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Abstract

Distributional dominance criteria are commonly applied to draw
welfare inferences about comparisons, but conclusions drawn from em-
pirical implementations of dominance criteria may be influenced by
data contamination. We show the conditions under which this may
occur and propose empirical methods to work round the proble using
both non-parametric and parametric approaches.
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1 Introduction

This paper addresses the issue of how practical comparisons of income distri-
butions can be founded on a sound statistical and economic base when there
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is good reason to believe that the data in at least one of the distributions are
“dirty”. Dirtiness can mean not only the possibility of obvious gross errors
in the data (such as arise from coding or transcribing mistakes) but also of
other more innocuous observations that in some sense do not really belong
to the income-data set.

The economic base consists of ranking theorems that are fundamental to
the analysis of income distributions: as abstract theoretical constructs they
provide a connection between the philosophical basis of welfare judgments
and elementary statistical tools for describing distributions. In practical
applications they suggest useful ways in which simple computational proce-
dures may be used to draw inferences from collections of empirical income
distributions. However, formal welfare propositions can only be satisfactorily
invoked for empirical constructs if the sample data can be taken as a reason-
able representation of the underlying income distributions which we want to
compare.

The statistical base for the approach consists of applications of recent
work on robustness. Because the data may be contaminated by recording
errors, measurement errors and the like, it is important to be clear about the
way in which the possibility of contamination can affect the welfare conclu-
sions which may be drawn from the data. The use of robust analysis can help
us with insights on the properties of individual tools of income distribution,
such as inequality indices. However they can be of more general use in a
practical approach to the problem of comparing income distributions from
contaminated data. Consider the two fundamental questions:

1. On what basis are judgments about income distribution to be made?

2. How is data contamination to be incorporated in a formal model of
distributional comparisons?

For the first question, it is useful to distinguish three distinct approaches
to welfare judgments about income distributions. The most obvious of these
is to specify an explicit social-welfare function (SWF), whether it be an un-
sophisticated criterion such as national income or a more complicated speci-
fication from the Bergson-Samuelson class of SWFs. The second approach is
more ambitious: we might specify a particular inequality measure, or class
of inequality measures, and use the information about inequality and mean
income jointly to draw conclusions about welfare. Thirdly we could attempt
to make judgements about welfare comparisons that are valid for a class of
SWFs: how wide the class is will depend on the set of properties that the
member functions are required to fulfil.
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The first of these three approaches has the attraction of simplicity but
is rather restrictive. The second approach will run into a class of problems
that arise in connection with the estimation of inequality measures. Here
we pursue the third route: the use of general dominance results to draw
inferences about welfare rankings for broad classes of SWFs. We combine
consideration of sensible ad hoc techniques (section 2) with an investigation
of the relationship between economic ranking principles and statistical tools
(sections 3 and 4): the discussion will cover both first-order and second-
order dominance criteria, and also associated concepts as the relative Lorenz
curve (RLC) and the absolute Lorenz curve (ALC). In section 5 we intro-
duce considerations of data contamination and their likely impact on the
estimates of statistics associated with distributional dominance. We show
that considerable caution may be required in applying some commonly used
welfare-dominance criteria. Section 6 discusses a number of ways in which
one can make allowance for the distorting effect of data contamination; fi-
nally section 7 illustrates one of these – a family of dominance comparisons
based on the statistical concept of the trimmed mean – with an application
to Lorenz comparisons over time and between countries using the data-base
of the Luxembourg Income Study.

2 Informal approaches

Empirical studies of income distribution use informal ranking criteria as a
matter of routine. There is a variety of good reasons for doing so: they are
usually involve easy computations, and they have a direct intuitive appeal;
more importantly, they are usually connected to deeper points that are par-
ticularly relevant to applied welfare economics, as we shall see. Some of the
more prominent examples of the informal approach include:

• Pragmatic indices involving quantiles have been proposed. These in-
clude the semi-decile ratio (Wiles 1974), (Wiles and Markowski 1971)
and the comparative function of Esberger and Malmquist (1972). An
extreme example of the same type is the range – literally the maximum
minus the minimum income, but sometimes implemented in practice
as a difference between extreme quantiles.

• The “parade of incomes” introduced by Pen (1971). This provides a
persuasive picture of snapshot inequality and of the implications of an
income distribution that is changing through time – see for example
Jenkins and Cowell (1994).
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• The use of distributive shares (sometimes known as quantile shares).

The quantile method can be explicitly linked to formal welfare criteria.
For example in Rawls’ work on a theory of justice there is a discussion of how
to implement his famous “difference principle” which focuses upon the least
advantaged: to do this Rawls himself suggests that it might be interpreted
relative to the median of the distribution.1 So too can the distributive shares
approach: changes in the relative income shares of, say, the richest and the
poorest 10% slices of the distribution can be directly interpreted in terms of
the principle of transfers enunciated by Pigou (1912) and Dalton (1920).

3 A formal framework

To put these ideas into a form suitable for rigorous economic and statistical
analysis we introduce a simplified description of the problem of comparing
income distributions.

3.1 Notation and definitions

Assume that the concept of income and of income receiver have been well
defined. Let � denote the real line and �+ denote the strictly positive subset
of �. An individual’s income is a number x ∈ X, where X ⊆ �. Let F
be the set of all univariate probability distributions (distribution functions)
with support X. An income distribution means just one particular member
F ∈ F: the distribution function F is a fundamental concept for economic
and statistical approaches to distribution analysis.

3.1.1 Statistics

In this approach we may express a statistic of any distribution F ∈ F as
a functional T (F ). A simple example of a standard summary statistics ex-
pressed in these terms is the mean; this is just the functional µ : F �→ �
given by

µ(F ) :=

∫
xdF (x). (1)

The properties of any given functional T may play a number of roles in both
economic and statistical interpretations. Of particular interest here is the
case where the range of T is a profile of values rather than a single number
as in the example of (1); T is then in effect a family of statistics. Individual

1See Rawls (1972) page 98.
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family members may be of interest in their own right; the behaviour of the
whole family when applied to a pair of distributions F and G will provide
important information about distributional comparisons that is richer than
that provided by a single real-valued functional.

3.1.2 Ranking Criteria

The basic distributional concept employed here is that of a ranking criterion
which amounts to a partial ordering on the space of distributions F. Use the
symbol �T to denote the ranking induced on F by a statistic T : the expres-
sion F �T G is means that distribution F weakly dominates distribution G
according to the statistic T . From this concept a number of other concepts
are immediately derived:

Definition For all F,G ∈ F:
(a) (strict dominance) G �T F ⇒ G �T F and F 	 �TG
(b) (equivalence) G ∼T F ⇒ G �T F and F �T G
(c) (non-comparability) G ⊥T F ⇒ G 	 �TF and F 	 �TG.

For example statement (a) reads in plain language “DistributionG strictly
T -dominates distribution F if G weakly T -dominates F and F does not
weakly T -dominate G; likewise (c) would read “Distribution G does not T -
dominate distribution F , nor does distribution F T -dominate distribution
G.” We will use the T -ranking concept to motivate a discussion of welfare
economic issues in distributional analysis and their statistical implementa-
tion.

3.2 Data contamination

To assume that data will automatically give a reasonable picture of the “true”
picture of a distributional comparison would obviously be reckless in the ex-
treme. A prudent applied researcher will anticipate that, because of miscod-
ing and misreporting and other types of mistake, some of the observations
will be incorrect, and this may have a serious impact upon distributional
comparisons (Van Praag et al. 1983). Obviously if one had reason to suspect
that this sort of error were extensive in the data sets under consideration the
problem of distributional comparison might have to be abandoned because
of unreliability. However, it is possible that there might be a fairly serious
problem of comparison even if the amount of contamination were fairly small,
so that the data might be considered “reasonably clean”.
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3.2.1 Models of contamination

Consider a standard model of this type of problem.2 Suppose that the “true”
distributions that we wish to compare are denoted by F and G; but because
of the problem of data-contamination we cannot assume that the data we
have to hand have really been generated by F and G. What we actually
observe instead of F is a distribution that is in some neighbourhood of F .
To represent this distribution that is “close to” F we need a specific model
of data contamination. For example the distribution

dH(x) =

⎧⎨
⎩

α1 if x = z1
. . .
αm if x = zm

, (2)

where ∀i : αi ≥ 0,
∑
αi = 1, z1, ..., zm ∈ X, consists of m discrete “spots”.

A simplified version of (2) is the elementary distribution H (z) that has a unit
point mass at z and zero mass elsewhere:

H(z)(x) = ι(x ≥ z) (3)

where ι is the indicator function defined by

ι(D) =

⎧⎨
⎩

1 if D is true

0 if D is false
.

