correspondantes à l’état de l’art utilisées dans ce domaine. Ensuite, il met en évidence 

les avantages et les inconvénients des méthodes standards appliquées dans l’analyse de 

vulnérabilité. Dans cette partie, nous concluons que chaque méthode possède ses propres limites 

et qu’il n’existe pas la méthode parfaite applicable dans toutes les circonstances. Ensuite, nous 

fournissons l’orientation nécessaire afin de choisir la méthode la plus pertinente et performante, 

en prenant en considération différentes menaces pouvant affecter le système électrique, 

différents niveaux de précision souhaitables, la charge de calcul et les inputs requis. 
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La deuxième partie détermine le niveau acceptable d’hypothèses et les données requises pour 

répondre aux questions de fiabilité, vulnérabilité et résilience. Ensuite, on aborde le problème 

de l'échec en cascade, et on développe un cadre permettant d’intégrer des méthodes d’analyse 

de la sécurité, capables de visualiser le problème sous différentes perspectives, par ex. en 

intégrant des analyses de fiabilité et de vulnérabilité. Nous montrons que les indices de fiabilité 

traditionnellement adoptés en tant que métriques de référence, ne permettent pas de saisir des 

caractéristiques clés du concept de sécurité, en particulier lorsqu’on est confronté à des 

événements ayant une faible probabilité mais des conséquences importantes. Par conséquent, 

nous concluons que l’analyse de vulnérabilité peut compléter celle de fiabilité. En outre, l’étude 

de cinq topologies IEEE-RTS différentes du point de vue de la vulnérabilité et de la fiabilité 

montre qu’un système appréhendé du point de vue de la vulnérabilité pourrait se comporter 

différemment par rapport à un système appréhendé du point de vue de la fiabilité. Nous 

montrons également que les hypothèses dans les équations des flux de puissance peuvent 

affecter de manière significative les résultats de ce type d’analyses et conduire à des prédictions 

inexactes. 

La troisième partie présente et développe un problème d’optimisation hiérarchique “leader-

follower” (à deux niveaux), où le niveau supérieur (leader) essaie de maximiser les dégâts et le 

niveau inférieur (follower) tente de minimiser les conséquences probables. Grâce à cette 

stratégie rationnelle, on peut déterminer les composants critiques dont les défaillances 

entraînent la plus grande perte du système. Par la suite, notre modèle est ultérieurement 

développé afin de pouvoir être utilisé comme un modèle multi-période, voire un modèle 

assurant l’analyse du système contre les pires incertitudes. Le modèle proposé est appliqué aux 

systèmes d’essai IEEE et à un système réel, i.e. au réseau de transmission modifié de l’Iran. Les 

résultats montrent que notre modèle est plus efficace que le modèle proposé par la littérature, 

où les équations de flux de puissance approchées sont utilisées au niveau inférieur. De plus, 

notre modèle montre que le réseau étendu de l’Iran, où seulement quelques lignes sont 

construites, est plus robuste que le réseau existant. A la fin de cette partie, afin de garantir la 

sécurité opérationnelle des réseaux électriques affectés par l’incertitude, on a développé un 

modèle d’optimisation adaptatif robuste à trois niveaux, assurant le système contre les pires 

incertitudes. Le modèle final à un niveau a été appliqué au réseau IEEE 24-bus et au réseau de 

transmission modifié de l’Iran. Nos simulations montrent que l’évaluation de la vulnérabilité 

du réseau électrique qui ne tient pas compte des incertitudes conduit à des résultats optimistes. 
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Nous observons également deux propriétés de notre modèle et prouvons un lemme qui améliore 

les performances de calcul de notre “mixed-integer linear program” (MILP) model. 

En résumé, cette thèse se focalise sur la modélisation, la simulation et l’optimisation des 

systèmes électriques en ce qui concerne leur vulnérabilité aux perturbations et aux aléas. Les 

résultats de notre recherche peuvent fournir des précieuses informations et méthodes d’analyse 

aux décideurs publics et privés et aux opérateurs du réseau. 

Mots clés: évaluation de la vulnérabilité, système électrique, problème d’optimisation multi-

niveaux, flux de puissance optimal. 
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Overall introduction 

 

 

 

1-1 Motivation and background 

Nowadays, more than ever, electrical energy has become a key commodity in any growing 

society. A power system as the main energy infrastructure has the characteristics of large-scale 

critical infrastructures (CIs) [1], i.e.: 

 A network of human-made systems and processes that function cooperatively and 

synergistically to produce and distribute a continuous flow of essential goods, services, 

and social needs; 

 Is subject to multiple events, namely natural hazards, intentional attacks, and random 

failures; 

 An interdependent system, both physically and through a communication system which 

is subject to rapid changes; 

 Disconnection of even single component could potentially provoke cascading effects 

that cause more portions of the network to be disconnected and finally a total power loss 

(the blackout); 

 Has no single owner/operator. 

Any failure or destruction of CIs, especially power systems, has a considerable impact on 

safety, security, economy, health, and the well-being of a community [2]. Like any other critical 

infrastructure, power systems are subject to disruptions, either unintentional or deliberate, that 
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may have a significant impact on their performance. Recently, a large number of people have 

been affected by blackout throughout the world, for instance, about 128 million people in Iran, 

the USA, Canada, and Italy due to different events (2003), 670 million people in India (2012), 

70 million people in Turkey (2015) and so on [3-6]. In the USA, the annual impact/cost of 

weather-related blackouts ranges from $20 to $55 billion and the trend of such events shows 

that their frequency has increased over the last 30 years [7, 8]. According to a report from the 

National Academy of Sciences of America, the US power system is extremely vulnerable to 

intentional attacks which may lead to several weeks or even months of large-area blackouts [9]. 

In addition, VSE1 reported the cost of a blackout is 2-4 billion CHF per day in Switzerland [10, 

11].  

Many questions stem from the occurrence of these extreme incidents and potential low-

probability-high-consequence events involving the power systems: What is the inherent 

vulnerability of a power system and which are its critical components that if they fail cause 

large consequences? What is the mechanism of the propagation of disruptions in the power 

system? How will the power system react to unexpected events and how large can be the 

consequences? Are there particular properties that allow the power system to resist systemic 

disruptions? How close to the limits are they operating? What are the limits? To what type of 

disruptions are these systems vulnerable? How does the choice of a specific vulnerability metric 

affect the result of power grid robustness analysis? What countermeasures can be proposed to 

reduce vulnerability? In short, how vulnerable are these complex interconnected “systems-of-

systems”? The main motivation behind this thesis is to address the type of questions stated 

above. 

According to the reported events, some infrastructures are at risk, in particular the electric 

power system [1]. Hence, some countries have increased the investments aiming at improving 

CI protection and resilience. The US government has created the National Infrastructure 

Simulation and Analysis Center (NISAC) [12]. China has allocated 20 trillion CNY during 

2015–2020 to increase resilience [13]. Furthermore, the modeling and simulation of CIs for 

protection and resilience purposes have received significant attention and interest among the 

universities, national laboratories, and private companies [14]. On the practical side of the issue, 

the matter of fact is that these understandable concerns are due to the danger that [15]: 

                                                 
1 Verband Schweizerischer Elektrizitätsunternehmen(VSE) 
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 The designed system capacities may not be adequate to support the growing demands 

when we have greater CI integration and market deregulation; 

 The safety margins preventively designed may not be sufficient to cope with the 

expected and, most of all, unexpected events. 

To protect and mitigate such vulnerability when CIs suffered from the events, first it is needed 

to explore advanced tools for modeling of the system and its components and then, trying to 

guarantee the correct flow of electricity from generation facilities to consumers under different 

adverse conditions [15]. “Vulnerability analysis” in power systems is important for the first step 

so as to determine how vulnerable a power system is in case of any potentially unforeseen 

catastrophic events [16] and it is used to detect and rank the most critical elements of a power 

grid under a variety of attack scenarios [17]. The final solutions of this analysis are relevant for 

the system planner and the system operator in order to devise an effective and budget limited 

set of protective and corrective measures in the second step. There are several strategies for 

vulnerability reduction such as (i) adding the redundant components e.g. new transmission line, 

(ii) hardening the infrastructure, or improving its active defenses such as appropriate 

surveillance measures, patrolling localized assets, and undergrounding specific transmission 

components [18]. 

In the past, several innovative methods have been developed to determine critical components 

whose failures lead to the largest power-system loss (i.e. for the first step indicated above) [19]. 

These developed methods can range from analytical approaches (such as complex network, 

flow-based, logical, and functional methods) to Monte Carlo simulations (a detailed comparison 

of these methods and approaches is addressed in Chapters 2 and in [20]). But, none of the 

methods and tools can tackle all challenges of today’s energy systems because of their 

assumptions and further, new introduced challenges [1] or briefly, there is not one single 

modeling approach that “captures it all” [15]. Moreover, current reliability policy and 

associated security standards in the energy sector are limited to assessing a reduced set of 

failures such as the “N-1” criterion and reliability assessment where the potential low-

probability-high-consequence events and a larger number of simultaneous outages are typically 

neglected [18]. Hence, we still lack efficient tools addressing more realistic models that are also 

suitable for large-scale systems. To bridge this gap, this thesis focuses on the context of 

vulnerability analysis in the power system to propose new approaches in order to address the 

shortcomings of traditional approaches. 
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1-2 Objectives and scope of the research 

The general objective of the thesis is to study and develop advanced modeling, simulation, 

analysis, and optimization methods for the vulnerability analysis of the power systems in order 

to proactively and properly, protect, and mitigate such vulnerability when they suffered from 

low-probability-high-consequence failures such as multiple-components outages. The major 

objectives of the research are, more precisely: 

 To develop more reliable methods for structural and systemic vulnerability analysis of 

the power system, identifying scenarios that can lead to large consequences more 

reliable than existing methods; (addressed in Chapters 3-8 and in [21-25]) 

 To develop a framework for the integration of security methods capable of viewing the 

problem from different perspectives e.g. integrating reliability and vulnerability 

analyses; (addressed in Chapter 3 and in [22]) 

 To find out the characteristics of a good network topology, and good operations in the 

overall power system security; (addressed in Chapters 4,6 and in [22, 25]) 

 To develop a method for identifying, screening and ranking critical components (due to 

their location, function, or the load they carry) in a proactive manner; (addressed in 

Chapter 4 and in [23])  

 To analyze the vulnerabilities due to changing operational constraints, such as changing 

load demands within the network system; (addressed in Chapter 6 and in [24]) 

 To immunize the solutions of vulnerability analysis against all possible realizations of 

the model uncertainty. (addressed in Chapter 7 ) 

To achieve the above-stated objectives, several sub-objectives should be addressed to assure 

the coherence and originality of the research. These sub-objectives are thus in short: 

 Definition of vulnerability and reviewing and comparing the previous methods and find 

out the relations to other concepts such as risk, reliability, and resilience; (addressed in 

Chapters 2-4 and in [20, 22]) 

 To find out the acceptable level of assumptions and available data to answer the 

reliability, vulnerability, and resilience questions; (addressed in Chapter 4 and in [23]) 

 To model realistically the cascading failures and domino effects; (addressed in Chapter 

4 and in [23]) 

 Find out different methods to solve the multilevel optimization problem. (addressed in 

Chapters 6-8 and in [24, 25]) 
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1-3 Structure of the thesis 

The following chapters include 7 articles submitted to international reviews, 6 of which are 

already published. Figure 1-1 points out the links between different articles (chapters). This 

figure shows that my thesis content includes three main parts, i.e. literature review part, chapters 

that present the single-level and multi-level (optimization-based) vulnerability analyses in parts 

two and three, respectively. Chapter 2 summarizes about 100 papers in the tables and reviewed 

totally about 300 articles. It shows the advantages and disadvantages of the standard methods 

in vulnerability analysis. Preliminary results based on the complex network are presented in 

Appendix A. Chapter 3 compares and integrates the vulnerability and reliability quantitative 

measures. This lets us distinguish between similar security concepts i.e. vulnerability and 

reliability analyses. Before the next step, finding the benefits and limitations of power flow-

based approaches to assess vulnerability, reliability, and contingency of the power systems is 

needed. Chapter 4 thoroughly investigates the effects of modeling assumptions, especially when 

the model is used for line capacity-based assessments such as reliability, vulnerability, and 

contingency analyses.  

In the third part of the research, a new ACOPF-based mathematical framework is proposed to 

analyze the vulnerability of the power system in Chapter 5. Furthermore, the effects of reactive 

power dispatch, losses, and voltage profile on the results of the interdiction model are examined 

in this chapter. Chapter 6 represents a further step of the model in Chapter 5. It proposes a multi-

period vulnerability analysis of power grids under multiple outages. Chapter 7 proposed a new 

model based on the previous models in Chapters 6 and 7 to consider the uncertain parameters 

using a robust optimization approach. The conclusions are provided in Chapter 8. The abstracts 

of Chapters 2-7 are as follows: 

Chapter 2: The failure of a power system as a critical infrastructure causes considerable 

damage to society. Hence, the vulnerabilities of such facilities should be minimized to cope 

with several sources of disruption. Various methods have been proposed to identify and address 

the weaknesses of power systems to enhance their robustness and resilience. As the field is 

evolving quickly, understanding the pros and cons of each approach and the trends could be 

challenging. This chapter aims to guide the reader toward choosing the most effective method 

according to the issue investigated. We focus on studies on power grids; however, research on 

other critical infrastructure could also benefit from this review. We identified three classes of 

events, namely natural hazards, intentional attacks, and random failures. These events affect the 

adopted method that can range from analytical approaches—complex network, flow-based, 
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logical, and functional methods—to Monte Carlo simulations. At present, hybrid approaches 

are emerging with the growing complexities of power grids. Various methods are used in 

combination to benefit from the strengths of one another. We identified three emerging topics 

and challenges that require further investigations, namely the N-k problem, trade-off between 

robustness and optimality, and emerging drivers in power grids. 

Chapter 3: Fault analysis of modern power systems cannot be only addressed on classical 

reliability techniques but also considering the impact of cascading failures. This study proposes 

an original integrated approach for the risk management of a power system subject to random 

contingencies by using vulnerability and reliability quantitative measures. Five different 

 

Figure 1-1. Thesis contents 
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systems based on the IEEE-RTS have been studied from the vulnerability and reliability 

perspectives. According to the calculation carried out and the multi-criteria decision making 

(MCDM) method applied to better consider the integration of both concepts, the vulnerability 

and reliability perspectives are complementary viewpoints that can help to design a more robust 

critical infrastructure. 

Chapter 4: Both steady-state AC and DC power flow models are commonly used for techno-

economic studies of power systems. The DC-based approach limits the computational burden 

by assuming small-angle approximation, ignoring power losses, reactive power flows, and 

voltage variations. It, therefore, matters to understand if this approach affects system 

vulnerability, reliability, and contingency assessments. To this aim, we use the time sequential 

Monte Carlo simulation and an N-k'-1 scenario for reliability and contingency analyses, 

respectively. Further, we introduce a new index for vulnerability assessment. The IEEE 

reliability test system (RTS) and the modified RTS are modeled. The results show that the DC 

model underestimates the reliability indices by about 20% and more than 90% in a stressed 

network. We also show a small error of 5%, owing to the assumptions of the DC model, which 

can lead to inaccurate simulations concerning the cascading failures. Finally, the sources of the 

inaccuracy in the DC-based model are investigated. The results prove that AC power flow 

model should be privileged for the line capacity-based assessments. 

Chapter 5: This chapter examines the effects of reactive power dispatch, losses, and voltage 

profile on the results of the interdiction model to analyze the vulnerability of the power system. 

First, an attacker-defender Stackelberg game is introduced. The introduced game is modeled as 

a bilevel optimization problem where the attacker is modeled in the upper level and the defender 

is modeled in the lower level. The AC optimal power flow (ACOPF) is proposed as the 

defender’s tool in the lower-level problem to mitigate the attack consequences. Our proposed 

ACOPF-based mathematical framework is inherently a mixed-integer bilevel nonlinear 

program (MIBNLP) that is NP-hard and computationally challenging. This work linearizes and 

then transforms it into a one-level mixed integer linear program (MILP) using the duality theory 

and some proposed linearization techniques. The proposed MILP model can be solved to the 

global optimum using state-of-the-art solvers such as Cplex. Numerical results on two IEEE 

systems and Iran’s 400-kV transmission network demonstrate the performance of the proposed 

MILP for vulnerability assessment. We have also compared our MILP model with the DCOPF-

based approach proposed in the relevant literature. The comparative results show that the 

reported damage measured in terms of load shedding for the DCOPF-based approach is always 
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lower than or equal to that for the ACOPF-based approach and these models report a different 

set of critical lines, especially in more stressed and larger power systems. Also, the effectiveness 

and feasibility of the proposed MILP model for power-system vulnerability analysis are 

discussed and highlighted. 

Chapter 6: This chapter describes a methodology for the N-k contingency analysis of bulk 

power systems. The method encompasses the evaluation of contingencies’ effects on the power 

system over a range of system demand levels. The proposed model is inherently a multi-period 

bilevel optimization problem. Unlike the conventional bilevel optimization problems for the N-

k contingency analysis, the proposed model considers the effects of reactive power dispatch, 

losses, and voltage profile. In doing so, the problem is formulated as a multi-period AC-based 

bilevel mixed-integer nonlinear programming (MINLP) problem. To guarantee the global 

optimality of the solution, this work linearizes and then transforms it into a one-level mixed-

integer linear programming (MILP) problem using different linearization techniques and the 

duality theory. The simulation results on the annual load profile of the IEEE Reliability Test 

System (RTS) verify the effectiveness of the proposed model. 

Chapter 7: With the growing level of uncertainties in today’s power systems, the vulnerability 

assessment of a power system with uncertain parameters becomes a must. This paper proposes 

a two-stage adaptive robust optimization model for the vulnerability assessment of power 

systems. The main goal is to immunize the solutions against all possible realizations of the 

modeled uncertainty. In doing so, the uncertainties are defined by some pre-determined 

intervals defined around the expected values of uncertain parameters. In our model, there are a 

set of first-stage decisions made before the uncertainty is revealed (attacker decision) and a set 

of second-stage decisions made after the realization of uncertainties (defender decision). This 

setup is formulated as a mixed-integer trilevel nonlinear program that is non-convex and NP-

hard. Then, this paper transforms the proposed trilevel program into a one-level mixed-integer 

linear program (MILP) using the duality theory and some proposed linearization techniques. 

We also prove a lemma which makes our final MILP model much easier to solve. The proposed 

MILP model can be solved to the global optimum using state-of-the-art solvers. Numerical 

results on the IEEE test system and modified Iran’s transmission network demonstrate the 

performance of our proposed MILP model for vulnerability assessment under uncertainty. 

Appendix A: It is important to increase the security and robustness of power grids under a 

variety of events. In this case, “Vulnerability analysis” is usually used to identify the most 

vulnerable elements of a power grid under different hazards. There are different kinds of 
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methodology to identify vulnerability such as complex network, logical, functional methods 

and Monte Carlo simulation. In this work, complex network, Swiss power grid and seismic 

hazard are used as an approach, a test system and a scenario, respectively. First, Swiss power 

grid is modelled using Gephi software and five different metrics of complex network are applied 

on the model. Then, TOPSIS as a multi-criteria decision method is used to combine the results 

of previous step. Finally, to find out the most exposed nodes in the case of earthquake, Swiss 

seismic hazard data is used and combined with TOPSIS outputs. In this work, the cost of 

blackout in different Swiss cantons during a blackout is also calculated using VSE report. In 

addition, different strategies such as power management, monitoring, power system 

improvement and hardening measures are presented. 

1-4 Research outputs and publications 

The focus of the present thesis is on the modeling, simulation, and optimization of power 

transmission networks as critical infrastructure with respect to their vulnerability to cascading 

failures and high-impact, low-probability events. The following list of publications form the 

basis of the present doctoral thesis, which will be addressed in the following chapters: 

Peer-reviewed Journal Publications 

1- Abedi, A., L. Gaudard, and F. Romerio-Giudici, Review of major approaches to analyze 

vulnerability in power system. Reliability Engineering and System Safety, 2019. 183: p. 

153-172.  

2- Abedi, A., Beyza, J., Romerio, F., Dominguez-Navarro, J. A., & Yusta, J. M., MCDM 

approach for the integrated assessment of vulnerability and reliability of power systems. 

IET Generation, Transmission & Distribution, 2019. 13(20): p. 4741-4746.  

3- Abedi, A., L. Gaudard, and F. Romerio, Power flow-based approaches to assess 

vulnerability, reliability, and contingency of the power systems: The benefits and 

limitations. Reliability Engineering & System Safety, 2020. 201: p. 106961.  

4- Abedi, A., M.R. Hesamzadeh, and F. Romerio, An ACOPF-based bilevel optimization 

approach for vulnerability assessment of a power system. International Journal of 

Electrical Power & Energy Systems, 2021. 125: p. 106455.  

5- Abedi, A. and F. Romerio, Multi-period vulnerability analysis of power grids under 

multiple outages: An AC-based bilevel optimization approach. International Journal of 

Critical Infrastructure Protection, 2020: p. 100365.  
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6- Abedi, A., M.R. Hesamzadeh, and F. Romerio, Adaptive Robust Vulnerability 

Assessment of A Power System: A Trilevel OPF-based Optimization Approach 

[Submitted] 

Peer-reviewed Conference Publication and Presentation 

1- Abedi, A. and F. Romerio-Giudici. Systemic Vulnerability of Swiss Power Grid to 

Natural Events. in MATEC Web Conf. 7th International Conference on Power Science 

and Engineering (ICPSE 2018). 2019. (selected as an excellent oral presentation 

winner, Ref: http://www.icpse.org/2018.html)  

2- Abedi, A. and F. Romerio. An AC-based bilevel optimization approach to assess 

vulnerability of a power system under multiple contingencies. in 5th International 

Conference on System Reliability and Safety (ICSRS 2019), 2019. (selected as an 

excellent oral presentation winner, Ref: http://www.icsrs.org/icsrs19.html)

http://www.icsrs.org/icsrs19.html
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Chapter 2          

            

               

Review of major approaches to analyze 

vulnerability in power system 

 

 

 

2-1 Introduction 

An electric system represents a "critical infrastructure" (CI) [15]. Any failure or destruction 

affects the safety, security, economy, health, and well-being of a community [2]. According to 

a recent report [26], increasing energy consumption exceeds the slow deployment of energy 

infrastructure in many countries. An ill-designed electricity reform can even worsen the 

problem [27]. Deregulation, the opening of the market to competition, and decarbonization 

may represent a challenge for an electric system [28]. The operators must deal with capacity 

and design limitations [29, 30] to avoid perturbation.  

The risk of blackouts must be handled, and this includes managing the cascading effect. It 

happens when a triggering event, e.g. the disruption of a transmission line, leads to the overload 

of the remaining lines and disconnects them from the network [31, 32]. Even in a network with 

a low probability of occurrence of a blackout, the risk remains high as the impact of an event 

involves substantial social and economic costs. Power failures have recently affected hundreds 

of millions of people. In 2003, three independent events in Iran, North America, and Italy hit a 

total of 128 million people. In 2012 and 2015, 670 million Indian people and 70 million Turkish 

people respectively were temporarily deprived of power [3-6]. In the USA, the annual cost of 



Review of major approaches to analyze vulnerability in power system 

14 

 

weather-related blackouts ranges from $20–$55 billion. The frequency has even increased over 

the last 30 years [7, 8]. In Switzerland, 24 hours without electricity costs about $2–4 billion, 

exceeding the daily GDP [10, 11].  

Deploying robust and resilient CI can limit this risk. Operators must detect and rank the most 

vulnerable elements of a system under a variety of attack scenarios [16]. They can therefore 

design and control systems to reduce their vulnerability to unpredictable events [33]. Scientists 

have been developing innovative methods to support decision-makers in this task. However, 

grasping the pros and cons of such methods is becoming challenging, as the field evolves 

quickly. Three contributions have already reviewed the field, but they have focused on complex 

network (CN) concepts [17, 34, 35]. Cuadra et al. [17] considered both pure and extended CN 

approaches; Bompard et al. [34] focused on their own previous research works, while Pagani 

and Aiello [35] reviewed literature from a statistic perspective. In 2015, reviews on a specific 

approach were relevant and insightful. However, the field has considerably expanded since. 

Besides a required update, an overview of a larger spectrum of methods is becoming critical. 

New investigations tend to favor hybrid approaches; scholars must understand the pros and 

cons of each method to merge the complementary ones.  

In this chapter, we review the most recent scientific studies on the vulnerability of power grids. 

It introduces CN but also considers power flow, logical, and functional methods. We compare 

and categorize them according to several criteria, including the methodology used, 

assumptions, test cases, failure scenarios, and modeling capability (node and/or line modeling). 

To further contrast the methods, we provide a correlation analysis of results, and, finally, 

highlights the emerging challenges. 

The rest of this chapter is organized as follows. Section 2-2 provides some basic definitions. 

Section 2-3 introduces different methods of vulnerability analysis. We compare the methods in 

Section 2-4 and underline some emerging topics and challenges in this field. Finally, Section 

2-5 summarizes the main findings and presents the conclusions.  

2-2 Definitions 

2-2-1 Critical infrastructure 

Infrastructure is large-scale man-made systems that operate interdependently to provide and 

deliver essential goods and services [15, 36]. They are considered critical if their failure or 

destruction has a considerable impact on the safety, security, economy, health, and well-being 
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of a community. Typical examples are energy and communication networks, transportation 

systems, and water and gas distribution systems [15, 37, 38].  

Interdependency among CIs leads to the concept of "systems-of-systems" (SOS) [39]. While 

interdependencies can improve the CIs’ operational efficiency, they also increase their 

vulnerability [40]. In this perspective, assessing the mutual interdependency of CIs to develop 

adequate protection is necessary [41]. A range of literature [42-51] introduces four types of 

interdependencies: physical, cyber, geographic, and logical. 

2-2-2 Cascading outage and blackout 

“Cascading outage” starts from a specific event that leads to a sequence of disconnections and 

failures. It turns into a "blackout" when it affects a wide area [17]. According to [52], the 

probability of a blackout decreases with its size. Doubling the blackout size (power, energy, or 

number of failures) halves its probability, which approximately follows a 1 to 2 power law 

[53-55]. However, Prieto et al. [56] suggest that the probability rather obeys a Pareto II 

distribution, i.e. a shifted power law distribution. Thus, despite a low probability of blackouts, 

the likelihood of large blackouts seems higher than expected [55, 57]. Even with a low 

probability, the risk of blackouts is still high. Indeed, the risk assessment also considers the 

size of the impact, which could be large, as shown in Table 2-1. Some studies also [57-62] 

provide lessons to be learned from historical events. 

Table 2-1. Some recent large-scale blackouts in the world and their consequences 

No. Country Year 

Load 

loss 

(GW) 

Economic 

loss 

People 

affected 

(*Million) 

Duration 

(hours) 
Reference 

1 Iran 2003 ~7 Not available 22 8 [3, 6] 

2 USA, 

Canada 

2003 61.8 $ 6.4 billion 50 16–72 (USA), up 

to 192 (Canada) 

[3-5] 

3 Italy 2003 24 Over €120 

million 

~56 Up to ~18 [3, 5] 

4 Russia 2005 ~3.5 $ 1–2 billion 4 ~4 [59, 63] 

5 Western 

Europe 

2006 ~14 Not available 15 ~2 [5] 

6 USA and 

Mexico 

2011 4.3 Up to $118 

million 

Over 5 ~11 [63] 

7 India 2012 ~48 Not available 670 2–8 [6, 64] 

8 Turkey 2015 32.2 Not available 70 More than 7 [6] 
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2-2-3 Power system hazards 

CIs are usually subject to many types of hazards and events [15, 65]. Based on the literature 

review, Figure 2-1 suggests a consistent taxonomy that differentiates random failures, natural 

hazards, and intentional attacks (pointwise and regional attacks). It represents a finer 

categorization than the one suggested by Murray and Grubesic [66], who distinguished 

accidental events from deliberate ones. We further describe and justify the three suggested 

categories: 

Random failures: Random failures affect all similar components of an infrastructure with the 

same probability distribution. The position of a specific node in the network has no impact on 

the probability of failure. The literature usually considers the following random disruptions:  

 Power system component failures due to component aging, communication system failures, 

an IT fault, etc. [67], 

 Hidden failures that play an important role in cascading events due to an incorrect removal 

of the power system components by a protection system [68, 69], 

 Sabotages, as far as terrorists or enemies do not possess any information about the power 

grid [70], 

 Imbalances between load and generation [17], 

 Human errors [71]. 

The impact of such an event is usually investigated by randomly removing a number of CI 

components [40]. The system behavior without these elements highlights its vulnerability and 

robustness. Other studies also consider vulnerability due to the imbalance between load and 

 

Figure 2-1. Different failure scenarios in power systems. 

Power system 
hazard
Failure Scenarios

Random 
failure 

e.g. component failures, human 
errors, hidden failures,...

Natural 
hazard

e.g. storms, earthquakes, 
hurricanes, lightening ,...

Intentional 
attack

e.g. sequential or synchronous 
attacks, cyber or physical, ... 

Point wise 
attack

e.g. cuting down tree, destroy 
grid tower, cyber attack, ...   

Regional 
attack
e.g. huge bomb attacks and 

military actions, .... 
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generation. They alter the loads or power generation in some randomly selected nodes and 

observe the system reaction [72].  

Natural hazards: Natural phenomena, e.g. earthquakes, hurricanes, and lightning, can also 

alter CIs [8]. Contrary to random failures, the geographic position affects the probability of 

disruption of a component. Natural events can directly destruct CIs’ elements, such as high 

winds or landslides that damage electric towers. They also indirectly perturb the system. For 

instance, cold waves and ice can reduce the distance between conductors up to that of 

generating flash [7]. Heat waves can lower the capacity of an electric line up to the point of 

overloading it. In Europe, four nuclear power plants had to be shut down in 2003 due to the 

increase in the temperature of rivers, water from which is used for cooling the reactor cores. 

Such events affected 4 GW of power supply, leading to approximately $14.5 billion financial 

losses [73]. 

Natural hazards represent a significant cause of power system disruptions. Adverse weather 

conditions caused approximately 33% of the outages in Canada over a 20-year period [74]. 

Meteorological events caused 43% of 400-kV and 48% of 154-kV line failures in Turkey over 

a 2-year period [26]. These events usually impose relatively long-duration interruptions, 

ranging from hours to days, resulting in heavy losses. In the USA, weather-related blackouts 

cost about $20 to 55 billion per year [7]. 

Intentional attacks: An effective intentional attack targets the critical elements of the CIs. 

Therefore, the probability of failure and randomness are not at stake. Power grids are attractive 

for intentional attacks, as they suffer from the following inherent characteristics [30]: 

 Components of power grids are usually distributed in some wide geographical areas, 

 Critical elements are spatially concentrated (e.g., substations) and vulnerable to common-

cause initiating events, 

 Most of the components are not guarded, 

 Most of the critical components are located outdoor and thus particularly vulnerable to 

several threats, 

 The impact of a blackout may be significant for a society. 

The intentional attacks might be cyber or physical. Physical damage can be as simple as cutting 

down trees or tripping transmission lines. An individual physically destroyed a local high-

voltage transmission line in Arkansas, which resulted in 10,000 customers suffering without 

electric power on October 6, 2013 [75]. Sudden bursts of electromagnetic radiation 

(electromagnetic pulse) can also be generated to destabilize the power grid [76]. According to 
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[64], successful or failed attacks targeted 528 substations and 2,539 transmission towers in the 

world between 1996 and 2006. 

In contrast, cyber attackers inject false data to mislead the system operator. If they know the 

entire power grid topology and attributes, they can fulfill the physical laws (e.g. power flow 

laws) without being detected by the system operator [77, 78]. They can also send false topology 

information to control centers. For instance, they can indicate a tripped line as a connected one 

and vice versa [78, 79]. Attacks can also rely on partial information. False data can target smart 

meters in a specific area that require only local information. Then, the disruption can spread to 

the rest of the network without being detected by the system operator [80, 81]. 

Intentional attacks can be divided into pointwise (nonproximity-based) and regional 

(proximity-based) [40, 82, 83]. Pointwise attack scenarios ignore the geographical location of 

the components. The attacker optimizes the impact by considering the centrality of each node 

or edge, as defined in Section 2-3. The regional attacks select a set of local nodes, edges, or 

paths [84] to sabotage, e.g., with bombs and weapons [40].  

2-2-4 Vulnerability 

Despite vulnerability being a common concept, Wolf et al. [85] observed more than 20 

definitions of vulnerability. Various disciplines have been considering this concept, resulting 

in its diverse definitions and making consensus difficult. Vulnerability can be social, 

organizational, economic, environmental, territorial, physical, and systemic [86, 87]. As the 

literature we reviewed is more specific, we can identify some trends. Table 2-2 provides the 

list of definitions we found during our review process. Most studies focus on physical and 

systemic vulnerability.  

Physical vulnerability represents the degree of loss of an element due to external pressure such 

as natural hazards [88]. It mainly focuses on the features and assets that can lead the whole 

system to fail, as in definitions 1 to 4. In contrast, definitions 5 to 7 are related to systemic 

vulnerability. They consider the degree of redundancy, functionality, and dependency of a 

system due to the failure of a specific element or interconnected system [89]. Therefore, 

understanding the conditions or states that can lead the system to fail is crucial. Some papers, 

especially in the field of natural hazards, integrate both physical element failures (physical 

vulnerability) and system functionality (systemic vulnerability) [37, 90], as seen in definition 

8. Finally, we added a third group of definitions that focus on the measure of the system 

weakness to hazards: definitions 9–11.  
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Table 2-2. Different vulnerability definitions 

Group No. Definition 
Reference 

(Page) 

Physical 

vulnerability 

1 

“A physical feature or operational attribute that renders an entity, 

asset, system, network, or geographic area open to exploitation 

or susceptible to a given hazard.” 

[91] (2) 

2 
“The weakness level of a system to failures, disasters, or 

attacks.” 
[36] (1) 

3 

“A susceptibility (sensitivity) to threats and hazards that 

substantially reduce the ability of a system to maintain its 

intended function.” 

[66, 92] 

(39,23) 

4 

“A physical feature or operational attribute that renders an entity, 

asset, system, network, or geographic area open to exploitation 

or susceptible to a given hazard.” 

[91] (2) 

Systemic 

vulnerability 

5 

“The manifestation of the inherent states of the system (e.g., 

physical, technical, organizational, cultural) that can be exploited 

to adversely affect (cause harm or damage to) that system.” 

[93] (1) 

6 

“The conditions determined by physical, social, economic and 

environmental factors or processes, which increase the 

susceptibility of a community to the impact of hazards.” 

