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a b s t r a c t 

In linear mixed-effects models, several frequentist and Bayesian measures have been pro- 

posed to evaluate model adequacy or/and to perform model selection. First, a large set 

of these measures are selected, presented with comparable notations, discussed in their 

strengths, weaknesses, and applicability range, and finally commented upon regarding 

their limitations. Then, these measures are illustrated on the home radon levels data (Gel- 

man & Pardoe, Technometrics, 241-251, 48, 2006). Next, an extensive simulation study is 

carried out, to evaluate their sensitivity in selecting the correct model from a series of 

simpler models containing fewer parameters. Finally, recommendations on the use of these 

different measures are provided. 1 

© 2021 The Authors. Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The linear mixed-effects model (LMM; a.k.a. linear multilevel model, hierarchical linear model, or random-effects model) 

is widely used, especially to analyze clustered data. Whether in educational sciences, psychology, medicine, biology or other 

domains, researchers need tools to compare alternative models and to evaluate their adequacy with respect to the selected 

data (e.g., Leschinski and Sibbertsen, 2019; Kiviet, 2020; Ko and Hjort, 2019 ). Several measures, both in the frequentist and 

in the Bayesian framework, are used for this purpose and have different characteristics (e.g., Gruber and West, 2017 ). Some 

of them allow for performing selection of alternative models that differ in their fixed and/or random effects, others allow 

for assessing the adequacy of a given model, while some allow for both selecting among alternatives and evaluating their 

adequacy. 

For model selection, the most frequently used measures are the Akaike Information Criterion (AIC; Akaike, 1974 ), the 

Bayesian Information Criterion (BIC; Schwarz, 1978 ) and the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002 ). 

The Likelihood Ratio Test (LRT; Wilks, 1938 ) can also be used, but only to compare two nested models (i.e., the parameters 
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of the more parsimonious model constitute a subset of the parameters of the larger model). We thus will not discuss the 

LRT here. Vaida and Blanchard (2005) proposed a conditional AIC for LMMs, which was then generalized by Liang et al. 

(2008) and Greven and Kneib (2010) (cf. Section 3.2.1 ). Pu and Niu (2006) extended the Generalized Information Criterion 

(GIC) from linear regression to LMMs. In the Bayesian framework, Wheeler et al. (2010) proposed a partitioned DIC to as- 

sess local model fits instead of a single DIC value for the entire model. In the same perspective of model selection, Jiang 

et al. (2008) introduced a class of strategies called fence methods for LMMs and generalized LMMs. Other authors, such 

as ( Orelien and Edwards, 2008 ) and ( Edwards et al., 2008 ), interested in R2 measures (estimates of variance of the depen- 

dent variable explained by the independent variables, Draper and Smith, 1998 ), focused on the selection of the fixed effects. 

Moreover, Orelien and Edwards (2008) showed that measures computed by setting the predicted random effects to zero 

(called marginal measures) are appropriate for that purpose. Chen and Dunson (2003) developed methods to select ran- 

dom effects only. Bondell et al. (2010) used a modified Cholesky decomposition in order to simultaneously select fixed and 

random effects. For a review and comparison of model selection strategies, we refer to ( Müller et al., 2013 ). 

For evaluating model adequacy, several papers considered extensions of the classical R2 measure due to the simplicity of 

interpretation. Unfortunately, few of the available measures are absolute in the sense that they can be interpreted without 

referencing to a comparison (often called null) model. At the opposite, a relative measure can only be interpreted in com- 

parison with another model. This is the case of the measures of model selection defined above and also of most of the def- 

initions of R2 that require the specification of a null model. Among the measures that assess model adequacy, Snijders and 

Bosker (1994) , Xu (2003) , Liu et al. (2008) , Gelman and Pardoe (2006) and Nakagawa and Schielzeth (2013) presented exten- 

sions of the R2 measure (cf. Section 3 ). For generalized LMMs, Zheng (20 0 0) , Nakagawa and Schielzeth (2013) , and Nakagawa 

et al. (2017) extended some goodness-of-fit (GOF) measures of a generalized linear model, and Pan and Lin (2005) developed 

graphical and numerical methods. Finally for nonlinear mixed-effects models, Vonesh et al. (1996) and Vonesh and Chinchilli 

(1996) proposed a marginal and a conditional version of a concordance correlation coefficient, in addition to a measure of 

explained residual variation, respectively. We note that in the literature, extensions of R2 are sometimes presented as GOF 

measures as in Vonesh and Chinchilli (1996) or ( Liu et al., 2008 ) but, as ( Korn and Simon, 1991 ) highlighted, it is important 

to distinguish measures of explained variation from GOF. In particular, although some authors use R2 for model selection 

(e.g., Xu, 2003 ), this measure cannot decrease, and usually increases with the addition of predictors to the model. Thus, to 

use R2 for model selection, a penalty function (cf. Section 3 ) is necessary to account for the increase in model complexity 

(i.e., loss in model parsimony). 

In this paper, we are particularly interested in extensions of R2 and in information criteria. These measures can be used 

together, with the latter used to compare models and the former used to evaluate the overall quality of the selected model. 

The considered measures, and their characteristics, are listed in Table 1 . 

The first column of Table 1 specifies whether a measure can be used to evaluate model adequacy due to both fixed and 

random effects (A), or to evaluate model adequacy due to fixed effects (F), or to perform model selection (S). Some of the 

considered measures have dual use as they can be used to both evaluate model adequacy and perform model selection 

(categories A&S and F&S). In the following, when speaking about overall model adequacy, we imply model adequacy due to 

both fixed and random effects. Column 2 shows if the measure is absolute or relative and column 3 indicates which relative 

measure requires the specification of a null model. Finally, the last column concerns the interpretation, as a measure of 

explained variation, or as a concordance coefficient between observed and predicted values, or as an information criterion, 

or differently. For instance, Drand is a measure of the proportional reduction in deviance. 

The aim of this paper is to compare the measures considered in Table 1 . In particular, we compare measures belonging 

to (a) categories A and A&S; (b) category F&S; and (c) category S. In order to do so, we conduct a simulation study using 

the home radon levels data of ( Gelman and Pardoe, 2006 ), which have initially motivated our work. In our simulation study, 

we manipulate five parameters of a random intercept and random slope model. We thus identify which of the considered 

measures are the most sensitive to these modifications and, among those allowing for model selection, which ones identify 

the correct model among a series of seven nested alternatives. 

In Section 2 we define the LMM and explicit notation. In Section 3 we present and discuss the considered measures. We 

present and analyze the home radon levels data over which we base the simulation study in Section 4 . Then, we describe 

the simulation study, and present and comment the results in Section 5 . Finally we discuss the results, where it appears 

that Prand and the conditional rc,a are useful to check the overall adequacy of the model at hand; the marginal versions of 

Prand and rc,a are the most promising measures, among those investigated here, to identify the best set of fixed effects; and 

the conditional AIC fares best with REML estimation to compare LMMs. 

2. Linear mixed-effects model (LMM) 

Assume the following LMM (e.g., Laird and Ware, 1982; Bryk and Raudenbush, 1992; Skrondal and Rabe-Hesketh, 2004; 

Goldstein, 2011 ): 

yi = Xi β + Zi bi + εi , i = 1 , . . . , m, (1) 

where yi = [ yi 1 · · · yini 
]′ is the ni × 1 vector of responses for group i , Xi is the ni × p design matrix for fixed effects for group 

i , β is the p × 1 vector of unknown fixed effects parameters, Zi is the ni × q design matrix for random effects for group i , bi 

is the q × 1 vector of unobservable random effects for group i and εi is the ni × 1 vector of errors. We assume bi ∼ N (0 , D ) , 
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Table 1 

Characteristics of the considered measures. A = overall model adequacy; F = model adequacy 

due to fixed effects; S = model selection; Abs = absolute; Rel = relative; EV = explained variation; 

C = concordance coefficient between observed and predicted values; IC = information criterion. 

m. = marginal; c. = conditional. 

Category Type Null model Measure of 

Gelman and Pardoe (2006) 
R2 

“level”
A Abs EV 

λ“level” A Abs other 

Zheng (2000) 
Drand A Rel required other 

c A Abs C 

Xu (2003) 
R2 

X A Rel required EV 

ρ2 
X A Rel required EV 

Liu et al. (2008) R2 
T A Rel required EV 

Vonesh et al. (1996) c. rc,a A&S Abs C 

Vonesh and Chinchilli (1996) c. R2 
VC,a A&S Rel required EV 

Zheng (2000) Prand A&S Rel required other 

Xu (2003) r2 
X A&S Rel required EV 

Liu et al. (2008) R2 
TF ,a A&S Rel required EV 

Snijders and Bosker (1994) 
R2 

1 F&S Rel required EV 

R2 
2 F&S Rel required EV 

Vonesh et al. (1996) m. rc,a F&S Abs C 

Vonesh and Chinchilli (1996) m. R2 
VC,a F&S Rel required EV 

Zheng (2000) 

m. Drand F&S Rel required other 

m. Prand F&S Rel required other 

m. c F&S Abs C 

Xu (2003) m. R2 
X F&S Rel required EV 

Liu et al. (2008) R2 
F ,a F&S Rel required EV 

Akaike (1974) mAIC S Rel IC 

Schwarz (1978) BIC S Rel IC 

Vaida and Blanchard (2005) cAIC S Rel IC 

Spiegelhalter et al. (2002) DIC S Rel IC 

where N is a Gaussian distribution with mean 0 and q × q covariance matrix D and εi ∼ N (0 , σ 2 Ini 
) , with Ini 

the ni × ni 

identity matrix. The variance of the response yi is thus �i = Zi DZ 

′ 
i + σ 2 Ini 

. The total number of observations is N = ∑ m 

i =1 ni . 