Then the distribution that is actually observed will not be the true distribu-
tion F but the mixture distribution:

F (z)
ε (x) := [1− ε]F (x) + εH(z)(x). (4)

where the parameter ε captures the importance of the contamination relative
to the true data: an observation drawn from F

(z)
ε has probability 1 − ε of

being generated by F and probability ε of being equal to z. The issue can be
illustrated by the elementary case depicted in Figure 1 depicting the mixture
distribution (4).

The central issue with which we are concerned can then be stated as
follows. Suppose we wish to rank two distributions F and G ∈ F in terms
of their welfare properties. Will the welfare-ranking criteria applied to the
associated observables such as F

(z)
ε or G

(z)
ε give very misleading answers? If

the amount of contamination were large relative to the true data then we

2This approach is based upon the work of Hampel (1968, 1974), Hampel et al. (1986),
Huber (1986).
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might reasonably conclude that nothing much could be expected from the
ranking criteria. However, if the amount of contamination were relatively
small, we might reasonably expect that welfare rankings should be robust
under contamination, and might be concerned were this not to be the case.

3.2.2 The Influence Function

For any statistic T this idea can be made more precise by introducing the
influence function IF.3 This is obtained by taking the derivative with respect
to ε of the statistic at F

(z)
ε when ε → 0 thus:

IF(z;T, F ) := lim
ε→0

[
T (F

(z)
ε )− T (F )

ε

]
=

∂

∂ε
T (F (z)

ε )

∣∣∣∣
ε→0

. (5)

The IF for the statistic T measures the impact upon the estimate of an
infinitesimal amount of contamination at the point z. It is a function of z,
the point at which the contamination occurs. Then under the given model
of data-contamination (4) the statistic T is robust if IF in (5) is bounded for
all z ∈ X. If the IF is unbounded for some value of z it means that the T -
statistic may be catastrophically affected by data-contamination at income
values close to z.

One might ask how the IF can be used to derive results on the robust-
ness properties of stochastic ordering tools. For parameter estimation, an
estimator is said to be non robust if its IF is unbounded. This implies that
in principle its asymptotic bias can be infinite. However, most stochastic
ordering statistics are actually bounded in that they can take values in a
bounded interval. Their IF can nevertheless be unbounded. Therefore, say-
ing that the bias on the statistic can be infinite is not appropriate here.
On the other hand, if one interprets the IF as the slope of the function

ε → max
∣∣∣T (F (z)

ε )− T (F )
∣∣∣ when ε → 0 (see Hampel et al. 1986), then

the interpretation becomes clearer. Although the (asymptotic) bias of the
stochastic ordering statistic cannot be unbounded, its value can drastically
change with an infinitesimal amount of contamination introduced in the data
if its IF is unbounded. The obvious implication is that the ordering between
two distributions can be different with and without contamination. This
point will be illustrated in section 5.2.

3The IF was first introduced by Hampel (1968, 1974) in the framework of Robust
Statistics. It has been widely used since not only to study robustness properties of statistics
but also to build robust estimators and robust test procedures (see e.g. Hampel et al. 1986,
Heritier and Ronchetti 1994, Victoria-Feser and Ronchetti 1997, Victoria-Feser 1997).

7



4 Welfare judgments

Quantiles and incomplete moments are often used as convenient tools for
judgments about income distributions, as we mentioned in section 2. To
give economic meaning to a class of distributional rankings it is appropriate
to introduce standard welfare criteria expressed in terms of a social-welfare
function (SWF).

4.1 Social-welfare functions

In economic terms the SWF embodies the ethical judgments of a normative
analyst or policy maker; in statistical terms the SWF is just a statistic of
the distribution. To get specific results it is useful to focus upon a particular
additively separable class of SWF:

Definition

W :=

{
W : F �→ �|W (F ) = Ψ

(∫
u(x)dF (x)

)}
. (6)

where u : X �→ � is an evaluation function of individual incomes, and Ψ :
� �→ � is monotonic.

From W we derive two important subclasses.

• First, let W1 denote the subclass for which the evaluation function is
everywhere increasing: this monotonicity criterion is consistent with
the assumption of the Pareto principle and the absence of externalities
in the SWF (Amiel and Cowell 1994).

• Second, denote by W2 the subclass of W1 for which the evaluation
function is also concave: for additive social welfare functions concavity
of the welfare function implies and is implied by the principle of trans-
fers, that any mean-preserving richer-to-poorer transfer will (Atkinson
1970).

The SWF subclasses W1 and W2 will play a crucial role in interpreting
two fundamental ranking principles – first- and second-order distributional
dominance – and have a close relationship with the informal quantiles and
shares criteria introduced in Section 2.4

4For further discussion of the role played by this type of SWF in distributional com-
parisons see the survey in Cowell (1999)
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4.2 First-order distributional dominance.

In order to connect the formal concepts just expounded with the intuitive
approaches to distributional analysis, we need to introduce formal definitions
of the ideas in section 2. Begin with the quantiles of the distribution:

Definition For all F ∈ F and for all 0 ≤ q ≤ 1, the quantile functional
Q : F× [0, 1] �→ X is defined by:5

Q(F ; q) = inf{x| F (x) ≥ q} (7)

For example {Q(F ; 0.1), Q(F ; 0.2), ..., Q(F ; 0.9)} are the deciles of the
distribution F .Where there is no ambiguity as to the distribution in question
we will write Q(F ; q) = xq. For any distribution of income F , the graph of Q
– the family of statistics {Q(·; q) : q ∈ [0, 1]} in Definition 4.2 – is in effect a
formal description of Pen’s Parade mentioned in section 2, Associated with
this family of statistics is the following principle and result:

Definition (Q-ranking) For any F,G ∈ F, G �Q F if and only if ∀q ∈ [0, 1] :
Q(G; q) ≥ Q(F ; q)

Theorem 4.1 (Quirk and Saposnik 1962, Saposnik 1981, Saposnik 1983).
For all F,G ∈ F, G �Q F if and only if welfare in distribution G is at least
as great as that in distribution F for all additively separable SWFs that are
monotonic increasing in income.

Theorem 4.1 provides an appealing criterion for the welfare-ranking of
income distributions: if every quantile in distribution G is greater than the
corresponding quantile in distribution F – if some persons “grow” (and no-
body shrinks) as in the F → G transformation depicted in Figure 2 – then
distribution G will be assigned a higher welfare level by every SWF in class
W1.

4.3 Second-order distributional dominance.

The first-order dominance criterion �Q is sometimes considered to be less
than ideal. One objection is a on practical grounds: in empirical appli-
cations it often happens that neither distribution first-order dominates the
other. However, it should be noted that Bishop et al. (1991) argue that in
international comparisons the second-order criteria discussed below do not

5See Gastwirth (1971). Alternative definitions are available but redefinition does not
affect the results that follow: see Appendix A.
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Figure 1: Contamination modelled as a mixture of distributions.

Figure 2: G first-order dominates F .
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resolve many of the “incomparable cases” where G ⊥Q F . Second, there is
a theoretical point: �Q does not employ all the standard principles of so-
cial welfare analysis: in particular it does not incorporate the principle of
transfers. So, whether or not the first-order ranking principle is decisive in
practice, it is of interest to consider a criterion – second-order dominance
– that takes into account the “transfer principle” mentioned in section 4.1.
This introduces the second key distributional concept to be derived from F .

The application of the second-order dominance criterion requires the fol-
lowing:

Definition For all F ∈ F and for all 0 ≤ q ≤ 1, the cumulative income
functional C : F× [0, 1] �→ X is defined by:

C(F ; q) :=

∫ Q(F ;q)

x

xdF (x). (8)

where x := inf X.

The importance of this concept in practical analysis of income distribu-
tions is considerable: note, for example, that the mean functional emerges as
one particular case (µ(·) = C(·, 1)) and the income share of the bottom q of
the population is given by C(·, q)/C(·, 1). For any distribution of income F ,
the graph of C – the family of statistics {C(·; q) : q ∈ [0, 1]} – characterizes
the generalized Lorenz curve (GLC). Associated with this family of statistics
is the following principle and result:

Definition For any F,G ∈ F, G �C F if and only if ∀q ∈ [0, 1] : C(G; q) ≥
C(F ; q)

Theorem 4.2 (Kolm 1969, Marshall and Olkin 1979, Shorrocks 1983). For
any F,G ∈ F, G �C F if and only if welfare in distribution G is at least
as great as that in distribution F for all additively separable SWFs that are
monotonic increasing and concave in income.

Theorem 4.2 means that if every income-cumulation in distribution G
is greater than the corresponding income-cumulation in distribution F then
distribution G will be assigned a higher welfare level by every SWF in class
W2 – see Figure 3.

From the fundamental concept of the cumulative income functional (8)
two other important analytical tools distributional for drawing welfare-conclusions
from income data.
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Figure 3: G second-order dominates F .
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Definition The Relative Lorenz curve (RLC) (Lorenz 1905) is the graph
{L(·; q) : q ∈ [0, 1]} with ordinates:

L(F ; q) :=
C(F ; q)

µ(F )
(9)

for any F ∈ F.