[94] (13) 

7 
“The inability of a system to withstand strains and the effects of 

failures.” 
[95] (2) 

Systemic and 

physical 
8 

“Any weakness in an asset’s or infrastructure’s design, 

implementation, or operation that can be exploited by an 

adversary.” 

[38] (10) 

Measure 

9 

“A measure of the system’s weakness with respect to a sequence 

of cascading events that may include line or generator outages, 

malfunctions or undesirable operations of protection relays, 

information or communication system failures, and human 

errors.” 

[96] (1) 

10 

“Robustness or vulnerability (its opposite concept) are often 

used to measure to what extent a power grid has high or low 

reliability, respectively.” 

[17] (2) 

11 
“The performance drop of a power grid under a disruptive 

event.” 
[97] (2) 
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2-3 Approaches to vulnerability analyses  

Vulnerability analysis usually includes the different steps shown in Figure 2-2. It aims to [15, 

41, 66, 98, 99]: 

 Determine the critical components that require protection (according to their location, 

function, or carried load [100]), 

 Identify possible undesirable events and their impacts, 

 Prioritize the components based on the consequence of loss, e.g., the rate of important 

blackouts (number per year) and their severity, e.g. power lost and not supplied energy 

[95], 

 Identify potential and inherent vulnerabilities, 

 Identify existing countermeasures and their level of effectiveness [101, 102], 

 Estimate the degree of vulnerability relative to each component. 

Vulnerability analysis can be carried out within two different scenarios: static and dynamic 

[103, 104]. In the static analysis of robustness, one removes a node from a network without 

any redistribution of its loads (or flows). In the dynamic analysis, flows are redistributed in the 

network after a node or link failure. This approach is more complicated and may need to be 

solved numerically [103-105].  

Scientists have been developing various methods to assess the vulnerability of CIs. The 

approach to be adopted depends on the relevant issue and the type of hazards investigated. This 

chapter guides the reader in the choice of the right/relevant method. Figure 2-3 provides a first 

overview.  

Vulnerability analysis is performed either by using analytical techniques or by simulation [7, 

95]. The main conceptual differences are as follows [95, 106-108]: 

 

Figure 2-2. Main steps of vulnerability analysis. 
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 Analytical techniques give an exact solution to a simplified problem, whereas 

simulations provide an accurate solution to an exact problem, 

 Analytical techniques are quicker for the assessment of several similar systems. It 

performs well at solving a problem for a given set of parameters. In contrast, building 

a simulation model can consume less time than deriving the equations, 

 Analytical techniques evaluate the indices of a simplified model using mathematical 

solutions. Monte Carlo simulation methods [109] estimate the indices by simulating the 

actual process and the random behavior of the system, 

 With increasing complexity, formulae become more challenging to derive. The last 

resort is often simulation, 

 Analytical approaches use mathematical equations and models, e.g. block diagrams or 

fault trees, to derive related indices. These approaches require approximations and 

simplifications when analyzing complex systems.  

The forthcoming section will follow the structure of Figure 2-3. We introduce each method one 

by one. However, we omitted to develop Monte Carlo simulations to avoid making this chapter 

excessively long. The above-presented differences with analytical approaches already provide 

a good overview.  

The four following sections, each ending with a table, categorize the reviewed papers according 

to three aspects of information (metric/indicator; case study dimensions; assumptions, and 

failure scenarios). We collected these data because they affect each other. In particular, despite 

 

Figure 2-3. Different methods for vulnerability analysis. 
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no fixed rules existing, the size of a case study tends to determine the suitable assumptions. 

Studies are presented in a chronological order in the tables to provide a good understanding of 

the evolution in this field of research. These tables also save time and help a researcher 

efficiently select the studies that are relevant for a specific research topic. 

2-3-1 Topological method (complex network analysis)  

Complex network analysis (CNA) has been developed recently [110]. The first systematic 

studies appeared in the late 1990s to study and analyze the structure, dynamics, and evolution 

of many complex systems [35, 111]. CNA is performed not only in power grids but also in 

several other human-made systems, including railway networks, public transportation 

networks, road and rail transportation, airports, process plants, the Internet, the topology of 

web pages, airline routes, and electronic circuits [99, 112-120]. It has also been applied to 

socioeconomic systems, e.g. communication and social networks [121-124]. This method also 

works for systems stemming from nature, e.g. evolution, metabolic networks, protein 

interactions, biology, and food webs [17, 125, 126].  

CNA considers a set of nodes or vertices, e.g. substations or power plants, interconnected by 

means of links or edges, e.g. power transmission lines [17]. Some metrics and indices, namely 

centralities, identify the most critical nodes and edges [31, 119]. According to this concept of 

centrality, an individual closer to many people will obtain more critical information. This 

opportunity increases his/her power and influence [127]. 

CNA is segmented into two broad approaches. Pure models focus on topological definitions, 

such as degree, closeness, betweenness, clustering coefficient, and efficiency. In the second 

approach, extended models add electrical elements into the CNA. For instance, they account 

for the electrical and reliability features of power grids, e.g. impedance, power, and capacitance 

of the components. This approach triggered the development of extended centralities, such as 

electrical betweenness and net-ability [17, 128].  

Some papers also distinguish weighted/unweighted and directed/undirected models. Weights 

allow considering the properties of a component, e.g. its cost, reliability, capacities, power, and 

impedance [103, 129]. Directions are applied to edges to include the actual constraint of flows 

or goods between nodes. For instance, power always flows from generators to loads [17]. While 

[130-136] provide extended information about CNA, we also introduce pure and extended 

CNA, ending with the introduction of four fundamental centralities, namely degree, 

betweenness, closeness, and efficiency. 
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Pure complex network method: In pure CNA, components schematize buses in nodes and 

transmission lines in edges, as illustrated in Figure 2-4. However, it neglects weight and 

direction; all the nodes and edges are identical [137]. Two groups of centralities exist in 

complex network theory. The first one calculates the closeness of nodes/edges to each other, 

e.g. degree and closeness centralities. The second group evaluates the tie between nodes/edges, 

e.g. efficiency (shortest path) or flow betweenness centralities [138]. Some metrics also try to 

merge both groups, e.g. delta centrality (or Δ centrality) [139] and combined degree–

betweenness centrality [140]. We introduce the fundamental centralities below. For an in-depth 

description, the reader can refer to references [130-136, 141] and Table 2-3. 

Degree: The degree of a node goes from 0 (if it is isolated), to k (if it is connected to k nodes 

of the network). The degree probability distribution of all nodes expresses the topological 

features of a network. For example, some networks have a node degree distribution that follows 

a power law as in (2-1) [142, 143]: 

( ) , 1P k k      (2-1) 

Where 𝑃(𝑘) denotes the probability that a randomly selected node has a degree of k, and 𝛾 is 

a constant. With this specific distribution, a few nodes possess a high number of links, i.e. they 

form hubs. This type of network, namely “scale-free” [17, 144], are particularly vulnerable to 

intentional attacks but robust to random failures [145]. Other generic networks follow an 

exponential distribution as in (2-2): 

 

Figure 2-4. (a) IEEE-14 test case, (b) undirected, unweighted, and pure representation of its related complex 

network using Gephi (an open source software). The color scale and the numbers in the nodes provide the 

betweenness centrality. 
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( )
k

P k e 


  (2-2) 

This is the case of the random graph model [146] and the small-world model [147]. Power 

grids have the features of a small-world network because they form many clusters with a 

relatively small path length [96]. 

Closeness: The closeness centrality sums all the shortest paths of a node. It quantifies how fast 

the injected information spreads in the network [2].  

Betweenness: It measures the ratio and the total number of shortest paths in a graph. Nodes 

with high values of betweenness can control or regulate information flowing within a network 

[2]. 

Efficiency: Efficiency assumes that the load of transmission (electricity, information, packets, 

gas, water, and so on) between two nodes is proportional to the reciprocal of their distance [17, 

148]. Table 2-3 presents the mathematical definitions of these centralities, as well as those 

considered in extended CNA.  

Extended complex networks methods: Conventional CNA ignores the physical properties, 

electrical characteristics, and operational limits of power grids. It limits the scope of the 

analysis [137, 147, 149]. Binary entities hardly represent the real world [150], as lines have 

different materials, voltage levels, impedances, and related losses. The graph must be weighted 

to consider such specificities as well as nodes differences [72]. An improvement required to 

simulate active and reactive power flows, which are governed by Kirchhoff’s law and the 

topology of the network. In addition, directed edges allow simulating the power flow direction, 

voltage magnitudes, and angles [17]. Scholars have updated the “pure” centralities to take these 

“extended” characteristics into account. Some studies consider the physical resistance and 

impedance of lines and cables as the weight on the edges [17, 151]. Others introduce the 

reliability characteristics of a power transmission system [152]. Weight or P-Q network 

decomposition [72] features active power flow and the capacity of the generator and the load 

[2, 137, 153]. Table 2-3 presents prominent mathematical definitions of metrics in the pure and 

extended methods. This table highlights how extended centralities are derived from pure ones. 

In addition, the most important components of the studied papers are categorized in Table 2-4.  
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Table 2-3. Some pure centralities in complex network theory and related extended metrics 

pure methods extended methods 

R
ef

. 

No. Centrality Formula No. Centrality Formula 

1 Degree ∑ 𝑎𝑖𝑗

𝑁 − 1
 

1 Reliability-

based degree 

∑ 𝑎𝑖𝑗 ∑ 𝑝𝑖𝑗

(𝑁 − 1)2
 

[103, 

154] 

2 Power-based 

degree 

∑ 𝑃𝑖𝑗

𝑁 − 1
 

[155] 

2 Closeness 𝑁 − 1

∑ 𝑑𝑖𝑗

 
3 Reliability-

based 

Closeness 

𝑁 − 1

∑ 𝑟𝑑𝑖𝑗

 
[103] 

3 Betweenness 1

(𝑁 − 1)(𝑁 − 2)
∑

𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘
𝑖≠𝑗≠𝑘

 
4 Electrical 

Betweenness 
∑

𝑃𝑗𝑘(𝑖)

𝑃𝑗𝑘
𝑖≠𝑗≠𝑘

 
[103, 

128, 

155] 

4 Efficiency 1

𝑁(𝑁 − 1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗

 
5 Reliability-

based 

Efficiency 

1

𝑁(𝑁 − 1)
∑

1

𝑟𝑑𝑖𝑗
𝑖≠𝑗

 
[103] 

6 Net ability 1

𝑁𝑔𝑁𝑑

∑ ∑ 𝐶𝑔
𝑑

1

𝑍𝑒
𝑔𝑑

𝑑𝑔

 
[34, 

137, 

156] 

G: the graph descriptive of the structure of the real network with N nodes, 𝒊, 𝒋, 𝒌 ∈ 𝑮, 𝒑𝒊𝒋: the overall probability of 

connection from node i to node j, 𝒂𝒊𝒋: is 1 if node i is connected to node j, 0 otherwise, 𝒓𝒅𝒊𝒋: the most reliable path 

connecting node i to node j, 𝒅𝒊𝒋: the shortest path from node i to node j, 𝒏𝒋𝒌(𝒊): the number of shortest paths that contain 

i; 𝒏𝒋𝒌: the number of shortest paths from node k to node j, 𝑷𝒊𝒋: power flowing in the line connected in between nodes i 

and j; 𝑷𝒋𝒌: the maximum power flowing in the shortest electrical path between buses j and k, 𝑷𝒋𝒌(𝒊): the maximum of 

inflow and outflow at bus i within the shortest electrical path between buses j and k, 𝑵𝒈 and 𝑵𝒅: the numbers of 

generation and load buses, respectively, 𝒁𝒆
𝒈𝒅

: an equivalent impedance from a generation bus g to a load bus d as the 

impedance between the two buses, 𝑪𝒈
𝒅: the transfer capacity of the transmission network from generator g to load d. 
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Table 2-4. Literature on complex network analysis 

Y
ea

r 

Metrics / indicators 

Assumptions and 

Failure Scenarios/ Proposed 

capability* 

Case Study Dimensions* R
eferen

ce 

W
 o

r U
 

P
 o

r E
 

T
y
p

e 

N
o
d

e 

L
in

e 

Number of 

nodes 

Number of 

links 
Name 

2005 Global efficiency U P PA YN Y 98, 146, 127 175, 223, 171 Spanish PG, French PG, 

Italian PG 

[157] 

2006 Clustering coefficient, degree distribution, and 

average path length 

U P R,PA Y Y 4,789, 4,941 5,571, 6,594 Nordic PG, Western U.S. PG [158] 

2007 Weighted line betweenness W E R,PA N Y 39, 3,315 46, 3,142 I39, Huazhong-Chuanyu PG [159] 

2007 Clustering coefficient U P R,PA Y N > 3,000 nodes up to 4,300 UCTE [104] 

2008 Electrical betweenness B B NS Y N 300 411 I300 [145] 

2008 Topological and reliability efficiency B B R,PA Y Y 14 20 I14 [160] 

2009 Entropic degree and net-ability B B NS Y Y 34, 521 54, 679 I34, Italian PG [137] 

2009 Degree , closeness, betweenness, information, and 

reliability centralities 

B B NS Y N 14 20 I14 [154] 

2009 Efficiency and net-ability B B NS N Y 30, 57 41, 78 I30, I57 [156] 

2009 Clustering coefficient, information and edge 

betweenness centrality 

B P NS Y Y - 6-291 Evolution of French 400-kV 

PG (1960–2000) 

[161] 

2009 Complex network analysis and object-oriented 

modeling 

B B R,PA Y Y 161 219 The Swiss high-voltage PG [162] 

2009 Average and damaged efficiency B B R,PA Y Y 14, 300 20, 411 I14, I300 [163] 

2010 Developed betweenness index W E NS Y N 14 19 I4 [72] 

2010 Topological, flow [127], and random betweenness 

centralities 

W E NS Y N 14 20 I14 [164] 

2010 Electric and topological betweenness B B PA Y Y 300 409 I300 [165] 
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2010 Parallel betweenness centrality W E NS N Y 14,090, 46,010, 

92,370, 172,930 

17,346, 57,323, 

116,980, 220,648 

14,000-bus, 46,000-bus, 

90,000-bus, 170,000-bus 

[166] 

2010 Electrical and topological betweenness centralities B B NS Y Y 2935, 300 6567, 409 NYISO-2935 system, I300 [167] 

2010 Clustering coefficient, efficiency, and the max 

indicator of power supply 

B B R,PA Y N 320 441 regional PG in China [168] 

2010 Characteristic path length, connectivity loss, 

blackout sizes 

B B R,PA Y N 300, 336–1473 409[165], - I300, 40 areas within the 

Eastern U.S. PG 

[169] 

2010 Net-ability, paths redundancy, and survivability B B R,PA YN Y 30, 118, 300, 521 41[156], 179 

[170], 409[165], 

679 

I30,, I118, I300, Italian PG [171] 

2011 Electrical closeness and betweenness centralities W E NS Y N 5 7 I5 [128] 

2011 Electrical betweenness, loss of load index W E R,PA Y N 118 [170], 138 179 [170], - I118, Central China PG [172] 

2011 State transition graph [173] and characteristic length W E NH,PA Y Y 118 More than 180 118-bus PG China [90] 

2011 Extended betweenness and net-ability B B PA Y Y 118, 300, 521 179, 409, 641 I118, I300, Italian PG [174] 

2012 Structural vulnerability, contingency vulnerability 

and operational vulnerability indices 

W E NS N Y 93 124 93-bus with DG [153] 

2012 Degree, reliability degree, electrical degree, 

electrical reliability degree 

B B NS Y Y 24 38 I96 [152] 

2012 Degree and betweenness indices W P R,PA Y N 118, 4,941 179, 6,594 I118, U.S. PG [170] 

2012 Power flow and random flow betweenness 

centralities 

W E R Y N 14 20 I14 [175] 

2012 Topological and extended betweenness centralities B B R,PA N Y 521 641 Italian PG [176] 

2013 Modified pair dependency, closeness and 

betweenness 

B B R,PA Y N 13, 68, 140, 145 12, 86, 233, 453 4-, 16-,48-, 50-Generators [2] 

2013 Purely topological model, betweenness-based model 

and direct current power flow model 

B B NS Y Y 57[156], 118 

[170], 300[165] 

78[156], 179 

[170], 409[165] 

I57, I118, I300 [67] 

2013 Energy-based centrality W E NS Y Y 14 20 I14 [177] 

2013 Network efficiency and betweenness U P R,PA Y N 295 413 Huazhong PG, China [178] 
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2013 Local load-redistribution, the normalized avalanche 

size 

W E R Y N 572 871 Indian PG [179] 

2013 Clustering coefficient, mean shortest path length, 

degree distribution 

U P R,PA N Y 105 142 Iranian 400-KV PG [180] 

2014 Combined degree-betweenness index U P R,PA YN Y 118 [181] 179 [181] I118 [140] 

2014 Degree, betweenness, information, efficiency and 

closeness and their new reliability-based ones 

B B R,PA Y N 105 142 400-KV PG (IRAN) [103] 

2014 Blackout size and connectivity loss indices B B PA Y Y 57[156], 118 

[170],300[165] 

78[156], 179 

[170],409[165] 

I57, I118, I300 [97] 

2014 Efficiency, source–demand considered efficiency, 

connectivity level, clustering coefficient, and power 

supply 

B B NH,PA Y Y 57[156], 118 

[170], 300[165] 

78[156], 179 

[170], 409[165] 

I57, I118, I300 [182] 

2014 Clustering coefficient W E R Y Y 84 200 Floridian high-voltage PG [183] 

2014 Effective graph resistance W E R,PA N Y 118 [170], 

30[156] 

179 [170], 41[156] I118, I30 [53] 

2014 Largest component size, connectivity level, DC 

power flow model, largest attack efficiency 

B B R,PA Y Y 300 409 I300 [70] 

2014 Power transfer distribution factors, extended 

betweenness, net-ability, risk graph 

W E PA Y Y 57, 118, 2,383 80, 179, 2,896 I57, I118, Polish PG [184] 

2014 PageRank algorithm B B PA Y N 118 179 I118 [185] 

2015 Degree and betweenness-based method B B R,PA Y Y 10-884 9-1,059 Dutch medium and low 

voltage networks 

[151] 

2015 Net-ability, electrical betweenness and entropy 

degree 

B B PA Y Y 300 409 I300 [34] 

2015 local load-redistribution, the normalized avalanche 

size 

W P PA Y N 4,941 6,594 Western U.S. PG [186] 

2015 Degree centrality, electrical degree centrality, 

betweenness centrality and electrical betweenness 

centrality 

B B NS Y Y 9, 16, 33, 65, 107 10, 20, 41, 96, 171 BPTS 9, BPTS 16, BPTS 33, 

BPTS 65, BPTS 107 

[187] 
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2015 Grid vulnerability index (GVI), Efficiency-based 

vulnerability index 

W E NS Y N 57 78 I57 [188] 

2016 Pseudo-Laplacian, pseudo-adjacency, pseudo-degree 

matrices, susceptance-based degree, modified 

susceptance-based degree, power traffic degree, and 

power loss degree centrality 

B B R,PA Y N 30[156], 57[156], 

300[165], 4,941 

41[156], 78[156], 

409[165], 6,594 

I30,I57, I300, WSCC 4941-

bus USA 

[31] 

2016 Ratio of post-event and pre-event total generator 

nodes and active power 

B B R,RA Y Y 417 551 Harris county, USA [40] 

2017 A model based on co-citation (MBCC)-hypertext 

induced topic selection (HITS) algorithm (MBCC-

HITS algorithm) 

W E NS Y N 14, 118 20, 179 I14, I118 [189] 

2017 Line-graph-based model, bus-based model U P R,PA Y Y 14, 30, 57, 118, 

300, 4,941 

20, 41, 78, 179, 

409, 6,594 

I14, I30, I57, I118, 

I300,WECC(USA) 

[190] 

2017 Motif-based analysis U P PA Y N 417, 254, 647, 

461, 79, 190, 193, 

63 

537, 357, 880, 664, 

80, 224, 252, 82 

Germany, Italy, France, 

Spain, TenneT, RTE, 

Amprion, 50 Hertz 

[191] 

2017 Three node-based measures and three network-based 

measures 

U P R,PA Y N 2,083 2,571 South Korean PG 3.3–765 

KV 

[181] 

2017 Efficiency, source–demand-considered efficiency, 

largest component size, connectivity level, and 

clustering coefficient 

B B RA Y Y 295 413 Central China PG [192] 

2017 Power flow index, vulnerability index, electric 

closeness 

W E NS N Y 30 42 I30 [193] 

* B: Both, P: Pure, E: Extended, W: Weighted, U: Unweighted, Y: Yes, YN: Yes (not shown), N: NO, R: Random failure, PA: Pointwise attacks, RA: Regional attacks, NS: No scenario (all 

lines or/and all buses or/and N-1 security criterion), NH: Natural hazard (seismic, Hurricane etc.), UCTE: Union for the Coordination of Transmission of Electricity, PG: power grid, IX: 

IEEE X-bus. 
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2-3-2 Flow-based methods 

Complex network methods originally ignored the physics of the power system operation, an 

issue that was partially overcome with extended CNA. Nevertheless, power flow-based 

methods intrinsically consider physical features [15, 194]. They simulate power flows in power 

system planning and operations [195] with deterministic and probabilistic approaches: 

Deterministic flow-based approach: Power or load flow studies calculate the steady-state 

solutions of the power system. In a deterministic approach, the modeler/operator knows the 

injected active powers (𝑃𝑖) at all buses (N) except the slack bus, i.e. the other (N-1) buses, the 

injected reactive powers (𝑄𝑖) at all load buses (PQ buses), and the voltage magnitude (𝑉𝑛) at 

all generator buses (PV buses) [67]. 𝑃𝑖 and 𝑄𝑖 can be expressed in terms of unknown and known 

state variables as follows: 

1 2 1 2( , ,..., , , ,..., )i i n nP f V V V     (2-3) 

1 2 1 2( , ,..., , , ,..., )i i n nQ g V V V     (2-4) 

Where 𝑖 = 1,2,3, … , 𝑛 , n being the number of buses in the system. According to (2-3) and (2-4)

, the injected active and reactive powers are functions of voltage magnitudes (𝑉𝑖) and angles 

(𝛿𝑖) of all buses. These alternative current (AC) power flow equations are nonlinear. Therefore, 

iterative numerical solutions must be used, such as the Gauss–Seidel, Newton–Raphson, or the 

decoupled power flow methods. These equations and their solutions are detailed in books on 

electrical power systems [196-198]. 

Solving AC power flow equations causes a significant computational burden. The direct current 

(DC) approach limits this issue by linearizing the equations and is required in large-scale 

simulations or when analyzing many failure scenarios [199]. It considers active powers but 

ignores reactive powers and transmission losses [200]. Its efficiency approximates the AC 

power flow, without being iterative and complex [67, 199]. It misrepresents transmission line 

flows by less than 5%, while being 7 to 10 times faster than the exact solution provided by the 

AC load flow approach [53]. The estimation is even more accurate in high-voltage low-load 

power grids [200]. Both power flow approaches are applied to vulnerability analysis. Yan et 

al. [154] compare a modified DC power flow-based cascading failure simulator using transient 

stability analysis (TSA). Cavalieri et al. [37] contrast AC power flow-based approach with 

hierarchical and topological methods. Cascading failures and blackouts were assessed with the 

Oak Ridge–PSERC–Alaska (OPA) model [55, 201] that uses the DC power flow equation. It 
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solves power flow models under restriction conditions while minimizing the cost function. 

Nevertheless, the small number of nodes and controlling parameters limit the scope of this 

model [68]. The University of Manchester developed an AC power blackout model [202] that 

can consider the cascading failure of transmission lines, post-contingency dispatching of active 

and reactive powers, or load shedding to prevent a complete blackout. Finally, the CASCADE 

model [203] describes qualitatively the nature of cascading failure in power systems. However, 

it ignores the times between adjacent failures and generation re-dispatching during failure [204, 

205].  

Some studies apply the maximum flow theorem, a deterministic method [150, 206]. It identifies 

the maximum power flow that a power system can withstand [194]. It works well with weighted 

networks such as electrical power systems, communication networks, or computer networks. 

It maximizes the flows from the source to the sink in a network [150, 206]. The maximum flow 

theorem observes limits similar to that in the power flow calculation, because power grids 

usually function within capacity and design limitations [29]. Transmission line capacities, bus 

voltage levels, and generator output greatly influence the power flows. Therefore, the system’s 

state can become abnormal with small perturbations [207]. 

Various vulnerability analyses of power grids have applied the maximum flow theory. Dwivedi 

and Yu [100] proposed a maximum-flow-based complex network version. Fan et al. [207] 

employed the maximum flow theorem to investigate the robustness of a power grid with a 

tunable load distribution parameter. Fang et al. [208] recently innovated with a multisource 

multisink problem. They connected virtual nodes to source and sink nodes. Then, all virtual 

components were connected to a new virtual one. Table 2-5 will further compare different 

works based on power flow and maximum flow modeling. 

Probabilistic flow-based approach: Uncertainties are ignored in deterministic power flow 

methods. They require fixed values of load, generation, and transmission line conditions, which 

are relevant for cases with minimal changes [195, 209, 210]. Probabilistic approaches are 

preferred when there are large variations of load demand, network configurations, and rates of 

generator outages or generation, as with wind power. These methods evaluate the system 

vulnerability according to the uncertainty level [211]. Power system uncertainties can apply 

both Monte Carlo simulations and analytical methods [210, 212]. Different analytical 

probabilistic load flow algorithms exist, such as linear approximation, point estimate method, 

combined cumulants and Gram–Charlier expansions, statistical least square estimation and 
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Nataf transformation, and Latin hypercube sampling [195, 209, 213]. They all linearize the AC 

power flow equations but use probabilistic density function instead of assuming fixed inputs 

[209, 210]. Table 2-5 concludes this section about deterministic and probabilistic flow-based 

approaches. It summarizes the studies that applied these approaches in vulnerability analysis.  

2-3-3 Logical method 

Game theory: Von Neumann [214] developed the game theory to analyze strategic behavior 

[215]. Recently, infrastructure security research applied this method in the context of electricity 

grids [216], transportation networks [217], and supply chains [218]. It deals with intentional 

attacks and intelligent threats [219] by simulating the behavior of the players, e.g. infrastructure 

operators and attackers. They reach the Nash equilibrium, if it exists. It occurs when no players 

can gain to unilaterally change his/her strategy, while others keep their strategies [220]. Non-

cooperative games perfectly model strategic interactions between defenders and attackers in 

malicious attacks. Indeed, each player maximizes his payoff functions, such as the expected 

damage and the energy loss, independently of the strategy of the other players [215, 221]. 

Particularly, the Stackelberg strategy as a leader-follower (sequential) game model is recently 

deployed for modeling security problems [222, 223]. Table 2-6 will present some applications 

of game theory. 

Hierarchical method: Clustering gathers similar or closely related components together. 

Dissimilar elements are put in new clusters [224]. The diagram of all clusters is called the 

hierarchical model of the system [225]. It represents the different levels of the internal related 

elements in a system. It helps in identifying the critical elements in different potential failure 

scenarios [224]. Figure 2-5 illustrates hierarchical clustering, where the similarity criterion is 

the distance between the nodes. Figure 2-5(a) is the tree of clusters for the network illustrated 

in Figure 2-5(b). This method reduces the computational cost by changing the level of detail 

of the analysis [226, 227]. 

Vulnerability analysis considers various hierarchical methods such as the graph representation 

[33], clustering [224], and logic-based hierarchies [228]. They support both a qualitative and 

quantitative analysis of CIs [33]. Schaeffer [229] synthesizes a systematic review of this 

approach. 
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Table 2-5. Literature on flow-based methods 

Y
ea

r 

Approach 

Assumptions and 

Failure Scenarios/ Proposed 

capability* 

Case Study Dimensions* R
eferen

ce 

W
 o

r U
 

P
 o

r E
 

T
y
p

e 

N
o
d

e 

L
in

e 

Number of 

nodes 
Number of links Name 

2010 Probabilistic, combined cumulants and 

Gram–Charlier Expansions 

W E R Y Y ~16000 ~17000 Western North 

American PG 

[211] 

2010 DC power flow method, error and attack 

tolerance methodology) 

B B R,PA Y Y 118 186 I118 [69] 

2010 Deterministic, max-flow theorem W E PA N Y 39 - I39 [230] 

2011 Maximum flow algorithm, network 

efficiency, and flow betweenness 

W E PA Y Y 5, 30[156] 7, 41[156] I5, I30 [231] 

2013 Deterministic, power flow models, ORNL–

PSerc–Alaska (OPA) model 

B B R Y Y 300, 300, 

300, 418, 400 

- I300, SCALE300, 

ER300, I418, and 

SCALE400 

[204] 

2013 Deterministic, max-flow theorem W E R,PA N Y 118 186 I118 [100] 

2013 Power flow modeling, eccentricity, 

radiality, betweenness, centroid, degree 

centralities 

B B R,PA Y Y 242 310 Swiss PG [30] 

2014 Deterministic, max-flow theorem W E PA N Y 14 20 I14 [232] 

2014 global efficiency (average efficiency), DC 

power flow method 

B B R,PA Y N 14, 118 20, 186 I14, I118 [233] 

2014 Deterministic, AC power flow, and 

hierarchical and topological methods 

B B NH Y Y 118 186 I118 [37] 
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2015 Deterministic, DC power flow W E NS Y Y 39, 68 46, 86 [234] I39, I68 [200] 

2015 Deterministic, flow models B B R Y Y 24 38 I24 [199] 

2013, 

2015 

Efficiency, connectivity of the network 

index, load shedding index, severity index, 

geodesic strength, and power flow 

modeling 

B B R,PA Y N 5, 14, 24, 30, 

57, 118, 300 

7[231], 20[175], -, 

41[156], 78[156], 179 

[170], 409[165] 

I5, I14, I24, I30, I57, 

I118, I300 

[235, 

236] 

2015 AC power flow, bilevel optimization W E PA Y Y 118, 2,383 186, 2,896 I118, Polish 2383-

bus 

[237] 

2015 DC power flow method W E PA N Y 57, 118, 247 78[156], 179 [170], - I57, I118, , I247 [238] 

2016 Max-flow theorem and electrical efficiency  W E R,PA N Y 9, 118 [170] 9, 179 [170] I9, I118 [194] 

2016 Deterministic, max-flow theorem W E PA Y N 90 128 500-kV China PG [207] 

2016 Deterministic, max-flow theorem W E PA N Y - - Danish PG [208] 

2016 Linear DC optimal power flow (OPF), 

static performance indices (SPI), and 

dynamic performance indices (DPI) 

W E NS Y N 43 - Brazilian Birds test 

system 

[239] 

2016 Deterministic, power flow  W E NH, 

R,PA 

Y Y 24[240] 38[240] I24 [240] [26] 

2016 Maximum flow network algorithm W P NH N Y 20,000 - USA [241] 

2017 AC-based power flow B B PA Y Y 30, 57, 118 41[156], 78[156], 179 

[170] 

I30, I57, I118 [242] 

2017 Power flow entropy, flow betweenness  W E PA N Y 39 - I39 integrated with a 

75-MW wind farm 

[243] 

2017 AC power flow, net-ability, and node 

electrical centrality 

W E NS Y N 30, 57 41[156], 78[156] I30, I57 [244] 

* B: Both, P: Pure, E: Extended, W: Weighted, U: Unweighted, Y: Yes, N: NO, R: Random failure, PA: Pointwise attacks, RA: Regional attacks, NS: No scenario (all lines or/and all buses 

or/and N-1 security criterion), NH: Natural hazard (seismic, Hurricane etc.), IX: IEEE X-bus. 
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Table 2-6. Literature on logical methods 

Y
ea

r 

Approach 

Assumptions and 

Failure Scenarios/ Proposed 

capability* 

Case Study 

Dimensions* R
eferen

ce 

W
 o

r U
 

P
 o

r E
 

T
y
p

e 

N
o
d

e 

L
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e 

#
. o

f n
o
d

es 

#
 o

f lin
k

s 

N
a
m
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2007 Game theory W E R,PA Y Y - - Swedish 

PG 

[221] 

2009 Game theory, zero-sum 

game, and the mixed-

strategy equilibrium 

W E PA Y Y 24 38 I24 [215] 

2011 Fault chain theory W E R,PA,RA N Y 14 20 I14 [245] 

2013 Hierarchical modeling 

by recursive 

unsupervised spectral 

clustering 

W P R,PA N Y 127 171 380-KV 

Italian 

PG 

[129] 

2015 Hierarchy-based 

approach, node traffic, 

node betweenness, and 

node degree 

B B NH Y N 118 186 I118 [226] 

2015 Game theory, a discrete 

simultaneous game, 

and the mixed-strategy 

equilibrium 

W E PA N Y 73 117 IEEE 

RTS 96 

[246] 

2016 Hierarchical graph 

representation and 

clustering and Monte 

Carlo simulation 

W E R Y Y 114 112 I123 bus  [33] 

2016 Game theory, power 

flow and topological 

analysis 

B B PA N Y 30 42 I30 [216] 

* B: Both, P: Pure, E: Extended, W: Weighted, U: Unweighted, Y: Yes, N: NO, R: Random failure, PA: Pointwise 

attacks, RA: Regional attacks, NS: No scenario (all lines or/and all buses or/and N-1 security criterion), NH: Natural 

hazard (seismic, Hurricane etc.), IX: IEEE X-bus. 

 

Figure 2-5. Illustrative example of hierarchical clustering: (a) a hierarchical clustering dendrogram (a tree of 

clusters) and two different levels of abstraction (dotted lines) and (b) the network and its clustered nodes. 
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2-3-4 Functional methods 

Agent-based modeling: Agent-based modeling describes complex systems. It simulates the 

behavior of the actors, referred to as agents, to determine their impact on the whole system. 

Each individual acts according to predetermined rules modeled with a set of if-then 

relationships or decision trees. Probabilistic models can simulate probable heterogeneity of 

agents’ responses/reactions [247]. Agent-based modeling supports systematic analysis, both 

conceptually and computationally. It applies to contamination in a water distribution system 

[247], modeling a local multicarrier energy network [248], resilience analysis [249], dynamics 

calculations [250], and simulation of large-scale electric mobility [251]. 

Several programming environments implement and test agent-based models. For instance, 

JADE, a Java-based platform, models micro grid, electric vehicle management system, fault 

detection, protection, and self-healing [252]. The U.S. Pacific Northwest National Laboratory 

(PNNL) has recently developed VOLTTRON in Python [253, 254]. It considers various 

programming languages, unlike other models, and can support fault detection, renewable 

energy integration, smart monitoring and diagnostic systems [255]. Particularly, Sujil et al. 