The ni × 1 vector of predicted values for group i is ˆ yi = Xi 
ˆ β + Zi ̂

 bi , where ˆ β is the vector of estimated fixed effects and 

ˆ bi are the random effects predictions. In the frequentist framework, the parameters of �i can be estimated with maxi- 

mum likelihood (ML), or with restricted ML (REML) and plugged into ˆ β, and the random effects predictions are the con- 

ditional modes (best linear unbiased predictors, or BLUPs). For the Bayesian estimation, it is standard to consider nonin- 

formative normal priors for the coefficients associated with the fixed effects. The appropriate choice of priors for the pa- 

rameters of the covariance matrix D is less obvious and there is still a debate among specialists. In this article, we follow 

( Gelman and Pardoe, 2006 ) and thus use noninformative uniform priors for the parameters of the covariance matrix D . 

Given its popularity, we present the LMM with two levels (e.g., children within classrooms), which is consistent with 

the reviewed literature. Model (1) above is in this case the LMM as described in Laird and Ware (1982) . We observe in 

Section 3 that some of the considered measures can be applied to two-level LMMs ( Snijders and Bosker, 1994 ), while others 

can be applied to nonlinear mixed-effects models (e.g., Vonesh et al., 1996 ). 

3. Measures 

In this Section, we present the considered measures, with a particular effort to make the various notations comparable. 

Some measures require the specification of a null model, which is either one containing only a fixed intercept or one with 

a fixed intercept and a random intercept. For subsequent use, we define ȳ , the grand mean of the observed values yi j , 1ni 
, 
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the ni × 1 unit vector, Ini 
, the ni × ni identity matrix, ˆ y , the grand mean of the predicted values ˆ yi j , ˆ yi 0 , the ni × 1 vector of 

fitted values for group i obtained with the null model and σ 2 
0 Ini 

, the covariance matrix of the errors of the null model. 

3.1. Measures of model adequacy only and of model adequacy and model selection 

We introduce and compare here the measures belonging to categories A, A&S and F&S (cf. Table 1 ). 

3.1.1. Gelman and Pardoe (2006) 

For a LMM with L variance components, Gelman and Pardoe (2006) presented two Bayesian measures that summarize 

information in the data at each “level” of the model. We write level in quotation marks because it corresponds to the 

separate variance components, rather than to the more usual definition based on the hierarchy of the data. For instance, 

consider this varying-intercept model: 

yi j = β0 + bi 0 + β1 xi j + εi j , i = 1 , . . . , m, j = 1 , . . . , ni 

bi 0 ∼ N (0 , τ 2 ) , εi j ∼ N (0 , σ 2 ) , 
(2) 

with a predictor xi j . Model (2) can be written hierarchically with β0 i = β0 + bi 0 as 

yi j ∼ N (β0 i + β1 xi j , σ
2 ) , β0 i ∼ N (β0 , τ

2 ) . 

This model has two “levels” (data yi j , intercepts β0 i ) with a different variance component at each “level” ( σ 2 , τ 2 ). The model 

is defined at each “level” l = 1 , . . . , L as 

ζ (l) 
k 

= ν(l) 
k 

+ e(l) 
k 

, 

for k = 1 , . . . , K(l) . ζ (1) 
k 

corresponds to yi j in (1) and for l > 1 , ζ (l) 
k 

are the random coefficients β0 i , so that K(l) = 2 in this 

example. ν(l) 
k 

are the linear predictors and e(l) 
k 

are the errors that follow a distribution with mean 0 and standard deviation 

σ (l) . For instance, for model (2) and for l = 1 , we have ζ (1) 
k 

= yi j , ν
(1) 
k 

= β0 + b0 i + β1 xi j , e(1) 
k 

= εi j and σ (1) = σ . For l = 2 , 

we have ζ (2) 
k 

= β0 i , ν
(2) 
k 

= β0 , e
(2) 
k 

= bi 0 and σ (2) = τ . 

Subsequently, we suppress the superscripts ( l), as in Gelman and Pardoe (2006) , because we work with each “level”

separately. The variation explained by the linear predictors νk for each “level” is defined in the population by 1 −
[E ( Var (ek )) ][E ( Var (ζk )) ]

−1 and is computed as 

R2 
“level” = 1 −

E 

(
V 

K 
k =1 ( ˆ ek )

)
E 

(
V 

K 
k =1 (

ˆ ζk )
) , 

where “E” is the posterior mean, “Var” is the posterior variance, “V ” is the finite-sample variance operator (V 

m 

i =1 (xi ) = 

(m − 1) −1 ∑ m 

i =1 (xi − x̄ )2 ), and ˆ ek and 

ˆ ζk are the estimates of ek and ζk , respectively. The expectations are estimated by aver- 

aging over posterior simulation draws, which gives rise to a “Bayesian adjusted R2 ”, that is a generalization of the classical 

adjusted R2 in regression. R2 
“level”

usually takes values between 0 and 1. For each “level,” the values of 0 and 1 indicate, 

respectively, a poor and a perfect fit with respect to the error variance explained at each “level.” If R2 
“level”

is negative, the 

prediction is so poor that the estimated error variance is larger than the variance of the data. 

The measure that summarizes the average amount of pooling at each “level” is the pooling factor λ“level”, which is defined 

in the population by 1 − [Var ( E ( ek ) ) ][E ( Var (ek )) ]
−1 and is computed as 

λ“level” = 1 −
V 

K 
k =1 

(
E 

(
ˆ ek 

))
E 

(
V 

K 
k =1 ( ˆ ek )

) . 

This measure ranges from 0 to 1, where 0 and 1 correspond to no and, respectively, complete pooling. For model (2) , the 

complete-pooling model is yi j = β0 + β1 xi j + εi j with common estimates ∀ i and the no-pooling model is yi j = β0 i + β1 xi j + 

εi j with the m β0 i ’s estimated by least squares. A low pooling factor λ“level” < 0 . 5 indicates a higher degree of within-group 

information than population-“level” information. A high pooling factor λ“level” > 0 . 5 indicates a higher degree of population- 

“level” information than within-group information. 

3.1.2. Snijders and Bosker (1994) 

Two measures of modeled variation, one at each level of a two-level LMM, are defined. This model is equivalent to model 

(1) in which levels 1 and 2 correspond to the subject level j and group level i , respectively, and D = τ 2 Iq . These measures are 

defined for two-level models only and they require a null model, which contains a fixed intercept and a random intercept, 

with variance τ 2 
0 , and for which σ 2 = σ 2 

0 . 

The level-1 modeled proportion of variation is defined in the population as the proportional reduction in mean squared 

prediction error for yi. , 1 −
(
var (yi. − Xi. β)

)
( var (yi. )) 

−1 
. The corresponding criterion is 

R2 
1 = 1 − ̂ var (yi j − Xi j β) ̂ var (yi j ) 

, 
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where ̂ var is obtained by plugging-in the parameter estimates in the population formula and Xi j is the 1 × p vector of fixed 

effects for subject j in group i . 

The level-2 modeled proportion of variation is defined in the population as the proportional reduction in mean squared 

prediction error for ȳi. , 1 −
(
var (ȳi. − X i. β)

)
( var (ȳi. )) 

−1 
. The corresponding criterion is 

R2 
2 = 1 − ̂ var (ȳi. − X i. β) ̂ var (ȳi. ) 

, 

where ȳi. and X i. are the group means of yi j and Xi j , respectively. 

For R2 
1 

and for R2 
2 

for balanced data ( ni = n ∀ i ), the numerator is the sample variance of the model of interest and the 

denominator is the sample variance of the null model. For example, for model (2) , the criteria that estimate the popula- 

tion parameters are R2 
1 = 1 − ( ˆ σ 2 + ˆ τ 2 ) / ( ˆ σ 2 

0 + ˆ τ 2 
0 ) and R2 

2 = 1 − ( ˆ σ 2 /n + ˆ τ 2 ) / ( ˆ σ 2 
0 /n + ˆ τ 2 

0 ) , where ˆ σ 2 , ˆ τ 2 , ˆ σ 2 
0 and ˆ τ 2 

0 are the 

estimates of σ 2 , τ 2 , σ 2 
0 

and τ 2 
0 

respectively. 

In the case of unbalanced data, the authors advise to use a representative value of ni , such as the harmonic mean (
m−1 

∑ 

i n
−1 
i 

)−1 
. The interpretation of the R2 

1 
and R2 

2 
is the same as the traditional coefficient of determination. R2 

1 
and 

R2 
2 identify the proportion of variance explained in yi j and ȳi. , respectively. Population values lie between 0 and 1. Negative 

values are possible when the fixed part of the model is misspecified. 