Definition The Absolute Lorenz Curve (ALC) (Moyes 1987) is the graph
{A(·; q) : q ∈ [0, 1]} with ordinates:

A(F ; q) := C(F ; q)− qµ(F ) (10)

The RLC, closely related to the first moment function 6, is just a stan-
dardized version of the GLC and encapsulates the intuitive principle of the
distributional-shares ranking referred to in Section 2 We will examine the im-
plementation of (9) and (10) in Section 7 below. The RLC and ALC are also
second-order dominance criteria based on C that are widely used to provide
empirical distributional rankings. The particular interpretations that they
permit can be understood by restricting the admissible SWFs to a subset of
W2.

Take first, the subclass that have the additional property that propor-
tional increases in all incomes yield welfare improvements:{

W
∣∣W ∈ W2; ∀F ∈ F, k > 1 : W

(
F (×k)

)
> W (F )

}
. (11)

where
∀k ∈ �+, F

(×k)(x) = F
(x
k

)
. (12)

Then distribution G dominates F for SWFs in this restricted class if and
only if G �L F and µ(G) ≥ µ(F ).7 This is illustrated in Figure 4.

Alternatively take the subclass for which uniform absolute increases in
all incomes yield welfare improvements:{

W
∣∣W ∈ W2; ∀F ∈ F, k > 0 : W

(
F (+k)

)
> W (F )

}
. (13)

6This is a function Φ : X �→ [0, 1] defined for any F ∈ F as Φ(x) = L(F ;F (x)) =
1

µ(x)

∫ x
ydF (y) - (Kendall and Stuart 1977).

7The basic insights of the income-cumulation function were originally obtained for F(µ)
the subset of F consisting of distributions with a given mean µ :

(∀F,G ∈ F(µ) : G �L F ) ⇔ (∀W ∈ W2 : W (G) ≥ W (F ))

- see Atkinson (1970).
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Figure 4: G (relative-)Lorenz-dominates F .

where
∀k ∈ �, F (+k)(x) := F (x− k).

Then G �A F (see Figure 5) and µ(G) ≥ µ(F ) if, and only if,W (G) ≥W (F )
for all W in W2 that also satisfy (13).

4.4 Higher-order dominance

As with the first-order criterion, in practice one often finds that second-order
criteria are indecisive. Where Lorenz curves intersect one possible way for-
ward is to supplement the restrictions on the class of SWFs (6) by imposing a
further restriction on the income-evaluation function. An additional restric-
tion that could reasonably be imposed upon the W-classes is the “principle
of diminishing transfers” (Kolm 1976a): that a small transfer from an indi-
vidual with income x to one with income x− k should have a greater impact
on welfare or inequality the lower x is located in the distribution.8 Denote
by W3 the subset of W2 for which this principle holds. Then the following
can be established:

8The principle is implied by the principle of “transfer sensitivity” (Shorrocks and Foster
1987) or “aversion to downside inequality” (Davies and Hoy 1995).
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Figure 5: G absolute Lorenz-dominates F .

Theorem 4.3 (Atkinson 1973, Davies and Hoy 1994, Dardanoni and Lam-
bert 1988, Muliere and Scarsini 1989) For all SWFs in W3 W (F ) > W (G)
if F,G ∈ F satisfy: (i) µ(F ) = µ(G) , (ii) var(F ) ≤ var(G), and (iii) ∃q∗ ∈
(0, 1) such that ∀q < q∗ : L(F ; q) > L(G; q) and ∀q > q∗ : L(F ; q) < L(G; q).
9

This result is closely linked to a concept of “third-order” dominance
(Shorrocks and Foster 1987); an extension of the idea of dominance to an
arbitrary order is discussed in Fishburn and Willig (1984) and Kolm (1974,
1976b).

5 Dominance results and contamination

It might be thought that standard results on the structure of distributional
comparisons in economics permit one to draw conclusions about the role
of contamination in a mixture distribution. For example the concept of
decomposability – related to, but weaker than, the additive separability used
in definition 4.1 – is often invoked in standard approaches within the field
of distributional analysis, including the measurement of inequality or social
welfare and the measurement of risk. We may state a form of it as:

9Davies and Hoy (1995) extend the analysis to cases of multiple Lorenz intersections.
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Definition A statistic T is generally decomposable if ∀F,G,K ∈ F such that
µ(F ) = µ(G), and ∀λ ∈ [0, 1]:

(G �T F ) ⇔ ([1− λ]G+ λK �T [1− λ]F + λK)

This seems promising as a tool for disentangling the impact of contam-
ination in comparing income distributions. An apparently neat conclusion
can be drawn from Definition 5 and (4) if two “true” distributions F and
G are subjected simultaneously to exactly the same contamination: for any
generally decomposable statistic T if G

(z)
ε �T F

(z)
ε we may safely conclude

that G �T F . However, it runs into two serious problems. The first is that
many of the ranking statistics in which one is interested are not generally
decomposable; this is indeed the case with first- and second-order ranking
criteria �Q and �C introduced in definitions 4.2 and 4.3 below.10 The second
difficulty with this superficially attractive result is that this story of contam-
ination is a very special case. It assumes that, although contamination is not
observable, it may nevertheless be taken to be exactly the same for two em-
pirical distributions; the conditions under which one might reasonably accept
this seem rather contrived.

A general treatment of the impact of contamination on welfare judgments
requires the detailed examination of the properties of the IF for the particular
statistic T associated with a given ranking principle. This requires a two-
stage approach: first we look at the impact of contamination upon individual
statistics used in distributional comparisons (section 5.1); then we consider
the implications of this for the behaviour of ranking tools that use families
of these statistics (section 5.2).

5.1 Robustness properties of distributional statistics

5.1.1 First-order statistics

The functional Q(·, q) is an useful tool for distributional analysis in its own
right – consider for example the widespread use of the median or the in-
terquartile range as informative descriptive statistics – and it is interesting
to see the effect of contamination on a typical quantile. This can be done by
considering F

(z)
ε instead of F and applying equation (5) to find the influence

10More restricted notions of decomposability are available: in particular if the contam-
ination distribution is “non-overlapping” with F and G (Cowell 1988) (Ebert 1988) then
the ranking criteria will be decomposable (an example of this type of non-overlappingness
is the case on page 22). However this modification of the definition is of no help with the
second objection.
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function IF(z;Q(·, q), F ). We may write

Q(F (z)
ε ; q) = Q

(
F ;

q − ι(xq ≥ z)ε

1− ε

)
. (14)

Therefore,

IF(z;Q(·, q), F ) = q − ι(xq ≥ z)

f(Q(F ; q))
. (15)

Note that for any F ∈ F and for all z : ι(xq ≥ z) = ι(q ≥ F (z)). To
interpret (15) it is convenient to introduce the concept of the hazard rate

h(x) := f(x)
1−F (x)

.

Theorem 5.1 ∀z ∈ X and ∀F ∈ F :
(a) ∀q 	= 0, 1: IF(z;Q(·; q), F ) is bounded if and only if f(xq) > 0
(b) If the hazard rate is non-decreasing for large x then IF(z;Q(·; q), F )

is bounded as q → 1.
(c) If limx→inf X f(x) > 0 or if f(x) has positive slope as x→ inf X, then

IF(z;Q(·; q), F ) is bounded as q → 0.

Proof Part (a) is immediate from (15). (b) ∀z < supX , ∃ (δ > 0) | (q = 1− δ)

then ι(xq ≥ z) = 1 and IF becomes limx→supX

(
− 1

h(x)

)
and so the second part

follows.11 (c) Likewise, ∀z > inf X , ∃ (δ > 0) | (q = δ) then ι(xq ≥ z) = 0

and IF becomes limx→inf X

(
F (x)
f(x)

)
; the last part of the theorem then follows

from l’Hôpital’s rule.

An example of the problem that can arise with the condition in part (a)
of Theorem 5.1 is as follows. Figure 6 illustrates a case where Q(F, 0.5) is
non-robust. The population consists of two distinct equal-sized groups each
of which has an underlying rectangular distribution so that f(x) = c over
[a, b] and [a′, b′] and 0 elsewhere.12 We see that Q(F, 0.5) is at b, and that a
small amount of contamination in the region [a′,∞) would cause Q(F, 0.5)
in the mixture distribution to jump to a′. So Theorem 5.1 suggests that
if first-order statistics are used to compare distributions then, as long as F
is strictly increasing and the hazard rate has an appropriate property, then
we can be reassured that the welfare comparison is robust in that a small

11An example of a distirbution which violates this condition and for which the influence
function for Q(·, q) is unbounded as q → 1 is the lognormal (Cowell and Victoria-Feser
1996c) .

12Note that these assumptions imply b− a = b′ − a′.