[252] introduce different platforms for agent-based modeling.  

Dynamic modeling: Great disturbance generates a large magnitude of transient energy. For 

instance, the kinetic energy of generator rotors will be converted to potential energy in the 

power system. If the power system cannot absorb and control this energy, it will lose its stability 

[256]. Different time domain [196] and direct methods based on energy functions [257] 

examine the stability of a power system. The second method [258] performs well in power 

system dynamics and security analysis [259-263]. For further understanding, Table 2-7 

compares applications of functional methods. 

Multi-objective optimization: Multi-objective optimization (MOO) is a mathematical 

approach to find values of decision variables which correspond to the optimum of more than 

one objective function [264]. Cho et al. [265] presented the state-of-the-art modeling and 

techniques such as weighted sum, goal programming, ɛ-constraints and so on, to solve MOO 

problems and also, discussed advantages and disadvantages of each modeling and solution 

technique in detail. Different bi-level (e.g. attacker-defender) and tri-level (e.g. design-attack-

defend) frameworks are introduced for vulnerability analysis of different critical infrastructure 

using MOO [237, 266]. Recently, Faramondi et al. [267] employed MOO in vulnerability 

analysis of a power system as well as an airline network. They used pairwise connectivity 
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concept (a degree graph based concept). Also, the defined objectives are simultaneously 

minimizing the degree of connectivity and minimizing the cost of the attack from attacker 

perspective using MOO.  

Table 2-7. Literature on functional methods 

Y
ea

r 

Approach 

Assumptions and 

Failure Scenarios/ Proposed 

capability* 

Case Study Dimensions* R
eferen

ce 
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r U
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r E
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o
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#
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d
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#
 o

f lin
k
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N
a

m
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1994 Transient energy 

function (TEF) 

method 

W E NS Y N 50 - I50 [262] 

2005 Particle swarm 

optimization, energy 

margin 

W E R N Y 179 203 WSCC, U.S. [268] 

2007 Radial basis 

function, neural 

network 

W E R,PA Y Y 300 411 I300 [269] 

2007 Nonlinear 

optimization 

method, power flow  

W E PA N Y 30, 

118 

41, 

179 

I30, I118 [270] 

2008 Energy model W E R N Y 9 - 3-generator 

system 

[271] 

2009 Potential energy 

model 

W E NS N Y 30 41 I30 [272] 

2011 Multi-agent CNM W E R,PA Y Y 2,556 2,892 North China 

PG 

[273] 

2012 Energy function, 

degree index, and 

vulnerable 

sensitivity index 

W E NS N Y 30 41 I30 [274] 

2014 Transient energy 

function, CNM 

W E NS Y Y ~31 - Six-generator 

system 

[256] 

2016 Dynamic model of 

AC power grids 

W E R,PA N Y 120 

236 

118 

165 

320 

179 

Great Britain 

HV line, 

Scandinavia, 

I118 

[275] 

* B: Both, P: Pure, E: Extended, W: Weighted, U: Unweighted, Y: Yes, N: NO, R: Random failure, PA: Pointwise 

attacks, RA: Regional attacks, NS: No scenario (all lines or/and all buses or/and N-1 security criterion), NH: Natural 

hazard (seismic, Hurricane etc.), IX: IEEE X-bus. 

 

 



Review of major approaches to analyze vulnerability in power system 

38 

 

2-4 Discussion  

2-4-1 Overview 

This chapter reviews the most cited and recent papers on vulnerability analysis of power grids. 

We have summarized them in four tables according to several criteria, such as methodology, 

assumptions, test cases, failure scenarios, and the proposed modeling capability (node and/or 

line modeling). They allow readers to grasp the differences, but this section extends the 

comparison and discussion.  

Figure 2-6 presents the distribution of the reviewed papers in the last decade according to our 

categorization. Scholars first applied CNA and functional methods to power system 

vulnerability analysis. While the number of studies applying the functional approach has been 

remaining stable, CNA application grew and led the field. Flow-based methods, despite 

appearing later, seem to attract interest in the past five years. Finally, logical methods are 

marginally applied.  

Figure 2-7 provides the distribution of the chosen approaches and the used scenarios. As we 

already observed in the previous figure, most of the studies applied CN in multiple scenarios. 

 

Figure 2-6. Number of reviewed papers according to different categories, from before 2007 to 2017. 
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The statistics about the scenarios shows that few papers are devoted to natural hazards. This is 

surprising given the enormous extent of their impacts, indicating that more studies are required 

in this area. Finally, we also computed the share of studies that consider generic models (58%), 

real cases (29%), or both (13%). Generic models provide the opportunity to compare the results 

and replicate them, possibly explaining the increased interest in this type of models. 

2-4-2 Comparison of methods 

Table 2-8 maps a chosen method to its respective scenario, although it should be noted that 

other combinations may also work. Each method possesses its own limitations, implying that 

the perfect method does not exist. Table 2-9 helps the reader to understand the advantages and 

disadvantages of each method. We compare the scalability and the computational burden of 

the analytical methods according to the case study dimensions (number of simulated nodes and 

edges). The comparison demonstrates that complex network methods better model larger grids 

compared to other methods owing to the lesser computational burden. 

 

 

 

 

 

 

Figure 2-7. Distribution of reviewed papers based on (a) approach and (b) scenarios. 
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Table 2-8. Methods used for different power system hazards 

Power system 

hazard 

Nature Scenario 

basis 

Used methods in reviewed papers 

Random failure Accidental/random Random 

Complex network analysis [2, 31, 40, 53, 

70, 103, 104, 140, 151, 158-160, 162, 163, 

168-172, 175, 176, 178-181, 183, 190] 

Flow-based methods [26, 30, 69, 100, 194, 

199, 204, 211, 233, 235, 236] 

Logical methods [33, 129, 221, 245] 

Functional Methods [268, 269, 271, 273, 

275] 

Natural hazard Accidental 

Hazard 

maps and 

affected 

areas 

Complex network analysis [90, 182] 

Flow-based methods [26, 37, 241] 

Logical method [226] 

Intentional 

attacks 

Pointwise 

attack 
Intentional/strategic 

Critical 

component 

Complex network analysis [2, 31, 34, 53, 

70, 90, 97, 103, 104, 140, 151, 157-160, 

162, 163, 165, 168-172, 174, 176, 178, 180, 

181, 184-186, 190, 191] 

Flow-based methods [26, 30, 69, 100, 194, 

207, 208, 230-233, 235-238, 242, 243] 

Logical methods [129, 215, 216, 221, 245, 

246] 

Functional Methods [269, 270, 273, 275] 

Regional 

attack 
Intentional/strategic Critical area 

Complex network analysis [40, 192] 

Logical method [245] 
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Table 2-9. Some major advantages and disadvantages of different methods used in vulnerability analysis 

Methods Advantages/capability Disadvantages/limitations Ref. 

Analytical 

methods 

Topological 

methods 

Pure models 

 Very fast and simple for calculation of indicators 

 Scalable and can model small to very big power 

systems 

 Can be applied to real-time application because of 

high computing efficiency 

 Neglect the realistic and basic power flow and network 

constraints and operation 

 Excessive simplification can lead to inaccurate results. 

 Not reliable, cannot be used alone for decision-making 

[17, 35, 70, 

151, 204, 

216] 

Extended 

models 

 As above 

 Consider the realistic and basic power flow and 

network constraints and operation 

 Consider few constraints of the network 

[17, 35, 70, 

151, 204, 

216] 

Flow methods 

Deterministic 

approach 

 DC models are computationally efficient. 

 AC models consider the realistic and basic power 

flow and network constraints. 

 The maximum flow theorem is fast and simple for 

calculation of indicators. 

 DC models may fail to simulate the cascading failure. 

 DC models ignore some network parameters such as the 

reactive power balance equations, line losses. They also 
assume that all voltage magnitudes equal one per unit. 

 DC models misestimate the importance of components. 

 AC power flow equations cause significant 

computational burden and have convergence problem. 

[242] 

Probabilistic 

approach 
 Can simulate realistic model with uncertainty 

 Lower scalability in comparison with topological 

methods 
[204] 

Logical 

methods 

Hierarchical 

methods 

 A clustering algorithm can reduce the dimension of 

the network. 

 Can be applied to qualitative and quantitative 

analysis 

 Reduce the complexity of the network. 

 Cannot model interdependency between networks 

 Hardly applicable to large power systems 

 Not flexible; adding or removing the component may 

change all representations 

[33] 

Game theory-

based modeling 
 Simulate the actions of intelligent adversaries 

 Needs probabilities of different consequences (e.g., 

attack probability or failure) for various possible 
combinations of players’ actions 

[38] 

Functional 

methods 

Agent-based 

modeling 

 Can model interactions between network components 

 Flexibility to add or remove the components 

 Can consider different environments, as a sublayer of 

the model 

 Can model a large-scale complex network with a 

large number of dynamic and nonlinear interactions 

 Large number of required parameters for modeling real 

systems 

 High computational burden 

[254, 276] 

Dynamic and 

energy function 
 Can simulate a realistic model with its dynamic 

behavior  

 Hardly applicable to large power systems (time domain 

methods) 

 Large number of required parameters for modeling real 

system (time domain methods). 

[196] 

Multi-objective 

optimization 
 Achieve the best action in intentional attacks 

considering different objective functions 

 Computationally inefficient without feasible solution 

space 
[265] 
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2-4-3 Correlation analysis 

Spearman's rank correlation coefficient allows comparing the results of different 

methodologies. It tests the association between two sets of ranked data. The results are always 

between 1.0 (a perfect positive correlation) and 1.0 (a perfect negative correlation) [277]. A 

positive correlation means two variables increase or decrease together. In contrast, a negative 

correlation means the variables increase/decrease in opposite directions. Herein, the correlation 

coefficient compares the ranking of critical components using different methods.  

Figure 2-8 shows the matrix of Spearman's rank correlation coefficient for some available 

results from only CN approaches, which are the most applied in the field. We consider five 

works [154, 164, 175, 189, 278], already listed in Table 4, because they used the same IEEE 

14-bus generic case study. Three groups appear. First, global topological/reliability efficiency, 

topological/reliability closeness, and reliability degree are highly correlated at more than 

approximately 80%. They have a very low (even negative) correlation with power flow 

betweenness and the MBCC-HITS algorithm. Finally, reliability betweenness, topological 

degree, and random flow betweenness have a moderate level of positive correlation with the 

first group. These results show that not all CN approaches have a good correlation to each other, 

demonstrating a need for further comparing and even developing new methods and centralities 

in this field. 

 

Figure 2-8. Matrix of Spearman's rank correlation coefficient for some CN approaches using the same test 

case (IEEE14). 
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Recently, Li et al. and Rocchetta and Patelli [242, 279] presented a similar analysis to show the 

correlation, but between the power flow approach and CN methods. They demonstrated that a 

relatively high correlation (0.6–1) exists between AC- and DC-based power flow models. 

Rocchetta and Patelli [279] also concluded that there is a weak (-1 to 0.3) and moderate (0.3–

0.6) correlation between the power flow method and selected CN metrics. Li et al. [242] present 

the same results between the power flow method and the selected CN metrics but the selected 

CN metrics are moderately and highly correlated. Particularly, Cortes et al. [226] show that 

hierarchical method as a logical method shows a higher correlation with power flow results in 

comparison with CN methods. 

However, some studies (e.g. [235, 242]) present a high correlation between CN and other 

methods but according to Figure 2-8 and some articles (e.g. [15, 279]), it is not possible to rely 

on CN completely. That is why the extended and pure CN methods are currently improving and 

new centralities are being proposed to consider the realistic properties of networks and 

operating limits. This improvement in CN centralities may increase its disadvantages (e.g. 

accuracy) as well as maintain its advantages (e.g. being easy and fast) at the same time.  

2-4-4 Emerging topics and future research work 

Based on the literature review and the comparisons, we can point out four emerging topics that 

require further research efforts.  

N-k problem (N-k contingency analysis): Most power transmission networks fulfill the so-

called “N-1 security criterion”. If any single component fails, the loads can be restored without 

load shedding [5, 272]. However, blackouts often result from cascading failures rather than a 

single-component failure. Unpredictable combinations of circumstances or inadequate controls 

can disconnect further lines or nodes [280], jeopardizing the common N-1 (or even N-2) 

security criteria [28]. Topical research analyzes the N-k (k ≥ 2) contingency and its impacts on 

the robustness of the power system [166]. 

Models cannot consider all combinations of failures. Real systems consist of thousands to tens 

of thousands of components (N). A single failure requires the verification of only N cases. 

However, an N-k analysis must consider (N
𝑘

) cases [281]. For an illustrative example, using an 

Opteron processor with 2.2-GHz clock speed, and 3-GB memory per processor, N-2 and N-3 

contingency analysis of the IEEE-118 system with 118 nodes will take around 1 day and 65 

days, respectively [270]. Fortunately, Li et al. [242] and Rosato et al. [282] show that N-3 
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analyses suffice to measure the importance of a bus or a branch in a single or coupled networks, 

and modern algorithmic approaches are promising to investigate the optimal N-k level [242].  

Robustness and optimal decision: Many factors affect the development of CI. Economic, 

political, demographic, social, and technological drivers can cause delay or stop deployment 

[161]. Operators should consider a holistic perspective, which integrates robustness, resilience, 

and reliability [283, 284]. It also means computing trade-off between cost and benefits [285]. 

For instance, small and low-cost changes in power grids can substantially increase robustness 

[286]. Changing 5.5% and 2% of links could increase the EU power grid’s robustness by 45% 

and 27% [286]. In contrast, installing new lines can decrease the grid’s robustness, as presented 

in the so-called Braess paradox [238]. 

Technology evolution and emerging threats: The power system is observing various 

fundamental transformations, which generate vulnerability. We introduce three major threats 

below.  

Prosumers: Most literature focuses on the high voltage level, at which large blackouts happen 

[6]. However, some studies [151, 287] show that large blackouts could increase with the shift 

towards distributed generation and prosumers (producers and consumers of energy). The main 

role of high-voltage grids will change in the future and hence distribution systems must be 

considered to be at risk and in need of vulnerability analysis.  

Prosumers come with the concept of smart grids. A smart grid uses communication technology 

to improve efficiency, load balancing, and network management [60, 149, 283, 288-291]. It 

also increases the potential for cyber-attacks and jeopardizes the security of the power system. 

These changes complicate the analysis and management of the grid [6]. 

The interdependency and combination of CIs: CIs are becoming increasingly interconnected 

[292]. An accident in a specific infrastructure, e.g. water and energy, can trigger a cascading 

failure in the other sectors. For instance, an event in a gas network can cause the shutdown of 

the gas-fired generators, and in turn in the energy sector. The interdependency significantly 

affects power security [288]. It requires a holistic analysis, including the nexus perspective.  

Climate change and renewable energy: Many countries are engaged in decarbonizing their 

energy mix, while some are phasing out nuclear energy. Renewable energies are deployed 

around the world. However, the intermittent forms of renewable energy bring network operators 

the challenge of balancing production with the real-time demand. This threatens the stability 
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and security of the power system. In particular, extreme weather, which could increase with 

climate change, can disturb the energy system [288, 293].  

Most energy policies aim to increase energy efficiency, thus decreasing energy consumption. 

However, limiting carbon emissions can actually increase electricity demand. Heat and 

transport sectors tend to move from fossil fuels to electricity [294]. Therefore, electricity supply 

and transmission capacity must follow the growing demand to limit threats to the security of 

power systems. 

Hybrid approaches: The growing complexity of some networks jeopardizes the reductionist 

methods [295]. A holistic approach requires a hybrid one because each method possesses its 

own limitations. This means the perfect method does not exist, Table 2-9 shows. An emerging 

idea is to integrate different methods to obtain better, faster, and more accurate results at the 

same time. For instance, complex network methods require low computing burden while the 

power flow method is more accurate but slow. To take advantage of their respective strengths, 

they can be integrated using “importance and criticality” definitions, as discussed below.  

Importance and criticality are two key concepts that should not be confused [296]. The 

important component in a system possesses a high portion of responsibility (e.g. provides or 

carries more power in power grids), while the critical components drastically affect the 

performance of that system if they are disconnected [297]. Figure 2-9 presents the differences 

between these two concepts with a simplified three-line network. Line 2 is always important 

because it transports a large volume of electricity. However, in Figure 2-9(a), line 2 is not 

critical. If it is disconnected, the system keeps delivering the full load through lines 1 and 3. In 

Figure 2-9(b), line 2 is both important and critical because the full load (here 700) can no longer 

be supplied without it. 

Indeed, some centralities such as “degree” and “betweenness” show very well the importance 

of components but not their criticality. Briefly speaking, for a large network with thousand 

components, applying a more accurate approach like the AC power flow is impossible. We can 

apply complex networks to rank the importance of components, and then apply a more accurate 

approach like the AC power flow to the top important components (e.g. 30% of the top 

important components in the list) to exactly find the most critical ones, not to all components. 

In this manner, we can integrate both the approaches. 
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2-5 Conclusion  

Literature on vulnerability analyses of CI incessantly grows. Scientists innovate in this field, 

and this review provides a snapshot of the current state-of-play. New approaches will emerge 

in the coming years. Unavoidably, this review should be continued in the future. Nevertheless, 

we trust it will remain relevant for a while for two main reasons.  

First, this chapter filled a gap in other published reviews. It provided a broad overview of the 

methods, rather than focusing on a specific one. We devoted substantial effort in summarizing, 

categorizing, and identifying the strengths of each analytical method. The chapter therefore 

guides the reader through this field of research, as illustrated in Figure 2-3. We also focused on 

three classes of events, namely natural hazards, intentional attacks, and random failures (Figure 

2-1) that will help scholars determine the relevant application of the various methods available, 

including emerging methods. Finally, we provided and compared various relevant definitions 

of vulnerability. They cover a broad set of interpretations, which are unlikely to evolve 

significantly.  

Second, scientists are currently innovating with hybrid approaches. Ongoing research focuses 

on integrating the above-presented methods, rather than developing new ones. With AI and 

 

Figure 2-9. Important vs. critical components: (a) line 2 (black line) is an important component but not a 

critical one (b) line 2 (black line) is an important as well as a critical component (x/y on the line: x is the 

operating power and y is the installed capacity).
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deep learning, new boxes could emerge in Figure 2-3. However, knowing and comparing the 

established methods can support scholars in choosing the more relevant integrative approaches.  

This chapter summarized about 100 papers in the tables and reviewed totally about 300 articles. 

Rather than providing a take-home message, we recommend keeping in mind Table 2-9. It 

summarizes the advantages and disadvantages of the standard methods in vulnerability analysis. 

It highlights that no modeling approach can investigate all aspects of this field. In fact, the 

appropriate model depends on the type of event and the specific case study. Thus, this chapter 

contributes to guiding the reader in this fascinating and topical field.  
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Part Two          

            

              

Single-level vulnerability analysis 
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Chapter 3          

            

              

MCDM approach for the integrated 

assessment of vulnerability and reliability of 

power systems 

 

 

 

3-1 Introduction 

In the last years, increasing efforts have been developed on the analysis and prevention of 

possible disruptions of electricity supply. Two complementary approaches can be taken into 

account to manage these risks in power systems, considering high probability but low-impact 

events and low probability but high impact events [182, 193, 298]. The first kind of events is 

related to N-1 contingencies and it comes under the scope of the reliability. Reliability can be 

defined as the ability of the electric power system to meet the demand with continuity and an 

acceptable level of quality. Several approaches are possible to assess the reliability of the power 

systems, from analytical to Monte Carlo probabilistic models. Monte Carlo is a more flexible 

methodology in comparison with analytical approaches but it takes more computation time, 

especially when complex operating conditions and system states are considered [299]. 

The second kind of events is related to N-k contingencies and it refers to cascading failures in 

power systems. Vulnerability can be defined as the level of degradation of a system when 

deliberate attacks or random failures make the network elements successively out of operation. 
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A single outage of a transmission line of the power grid can lead to an overload of other lines, 

making more likely the failure of other electric assets and finally resulting in a catastrophic 

failure of the whole system. Some of the biggest blackouts have occurred in recent years, 

causing serious economic damage and driving the need for vulnerability assessment of the 

electric power critical infrastructures [6]. In the scientific literature, some works analyze the 

vulnerability of electrical infrastructures by using different techniques. For instance, some 

authors justified that the statistical measures of graph theory are adequate to carry out 

assessments of structural vulnerability on power systems [182]. 

Other researchers are using alternative measures, such as [300] that incorporated several 

topological and power-flow-based indices into a general framework able to evaluate system 

vulnerability and, consequently, provide information about the susceptible areas of the energy 

infrastructure. The concepts of reliability and vulnerability are both related to the continuity of 

operations of critical infrastructures, and their study is required to prevent potentially 

destructive events [301]. However, researchers have not considered integrating both risk 

analysis perspectives into a unique decision framework. Few papers can be found in literature 

about joint consideration of reliability and vulnerability [95, 302]. Reliability analysis has been 

the main approach for risk management in electrical critical infrastructures and vulnerability 

analysis has received attention only in the last years, but both concepts should be taken 

simultaneously into account to improve the planning of the expansion of power systems. 

Previous research applied to power systems concluded that vulnerability analysis should be 

used as a complement to reliability analysis but it did not address how to use the results from 

vulnerability and reliability analyses for making decisions on critical infrastructures [95]. In 

contrast, our research provides a robust calculation of reliability and vulnerability indices and, 

at the same time, a combination of both approaches to improve the decision-making process on 

the best network topology under an integrated risk assessment framework using multi-criteria 

decision making (MCDM). We propose a method to compare the performance of different 

networks under reliability and vulnerability criteria. 

The rest of this chapter is organized as follows: first, Section 3-2 introduces the methodology 

and the algorithms proposed to calculate vulnerability and reliability. A case study is presented 

in Section 3-3. Then, simulation results of the vulnerability and reliability analyses are shown 

and explained in Section 3-4. Finally, in Section 3-5, the comparison and discussion of results 

are done, and an MCDM method is applied to jointly analyze both concepts. The chapter 

summary and conclusions will be provided in Section 3-6. 
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3-2 Methodologies 

3-2-1 Structural vulnerability assessment 

Vulnerability is an internal characteristic of critical infrastructures that measures the inability 

of the system to withstand the effects of failures [276]. Frequently, it is quantified based on the 

largest connected component, both before and after cascade events [303]. 

To determine the impact of cascading failure events, power grid performance is measured 

according to the electrical loads that remain connected after several interdiction events. Some 

measures have been applied to previous research works to estimate load shedding as a 

percentage of the total system demand [304-306]. In this chapter, we propose the unsatisfied 

demand (UD) index to measure the power system performance when it is subject to cascading 

failures caused by disconnection of overloaded power lines.The UD metric allows determining 

the impact of cascading failures by quantifying the demand that can be satisfied in the electrical 

infrastructure after multiple line removals. The UD index is calculated as follows: 

1
i

i

base

Demand

UD
Demand

 


  (3-1) 

Where 
iDemand  is demand met on island i, 

baseDemand is the total demand for base case. 

The UD index varies between 0 and 1. Thus, as the UD index increases, the impact on satisfied 

demand in the power system also increases. The flowchart of the algorithm presented in Figure 

3-1 allows determining the structural vulnerability of the power grids. The calculation is 

performed using (3-1) where the UD index is calculated during each disintegration stage of 

network. Initially, the algorithm calculates DC power flows and determines power line overload 

limits using a user-defined parameter  as 

jthreshold j baseOverload Flow    (3-2) 

Where 
j  is the tolerance parameter of line j, and 

jbaseFlow is the base power flow of line j. 

Cascading failures are initiated by removing the most heavily loaded line. The algorithm then 

calculates the new power flows and verifies that the power lines do not exceed the overload 

threshold determined in Equation (3-2). If the latter is not achieved, the overloaded electrical 

lines are removed, and then the formation of islands or isolated elements caused by the previous 
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event is determined. We used deep first search algorithm to solve the problem mentioned above 

[307]. 

 

Figure 3-1. Flowchart to calculate the structural vulnerability of power systems 
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Due to the formation of multiple islands, the developed algorithm incorporates an energy 

balance routine to determine the maximum demand that can be satisfied in each subnet. In other 

words, islands with a generation higher than their demand will be able to satisfy the connected 

load, while islands with a generation lower than their demand will only be able to satisfy the 

load equivalent to the generation. Islands without generation or isolated buses are considered 

as unsatisfied load in the algorithm. 

Cascading events also continue on these islands. In this way, DC power flows are run in each 

subsystem and, in parallel, the UD index is calculated. The algorithm ends once all power lines 

have been removed or there are no more overloads in the system. DC load-flow models provide 

a suitable capability for this kind of power system security analysis. In this regard, voltage 

magnitudes might not be a major concern and DC power flow studies provide sufficient 

accuracy [308]. The algorithm has been programmed in the MATLAB programming 

environment. 

3-2-2 Reliability assessment 

In Monte Carlo simulation, two main techniques are usually employed: time-sequential and 

non-sequential. In non-sequential techniques (system state sampling) each time step or system 

state are considered independently while sequential techniques can be used realistically to 

simulate the actual chronological process and random behavior of system [108, 309]. Time-

sequential Monte Carlo technique is used here for the reliability assessment because it is more 

flexible, accurate and provides calculation of different indices such as expected frequency of 

load curtailments (EFLC) but it needs more computation time [108, 299, 309, 310]. For an in-

depth description, some useful references can be found in the literature [298, 311, 312]. 

Implemented time-sequential Monte Carlo technique for reliability assessment of a power 

system is presented in the flowchart of Figure 3-2 using the following steps [108, 299, 309] : 

Step 1: Specify the initial state and number of components that can fail. It is assumed that all 

components are in a normal state and have only two states (normal and failure). 

Step 2: Calculate the residing time (the time the component spends in each state). In this case, 

uniform random numbers (r) are used, and time to failure (TTF) and time to repair (TTR) are 

sequentially calculated employing failure rates ( ) and mean time to repair (MTTR) of 

components, using (3-3) and (3-4): 
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ln( )
8760

r
TTF


             (3-3) 

 

Figure 3-2. Flowchart of reliability analysis of power systems. 
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ln( )TTR r MTTR     (3-4) 

This step should be repeated for each component for a specific time span, normally one year. 

Step 3: After providing the artificial history of the system in above steps, overlapping times of 

elements failures are needed. The time steps considered are hours of one year (8760 steps). 

Step 4: Power flow calculation of new topology by considering the element failures. Optimal 

DC power flow (OPF) is employed to specify the effects of failed elements removal on supplied 

energy and normal operation of system. MATLAB is used for OPF calculations [313]. 

Step 5: Calculate the reliability indices using the results provided from previous step and 

following reliability indices [95, 108, 299, 309]: 

 Expected energy not supplied (EENS) (MWh/year): 

,

1 1

( )
y i

N N

j i

i j

y

E

EENS
N

 


 
  (3-5) 

where, 
,j iE  is power system energy not supplied of jth power interruption, in year i, 

yN is total 

number of simulated years and 
iN  is total number of interruption in year i. 

 Expected demand not supplied (EDNS) (MW): 

8760

EENS
EDNS    (3-6) 

 EFLC or loss of load frequency (LOLF) (outages/year): 

1

yN

i

i

y

N

EFLC
N




  (3-7) 

 Expected duration of load curtailment (EDLC) or loss of load expectancy (LOLE) 

(hours/year): 

,

1 1

( )
y i

N N

j i

i j

y

D

EDLC
N

 


 
  (3-8) 

Where 
,j iD  is duration of jth power interruption, in year i. 
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 Probability of load curtailment (PLC) or loss of load probability (LOLP) (%): 

8760

EDLC
PLC    (3-9) 

 Average duration of load curtailments (ADLC) or loss of load duration (LOLD) 

(hour/disturbance): 

EDLC
ADLC

EFLC
   (3-10) 

Step 6: Steps 2–5 are repeated and the indices are accumulated until the coefficient of variation 

EENS is less than tolerance error. According to previous works, a relative tolerance error of 6% 

is established [299]. 

3-3 Case studies 

In this chapter, the IEEE Reliability Test System (RTS-96) [314] is used as a test system. This 

network is a good test case for bulk power system reliability evaluation studies because of 

available required data (see Figure 3-4). IEEE RTS-96 bus system has three areas that are 

mirrored copies of Figure 3-4. These areas are interconnected with different components 

(Figure 3-3). For example, Area 1 is connected with three lines to Area 2, Area 2 with 1 line to 

Area 3 and Area 3 is connected with an extra bus, a transformer and a line to Area 1 [314]. In 

this chapter, five different combinations of the three areas are used for reliability evaluation in 

five case studies. In each area, 94 components can fail i.e. 24 buses, 32 generators and 38 

branches and transformers. In addition to data which are available in [314], failure rate and 

MTTR of buses are considered 0.001(/year) and 24 h, respectively [95]. It is assumed that the 

annualized peak power demand for each area is 2850 MW [314]. 

3-4 Simulation results 

3-4-1 Results of vulnerability analysis 

Figure 3-5 reports the degradation of the networks under study caused by the outage of 

transmission line 14–16. This power line is the most loaded in all systems. We obtain the plotted 

results after applying the algorithm shown in Figure 3-1 by considering a parameter α = 1 in all 

cases. 
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The curves represent the UD calculated during each disintegration step of the network. Initially, 

the UD index has a value equal to 0 when all the loads in the power grid are satisfied. Then, the 

UD index progressively increases until a value equal to 1 when the whole system is 

disintegrated due to the removal of the overloaded lines. At this point, the system cannot meet 

the demand of the power grid. 

 

Figure 3-4. Diagram of IEEE 24-bus reliability test system. 

 

Figure 3-3. Diagram of IEEE 24-bus reliability test system. 
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Figure 3-5 shows that Area 1&3, Area 2&3 and Area 1&2&3 reach their maximum point of 

disintegration in iteration six, while Area 1&2 in iteration five and Area 1 in iteration four. The 

above indicates that the propagation of cascading effects grows as the network increases in size. 

Therefore, it can be observed that Area 1&2&3 is the most vulnerable network since 70% of 

the demand is not satisfied, while Area 1&2 proves to be the most robust network since ∼50% 

of the load on the power network remains satisfied. In short, the most vulnerable systems can 

be determined graphically from least to most vulnerable as follows: Area 1&2, Area 1, Area 

1&3, Area 2&3 and Area 1&2&3. In this manner, we have a measure of the behavior of the 

networks under study, which allows us to classify them according to their degree of 

vulnerability. 

3-4-2 Results of reliability analysis 

The time-sequential Monte Carlo simulation approach has been applied to the same five 

different topologies from IEEE RTS-96. Figure 3-6 shows the deviations of EENS and 

coefficient of variation (COV) for a 1500-years simulation. The simulation process can be 

stopped when the COV for EENS or EDNS is less than 6%, following recommendations from 

[299]. Convergence for EENS or EDNS is slower than others [95]. It is also clear from 

comparing the COV of different reliability indices in Table 3-1. As it can be concluded from 

 

Figure 3-5. Vulnerability curves. 
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Figure 3-6, it is not necessary to run a 1500-year simulation to reach a COV below 6%. Thus, 

results plotted in Figure 3-7 are obtained from calculations done for a 500-year simulation. 

 

Table 3-1. Annualized system indices for the IEEE-RTS (Area1) 

Reliability index Ref. [95] Ref. [315] This work COV (%) 

EENS 127,546 134,590.60 130,513.96 5.54 

EDNS 14.56 15.36* 

(134,590.6/8760) 

14.90 5.54 

EFLC 18.8 18.57 19.12 3.83 

EDLC 732 740.22* 

 (0.0845 ×8760) 

744.69 3.43 

PLC 8.3 8.45 8.50 3.43 

ADLC 38.8 39.86* 

 (740.22/18.57) 

38.95 3.23 

* These are calculated using available data in [315]. 

 

Figure 3-7 shows that connecting similar networks that can meet their demands by self-

generation increases the reliability index (relative EENS). Moreover, how the three coupled 

 

Figure 3-6. EENS and coefficient of variation for area 1 and 1500-year time span. 
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networks are connected is also important. Here, Area 1&2 is more reliable because there are 

three interconnecting lines between the networks 1 and 2, providing redundancy to the system. 

Area 1&3 that has three interconnecting components has similar behavior. However, Area 2&3, 

with only one interconnecting component, is less reliable. The reason can be the small failure 

rates of the bus (0.001/ year) and the transformer (0.02/ year). Therefore, these components can 

be ignored in one-year simulation span. So, we can assume that Areas 1&3 and 2&3 have 

interconnecting lines with failure rates of 0.52 and 0.53/year, respectively. 

3-5 Discussion 

3-5-1 Reliability and vulnerability concepts 

Reliability and vulnerability assessment study the ability of a system to perform its desired 

functions under given conditions for a period of time and the weakness level of a system to 

failures, disasters or attacks, respectively [95, 316]. Reliability assessment is dependent on 

probability of component failure but vulnerability assessment does not consider probability. 

Other difference relies on the different number of simultaneous failures that both techniques 

take into account. 

Figure 3-6 and Figure 3-7 show that vulnerability assessment considers 0 to 100% of 

components removal. On the other hand, in order to show the number of simultaneous failures 

in reliability assessment, 1500-year time span (1500×8760 h) for all topologies is simulated. 

 

Figure 3-7. Comparison of reliability index (relative EENS) for different topologies. 
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The results are presented in Figure 3-8. It shows that the percentage of simultaneous failures 

decreases when the dimension of the network increases. In addition, it shows that reliability 

analysis only considers maximum 10.6% of component outages. Vulnerability assessment can 

complement the reliability analysis considering the rest of N-k failures.  

3-5-2 Reliability and vulnerability comparison 

This section is intended to the joint comparison and discussion of the results of reliability and 

vulnerability assessment, integrating both risk analysis perspectives. With respect to the 

structural vulnerability analysis, observing Figure 3-5 it is possible to conclude that Area 

1&2&3 is the least robust case since the UD is higher than in the remaining cases under study. 