3.1.3. Vonesh et al. (1996) 

The model concordance correlation coefficient for generalized nonlinear mixed-effects models is defined as 

rc = 1 −
∑ m 

i =1 (yi − ˆ yi )
′ (yi − ˆ yi ) ∑ m 

i =1 (yi − ȳ 1ni 
)′ (yi − ȳ 1ni 

) + ∑ m 

i =1 (ˆ yi − ˆ y 1ni 
)′ (ˆ yi − ˆ y 1ni 

) + N(ȳ − ˆ y )2 
. 

Initially introduced by Lin (1989) to measure the degree of agreement between pairs of observations, rc is interpretable as 

a concordance correlation coefficient between observed and predicted values. 

To assess the GOF associated with the fixed effects and to select the best set of fixed effects, a marginal model concor- 

dance correlation is obtained by setting ˆ bi = 0 in ˆ yi . If ˆ bi are not set to zero, as in the original definition, rc is referred to 

as the conditional model concordance correlation and it assesses the GOF associated with fixed and random effects. The 

range of values of rc is between −1 and 1 as the usual Pearson correlation but with a slightly different interpretation. In- 

deed, rc measures the level of agreement, or concordance, between yi and ˆ yi , and a value of 1 indicates perfect fit, while a 

value smaller than or equal to zero indicates lack of fit. Adjusted values for the number of parameters in β are defined as 

rc,a = 1 − N(N − p)−1 (1 − rc ) , which allows using the conditional rc,a for model selection. 

3.1.4. Vonesh and Chinchilli (1996) 

Another measure of explained residual variation for generalized nonlinear mixed-effects models that requires the speci- 

fication of a null model is introduced as follows: 

R2 
VC = 1 −

∑ m 

i =1 (yi − ˆ yi )
′ �−1 

i 
(yi − ˆ yi ) ∑ m 

i =1 (yi − ˆ yi 0 )′ �−1 
i 

(yi − ˆ yi 0 ) 
, 

for any positive definite matrix �i . Sensible choices for �i are either ˆ σ 2 Ini 
or ˆ σ 2 

0 
Ini 

. To compare across different candidate 

models, the most reasonable choice is ˆ σ 2 
0 Ini 

. 

This measure can be interpreted as the proportional decrease in residual variability compared with the residual variability 

of a null model, which is either one containing only a fixed intercept or one with a fixed intercept and a random intercept. 

As for rc , a marginal and a conditional R2 
VC can be defined, depending whether ˆ bi in ˆ yi are set to zero or not (original 

definition). The adjusted values are denoted R2 
VC,a 

and are defined as 1 − N(N − p)−1 (1 − R2 
VC 

) . As for rc , the marginal R2 
VC 

can be used for fixed effects selection and the adjusted conditional R2 
VC 

, R2 
VC,a 

, allows one for adopting it for model selection. 

3.1.5. Zheng (20 0 0) 

For generalized LMMs with normally distributed random effects, we consider three measures for assessing model 

adequacy among a set proposed by Zheng (20 0 0) . Based on the notion of scaled deviance defined as d(y ,μ) = 

−2 φ[ l(μ, φ; y ) − l(y , φ; y )] , where l(μ, φ; y ) is the log of the joint likelihood function given X and b , for a fixed dispersion 

parameter φ, the N × 1 vector of responses y = (y1 , . . . , ym 

)′ , the N × p design matrix for fixed effects X = (X1 , . . . , Xm 

)′ , 
and the mq × 1 vector of random effects b = (b1 , . . . , bm 

)′ , μ = E (y | X , b ) , the first measure is the proportional reduction in 

deviance Drand , defined as 

Drand = 1 −
∑ m 

i =1 di (yi , ˆ yi ) ∑ m 

i =1 di (yi , ȳ 1ni 
) 
, 

where the numerator is the deviance under the model of interest and the denominator is the deviance under the null model 

that fits only a fixed intercept. 
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Drand is an extension of the coefficient of determination as, in the normal LMM, 
∑ m 

i =1 di (yi , ˆ yi ) =
∑ m 

i =1 (yi − ˆ yi )
′ (yi − ˆ yi ) 

and 

∑ m 

i =1 di (yi , ȳ 1ni 
) = ∑ m 

i =1 (yi − ȳ 1ni 
)′ (yi − ȳ 1ni 

) . The measure Drand ranges between 0 and 1, with 0 meaning that the 

model of interest provides no improvement in prediction over the null model and 1 meaning perfect prediction. 

The second measure is the proportional reduction in Penalized Quasi-Likelihood (PQL) Prand , defined as 

Prand = 1 −
∑ m 

i =1 di (yi , ˆ yi ) / (2 φ) + ˆ b′ ( ˆ D � Im 

)−1 ˆ b / 2 ∑ m 

i =1 di (yi , ȳ 1ni 
) / (2 φ) 

, 

where ˆ b = (ˆ b1 , . . . , ˆ bm 

)′ is the mq × 1 vector of estimated random effects. Prand ranges between 0 and 1, equals 0 when the 

prediction is poor and/or the random effects are large, and equals 1 when the prediction is perfect and the random effects 

are 0. Due to the penalty for large random effects, Prand allows for model selection. 

The third measure by Zheng (20 0 0) is the concordance index c, a measure of cross-sectional agreement. It equals the 

proportion of pairs of observations with unequal y values for which the ranks of ˆ y and of y are concordant. As c depends 

on ranking information only, it cannot distinguish between models that yield the same ranking of the fitted values. 

In order to identify the best set of fixed effects, we consider the marginal versions of these three measures obtained by 

setting ˆ bi = 0 in ˆ yi for Drand and c, and, for Prand , by setting ˆ bi = 0 in ˆ yi and in the second term of its numerator, which 

simplifies to the marginal Drand , showing that Prand is also an extension of the coefficient of determination. 

3.1.6. Xu (2003) 

Xu (2003) presented three measures that require a null model specified either with only a fixed intercept, or with also a 

random intercept. For both null models, σ 2 = σ 2 
0 . 

The two measures of explained variation are defined as 

r2 
X = 1 − ˆ σ 2 

ˆ σ 2 
0 

, 

where ˆ σ 2 and ˆ σ 2 
0 

are the estimates of σ 2 and σ 2 
0 

, and 

R2 
X = 1 −

∑ m 

i =1 (yi − ˆ yi )
′ (yi − ˆ yi ) ∑ m 

i =1 (yi − ˆ yi 0 )′ (yi − ˆ yi 0 ) 
. 

A measure of explained randomness using the conditional likelihood of the observed data given the predicted random 

effects is also proposed as 

ρ2 
X = 1 − ˆ σ 2 

ˆ σ 2 
0 

exp 

(∑ m 

i =1 (yi − ˆ yi )
′ (yi − ˆ yi ) 

N ˆ σ 2 
−

∑ m 

i =1 (yi − ˆ yi 0 )
′ (yi − ˆ yi 0 ) 

N ˆ σ 2 
0 

)
. 

This measure of randomness is related with the likelihood ratio statistics N ˆ � for testing against the null model with inter- 

cept and random intercept only by the relationship ρ2 
X 

= 1 − exp (− ˆ �) . 

All the three measures (with range [0,1]) are interpretable as the classical coefficient of determination. Xu (2003) em- 

phasized that in ordinary linear regression, if REML estimates are used for the variance components, r2 
X is the adjusted R2 . 

As an extension of the classical adjusted coefficient of determination, r2 
X 

can be used for model selection. 

For fixed effects selection, we consider the marginal version of R2 
X by setting ˆ bi = 0 in ˆ yi . 

3.1.7. Liu et al. (2008) 

To estimate the portion of explained variation of the modeled data by the fitted LMM, Liu et al. (2008) introduced three 

R2 statistics. The measures compare the residuals of an intercept-only model with the residuals of the model of interest 

considering, respectively, the fixed effects only ( R2 
F 
), the fixed and random effects ( R2 

T 
), and the total fixed effects where all 

variables and individuals are treated as fixed ( R2 
TF 

): 

R2 
F = 1 −

∑ m 

i =1 (yi − Xi ̂
 β)′ (yi − Xi ̂

 β) ∑ m 

i =1 (yi − ȳ 1ni 
)′ (yi − ȳ 1ni 

) 
, 

R2 
T = 1 −

∑ m 

i =1 (yi − ˆ yi )
′ (yi − ˆ yi ) ∑ m 

i =1 (yi − ȳ 1ni 
)′ (yi − ȳ 1ni 

) 

and 

R2 
TF = 1 −

∑ m 

i =1 (yi − ( Xi , Zi ) ̂  η)′ (yi − ( Xi , Zi ) ̂  η) ∑ m 

i =1 (yi − ȳ 1ni 
)′ (yi − ȳ 1ni 

) 
, 

where ˆ η = ∑ m 

i =1 

(
(Xi , Zi )

′ (Xi , Zi )
)−1 

(Xi , Zi )
′ yi . R

2 
F 

is obtained by setting ˆ bi = 0 in R2 
T 

and can be seen as a marginal measure 

to be used for fixed effects selection. Finally, R2 
T 

can be seen as a conditional measure, as in Sections 3.1.3 and 3.1.4 . Liu et al. 