17



f(x)

b'

x

a'b

c

Q
( F

, 0
.5

)

a0

Figure 6: Q(F, 0.5) in a case with a “dead” interval.

amount of extreme values in the samples used to make the comparisons will
not have any substantial effect on any of the Q(·, q) statistics.

However, we can say more than this if the first-order statistics are used
jointly to make a welfare comparison – see Section 5.2.

5.1.2 Second-order statistics

Now consider the use of income-cumulations to give us information about
parts of the income distribution. Again we consider the impact of data
contamination as modelled in (4).

The C functional can be written as

C(F (z)
ε ; q) =

∫ Q(F
(z)
ε ;q)

x

xdF (z)
ε (x) (16)

and the IF can be obtained by applying (5) to give:

IF(z;C(·, q), F ) = −
∫ Q(F ;q)

x

xdF (x) +Q(F ; q)f(Q(F ; q))IF(z;Q,F )

+

∫ Q(F ;q)

x

xdH(z)(x)

= qQ(F ; q)− C(F ; q) + ι(q ≥ F (z))[z −Q(F ; q)]. (17)
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Figure 7: The influence function for the income cumulation C(·, q).

The IF (17) is illustrated in Figure 7: we can see here that the influence
of an infinitesimal amount of contamination on the GLC’s q-group’s income
share can be large for high values of q. The IF can be unbounded at q = 1,
if the income range extends to +∞. On the other hand, if we suppose that
the income range extends to −∞, we can see from Figure 7 that the IF can
be unbounded for any value of q. We may summarize thus:

Theorem 5.2 ∀z ∈ X and ∀F ∈ F :
(a) ∀q < 1: IF(z;C(·; q), F ) is bounded if X is bounded below.
(b) q = 1, IF(z;C(·; q), F ) is bounded if X is bounded above and below

As we will see in section 5.2 this result has an important consequence for
distributional ranking results.

5.2 Results on ranking

As we explained in the introduction, two of the principal reasons for focusing
attention on analytical tools such as Pen’s Parade and the Lorenz curve
are the avoidance of ethical arbitrariness involved in a precommitment to
specific inequality indices or SWFs, and the avoidance of the unsatisfactory
properties associated with those statistics. However, this second reason may
not be soundly based: as we have seen, there are conditions under which
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the key distributional statistics Q and C are non-robust, and this may have
serious implications:

1. The ranking principle associated with a particular statistic may yield
mistaken judgments if made under the influence of data contamination.
As we can see from section 3.1.2, given two income distributions and
a ranking principle � there are obviously four possible outcomes: F �
G, G � F , F ∼ G and F ⊥ G. This implies that there are, in
principle, twelve types of errors that could be made in drawing welfare
inferences from a pair of empirical distributions. However the chief
problem arising from data contamination is that of mistaking F ⊥ G
for one of the other outcomes, or vice versa.

2. The welfare inferences based on these ranking principles could then be
open to question.

To investigate these issues we will examine, in turn, the two major ranking
principles associated with the statistics introduced in section 5.1.

5.2.1 The first-order dominance criterion

Could infinitesimal contamination change a first-order dominance result? As
we have seen the IF of Q(F ; q) can be unbounded for cases where the un-
derlying density f(Q(F ; q)) vanishes or where the tails of the underlying
distribution do not have appropriate limiting properties. It is also clear from
(15) that, whether or not the IF is unbounded is independent of the point
of contamination. However, these facts do not automatically imply that the
Q-rankings of distributions are misleading, in the sense just explained. In
fact, we may show:

Theorem 5.3 The first-order dominance relation �Q is robust.

Proof The result is established if it can be shown that, given G �Q F , it is

impossible that F
(z)
ε ⊥Q G for infinitesimal ε. For this to be true there must

be some q for which

Q(F (z)
ε ; q) > Q(G; q) ≥ Q(F ; q). (18)

Now everywhere f(Q(F ; q)) > 0 (18) implies that, for some q,

Q

(
F ;

q − ι(xq ≥ z)ε

1− ε

)
> Q(G; q) (19)
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But as ε → 0, ∀q, Q(F ; q) > Q(G; q) which contradicts the hypothesis
Q(G; q) ≥ Q(F ; q). Next consider the exceptional cases (a)-(c) in Theorem
5.1:

(a) Let I := [x∗, x∗∗] ⊂ X be a “dead” interval for F such that f(x) =

0, ∀x ∈ I, and let q∗ := F (x∗). For arbitrarily small ε we have Q(F
(z)
ε ; q) →

x∗ as q ↑ q∗ and Q(F
(z)
ε ; q) → x∗∗ as q ↓ q∗. Given that Q is monotonic

non-decreasing in q it is impossible for (18) to hold at q∗.
(b) If G �Q F , then in particular

lim
x→supX

G(x) ≥ lim
x→supX

F (x). (20)

If F
(z)
ε ⊥Q G, it would have to be true that

lim
x→supX

(
F (x) +

εH(z)(x)

1− ε

)
> lim

x→supX

G(x)

1− ε
(21)

However, allowing ε to tend to zero in (21) immediately produces a contra-
diction with (20).

(c) A similar argument to part (b) applies for the case x→ inf X.

Q (G ;q )
b '

a '
b

a

q *

1 .0

0

x

Q (F ;q )

q

Figure 8: Q-rankings with a “dead” interval.
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Two clarifying remarks may be in order. First, the point in (a) is illus-
trated in Figure 8 using the example of Figure 6: here x∗ = b, x∗∗ = a′, and
it is clear that even though there is an unbounded IF because of the dead
interval, this does not affect the conclusion that G �Q F . Second, note that
the result is asymptotic: with a finite sample of size n, it is easy to see that
contamination could, in principle, cause the first-order criterion to yield an
inappropriate answer – if G(n) �Q F (n), then by extending the largest ob-
servation in F (n), one might have G(n) ⊥Q F (n) because of the contaminated
data.

5.2.2 The second-order dominance criterion

By analogy with the first-order case considered in 5.2.1, to understand the
potential impact of contamination on second-order dominance we need to
look at the consequences of the robustness properties of this fundamental
statistic (8).

Theorem 5.4 The second-order dominance relation �C is non-robust.

Proof The result is established if it is the case that, for some F,G ∈ F
such that G �C F , it is possible that limε→0 F

(z)
ε ⊥C G. First, recall that

µ (·) = C (·, 1) and note that

µ
(
F (z)
ε

)
= [1− ε]µ (F ) + εz (22)

If X is unbounded above then we may have limε→0 limz→∞ εz =: k > 0. So,
if k is sufficiently large, we have

lim
ε→0

lim
z→∞

µ
(
F (z)
ε

)
> µ (G) > µ (F ) (23)

where the second inequality in (23) follows from G �C F . But (23) implies

limε→0 limz→∞ F
(z)
ε ⊥C G.

The case used in the proof is shown in Figure 9 which depicts two dis-
tributions F , G such that G �C F and a mixture distribution F

(z)
ε . By

definition of the ranking principle �C we have µ(G) > µ(F ), and F
(z)
ε has

been constructed as a mixture between F and a point mass distribution at
z such that µ(F

(z)
ε ) > µ(G).
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Figure 9: A small amount of contamination changes second-order dominance
conclusions.

5.2.3 Other second-order criteria

The behaviour discussed in 5.1.2 and 5.2.2 is inherited by other related dis-
tributional tools.

Theorem 5.5 All RLC and ALC ordinates are non-robust.

Proof If we assume the contaminated distribution F
(z)
ε , we have

L(F (z)
ε ; q) =

C(F
(z)
ε ; q)

µ(F
(z)
ε )

(24)

A(F (z)
ε ; q) = C(F (z)

ε ; q)− µ(F (z)
ε ) · q. (25)

and the IFs are given by

IF(z;L(·; q), F ) =
1

µ(F )2
[IF(z;C(·; q), F )µ(F )− IF(z;µ, F )C(F ; q)]

=
Q(F ; q)(q − ι(q ≥ F (z))

µ(F )
+ z

µ(F )ι(q ≥ F (z))− C(F ; q))

µ(F )2
(26)

IF(z;A(·; q), F ) = IF(z;C(·; q), F )− IF(z;µ, F )q

= qQ(F ; q)− C(F ; q) + ι(q ≥ F (z))[z −Q(F ; q)] +

(µ(F )− z)q. (27)
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where the second line in (26) follows from the fact that IF(z;µ, F ) = z−µ(F ).
Given that the last line in each of the expressions (26) and (27) is linear in
z then, if z is unbounded, so too is IF.

So the IF for any RLC or ALC ordinate is unbounded. But here the
result is stronger than in Theorem 5.2 – it applies for all values of q – and
the reason is that we have to estimate the mean by the sample mean which
is clearly not a robust estimator.