In other words, large systems are highly vulnerable, when compared to those systems with small 

size but more compact. With respect to the reliability analysis, it is possible observing Figure 

3-6 and Figure 3-7 how the largest system (Area 1&2&3) is the less sensitive to power outages 

as a consequence of any element malfunctioning, i.e. the most reliable. In fact, the ranking of 

relative EENS from Table 3-2 (Area 1&2&3, Area 1&2, Area 1&3, Area 2&3, and Area 1) 

seems to be quite different to that obtained from the vulnerability results shown in Figure 3-5 

plotted from lowest to highest vulnerability (Area 1&2, Area 1, Area 1&3, Area 2&3, Area 

1&2&3). This reasoning suggests that a vulnerable power system may not be unreliable, or 

inversely, an unreliable energy power system is not necessarily vulnerable. The interconnection 

 

Figure 3-8. Distribution of number (hours) of simultaneous failures in different topologies for a 1500-

year time span (maximum number of possible simultaneous failure and maximum percentage of 

simultaneous component failures are presented in parenthesis). 
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of energy sub-systems 1, 2 and 3 results in a global system with higher reliability, i.e. the lowest 

value of relative EENS for Area 1&2&3 in Figure 3-9. However, the amount and type of 

interconnection links between the sub-systems are crucial from the vulnerability perspective. 

The values of vulnerability in Figure 3-9 have been obtained through the parameter area under 

curve (AUC) for each curve in Figure 3-5. The values of reliability have been taken from the 

results of relative EENS shown in Table 3-2. The pairwise comparison in Figure 3-9 lets us 

confirm the previous conclusions: the system named as Area 1 is the least reliable, but more 

robust, because of its compact size, and the system of Area 1&2&3 is the most reliable, but less 

robust, since reliability improves with interconnections, but vulnerability becomes worse due 

to faster propagation of cascading failures. 

Table 3-2. Annualized system indices and data for the IEEE-RTS 

Reliability index Area 1 Area 1&2 Area 1&3 Area 2&3 Area 1&2&3 

Total demand, MW 2850 5700 5700 5700 8550 

Number of components 94 191 191 189 289 

EENS, MWh/year 130,513 118,913 145,876 147,422 56,990 

Relative EENS 

 (EENS/total demand/8760 h) 
0.0052 0.0024 0.0029 0.0030 0.0008 

EDNS, MW 14.90 13.57 16.65 16.83 6.50 

EFLC, outages/year 19.12 26.33 26.86 26.69 18.08 

EDLC, hours/year 744.69 901.17 1017.94 1029.78 439 

PLC, % 8.50 10.29 11.62 11.76 5.01 

ADLC, hour/disturbance 38.95 34.22 37.90 38.58 24.30 

 

Figure 3-9. Comparison of relative EENS (reliability index) and vulnerability index for different systems. 
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3-5-3 Reliability and vulnerability integration 

In this section, the goal is to show how the decision-makers' priorities on reliability and 

vulnerability could be taken into account to select the best topology. MCDM methods are 

usually applied to provide a ranking of alternatives using different measures and criteria. The 

Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) is one of the 

MCDM methods to find the best alternative that is the closest to the positive ideal solution and 

farthest to the negative ideal solution [317, 318]. In our case, we consider five different 

topologies of IEEE RTS as the alternatives and vulnerability and reliability indices as the 

measures. 

Thanks to TOPSIS approach, the ranking of five IEEE RTS topologies based on the decision-

makers' priorities are shown in Figure 3-10 scoring each topology. Reliability (R) and 

vulnerability (V) weights are considered for decision making. For example, from decision-

makers' perspective ‘R(10%), V(90%)’ means the weights of reliability and vulnerability are 

10 and 90%, respectively, and the final scores of topologies are from 1 (the best) to 5 (the 

worst).  

Figure 3-10 shows that IEEE RTS Area 1&2 would be mostly the best topology. However when 

considering vulnerability weights between 0 and 20% (reliability between 80 and 100%) IEEE 

 

Figure 3-10. Ranking of five IEEE RTS topologies based on the decision makers’ priorities on reliability (R) 

and vulnerability (V). 
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Area 1&2&3 becomes a better topology. These two solutions dominate the other three networks 

IEEE Areas 1, Areas 1&3, and 2&3 as it can be also checked in Figure 3-9. 

3-6 Conclusion 

In this chapter, a novel methodology has been developed for the joint consideration of 

vulnerability and reliability of power systems. Indices to measure system vulnerability as well 

as power and energy related definitions frequently used on reliability studies (EENS, EFLC, 

EDLC, among others) have been integrated into a wide discussion, aiming to quantitatively 

determine the pros and cons of the current energy transmission system designs. Five different 

topologies based on the IEEE RTS-96 test case have been studied from the vulnerability and 

reliability perspectives. According to the information available and calculation carried out, the 

behavior of the system from the vulnerability viewpoint could be different to that observed from 

the reliability perspective. For example, the largest system, Area 1&2&3, shows the highest 

reliability (relative EENS value, 0.0008) but the worst vulnerability (value of AUC of UD, 

2.2275). On the contrary, the smallest system, Area 1, has low reliability (0.0050) but good 

vulnerability measure (1.8446). Thanks to the use of a multi-criteria approach, TOPSIS, 

rankings of the five IEEE RTS-96 topologies have been obtained, considering different 

reliability (R) and vulnerability (V) weights based on the decision-makers' priorities. The 

analysis also depends on how each topology is planned and interconnected. Reliability 

improves with interconnections between the systems, making a power system more reliable as 

more interconnected is but making it simultaneously more vulnerable as it is more exposed to 

propagation of cascading failures. Then, a compromise solution can be found for each power 

system, weighting reliability and vulnerability into an integrated decision framework. 
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Chapter 4          

            

                

Power flow-based approaches to assess 

vulnerability, reliability, and contingency of 

the power systems 

 

 

 

4-1 Introduction 

Energy systems are critical, and their reliability and robustness are fundamental requirements 

for the well-being of modern society. Any failure can affect a large population and generate 

high costs. For instance, three independent events in Iran, North America, and Italy hit a total 

of 128 million people in 2003. More recently, 670 million Indian people and 70 million Turkish 

people were temporarily deprived of power in 2012 and 2015, respectively [3-6]. In the USA, 

the annual cost of weather-related blackouts ranges from $20 to $55 billion [319]. Thus, 

improving the robustness and reliability of power grids against different hazards and threats has 

become essential in the implementation of the energy strategies, such as in Europe [320], and 

the USA [321]. 

While reliability assesses the ability of the electric power system to meet the demand with 

continuity and an acceptable level of quality, vulnerability analysis identifies the level of 

degradation of a system when deliberate attacks or random failures make the network elements 

successively out of operation. Reliability analysis has been the main approach for risk 
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management in electrical infrastructure and vulnerability analysis has received attention only 

in the last years, but both concepts should be taken simultaneously into account to improve the 

planning of the expansion of power systems [22].  

Scientists have been developing innovative methods to assess the reliability and determine 

critical components whose failures lead to the largest system loss (i.e., vulnerability analysis) 

[322]. They can range from analytical approaches to Monte Carlo simulations. A detailed 

comparison of these approaches is recently conducted in [20] and [323] for vulnerability and 

reliability assessments in power systems, respectively. Generally, these kinds of capacity-based 

assessments need iterative power flow-based approaches to model the power system behavior. 

Solving accurate but non-linear alternating current (AC) power flow equations, needs a 

significant computational burden. Direct current (DC) approach limits this issue by linearizing 

the equations, which is necessary for large-scale simulations or when analyzing many failure 

scenarios.  

Some researchers investigated the effects of the assumptions in their respective fields. LaRocca 

et al. [199] and Cetinay et al. [324] show that in a normal state of a power system, the DC model 

(DCM) shows accurate results and efficiently approximates the AC model (ACM). However, 

DCM can lead to inaccurate and optimistic predictions for cascading failures. Qi et al. [325] 

compare three different DC-based approaches in contingency analysis without considering the 

effects of reactive power. Overbye et al. [326] determine the accuracy of DCM on locational 

marginal pricing (LMP) calculations. Qin et al. [327] and Benidris and Mitra [328] show the 

effects of voltage and reactive power assumptions on composite system reliability indices. Kile 

et al. [329] also present the differences in the models’ results for contingency and reliability 

analysis. Others compare the power flow-based approaches with topology-based methods [279, 

330]. They found that a DCM, although better correlated to ACM in comparison with topology-

based methods, still fails to report some critical components of the power system. 

All of the above-mentioned works only compare the different measures of power flow-based 

models and analysis of the sources of inaccuracy is missing. Hence, we aim to figure out the 

sources of inaccuracy in power flow-based models of different line capacity-based assessments 

including vulnerability, reliability and contingency assessments. First, time-sequential Monte 

Carlo simulations, an N-k′-1 contingency analysis, and a novel vulnerability index are used to 

evaluate numerically different line capacity-based assessments. We investigate both low-load 

and stressed networks using ACM and DCM. Then, the impacts of each parameter (i.e., power 

losses, reactive power flows, voltage variations and small-angle approximation) on the 
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inaccuracy of power flow-based models are considered. In this regard, we provide an in-depth 

analysis of the reliability indices using Monte Carlo simulation, and we duplicate the results 

using a fixed seed to investigate the sources of inaccuracy in both models. 

The rest of this chapter is organized as follows: First, the methodologies and assessment are 

introduced in Section 4-2. Then, the test cases and the results of different line capacity-based 

assessments are presented in Sections 4-3 and 4-4, respectively. The sources of inaccuracy in 

the results will be discussed in Section 4-5. The conclusions will be provided in Section 4-6. 

4-2 Methodologies 

4-2-1 AC and DC power flow models 

Power flow-based approaches study the steady-state model of the power system [331]. For a 

network with N buses and G generators, the AC power flow equations are [332]: 

| | ; ,i i G i i D ij

j N

Pg Pd P i j N 



       (4-1) 

| | ; ,i i G i i D ij

j N

Qg Qd Q i j N 



       (4-2) 

2 ( cos sin ); ,ij i ij i j ij ij ij ijP V G VV G B i j N        (4-3) 

2 ( sin cos ); ,ij i ij i j ij ij ij ijQ V B VV G B i j N         (4-4) 

min max ;i i iPg Pg Pg i G       (4-5) 

min max ;i i iQg Qg Qg i G       (4-6) 

     
22 2

max ; ,ij ij ijP Q S i j N       (4-7) 

min max ;i i iV V V i N       (4-8) 

min max ; ,ij ij ij i j N         (4-9) 

Where, 
iPg  and 

iQg  are generated active and reactive powers at bus i, respectively. 
iPd  and 

iQd  are active and reactive demands at bus i, respectively.
ijP , 

ijQ and 
max

ijS are active and 

reactive power flows and line capacity between buses i and j, respectively. 
iV  and 

ij are voltage 

magnitude at bus i and voltage angle difference between buses i and j, respectively. Finally, 



Power flow-based approaches to assess vulnerability, reliability, and contingency of the power systems 

70 

 

ij ij ijY G jB   is the admittance between buses i and j. Equations (4-1) and (4-2) are the nodal 

power balance equations for active and reactive powers, respectively. Equations (4-3) and (4-4) 

represent the line flows of active and reactive powers, respectively. Constraints (4-5)-(4-9) 

enforce the limits of active and reactive power generations, transmission line capacity, voltage 

magnitude, and voltage angle difference, respectively.  

These AC power flow equations are nonlinear. To solve them, iterative numerical solutions 

must be used, such as the Gauss-Seidel, the Newton-Raphson or the decoupled power-flow 

methods [332]. Unfortunately, these equations require a large computational burden, which 

may lead to a convergence problem and are sensitive to initial guess. Thus, the linearized model 

of ACM (i.e., DCM) is usually used, as it is faster and discards any convergence problems [53, 

200]. However, DCM makes various simplifications. It ignores reactive power, the variation of 

voltage magnitude, power losses, and line resistance [331]. It also approximates the small angle. 

In other words, it considers that the differences in the voltage angles between the neighboring 

buses i and j are insignificant. Therefore, DCM assumes that sin( )ij ij  and cos( ) 1ij  [324]. 

The main goal of this chapter is to investigate the impacts of such hypotheses on vulnerability, 

reliability and contingency analyses.  

4-2-2 Vulnerability assessment 

“Vulnerability analysis” ranks the critical components to the unforeseen events. It detects the 

components that highly impact the whole system if they fail. A vulnerability can be physical, 

systemic, social, organizational, economic, environmental, and territorial. However, this study 

focuses on systemic vulnerability [333]. It investigates how the whole system behaves when 

some components or interconnected systems fail. Redundancy, functionality, and dependency 

matter for this vulnerability analysis [20]. Figure 4-1 presents the flowchart of vulnerability 

assessment in which two scenarios are proposed: 

1) Increasing the load. 

In this scenario, the model incrementally increases the load by 5%. Both ACM and DCM are 

used simultaneously to calculate the system parameters such as voltage, line power flow and so 

on. The stopping criterion will be satisfied as soon as the first difference in the topology of the 

network is seen. This difference can be provoked by the inaccuracy of DCM in power flow 

modeling in comparison with ACM (e.g., reporting a safe line when it is actually overloaded 

and vice versa).  
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2) Calculating the number of overloading (NOL). 

Removing a transmission line in a power system shifts the power flow to other lines (where 

they usually operate near their limits) to compensate the load demand. This event could 

overload some lines and finally lead to their disconnection by triggering their protective relays. 

 

Figure 4-1. The flowchart of vulnerability analysis. 
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The main aim is to find the number of times the lines are overloaded (NOL) during the N-k 

contingency analysis using the following equation: 

1 1

kCN

kc

k c

NOL S
 

   (4-10) 

Where, 
kC  is the number of k-combinations from N components (i.e., k

N
C

k

 
  
 

). 
kcS is equal 

to 1 if there is any overloading, otherwise 0. Following Li et al. [242] and Rosato et al. [282], 

the results are accurate enough for the N-k contingency analysis if k is less than or equal to 3 

(i.e., up to N-3). In our test case, 9177 simulations are needed to perform the N-k (k 3 ) 

contingency analysis.  

Based on these two scenarios, we can quantify the vulnerability of the grid and identify 

divergence between ACM and DCM. For both scenarios, cascading failures due to the 

overloaded lines are considered [324, 334]. To simulate a cascading failure, the overloaded 

lines are removed and the disintegration of the grid is checked at every cascading stage. Figure 

4-2 shows a tree structure of a cascading failure process. Some islands may not be completely 

affected by flow redistribution. These islands have enough generation resources and can satisfy 

their demands such as green islands in Figure 4-2. Some islands may not have electricity 

generation or load after the disintegration of the grid. These “dead” islands are marked in red 

in Figure 4-2. The cascading failure process still iterates on all islands with overloaded lines 

(i.e., black islands in Figure 4-2). The stopping criterion is when there is not any overloaded 

line in all islands [334]. It should be noted that curtailing the generation and load shedding are 

the supply and demand balancing rules in the islands where the load and generation are not 

balanced. Furthermore, the amount of active and reactive power demands and active power 

supply are decreased (e.g., by 1%) until either convergence is reached or the island becomes a 

dead island for probable convergence problems in ACM. In contrast to ACM, no supply or 

demand shedding due to convergence problems is needed in DCM after the supply and demand 

balancing in the islands [324, 334]. 

4-2-3 An N-k′-1 scenario 

In contrast to the N-k contingency analysis, an N-k′-1 scenario studies the consecutive loss of 

k′+1 (or k) components in which k′ components are removed consecutively in the previous k′ 

steps and the next step, one critical component will be removed based on the predefined criteria. 
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For instance, the N-1-1 scenario studies the consecutive loss of two components while the N-2 

contingency analysis studies the simultaneous loss of two components in a power system [335]. 

In this work, the N-k′-1 concept is used and the aim is to compare ACM and DCM for this type 

of analysis.  

To remove the most critical and important line in each step, the following criteria are considered 

on all active islands, i.e. the islands with both load and generation:  

1st) the line that maximizes the load shedding if removed, 

2nd) the line that minimizes the total line capacity if removed, 

3rd) the line with a minimum capacity margin. 

The main criterion is the first one, i.e. the line that maximizes the system damage (e.g., the load 

shedding). On the other hand, criterion 2 is considered only if criterion 1 does not find a solution 

and so on. Then, the model defines a new topology and considers the probable load-generation 

balancing, cascading failures, and other disruptions like the introduced procedure in Figure 4-1. 

The end is when all lines are removed, and all generation nodes are isolated.  

 

 

Figure 4-2. A tree structure of a cascading failure process. 
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4-2-4 Reliability assessment 

Power system reliability consists of providing specific services under defined conditions and 

period [95]. Several approaches are possible to assess the reliability of the power systems, from 

analytical to Monte Carlo probabilistic models. Monte Carlo is a more flexible methodology in 

comparison with analytical approaches but increases the computation burden, especially when 

complex operating conditions and system states are considered. In Monte Carlo simulations, 

two main techniques are usually employed: time-sequential and non-sequential. In non-

sequential techniques (system state sampling) each time step or system state is considered 

independently while sequential techniques can be used realistically to simulate the actual 

chronological process and random behavior of system [336]. This accurate flexible approach 

requires a large computation capacity compared to non-sequential techniques [336]. For this 

study, accuracy and flexibility are fundamental, thus leading to employ the sequential approach 

[337]. It consists of the following steps [338] as illustrated in Figure 4-3.  

 

Figure 4-3. The flowchart of reliability analysis. 
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Step 1: Specify the initial state and number of components that can fail. It is assumed that all 

components are in a normal state and have only two states (normal and failure). 

Step 2: For a specific component k, the time to failure (
kTTF ) is determined accordingly to 

equation (4-12) [338]: 

ln( )k
k

k

r
TTF


    (4-12) 

Where, 
kr  denotes a random number uniformly distributed in (0 1), and 

k  is the annual failure 

rate [#/year]. Then, the time to repair (TTRk) is computed accordingly to equation (4-13) [338]: 

ln( )k k kTTR r MTTR     (4-13) 

Where, MTTR  denotes the mean TTR [hours]. 

Step 3: When the states of all components are known for a specific year, the model computes 

the overlapping times of elements failures, i.e., when various components are simultaneously 

out of service.  

Step 4: Power flow calculation of new topology by considering the element failures. Optimal 

DC/AC power flow (OPF) is employed to specify the effects of failed element removal on 

energy supply and normal operation of the system. The open-source MATLAB based 

simulation package, MATPOWER [313], is used for OPF calculations. 

Step 5: Calculate the reliability indices using the results provided from the previous step. The 

reliability indices are described in Section 3-2-2. 

Step 6: This whole cycle is repeated until the coefficient of variation (COV) for expected energy 

not supplied (EENS) index meets the tolerance error, here 6%. Different reliability indices have 

different convergence speeds. The EENS index with the lowest rate of convergence is used to 

ensure that others are well converged [336]. 

4-3 Test systems and assumptions 

In this chapter, the IEEE reliability test system (RTS-96) [240] is used as a test system (see 

Figure 4-4). Data availability makes it an ideal test case for bulk power system reliability 

evaluation. It consists of three interconnected mirrored sub-areas. It has three areas that are 
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mirrored copies of Figure 4-4 (area 1). These areas are interconnected with different 

components. For example, area 1 is connected with three lines to area 2 (Figure 4-4) and so on 

[240]. In this chapter, two different combinations of three areas are used for reliability 

evaluation i.e., area 1 and area 1&2. In each area, 94 components can fail i.e., 24 buses, 32 

generators and 38 branches and transformers. In addition to data that are available in [240], 

failure rate and MTTR of buses are considered 0.001(#/year) and 24 hours, respectively [95]. 

It is assumed that the annualized peak power demand for each area is 2850 MW [240].  

Second, we consider the IEEE modified reliability test system (MRTS) [328]. It only multiplies 

the peak generation and loads of the first case by 2 and 1.8, respectively. The goal of introducing 

MRTS is to better consider the effects of removing the transmission lines in power system 

reliability analysis. The contribution of the transmission lines on reliability analysis can be 

ignored in RTS [328] because the line capacity limits are much higher than the loading level. 

 

Figure 4-4. Two interconnected copies of the IEEE RTS 24-bus. 
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It should be noted that for all simulations, 
minV and 

maxV are usually assumed 0.95 and 1.05, 

respectively in MATPOWER. However, they are based on the allowed voltage fluctuations. 

Finally, the used 
maxS is available in RATE_A column of the branch matrix in IEEE test cases 

[313].  

4-4 Simulation results 

4-4-1 Vulnerability analysis 

Increasing total load: This criterion consists of increasing the load up to reach the point where 

the network shows different behavior in both modeling approaches. In this scenario, loads of 

RTS are equally increased by 5%. The topology of the network changed after a 35% increase 

in loads using ACM and DCM. Line loading of four lines exceeds 100% in ACM while only 

three lines are overloaded in DCM. The results show that for about 30% of the cases, the line 

loading difference is more than 10% and more specifically, for about 10% of the cases, the 

difference is more than 40%. In the next section, the sources of these errors are investigated in 

detail. 

Number of overloading (NOL): The second analysis is to calculate the number of overloading 

(NOL) using N-k ( 3k  ) contingency analysis. Figure 4-5 shows NOL for each transmission 

line (i.e., the line between buses X and Y). It proves that the used method for power flow 

calculations can affect the results of vulnerability assessments in a power system. For instance, 

 

Figure 4-5. Number of overloading (NOL) using DCM and ACM. 
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ACM spots some new critical lines (e.g., 2-6, 6-10) in addition to the lines reported by DCM 

(e.g., 7-8, 12-23, 13-23, 14-16, 16-19). N-1 contingency analysis using DCM leads to a 

cascading failure when one line of 3-24 or 24-15 is removed (see Figure 4-6). This disruption 

overloads the 500 MVA line 16-19 with 502 MVA. In ACM, the line loading only reaches 486 

MVA, therefore no cascading failure is triggered. ACM only observes an overloading problem 

in lines 6-10 and 2-6. Ignoring the reactive powers and losses in DCM can be the main reasons 

for these differences that are investigated in the next section. 

4-4-2 Contingency analysis (the N-k′-1 scenario) 

Figure 4-6 shows the initial, second and the last state of the system with the N-k′-1 scenario 

using both approaches. The lines l5 and l7 are reported as the critical lines for the first iteration 

using ACM and DCM, respectively. In both scenarios, removing the proposed critical lines 

leads to a cascading failure of one or five line(s) in different cascading stages. The cascading 

 

Figure 4-6. Consecutive removing the critical lines based on N-k′-1 scenario using ACM and DCM (the active 

zones are highlighted). 
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failure process is introduced in Section 4-2. The final topology of the test system is depicted in 

Figure 4-6. It will be after 28 and 21 iterations in ACM and DCM, respectively. It should be 

noted that nodes 24 and 17 do not have any load or generation. Therefore, the simulation is 

stopped in these final topologies.  

To find the effect of different line selection in the N-k′-1 scenario using both power flow 

models, the total supplied power is calculated in each (k′+1) steps. Figure 4-7 compares the 

supplied power in ACM and DCM. Indeed, the removed lines may differ between both 

approaches, as can be seen in Figure 4-6. The last simulation consists of selecting the proposed 

critical lines with DCM but modeling them by ACM. Therefore, it shows the actual impact of 

DCM on the supplied power.  

The results of DCM are more pessimistic than of ACM. It contrasts with all the other 

assessments, where DCM was more optimistic [324]. Furthermore, Figure 4-8 presents the final 

topology of the proposed lines by DCM but calculated using ACM. One can see the difference 

compared to Figure 4-6. The main reason lies in the fact that some lines are overloaded with 

cascading failures during DCM. This means that they do not belong to the proposed lines that 

should be removed by ACM. 

 

 

Figure 4-7. Supplied power of removing the critical lines in the N-k′-1 scenario. 
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4-4-3 Reliability analysis 

We tested two RTS topologies with the time-sequential Monte Carlo simulation approach. This 

simulation process stopped when the COV for EENS is less than 6% [336]. The result shows 

that 500-year period simulations lead to convergence for all reliability indices. 

Table 4-1 reports the results and compares it with Billinton and Wangde [315]. The results 

reported by ACM based reliability indices diverge from the results of DCM by about 20% in 

all indices except the ADLC index. This last index consists of the division of the EDLC and 

EFLC, both underestimated in DCM. Therefore, the error in an index discards the error in the 

other one, which means that ADLC is irrelevant for comparing ACM and DCM. 

To compare the reliability of various networks, we introduced RTS area 1&2 in Section 4-3. 

Table 4-1 shows that it is possible to use the results of DCM for comparing two or more 

different networks together. The modeling approach becomes more critical when investigating 

the reliability of the MRTS as a stressed network. According to Table 4-1, the reliability indices 

are underestimated by up to 20% for the RTS case and up to 91% for the MRTS case. These 

results confirm those obtained in Benidris and Mitra [328].  

4-5 Sources of inaccuracy 

This section examines the main reasons for the differences in both power flow models. We 

focus on the reliability indices, because of the similarity of reasons for the inaccuracy of results 

in different assessments. The following subsections are based on the inherent assumptions of 

DCM previously introduced.  

 

Figure 4-8. Final situation of IEEE RTS considering ACM with the proposed critical lines of DCM (the active 

zones are highlighted). 
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Table 4-1. Annualized system indices for both case studies. 

Reliability 

index 

IEEE-RTS IEEE-MRTS 

Area 1 Area 1&2 Area 1 

DCM ACM D
if. +

 (%
) 

DCM ACM D
if. +

 (%
) 

DCM ACM D
if. +

 (%
) 

Billinton and 

Wangde [315] 

This 

work 

This 

work 

This 

work 

This 

work 

This 

work 

This 

work 

EENS 

(MWh/year) 

134590 130510 154040 -15 118910 144810 -18 92120 439230 -79 

EDNS (MW) 15.4* 

(134590/8760) 

14.9 17.6 -15 13.6 16.5 -18 10.5 50.1 -79 

EFLC, LOLF 

(outages/year) 

18.6 19.1 23.2 -18 26.3 30.9 -15 16.9 59.3 -72 

EDLC, LOLE 

(hours/year) 

740.2* 

(0.0845×8760) 

744.7 940.5 -21 901.2 1042.2 -14 622.2 6707.5 -91 

PLC, LOLP (%) 8.5 8.5 10.7 -21 10.0 11.9 -14 7.1 76.6 -91 

ADLC, LOLD 

(hour/disturbance) 

39.9* 

(740.2/18.6) 

39.0 40.5 -4 34.2 33.7 +1 36.8 113.1 -67 

* These are calculated using available data in reference [315] 
+ Note that the results obtained by ACM is taken as the benchmark for comparisons (Dif. =Difference) 

 

4-5-1 Reactive power and power losses 

Reliability indices are calculated in two 100-year simulations to examine the main reasons for 

differences between ACM and DCM. Both use the same initial “seed” for the random number 

generator. The method includes a pseudo-random number generator that produces a string of 

pseudo-random numbers. The random numbers depend on the “seed” that is used to start the 

 

Figure 4-9. Interruptions using DCM and ACM for IEEE RTS. 
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sequence. Hence, the seed is fixed to duplicate the results obtained in the example. Figure 4-9 

compares the results of ACM and DCM for the RTS case. DCM always underestimates the 

number of interruptions. The error generally is below 50% in the RTS case with a mean error 

of 27%. The year 73 only observes a difference higher than 100%, as the number of interruption 

drops from 240 to 109.  

The situation worsens with the MRTS case (not presented in Figure 4-9). DCM becomes 

completely inaccurate. The mean number of interruptions is 6655 in ACM, while only 570 in 

DCM. Again, year 73 records a large miscalculation from DCM. Therefore, we analyzed this 

specific year further to understand the main reasons. 

In this year, ACM reports 240 interruptions, as shown in Figure 4-10. DCM only spots 109 of 

these interruptions. Analyzing the 131 remaining interruptions shows that in some hours, only 

losses cause that supplied power is less than the total load (interruption) and in some hours, 

considering reactive power flow leads to overloaded lines. The limits developed so far are based 

on apparent power (“MVA”) (refer to Section 4-2-1). The apparent power is the combination 

of active and reactive powers. So, considering reactive transfers between the lines decreases the 

limit of transferring active power. Hence, some lines will be overloaded only by considering 

reactive power flow. Accordingly, the losses and reactive power flow play an important role to 

cause the differences between the results.  

4-5-2 Small-angle approximation 

DCM uses small-angle approximation [324] for sine and cosine functions. It assumes that the 

phase angle difference between the buses is small enough and approximates the cosine and sine 

 

Figure 4-10. Interruptions of ACM and DCM for year 73 (8760 hours in total). 
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functions with sin( )ij ij  and cos( ) 1ij  , respectively. It is true as far as the angle is lower 

than 0.25 radians. Figure 4-11 provides the cumulative distribution functions (CDFs) for the 

absolute difference between the voltage phase angles of the 100-year simulations which are 

used to calculate reliability indices. This figure shows that RTS has no voltage phase angle 

difference larger than 0.25 radian, while MRTS observes it with about 8% of the nodes. This 

point contributes to understanding why DCM becomes less accurate with the MRTS case than 

the RTS.  

4-5-3 Constant voltage magnitude 

Finally, DCM ignores the variations of voltage magnitude and assumes 1 p.u for all nodes. In 

the previous sections, the default constraints of voltage in MATPOWER are used. It should be 

noted that it is not practically possible to freely relax voltage magnitude because of voltage 

stability. In this section, the goal is to investigate the impacts of voltage limits on reliability 

indices. So, we relax voltage up to 20% to figure out its effect. Table 4-2 presents the sensitivity 

of reliability indices to the relaxation of voltage limits. This table demonstrates the impact of 

relaxation on power flow results using ACM and hence, on reliability indices. This impact is 

very impressive in the stressed network (i.e., MRTS).  

 

 

 

Figure 4-11. The absolute difference between the voltage phase angles, radian. 
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Table 4-2. Sensitivity of the reliability indices to relax voltage limits of IEEE RTS and MRTS. 

Reliability 

index 

Voltage limits of IEEE RTS (p.u.) Voltage limits of IEEE MRTS (p.u.) 

0.8-

1.2 

0.85-

1.15 

0.9-

1.1 

0.95-

1.05 

0.8-

1.2 

0.85-

1.15 

0.9-

1.1 

0.95-

1.05 

EENS* 0.97 0.97 0.99 1.00 0.32 0.34 0.37 1.00 

EDNS* 0.97 0.97 0.99 1.00 0.32 0.34 0.37 1.00 

EFLC, LOLF* 0.96 0.96 0.96 1.00 0.57 0.60 0.77 1.00 

EDLC, LOLE* 0.99 0.99 0.99 1.00 0.20 0.20 0.25 1.00 

PLC, LOLP* 0.99 0.99 0.99 1.00 0.20 0.20 0.25 1.00 

ADLC, LOLD* 1.00 1.00 1.00 0.97 0.34 0.34 0.33 1.00 

* The indices are relative number and calculated by dividing with the maximum magnitude for each index 

 

4-6 Conclusion 

In this chapter, we thoroughly investigate the effects of assumptions in DCM, especially when 

it is used for line capacity-based assessments such as reliability, vulnerability and contingency 

analyses. The reliability results show that the related indices are very sensitive to line capacity 

limits. Hence, DCM can lead to optimistic and inaccurate predictions in reliability. 

Furthermore, the assumptions’ effects are very important in a more stressed network (i.e., IEEE 

MRTS), although it is possible to use the results of DCM for comparing two or more different 

networks. The results of contingency and vulnerability analyses show that DCM can lead to 

pessimistic predictions. Although the difference between line loadings is mostly very small in 

both models (approximately 3%), it leads to exceeding the line limit as well as cascading 

failures. In addition, in our test cases where reactive power flows predominate on some lines, 

such as cables (i.e., lines 6-10 and 1-2), overloads cannot be adequately shown only by the 

active power flows. Therefore, the results indicate that special care should be taken whenever 

DCM is used for the planning and operating of power systems. 
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Part Three          

            

              

Multi-level optimization-based 

vulnerability analysis 
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Chapter 5          

            

                      

An ACOPF-based bilevel optimization 

approach for vulnerability assessment of a 

power system 

 

 

 

5-1 Introduction 

A secure, competitive and decarbonized energy system is the main goal of the energy sector’s 

decision-makers [320, 339]. The power network, which will undergo a major restructuring in 

the coming years, plays a key role as a critical infrastructure. Its security against various hazards 

and threats such as natural hazards (for example, high wind, flooding, or lightning), intentional 

attacks, and random failures [17] has become a growing concern. Deploying a robust and 

resilient power system improves security and accordingly, operators must detect the most 

vulnerable elements of their power system under a variety of attack scenarios. This vulnerability 

assessment helps them to design proper preventive and corrective schemes to reduce the 

vulnerability of their system to unpredictable events [33]. 

In the past, several innovative methods have been developed to determine critical components 

whose failures lead to the largest power-system loss [19]. These developed methods can range 

from analytical approaches (such as complex network, flow-based, logical, and functional 

methods) to Monte Carlo simulations. A detailed comparison of these methods and approaches 
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is recently conducted in [20]. Among these methods, optimization-based modeling has been 

shown to be successful and received attention in the relevant literature. The application of 

optimization techniques to the power-system vulnerability assessment is growing mainly due 

to the advancements in high-speed multiprocessors with large memory. The optimization 

models of the vulnerability assessment can be implemented using high-speed multiprocessors 

for realistic power systems as reported in [340]. 

The multilevel optimization framework has been used in [8] to model power system interdiction 

[341]. A multilevel optimization is a mathematical program where an optimization problem 

contains another optimization problem as a constraint [342]. These optimization problems are 

closely related to the hierarchical leader-follower or Stackelberg games [343]. Accordingly, the 

power-system vulnerability assessment can be modeled as a leader-follower game where the 

leader (or attacker) maximizes the damage to the system and the follower (or defender) responds 

to the action of the leader by minimizing the damage consequences for the power system [344, 

345]. 

The relevant literature has focused on (a) attacker-defender (AD) [18, 341, 346-351] and (b) 

defender-attacker-defender (DAD) [352-358] models to improve the robustness of power 

systems exposed to natural hazards or intentional attacks. Salmerón et al. formulate an AD 

model [341] and apply the idea of global Benders decomposition [349] for interdiction 

problems in power systems. The Karush-Kuhn-Tucker (KKT) optimality conditions [346] and 

duality theory [347] are used to convert an AD model to a one-level problem. Arroyo [348] 

compares the KKT- and duality-based approaches by introducing minimum and maximum 

vulnerability models. A multi-start Benders decomposition technique is used to solve an AD 

model considering transmission line switching as a corrective action by the system operator (or 

defender) [350]. Yuan et al. formulate a DAD model and implement a Column-and-Constraint 

Generation (C&CG) algorithm to solve it [357]. Then, Yuan and Zeng [358] introduce the 

transmission line switching as a corrective action to reduce the attack consequences in a trilevel 

optimization model and solve it using the nested column-and-constraint generation (NC&CG) 

algorithm. Recently, Fang et al. [19] propose the AD model to assess the vulnerability of power 

systems exposed to natural hazards and then, develop a trilevel optimization model for 

improving the resilience of interdependent infrastructures under natural hazards using an 

adaptive robust framework [355]. Sayed et al. [356] use a trilevel optimization model and the 

NC&CG algorithm to assess vulnerability in the integrated electric-gas system (IEGS). The 
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metaheuristic techniques such as the genetic algorithm are also implemented to solve the AD 

problem [18, 351].  