(2008) noted that R2 
TF 

is defined more as a theoretical measure of the upper bound of R2 rather than a practical R2 measure. 

We nevertheless consider it for completeness. 
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To adjust for the dimensions of the design matrices, adjusted values for R2 
F 

and R2 
TF 

, but not for R2 
T 
, are proposed: R2 

F ,a 
= 

1 − N(N − (p + q ))−1 (1 − R2 
F 
) and R2 

TF ,a 
= 1 − N(N − rank ((Xi , Zi )))

−1 (1 − R2 
TF 

) . R2 
TF ,a 

can thus be used for model selection. 

These measures usually range between 0, indicating complete lack of fit, and 1, indicating perfect fit. Negative values are 

also possible and would indicate that the model of interest provides no improvement, in terms of explained variation, over 

the intercept-only model. 

3.1.8. Measures comparison 

Because the yi j are supposed normally distributed, some of the measures discussed above are equivalent. This is the case 

for the marginal R2 
VC 

, the marginal Drand , the marginal Prand , the marginal R2 
X 

and R2 
F 
; for the conditional R2 

VC 
and R2 

X 
based 

on the null model with a fixed intercept, Drand and R2 
T 
; and for the conditional R2 

VC and R2 
X based on the null model with a 

fixed intercept and a random intercept. When we consider the adjusted values for the marginal R2 
VC 

, the conditional R2 
VC 

’s 

and R2 
F 
, these equalities no longer hold. 

Some other measures, while they are not equivalent, are defined similarly and will thus give close values. This is the case 

for the two measures of Snijders and Bosker (1994) ; for the marginal rc , the marginal R2 
VC 

, the marginal Drand , the marginal 

Prand , the marginal R2 
X 

and R2 
F 
; for the conditional rc , the conditional R2 

VC 
, R2 

X 
and ρ2 

X 
based on the null model with a fixed 

intercept, Drand , Prand , R
2 
T 

and R2 
TF 

; and for the conditional R2 
VC 

, R2 
X 

and ρ2 
X 

based on the null model with a fixed intercept and 

a random intercept. 

3.2. Measures of model selection 

We introduce in this Section the measures belonging to category S (cf. Table 1 ). 

3.2.1. Akaike (1974) and Schwarz (1978) information criteria 

The marginal AIC (mAIC, Akaike, 1974 ) is a general criterion for model selection defined by 

mAIC = −2LL + 2 k, 

where k is the number of independently adjusted parameters and LL is the marginal log-likelihood. For ML estimation, k is 

the sum of the number of fixed effects p, the number of parameters of the covariance matrix D plus one because of the 

estimation of σ 2 . For REML estimation, LL is replaced by the restricted log-likelihood and k is computed as the number of 

parameters of the random effects covariance matrix D plus one because of the estimation of σ 2 (e.g., Greven and Kneib, 

2010 ). The mAIC is often returned by statistical software (e.g., lmer() in R and proc mixed in SAS), but lmer() in R 

does not report the mAIC based on the restricted log-likelihood as it cannot be used to compare models with different 

sets of fixed effects. With a focus on random effects selection, Greven and Kneib (2010) showed that the mAIC is a biased 

estimator of the Akaike information and favors smaller models without random effects; thus, they recommend not to use it. 

Sakamoto (2019) derived the expression of the asymptotic bias of the mAIC, which depends on the true variance structure, 

and proposed a simulation based procedure to estimate it. The mAIC has also been interpreted as an estimator of the 

squared prediction error ( Efron, 2004; Säfken and Kneib, 2020 ). 

For LMM, Vaida and Blanchard (2005) introduced the conditional AIC (cAIC) by replacing the marginal log-likelihood with 

the conditional log-likelihood, and k by a term related to the effective degrees of freedom proposed by Hodges and Sargent 

(2001) . By relaxing the assumption of known covariance matrix of random effects, Liang et al. (2008) defined a generalized 

version of cAIC for LMMs considering a numerical approximation of the penalty function. To reduce the computational 

burden, Greven and Kneib (2010) derived an analytic representation of the generalized cAIC of Liang et al. (2008) . Note that 

the cAIC can be computed under either ML and REML estimation, giving rise to different penalty terms. 

As discussed in Vaida and Blanchard (2005) , both the mAIC and the cAIC tend to favor complex models. By taking in 

consideration the total number of observations N, the BIC penalizes model complexity heavily and is defined by 

BIC = −2LL + log (N) k. 

To our knowledge, a conditional version of the BIC does not exist, therefore BIC denotes here its marginal version. 

Here, we consider the mAIC and the BIC for ML estimation, as it is widely used in practice due to its availability in 

standard statistical software, and the cAIC for ML and REML estimation ( Greven and Kneib, 2010; Saefken et al., 2014 ). 

The best model in terms of adjustment is the one with smallest AIC (or BIC) value and a difference between two AIC (or 

BIC) values is considered unimportant if less than 2 and important if greater or equal to 3-7 (see Burnham and Anderson, 

2002 ). 

3.2.2. Spiegelhalter et al. (2002) 

The DIC is a Bayesian measure of fit to compare complex, possibly nonlinear, hierarchical models and is defined by 

DIC = D (θ̄) + 2 pD , (3) 

where θ are the unknown parameters, θ̄ = E (θ | y ) is the posterior mean of θ for observed data y , and pD = D (θ) − D (θ̄) = 

E θ| y (D (θ)) − D (θ̄) is the effective number of parameters. D (θ) is the Bayesian deviance and is defined as −2 log (p(y | θ)) + 

2 log ( f (y )) , where p(y | θ) is the probability model and f (y ) is some standardizing term that is a function of the data 
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alone. D (θ) is the saturated deviance when f (y ) = p(y | μ(θ) = y ) , for members of the exponential family with E (Y ) = μ(θ) , 

where Y are unobserved future data introduced by the authors to posit a “true” distribution pt (Y ) . 

When comparing alternative models, the best in terms of adjustment has the smallest DIC and the rules of thumb to 

claim for important differences in DIC are the same as for the AIC (cf. Section 3.2.1 ). 

3.3. Implementation 

We have done all of our computation in R ( R Core Team, 2020 ). All the scripts are available on the GitHub site 

https://github.com/ecantoni/R2_LMM . 

To compute the measures presented in the frequentist framework, models are fitted with the function lmer() from the 

lme4 package ( Bates et al., 2015 ), to obtain either REML or ML estimates. The measures of R2 are easily computed from 

the fitted models and we provide our own implementation of their computation. At the best of our knowledge, only few of 

them are available in R packages. The measure of ( Snijders and Bosker, 1994 ) were available in the past in the r2 function of 

package sjstats, but this function is now deprecated. The package performance contains a generic r2 function that defaults 

to the measure of ( Nakagawa et al., 2017 ) for linear mixed models. In the same package, a function r2_xu computes the 

measure of ( Xu, 2003 ). Some of the measures of ( Liu et al., 2008 ) are available in function rsq of package rsq. The marginal 

AIC and BIC are obtained by the built-in functions AIC (in case of REML estimation) and extractAIC (in case of ML 

estimation). The conditional AIC is implemented in the R package cAIC4 ( Saefken et al., 2014 ). 

In the Bayesian framework, the function stan() from the package rstan ( Stan Development Team, 2018 ) has been used 

to fit the models. We provide our own code to compute the DIC and the ( Gelman and Pardoe, 2006 ) measures. 

4. Home radon levels 

4.1. Description of data and fitted models 

The home radon levels data from ( Gelman and Pardoe, 2006 ) consist in measurements of levels of radon gas in N = 919 

houses clustered within m = 85 counties in Minnesota, USA. Radon is a radioactive gas that forms naturally in the soil by 

decay of uranium. When breathing, radon can enter the lungs, settle on the lung tissue and irradiate it, resulting possibly 

in a lung cancer. The distribution of radon levels varies greatly from one house to another and these measurements aim at 

identifying areas with high radon exposures. The number of measures ni per county varies from 1 to 116. Two predictors are 

used, a house predictor at the first level of the hierarchical model and a county predictor at the second level. The former 

indicates whether the measurement was taken in a basement (basementi j = 1) or on the first floor (basementi j = 0). The latter 

measures the soil uranium content in each county (uraniumi ). The logarithm of the radon measurement ( yi j ) is modeled in 

the analyses. 

Seven models are fitted to these highly unbalanced data for which we compute all measures presented in Section 3 . The 

most complex model is the varying-intercept and varying-slope model of ( Gelman and Pardoe, 2006 ) defined by 

yi j ∼ N (αi + βi basement i j , σ
2 ) , (

αi 

βi 

)
∼ N 

((
γ0 + γ1 uranium i 

δ0 + δ1 uranium i 

)
,

(
σ 2 

α ρσασβ

ρσασβ σ 2 
β

))
, 

(4) 

for i = 1 , . . . , 85 and j = 1 , . . . , ni . We call this model 6. Its fixed part contains the predictors basement, uranium (predic- 

tor for the random intercept) and the cross-level interaction between basement and uranium (predictor for the random 

slope), whereas its random part contains a random intercept and a random slope for basement. We consider the following 

alternative models, all nested within model 6 : 

Model 0 contains only a fixed intercept ( αi = α ∀ i and βi = 0 ∀ i ). 