5.2.4 Higher-order dominance criteria

As we noted in section 4.4, the basic principles of monotonicity (first order)
and transfers (second order) should be supplemented by others so as to gen-
erate third and higher order concepts of dominance. However, given that
these criteria involve comparisons of an integral of the C(·, q) it is clear that
the problems that occur with second-order dominance will necessarily occur
with higher-order versions of distributional dominance.

5.3 Implications

Second-order ranking principles can have unbounded IFs, and the conditions
under which they are unbounded correspond to phenomena that can reason-
ably be expected to arise in practical applications. A very small number of
large outliers can give rise to serious problems for welfare analysis when using
Lorenz-type tools.

We have already seen a typical example of this problem in connection
with the GLC in Figure 9 where G dominates F for all incomes except for
the highest one. Is it then reasonable to conclude that G ⊥ F (which is what
is actually observed) when it is clear that, had the highest income not been
there, we would have concluded that G � F ?

As a second example of misleading welfare inferences take the performance
of the RLC in a simple “lottery winner” example. Suppose we have two
populations of size n with discrete distributions F and G characterised by the
income vectors xF := (x[1], x[2], . . . , x[n]) and xG := (x[1]−γ, x[2], . . . , x[n]+γ),
γ > 0 (where [i] is the ith order statistic). By construction we have F �C G:
in fact F dominates G in terms of RLC, GLC and ALC. Now suppose that a
lottery is introduced in the first population, that everybody spends the same
amount on the lottery, and that the winner is the richest, i.e. the person with
income x[n]. Then the corresponding income distribution becomes F̂ where

xF̂ := (x[1] − δ, . . . , x[n−1] − δ, x[n] + (n − 1)δ). By imposing suitable mild
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conditions on γ, δ and n, it is easy to show that after the lottery has been
introduced, G �C F̂ .13 Again we may ask whether the conclusion F �C G
or G �C F̂ is appropriate.

Although the modifications to the income distribution in the above two
cases are different, the issues raised for welfare ranking are similar – the
Lorenz curves for the lottery example will be of the same form as the (relative)
Lorenz curves corresponding to the example in Figure 9 – and so it makes
sense to consider them together. There are three ways of looking at the GLC
phenomenon in Figure 9:

1. The point mass z really belongs to the distribution and should be en-
coded in the distributional ranking criterion along with all the other
information.

2. The point mass z really belongs to the distribution but should be dis-
carded as unimportant, so that the conclusion G � F stands. The
intersection of the GLCs at one end tells a different story from that
which appears from the mass of the data. In this case the information
in the upper tail can be interpreted as “hiding” the story from the rest
of the data.

3. Point mass z is external contamination and should be discarded as
irrelevant. The corresponding point in the lottery example would be the
argument that in comparing F̂ and G one would be using the “wrong”
income concept – an ex post rather than an ex ante distribution.

The distinction between (1) and (2) is essentially a matter of economic
judgment: what issue is it “appropriate” to address? Here appropriateness is
to be judged by ethical criteria or by reference to pragmatic considerations of
relevance: for example it is possible to imagine cases where it is appropriate
to combine in the same distribution dramatically different subgroups – say
a small rich group (Luxembourg?) and a large group with modest incomes
(China?) – and cases where this composite distribution is inappropriate.
There remains the issue of what can, or should, be done about (2) and
(3). In case (2) it may be that the second-order welfare criterion that is

13As an example consider the income vectors
xF = (50, 100, 100, 100, ..., 100, 150)
xG = (49, 100, 100, 100, ..., 100, 151)

xF̂ = (49, 99, 99, 99, ..., 99, 150+[n−1]). A similar problem arises in an example provided
by Arnold (1987) of misreporting. Suppose x is true income and that individuals underre-
port by a fraction 1− u so that reported income is y := ux; if x and u are independently
distributed and x ∼ F (x), y ∼ G(y) then F � G (Arnold 1987, page 51).
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being applied is inappropriately demanding, and should be replaced. In
case (3) one wants to use information about the rest of the distribution to
“work round” the problem caused by the contamination: this may involve
a scientific rule for ignoring extreme values or a method for modelling the
shape of the distribution. Practical methods of handling (2) and (3) will be
tackled in section 6.

6 Robust approaches

Because second-order dominance criteria can be misleading in the presence
of data contamination it is desirable to have a procedure that enables one to
control systematically for suspect values that my distort the distributional
comparisons. There are two main ways of approaching the problem. One
is based on statistics that automatically remove from the sample data that
are potentially troublesome. The other relies on the specification of para-
metric models for the distribution of the data and uses robust estimators
of the parameters. Each of these has a number of attractions. Consider
first parametric approach: we do this in two steps – a fully-fledged appli-
cation of parametric methods, and a kind of “half-way house” between full
parametrisation and the non-parametric approach.

6.1 A full parametric approach

A parametric approach to robustness requires the specification of a functional
form for modelling the data. One then estimates robustly the parameters of
the model and uses the estimated distributions to compute the (estimated)
Lorenz curves. To be more precise, suppose we choose Fθ as model for the
data and estimate θ robustly by say θ̂, then robust estimates of the GLC,
RLC and ALC are given by respectively

C(θ̂; q) =

∫ Q(F
θ̂
;q)

x

xdFθ̂(x), (28)

L(θ̂; q) =
C(Fθ̂; q)

µ(Fθ̂)
, (29)

A(θ̂; q) = C(Fθ̂; q)− µ(Fθ̂) · q, (30)

where µ(Fθ̂) =
∫
xdFθ̂(x). The IF of the estimators of the Lorenz curves

will then depend on the IF of the parameter’s estimator. Indeed, the Lorenz
curves depend on the data only through the estimator θ̂. If we write the latter
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as a functional of the contaminated distribution given in (4), i.e. θ̂(F
(z)
ε ), then

we have

IF(z;C, Fθ) =
∂

∂θ
C(Fθ; q) · IF(z; θ̂, Fθ). (31)

Then if the estimator is robust, or in other words if its IF is bounded, the
Lorenz curve estimated through a parametric model is also robust.

Consider the standard approach to the estimation of a full parametric
model of income distribution. This usually concentrates on an efficiency
criterion: given a model Fθ with density function fθ, the maximum likelihood
estimators (MLE) are then obtained as the solution in θ of the m equations

n∑
i=1

S(xi; θ) = 0 (32)

where m := dim(θ) and S is the scores function defined by

S(x; θ) =
∂

∂θ
log fθ(x) (33)

But, of course, the efficiency criterion alone takes no account of the of con-
tamination problem: the MLE procedures would be optimal given the as-
sumption that the data are generated by Fθ, but will be invalid for any
variation around Fθ – as in equation (4) with ε > 0 (Hampel et al. 1986,
Victoria-Feser 1993). To handle this requires an additional criterion that
takes into account the robustness considerations outlined in section 5. In the
robust approach to estimation, instead of applying (32 and 33) one requires
an algorithm to filter outlying observations systematically. The MLE belong
to a general class of so-called M-estimators which are defined as the solution
in θ of

n∑
i=1

ψ(xi; θ) = 0 (34)

where ψ belongs to a very general class of functions. (Huber 1964) The
robust approach consists of a search for the minimum (asymptotic) variance
M-estimator with a bounded IF: efficiency is sacrificed to some extent in
favour of robustness. There is a number of optimal estimators, depending on
the exact method of bounding the IF. Take, for example the standardised
Optimal Bias-Robust Estimators (OBRE) which also belong to (34); given a
constant c ∈ [

√
m,∞) which plays the role of upper bound on the IF , the

OBRE is defined as the solution in θ to∑n

i=1
ψA,a
c (xi; θ) = 0 (35)
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where

ψA,a
c (x; θ) = A(θ) [S(x; θ)− a(θ)]wc(x; θ)

wc(x; θ) = min

{
1;

c

‖A(θ) [S(x; θ)− a(θ)] ‖
}

A is an m×m-matrix, and a is an m-vector; A and a are determined by:

E
[
ψA,a
c (x; θ)ψA,a

c (x; θ)T
]

= I (36)

E
[
ψA,a
c (x; θ)

]
= 0 (37)

A and a can be considered as Lagrange multipliers for restrictions (36) and
(37); ψ is a modified and standardised scores function, weighted using wc.
The constant c may be selected as a “regulator” between the two statistical
criteria, efficiency and robustness. Lower values of c yield more robust, but
less efficient, estimators: the maximum-robustness estimator corresponds to
the lower bound of the constant c =

√
m; on the other hand c = ∞ yields

the MLE (Prieto-Alaiz and Victoria-Feser 1996, Victoria-Feser 1995).14

However, in the present context, a full parametric approach is inappropri-
ate, even if it is undertaken using robust methods. This is because it forces
the data into the “mould” of a functional form that may not be suitable
for welfare comparisons. For example, if one supposes that the income data
are Lognormal distributed, then a “parametric Lorenz” comparison of two
distributions based on the Lognormal will always yield a strict dominance
order! The parametric approach is therefore only appropriate provided that
the postulated model is capable of yielding Lorenz curves that can cross: this
may require specification of a complicated functional form that is difficult to
estimate and to interpret.