The above literature employs the DC optimal power flow (DCOPF) in the lower-level problem 

as the operator’s (defender’s) tool to mitigate the attack’s adverse consequences. The DCOPF 

model has some drawbacks. Technically, it cannot provide correct information on a power 

system since it ignores reactive power, resistance, and losses, and it assumes a perfect voltage 

regulation at each bus (voltage magnitudes are fixed to 1 per unit). The DCOPF assumptions 

make the AD model solution less accurate and attractive [359], especially where the reactive 

power flows are of concern in the congested power systems [23]. The authors in [360] first used 

the AC power flow equations and they assumed that attackers are allowed to increase the 

impedance of transmission lines in the model. The topology of the power system does not 

change in their AD model and accordingly their model cannot predict the harmful consequences 

of the topology change following an attack. Furthermore, another drawback of the model is 

using a solver for evaluating the ACOPF in the lower level which cannot guarantee to find the 

global solution.  

In this chapter, the main aim is to propose a new model for vulnerability analysis of a power 

system by employing the AC power flow equations. In doing so, the AC optimal power flow 

(ACOPF) is used in the lower-level defender problem which is a non-linear and non-convex 

optimization problem [340]. Considering the ACOPF in the lower-level defender problem 

converts the whole problem to a mixed-integer bilevel nonlinear program (MIBNLP) that is 

non-convex and NP-hard [361].  

To solve the proposed MIBNLP model, we first develop a Linear Program (LP) approximation 

of the non-convex ACOPF model of the defender problem. The LP model is derived following 

some technically sound assumptions for well-designed transmission networks and a series of 

linearization techniques. The LP approximation of the ACOPF provides more accurate 

modeling of the power system as compared to the DCOPF and accordingly makes the results 

of our proposed AD model more practical and useful for system operators. Also, our 

approximation model is a convex LP which can be solved efficiently using state-of-the-art 

solvers such as Cplex solver.  

Employing our LP model of ACOPF, the bilevel AD model is now a mixed-integer bilevel 

linear program (MIBLP). To solve the MIBLP model, we first take advantage of the LP model 

of the lower-level defender model. We replace the LP model by its dual program using the 
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duality theory. By replacing the LP by its dual program, the MIBLP is converted to a single-

level mixed-integer nonlinear program (MINLP). The nonlinear terms in the MINLP model are 

then linearized using the Big-M technique [362]. This gives us the final mixed-integer linear 

program (MILP) which can be solved efficiently using state-of-the-art solvers such as the 

Cplex. Accordingly, the contributions of our work are as follows:  

1. We first propose an LP for ACOPF where the technical details of AC networks such as 

resistance, reactance, shunt susceptance, active and reactive power are properly modeled. 

Due to AC power flow details in the LP model, our results are more practical and useful for 

the system operators as compared to the models where the naïve DCOPF approximation is 

used.  

2. Our proposed bilevel optimization model for the AD game is converted to an easier-to-solve 

one-level MILP model. Our MILP model can be solved efficiently using state-of-the-art 

solvers such as Cplex to the desired precision level. Furthermore, the system operator by 

adding more linear terms can improve the accuracy of our proposed MILP model. 

The remainder of this chapter is organized as follows. Section 5-2 introduces the attacker-

defender ACOPF-based mixed-integer bilevel nonlinear program including the assumptions 

and formulations. Section 5-3 proposes the linearization approaches and the final 

transformation to a single-level MILP. Section 5-4 presents the numerical results by applying 

our proposed MILP to different case studies and comparing our results with some benchmark 

models. Finally, concluding remarks are provided in Section 5-5. 

5-2 The attacker-defender mixed-integer bilevel nonlinear program (MIBNLP) 

In this Section, the mathematical formulation of the ACOPF-based attacker-defender problem, 

also known as the interdiction model, is presented. This formulation is based on the following 

assumptions that are commonly used in the literature for vulnerability assessment of a power 

system [346-348, 352-354]: 

1. The rational attacker has the intention to maximize the damage and disable multiple assets 

simultaneously and permanently or at least for several hours. As a result, if the attack is 

achieved, the power flow of other lines will be also affected. 

2. We assume that the targeting assets are transmission lines and transformers, as they are 

usually reachable. For instance, transmission lines are out of the substation fences with low 

or no security to withstand. By removing the attacked transmission lines and their connected 

transformers, all loads which are only supplied by the attacked lines will be out of service. 
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3. Because two parallel circuits between the buses are usually on the same tower, they are 

modeled as a single line with double capacity. 

4. Our proposed MILP models the steady-state security constraints following the attack. 

Accordingly, the dynamic behavior of the power system from the time of attack to the 

steady-state situation is not considered (assuming the power system can withstand the 

dynamic changes). Modeling the dynamic response of the power system following the 

attack adds an extra level of complexity to our model and it is not within the scope of this 

chapter. However, this dynamic simulation is a good extension of our work.  

5. In this chapter, the system damage is measured by the level of load shedding which is the 

amount of load that cannot be supplied due to the physical constraints of the power system. 

However, different objective functions of interest can be used in our MILP model to 

measure the system damage following an attack.  

The attacker-defender model used in this chapter is illustrated in Figure 5-1.  

As in Figure 5-1, the upper level models the attacker, and the lower level models the defender. 

The attacker as the leader starts the leader-follower game with limited disruptive resources. The 

defender as the follower reacts against the set of out-of-service assets to mitigate its adverse 

consequences. This leader-follower interaction between the attacker and the defender is 

modeled as the bilevel optimization problem (5-1)-(5-15). Dual variables associated with the 

constraints of the lower-level problem are shown inside parentheses.  

 

Figure 5-1. The attacker-defender model used in the current Chapter. 
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  min max ; : ( , )iii i iQg Qg Qg i G        (5-10) 

       
22 2

max ; ,ij ij ijP Q S i j N      (5-11) 

  min max ; : ( , )iii i iV V V i N         (5-12) 

  min max ; ,ij ij ij i j N         (5-13) 

  0 ; : ( )ii iLs Pd i D        (5-14) 

  tan ;i i iLsq Ls i D      (5-15) 

The optimization problem (5-1)-(5-15) is a mixed-integer bilevel nonlinear program (MIBNLP) 

which is non-convex and NP-hard. Equations (5-1)-(5-3) model the attacker optimization 

problem which maximizes the load shedding subject to the limited number of plausible outages 

considered in constraint (5-2). Since 
ij jiz z , the factor 0.5 is multiplied by the total number 

of line outages to avoid double consideration in our formulation. If 
ijz  is 0, the line ij is under 

attack, otherwise it is safe. In the lower-level defender problem (5-4)-(5-15), unlike the previous 

approaches [346-348, 352-354], the ACOPF is used as the defender tool to mitigate the adverse 

consequences of the outages. Equation (5-4) is the objective function of the defender to 

minimize the damage. The asterisk in (5-1) and (5-4) emphasizes that 
iLs  is decided in the 
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lower-level problem. Equations (5-5) and (5-6) are the nodal power balance equations for active 

and reactive powers, respectively. Equations (5-7) and (5-8) represent the line flows of active 

and reactive powers, respectively. Constraints (5-9)-(5-11) enforce the limits of active and 

reactive power generations and transmission line capacity, respectively. Voltage magnitude and 

voltage angle are limited using (5-12) and (5-13), respectively. Furthermore, active load 

shedding is limited to maximum active load at each bus in (5-14) and load shedding assumes 

constant power factor at load buses using (5-15). To solve our proposed MIBNLP model (5-1)

-(5-15), in the next Section we transform the MIBNLP to a mixed-integer linear program 

(MILP) which is computationally more tractable than the original MIBNLP. We then solve our 

proposed MILP model using the off-the-shelf Cplex solver. 

5-3 Solution methodology 

In this Section, the proposed MIBNLP in the previous Section is transformed to a single-level 

MILP in two steps: First, the lower-level ACOPF model is approximated by an LP; then the 

whole bilevel model is transformed to a single-level MILP using the duality theory and several 

proposed linearization techniques. 

5-3-1 Linearizing lower-level ACOPF model 

We assume the phase differences between the bus voltages are small enough and the voltage 

magnitude is close to 1 p.u. for all buses. These assumptions are practically acceptable under 

the normal steady-state operating condition of a power system to maintain the system far from 

instability [340]. Based on these assumptions, we can use the first-order approximation of 

Taylor’s series with respect to the variables , , ,i j ij ijV V c n for nonlinear terms of (5-7)-(5-8) (
ijz  

is the upper-level decision variable and considered as a given parameter in the lower-level 

problem). These first-order approximations are derived in (5-16) and (5-17) below: 

    2 1 2ij ij ij i ij i j ij ij ijP z G V G V V c B n         (5-16) 

   ( ) 2 1 2
2

sh
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B
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 
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  (5-17) 

where, 

2( )
cos 1

2

i j

ij ijc
 




   , and sinij ij i jn      . Then, the quadratic function can be 

linearized based on the proposed method in [363] by using 2M piecewise linear (PWL) blocks 

as expressed below: 
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0 ; 1 , , : ( )ijm ij ijmm M i j N           (5-21) 

; 1 , , : ( )ijm jim ijmm M i j N         (5-22) 

; , : ( )ij ji ijn n i j N        (5-23) 

where (2 1) ijm    and 
ijm  are the slope and the value of mth block of the voltage phase 

difference of transmission line ij (see Figure 5-2 for its illustration). The appropriate value for 

ij can be 2π divided by 2M. The absolute function in (5-19) is linearized by introducing two 

positive variables 
ij
  and 

ij
 . Note that this linearization technique for the quadratic function 

does not need any binary variables given small voltage angles [363] which makes it much more 

tractable as compared to linearization techniques which use either binary variables in their 

formulations [364], or the special ordered set of type 2 (SOS2) [365]. Nevertheless, our piece-

 

Figure 5-2. The piecewise linear approximation of a nonlinear function. 
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wise linear approximation adds three sets of continuous variables to the problem (M piecewise 

linearization blocks plus 2 auxiliary variables (
ij
  and 

ij
 ) for each line). 

The nonlinear constraint (5-11) presents a circle with the radius of max

ijS . This circle is 

linearized by an n-sided convex regular polygon using following n equations [366]: 
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Linearizing the constraint (5-11) as suggested above, adds n constraints for each line. A small 

n enforces more restrictions on transmission line capacity and might lead to the problem 

infeasibility while a large n increases the number of equations and accordingly the 

computational burden. Hence, the appropriate value for n should be carefully decided. We set 

it at n = 64 following the recommendations in [340, 365]. At this stage, the initial MIBNLP 

model is formulated as a mixed-integer bilevel linear program (MIBLP). This MIBLP is 

transformed into a single-level MILP in the next Section using duality theory. 

5-3-2 Transforming MIBLP to an equivalent single-level MILP model 

In this step, the proposed MIBLP in the previous subsection is transformed to a single-level 

MILP using the duality theory for linear programs. First, the lower-level minimization problem 

is replaced by its dual optimization problem. This converts the Max-Min optimization model to 

a Max-Max optimization model. Then, this Max-Max optimization model is reformulated as 

the following MILP maximization problem set out in (5-25)-(5-38). 
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Where the primal variables associated with the different constraints of the dual optimization 

problem are shown in parentheses. This transformation introduces a new nonlinearity in the 

model, which is the product of binary and continuous dual variables (
ij ijz  and

ij ijz  ) in (5-25), 

(5-30)-(5-32). This product can be linearized using two auxiliary variables 
ijT  and

ijH  [353, 

367, 368]. For instance, 
ij ij ijT z   can be linearized as follows: 

(1 ) (1 )

ij ij ij

ij ij ij

ij ij ij

T H

Bz T Bz

B z H B z

 

  

    

   (5-39) 

Where, B is a suitable large constant. The final proposed MILP model can be solved using the 

high performance, efficient, and reliable off-the-shelf solvers such as Cplex [369]. These 

solvers can efficiently solve our MILP model to the desired level of accuracy. They can also 

provide the certificate of optimality of the solution. This is while the original MIBNLP model 

is an NP-hard optimization problem with no guarantee of finding the global solution [340].  
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5-4  Numerical result 

The proposed model has been successfully applied to three different power systems; IEEE 24-

bus reliability test systems (RTS) [240], IEEE 57-bus [370] and Iran’s 400-kV network [371]. 

In all numerical studies, the minimum and maximum of the voltage magnitude of buses are 

assumed to be 0.95 and 1.05 p.u., respectively. The problems are solved on a laptop running 

with an Intel Core i7, 2.2 GHz processor, and 8 GB RAM. The Cplex solver in the GAMS 

(General Algebraic Modeling System) platform is used to solve our proposed MILP model 

[372]. Furthermore, the ACOPF function of MATPOWER in MATLAB environment [313] is 

also used for comparing the results. Table 5-1 reports statistics regarding the size and 

complexity of the examined cases in this chapter. 

Table 5-1. The size and complexity of the examined cases measured by the number of equations, variables and 

the simulation time 

Model statistics 

IEEE 24-bus IEEE 57-bus 
Iranian 400-kV network 

(AC-based) 

DCOPF-

based 

ACOPF-

based 

DCOPF-

based 

ACOPF-

based 

Existing 

network 

Candidate 

network 

Blocks of equations 12 24 12 24 24 24 

Blocks of variables 12 86 12 86 86 86 

Nonzero elements 1993 49266 4476 112697 105825 143281 

Single equations 533 6667 1200 15247 14316 19364 

Single variables 512 16136 1157 36952 34635 46871 

Binary variables 68 68 156 156 146 198 

Average elapsed 

time/simulation (min) 
<1 ~3 ~4 ~25 ~27 ~40 

 

5-4-1 IEEE 24-bus reliability test systems (RTS) 

In this subsection, the proposed ACOPF-based MILP model is applied to the IEEE 24-bus 

network. This case study has 24 buses, 32 generators, and 38 branches and transformers as 

shown in Figure 5-3. Detailed data of the IEEE RTS can be found in [240]. Before proceeding 

to solve the proposed MILP model for the IEEE RTS network, the accuracy of the linearized 

ACOPF model in this chapter and its dual optimization problem is investigated. In doing so, 

the exact nonlinear ACOPF is solved using MATPOWER package and the results are compared 

with those obtained from our proposed linearized ACOPF model. The objective function for 
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this comparison is chosen to be the total operation cost of the generators ($/h) in the form of 

i i

i G

C Pg


 , where 
iC is cost coefficients of generators [313].  

For the exact ACOPF and DCOPF models solved using MATPOWER package, the objective 

functions are 44196 $/h and 41904 $/h, respectively, whereas the objective function is found to 

be 44483 $/h using our linearized ACOPF model. The results show an error of 5.2% as 

compared to the DCOPF model and a small error of 0.6% as compared to the exact ACOPF. 

Furthermore, the objective function is found to be 44483 $/h using the dual optimization 

problem of the linearized ACOPF model (illustrating the strong-duality property of the LP 

model) [367]. 

The proposed one-level MILP problem is applied to the IEEE RTS. Figure 5-4 shows the load 

shedding of the IEEE 24-bus system as a function of NPO (interdiction resources). As can be 

seen in this figure, the optimal solutions or total load sheddings are approximately the same in 

some cases. However, Table 5-2 shows small differences in some NPOs, which in turn lead to 

 

Figure 5-3. The single-line diagram of the IEEE RTS 24-bus system. 
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proposing different critical lines. For instance, when NPO is 3, our proposed ACOPF-based 

approach and the previously reported approach [346-348, 352-354] find similar critical lines 

(i.e. 7-8). This is while our approach and the DCOPF-based approach propose different lines 

(16-19, 20-23) and (15-21, 16-17), respectively as the 2nd and 3rd critical lines. In other words, 

the Jaccard Similarity Index (JSI) for these two sets of lines is 0.2 and the average JSI is 0.52 

for this test case.  

We have compared the results of our ACOPF-based model (reported in columns 6 and 7 of 

Table 5-2) with the ones from the DCOPF-based model used in [346, 348] (reported in columns 

2 and 3 of Table 5-2). For those cases where we could not find the DCOPF-based results from 

the existing literature (indicated by n/a in Table 5-2) we have used the results from our own 

DCOPF-based model (reported in columns 4 and 5 of Table 5-2).  

Using our proposed approach the calculated load shedding is more accurate as compared to the 

one from the DCOPF model. Based on the simulation results for the IEEE 24-bus system, the 

potential critical lines are radial lines (e.g. 7-8), parallel lines (e.g. 15-21, 20-23), and the lines 

connecting the generation to demand zones (e.g. 11-13, 12-13). It should be noted that when all 

lines are out of service, the system operator is forced to shed 1607 MW which is 56% of total 

demand [348]. The remaining loads are directly connected to the generators’ buses. Our 

proposed MILP model shows that this total possible system load is shed with only 13 

 

Figure 5-4. The optimal load shedding for IEEE 24-bus system as a function of number of plausible outages 

(NPO). 
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simultaneous outages. In the next sections, a larger network and a real power network are 

studied. 

Table 5-2. The six worst-case load shedding scenarios and their related lines for the IEEE 24-bus system  

NPO 

DCOPF-based approach used 

in [346, 348]* 

Our DCOPF-based 

approach*** 

Proposed ACOPF-based 

approach 
 

Critical lines 
LS 

(MW) 
Critical lines 

LS 

(MW) 
Critical lines 

LS 

(MW) 
JSI 

1 n/a n/a - 0 7-8 99 0 

2 16-19, 20-23** 309 16-19, 20-23 309 16-19, 20-23 309 1 

3 n/a n/a 7-8, 15-21, 16-17 387 7-8, 16-19, 20-23 407 0.2 

4 
3-24, 12-23, 13-23, 

14-16 
516 

3-24, 12-23, 13-23, 

14-16 
516 

7-8, 15-21, 16-17, 

20-23 
574 0 

5 n/a n/a 
12-23, 13-23, 15-

21, 16-17, 20-23 
872 

12-23, 13-23, 15-

21, 16-17, 20-23 
883 1 

6 

11-13, 12-13, 12-23, 

15-21**, 16-17, 20-

23** 

1198 

11-13, 12-13, 12-

23, 15-21, 16-17, 

20-23 

1198 

1-5, 11-13, 15-21, 

15-24, 16-17, 20-

23 

1207 0.5 

*This approach is also used with different objective functions and case studies in [347, 352-354]. 
** Two parallel circuits are considered as two independent lines in [346, 348]. 
*** Our DCOPF-based model for cases where we do not have the benchmark results from the existing literature (see rows 1, 3 and 5). 

5-4-2 The IEEE 57-bus system 

The second test system is IEEE 57-bus example that has 57 buses, 7 generators, and 80 branches 

and transformers as shown in Figure 5-5. In this case, when all lines are out of service, the 

system operator is forced to shed 449.8 MW and 509.2 MW with DCOPF-based and our 

ACOPF-based approaches, respectively. This difference stems from considering constant 

power factor at load buses modeled in constraint (5-15). For instance, the total reactive load is 

less than the total capacity of reactive power of generators in buses 2 and 9. Hence, it causes 

more total active load shedding in these buses. Furthermore, the results show that this total 

possible system load is shed with only 14 and 13 simultaneous outages using DCOPF-based 

and our ACOPF-based approaches, respectively. Figure 5-5 also shows five worst-case load 

shedding and their related lines based on the proposed MILP problem. Moreover, these results 

are compared with the previous DCOPF-based approaches in Table 5-3. Figure 5-6 shows that 

the objective function (i.e. LS) reported based on the previous methods is lower than the one 



An ACOPF-based bilevel optimization approach for vulnerability assessment of a power system 

101 

 

found using our proposed ACOPF-based approach. In addition, Table 5-3 is useful to analyze 

the effects of DCOPF approximations on the results. As can be seen, the DCOPF 

approximations affect not only the optimal load shedding value but also the proposed critical 

lines that must be hardened by the system planner. This fact is reported in the average of JSI 

for the sets of critical lines which is 0.5. In this network, similar to the previous one, the 

potential critical lines are parallel lines (e.g. 4-18) and the lines connecting the generation to 

demand zones (e.g. 7-29, 1-16, etc.). 

 

 

Figure 5-5. The IEEE 57-bus system and optimal solutions for NPO=1 to 5 using our proposed MILP model. 
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Table 5-3. The five worst-case load shedding scenarios and their related lines for the IEEE 57-bus system 

calculated using our MILP model 

NPO DCOPF-based approach* LS (MW) ACOPF-based approach LS (MW) JSI 

1 25-30 6 7-29 64 0 

2 1-16, 12-16 43 4-18, 7-29 95 0 

3 7-29, 9-55, 21-22 78 7-29, 13-49, 14-46 118 0.2 

4 7-29, 8-9, 12-17, 21-22 105 7-29, 10-51, 38-44, 46-47  132 0.1 

5 1-16, 7-29, 8-9, 12-17, 21-22 186 1-15, 1-16, 1-17, 3-15, 8-9 245 0.3 

* This approach is also used with different objective functions and case studies in [347, 352-354]. 
 

 

5-4-3 The Iran’s 400-kV network 

As the last test system, the proposed MILP model is implemented in a realistic power system. 

A modified Iran’s 400-kV transmission network is used in this subsection. Iran’s transmission 

network has voltage levels of 400 kV and 230 kV. It is operated by the Iran Grid Management 

Company (IGMC) which is established in 2003 as an independent system operator (ISO) [371]. 

The system is comprised of 52 buses, 28 generators, and 99 lines as shown in Figure 5-7. In 

this figure, the solid lines/circles are existing lines/substations and the dashed lines/circles are 

candidate 400-kV lines/substations which are planned to be added to the existing system as 

reported in [371]. The detailed data of this network can be found in [366, 371].  

 

Figure 5-6. The load shedding for IEEE 57-bus system as a function of the number of plausible outages 

(NPO). 

. 
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Figure 5-8 compares the imposed load shedding as a function of NPO in two topologies. 

According to this figure, the total possible load shedding of 10390 MW will occur after 

removing 46 and 61 simultaneous lines (i.e. NPO) in the existing and new grids, respectively. 

The figure also highlights that the new grid is more robust than the existing one (on average, 

the load shedding is decreased by 40% for a given NPO). Finally, as an example, the proposed 

set of critical lines that need to be hardened is presented in Figure 5-8, when NPO=8. 

5-5 Conclusion 

This chapter proposes a MILP for power system vulnerability assessment. An attacker-defender 

Stackelberg game is introduced to model the interaction between the attacker and the defender. 

This attacker-defender game is modeled as a bilevel optimization problem. The upper level 

represents the attacker and the lower level represents the defender. Employing the ACOPF for 

the defender model, the whole attacked-defender game is a mixed-integer bilevel nonlinear 

program (MIBNLP). The original MIBNLP is NP-hard and hard to solve. Accordingly, we first 

 

Figure 5-7. Modified Iran’s 400-kV transmission network, existing lines/substations are black solid lines/ 

nodes and the candidate lines/ substations are black dash lines/nodes. The critical lines for the existing 

network are indicated by blue triangles and the ones for the expanded network are indicated by the red circles 

(NPO=8). 
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approximate the ACOPF as a linear program though some practically sound approximations for 

well-behaved transmission networks and some linearization techniques. Replacing the 

nonlinear program of the lower-level ACOPF model converts the original MIBNLP problem to 

a mixed-integer bilevel linear program (MIBLP). We then employ the duality theory for linear 

programs and replace the lower level with its dual program. The duality theory along with some 

linearization techniques transforms the problem to a single level MILP model. Our proposed 

MILP model can be solved efficiently to global optimum using state-of-the-art solvers such as 

Cplex. Our proposed MILP model has been applied to several case studies to show its 

performance and utility. In particular, using an approximate ACOPF model in our vulnerability 

assessment makes our results more trustable as compared to the vulnerability assessment 

models based on DCOPF used in the previous literature. Our work can be extended in several 

aspects. First, our deterministic model can be extended to a stochastic one where the uncertain 

parameters are modeled by a set of scenarios. Second, the dynamic response of the power 

system to an attack can also be incorporated in our MILP assessment model. 

 

 

 

 

Figure 5-8. The load shedding for modified Iran’s 400-kV transmission network as a function of number of 

plausible outages (NPO). 
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Chapter appendix: Nomenclature 

Indices  

i,j Indices of buses 

k Index of regular polygon for linearizing the circle 

l Index of lines 

m Index of blocks used for piecewise linearization 

Sets  

D Set of all buses with demand  

G Set of all buses with generation  

L Set of all lines 

N Set of all buses 

Constants  

B Big-M parameter 

sh

ijB  Total line charging susceptance of line ij (p.u.) 

iC  Cost coefficients of generators ($/MWh) 

Cos i  Power factor at bus i 

M Number of blocks used for piecewise linearization 

n Number of sides of a regular polygon to formulate a circle 

NPO  Number of plausible outages (interdiction resources) 

max

iPg  Maximum of active-power magnitude for a generator at bus i (MW) 

max

iQg  Maximum of reactive-power magnitude for a generator at bus i (MVAR) 

min

iQg  Minimum of reactive-power magnitude for a generator at bus i (MVAR) 

R(ij) Receiving bus of line ij 

S(ij) Sending bus of line ij 

max

ijS  Maximum of apparent-power magnitude for line ij (MVA) 

ijY  Admittance of line ij (p.u.) ( )ij ij ijY G jB   

max

iV  Maximum of voltage magnitude at bus i (V) 

min

iV  Minimum of voltage magnitude at bus i (V) 

max

ij  Maximum of voltage-angle difference between bus i and j (Rad) 

min

ij  Minimum of voltage-angle difference between bus i and j (Rad) 

ij  Maximum of each block width for line ij 

Variables  
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iLs  Active-power load shedding at bus i (MW) 

iLsq  Reactive-power load shedding at bus i (MVAR) 

ijP  Active power-flow of line ij (MW) 

iPg  Active power of generator at bus i (MW) 

iPd  Active power demand at bus i (MW) 

ijQ  Reactive power-flow of line ij (MVAR) 

iQg  Reactive power of generators at bus i (MVAR) 

iQd  Reactive power demand at bus i (MVAR) 

iV  Voltage magnitude at bus i (V) 

/ ijZ z  Upper-level decision variable: binary variable that is equal to 0 if line ij is out of 

service and otherwise, is equal to 1 

ijm  Width of the mth angle block of line ij (Rad) 

ij  Voltage-angle difference between bus i and j (Rad) 

ij
 ,

ij
  Positive variables used to reformulate the absolute function  

ijT ,
ijH  Auxiliary variables to linearize the product of binary and continuous variables 

1, ,

, , , , ,

, , , , ,

,

, , ,

,

iij ij i i

i i i iij

ij

ijm j

ij n ij

ij ijm i



    

    



 



 

 Dual variables associated with their corresponding constraints 
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Chapter 6          

            

                      

Multi-period vulnerability analysis of power 

grids under multiple outages: An AC-based 

bilevel optimization approach 

 

 

 

6-1 Introduction 

Energy is a vital commodity in modern societies and power systems play a crucial role in 

providing secure and reliable energy. Protection of the power system as a critical infrastructure 

against different hazards and threats i.e., natural hazards, intentional attacks, and random 

failures [17] has become a growing concern. Furthermore, the interdependencies between 

power systems and communication networks in smart grids are introducing new challenges i.e., 

cyber threats. So, the operators and planners must protect the most vulnerable elements of a 

system under a variety of attack scenarios in order to improve the system security and deploying 

a robust and resilient power system [33]. 

In this context, a key question is which components are critical and must be protected or 

fortified when the protective and financial resources are limited [373]. To this end, it is 

fundamental to develop robust methodologies and tools to assess the vulnerability of a power 

system against external attacks [374]. Hence, the vulnerability analysis and, in particular, 
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prioritizing the vulnerable components result in an effective power system protection with 

limited resources [375]. 

Contingency analysis or N-k contingency assessment is a methodology looking for a set of k 

critical components of the power system whose simultaneous failure would maximize the 

damage, in terms of the amount of involuntary load shedding in the power system. N-k ( 2k 

) contingencies are low-probability events but inherently more severe than N-1 contingencies 

in triggering cascading failures and even blackouts [376]. Therefore, the North American 

Reliability Council (NERC) suggests power system planners and operators considering N-k 

contingency analysis in their planning and operation [377]. The difficulty of N-k contingency 

selection is that it follows the combination formula. It means that for a very modest size power 

system with N=1000, there are 1000 ‘N-1’ contingencies, 499500 ‘N-2’ contingencies, over 160 

million ‘N-3’ contingencies, over 40 billion ‘N-4’ contingencies and so on. So, the number of 

possible N-k contingencies, even for small values of k, makes total enumeration approaches 

computationally impractical in a large-scale interconnected power network [378]. 

Scientists have been developing innovative methods to determine critical components whose 

failures lead to the largest system loss. Generally, there are two different lines of work in the 

literature. Some literature work on the low-order contingencies including single or a small 

number of component failures that have a very high occurrence probability. For instance, the 

N-1 security constraint that all of the regulatory agencies in the world enforce the system 

operators to satisfy it by strict security standards. Within this constraint, the system should 

normally continue to work after any single failure [379]. Analyzing the loss of two elements 

consecutively or N-1-1 contingency analysis is another example of this category [335, 380, 

381]. It should be noted that the reliability concept that defines the ability of the electric power 

system to meet the demand with continuity and an acceptable level of quality, comes under the 

low-order contingencies [22]. 

The second line of works presents not only the low-order but also the high-order contingencies. 

The high-order contingencies include a relatively large number of component failures that have 

a very low occurrence probability but high consequences. The focus of this chapter is on this 

type of assessment i.e. the vulnerability analysis of power systems. The vulnerability can be 

social, organizational, economic, environmental, territorial, physical, and systemic [86, 87]. 

Most studies focus on physical and systemic vulnerabilities. Physical vulnerability represents 

the degree of loss of an element due to external pressure such as natural hazards [88]. In 
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contrast, systemic vulnerability considers the degree of redundancy, functionality, and 

dependency of a system due to the failure of a specific element or an interconnected system 

[89]. This chapter aims to investigate the behavior of the power system i.e. systemic 

vulnerability to identify the critical components under a worst-case scenario such as an 

intentional attack.  

The works can range from analytical approaches (complex network, flow-based, logical, and 

functional methods) to Monte Carlo simulations. A detailed comparison of these approaches is 

recently conducted in [20] (and the references therein). Among them, the optimization-based 

problem can directly lead to promising results without the need to rank the sets of critical assets. 

The application of these approaches is considerably increasing in the complex problems thanks 

to the advent of advanced high-speed multiprocessors with large memory. It makes the problem 

tractable for a realistic power system [340]. 

The interdiction model is at the forefront of the models used to identify the worst N-k 

contingency. It has been developed based on a multilevel optimization problem to assess the 

vulnerability of power systems [341]. A multilevel optimization is a mathematical program 

where an optimization problem contains another optimization problem as a constraint [342]. 

These problems are also known as the hierarchical leader-follower problem or the Stackelberg 

game [343]. The interdiction model basically includes an upper level whose objective is to 

identify exactly k components to maximize the damage (load shedding) in the system and a 

lower level whose objective is mitigating the impacts of attacks and minimizing the damage 

consequences. 

Later, the interdiction model is developed based on two models i.e., bilevel and trilevel 

interdiction models. For instance, Karush-Kuhn-Tucker (KKT) optimality conditions [346] and 

duality theory [347] are used to convert a bilevel attacker-defender model to a one-level 

problem. Arroyo J.M. [348] compared the KKT- and duality-based approaches by introducing 

minimum and maximum vulnerability models. Brown et al. [352] extended the classical bilevel 

interdiction model to a general trilevel defender-attacker-defender model to assign limited 

defensive resources in power systems. Alguacil et al. [353] proposed an approach to allocate 

the defensive resources in a power system to mitigate the vulnerability. Wu et al [354] 

decomposed a planner-attacker-operator model to a master problem and a subproblem using a 

Benders primal decomposition method. Recently, Fang et al. [19, 355] and Che et al. [372] used 

this approach to identify the vulnerability of power grids exposed to natural hazards and the 
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hidden N-k contingencies, respectively and finally, Nemati et al. [382, 383] proposed tri-level 

transmission expansion planning (TTEP) under physical intentional attacks.  

The above-surveyed literature uses the simplified formulation of nonlinear AC optimal power 

flow (ACOPF) i.e., the DC optimal power flow (DCOPF) as the lower level. The DCOPF has 

some drawbacks. Technically, it cannot provide precise information on the power system since 

it ignores reactive power, resistance and losses and fixes the voltage values for the buses. 

Mathematically, restricting the available degrees of freedom (e.g., fixed voltages in DC-based 

method) makes the solution non-optimal and less accurate [359].  

To the best of our knowledge, a few studies considered a real picture of the power grid 

parameters i.e. both active and reactive powers, losses, and voltage profile to assess the 

vulnerability of the power system. Kim et al. [360] used the AC power flow equations and the 

Frank Wolfe algorithm to compute an optimal solution of the problem. However, they assumed 

that attackers are allowed to increase the impedance of transmission lines in the model. 

Modeling component removal needs to introduce binary variables that require different and 

more complicated solution techniques. Recently, a probabilistic N-k model is introduced to 

analyze a probabilistic generalization of the interdiction model using the cutting-plane 

algorithm [378]. They use convex relaxations instead of the DC power flow approximation. 

Generally speaking, the ACOPF is a non-linear and non-convex optimization problem [340] 

which is used as the lower level in this chapter. Considering the ACOPF for each time period 

(t) as the lower level converts the problem to a bilevel mixed-integer nonlinear programming 

(MINLP) problem that is very complicated and challenging to solve. It should be emphasized 

that employing metaheuristic algorithms or non-linear solvers does not guarantee to have a 

global optimum solution [365]. The aim of this chapter is to tackle the new problem and avoid 

the probable local solution for each time period (t). The contributions of the proposed model in 

this chapter are threefold:  

(1) A novel deterministic multi-period AC-based one-level MILP formulation of a bilevel 

MINLP problem is introduced so as to assess the N-k contingency analysis. 

(2) The model considers a real picture of the power grid parameters i.e., both active and reactive 

powers, losses, and voltage profile. 

(3) The planners can decide the level of accuracy by setting the predefined parameters (i.e., n 

and M) that are introduced in the linearization process for each time period (t). 
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The remainder of this chapter is organized as follows. Section 6-2 introduces the multi-period 

AC-based bilevel MINLP problem. Section 6-3 proposes the solution approaches to linearize 

and then, transforming to a one-level MILP problem. Sections 6-4 and 6-5 present the test case 

and the numerical results, respectively. Concluding remarks are finally provided in Section 6-

6. 