Model 1 contains no random effect and contains neither the uranium predictor nor the cross-level interaction and is thus 

a simple linear regression model with the predictor basement ( αi = α ∀ i and βi = β ∀ i ). 

Model 2 contains only a fixed intercept and a random intercept ( γ1 = 0 and βi = 0 ∀ i ). 

Model 3 corresponds to model 6 without the uranium predictor and the cross-level interaction ( γ1 = δ1 = 0 ). 

Model 4 corresponds to model 6 without the cross-level interaction ( δ1 = 0 ). 

Model 5 corresponds to model 6 with non-correlated random effects ( ρ = 0 ). 

We aim at evaluating the overall adequacy of these different models considering the values of the measures belonging to 

categories A and A&S. Furthermore, we would like to identify the best set of fixed effects with the measures in category F&S 

and identify the model that fits best these data using the measures of model selection (category S). We expect the measures 

in a same category to give similar conclusions. For the model that fits best the data, we will give insights of what influences 

the levels of radon gas. 

4.2. Results 

Table 2 presents the values of the measures of interest for all the models considered. To facilitate the reading of the 

Table we boldfaced the “‘best” value for each measure, but we warn the reader that in many cases there is no clear winner 
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Table 2 

Measures for models of home radon levels data. For the measures computed with several null models, (0) indicates that the considered null model is 

model 0 and (2) indicates that the considered null model is model 2. The dashed line separates null models. m. = marginal; c. = conditional. “Best” value for 

each measure highlighted in bold. 

Model 

Reference [Section] Measure Category 0 1 2 3 4 5 6 

Gelman and Pardoe (2006) 

[3.1.1] 

R2 
y A 0.071 0.125 0.228 0.226 0.214 0.222 

λy A 0.001 0.044 0.063 0.041 0.029 0.031 

R2 
α A 0 0 0.397 0.517 0.239 

λα A 0.534 0.647 0.782 0.818 0.725 

R2 
β

A 0 0 0.757 0.377 

λβ A 0.870 0.861 0.942 0.836 

Zheng (2000) [3.1.5] 
Drand A 0.072 0.163 0.285 0.260 0.232 0.256 

c A 0.567 0.653 0.690 0.682 0.675 0.679 

Xu (2003) [3.1.6] 

R2 
X (0) A 0.072 0.163 0.285 0.260 0.232 0.256 

ρ2 
X (0) A 0.072 0.162 0.283 0.260 0.231 0.255 

R2 
X (2) A 0.145 0.116 0.082 0.111 

ρ2 
X (2) A 0.144 0.116 0.082 0.111 

Liu et al. (2008) [3.1.7] R2 
T A 0.072 0.163 0.285 0.260 0.232 0.256 

Vonesh et al. (1996) [3.1.3] c. rc,a A&S 0.132 0.230 0.397 0.384 0.356 0.380 

Vonesh and Chinchilli 

(1996) [3.1.4] 

c. R2 
VC,a (0) A&S 0.070 0.162 0.283 0.258 0.228 0.253 

c. R2 
VC,a (2) A&S 0.143 0.113 0.078 0.107 

Zheng (2000) [3.1.5] Prand A&S 0.072 0.126 0.236 0.232 0.215 0.231 

Xu (2003) [3.1.6] 
r2 

X (0) A&S 0.071 0.126 0.235 0.231 0.213 0.229 

r2 
X (2) A&S 0.125 0.120 0.100 0.118 

Liu et al. (2008) [3.1.7] R2 
TF ,a A&S 0.070 0.124 NA 0.233 0.233 0.23 3 

Snijders and Bosker (1994) 

[3.1.2] 

R2 
1 F&S 0.026 0.136 0.185 0.152 

R2 
2 F&S -0.148 0.231 0.379 0.272 

Vonesh et al. (1996) [3.1.3] m. rc,a F&S 0.132 -0.001 0.142 0.304 0.307 0.303 

Vonesh and Chinchilli 

(1996) [3.1.4] 

m. R2 
VC,a F&S 0.070 -0.012 0.047 0.179 0.182 0.182 

Zheng (2000) [3.1.5] 

m. Drand F&S 0.072 -0.011 0.049 0.182 0.185 0.185 

m. Prand F&S 0.072 -0.011 0.049 0.182 0.185 0.185 

m. c F&S 0.554 0.500 0.554 0.656 0.655 0.655 

Xu (2003) [3.1.6] m. R2 
X F&S 0.072 -0.011 0.049 0.182 0.185 0.185 

Liu et al. (2008) [3.1.7] R2 
F ,a F&S 0.070 -0.013 0.045 0.177 0.180 0.180 

-2LL ML S 2315.479 2247.025 2255.237 2161.109 2117.603 2118.030 2114.224 

-2LL REML S 2259.442 2168.325 2128.640 2130.906 2126.579 

Akaike (1974) [3.2.1] mAIC S 2319.479 2253.025 2261.237 2173.109 2131.603 2132.030 2130.224 

Schwarz (1978) [3.2.1] BIC S 2329.126 2267.495 2275.707 2202.048 2165.366 2165.793 2168.810 

Vaida and Blanchard 

(2005) [3.2.1] 

cAIC ML S 2237.164 2139.145 2121.134 2124.228 2122.753 

cAIC REML S 2237.141 2138.719 2120.713 2123.962 2121.438 

Spiegelhalter et al. (2002) 

[3.2.2] 

DIC S 2319.409 2253.077 2236.730 2139.035 2120.149 2124.989 2115.792 

(i.e., differences in measure values across models are often minor and not fully interpretable). The ML estimation is used for 

-2LL ML, the mAIC, the BIC and the cAIC ML, and the REML estimation is used for all the others measures. For the measures 

presented in the Bayesian framework, the models are estimated with 40 0 0 0 iterations and 3 chains. 

To evaluate overall model adequacy, we consider the measures belonging to categories A and A&S. The obtained values 

are really close for R2 
y , the conditional R2 

VC ,a 
based on the null model 0, Drand , Prand , r

2 
X 

, R2 
X 

and ρ2 
X 

based on the null model 

0, R2 
T 

and R2 
TF ,a 

, that are all extensions of the classical R2 . These measures indicate that models 3, 4, 5 and 6 explain around 

20% (or slightly more) of the variation in the data. R2 
TF ,a 

is equal for models 4, 5 and 6, and for model 3, this measure cannot 

be computed because 
(
(Xi , Zi )

′ (Xi , Zi )
)

is singular (as noted in Section 3.1.7 , this measure is more a theoretical measure). 
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Table 3 

Estimated coefficients (by REML) for model 4 (given by Equation (4) with δ1 = 0 ) for the radon 

dataset. 

γ0 γ1 δ0 ρ σα σβ σ

0.820 0.642 0.768 -0.950 0.404 0.357 0.748 

In comparison with the measures listed above, which include R2 
y , the other measures of ( Gelman and Pardoe, 2006 ) give 

additional information and have thus different values. Indeed, for the first “level,” the pooling factor λy moreover indicates 

that the within-group sample sizes are reasonably large as λy is close to zero for all models. Furthermore, for the second 

“level,” R2 
α gives the percentage of the variation among counties that is explained by the uranium level (for instance, there is 

around 40% in model 4), and λα informs that there is higher population-level information than within-county information, 

as λα is higher than 50%. For the third “level,” R2 
β

gives the percentage of the variation in the basement effects across 

counties that is explained by the uranium level (for instance, there is around 38% in model 6). And finally, λβ being close to 

90% for all the models containing a random slope means that the individual counties do not add information compared to 

the county-level model. As c and the conditional rc,a are interpreted as concordance coefficients, their values are different 

(in this example, they are higher) from the values of the extensions of the classical R2 . 

To summarize, even if some values are different, all these measures in categories A and A&S, except R2 
TF ,a 

, indicate that 

models 3, 4 and 6 provide a similar fit to the data, whatever the considered null model. Indeed, the difference is that the 

values of the measures with the null model 2 are smaller than with the null model 0, as the proportion of variability in the 

model of interest compared with the variability of the null model 2 is smaller than the same proportion for the null model 

0. For these measures of overall model adequacy, model 5, assuming non-correlated random effects, does not fit the data 

well. This seems reasonable in view of the large correlation estimate of -0.950 in both model 4 and 6. 

The measures allowing evaluating model adequacy due to fixed effects and fixed effects selection (category F&S) are 

sometimes negative, indicating that the fixed part of the corresponding model is misspecified. As for the measures of overall 

model adequacy, there are some differences in the obtained values but the choice of the best set of fixed effects is not 

altered by these differences. By comparing the values for the different models, we conclude that the predictors basement 

and uranium are useful but the cross-level interaction between basement and uranium is superfluous. Indeed the addition 

of this predictor in models 5 and 6 has no influence on the value of the measures. 