6.2 A semi-parametric approach

In light of the above considerations, we suggest using a semi-parametric ap-
proach. As we have seen in Section 5, if the income range is bounded below
(0 is a typical value), the problems with contaminated data occur in the
upper tail of the distribution. A case can therefore be made for using para-
metric modelling only in the upper tail, and estimating the parameter of the
upper-tail model robustly.

14For more on optimal bounded-influence estimators see Hampel et al. (1986), Victoria-
Feser and Ronchetti (1994, 1997). Software for robust estimation of parametric income-
distribution models is provided in Cowell and Gomulka (1999)
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A suitable model for the upper tail is the Pareto distribution given by

Fθ = 1−
[
x

x0

]−θ

A semi-parametric approach will combine a non-parametric RLC for say
the (1 − α)% lower incomes and a parametric RLC based on the Pareto
distribution for the α% upper incomes. Let F (n) and Fθ̂ denote respectively
the empirical distribution function and the estimated Pareto distribution.
Usually, the estimates for θ are obtained through a simple linear regression
of lnn(x), i.e. the natural logarithm of the number of xis greater than x,
and ln(x), for the αn upper values of the xs. In order to avoid “jumps” on
the RLC at the (1 − α) quantile, we propose here to re-center the Pareto
distribution. That is, we put x0 = Q(F (n); 1 − α) and the regression model
becomes

ln

(
n(x)

αn

)
= −θ ln

(
x

x0

)
(38)

from which we get θ̂ which is either a classical estimator such as the least
squares estimator (LS), or a robust estimator. For the latter, the litera-
ture has a number of proposals (see e.g. Huber 1973, Hampel et al. 1986,
Rousseeuw and Leroy 1987, Marazzi 1993) that can be classified into two
broad groups, depending on how “robust” they are. Indeed, we can distin-
guish two types of robustness, namely global and infinitesimal robustness.
The latter is based on the IF which measures the influence of an infinites-
imal amount of contamination in the data upon the statistics of interest.
A bounded IF means that the statistic is robust in the infinitesimal sense.
The former is concerned with the proportion of contamination a statistic can
withstand before it “breaks down”, or in other words before its bias becomes
arbitrarily large. High breakdown-point estimators such as the least median
of squares of Rousseeuw (1984) which can withstand up to nearly 50% of
contaminated data (but are less efficient) are robust in the global sense. For
a robust estimator in the infinitesimal sense, we propose here to use a robust
estimator of the so-called Mallows class of M-estimators. These generalise
the maximum likelihood estimators which, for the normal regression model,
are given by

1

n

∑ ri(θ)

σ
xi = 0 (39)

ri being the residuals. In contrast to (39) the Mallows class is defined by

1

n

∑
ψ

(
ri(θ)

σ

)
w(xi)xi = 0 (40)
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By choosing ψ and w in (40) appropriately, the influence of large residuals
and extreme values in the xs is limited. There are different possible choice
for ψ and w depending on several optimality criteria (see Hampel et al.
1986). Actually the differences lie mainly on the choice of w(·). A simple
weighting scheme is based on the diagonal elements hii of the hat matrix
H := X(X

′
X)−1X

′
where X denotes the design matrix in the regression

model. Without leverage points, hii ≈ p/n (p being the dimension of the
independent variables) so that one downweights cases for which hii exceeds
a value bp/n. Thus

wb(x) = min

{
1;

bp

nhii

}
A benchmark is given by b = 1.5. For the ψ function, an efficient choice is
the Huber function

ψc

( r
σ

)
=
r

σ
min

{
1;

c

|r/σ|
}

which downweights standardized residuals lying far away, depending on the
choice of the constant c. Choosing c = ∞ leads to no downweighting, and
choosing c = 1.345 leads to an estimator which achieves 95% efficiency under
the normal model. One also needs to estimate σ, and once again it should
be robust. A relatively simple one is given by the median absolute deviation
of residuals

σ̂ = k medi |ri −mediri|
where k = 1.4826 ensures consistency under the Gaussian model.15

The semi-parametric GLC is then given by

C(Fθ̂, F
(n); q) =

{ ∫ Q(F (n);q)

x
xdF (n)(x) q ≤ 1− α∫ Q(F (n);1−α)

x
xdF (n)(x) + α

∫ Q(F
θ̂
;q∗)

x0
xdFθ̂(x) q > 1− α

(41)

=

⎧⎨
⎩

∫ Q(F (n);q)

x
xdF (n)(x) q ≤ 1− α∫ Q(F (n);1−α)

x
xdF (n)(x) + α θ̂

1−θ̂
x0

[
[1− q∗]

θ̂−1

θ̂ − 1
]

q > 1− α

where q∗ = q−(1−α)
α

. The semi-parametric RLC is simply

L(Fθ̂, F
(n); q) =

C(Fθ̂, F
(n); q)

µ(Fθ̂, F
(n))

15As mentioned earlier, the choice for the robust estimator is not the most important
feature of our approach and other robust estimators proposed in statistical programs like
Splus are also possible choices.
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where

µ(Fθ̂, F
(n)) =

∫ Q(F (n):1−α)

x

xdF (n)(x) + α

∫ ∞

x0

xdFθ̂(x) (42)

=

∫ Q(F (n):1−α)

x

xdF (n)(x) + α
θ̂

θ̂ − 1
x0
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Figure 10: Uncontaminated Dagum-I distributions.

A question arises here about the choice of the proportion α of data to
model. We may propose a simple rationale based on prior knowledge of the
quality of the data. First it should be stressed that α should be as small
as possible to avoid putting too much of the parametric approach into the
ranking exercise for the reason we mentioned before. Second, α should be
large enough so that a majority of data points in the upper tail subsample are
uncontaminated data. Let ε be the (suspected) proportion of contaminated
data in the whole sample, which should be relatively small. Suppose that the
data analyst has a fairly good idea of that quantity which in general depends
on the data source. We propose the adoption of a minimax approach in that
we assume that the contamination will result in the worst senior, i.e. in
extremely large incomes. To prevent the ranking exercise being completely
determined by this proportion ε of contaminated data, one then should get
the information on the upper tail through the estimation of the parameter
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Figure 11: Contaminated Dagum-I distributions.

of the Pareto distribution. If a high breakdown point estimator is used, then
α could be taken just above 2 · ε, so that in the subsample of the upper tail,
the proportion of contamination does not exceed 50%. If a more efficient
estimator is chosen, then α is chosen so that the amount of contamination in
the subsample of the upper tail should not exceed its breakdown point. For
example, if the breakdown point of the Huber estimator is about 4%, then
α = 1

0.04
ε.

In order to test our semi-parametric RLC we performed the following
simulation exercise. Two samples of 10 000 observations were simulated
from a Dagum type I distribution given by

f(x; β, λ, δ) = (β + 1)λδx−(δ+1)(1 + λx−δ)−(β+1) (43)

(Dagum 1977).16 The values of the parameters were chosen in order to get
two distributions such that one exactly RLC-dominates the other. They are
the Dagum(2,1,2) (i.e. β = 2, λ = 1, δ = 2) and the Dagum(2,1,1.7). The
RLCs for the two samples are given in Figure 10. We then contaminated the
Dagum(2,1,2) by multiplying the two largest observations by 100. Note that
although the multiplying factor is quite large, the proportion of contaminated

16The form (43) has the property that for large values of x, the distribution converges
to the Pareto distribution. Note also that this model can be seen as a particular case of
the generalized Beta distribution proposed by McDonald and Ransom (1979).
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data is very small (i.e. 0.02%). The RLC for the contaminated Dagum(2,1,2)
and the Dagum(2,1,1.7) are given in Figure 11. We can see that the domi-
nance order is completely reversed because the contaminated Dagum(2,1,2)
is completely determined by the two extreme observations introduced into
the data.
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 n

(x
)

Robust
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Figure 12: Alternative regression methods for a Pareto tail: Uncontaminated
data.