6-2 The multi-period AC-based bilevel MINLP problem 

In this section, the mathematical formulation of multi-period AC-based bilevel MINLP problem 

is introduced. The model provides the worst-case scenario under multiple outages that is of 

interest in N-k security assessment. This formulation is based on the following assumptions that 

are commonly used for vulnerability and contingency assessment of a power system [346-348, 

352-354, 384, 385]: 

1. The rational attacker (the worst-case scenario) is considered trying to maximize the damage 

and can disable multiple assets simultaneously and permanently or at least for several hours. 

As a result, the power flow of other lines will be affected. 

2. The power system has two main components i.e., substations or transmissions and 

transformers. Herein, the targeting assets are transmission lines and transformers, because 

they are usually reachable with low or no security to withstand. However, by removing the 

connected lines and transformers of a load bus, it will be spontaneously out of service. 

3. Because two parallel circuits between the buses are usually on the same tower, they are 

modeled as a single line with double capacity. Furthermore, the shunt susceptances of the 

lines are ignored. 

4. A steady-state security model and multi-period scenario are considered where typically, the 

highest load demand forecast is used in each time period (i.e., daily, hourly, etc.).  

5. Herein, the system damage is load shedding, that is, the amount of involuntarily decreasing 

the load demand. In the lower level, we assumed the active and reactive loads are shed 

independently [386]. Admittedly, different objective functions as the system damage can 

be defined based on the interest.  

6. The ratings of transmission lines are not only limited by the power flowing in that line but 

also they are dependent on the conductor material and radius and the weather such as solar 

irradiance, ambient temperature, wind speed, and wind direction. In the following 

formulation, a static thermal rating is used. However, applying the dynamic thermal rating 

in the model is also straightforward. 
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According to the multi-period interdiction (attacker-defender) model in Figure 6-1, the attacker 

as a leader or upper-level problem starts the game with the limited disruptive resources. The 

system operator as a follower or lower-level problem reacts against the set of out-of-service 

assets to mitigate its adverse consequences based on the following formulations whose dual 

variables are shown on top of the corresponding equalities or inequalities: 
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Equation (6-1) shows the objective function that the attacker is trying to maximize with the 

constraint sets (6-2)-(6-14). Equation (6-2) is the upper-level constraint that shows the 

maximum number of outages (k) is fixed. If 
lz is 0, the line l is under attack. Otherwise, it is 

safe. Moreover, note that factor 0.5 is multiplied by the total number of line outages because 

l ij jiz z z   and the line ij is considered twice in the formulation. In the lower-level problem 

(6-3)-(6-14), unlike the previous approaches [346-348, 352-354], the ACOPF is used as the 

operator tool to mitigate the adverse consequences of the outages. Equation (6-3) is the 

objective of the system operator to minimize the damage. The asterisk in (6-1) and (6-3) 

emphasizes that 
iLs  are decision variables of the lower level problem. Equations (6-4) and 

(6-5) are the nodal power balance equations for active and reactive powers, respectively. 

Equations (4-3) and (4-4) represent the line flows of active and reactive powers, respectively. 

Constraints (6-8)-(6-14) enforce the limits of active and reactive power generations, 

transmission line capacity, voltage, and voltage angle, active and reactive load shedding, 

respectively. The above-formulated problem is a bilevel MINLP problem due to the 

 

Figure 6-1. The multi-period AC-based bilevel MINLP problem. 
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nonlinearities in equations (4-3), (4-4) and (4-7). In the following sections, just for the sake of 

simplicity, the superscript “t” has been dropped. 

6-3 Solution methodology 

It should be noted that there will be no guarantee to obtain the global solution due to the non-

convexity non-linearity nature of the proposed approach [387] with a non-linear solver or 

evolutionary approaches [340]. Therefore, we transformed it to one-level MILP problem in two 

steps. First, the lower-level problem is transformed to a MILP problem to avoid any local 

solution. Then, the duality theory [388] is used to have a one-level MILP problem in the second 

step. 

6-3-1 Linearizing lower-level NLP problem 

To linearize the lower-level NLP problem, the phase differences between the bus voltages are 

assumed small enough and the voltage magnitude is close to 1 p.u. for all buses. These 

assumptions are practically acceptable under the normal operating condition to maintain the 

system far from instability [340]. Based on the aforementioned assumptions, the first-order 

approximation of Taylor’s series with respect to the variables , , cos ,sini j ij ijV V    is used for 

nonlinear terms of equations (4-3)-(4-4) (
lz is a constant at this level). Then, the quadratic 

function is linearized based on the proposed method in [363] by using 2M piecewise linear 

(PWL) blocks as below: 
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Where, (2 1) ijm    and 
ijm  are the slope and the value of the mth block of the voltage phase 

difference of transmission line ij (see Figure 6-2). Derivation of equations (6-15) and (6-16) are 

described in the appendix. The appropriate value for 
ij can be 

M


. The absolute function in 

(5-19) is modeled by introducing two positive variables i.e., 
ij
  and 

ij
 . This linearization 

technique of the quadratic function doesn’t need to have binary variables compared to other 

linearization techniques such as the binary expansion theory [364], the special ordered set of 

type 2 (SOS2) [365]. Nevertheless, this technique adds three sets of continuous variables to the 

problem (M+2 variables for each line). Adding binary variables changes the lower-level 

problem to a MILP problem that is impossible to use the duality theory in the next step to have 

a one-level MILP problem [353].  

As can be seen, the last nonlinear constraint of the lower-level problem (i.e., equation (4-7)) 

presents a circle with the radius of max

ijS . This circle is linearized by an n-sided convex regular 

polygon using the following n equations [366]: 

 

Figure 6-2. Piecewise linear approximation of a nonlinear function. 
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In fact, the linearization of (4-7) adds “n” equations for each line. A small n forces more 

restrictions on transmission line capacity and probably leads to the infeasible problem while a 

big n increases the number of equations and simulation time. The appropriate value for n can 

be 64 [340, 365]. Thereafter, the problem is completely a bilevel MILP which can be 

transformed into one-level MILP in the next section using the duality theory [388]. 

6-3-2  Transforming to an equivalent one-level MILP problem 

The duality theory states that every linear programming (LP) problem (the primal problem) has 

another LP problem (the dual problem) that can be derived from it. The dual problem will be a 

maximization problem when the primal problem is a minimization problem and vice versa. 

Furthermore, each variable (constraint) in the primal problem becomes a constraint (variable) 

in the dual problem [388]. So, in order to transform the bilevel max-min problem to a max-max 

problem, the duality theory is used below. Then, the max-max problem is reformulated to a 

one-level max problem as follows. 

1, ,

| |

max max min max min

, , , , ,

, , , , ,

, ,

,

,

, ,

( ) ( )

ij n i

iij ij ij i

i i ii ij

iji

ijm ij ijm i

j

j

i il l ij l l ij i i i D i i i D

l L l L i NB i NB

i i ii ii i i i i
z

i G i G i G i NB i NB

z G z B Pd Qd

Max Pg Qg Qg V V
   

    
 
   

 

     

    

 

   

    

    

    

   

   

a

1

1

m x

, ,

2
sin ( )

M

ij ijm ij

l L l L l L m

ij l n lS
n


    

   

 
 
 
 
 
 
 
    
 

 
  

 



  

  (6-21) 

Subject to: 

 
,

0.5 (1 ) ; 0,1 ,ij ij

i j N

z k z i j N


        (6-22) 

1

,

2 2 ( 1)
sin s 0in

ij

l

n

ki

kc

P

cl

kc kc

n n

 
 



     
    

   
 


    (6-23) 

1

,

2 2 ( 1)
cos c 0os

ij

l

Qn

ki

k

cl

c

kc kc

n n

 
 



     
    

   
 


    (6-24) 



Multi-period vulnerability analysis of power grids under multiple outages: An AC-based bilevel optimization approach 

117 

 

| ( ) | ( ) | ( ) | ( )

0
iV

l l ij l l ij l l ij l l ij i

l S l i l R l i l S l i l R l i

iz G z G z B z B     
   

            (6-25) 

0
ijc

l l ij l l ij ijz G z B        (6-26) 

0
ijn

l l ij l l ij ij ij jiz B z G            (6-27) 

|

0
i i GPg

ii 


     (6-28) 

|

0
i i GQg

i ii  


      (6-29) 

0
ij

ij ij



 



      (6-30) 

0
ij

ij ij



 



     (6-31) 

(0.5(2 1) ) 0
ijm

ij ij ij ijm ijm jimm


              (6-32) 

|

1
i i DLs

ii 


     (6-33) 

|

0
i i DLsq

ii 


     (6-34) 

Where the primal variables are shown on top of the corresponding equalities or inequalities. 

This transformation introduces a new nonlinearity to the model i.e., the product of binary and 

continuous dual variables (
l lz  and

l lz  ) in equations (6-21), (6-25)-(6-27). This product can be 

easily linearized using two sets of continuous variables 
lT  and 

lH  [353, 367] that are 

introduced in the previous chapter.  

6-4 Test system 

The IEEE Reliability Test System (RTS) and IEEE 57-bus are used in this chapter. The IEEE 

57-bus test case is only used for comparison. It represents a portion of the American Electric 

Power system (in the U.S. Midwest) and has 57 buses, 7 generators, and 42 loads [389]. Data 

availability makes the IEEE RTS an ideal test case for multi-period bulk power system 

vulnerability analysis. It contains 24 buses, 32 generators, and 38 branches (lines plus 
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transformers) as shown in Figure 6-3. The transmission lines operate at two different voltage 

levels, 132 kV and 230 kV. The system working at 230 kV and 132 kV are represented in the 

upper half and the lower half of Figure 6-3, respectively. Detailed data of the systems can be 

found in [240, 389]. Furthermore, the annual load profile of the IEEE RTS is shown in Figure 

6-4. This profile can be adapted to seasonal patterns. If the first week is assumed the first week 

of the calendar year, then the profile shows the annual peak occurring in the week prior to 

Christmas (winter). If the week number one is assumed to be the first week of August, then the 

annual peak will occur in the month of July (summer) [240]. 

6-5 Numerical results 

The proposed model has been successfully applied to the test systems. In this numerical study, 

the minimum and maximum of the voltage magnitude of buses are assumed to be 0.95 and 1.05 

p.u., respectively [313]. The problems are solved on a laptop running with an Intel Core i7, 2.2 

GHz processor, and 8 GB RAM. The CPLEX solver which uses the branch and cut algorithm 

is employed under GAMS (General Algebraic Modeling System) [390]. Furthermore, the 

 

Figure 6-3. Topology of IEEE 24-bus reliability test systems (RTS). 
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ACOPF function of MATPOWER in MATLAB environment [313] is also used for comparing 

the results. In linearization, it is assumed M=80 and n=64. Larger values for these parameters 

do not change the results [340, 365]. With these assumptions, Table 6-1 shows the comparison 

of statistic data for different test cases. It compares the average elapsed time of the models with 

the different numbers of nonzero elements, single equations, single variables, and binary 

variables. As discussed before, the difficulty of N-k contingency selection is that it follows the 

combination formula. Trendline of the simulation time shows that in the low-order 

contingencies and the orders that the objective function does not change afterward (e.g., k=13 

in the IEEE RTS network), the simulation time is the minimum value while the number of 

samples is increasing (Figure 6-5). 

Table 6-1. Comparison of statistic data of different test cases 

Model statistics 
IEEE 24-bus IEEE 57-bus 

DC-based AC-based DC-based AC-based 

Blocks of equations 12 25 12 25 

Blocks of variables 12 87 12 87 

Nonzero elements 1993 49300 4476 112781 

Single equations 533 6684 1200 15289 

Single variables 512 16153 1157 36994 

Binary variables 68 68 156 156 

Average elapsed time/simulation (min) <1 ~2 ~4 ~23 

 

Figure 6-4. System daily peak loads in one year with highlighted annual peak load. 
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6-5-1 Accuracy of the lower-level problem and its strong duality 

Before proceeding to implement the proposed method on the IEEE RTS network, the accuracy 

of the linearized ACOPF problem in the lower level and its dual problem are investigated. In 

doing so, the exact nonlinear ACOPF using MATPOWER package and proposed linearized 

ACOPF method are compared. The objective function for the ACOPF problem is introduced as 

the total operation cost of the generators in the form of 
i i

i G

c Pg


  [313]. 

For the exact ACOPF and DCOPF models using MATPOWER package, the objective functions 

are 44196 $/h and 41904 $/h, respectively, whereas the objective function is found to be 44322 

$/h using the lower-level problem in this chapter. The results show an error of 5.2 % for the 

exact DC-OPF method and a very small error of 0.3 % for the linearized ACOPF in the lower-

level problem. Furthermore, the objective function is found to be 44322 $/h using its dual 

problem. This result demonstrates the strong duality in the problem where the optimal values 

of the primal and dual problems are equal [367]. 

6-5-2 Comparison between the proposed approach and the previous literature 

The previous literature uses the DCOPF as the operator tool in the lower level problem whose 

objective is minimizing the damage consequences [346-348, 352-354]. It means that the 

 

Figure 6-5. Comparing enumeration-based approach and this approach in the case of simulation time for the 

IEEE RTS network. 
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reactive power, variation of voltage magnitude, power losses, and the line resistance are ignored 

[331]. It also approximated the small angle. It considers that the differences of the voltage angle 

between the neighboring buses i and j are insignificant, that is, sin(θij)≈θij and cos(θij)≈1 [324]. 

Hence, to derive the DC-based approach [346-348, 352-354] for a fair comparison, the 

equations (6-1)-(6-14) are revised based on the above assumptions. So, equations (6-5), (4-4), 

(6-9), (6-11) and (6-14) are ignored and equations (4-3) and (4-7) are reformulated based on 

the assumptions.  

Then, both models are applied to the test cases. The results show that small differences in total 

load sheddings, lead to proposing different critical lines in the IEEE RTS network. For instance, 

when k is 8, the proposed approach and the previous approach [346-348, 352-354] find 6 similar 

critical lines (i.e., 7-8(l11), 11-13(l18), 12-13(l20), 15-21(l25, l26), 16-17(l28), 20-23(l36, l37)) while 

they propose different lines (1-5(l3), 12-23(l21)) and (9-12(l15), 10-12(l17)), respectively as the 

7th and 8th critical lines. In other words, the Jaccard similarity index (JSI) for these two sets of 

lines is 0.6 and the average JSI is 0.9 for this test case.  

The effects of reactive power, losses, etc. are more highlighted in a network under stress (not 

in IEEE 24-bus [391]). So, IEEE 57-bus is selected as the second test case to compare both 

models. Figure 6-6 shows that the objective function (LS) of the previous method in all 

simulations are lower/equal and so, optimistic compared to the proposed AC-based approach. 

It presents the fact that restricting the available degrees of freedom (e.g., fixing voltages in DC-

 

Figure 6-6. Load shedding for IEEE 57-bus as a function of number of outages (k). 
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based method) makes the solution less optimal and accurate [359]. Furthermore, the DC-

proposed critical lines are tested with ACOPF. The results show that the critical lines are not 

the real critical lines. This phenomenon has clearly happened when k is 4 and 5. Figure 6-7 also 

shows five worst-case load shedding scenarios (k=1 to 5) and their related lines based on both 

models. In this network, the average JSI is about 0.6. Note that thanks to the proposed approach 

the calculated load shedding is more accurate (with the same k presents more damage) and also, 

it provides more precise information about the critical lines that is vital for planning and 

remedial actions.  

6-5-3 Multi-period contingency analysis with daily peak loads 

The system daily peak load of the IEEE RTS network (Figure 6-4) is used in the model to find 

out the effects of contingencies over a range of system demand levels (Figure 6-8). It should be 

noted when all lines are out of service, the system operator is forced to shed 1607 MW which 

 

Figure 6-7. The IEEE 57-bus and optimal solutions for k=1 to 5 using both models. 
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is 56% of total demands. The remainders are directly connected to the generators’ buses. The 

method determined that this total possible system load is shed with only 13 simultaneous 

outages. In addition, the results show that the maximum damage is in midweek of the high-

demand season while the minimum load shedding is on weekends of the low-demand season. 

The maximum damages sometimes don’t change significantly with the increase of the outages 

e.g., maximum load shedding of N-7 comparing with N-8 or change significantly e.g., 

maximum load shedding of N-4 comparing with N-5 (68% increase(. This point is very 

important in the intentional attack-based studies where the interdiction resources are limited. 

Last but not least, this network is not N-1 secure. However, it occurs only on the 352nd day of 

the year (see Figure 6-4). This is a hidden N-1 contingency using the previous approaches [23, 

346] because the main reason is the dominant flow of reactive power in that area (lines 

connected to bus 6). Hence, the proposed approach helps the decision makers of the energy 

sector for long-term operation planning in the power system.  

6-5-4 Multi-period contingency analysis with hourly peak loads 

In the next step, this analysis is conducted similarly for the hourly peak loads of the 352nd day 

when the demands are the daily peak load of the year. Figure 6-9 shows the distribution of load 

shedding for the hourly peak loads of the 352nd day. The results show that the maximum damage 

is at around 5 to 7 p.m. while the minimum load shedding is at around 3 to 5 a.m. during the 

night. It is interesting to note that based on the used hourly peak loads, this network is not N-1 

 

Figure 6-8. Effects of the contingencies with daily peak loads. 
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secure for hours between 4-7 p.m. when the hourly load profile (see Figure 6-4) has a peak. 

This information is essential for the decision makers of power system security sectors and 

operators making a robust and fast remedial action to protect the power system. Furthermore, 

operators can use this approach for a day‐ahead steady‐state security assessment. 

The model allows having critical lines for each contingency and time. Table 6-2. Outcomes of 

the proposed model when the demand of the buses is the annual peak load. presents the critical 

lines and the consequences when the demand for the buses is the annual peak load. In this 

topology, the critical lines are the lines removing them leads isolating load buses in low-order 

contingencies (e.g., Figure 6-10(a)). With increasing k, the model tries to separate the 

generation zone from the load zone. The generation zone of this topology is in 230 kV area 

where the generation capacity is much more than the required demands. Figure 6-10 (b) shows 

that the lines l7, l21, l22, and l23 are the critical lines where removing them separates two zones. 

In the higher order of contingency, the model suggests removing all of the efficacious lines 

between generation buses and demands. The efficacious lines are the lines that removing them 

increases the load shedding. For instance, line 27 in Figure 6-10(c) is not effective because the 

demand is much more than the generation capacity in bus n15. On the contrary, bus n18 has much 

more generation capacity than the demand in the generation zone of Figure 6-10 (c). Therefore, 

 

Figure 6-9. Effects of the contingencies with hourly peak loads. 
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removing lines in that zone is not effective. To summarize the results, according to the 

simulation results, the potential critical lines are radial lines (e.g., l11), parallel lines (e.g., l25 

and l26, l36, and l37) and the lines connecting the generation to demand zones in a nearly 

centralized generation such as IEEE RTS. 

Table 6-2. Outcomes of the proposed model when the demand of the buses is the annual peak load. 

k Critical lines 
Load shedding 

(MW) 

Simulation time 

(Min) 

1 l10 2 0.03 

2 l29, (l36, l37)* 309 0.19 

3 l11, (l25, l26)*, l28 405 0.47 

4 l7, l21, l22, l23 526 3.66 

5 l21, l22, (l25, l26)*, l28, (l36, l37)* 883 2.60 

6 l18, l20, l21, (l25, l26)*, l28, (l36, l37)* 1204 3.25 

7 l11, l18, l20, l21, (l25, l26)*, l28, (l36, l37)* 1374 2.82 

8 l3, l11, l18, l20, l21, (l25, l26)*, l28, (l36, l37)* 1377 1.80 

9 l11, l18, l20, l21, l23, l24, (l25, l26)*, l29, (l36, l37)* 1430 2.22 

10 l1, l4, l5, l11, l15, l17, l18, (l25, l26)*, l28, (l36, l37)* 1469 1.11 

11 l2, l3, l4, l5, l11, l15, l17, l18, (l25, l26)*, l28, (l36, l37)* 1552 1.07 

12 l2, l3, l4, l5, l11, l18, l20, l21, (l25, l26)*, l28, l29, (l36, l37)* 1552 0.60 

13 l2, l3, l4, l5, l11, l15, l17, l18, l23, l24, (l25, l26)*, l29, (l36, l37)* 1607 0.16 

* The lines in the parentheses are the parallel lines between two nodes. 

 

6-6 Conclusion 

 A novel multi-period AC-based approach is presented to analyze N-k contingencies in order to 

enhance the resilience of a bulk power system under multiple outages. This method is based on 

the Stackelberg game theory which includes an upper level whose objective is to identify 

exactly k components to maximize the damage (load shedding) in the system and a lower level 

whose objective is mitigating the impacts of attacks and minimizing the damage consequences. 

Unlike the literature, in order to provide a more precise and real picture of the reactive power 

flow, losses as well as voltage profile, ACOPF is used in the lower-level problem as the 

operator’s (defender’s) tool. The resulting formulated problem is an AC-based bilevel MINLP 

problem in each time. To guarantee a globally optimal solution, The formulated problem is 

linearized and recast to the one-level MILP problem using the linearization techniques and the 

duality theory. The linearized ACOPF shows a very small error of 0.3% by assuming the 

predefined linearization parameters i.e., M=80 and n=64. The multi-period analysis is 
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conducted with hourly and daily peak loads of the IEEE RTS. The method presents load 

shedding and the critical lines for each contingency over a range of system demand levels of 

this test system. Furthermore, the results show that in the congested systems especially where 

the reactive power flows predominate on some lines or buses such as cables or bus 6 in this 

case, the assessment cannot be adequately conducted only by the active power flows.  

  

 

Figure 6-10. Topology of IEEE RTS under different contingencies, (a) N-2 (b) N-4 (c) N-13. 
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Chapter appendix: Nomenclature 

Indices  

i,j Indices of buses 

kc Index of regular polygon for linearizing the circle 

l Index of lines 

m Index of blocks used for piecewise linearization 

Sets  

D Set of all buses with a demand  

G Set of all buses with a generation  

L Set of all lines 

NB Set of all buses 

T Set of time (days or hours) 

Constants  

B Big M parameter 

ic  
cost coefficients of generators ($/MWh) 

k  Number of outages (interdiction resources) 

M Number of blocks used for piecewise linearization 

n Number of sides of a regular polygon to formulate a circle 

N Number of assets 

max

iPg  
Maximum magnitude of active power of generators at bus i (MW) 

max

iQg  
Maximum magnitude of reactive power of generators at bus i (MVAR) 

min

iQg  
Minimum magnitude of reactive power of generators at bus i (MVAR) 

R(l) Receiving bus of line l 

S(l) Sending bus of line l 

max

ijS  
Maximum magnitude of apparent power of line ij (MVA) 

max

iV  
Maximum magnitude of voltage magnitude at bus i (V) 

min

iV  
Minimum magnitude of voltage magnitude at bus i (V) 

ijY  Admittance of line ij ( )
ij ij ij

Y G jB   

max

ij  
Maximum of voltage angle difference between bus i and j (Rad) 

min

ij  
Minimum of voltage angle difference between bus i and j (Rad) 

ij  
Maximum of each block width for line ij 

Variables  
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lH , lT  
Two sets of continuous variables to linearize the product of binary and continuous 

dual variables 

t

iLs  
Active power load shedding at bus i (MW) in time t 

t

iLsq  
Reactive power load shedding at bus i (MVAR) in time t 

t

ijP  
Active power flow of line ij (MW) in time t 

t

iPg  
Active power of generators at bus i (MW) in time t 

t

iPd  
Active power demand at bus i (MW) in time t 

itV  
Voltage magnitude at bus i (V) in time t 

t

ijQ  
Reactive power flow of line ij (MVAR) in time t 

t

iQg  
Reactive power of generators at bus i (MVAR) in time t 

t

iQd  
Reactive power demand at bus i (MVAR) in time t 

/ t

lZ z  
Upper level decision variable / Binary variable in time t that is equal to 0 if line l is 

out of service and otherwise, is equal to 1 

ijt  
Voltage angle difference between bus i and j (Rad) in time t 

ijm  
Width of the mth angle block of line ij (Rad) 

ij


, ij


 
Positive variables used to eliminate the absolute function  

1, ,

, , , ,

, , , , ,

,,,

, , ,

iij ij i

i i ii ij

i ij

ijm j

ij n ij

ij ijm i



   

    

 

 



 

 
Dual variables that are shown on top of the corresponding equalities or 

inequalities 
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Chapter 7          

            

                      

Adaptive Robust Vulnerability Assessment 

of A Power System: A Trilevel OPF-based 

Optimization Approach 

 

 

 

7-1 Introduction 

Nowadays, more than ever, electricity has become a key commodity for any growing society. 

Any failure or destruction of its infrastructure has a considerable impact on safety, security, 

economy, health, and the well-being of a community [2]. For instance, three independent events 

in Iran, North America, and Italy hit a total of 128 million people in 2003. More recently, 670 

million Indian people and 70 million Turkish people were temporarily deprived of electricity 

in 2012 and 2015, respectively [3-6]. In the USA, the annual cost of weather-related blackouts 

ranges from $20 to $55 billion [319]. Hence, the vulnerabilities of these power systems should 

be minimized to cope with several sources of disruption such as natural hazards, intentional 

attacks, and random failures [20].  

Scientists have been developing innovative methods to assess the system vulnerability i.e. to 

determine critical components whose failures lead to the largest system loss [322]. These works 

can range from analytical approaches (such as complex network, flow-based, logical, and 

functional methods) to Monte Carlo simulations. Complex network analysis (CNA) [110] has 
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been developed recently for vulnerability analysis of several human-made infrastructures such 

as power systems and natural gas networks. In the pure CNA for a power system, each node 

represents a power-system bus and each edge represents a transmission line. The pure CNA 

neglects weight and direction and all the nodes and edges are identical [137]. In this context, 

several centralities are introduced such as flow betweenness centralities [138], delta centrality 

(or Δ centrality) [139], and combined degree–betweenness centrality [140]. The pure CNA also 

ignores the physical properties, electrical characteristics, and operational limits of power 

systems which limits the scope of the analysis [137, 147, 149]. Researchers have updated the 

“pure” centralities to the “extended” centralities in which some of the power system 

characteristics are taken into account. Some studies consider the physical resistance and 

impedance of lines and cables as the weight on the edges [17, 151]. Others introduce the 

reliability characteristics of transmission networks [152]. The P-Q network decomposition 

employs active power flow, the capacity of the generator, and the load [2, 137, 153]. The CNA 

originally ignores the physics of the power system operation, an issue that was partially 

overcome with extended CNA. Moreover, different power flow-based methods are developed 

for vulnerability analysis which can intrinsically and completely consider physical features of 

the power system [15, 194]. A detailed comparison of power-flow based methods and other 

novel approaches are recently conducted in [20, 23] (and the references therein).  

Among the state-of-the-art approaches for the vulnerability assessment, the optimization-based 

approaches lead to promising results without the need to rank the sets of critical assets. The 

application of optimization-based approaches to the power system operation problems is 

considerably increasing, especially with the advent of advanced high-speed multiprocessors 

with large memory [340]. The interdiction model as a multilevel optimization problem is at the 

forefront of the models used to assess vulnerabilities [392, 393]. The interdiction model 

basically includes an upper-level problem whose objective is to identify critical components so 

as to maximize the damage (load shedding) in the system and a lower-level problem whose 

objective is mitigating the impacts of attacks and minimizing the damage consequences. The 

interdiction model is developed based on bilevel and trilevel programs. For instance, Karush-

Kuhn-Tucker (KKT) optimality conditions [346] and duality theory [347] are used to convert a 

bilevel attacker-defender optimization problem to an equivalent one-level optimization 

problem. Arroyo J.M. [348] compared the KKT- and duality-based approaches by introducing 

minimum and maximum vulnerability models. Brown et al. [352] extended the classical bilevel 

interdiction model to a general trilevel defender-attacker-defender model to assign limited 
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defensive resources in power systems. Alguacil et al. [353] proposed an approach to allocate 

the defensive resources in a power system for mitigating the vulnerability. Wu et al [354] 

decomposed a planner-attacker-operator model into a master problem and a subproblem using 

a primal Benders decomposition method. Recently, Fang et al. [19, 394] and Che et al. [372] 

used this approach to identify the vulnerability of power systems exposed to natural hazards 

and the hidden N-k contingencies, respectively. Sayed et al. [356] use a trilevel optimization 

model and the nested column and constraint generation (NC&CG) algorithm to assess 

vulnerability in the integrated electric-gas system (IEGS). Also, an ACOPF-based bilevel 

optimization approach for vulnerability assessment of a power system and the multi-period 

vulnerability analysis of power systems under multiple outages are conducted in [25] and [24], 

respectively.  

The above-surveyed literature ignored the uncertainty of parameters. Due to the increasing 

uncertainty caused by the dramatic increase of intermittent renewable energy sources (RESs) 

such as wind power [395], together with the load forecast errors, and price-responsive demands 

[396], the traditional security assessment may not provide a holistic and optimal solution for 

the power system operation under uncertainty [397]. However, such uncertainties may 

jeopardize the operational security of power systems. In order to guarantee the operational 

security of power systems with such uncertainties, developing security models and tools for 

immunizing the system against worst uncertainty realizations has attracted growing attention in 

recent years [398]. 

In the literature, there are essentially two approaches to tackle uncertainty in an optimization 

problem, namely, stochastic programming (SP) and robust optimization (RO) [399, 400] 

approaches. By employing SP and scenario-based approaches, we explore a few representative 

scenarios using the probability distributions. So, to obtain a high-quality solution, a large set of 

discrete scenarios is needed which may cause computational intractability if large systems are 

considered [401]. In contrast, the RO approach only defines the uncertainty in terms of bounded 

intervals using an uncertainty set, rather than a hard-to-obtain probability distribution of the 

uncertain data, and hence, the problem maintains at a moderate size [397, 402]. The RO 

approach immunizes the solution against all realizations of the uncertain data within a 

deterministic uncertainty set and hence that might be conservative in comparing with the SP 

approach. As the main aim of vulnerability analysis is to guarantee the supply of demands in 

all situations, a conservative solution is suitable for this type of problem [403]. 
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The RO-based analysis has been attracting considerable attention for various applications in the 

power-system operation area. For instance, the RO-based analysis is used for expansion 

planning problems such as transmission network expansion planning under uncertainties of 

renewable generation and load [400, 404], coordinated investment in transmission and storage 

systems [402], the generation and transmission expansion planning [399]. It is also employed 

in finding the optimal unit commitment decision taking into account uncertainty (see these 

references as good examples: contingency-constrained unit commitment in [405], robust unit 

commitment with wind power and pumped hydro storage proposed in [406], an adaptive robust 

optimization (ARO) approach for unit commitment with recourse developed in [397], and 

finally an adaptive robust AC-based unit commitment model in [407]). Recently, a defender–

attacker–defender model is proposed to deal with the power grid protection problem under 

uncertain attacks using the analytic hierarchy process [9]. Moreover, authors in [408] introduce 

several application areas where the ARO concepts are used.  

Accordingly, in the current chapter, we propose a two-stage ARO model for the vulnerability 

analysis of power systems, where the first-stage, or the here-and-now decision, is the leader 

decision subject to a number of plausible outages (NPOs) and the second-stage, or the wait-

and-see decision, is the dispatch decision which is robust against the worst case of all possible 

uncertainty realizations [409]. In doing so, the DC optimal power flow (DCOPF) is used in the 

lower-level defender problem. The uncertainty realization and the attacker model are modeled 

as the middle-level and the upper-level problems, respectively. The proposed trilevel model is 

a mixed-integer trilevel nonlinear program (MITNLP) that is non-convex and NP-hard [361]. 

To solve the proposed MITNLP model, we first replace the lower-level defender problem with 

its dual program using the duality theory. By replacing the lower-level problem with its dual 

program, the MITNLP is converted to a single-level mixed-integer nonlinear program 

(MINLP). The nonlinear terms in the MINLP model are then linearized using the Big-M 

technique [362]. We also prove a lemma which improves the computational tractability of our 

proposed final MILP model. This gives us the final mixed-integer linear program (MILP) which 

can be solved efficiently using state-of-the-art solvers such as the Cplex. The main contributions 

of the current chapter are summarized below:  

1. An adaptive robust trilevel optimization model is introduced to assess the vulnerability of 

power systems. The proposed optimization model is robust against all possible realizations 

of uncertain power generations and load demands. Moreover, the level of robustness is 

controlled using physically-based budget constraints. 
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2. Since the proposed model is a MITNLP that is non-convex and NP-hard, an alternative 

MILP model is developed using the Big-M technique. We also prove a lemma which can 

be used to improve the computational tractability of our proposed final MILP model. The 

proposed final MILP model can be solved efficiently using off-the-shelf solvers such as 

Cplex. Numerical results using the IEEE 24-bus system and the modified model of Iran’s 

transmission network show the promising performance of our proposed MILP model.  

The remainder of this chapter is organized as follows. Section 7-2 introduces assumptions, the 

two-stage adaptive robust vulnerability assessment, and the uncertainty set. The formulation of 

the proposed trilevel optimization model will be presented in Section 7-3. Section 7-4 proposes 

the mathematical techniques to transform the original MITNLP model to an equivalent MILP 

model. We also prove a lemma which improves the computational tractability of our proposed 

final MILP model. Sections 7-5 presents the test cases and the numerical results. Concluding 

remarks are finally provided in Section 7-6. 

7-2 Problem Description 

7-2-1 Assumptions 

For the sake of clarity, the main modeling assumptions in this chapter are summarized below 

[346-348, 352-354, 407]: 

1. The uncertain parameters are the maximum power of generation units and bus loads. 

Furthermore, minimum up/down time constraints are not considered for simplicity. 

2. The rational attacker has the intention to maximize the damage and disable multiple assets 

simultaneously and permanently or at least for several hours. As a result, if the attack is 

achieved, the power flow of other lines will be also affected. 

3. We assume that the targeting assets are transmission lines and transformers, as they are 

usually reachable. For instance, transmission lines are out of the substation fences with low 

or no security to withstand. By removing the attacked transmission lines and their connected 

transformers, all loads which are only supplied by the attacked lines will be out of service. 

4. Because two parallel circuits between the buses are usually on the same tower, they are 

modeled as a single line with double capacity. 

5. Our proposed MILP models the steady-state security constraints following the attack. This 

chapter employs the DC optimal power flow (DCOPF) in the lower-level problem as the 

operator’s (defender’s) tool to mitigate the attack’s adverse consequences. 