The values of the measures of model selection (category S) are close, as expected. According to the measures from the 

category F&S, we can conclude that the cross-level interaction does not contribute to the adjustment. Based on information 

criteria (mAIC, BIC, cAIC ML, cAIC REML and DIC), models 4, 5 and 6 cannot easily be distinguished even if the number of 

parameters is penalized. Thus, based on these observations and on parsimony, we choose model 4 as the most appropriate. 

To conclude, the measures of overall model adequacy give similar results and indicate models 3, 4 and 6 as the most 

adequate for these data. Despite similar results, the interpretation of these measures (categories A and A&S), and of those al- 

lowing evaluating model adequacy due to fixed effects (category F&S), can be different (concordance coefficient vs. explained 

variation). Thus, researchers should be wary when using such measures. Given the values of the measures allowing model 

selection (categories F&S and S), model 4 (defined by Equation (4) with δ1 = 0 ) seems the best for these data. Table 3 gives 

the estimated coefficients of this model in the frequentist approach with REML. It thus seems that levels of radon gas are 

higher for both houses with basement and counties with higher soil uranium content. Moreover, the levels of radon gas are 

different among counties and the effect of having a house with a basement on the level of radon gas varies among counties. 

5. Simulation study 

We conduct a simulation study in order to compare, within the different categories given in Table 1 , the considered mea- 

sures. In particular, we first test the sensitivity of all the measures of interest to modifications of model parameters. Indeed, 

we expect the modification of model parameters to impact the values of the measures. For instance, if the modification 

of a model parameter increases the variability in the simulated data, a R2 -type measure should be larger as there is more 

variability to explain. Second, we test the ability of the measures designed for model selection (categories A&S, F&S and S) 

to identify the correct set of fixed effects or the correct model, respectively, among a series of seven alternatives. Below, we 

present the design of the simulation and the results. 

5.1. Simulation study design 

We considered 32 different simulation cases based on a full 25 factorial design. Within each case, we generated 200 

samples from model 6 defined in (4) . We thus used the covariates values from the home radon levels data and simu- 

lated normally distributed random effects and errors to generate outcomes. We estimated the seven models presented in 

Section 4 and computed the different measures from Section 3 . As the model from which we generated the data is the 

largest (model 6), we do not evaluate the ability of the considered measures to select larger models. 

The full simulation design is presented in Table 4 . The five parameters ρ , γ1 (associated to the predictor uranium), δ1 

(associated to the cross-level interaction between basement and uranium), σα and σβ take each two different values. To 
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Table 4 

Simulation cases. The original values of the parameters are those of case 

1, in bold. Multiple empty rows refer to the value indicated between their 

delimiting horizontal lines (e.g., for Cases 1-8, σα = 0 . 268) 

fix the values of the parameters, we estimated in the Bayesian framework 200 times models 3 and 6 on the original data. 

The values for the parameters γ0 , δ0 and σ are set at 0.778, 0.692 and 0.753, corresponding to the median of the 200 

point estimates obtained from the estimations of model 6, and are kept unchanged. The first value of the other parameters 

is fixed to the median of the 200 point estimates obtained from the estimations of model 6, which we call the original 

value ( ρ = −0 . 820 , γ1 = 0 . 391 , δ1 = 0 . 410 , σα = 0 . 268 and σβ = 0 . 197 ). The second value for ρ is 0, representing the case 

of non-correlated random effects. The modified value for γ1 is fixed to the original value divided by two (0.195), yielding a 
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Table 5 

Spearman correlations matrix for measures in categories A and A&S computed after estimation of model 6 in simulation case 1 (original values). For the 

measures computed with several null models, (0) indicates that the considered null model is model 0 and (2) indicates that the considered null model is 

model 2. c. = conditional. 

c. rc,a c. R2 
VC,a (0) Drand Prand c r2 

X (0) R2 
X (0) ρ2 

X (0) R2 
T R2 

TF ,a c. R2 
VC,a (2) r2 

X (2) R2 
X (2) ρ2 

X (2) 

c. rc,a 1 0.990 0.990 0.998 0.947 0.998 0.990 0.990 0.990 0.941 0.445 0.508 0.445 0.449 

c. R2 
VC,a 1 1 0.981 0.945 0.981 1 1 1 0.933 0.477 0.510 0.477 0.480 

Drand 1 0.981 0.945 0.981 1 1 1 0.933 0.477 0.510 0.477 0.480 

Prand 1 0.945 1 0.981 0.982 0.981 0.940 0.429 0.502 0.429 0.433 

c 1 0.945 0.945 0.946 0.945 0.892 0.340 0.380 0.340 0.343 

r2 
X 1 0.981 0.982 0.981 0.940 0.429 0.502 0.429 0.433 

R2 
X 1 1 1 0.933 0.477 0.510 0.477 0.480 

ρ2 
X 1 1 0.934 0.475 0.509 0.475 0.478 

R2 
T 1 0.933 0.477 0.510 0.477 0.480 

R2 
TF ,a 1 0.354 0.417 0.354 0.357 

c. R2 
VC,a (2) 1 0.962 1 1 

r2 
X (2) 1 0.962 0.964 

R2 
X (2) 1 1 

ρ2 
X (2) 1 

smaller signal-to-noise ratio for the intercept variation (7.3% vs. 24% of intercept variation explained by uranium). Similarly, 

the alternative δ1 is fixed to the original value divided by two (0.205), reducing the signal-to-noise ratio for the slope from 

39% to 13.8%. For σα , we choose an alternative value of 0.310, the median between the original value and the median of 

the 200 point estimates obtained from the estimations of model 3. Likewise, the alternative value for σβ is 0.230. 

5.2. Results 

In Section 5.2.1 , we present the correlations between the frequentist measures. In the subsequent Sections, we first 

compare the measures of interest within their category in terms of sensitivity to modifications of model parameters. To 

do so, we computed a separate full analysis of variance (ANOVA) for each measure for model 6 across all 32 simulation 

cases. The dependent variable of the ANOVAs is, in turn, each measure and the factors are the five parameters ρ , γ1 , δ1 , 

σα , and σβ , and their interactions. Each factor has two levels; 0 for the original value and 1 for the modified value. Remark 

that the variability in the simulated data is higher when γ1 and δ1 are equal to their original values and when ρ , σα and 

σβ are equal to their modified values. This means that the variability is higher for bigger values of γ1 , δ1 , σα and σβ and 

for ρ = 0 . All the results are summarized in Table 8 in terms of the effect size partial η2 ( Cohen, 1988 ) (SSeffect /(SSeffect + 

SSerror for that effect ), where SSeffect are the sums of squares of each effect and SSerror for that effect those of the error for that 

effect). Table 8 includes only significant terms, which were all main effects and some two-way interactions (i.e., all higher 

order interactions were non significant). Considering the adjusted or the non adjusted measure as dependent variable will 

give the same ANOVA results. For the measures of model selection (categories A&S, F&S and S), we evaluate them in terms 

of performance in model selection using a systematic rule to identify the selected model based on the best value of each 

measure (either biggest or smallest, depending on the measure). Table 9 shows how often each measure chooses one of 

the competing models for simulation cases 1 and 2. The results presented in Tables 8 and 9 are discussed by category of 

measures in the corresponding Section. 

5.2.1. Correlations 

For the frequentist measures, we computed Spearman correlations by category. Table 5 presents the correlations for the 

measures in categories A and A&S. Pearson correlations (not shown) are virtually identical. 

The measures based on the same null model are highly related but the same measures based on a different null model 

are not correlated. Indeed, the measures based on the null model 2 assess the percentage of variation explained by covariates 

conditional on the cluster randomization design, while the measures based on the null model 0 assess the percentage of 

variation explained by covariates and clustering ( Xu, 2003 ). Table 6 gives the correlations for the measures belonging to the 

category F&S. These measures are highly related except R2 
2 

that correlates less than the others, probably because R2 
2 

identifies 

which predictors are useful to predict ȳi. instead of yi j . Finally, the correlations between the measures of the category S, that 

are all close to 1, are given in Table 7 . These preliminary results confirm the expectations based on the measures definitions 

(cf. Section 3.1.8 ) and on the measures categories (cf. Table 1 ). 

5.2.2. Comparison of measures of overall model adequacy 

The first stage of the analysis of the results is to compare the measures allowing for evaluating overall model adequacy 

(categories A and A&S) in terms of sensitivity to modifications of model parameters. This comparison is done separately for 

λy , R
2 
α , λα , R2 

β
and λβ because they summarize information for each variance component, instead of giving one value for the 

whole model. And this is also done separately for the measures based on the null model 2 because they measure a different 
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Table 6 

Spearman correlations matrix for the measures in category F&S computed after estimation of model 

6 in simulation case 1 (original values). m. = marginal. 

R2 
1 R2 

2 m. rc,a m. R2 
VC,a m. Drand m. Prand m. c m. R2 

X R2 
F ,a 

R2 
1 1 0.895 0.765 0.711 0.711 0.711 0.684 0.711 0.711 

R2 
2 1 0.562 0.522 0.522 0.522 0.527 0.522 0.522 

m. rc,a 1 0.973 0.973 0.973 0.937 0.973 0.973 

m. R2 
VC,a 1 1 1 0.957 1 1 

m. Drand 1 1 0.957 1 1 

m. Prand 1 0.957 1 1 

m. c 1 0.957 0.957 

m. R2 
X 1 1 

R2 
F ,a 1 

Table 7 

Spearman correlations matrix for the measures in category S computed after estima- 

tion of model 6 in simulation case 1 (original values). 