In order to avoid this very misleading picture based on the non-parametric
RLC, we modelled the upper tail of the distribution using the Pareto distri-
bution as explained above. We used the classical LS estimator and the robust
Mallows-type estimator with default parameters c=1.345, b=1.5, k=1.4826.
We first estimated the parameter θ for the model given by (38) with α = 5%.
The values of θ̂ for the non-contaminated sample are respectively θ̂ = 2.11
for the LS estimator and θ̂ = 2.16 for the robust estimator, whereas for the
contaminated sample they are respectively θ̂ = 1.44 for the LS estimator and
θ̂ = 2.15 for the robust estimator. The data and estimated regression lines
are given in Figures 12 and ??. We can see that the classical LS estima-
tor is influenced by the extreme observations, whereas the robust estimator
remains very stable. If we then estimate the semi-parametric RLC using
(41) and (42) and compare them to the non-parametric RLC using the non-
contaminated sample, we get the picture given in Figure 13. We can see
that the semi-parametric RLC on non-contaminated data and/or using a ro-
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Figure 13: Semi-parametric approach RLCs

bust estimator give exactly the same RLC as the non-parametric RLC with
non-contaminated data. However, when one uses a semi-parametric RLC
with a classical estimator on contaminated data, the picture is distorted. It
should be noted that it not as distorted as with the non-parametric RLC
given in Figure 11. Finally, Figure 14 gives the RLC comparison of the
semi-parametric RLC on the contaminated Dagum(2,1,2) compared with the
non-parametric RLC on the Dagum(2,1,1.7). We can see that with the ro-
bust semi-parametric RLC, the dominance order is preserved, whereas with
the classical semi-parametric RLC the curves cross, thus contradicting the
original order.

6.3 Non-parametric methods: trimming

A natural approach would be to consider the use of trimmed Lorenz Curves
as estimators of Lorenz curves. This concept builds upon an established tool
– the so-called trimmed mean.

Consider a number α ∈ [0, 1
2
) which we will call the balanced trimming

proportion. The trimmed mean of distribution F with trimming parameter
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Figure 14: Semi-parametric Lorenz rankings: classical and robust.

α, X̄α(F ) is then given by

X̄α(F ) = 1
1−2α

∫ F−1(1−α)

F−1(α)

ydF (y)

= 1
1−2α

∫ 1−α

α

F−1(t)dt. (44)

This estimator of location has intuitive appeal: one removes both the αn
smallest and the αn largest observations in a sample of size n, and calculates
the mean of the remaining observations: notice that lim

α→0.5
X̄α(F ) = Q(F, 0.5)

– in the limiting case as α approaches 50% the trimmed estimate of the mean
approaches the median.

To extend the idea to Lorenz curves, one has to interpret the quantile
and income-cumulation functions (7) and (8). α-trimming the data means
that Q(F ; q) ∈ (Q(F ;α), Q(F ; 1 − α)) and thus q ∈ (α, 1 − α). Therefore,
the α-trimmed generalized Lorenz, Lorenz and absolute Lorenz curves17 are
respectively given by

Cα(F ; q) =
1

1−2α

∫ Q(F ;q)

Q(F ;α)

xdF (x), (45)

17See the similar concept of restricted dominance discussed by Atkinson and Bour-
guignon (1989).
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Lα(F ; q) =
Cα(F ; q)

X̄α(F )
, (46)

Aα(F ; q) = (1− 2α) · Cα(F ; q)− X̄α(F ) · (q − α). (47)

– Cf equations (8), (9) and (10). From equations (45-47) we have Cα(F ;α) =
0, Lα(F ;α) = 0, Aα(F ;α) = 0 and Cα(F ; 1−α) = X̄α(F ), Lα(F ; 1−α) = 1,
Aα(F ; 1− α) = 0.

The IFs of these trimmed Lorenz curves will be bounded for all q because
extreme values in the data are automatically removed, for all α > 0. Trimmed
Lorenz curves can be thought of as Lorenz curves on a restricted sample and
enable one to compare two distributions on the basis of 100(1− 2α) percent
of the middle income-receiving units:18 the �Cα-ranking criterion provides a
parametrised extension of the standard �C method for a range of values of
α ∈ [0, 1

2
).

The above is predicated on the idea of a balanced trim of observations
in both tails simultaneously, 1

2
αn observations from each. It makes sense

to consider an extension of this method to single-tail trimming in the case
where it is appropriate to form an a priori judgment about the nature of the
contamination. If, for example, contamination is assumed to affect only the
lower tail of the distribution then the bottom αn observations are removed
in a 1-sided trim.

The appeal of the trimming procedure is not based solely upon intuition.
It can, for example, be shown that if there are “rogue” values in a large
sample then these can only significantly effect the outcome of a distirbutional
comparison if they occur as extreme values of the sample – see Appendix C.
There remains the question of how many extreme values should be trimmed:
how should one choose α? As with parametric methods there is a trade-
off of robustness against efficiency and the example in section 7 shows how
reasonable pragmatic choices may be made.

7 Empirical examples

The trimming approach offers a practical tool for the comparison of income
distribution when one wants an explicit control for taking account of the
influence of outliers. We use the analysis of section 6.3 to examine more
carefully two aspects of conventional wisdom concerning comparisons of in-
come distribution. In each case the data are taken from the LIS data-base

18This is a practice that is sometimes adopted in pragmatic discussion of inequality
trends. See also the discussion of related issues by Howes (1996).
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and refer to real income per equivalent adult distributed amongst individuals
(see Appendix B).

7.1 Cross-country comparison: Sweden and Germany

The received wisdom suggests that 1980s Sweden is more equal than Ger-
many. However, is this actually borne out by the data, and what are the
implications for standard welfare comparisons? To investigate this we use
data for Sweden 1981 and (West) Germany 1983. Given standard defini-
tions it immediately appears that FGermany �C FSweden so that there is no
question but that the German income-distribution second-order dominates
that for Sweden: the generalised Lorenz curve for Germany is higher. How-
ever we also find FSweden⊥AFGermany and FSweden �A0.005 FGermany: given a
very slight trim of both tails (a half of one percent) Sweden absolute-Lorenz
dominates Germany.
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Figure 15: Is Sweden more equal than Germany?

What of inequality? As Figures 15 and 16 show there is an ambiguity for
the raw data – FSweden⊥LFGermany – which is due to a single intersection of
the Lorenz curves. Figure 15 depicts the position of the switch-point (where
the Lorenz curves intersect) for two types of trim for various values of α:
q∗∗(α) for the balanced two-tail trim (solid curve), and q∗(α) for the one-
sided lower-tail trim (dotted curve). Let the points where q∗∗(.) and q∗(.)
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Figure 16: Germany vs Sweden: the effect of a 2.5% one-tail trim on the
Lorenz comparison.

become zero be denoted α∗∗ and α∗ respectively. Then we have

q∗∗(0) = q∗(0) = 0.11

q∗∗(α) = 0, α ≥ α∗∗ = 0.031

q∗(α) = 0, α ≥ α∗ = 0.025

We have FSweden �Lα FGermany only if a trim of 21
2
% of the observations is

carried out on the lower tail, or a balanced trim of 3.1%.
Notice also that both q∗∗ and q∗ fall rapidly for α very close to zero and

thereafter decrease more gently; the comparison is extremely sensitive to
presence or absence the first few observations (in either the 1- or 2-tail case).
However it appears to be unreasonable to suppose that the true picture is of
strict Lorenz dominance in that at least 1000 observations would have to be
discarded from the German data (n � 42, 000) in order for this conclusion
to obtain.

7.2 Inequality over time: the US in the 1980s

The same technique may of course be applied to comparisons within one
country, but between two points in time. In the United States the conven-
tional wisdom is perhaps even more sharp in its sketch of recent events –

38



inequality rose over the 1980s. Again the fact is – perhaps surprisingly –
that the raw data do not reveal an unambiguous increase in inequality, in
the standard Pigou-Dalton sense. It might appear that this is principally
due to the presence of negative incomes in the first centile group: as we will
see this is not quite the whole story. Note first that FUS86⊥CFUS79 – we do
not have first- or second-order distributional dominance (see Figure 17 – the
generalised Lorenz curves intersect three times at about q = 0.02, 0.06, 0.32),
but FUS79 �A FUS86.

0 10 20 30 40 50 60 70 80 90 100
$0

$4,000

$8,000

$12,000

$16,000
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US 1986

Figure 17: US 1986 does not second-order dominate US 1979.

The trimming procedure is more complex. The problem of negative in-
comes is disposed of by a very modest (less than 0.5%) trim; but there
remains a problem of multiple intersections of the Lorenz curves at the bot-
tom tail (there are intersections in the neighborhood of q = 0.0258 and
q = 0.0310). Figure 19 plots q∗∗(α) and q∗(α) in this case: in view of the
multiple intersections, these values are interpreted as the maximum switch
point between the two Lorenz curves for each value of α. The outcome of the
α-trimming procedure is interesting in that – by contrast to the Germany-
versus Sweden example – neither q∗∗(.) nor q∗(.) is monotonic. By dropping
some 200 to 300 observations (2 percent) in the single-tailed trim, or 600 to
700 observations (41

2
percent of the whole sample) in the two tail trim one

may then conclude that FUS79 �Lα FUS86.
However there are interesting points in common with the Germany-versus-
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Figure 18: US inequality: the effect of a 2.5% one-tail trim on Lorenz com-
parisons.