Adaptive Robust Vulnerability Assessment of A Power System: A Trilevel OPF-based Optimization Approach 

134 

 

6. The system damage is measured by the level of load shedding which is the amount of load 

that cannot be supplied due to the physical constraints of the power system. However, 

different objective functions of interest can be used in our MILP model to measure the 

system damage following an attack. 

7-2-2 Uncertainty Characterization 

A pivotal component of an ARO model is the definition of uncertainty set, which determines 

how much uncertainty is considered in the model [410]. In this chapter, we employ the most 

commonly used static uncertainty sets, i.e., the budget-based uncertainty set [397]. It is a 

polyhedral uncertainty set which assigns an interval for each uncertain parameter. Such 

uncertainty set is introduced by the following constraint [397, 407]: 

1

ˆ ˆ; [ , ]
ˆ

K
k k

k k k k k

k k

d d
d d d d d

d


       (7-1) 

Where kd  is the kth component of the uncertain-parameter vectors (the maximum power of 

generation units and bus loads) and K is the total number of buses that have uncertain power 

generation or load. The d  is the expected value of the uncertain parameter, d̂ is the variation 

from the expected value and   is the “budget of uncertainty”. This inequality restricts the total 

variation of the uncertainty realization from the expected value [410]. When 0  , for all nodes

d d , which means no uncertainty is considered. With increasing the budget of uncertainty, 

the size of the uncertainty set enlarges. This means that the resulting robust solutions are more 

conservative considering a larger total deviation from the expected values and accordingly, the 

power system will be immunized against a higher degree of uncertainty [397]. When K  , the 

uncertainty set will be the entire hypercube defined by the intervals for each kd . In this chapter, 

to model the uncertainty of both loads and power generations, two independent uncertainty sets 

are employed. 

7-2-3 The Two-Stage Adaptive Robust Vulnerability Assessment 

This chapter aims to assess the vulnerability of power systems capturing uncertainty in 

(renewable) power availability at generation units and in power consumption at load buses. 

From the safety point of view, the results of a model must be reliable in all circumstances, 

especially, with respect to uncertainties [409]. To ensure a robust and reliable result, an 

approach based on the RO is proposed for vulnerability analysis of power systems. The robust 

optimization approach determines a feasible solution to an optimization problem which is 
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optimal for the worse-case realization of the uncertain parameters within the uncertainty set 

[401, 409]. Figure 7-1 shows the two-stage nature of the decisions in our proposed model. In 

this model, a set of first-stage decisions are made before the realization of uncertainty 

(attacker’s decisions) and a set of second-stage decisions are made once the uncertain 

parameters are revealed (defender’s decision). Accordingly, our proposed model is fully 

adaptive to the specific realization of uncertainties. This two-stage model comprises three 

levels: 

1. The upper level models the attacker as the leader prior to the uncertainty realization. The 

attacker maximizes the load shedding subject to the limited number of plausible outages.  

2. The middle level represents the uncertainty realization in the worst possible manner within 

an uncertainty set, and thus it seeks to maximize the load shedding. 

3. The lower level models the defender as the follower and reacts against the set of out-of-

service assets to mitigate the attacker’s adverse consequences considering the worse-case 

realization of uncertain parameters from the middle-level problem. 

The proposed ARO-based vulnerability assessment for power systems is illustrated in Figure 

7-1. In Section 7-3, the mathematical formulation of the proposed model as a mixed-integer 

trilevel nonlinear program (MITNLP) is presented. This formulation is based on the 

assumptions in Subsection 7-2-1. Then, this MITNLP is transformed into a single-level MILP 

in Section 7-4 using a series of proposed mathematical techniques [367]. 

 

Figure 7-1. The proposed ARO-based vulnerability assessment for power systems in the current chapter. 
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7-3 The Adaptive Robust Attacker-Defender Problem 

In this section, the mathematical formulation of the proposed adaptive robust attacker-defender 

problem is presented. This leader-follower interaction between the attacker and the defender 

considering the worse-case realization of uncertain parameters is modeled as the trilevel 

optimization problem (7-2)-(7-16). Dual variables associated with the constraints of the lower-

level problem are shown inside parentheses. 

**

i
Z

i N

Maximize Ls


                    (7-2) 

subject to:  
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The optimization problem (7-2)-(7-16) comprises three optimization levels: (i) the upper level 

(7-2)-(7-4), which is associated with the attacker; (ii) the middle level (7-5)-(7-9), which 
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characterizes the worse-case realization of the uncertainties to maximize the damage; and (iii) 

the lower level (7-10)-(7-16), which models the system operator (i.e. defender) to mitigate the 

damage consequences. This problem is a mixed-integer trilevel nonlinear program (MITNLP) 

which is non-convex and NP-hard. Equations (7-3)-(7-4) models the limited number of 

plausible outages by the attacker. Since
ij jiz z , factor 0.5 is multiplied by the total number of 

line outages to avoid double consideration in our formulation. If 
ijz  is 0, the line ij is under 

attack, otherwise, it is safe.  

As previously mentioned, two sources of uncertainty are considered in this chapter:  

(i) The available generation capacity modeled as 
iPg : The level of availability of power 

generation varies based on several conditions such as equipment failures or the weather 

conditions for renewable units [407]. Constraint (7-6) ensures that this level will be in an 

interval. The total deviations of the available capacities with respect to the expected ones are 

bounded in constraint (7-7) by the uncertainty budget for generation units
gDR ;  

(ii) The level of loads for the load buses modeled as
iPd : Constraints (7-8) and (7-9) introduce 

an interval and the total deviations of the available loads, respectively. To adjust the budget of 

uncertainty, we employ integer values which are the number of generation units and load buses 

for 
gDR and 

dDR , respectively. 

In the lower-level defender problem (7-10)-(7-16), the DCOPF is used as the defender tool to 

mitigate the adverse consequences of the outages. Equation (7-10) is the objective function of 

the defender to minimize the damage. The asterisk in (7-2), (7-5), and (7-10) emphasizes that 

iLs  is decided in the lower-level problem. Equation (7-11) is the nodal power-balance equation 

for active power. Equation (7-12) represents the line flow calculation. Constraints (7-13)-(7-14) 

enforce the limits of active power generation and transmission line capacity, respectively. The 

voltage angles are limited using (7-15). Furthermore, active load shedding is limited to the 

maximum available active load at each bus in (7-16). To solve our proposed MITNLP model 

(7-2)-(7-16), in the next section we transform the MITNLP to a MILP which is computationally 

more tractable than the original MITNLP. We then prove a lemma which improves the 

computational tractability of our proposed final MILP model. This final proposed MILP model 

is then solved using the off-the-shelf Cplex solver. 

 



Adaptive Robust Vulnerability Assessment of A Power System: A Trilevel OPF-based Optimization Approach 

138 

 

7-4 Solution methodology 

In this section, the proposed MITNLP in the previous section is transformed to a single-level 

MILP using the “dualize-and-combine” technique in two steps: First, the lower-level min 

problem is recast to a max problem by the duality theory [411]; then the whole trilevel model 

is transformed to a single-level MILP using several proposed linearization techniques. We also 

prove a lemma which improves the computational tractability of our proposed final MILP 

model.  

7-4-1 The lower-level problem and the duality theory 

The duality theory states that every linear programming (LP) problem (the primal problem) has 

another LP problem (the dual problem) that can be derived from it. The dual problem will be a 

maximization problem when the primal problem is a minimization problem and vice versa. 

Furthermore, each variable (constraint) in the primal problem becomes a constraint (variable) 

in the dual problem [411]. The dual optimization problem of the LP problem (7-10)-(7-16) is 

derived below. 

max max

|
, , , ,

,
, , ,

( ) ( ) ( )
i ii ij

iji i ij

i ii ij ii i i D i ij iij
i N i G i j N i N

Maximize Pd Pg S
   

   

       

   

 
      

 
      (7-17) 

subject to: 0; , : ( )iji ij i jj ii j N P                         (7-18) 

 0; : ( )ii ii G Pg                      (7-19) 

 

| ( ) | ( )
, ,

; , : )0 (iij ij ij ij i i

i j N i

ij ij

S ij i
N

R i
j
ij

z i j NB z B   


 



                 (7-20) 

 1; : ( )i i ii D Ls                      (7-21) 

 , , 0, 0, 0, 0, 0, 0; ,i ii ij iij ij ij
free free i j N                   (7-22) 

Where the primal variables associated with the different constraints of the dual optimization 

problem are shown in parentheses. 

7-4-2 Transforming the MITNLP to a single-level MILP 

We first replace the LP problem (7-10)-(7-16) with its dual optimization problem derived in 

(7-17)-(7-22). Then, the optimization problem (7-2)-(7-16) is converted to a trilevel max-max-

max problem. This trilevel max-max-max problem can be written equivalently as the single-

level MINLP model in (7-23)-(7-34).  
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max max

|
, , ,

,
, , , ,

, , ,

( ) ( ) ( )

i ii ij

iji i ij

i ii ij ii i i D i ij iijZ Pg Pd
i N i G i j N i N

Maximize Pd Pg S

   

   

       

   

 
      

 
            (7-23) 

subject to:  
,

0.5 (1 ) ; 0,1 ,ij ij

i j N

z NPO z i j N


                   (7-24) 

  ; 0,1 ,ij ji ijz z z i j N                   (7-25) 

 ˆ ˆ ;i i i i iPg Pg Pg Pg Pg i G                     (7-26) 

 
;

ˆ
gi i

i G i

Pg Pg
DR i G

Pg


                  (7-27) 

 ˆ ˆ ;i i i i iPd Pd Pd Pd Pd i D                    (7-28) 

 
;

ˆ
di i

i D i

Pd Pd
DR i D

Pd


                  (7-29) 

 0; , : ( )iji ij i jj ii j N P                         (7-30) 

 0; : ( )ii ii G Pg                      (7-31) 

 

| ( ) | ( )
, ,

; , : )0 (iij ij ij ij i i

i j N i

ij ij

S ij i
N

R i
j
ij

z i j NB z B   


 



                 (7-32) 

 1; : ( )i i ii D Ls                      (7-33) 

 , , 0, 0, 0, 0, 0, 0; ,i ii ij iij ij ij
free free i j N                   (7-34) 

The nonlinear terms in the MINLP model are |i i i DPd  , |i i i DPd  , and i iPg  (products of two 

continuous variables in (7-23)), 
ij ijz   (products of integer and continuous variables in (7-32)) 

and absolute values in (7-27) and (7-29). Below, we propose different linearization techniques 

to linearize these nonlinear terms:  

The nonlinear terms |i i i DPd  , |i i i DPd  , and i iPg : 

For linearizing the bilinear terms in the objective function, we observe the following properties 

of the LP problem (7-17)-(7-22).  

 

Property 1: The feasibility set of the LP problem (7-17)-(7-22) is independent from the 
iPg  

and 
iPd .  
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Property 2: The LP problem (7-10)-(7-16) is an always-feasible optimization problem.  

Now we define the polyhedron { , , , , , , , | (7 18) (7 22)}.i i i i iji ij ijU             Using 

Property 1 and Property 2, no matter what the values of 
iPg  and 

iPd , the maximum over U 

of the objective function (7-17) occurs at the extreme points of polyhedron U. On the other 

hand, we know that U has a finite number of extreme points. If we denote the extreme points 

of U as 𝑢𝑝 (𝑝 = 1, . . . , 𝑛𝑝), the value function of LP problem (7-17)-(7-22) can be written as 

the following piecewise linear function:  

|

max max

,

( ) { ( )

( ) ( ) , 1, , }

,
pp
ii i i i i D

i N

p p pp p
ii ij ii ij i pij

i G i j N i N

Pg Pd Max Pd

Pg S

V

n

F

p

 

     





  

  

    



  
 (7-35) 

This means that the VF(
iPg ,

iPd ) is the pointwise maximum of a set of affine functions as 

shown in (7-35). Now, in Lemma 1 below, we show that the VF(
iPg ,

iPd ) is a convex function 

in 
iPg  and 

iPd . 

Lemma 1: The VF(
iPg ,

iPd ) is convex and its maximum with respect to 
iPg  and 

iPd  

occurs at the extreme points of 
iPg  and 

iPd  variables.  

Proof: The VF is the pointwise maximum of a set of convex (or affine) functions. And it is 

straightforward to show that the pointwise maximum of a set of convex functions is a convex 

function. Since, VF(
iPg ,

iPd ) is a convex function in 
iPg  and 

iPd , its maximum with respect 

to 
iPg  and 

iPd  occurs at the extreme points of 
iPg  and 

iPd  variables [412]. 

 ∎ 

Figure 7-2 below shows a simple illustration of function VF(
iPg ,

iPd ) in two-dimensional 

space. The x represents a general one-dimensional decision variable. The actual value function, 

VF(
iPg ,

iPd ) is an extension of the function in Figure 7-2 in the multi-dimensional space. The 

black lines represent the affine functions in (7-35), and the red line represents the final convex 

piecewise function.  
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By substituting (7-35) in our trilevel max-max-max problem, we have:  

,
( , )i i

Z Pd Pg
MaximizeMaximizeVF Pd Pg   (7-36) 

As we can see in the lower-level optimization problem (7-36), we maximize a convex function 

VF(
iPg ,

iPd ) over the box constraints ˆ ˆ
i i i i iPg Pg Pg Pg Pg     and 

ˆ ˆ
i i i i iPd Pd Pd Pd Pd    . This means that the optimal solutions happen at the upper or lower 

bounds of these box constraints as discussed above. Accordingly, an optimal solution of the 

middle problem is when the uncertain parameters reach either upper or lower bounds. Using 

Lemma 1, we write the 
iPg  and 

iPd  variables using binary variables as follows [407]: 

ˆ ˆg g

i i i i i iPg Pg Pg Pg       (7-37) 

ˆ ˆd d

i i i i i iPd Pd Pd Pd       (7-38) 

Where , , , {0,1}g g d d

i i i i       . Based on these equations, the uncertain parameters reach 

their upper bounds with ( ) 1d g

i
  , their lower bounds with ( ) 1d g

i
  or meets its forecasted 

value when ( ) ( )d g d g

i i   . By substituting (7-37) and (7-38) in the nonlinear terms |i i i DPd  ,

 

Figure 7-2. A simple illustration of value function VF( Pg
i , Pd

i ) in two-dimensional space. 
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|i i i DPd  , and i iPg , the bilinear terms d

i i   , d

i i   , 
d

i i  
, 

d
i i  

, 
g

i i  
, and 

g

i i  
 will 

appear.  

The bilinear terms: 

The bilinear terms d

i i   , d

i i   , 
d

i i  
, 

d
i i  

, 
g

i i  
, and 

g

i i  
 and the term 

ij ijz  in 

constraint (7-32) can be linearized using two auxiliary variables T  and H  [353, 367, 368]. For 

instance, 
ij ij ijT z   can be linearized as follows: 

ij ij ijT H     (7-39) 

1 1ij ij ijB z T B z     (7-40) 

1 1(1 ) (1 )ij ij ijB z H B z       (7-41) 

Where,
1B  is a suitably large constant.  

Absolute values in (7-27) and (7-29): 

To linearize the general formulation of the budget-based uncertainty set in (7-1), the definitions 

in (7-37), and (7-38) are substituted in (7-1). So we will have: 

;g g g

i i

i G

DR i G  



      (7-42) 

;d d d

i i

i D

DR i D  



      (7-43) 

Then, to remove the absolute value terms in (7-42) and (7-43), we can replace (7-42) and (7-43) 

with (7-44)-(7-45) and (7-46)-(7-47), respectively. 

( ) ;g g g

i i

i G

DR i G  



      (7-44) 

1;g g

i i i G        (7-45) 

( ) ;d d d

i i

i D

DR i D  



      (7-46) 

1;d d

i i i D        (7-47) 

Where , , , {0,1}g g d d

i i i i       . 



Adaptive Robust Vulnerability Assessment of A Power System: A Trilevel OPF-based Optimization Approach 

143 

 

7-4-3 Our final proposed MILP model 

Our final proposed MILP model for the vulnerability assessment of power systems under 

uncertainties is set out in (7-48)-(7-65) below. 

| | 1 | 2

| 3 | 4 |

max, , , , ,
| 5 | 6, , , , ,

,

ma

ˆ ˆ( ) ( )

ˆ ˆ( )

ˆ ˆ( ) ( )

( )

ii ij

i iji i ij

ii i D i i i D i i i D i

i N i N

ii i D i i i D i i i G

i N i G

Z Pg Pd
iji i G i i i G i ijij

i G i j N

i i i

Pd Pd T Pd T

Pd T Pd T Pg

Maximize
Pg T Pg T S  

    

 



 

  

  

 

  

 

 

 

  

  

   

 

 

 

 
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i N

 
 
 
 
 
 
 
 
 
 


 (7-48) 

s.t.:  
,

0.5 (1 ) ; 0,1 ,ij ij

i j N

z NPO z i j N


                    (7-49) 

  ; 0,1 ,ij ji ijz z z i j N                    (7-50) 

 ( ) ;g g g

i i

i G

DR i G  



      (7-51) 

 1;g g

i i i G        (7-52) 

 ( ) ;d d d

i i

i D

DR i D  



                    (7-53) 

 1;d d

i i i D                       (7-54) 

 0; ,iji ij ij i j N                           (7-55) 

 0;ii i G                        (7-56) 

 

|
, ,
( ) | ( )

;0 ,ij ij

S ij i R ij i

iij ij i

i j N i j N

T T i j NB B  


 



                     (7-57) 

 1;i i i D                        (7-58) 

 
1 1 1 1, , (1 ) (1 ); ,ij ij ij ij ij ij ij ij ijT H B z T B z B z H B z i j N             (7-59) 

 
1 1 2 1 2 2 1 2, , (1 ) (1 );d d d d

i i i i i i i i iT H B T B B H B i D                           (7-60) 

 
2 2 2 2 2 2 2 2, , (1 ) (1 );d d d d

i i i i i i i i iT H B T B B H B i D                           (7-61) 

 
3 3 3 3 3 3 3 3, , (1 ) (1 );d d d d

ii i i i i i i iT H B T B B H B i D                         (7-62) 

 
4 4 3 4 3 3 4 3, , (1 ) (1 );d d d d

ii i i i i i i iT H B T B B H B i D                          (7-63) 

 
5 5 4 5 4 4 5 4, , (1 ) (1 );g g g g

ii i i i i i i iT H B T B B H B i G                         (7-64) 

 
6 6 4 6 4 4 6 4, , (1 ) (1 );g g g g

ii i i i i i i iT H B T B B H B i G                          (7-65) 
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The final proposed MILP model (7-48)-(7-65) can be solved using off-the-shelf solvers such as 

Cplex [369]. These solvers can efficiently solve our MILP model to the desired level of 

accuracy. They can also provide the optimality certificate of the solution. This is while the 

original MITNLP model is an NP-hard optimization problem with no guarantee of finding the 

global solution [340].  

7-5 Numerical results 

7-5-1 The IEEE 24-bus reliability test systems 

The IEEE Reliability Test System (RTS) is used in this chapter. Data availability makes the 

IEEE RTS an ideal test case for bulk power system vulnerability analysis. It contains 24 buses, 

32 generators, and 38 branches (lines and transformers) as shown in Figure 7-3. The 

transmission lines operate at two different voltage levels, 132 kV and 230 kV. The systems 

working at 230 kV and 132 kV are represented in the upper half and the lower half of Figure 

7-3, respectively. Table 7-1 presents the generating unit characteristics, other detailed data of 

the systems can be found in [240]. 

 

Figure 7-3. The topology of IEEE 24-bus reliability test systems (RTS). 
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Table 7-1. Generating unit characteristics 

Generation 

units 

Active power 

capacity (MW) 

Connectivity 

to bus 

Generation 

units 

Active power 

capacity (MW) 

Connectivity 

to bus 

G1 40 1 G8 155 15 

G2 152 1 G9 155 16 

G3 40 2 G10 400 18 

G4 152 2 G11 400 21 

G5 300 7 G12 300 22 

G6 591 13 G13 310 23 

G7 60 15 G14 350 23 

 

Our proposed MILP model has been successfully applied to the IEEE 24-bus reliability test 

system (RTS) [240]. The problems are solved on a laptop with a 2.2 GHz processor, and 8 GB 

of RAM. The Cplex solver in the GAMS (General Algebraic Modeling System) platform [413] 

is used to solve our proposed MILP model [372]. In all simulations, the Cplex relative 

optimality criterion was set at 0.001. Table 7-2 reports statistics regarding the size and 

complexity of the examined case comparing with the previous literature.  

Four different scenarios are introduced in this chapter: 

1. Vulnerability analysis without uncertainty ( 0g dDR DR  ), 

2. Vulnerability analysis with load uncertainty ( 0, 0g dDR DR  ), 

3. Vulnerability analysis with generation uncertainty ( 0, 0d gDR DR  ), 

4. Vulnerability analysis with both load and generation uncertainties ( 0, 0d gDR DR  ). 

Table 7-2. The size and complexity of the considered models for the IEEE RTS case measured by the number of 

equations and variables 

Model statistics Reference* [25] This work** 

Blocks of equations 12 46 

Blocks of variables 12 28 

Nonzero elements 1993 2979 

Single equations 533 1046 

Single variables 512 766 

Binary variables 68 130 

* This is based on the DCOPF-based bilevel optimization approach without considering the uncertainties. 

** Our model has more variables and elements because it coonsiders uncertainties in its formulation. 
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Vulnerability analysis without uncertainty: 

The proposed single-level MILP model is applied to the IEEE 24-bus network. The main aim 

is to check the model results with the results previously published [25, 346, 348] when we have 

no uncertainty, i.e. 0g dDR DR  . Table 7-3 shows the six worst-case load shedding 

scenarios and their related critical lines for the IEEE 24-bus system. It shows that when 

0g dDR DR  , our model changes to the previous model when there is no uncertainty and 

our results are exactly the same as the reported results in [25, 346, 348].  

Based on the simulation results for the IEEE 24-bus system, the potential critical lines are radial 

lines (e.g. line 7-8), parallel lines (e.g. lines 15-21 and 20-23), and the lines connecting the 

generation to demand zones (e.g. lines 11-13 and 12-13). It should be noted that when all lines 

are out of service, the system operator is forced to shed 1607 MW which is 56% of total demand 

[348]. As the remaining loads are directly connected to the generation units, our proposed MILP 

model shows that the maximum possible load shedding occurs with only 13 simultaneous 

outages.  

Table 7-3. Six worst-case load shedding scenarios and their related lines for the IEEE 24-bus system without 

uncertainty 

NPO 

References [25, 346, 348]* This work 

Critical lines 
LS 

(MW) 
Critical lines 

LS 

(MW) 

1 - 0 - 0 

2 16-19,20-23 309 16-19,20-23 309 

3 7-8,15-21,16-17 387 7-8,15-21,16-17 387 

4 3-24,12-23,13-23,14-16 516 3-24,12-23,13-23,14-16 516 

5 
12-23,13-23,15-21,16-17,20-

23 
872 

12-23,13-23,15-21,16-17,20-

23 
872 

6 
11-13,12-13,12-23,15-21,16-

17, 20-23 
1198 

11-13,12-13,12-23,15-21,16-

17,20-23 
1198 

* Two parallel circuits are considered as two independent lines in references [346, 348]. 

 

Vulnerability analysis with load uncertainty: 

The aim is to simulate the power system considering load uncertainty so as to assess 

vulnerability under load uncertainty. In order to consider the load uncertainty, the uncertainty 

budget for generation buses i.e.
gDR  in our proposed model should be set to zero in all 
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simulations. Furthermore, we set the range of load variation to be ˆ ,d

i i iPd Pd i D   . In 

particular, in this case study we consider that d

i is always fixed at 0.05 (scenario I) and 

0.1(scenario II) for all load buses. Moreover, the different uncertainty levels of the loads are 

tuned up by varying the uncertainty budget 
dDR  for load buses. It takes values in the range of 

zero (no uncertainty) to the total number of load buses (N(D) = 17). 

The proposed one-level MILP problem is applied to the IEEE RTS case study. Figure 7-4 (a) 

shows the load shedding of the IEEE 24-bus system as a function of NPO (interdiction 

resources) under different load uncertainties. As can be seen in this figure, the optimal solutions 

or total load sheddings increase when 
dDR increases and the maximum total load shedding 

occurs when 
dDR  is at its maximum value 17. Furthermore, we have compared the maximum 

difference of load shedding in comparison with the “no uncertainty” case when DRd=17. Figure 

7-4(b) shows that the maximum differences are 30% and 60% in scenarios I and II when 

NPO=3, respectively.  

However, the load uncertainty is small which leads to proposing different critical lines in some 

NPOs. For instance, when NPO is 2, our proposed approach and the reported approach in [25, 

346, 348] find similar critical lines (which are lines 16-19 and 20-23) under no uncertainty. 

This is while our approach proposes different lines (lines 15-21 and 16-17), in a higher level of 

uncertainty (for example when DRd >6 in scenario I). 

 

 

Figure 7-4. (a) Load shedding as a function of the number of outages (NPO) with and without load 

uncertainty (DRd=0 (no uncertainty) to DRd=17 (the most conservative case)), (b) Maximum difference of 

load shedding in comparison with “no uncertainty” case when DRd=17. 
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Vulnerability analysis with generation uncertainty: 

Similarly, the aim is to simulate the power system considering the uncertainty but only for the 

generation units. In order to consider the generation uncertainty, the uncertainty budget for load 

buses (
dDR ) in our proposed model should be set to zero in all simulations. Furthermore, we 

set the range of generation variation to be ˆ ,g

i i iPg Pg i G   . In contrast to peak load 

variations, the peak generation capacity can deviate much more due to the failure of generation 

units or connected RES units. So, in this case study we consider that g

i is fixed at 0.2 (scenario 

III) and 0.5 (scenario IV) for all generation units. Moreover, the generation uncertainty levels 

are modeled by varying the uncertainty budget for generation units (
gDR ). It takes values in 

the range of zero (no uncertainty) to the total number of generation units (N(D) = 14). 

Our proposed MILP model is applied to the IEEE RTS case study. Figure 7-5(a) shows the load 

shedding of the IEEE 24-bus system as a function of NPO under different generation 

uncertainties. Similarly, this figure shows that the total load shedding increases when 
gDR  

increases and the minimum total load shedding occurs in the no-uncertainty case and the 

maximum total load shedding occurs when 
gDR  is at its maximum value 14. Furthermore, 

Figure 7-5(b) shows that the maximum differences of load shedding between uncertainty case 

and no-uncertainty case reach approximately 118% and 342% in scenarios III and IV, 

respectively. With NPO = 1, the IEEE RTS case is “N-1” secure when there is no uncertainty. 

 

Figure 7-5. (a) Load shedding as a function of the number of outages (NPO) with and without generation 

uncertainty (DRg=0 (no uncertainty) to DRg=14 (the most conservative case)), (b) Maximum difference of 

load shedding in comparison with “no uncertainty” i.e. when DRg=14. 
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But, the IEEE RTS case is not “N-1” secure when uncertainty increases in scenario III (
gDR ≥ 

4) and scenario IV (
gDR ≥ 1), respectively. Note that when we set the NPO at zero the model 

considers the uncertainty of generation units. Figure 7-6 shows the load shedding as a function 

of DRg when NPO = 0. As can be seen in this figure, the system has load shedding when g

i  

is larger than 17% (DRg ≥ 11). Similar to the load uncertainty, the generation uncertainty leads 

to proposing different critical lines in some NPOs. 

Vulnerability analysis with both load and generation uncertainties: 

Finally, both load and generation uncertainties are investigated. The proposed model is 

employed for different levels of uncertainty, which is modeled by varying the uncertainty 

budgets dDR  and gDR . They take values in the range of zero (no uncertainty) to the total 

number of generation/load units which are 17 and 14 in this case study for load and generation 

units, respectively. Furthermore, we set the range of generation and load variations to be 

ˆ ,g

i i iPg Pg i G    and ˆ ,d

i i iPd Pd i D   , respectively. We assume two scenarios. In 

scenario V, g

i and d

i  are fixed at 0.2 and 0.05, respectively while for scenario VI, g

i and 

d

i  are fixed at 0.5 and 0.1, respectively for all generation and load units. 

Similarly, the proposed model is applied to the IEEE RTS case. Figure 7-7 and Figure 7-8 show 

load shedding as a function of DRg and DRd in scenarios V and VI, respectively. If we 

categorize the uncertain parameters involved in power system studies into two main groups 

 

Figure 7-6. Load shedding as a function of DRg when NPO=0. 
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[414], namely topological parameters (e.g. failure and forced outages) and operational 

parameters (e.g. demand and generation values), our model can address both uncertain 

parameters, simultaneously or independently.  

Figure 7-7(a) and Figure 7-8(a) show that the IEEE RTS case is unreliable and unsafe even 

when we do not have any outage of the line (NPO = 0) for some of DRg and DRd. These figures 

present the worst-case scenarios that might be occurred due to solely uncertain operational 

parameters. As expected, the situation will be worse when we have line outages. Figure 7-7 (b) 

and Figure 7-8 (b) show the load shedding when we have 13 simultaneous outages. Moreover, 

Figure 7-7 (b) and Figure 7-8 (b) show that the minimum load shedding (1607 MW) is when 

we do not have uncertainty in generations and loads (when NPO=13) and maximum differences 

of load shedding when we have the maximum level of the uncertainties in comparison with “no 

uncertainty” case are 9% and 32% in scenarios V and VI, respectively.  

The critical lines and components are presented in Table 7-4 and Table 7-5, respectively for 

scenarios V and VI. These tables show that increasing the level of uncertainty leads to higher 

load shedding levels and different critical lines in comparison with no uncertainty case (see 

Table 7-3). Moreover, based on the generation capacity and generation location in the network, 

some generation units and load buses with uncertainty play major roles in the worst-case 

scenarios. For instance, for scenario V and when DRg = DRd = NPO = 1, the uncertainty in 

generation unit G6 and load bus number 15 leads to a system which is not “N-1” secure. 

 

 

Figure 7-7. Load shedding as a function of DRg and DRd when (a) NPO=0 and (b) NPO=13 for scenario V. 
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Table 7-4. Six worst-case scenarios and their related critical components for scenario V and when, DRg = DRd = 

NPO 

DRg 

=DRd=NPO 
Critical lines Generation unit* 

Load bus 

number* 

LS 

(MW) 

1 - - - 0 

2 15-21,16-17 G6,G14 13,15 429 

3 7-8,15-21,16-17 G6,G13,G14 10,13,15 676 

4 3-24,12-23,13-23,14-16 G2,G4,G5,G6 3,10,13,14 797 

5 
12-23,13-23,15-21,16-

17,20-23 
G4,G5,G6,G8,G9 10,13,14,15,19 1200 

6 
11-13,12-13,12-23,15-

21,16-17,20-23 
G2,G4,G5,G7,G8,G9 3,9,10,14,15,19 1455 

* In these components, when the uncertain parameters reach the boundary of their intervals, the worst-case scenario occurs. 

 

7-5-2 The Iran’s 400-kV network 

As a realistic test system, a modified Iran’s 400-kV transmission network is used in this 

subsection. Iran’s transmission network has voltage levels of 400 kV and 230 kV. The system 

is comprised of 52 buses, 28 generators, and 99 lines as shown in Figure 7-9. In this figure, the 

solid lines/circles are existing lines/substations and the dashed lines/circles are candidate 400-

kV lines/substations which are planned to be added to the existing system as reported in [371]. 

The detailed data of this network can be found in [366, 371].  

 

 

Figure 7-8. Load shedding as a function of DRg and DRd when (a) NPO=0 and (b) NPO=13 for scenario VI. 
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Table 7-5. Six worst-case scenarios and their related critical components for scenario VI and when, DRg 

=DRd=NPO 

DRg 

=DRd=NPO 
Critical lines Generation unit* 

Load bus 

number* 

LS 

(MW) 

1 15-21 G6 15 39 

2 15-21,16-17 G6,G14 13,15 741 

3 7-8,15-21,16-17 G6,G13,G14 10,13,15 1090 

4 7-8,15-21,17-22,18-21 G6,G10,G13,G14 10,13,15,18 1257 

5 
12-23,13-23,15-21,16-17,20-

23 
G4,G5,G6,G8,G9 10,13,14,15,19 1664 

6 
12-23,13-23,15-21,17-22,18-

21,20-23 
G2,G5,G6,G8,G9,G10 10,13,14,15,18,19 1830 

* In these components, when the uncertain parameters reach the boundary of their intervals, the worst-case scenario occurs. 

Our proposed MILP problem is applied to the modified Iran’s 400-kV transmission network. 

In this subsection, dDR  and gDR  take values in the range of zero (no uncertainty) to the total 

number of generation units and load buses which are 28 and 48, respectively. Furthermore, we 

set the range of generation and load variations to be ˆ ,g

i i iPg Pg i G    and 

ˆ ,d

i i iPd Pd i D   , respectively. We assume g

i and d

i  are fixed at 0.2 and 0.05 for all 

generation and load units, respectively. Moreover, the impact of the uncertainties on the 

vulnerability analysis is investigated for both existing and expanded networks.  

 

 

Figure 7-9. Modified Iran’s 400-kV transmission network, existing lines/substations are black solid lines/ 

nodes and the candidate lines/ substations are black dash lines/nodes. 



Adaptive Robust Vulnerability Assessment of A Power System: A Trilevel OPF-based Optimization Approach 

153 

 

 

Figure 7-10 and Figure 7-11 show the imposed load shedding as a function of NPO in the two 

modeled topologies considering the uncertain parameters. As expected, the expanded network 

operates more reliable and robust than the existing network. For instance, when there is no 

uncertainty, the expanded network is N-1 secure and the total possible load shedding of 10390 

MW will occur with more simultaneous line outages (as compared to the number of line outages 

in the existing network). Moreover, for a given NPO the load shedding in the expanded network 

is lower than the one for the existing one.  

 

Figure 7-10. Load shedding as a function of NPO considering different uncertainties in the existing network 

(DRd=DRg=0 (no uncertainty) to DRg=28 and DRd=48 (the most conservative case)). 

 

Figure 7-11. Load shedding as a function of NPO considering different uncertainties in the expanded 

networks (DRd=DRg=0 (no uncertainty) to DRg=28 and DRd=48 (the most conservative case)). 
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Figure 7-11 also highlights that the expanded network might be no longer N-1 secure when 

there are uncertain load and/or generation units. Finally, the proposed set of critical lines is also 

different. For example, when NPO = 1, line 1-2 is a critical line for the existing network but 

considering the uncertainty and the most conservative case, the critical line will change to line 

30-31.  