-2LL ML -2LL REML mAIC BIC cAIC ML cAIC REML 

-2LL ML 1 1 1 1 0.969 0.984 

-2LL REML 1 1 1 0.969 0.985 

mAIC 1 1 0.969 0.984 

BIC 1 0.969 0.984 

cAIC ML 1 0.969 

cAIC REML 1 

quantity from those based on the null model 0 (cf. Section 5.2.1 ). The comments of the three subsequent paragraphs refer 

to the measures categorized as A and A&S in Table 8 . The other measures are discussed in Sections 5.2.3 and 5.2.4 . 

The measures of overall model adequacy (except λy , R
2 
α , λα , R2 

β
and λβ and those based on the null model 2) have similar 

sensitivity to the modifications of the parameters. Indeed, these measures are sensitive to modifications of the parameters’ 

values. We observe that the factor ρ has a sizeable effect (partial η2 � 0 . 5 ) and the two-way interactions involving ρ are 

also often significant. Moreover, the two-way interaction γ1 × δ1 is also often significant, as γ1 and δ1 often have a moderate 

effect (partial η2 close to 0.1 for γ1 and to 0.07 for δ1 ). Conversely to ρ , the factor σα has a slight effect (partial η2 � 0 . 04 ) 

and σβ even has a smaller effect than the factor σα (partial η2 � 0 . 003 ) on all the measures. To more deeply understand 

the results, we plotted the boxplots obtained in the ANOVAs. As they are similar for the measures allowing for assessing 

the overall adequacy of the model (except λy , R2 
α , λα , R2 

β
and λβ and those based on the null model 2), we present them 

only for R2 
y (cf. Figure 1 ), which is representative. When γ1 , δ1 and σα are bigger, and when ρ = 0 , there is more variability 

to explain and the values of R2 
y are bigger, as expected. When σβ is bigger, R2 

y is bigger only when ρ = 0 . Indeed when ρ is 

nonzero, σα and σβ are linked and most of the variability remains in σα , while when ρ = 0 , the variability is independently 

divided between σα and σβ . 

The other measures of ( Gelman and Pardoe, 2006 ), λy , R2 
α , λα , R2 

β
and λβ , should be sensitive to the parameters at 

their corresponding “level.” Moreover, λ“level” is computed using the information contained in the errors and should thus 

not be sensitive to the parameters of the fixed part of the model. As expected, the pooling factor λy is sensitive to the 

modifications of ρ , σα and σβ . However, regardless of the value of these parameters, λy is always close to zero as it should 

always be the case ( Gelman and Pardoe, 2006 ). As expected, R2 
α is sensitive to the different values of ρ , γ1 and σα . We 

expected the pooling factor λα to be sensitive to the modifications on ρ and σα but it is also sensitive to σβ , because of 

the strong correlation between random intercept and random slope. Indeed, when ρ = 0 , the values of λα remain the same, 

independently of σβ (cf. supplementary Figure 1 ). When γ1 is bigger, the predictor uranium explains more of the variability 

between counties and thus R2 
α is bigger (cf. supplementary Figure 2). When σα is bigger, it increases the variability at that 

“level,” and thus R2 
α is smaller and λα is closer to zero, because the estimated random effects are further from the mean. As 

explained for R2 
y , when ρ = −0 . 820 , σα and σβ are strongly associated and most of the variability remains in σα . Thereby, 

there is more variability to explain and R2 
α is bigger. This leads the estimated random effects to be closer to the mean and 

λα closer to one. For R2 
β

and the pooling factor λβ , the significant effects are ρ , δ1 and σβ . For λβ , δ1 is significant, which 

is surprising. Nevertheless, the effect size is tiny (partial η2 < 0 . 001 ) and this difference is superficial (cf. supplementary 

Figure 3). When δ1 is bigger, the predictor for the random slope, which corresponds to the cross-level interaction between 

basement and uranium, explains more of the variability in the basement effects across counties and R2 
β

is thus bigger (cf. 

supplementary Figure 4). Increasing the value of σβ increases the variability at that “level,” resulting in a smaller R2 
β

and 

a pooling factor λβ closer to zero, as the estimated random effects are further from the mean value. More information is 

available when ρ is nonzero, in which case R2 
β

is bigger and λβ is closer to 1. 
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Table 8 

Results of the analyses of variance: the factors are in the columns and the dependent variables are in the lines. The cells contain the partial η2 effect 

size measure, partial η2 smaller than 0.001 are indicated by the × symbol and non significant results (5% threshold) are in parentheses. For the measures 

computed with several null models, (0) indicates that the considered null model is model 0 and (2) indicates that the considered null model is model 2. 

The dashed line separates null models. m. = marginal; c. = conditional. 

Concerning the measures based on the null model 2, we want to highlight that their behavior is similar, but with smaller 

effects, to their counterparts based on the null model 0 when we manipulate ρ and σβ . However, the null model 2 contains 

a random intercept, thus the measures are not sensitive to the modifications of the values of σα . We observe also that 

the parameters γ1 and δ1 have a slight effect (partial η2 close to 0.01) and bigger values of these parameters give rise to 

smaller values of the measures (cf. supplementary Figure 5). A different sensitivity to the modifications of the parameters 

is observed for r2 
X 

, for which γ1 is not significant and δ1 has a smaller effect size (partial η2 = 0 . 002 ). It thus seems that 

r2 
X 

based on the null model 2 is less sensitive to the modifications of the parameters associated with the fixed part of the 
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Table 9 

Number of times that the measure chooses model o ( o = 1 , 2 , 3 , 4 , 5 , 6 ) in simulation cases 1 and 2. m. = marginal; c. = conditional. 

Simulation case 1 Simulation case 2 

Model Model 

Measure Category 1 2 3 4 5 6 1 2 3 4 5 6 

c. rc,a A&S 139 22 4 35 127 24 4 45 

c. R2 
VC,a A&S 199 1 188 3 9 

Prand A&S 69 19 10 102 68 15 10 107 

r2 
X A&S 89 44 6 61 90 51 5 54 

R2 
1 F&S 9 178 13 18 174 8 

R2 
2 F&S 14 175 10 15 176 9 

m. rc,a F&S 40 91 69 69 86 45 

m. R2 
VC,a F&S 33 94 73 94 60 46 

m. Drand F&S 9 107 84 20 103 77 

m. Prand F&S 9 107 84 20 103 77 

m. c F&S 52 76 72 107 65 28 

m. R2 
X F&S 9 107 84 20 103 77 

R2 
F ,a F&S 33 94 73 94 60 46 

-2LL ML S 200 200 

-2LL REML S 41 159 118 82 

mAIC S 48 99 53 108 73 19 

BIC S 76 122 2 1 121 78 

cAIC ML S 1 78 48 73 3 120 34 43 

cAIC REML S 1 64 55 80 1 116 43 40 

DIC S 1 193 3 3 199 1 

model. The boxplots of the measures based on the null model 2 are virtually identical to the supplementary Figure 5 and 

are thus not shown. 

The second stage of the analysis of the results is to evaluate the measures of overall adequacy further allowing model 

selection (category A&S) in terms of performance in model selection. Here we comment the measures categorized as A&S in 

Table 9 . The other measures are discussed in Sections 5.2.3 and 5.2.4 . The reasons why these measures can further be used 

for model selection are that the conditional rc,a and R2 
VC,a 

are adjusted for the number of parameters, Prand penalizes for large 

random effects, and r2 
X is an extension of the classical adjusted R2 (cf. Section 3.1.6 ). As seen in Section 5.2 , R2 

TF ,a 
cannot be 

computed for model 3 and is equal for models 4, 5 and 6. Moreover, this measure is conceived as a theoretical measure 

of the upper bound of R2 
X 

(cf. Section 3.1.7 ). Thereby, we will not use R2 
TF ,a 

for model selection. Considering the remaining 

measures allowing for evaluating overall model adequacy and model selection, we observe that they tend to select model 3, 

except Prand , which identifies the population model for the majority of the 200 replications. 

In summary, we have seen that (a) the considered measures of overall model adequacy, except λy , R2 
α , λα , R2 

β
and λβ

and those based on the null model 2, have similar sensitivity to the modifications of the model parameters. Moreover, 

they behave as expected as their values are bigger when the variability in the simulated data is higher; (b) the measures 

of ( Gelman and Pardoe, 2006 ) are highly sensitive to the modifications of the parameters at their corresponding “level.”

They thus allow for understanding the relative importance of predictors and error at each “level”, as stated by the authors. 

However, the variability for R2 
α , λα , R2 

β
and λβ is very large (cf. supplementary Figure 6). Thereby, it prevents the definition 

of some guidelines for their use for model selection; (c) the measures based on the null model 2 are, as expected, not 

sensitive to the modifications of the values of σα . And they behave similarly to their counterparts based on the null model 0, 

but with smaller effects when we manipulate ρ and σβ . However, the manipulation of γ1 and δ1 imply the reverse behavior 

of their counterparts based on the null model 0. Indeed, bigger values of these parameters give rise to smaller values of the 

measures. Measures based on the null model 0 thus seem to be preferable to their counterparts based on the null model 2. 