Sweden example. First, for values of α in the range [0, 0.01] one finds a
relationship between the switch-point and α which is clearly different from
the relationship that holds in the neighbourhood of the points α∗∗ and α∗.
Second, the shape of the two-trail trim graph follows closely that of the one-
tail trim. Thirdly, all the action appears to come from the lower tail: in the
distributional comparisons reported in subsections 7.1 and 7.2 an upper-tail
trimming experiment has no effect on distributional rankings.

8 Conclusions

Using ranking criteria to make welfare inferences about income distributions
is of immense theoretical advantage and practical convenience. In addi-
tion to avoiding the arbitrariness associated with the choice of specific wel-
fare functions or inequality measures, it might be supposed that use of the
distributional-ranking approach will also enable the empirically oriented re-
searcher to avoid some of the pitfalls associated with sensitive inequality
statistics. However, it has pitfalls, which may not be so readily apparent.
These pitfalls can be set out in the form of a simplified story.

1. Except for some special cases “first-order” distributional statistics –
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Figure 19: Did Inequality Rise in the US?

the quantiles – are robust.

2. However, even these exceptions do not matter for first-order dominance
results: the quantile ranking is robust.19

3. Second-order (and higher) statistics and stochastic dominance results
are non-robust: contamination can seriously affect welfare conclusions
when extreme values are present in the data: small amounts of data
contamination in the wrong place can even reverse unambiguous welfare
conclusions. This corresponds to other work on robust methods applied
to income distribution: In Cowell and Victoria-Feser (1996a, 1996b) we
showed that most inequality measures are non-robust, but that most
poverty indices with exogenous poverty lines are robust – see also Monti
(1991).

Finally, it is possible to implement practical “work-rounds” for cases
where the stochastic dominance criteria are non-robust: in other words
computational devices which can be used to draw restricted welfare infer-
ences about the properties of distributional comparisons. Use of the semi-
parametric approach to modelling income distribution enables one to con-
trol for the distortionary effect of upper-tail contamination in a systematic

19For further discussion of the statistical implementation of first order criteria see
Ben Horim (1990) and Stein et al. (1987).
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fashion. One-tail or two-tail trimming offers a way to extend the simple
distributional-dominance criteria in a way that allows one to examine sys-
tematically the potential loss of information against robustness of the statis-
tic. These procedures have already been used in an ad hoc fashion20: the
above may serve as the basis for a more systematic treatment.

20Some empirical studies have concentrated upon a subset of the distribution delimited
either by population subgroup (prime-age males) or by arbitrarily excluding some of the
data in the tails (Gottschalk and Smeeding 1998).
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A Quantile definition

In the text we followed a standard convention that determines the qth quan-
tile from a (single-valued) functional Q of the distribution F . However, some
would regard the definition of quantiles as being indeterminate in the case of
“dead” intervals discussed above (Cf Kendall and Stuart (1977), pp. 39-41).
An alternative approach is to suppose that the quantile is a correspondence.
To do this define the following collection of subsets of X:

Ξ := {{x : a ≤ x ≤ b} : a, b ∈ X}

Then the quantile correspondence is

Q̃ : F× [0, 1] → Ξ

such that

Q̃(F ; q) = {x : F (x) = q}
Where F is strictly increasing Q̃(F ; q) yields a singleton set, and in other

cases it may yield a singleton or a proper interval of values: the correspon-
dence Q̃ is upper-semicontinuous.

Now consider the effect of contamination on the quantiles of the distribu-
tion.Wherever f(x) > 0 it is clear that Q̃(F ; q) and Q(F ; q) will be effectively

identical. In other cases Q(F ; q) = min
(
Q̃(F ; q)

)
. Take an arbitrary q0 and

let ξ0 := Q̃(F ; q0). In all cases we find that for arbitrarily small ε we have

Q̃(F
(z)
ε ; q) → ξ0.

B Data Specification

The Luxembourg Income Study permits comparison of different countries’
income distributions based on consistent international definitions of income
and the income receiver. Accordingly the same basic specifications were
used both the (Germany, Sweden) and the (US 1979, US 1986) comparisons
in section 7. The sample sizes were:

Germany 1983 42,752
Sweden 1981 9,625
US 1979 15.928
US 1986 12,600
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The income distributions are formed using the following concept of equiv-
alised incomes (Buhmann, Rainwater, Schmaus, and Smeeding 1988) (Coul-
ter, Cowell, and Jenkins 1992):

y =
hhy

hhsizeγ
.

where

• Household income, hhy = net family (unit) income after tax.

• Household size, hhsize = the number of persons in the family unit.

• γ = 0.5.

Each observation is then given a weight, indwgt = hhsize ∗ hweight,
to obtain distributions of income across individuals (Cowell 1984) (Danziger
and Taussig 1979). The variable hweight, is the family unit sample weight.

For calculating distributions for different years and for conversion to dol-
lars the following data from the IMF Year Book 1994 were used.

1981 1983
Price level consumption

Germany 106.3 115.6
Sweden 112.1 132.6

Dollar exchange rate
Germany 2.26 2.553
Sweden 5.063 7.667

C Trimmed Samples

Consider a pair of empirical distributions

x : = x1, x2, ..., xn (48)

y : = y1, y2, ..., yn (49)

that have been sorted in ascending order of incomes; x and y are drawn,
respectively from the mixtures

Fε : = [1− ε]F + εH (50)

Gε : = [1− ε]G+ εH (51)

where the number ε is unknown but is the same for both distributions and
where, for every pair (xi, yi), i = 1, ..., n, either both components are genuine
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observations (drawn from F and G respectively) or both are drawn from the
same contamination distribution H . Further assume that x−i �C y−i where

x−i : = x1, x2, ..., xi−1, xi+1, ..., xn (52)

y−i : = y1, y2, ..., yi−1, yi+1, ..., yn (53)

Defining

Di−1 : =
i−1∑
j=1

[xj − yj]

Di+1 : = Di−1 + xi+1 − yi+1

then if x⊥Cy we have21

Di−1 ≥ 0 (54)

Di+1 ≥ 0 (55)

yi > xi +Di−1 (56)

The probability that (56) is true is given by

Pr {yi > xi +Di−1|xi+1 ≥ xi ≥ xi−1; yi+1 ≥ yi ≥ yi−1} (57)

Expression (57) is 0 if 22

xi+1 − xi−1 ≤ Di+1 (58)

and
xi+1∫

xi−1

Pr {yi > xi +Di−1|xi} 1

xi+1 − xi−1
dxi . (59)

21Conditions (54) to (56) are equivalent to

i−1∑
j=1

xj ≥
i−1∑
j=1

yj

k∑
j=1

xj ≥
k∑

j=1

yj , k = i+ 1, ..., n

i∑
j=1

xj <

i∑
j=1

yj

22Note (62) is equivalent to
yi+1 ≤ xi−1 +Di−1
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otherwise. If xi is rectangularly distributed in [xi−1, xi+1] and yi is rectangu-
larly distributed in [yi−1, yi+1], (59) simplifies to

xi+1∫
xi−1

max
{

yi+1−Di−1

yi+1−yi−1
, 0
}
dxi

xi+1 − xi−1
=

yi+1−Di−1∫
xi−1

yi+1 −Di−1 − xi
yi+1 − yi−1

1

xi+1 − xi−1
dxi(60)

=
1

2

[xi+1 − xi−1 −Di+1]
2

[yi+1 − yi−1] [xi+1 − xi−1]
(61)

Now consider the effect upon the distributional comparison of dropping
observations from of the samples. Assume that the densities f and g exist
and are strictly increasing. We may then show that in a large sample it is
impossible to have an intermediate x which will change the result. Condition
(58) can be rewritten

Q
(
F̂ ; q + dq

)
−Q

(
F̂ ; q

)
≤ C

(
F̂ ; q + dq

)
− C

(
Ĝ; q + dq

)
(62)

where i = 1 + nq, dq = 2/n and (61) becomes

π(q) : =
1

2

[xi+1 − xi−1 −Di+1]
2

[yi+1 − yi−1] [xi+1 − xi−1]

=
1

2

[
Q
(
F̂ ; q + dq

)
−Q

(
F̂ ; q

)
−

[
C
(
F̂ ; q + dq

)
− C

(
Ĝ; q + dq

)]]2
[
Q
(
Ĝ; q + dq

)
−Q

(
Ĝ; q

)] [
Q
(
F̂ ; q + dq

)
−Q

(
F̂ ; q

)]
� 1

2

g (Q(G; q))

f (Q(F ; q))

[
1− f (Q(F ; q))

∆(q)

dq

]2

where f and g are the densities corresponding to F and G and ∆(q) :=
C (F ; q) − C (G; q). Now consider what happens as n → ∞. If F strictly
dominates G somewhere in [0, q) and 0 < q < 1 then the right-hand side of
(62) must be strictly positive, while the left-hand side goes to zero. So, under
these conditions, only end-trimming can have alter the the distributional
comparison.
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