7-6 Conclusion 

This chapter proposes a three-level optimization problem for power system vulnerability 

assessment in the context of system uncertainty. A robust optimization approach has been 

proposed. In our proposed model, the upper-level program represents the attacker, the middle-

level program models the worst-case uncertainty level, and finally, the lower-level program 

represents the defender. The proposed model is a mixed-integer trilevel nonlinear program 

(MITNLP) which is hard to solve. Using the duality theory of the linear programs, the lower-

level LP problem is replaced by its dual program. Then the original MITNLP problem is 

transformed to a max-max-max problem which can be written as a single-level mixed-integer 

nonlinear program (MINLP). The nonlinear terms in the MINLP model are handled using the 

Big-M linearization technique. We also observe two properties of our MITNLP model and 

prove a lemma that improves the computational performance of our proposed final MILP 

model. The proposed final MILP model has been applied to the IEEE 24-bus network and the 

modified Iran’s transmission network and the simulation results are carefully studied. Our 

simulation results show that the power system vulnerability assessment without considering 

uncertainties leads to optimistic results. Moreover, increasing the level of uncertainty in our 

case studies leads to higher levels of load shedding and different critical lines in comparison 

with no uncertainty case. An interesting future direction is to explore how our proposed MILP 

model can be adjusted to accurately model the asymmetric uncertainties.  
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Chapter appendix A: Nomenclature 

Indices  

i,j Indices of buses 

k Indices of buses that have uncertain power generation/load 

Sets  

D Set of all buses with demand  

G Set of all buses with generation  

K Set of buses that have uncertain power generation/load 

N Set of all buses 

Constants  

B A suitably large constant 

d  The expected value of the uncertain parameter 

d̂  Variation from the expected value 

gDR  
The budget of uncertainty for generation buses 

dDR  The budget of uncertainty for load buses 

NPO  Number of plausible outages (interdiction resources) 

iPd  The expected value of the active load at bus i (MW) 

ˆ
iPd  Variation from the 

iPd  (MW) 

iPg  The expected value of the active-power generation at bus i (MW) 

ˆ
iPg  Variation from the

iPg  (MW) 

R(ij) Receiving bus of line ij 

S(ij) Sending bus of line ij 

max

ijS  Maximum of apparent-power magnitude for line ij (MVA) 

ijB  Susceptance of line ij (p.u.)  

max

i  Maximum of voltage angle at bus i (Rad) 

  Budget of uncertainty 

Variables  

d  Uncertain variable 

iLs  Active-power load shedding at bus i (MW) 

ijP  Active power-flow of line ij (MW) 

iPg  Active power of generator at bus i (MW) 

iPg  Uncertain active power of generator at bus i (MW) 

iPd  Active power demand at bus i (MW) 
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iPd  Uncertain active power demand at bus i (MW) 

,T H  Auxiliary variables to linearize the product of binary and continuous variables 

/ ijZ z  Upper-level decision variable: the binary variable that is equal to 0 if line ij is out 

of service and otherwise, is equal to 1 

ij  Voltage-angle difference between bus i and j (Rad) 

d

i


,
d

i


,
g

i


,
g

i


 Binary variables 

, , , ,

, , ,

i ii ij

i ijiji

   

   
 Dual variables associated with their corresponding constraints 

 

Chapter appendix B: The model performance 

Before observing the properties of the model and using the extreme points, we applied the 

binary expansion method [364, 415] to linearize the bilinear terms. The results (see Table 7-6) 

demonstrate that our approach significantly decreases the computational requirements. As can 

be expected, a major improvement is when both uncertainty parameters are considered i.e. 

scenarios V and VI. 

Table 7-6. The size and complexity of our proposed model for different approaches used to linearize bilinear 

terms and the budget-based uncertainty set  

Model statistics 

Binary 

expansion 

formulation 

Extreme 

points 

Single equations 3121 1046 

Single variables 1906 766 

Binary variables 409 130 

Average elapsed time/simulation (sec)* 

scenario I 5.2 0.9 

scenario II 11.2 0.8 

scenario III 7.4 2.1 

scenario IV 2.8 0.7 

scenario V 553 3.0 

scenario VI 471 2.1 

*In all scenarios, NPO is fixed to 13. 
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Chapter 8          

            

                       

Overall Conclusions and Future Works 

 

 

 

In this chapter, we first provide a short overview of the research, followed by a summary of the 

main results, and finally some suggestions for future research. 

8-1 Overview of the research 

Several research questions motivated this work and to address those challenging questions 

novel computational frameworks, dedicated to analyze and quantify the vulnerability of the 

power system have been proposed in each chapter. The general objective of the thesis was to 

study and develop advanced modeling, simulation, analysis, and optimization methods for the 

vulnerability analysis of the power systems in order to proactively and properly protect, and 

mitigate such vulnerability when they suffered from low-probability high-consequence failures.  

The above-stated objectives are addressed in three parts. Part one introduced the different 

definitions of vulnerability and reviewed and compared the previous methods. Part two found 

out the acceptable level of assumptions and available data to answer the reliability, 

vulnerability, and resilience questions. Afterward, the cascading failures and domino effects are 

addressed and finally, a framework for the integration of security methods capable of viewing 

the problem from different perspectives e.g. integrating reliability and vulnerability analyses is 

developed. The last part introduced and developed a hierarchical leader-follower problem 

where the upper level (leader) trying to maximize the damage with a limited interdiction budget 
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(e.g., outage of lines), and the follower (operator) trying to minimize the probable 

consequences. Thanks to this rational strategy, the critical components whose failures lead to 

the largest system loss can be determined. Then, the proposed model is extended to be used as 

a multi-period model and furthermore, as a model which is immunized against worst uncertainty 

realizations. All of the proposed models in Parts two and three are developed in MATLAB 

(using the open-source MATLAB based simulation package, MATPOWER) and the GAMS 

platform. 

8-2 Summary of our approaches and achievements 

The aim of this thesis was to address two main questions, i.e. (i) the systemic vulnerabilities of 

the power system under multiple contingencies and different operational uncertainties; (ii) the 

critical components which must be protected or fortified when the protective and financial 

resources are limited. Therefore, to accomplish these goals different methodologies and 

approaches are introduced in the previous chapters. The main achievements are given below. 

In Chapter 2, we summarized 100 papers and reviewed about 300 articles. This chapter 

highlighted the advantages and disadvantages of the standard methods in the vulnerability 

analysis. It shows that no modeling approach can investigate all aspects of this field. In fact, the 

appropriate model depends on the type of event and the specific case study. We also focused 

on three classes of events, namely natural hazards, intentional attacks, and random failures that 

will help to determine the relevant application of the various methods available, including 

emerging methods. 

In Chapter 3, the main aim was to compare two important security concepts, which are 

vulnerability and reliability assessments. Moreover, a novel methodology was developed for 

the joint consideration of vulnerability and reliability of power systems using multi-criteria 

decision-making (MCDM). Reliability and vulnerability assessment study the ability of a 

system to perform its desired functions under certain conditions for a given period and the 

weakness level of a system to failures, disasters or attacks, respectively. We presented that 

reliability assessment is dependent on the probability of component failure but systemic 

vulnerability assessment does not consider the probability. Another difference is the different 

number of simultaneous failures that both techniques take into account. Moreover, the results 

show that the percentage of simultaneous failures decreases when the dimension of the network 

increases, and reliability analysis only considers a maximum of 10.6% of the component 

outages in the IEEE test case. Therefore, the vulnerability assessment can complement the 

reliability analysis considering the rest of the N-k failures. 
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The capacity-based assessments such as vulnerability, reliability and contingency assessment 

need iterative power flow-based approaches to model the power system behavior. The main 

aim of Chapter 4 was to thoroughly investigate the effects of the DC power flow assumptions 

in our respective fields. Then, we tried to figure out the sources of inaccuracy in power flow-

based models of different line capacity-based assessments. Moreover, different scenarios such 

as N-k′-1 contingency, cascading failure are modeled and a new index was introduced. The 

results presented that the related indices are very sensitive to the line capacity limits. Hence, 

DCM can lead to optimistic and inaccurate predictions in reliability. Furthermore, special care 

should be taken whenever DCM is used for the planning and operating of power systems. 

The third part of the thesis introduced and developed the multilevel optimization-based 

approaches for the vulnerability analysis of the power systems. In these approaches, the upper 

level models the attacker, and the lower level models the defender. The attacker as the leader 

starts the leader-follower game with limited disruptive resources. The defender as the follower 

reacts against the set of out-of-service assets to mitigate its adverse consequences. This leader-

follower rational interaction between the attacker and the defender presents the worst-case 

scenarios and the critical components, which their outages lead to major consequences. 

The main idea of Chapter 5 was to develop an approximation model of the original AD problem. 

We were not intending to solve the original non-convex MIBNLP problem, which is NP-hard. 

The original MIBNLP problem has two main difficulties to be efficiently solved: (1) The non-

convex ACOPF problem of the defender in the lower level: The ACOPF is an NP-hard non-

convex optimization problem with no guarantee of finding the global optimal solution; (2) The 

AD model is a bilevel optimization problem with both binary variables and non-linear 

constraints. Solving a bilevel optimization problem with binary variables, nonlinear terms, and 

a non-convex lower-level problem is an extremely challenging mathematical exercise.  

Accordingly, in this context, the literature proposes two ways to approach these types of 

problems: (1) approximation techniques and (2) the relaxation techniques. We have adopted the 

approximation techniques to solve the original MIBNLP problem. We have not done any 

approximation for the upper-level problem. Therefore, the upper-level solution from the 

approximation is also valid for the original problem. The main approximation is performed in 

the lower-level problem where we have replaced it with an LP. If our approximation 

assumptions are valid, then our approximate solution is also feasible for the original ACOPF.  
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We can broadly categorize the solution algorithms for bilevel optimization problems as (1) 

direct solution algorithms, (2) metaheuristic algorithms, and (3) single-level reformulation 

algorithms. The third approach is widely used in the relevant literature to solve the bilevel 

optimization problems. We have also adopted this approach in Chapters 6 and 7. We first 

approximated the lower-level problem by an LP model. Then using the duality theory the whole 

AD model is transformed to a tractable MILP which can be solved using efficient off-the-shelf 

solvers such as Cplex.  

The most innovative part of Chapter 5 is to bring the ACOPF formulation into the power system 

vulnerability assessment models. As a result, our ACOPF-based vulnerability model is far more 

practical than current DCOPF-based vulnerability models existing in the relevant literature. By 

bringing the ACOPF formulation into our proposed model, we clearly showed that the results 

of the existing DCOPF-based models might lead to invalid vulnerability analysis as compared 

to the results from our proposed ACOPF-based model. Note that given the sensitivity of the 

vulnerability analysis in power systems, relying on the DCOPF-based approaches might lead 

to catastrophic societal and economic consequences. In this context, our proposed ACOPF-

based approach provides far more practical analysis and also avoids such societal and economic 

consequences. In addition, the results demonstrate that vulnerability can be reduced by minimal 

changes in Iran’s 400-kV transmission network. 

A novel multi-period AC-based approach was presented in Chapter 6 to analyze N-k 

contingencies in order to enhance the resilience of a bulk power system under multiple outages. 

This model is an extension of our model in Chapter 5. The model is tested by different IEEE 

test cases. The method presented load shedding and the critical lines for each contingency over 

a range of system demand levels of this test system. Furthermore, the results show that in the 

congested systems especially where the reactive power flows predominate on some lines or 

buses such as cables or bus 6 in the IEEE RTS network, the assessment cannot be adequately 

conducted only by the active power flows. 

Due to the increasing uncertainty caused by the dramatic increase of intermittent renewable 

energy sources (RESs) such as wind power, together with the load forecast errors and price-

responsive demands, the traditional security assessment may not provide a holistic and optimal 

solution for the power system operation under uncertainty. In order to guarantee the operational 

security of power systems with such uncertainties, developing security models and tools for 

immunizing the system against worst uncertainty realizations has conducted in Chapter 7. In 

this chapter, a two-stage adaptive robust optimization model for the vulnerability assessment 
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of power systems is proposed. Our simulation results show that the power system vulnerability 

assessment without considering the uncertainties leads to optimistic results. Moreover, 

increasing the level of uncertainty in our case studies leads to higher levels of load shedding 

and different critical lines in comparison with no uncertainty case. 

A preliminary study to assess the vulnerability of a power system to natural events is conducted 

in Appendix A. First, Complex network analysis (CNA) is introduced and then, the topology of 

the test case is modeled using Gephi, and five different measures of CNA such as degree, 

betweenness, closeness, PageRank, eigenvector centralities are compared. Moreover, extracting the 

required georeferenced model from open access resources such as Openstreetmap website [416], 

the Swiss transmission grid operator (Swissgrid), google map, Over-Turbo website [417] and 

map of European Network of Transmission System Operators for Electricity (ENTSO-E) [418] 

is introduced. This is a practical way to overcome the fact that it is not possible to access all 

data of a real-life network. This appendix went beyond a “pure” systemic vulnerability 

assessment. Indeed, it considered the power system exposure to a specific natural hazard. 

In summary, this thesis focused on developing tools to identify the systemic vulnerabilities of 

the power system under multiple contingencies and different operational uncertainties. The 

performance of the models is illustrated using small-scale, medium-scale and real-life case 

studies. Finally, the projected result will have a practical as well as an academic interest. 

Planners in the power system sector can employ the proposed approaches and tools to ensure a 

resilient operation of the power system which is of paramount importance. Power system 

operators work hard to assure a safe and reliable service. The proposed techniques and 

approaches help operators to identify the critical components which must be protected or 

fortified when the protective and financial resources are limited. 

8-3 Future works 

As expected when coming to the end of a research project, there exist several areas worthy of 

further research. The following list gives a brief overview of directions for future research that 

are corresponding to the previous chapters: 

 Vulnerability analysis is a topical field. Our published review paper [20] that is 

presented in Chapter 2, reviewed the literature up to the year 2019. However, we have 

cited new literature in our recent papers, new review paper is needed as an extension to 

Chapter 2. Moreover, adding new proposed approaches for vulnerability analysis of 
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interconnected networks such as integrated electricity and gas system (IEGS) may be a 

promising future research. 

 In Chapter 3, an integrated assessment framework is proposed to improve the decision-

making process on the best network topology using multi-criteria decision-making 

(MCDM). In this chapter, two important security assessment in power systems are 

employed. Adding other related concepts into this framework such as resiliency i.e. 

“integrated robustness, reliability, and resilience framework” and proposing a new 

approach to compare them can be good future extension of this chapter.  

 In Chapter 4, we thoroughly investigate the effects of assumptions in DCM, especially 

when it is used for line capacity-based assessments such as reliability, vulnerability, and 

contingency analyses. It should be pointed out that the convergence and large 

computational burden still represent major problems for ACM. Further research should 

focus on a new power flow formulation that considers essential parameters that 

significantly affect the results, such as losses, reactive power flow, and voltage 

violations for transmission line capacity-based assessment. 

 Chapter 5 introduced an MIBNLP problem and then approximate the nonlinear terms to 

solve effectively using efficient off-the-shelf solvers such as Cplex. If our 

approximation assumptions are not valid, there is no guarantee that our approximate 

solution is feasible in the original problem. For these cases, we proposed two solutions: 

(1) improving the accuracy of our LP model by including more linear terms associated 

with the approximation of nonlinear terms and (2) developing some heuristic techniques 

to recover a feasible point from our approximate solution. Another application of our 

approximate solution is to use it as the warm start of the solution algorithms for solving 

the original MIBNLP. Exploring these ideas represents an interesting extension of our 

work. In addition, we can broadly categorize the solution algorithms for bilevel 

optimization problems as (1) direct solution algorithms, (2) metaheuristic algorithms, 

and (3) single-level reformulation algorithms. Exploring the first and second techniques 

for solving the AD model proposed are good future works. 

 Chapter 6 proposed a multi period vulnerability analysis where typically, the highest 

load demand forecast is used in each time period. In this model, the steady-state 

operation of the power system is modeled in the AD interaction. Modeling and 

simulation of the dynamics of the power system in the AD interaction is a good future 

extension of our work. Furthermore, the 2M piecewise linear (PWL) blocks and the n-
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sided convex regular polygon are used for the approximation of nonlinear terms in the 

lower-level problem. The accuracy of our model can be improved by adding more linear 

terms (i.e., n and M). A large M or n improves the accuracy but increases the number 

of equations and accordingly the computational burden. Furthermore, a small n enforces 

more restrictions on transmission line capacity and might lead to the problem 

infeasibility. We set the linear terms based on the recommendations in [340, 365] for 

our test cases. Finding an optimal value of linear terms for a large-scale power system 

is good future work. 

 An interesting future direction is to explore how our proposed MILP model in Chapters 

6 and 7 can be adjusted to be used for the real-time vulnerability assessment of the 

power systems. As an alternative, tools based on Artificial Intelligence (AI) allow us to 

assess vulnerability in real-time using the knowledge obtained from off-line learning. 

Accordingly, our proposed MILP approach can be used for off-line training of AI-based 

tools which can be used for real-time decision making. 

 Chapter 7 introduced a three-level optimization problem for power system vulnerability 

assessment in the context of system uncertainty. An interesting future direction is to 

explore how our proposed MILP model can be adjusted to accurately model the 

asymmetric uncertainties. 

 A preliminary study on the vulnerability analysis of a power system subjected to natural 

hazards is conducted in Appendix A. An interesting future direction could be employing 

optimization-based approaches which is presented in Part three instead of CNA to 

improve the accuracy of the analysis. Furthermore, to rely on the georeferenced model 

extracted from open access resources, it is needed to be benchmarked with the real model 

to estimate the model errors.  

This thesis focused on the vulnerability of the power system without considering its 

interdependencies with other infrastructures. Another fruitful avenue for future research is 

to identify the vulnerabilities and risks stemming from the interdependencies of large-scale 

electricity and gas systems to ensure a robust and resilient integrated electricity and gas 

system (IEGS) (see Figure 8-1). The interdependency is growing between electricity and 

gas networks in transmission and distribution levels. On the one hand, more power plants 

are being supplied by natural gas (G2Ps) owing to less contamination and lower costs 

compared to conventional power plants. On the other hand, the recent power to gas (P2G) 

technology allows a bi-directional interchange of energy and provides opportunities for 
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storing the renewable energy surplus and decreasing the operational cost. The 

interdependencies between the electricity and gas sectors are not limited to physical 

coupling components such as G2Ps, P2Gs, and the electricity-driven compressors in the gas 

network. They are, in most cases, operating with different utilities and independent system 

operators (ISO). The energy contracts between these two sectors introduce another layer of 

interdependency, that is, economic coupling. Hence, the vulnerability assessment of a 

power system with its interdependencies is a must and a good future direction of research. 

 

 

Figure 8-1. An integrated electricity and gas system (IEGS). 
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Appendix A         

            

            

Systemic vulnerability of a power system to 

natural events: a preliminary study 

 

 

 

A-1 Introduction 

Today more than ever, electrical energy has become a key commodity to any growing society. 

In the context of power grids, a cascading outage is a sequence of failures and disconnections 

triggered by an initial event, which can be caused by natural hazards, human actions the 

emergence of imbalances between load and generation [2]. 

Recent data show that climate change leads to increase number of extreme weather disasters, 

thus increasing the likelihood of severe impacts on power grid (big power outage, blackouts). 

In addition, many developments and changes in power grids such as decentralizing electricity 

generation, intermittent renewable generation and so on, might increase its complexity [419]. 

In USA, for example, the annual impact of weather-related blackouts ranges from $20 to $55 

billion and the trend of such events shows that their frequency has increased over the last 30 

years [7]. Therefore, evaluating the robustness of critical infrastructures (CI) is mandatory to 

improve their design and control systems and reduce their vulnerability to unpredictable events 

[33]. 
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“Vulnerability analysis” in power systems is important so as to determine how vulnerable a 

power system is in case of any unforeseen catastrophic events and is used to detect and rank the 

most critical elements of a power grid under a variety of scenarios such as natural disasters and 

so on [276]. 

There are different forms of vulnerability, including physical, social, organizational, economic, 

environmental, territorial and systemic vulnerabilities [86, 87]. Among different type of 

vulnerabilities, physical and systemic vulnerabilities are more common in the risk and 

vulnerability analyses. Physical vulnerability represents the degree of loss of an element due to 

external pressure such as natural hazard while systemic vulnerability represents the degree of 

redundancy, functionality and dependency of an element in a system or the system as a whole 

due to failure of each element in the system or failure of interconnected systems [89]. In this 

work, systemic vulnerability is focused on identifying the degree of redundancy, functionality 

and dependency of elements inside a power grid and in the rest of this research work, 

vulnerability analysis means systemic vulnerability analysis.  

Vulnerability analysis usually has different steps. The main goals of such an analysis are as 

follows [15, 41, 66, 98, 99]: 

 Determine the critical components (due to their location, function, or the load they carry) 

that require protection, 

 Identify possible undesirable events and their impacts, 

 Prioritize the components based on consequence of loss e.g. the rate of important blackouts 

(number per year) and their severity, which is generally measured either in power lost or 

un-served energy, 

 Identify potential and inherent vulnerabilities related to specific components or the system 

as a whole, 

 Identify existing countermeasures and their level of effectiveness to act for managing and 

reducing vulnerabilities and improve their resilience, 

 Estimate the degree of vulnerability relative to each component. 

The goal of this preliminary study is to carry out a vulnerability analysis of a power system and 

the Swiss grid is used as the case study. The rest of this chapter is as follows: first, our 

methodology and required data are introduced in Section A-2. Then, model of Swiss power grid 

is presented in Section A-3. Finally, in Section A-4, different results for vulnerability analysis 
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of Swiss power grid are compared and systemic vulnerability of power grid due to seismic 

hazard is also presented. The conclusions and discussion will be provided in Section A-5. 

A-2 Methodology and data 

We will analyze the systemic vulnerability of the Swiss power grid following the scheme 

defined in Figure A-1. The main steps will be described in the subsequent parts.  

A-2-1 Complex network method 

There are two different approaches for vulnerability analysis, analytical and simulation methods 

[7, 95]. Analytical methods can be categorized into topological and structural methods defined 

as Complex Network Analysis (CNA) [181], logical methods [216], functional methods [249, 

250] and flow methods [420]. All of methods are compared recently in our review paper [20]. 

Complex network methods are very fast and need few data while Monte Carlo methods are very 

slow, need many data, but have high accuracy. Characteristic of other methods are between 

them. In this work, Complex network analysis is selected because it is the fastest among them 

and can be achieved with the data at hand. 

CNA is a relatively young field of research. The first systematic studies appeared in the late 

1990s having the goal of studying and analyzing structure, dynamics and evolution of many 

complex systems.  

 

Figure A-1. Procedure of systemic vulnerability calculation due to seismic hazard. 
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A network in CNA is composed of a set of nodes or vertices (in reality, substations or power 

plants in a power system) that are connected to each other by means of links or edges, e.g., 

power transmission lines in a power grid [17]. In CNA, some metrics and indices (centralities) 

have been developed to identify that some nodes and edges are more critical or more important 

in a network than others are. The concept of centrality is from the idea that the closer a person 

to others is, the more important and critical information he/she holds. In turn, he/she has more 

power, and greater influence [127]. 

In purely complex network analysis, the basis is the mapping of buses and transmission lines 

of power grids to nodes and edges, respectively. The defined centralities in complex network 

theory are used to analyze their vulnerability. Metrics and centralities in complex network 

theory can be divided into two groups. The first one calculates the closeness of nodes/edges to 

each other such as degree and closeness centralities. The second group is based on how 

nodes/edges stand between the others, for instance, efficiency (shortest-path) or flow 

betweenness centralities [138]. However, there are other centralities that combine two above 

mentioned ideas such as delta centrality (or Δ centralities) [139] and combined degree-

betweenness centrality [140].  

Degree: degree probability distribution can show topological features of a network. 

1

ija

N 


            (A-1) 

Closeness: closeness centrality of a node is defined as the sum of all its shortest paths and can 

be used to quantify how rapidly the information injected in each node spreads in the network 

[2]. 
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Betweenness: betweenness measures the ratio and total number of shortest paths in a graph and 

as a result, nodes with high values of the metric can be designated to control or regulate 

information flowing within a network [2]. 
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 Eigenvector Centrality: The eigenvector centrality is based on the idea that a node is important 

if it is connected to other important nodes [244]. 
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PageRank (PR) algorithm: The essence of PR algorithm is that the rank of a node will be 

certainly high if the node is linked from a high-ranked one [185]. 
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Where in (A-1) to (A-5): G is the graph descriptive of the structure of the real network with N 

nodes, 𝑖, 𝑗, 𝑘 ∈ 𝐺. 𝑎𝑖𝑗 is 1 if node i is connected to node j. 𝑑𝑖𝑗 is the shortest path from node i to 

node j; 𝑛𝑗𝑘(𝑖) is the number of shortest paths that contain i; 𝑛𝑗𝑘 is the number of shortest paths 

from node k to node j. λ and 𝑊𝑖𝑗 are a constant and weight respectively. q is the damping factor, 

which would be set to 0.85, and D is equal to the number of the directed transmission lines. 

( )D p
in i

 is the number of in-linked webpages of webpage pi. ( )out jD p is the number of out 

linked webpage of webpage pj. 

A-2-2 Multi-criteria decision methods (MCDM) 

For vulnerability and risk analyses of complex networks, there is no holistic analysis to integrate 

the structural, static, dynamic, operational features and complexity of these networks and 

instead, the so-called reductionist methods are proposed such as complex network methods, 

power flow methods, logical methods, functional methods and Monte Carlo simulation. So, 

important or critical measures (indices) based on different definitions lead to different ranking 

results. Therefore, these results should be combined with approaches such as multi-criteria 

decision methods (MCDM) and provide a unique ranking from different measures to be useful 

for decision makers.  

The Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) is one of the 

MCDM to find a best alternative that is the closest to the positive ideal solution and farthest to 

the negative ideal solution [421, 422]. Figure A-2 shows stepwise of TOPSIS methodology. In 

this work, TOPSIS is used to combine different complex network metrics introduced in the 

previous subsection. 
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 A-3 Required data 

A-3-1 Seismic hazard map 

According to reference [419], earthquakes, storms, floods, landslides and heat waves are among 

the major causes of electricity blackouts during natural disasters. These events can destroy or 

damage the electrical infrastructures and trigger cascading effects. Earthquake is one of the 

most important hazards that can impact different parts of power system such as nodes 

(generator, transformers, substation and control centers) and edges (overhead line and cables). 

It should be noted that in each country one of natural hazards are the major according to 

historical records and based on their frequency and impacts. Storms are more frequent in 

Switzerland but earthquakes are more costly [73, 423], herein, seismic hazard is selected as the 

scenario.  

The data on seismic hazard for Switzerland and its assumptions (see Figure A-3) is provided 

by European Facilities for Earthquake Hazard and Risk (EFEHR) [424]. Spectral Acceleration 

(SA) is approximately what is experienced by a building during earthquakes. Short buildings 

(less than 7 stories) have short natural periods (0.2 to 0.6 sec) [425]. Buildings and structures 

in the case (substations and transformers) are usually in this category and have heights less than 

2 stories tall. That is why 4 Hz (0.25 s) is selected for this goal. In addition, the choice of return 

period depends on the importance of the structure for the functioning of the society. Because a 

power grid is one of the most important infrastructure, one needs to consider the highest return 

 

Figure A-2. Different steps of TOPSIS. 
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period as it provides the highest level of expected spectral acceleration the infrastructure will 

be submitted to. 

A-3-2 Swiss power grid modelling 

The power grid topology is achieved from comparing Openstreetmap website [416], the Swiss 

transmission grid operator (Swissgrid), google map, Over-Turbo website [417] and map of 

European Network of Transmission System Operators for Electricity (ENTSO-E) [418]. The 

georeferenced model based on the Swiss transmission system is plotted using Gephi (an open 

 

Figure A-3. Swiss seismic hazard map and its assumptions. 

 

Figure A-4. Georeferenced model based on the Swiss transmission system is plotted using Gephi (an open 

source software). 
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source software) [426] in Figure A-4. A network in CNA is composed of a set of nodes or 

vertices (in reality, substations or power plants in a power system) that are connected by links 

or edges, e.g., power transmission lines in a power grid [17].  

A-4 Results 

Data gathering and modelling of power grid (the nodes that can be substations, power plants, 

etc. and the lines are assumed a straight line between nodes) are discussed in the previous 

sections. In this section, the modelled grid is used and at first, the five centralities for this 

topology are calculated. Table A-1 shows top ten important nodes in Swiss grid using different 

metrics. 

Table A-1. Top ten important nodes in Swiss grid using different metrics 

Rank Degree Closeness Betweenness 
Page 

Rank 
Eigenvector 

1 12 Mettlen Bickigen 12 12 

2 Mettlen Bickigen Mettlen Mettlen Mettlen 

3 Breite 12 Chippis Breite 19 

4 Bickigen 144 12 Sils 15 

5 19 15 Sils Magadino Breite 

6 Grynau Altgass 1 Grynau Bickigen 

7 Sils 19 Breite Bickigen Grynau 

8 15 119 19 0 144 

9 Muhleberg Chippis 0 Romanel 18 

10 Bonaduz 8 144 19 Tiengen 

 

As shown in Figure A-5 and Table A-1, the results are not exactly the same because of different 

definitions and criteria used for the analysis. For instance, Node 12, located north of 

Switzerland, is the most important node according to three metrics, while for the last two 

metrics; it appears at the 3rd and 4th rank. The node Mettlen is another example, being at the 2nd 

rank for 4 metrics, and 1st in one metrics.  

Therefore, depending on the criteria (indices) used, the analysis leads to different ranking 

results. So, these results should be combined with approaches such as Multi-Criteria Decision 

Methods (MCDM) in order to provide a unique ranking from different measures to be useful 

for decision makers (see Figure A-2). Herein, TOPSIS is used to combine different complex 

network metrics calculated above. Figure A-5f and Table A-2 show the results of TOPSIS. 
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According to the results, node Mettlen is the most important and critical node in Swiss power 

grid without considering its environment. The magnitudes in this figure are TOPSIS results and 

are dimensionless. In Figure A-5, the more one (bigger circle) is the more vulnerable node. 

Finally, it is needed to consider the position of nodes in relation to seismic hazard to define 

what would be the most exposed nodes in case of earthquakes. In order to achieve this task, 

hazard data were extracted using ArcMap software from downloaded shape-file are combined 

by multiplying the value of the spectral acceleration as a weight with the value obtained from 

the TOPSIS analysis using MATLAB programming. Figure A-6 shows the most critical nodes 

 

Figure A-5. Vulnerability analysis of Swiss power grid (nodes) using (a) using degree definition, (b) 

betweenness centrality, (c) closeness centrality, (d) eigenvector centrality, (e) PageRank centrality and (f) 

Combining different complex network metrics using TOPSIS. Numbers are dimensionless. The higher the 

value, the more vulnerable the node is. 
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in regards with seismic hazard. As shown in Table A-3, node “Creux de Chippis” is the most 

node at risk in Switzerland when considering seismic hazard. 

Table A-2. Top ten important nodes in Swiss grid using TOPSIS 

Node Label D+ D- Si Rank 

Mettlen 0.017 0.103746 0.859205 1 

12 0.028848 0.103048 0.781281 2 

Bickigen 0.030411 0.10054 0.767766 3 

Breite 0.04635 0.076886 0.623891 4 

19 0.047667 0.077388 0.61883 5 

Creux de Chippis 0.060774 0.067148 0.524915 6 

Sils 0.060439 0.064619 0.516715 7 

15 0.070294 0.059663 0.459099 8 

Grynau 0.068742 0.056182 0.44973 9 

0 0.071271 0.052385 0.423633 10 

 

Table A-3. Top ten important nodes due to seismic Hazard 

Node 

 Label 
Latitude Longitude 

Systemic  

Vulnerability 
Rank 

Creux de Chippis 46.28685 7.55782 0.536147 1 

0 46.15828 7.20941 0.417621 2 

1 46.18547 7.24901 0.410494 3 

Mettlen 47.1154 8.33728 0.369693 4 

12 47.54997 8.04951 0.339473 5 

Sils 46.70475 9.46719 0.33664 6 

St. Triphon 46.26626 6.97461 0.277301 7 

Bickigen 47.09347 7.64759 0.273307 8 

Grynau 47.22019 8.97458 0.256129 9 

Breite 47.46653 8.65195 0.23326 10 

 

Cost of blackout in different cantons during a blackout: However, blackout is a low-

probability event; it should be considered because of its high economic and social impacts. 

Recently, a large number of people have been affected by blackout through the world, for 

instance, about 128 million people in Iran, the USA, Canada and Italy due to different events 

(2003), 670 million people in India (2012), 70 million people in Turkey (2015) and so on [3-
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6]. In the USA, the annual impact/cost of weather-related blackouts ranges from $20 to $55 

billion and the trend of such events shows that their frequency has increased over the last 30 

years [7, 8]. In Switzerland, VSE company reported the cost of a blackout is 2-4 billion CHF 

per day [10, 11]. Therefore, evaluating the robustness of CIs is mandatory to improve their 

design and control systems and reduce their vulnerability to unpredictable events [33]. 

For calculating the costs of a blackout per day in different Swiss cantons, the results of above 

report are used. Then, using the number of population in each canton and their share in 

Switzerland GDP [427], the costs of a blackout are calculated. Figure A-7 shows the costs of a 

blackout per day in different Swiss cantons in 2020 based on VSE report in 2012. 

A-5 Conclusion 

“Vulnerability analysis” of power systems is used to detect and rank the most critical elements 

of a power grid under a variety of attack scenarios. On the other hand, the robustness of CIs 

must be evaluated to improve their design and control systems, and to reduce the vulnerability 

to unpredictable events. In this work, the main goal was calculation of vulnerability in Swiss 

power grid. So, it is modelled using Gephi and five different measures of complex network 

method such as degree, betweenness, closeness, PageRank, eigenvector centralities are 

 

Figure A-6. Systemic vulnerability of Swiss power grid due to seismic hazard. 
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calculated. Then, these measures are combined using TOPSIS method and a unique importance 

ranking is calculated. These results are then combined with seismic hazard to identify the more 

exposed nodes. It is shown that important and critical nodes are different for the scenarios. Node 

“Creux de Chippis” is the most important node in Switzerland due to seismic hazard while node 

Mettlen is the most important and critical node in Swiss power grid without considering their 

environment.In the last section, calculation of the costs of a blackout per day in different Swiss 

cantons is done using the number of population in each canton and their share in Switzerland 

GDP. The results show that the maximum cost will be in Zurich with costs about 0.9 Billion 

CHF per day in 2020. 

 

Figure A-7. The predicted costs of a blackout per day in different Swiss cantons in 2020 based on VSE 

report in 2012. 