Given the results summarized in points (a), (b) and (c), we advise, for the evaluation of overall model adequacy, the 

use of one of the considered measures except those of ( Gelman and Pardoe, 2006 ) and those based on the null model 2. 

To further use these measures for model selection, we have seen that (d) Prand was the only measure able to identify the 

population model. Thus, we advise to use it when the interest of the researcher is both on selecting the model that best fits 

the data and on testing overall adequacy of the retained model. 
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Fig. 1. Boxplots of R2 
y for the alternative values of parameters considered in the simulation (cf. Table 4 ) and the subsequent ANOVA analysis. 

5.2.3. Comparison of measures of model adequacy due to fixed effects 

As for the measures of overall model adequacy, we first discuss the ANOVAs results presented in Table 8 . These results 

are similar for all the measures allowing for fixed effects selection and for evaluating model adequacy due to fixed effects 

(category F&S). As these measures do not use the estimated random effects in their computation, they are insensitive to 

the modifications of σα and σβ . Even if σα , and sometimes σβ , are significant in the ANOVAs, the associated partial η2 

values are tiny and we observe superficial differences between boxplots for different values of σα and σβ , respectively (cf. 

supplementary Figure 7). When the coefficients associated with the predictors γ1 and δ1 are bigger, these measures are 

bigger, as expected. The information between intercept and slope is being pooled when ρ is nonzero, thus the predictors 

allow for explaining more of the variability in the data and the measures are higher. 

We evaluate the ability of the measures in category F&S to select the correct fixed part of the model (cf. Table 9 ). We 

expect these measures to select mostly either model 5 or 6 as they are equal in their fixed part. For the majority of the 200 

replications, model 5 is selected by all these measures, except the marginal R2 
VC,a 

, the marginal c and R2 
F ,a 

, which select 

model 4, especially when δ1 = 0 . 205 . 
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In order to choose the best set of fixed effects, all the considered measures belonging to category F&S seem to be appro- 

priate, except the marginal R2 
VC,a , the marginal c and R2 

F ,a 
. Indeed, they all behave as expected when testing their sensitivity 

to the modifications of the model parameters and they select the correct fixed part of the model. 

5.2.4. Comparison of measures of model selection 

First, we computed an ANOVA for each measure as in Sections 5.2.2 and 5.2.3 to evaluate the sensitivity of the mea- 

sures of model selection (category S). The comments of this paragraph are based on the part of Table 8 not discussed in 

Sections 5.2.2 and 5.2.3 . The sensitivity of -2LL ML, the mAIC and the BIC is identical as they are equal up to an additive 

constant and -2LL REML provides similar results. For these measures, the parameters of the error structure, ρ , σα and σβ , 

are significant, but with a tiny partial η2 ( < 0 . 001 ) for σβ . As expected, when ρ is nonzero, the model is more complex and 

the measures are thus smaller; when σα and σβ are bigger, the measures are also bigger, as the variability in the data is 

larger (cf. supplementary Figure 8). For the cAIC ML and the cAIC REML, the parameters σα and ρ are significant and, as for 

the mAIC, the cAIC ML and the cAIC REML are smaller when ρ is nonzero and are larger for bigger values of σα but to a 

lesser extent (cf. supplementary Figure 9; similar boxplots are obtained for the cAIC ML). For the DIC, all the main effects 

are significant except for σβ . We expect that when the variability in the data increases, the value of the DIC increases as 

well, which is the case for γ1 and δ1 . At the opposite, we observe unexpectedly smaller values of the DIC for ρ = 0 and 

bigger σα values (cf. supplementary Figure 10). In terms of sensitivity to the modifications of the parameters, considering 

the conditional likelihood rather than the marginal likelihood is more appropriate for LMMs as the cAIC is less influenced 

by the modifications of the parameters σα and σβ than the mAIC. Moreover, the cAIC behaves more appropriately than the 

DIC in this simulation study. 

Second, we evaluate the measures in category S in terms of performance in model selection using the systematic rule 

described in Section 5.2 . As the data are simulated from the population model 6, we expect these measures to select mostly 

this model. For simulation cases 17 to 32, for which the correlation is fixed at zero, either model 5 or 6 are considered as 

correct. The comments of this paragraph are based on the part of Table 9 not discussed in Sections 5.2.2 and 5.2.3 . The 

information criteria tend to select a model other than the population model, mainly in cases 1 to 16, in which ρ = −0 . 820 , 

except the cAIC REML. The cAIC REML identifies the population model in cases 1 to 16 when the coefficient associated to 

the cross-level interaction between uranium and basement is higher ( δ1 = 0 . 410 ), and in cases 17 to 32 (cf. supplementary 

Table 1 ). The smallest values of -2LL ML are always obtained for model 6 as expected. In the odd simulation cases, when 

δ1 = 0 . 410 , the smallest values of -2LL REML are obtained for model 6, but for the even cases, when δ1 = 0 . 205 , they are 

obtained for model 4. This observation is not problematic because -2LL REML is used to compare the random part of a 

model. And models 4 and 6 having the same random part and differing only in their fixed part, we would not use -2LL REML 

to compare these two models. 

6. Discussion and Conclusion 

In this article we discuss measures allowing evaluating model adequacy and selection in the linear mixed-effects model. 

In particular, we focus on extensions of R2 and on information criteria. Thus, we deliberately do not consider penal- 

ization approaches for variable selection, such as the adaptive least absolute shrinkage and selection operator (ALASSO; 

Zou, 2006 ) or the smoothly clipped absolute deviation (SCAD; Fan and Li, 2001 ) in the frequentist framework, or the dif- 

ferent versions of spike and slab priors (see Section 3.2 of Fahrmeir et al., 2009 ) in the Bayesian framework. The com- 

parison of such methods is left for future research. Note that, because we were initially motivated by the example of 

( Gelman and Pardoe, 2006 ), in our simulation study design the population model 6, defined by Equation (4) was the most 

complex. Hence, we examined how the various measures fare in rejecting a simpler model in light of the correct and more 

complex model. We did not address the question of how well these measures reject more complex models (i.e., containing 

unneeded parameters) when compared to the correct and simpler model. 

Based on the results of the simulation study in Section 5.2 and the characteristics of the measures partly listed in 

Table 1 , we now discuss some guidelines for what appear to be the most promising measures. All the measures evalu- 

ating overall model adequacy (categories A and A&S), except the measures of ( Gelman and Pardoe, 2006 ) and those based 

on a null model with a fixed intercept and a random intercept, give similar simulation results in terms of sensitivity to 

the modifications of some parameters. Some of them have the advantage to be further used for model selection (category 

A&S) as they include some sort of a penalty function (e.g., adjustment for the number of parameters). Among them, Prand 

was the only measure able to identify in all simulation cases the population model, certainly due to its penalty term for 

large random effects. According to our results, we can also favor the use of the conditional rc,a in addition to Prand . In- 

deed, the conditional rc,a does not require the specification of a null model, does neither assume normality nor constant 

variances for the random effects and the errors, and is defined for nonlinear mixed-effects models. Future research should 

also consider the need of normality for the random effects for Prand . Also, extensions to nonlinear mixed-effects models 

( Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1996 ) ought to be investigated. 

Concerning the measures that allow assessing model adequacy due to fixed effects and identifying the best fixed part 

of the model (category F&S), they all yield similar results in the simulation study, except the marginal R2 
VC,a 

, the marginal c

and R2 
F ,a 

that fail in identifying the best set of fixed effects. Among the remaining measures that correctly identify the best 
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fixed part of the model, we favor the use of the marginal Prand and of the marginal rc,a , as their conditional counterparts 

( Prand and the conditional rc,a ) perform well for testing overall model adequacy and selecting model. 

In our simulation, all the information criteria but one wrongly selected a model different from the population model. 

Only the cAIC REML did not fail in this regard, most probably due to its computation based on the conditional likelihood 

and to the use of a penalty function adapted for LMMs that is different depending on whether the LMM is estimated with 

ML or REML. 

For model specification, researchers should ideally consider all plausible models and apply some of the measures de- 

scribed in this paper. However, this approach can result in a very large number of alternative models and thus be- 

comes unfeasible. Guidelines on how to proceed in practice for model specification can be found in Chapter 6 of 

( Snijders and Bosker, 1999 ). Another interesting topic discussed in Chapter 9 of ( Snijders and Bosker, 1999 ) is the possi- 

bility to include contextual effects to model a difference between the within- and between-group regression coefficients of 

a variable. Treating both model specification and contextual effects was however beyond the scopes of this article. 

To conclude, for researchers wanting to compare LMMs and to evaluate their adequacy in order to capture as much 

information as possible in the data, we recommend to consider jointly a measure allowing for (a) model selection (cAIC 

REML), (b) fixed effects selection (the marginal rc,a and/or the marginal Prand ), and (c) testing overall model quality (the 

conditional rc,a and/or Prand ). The choice between (marginal) Prand or the (marginal) conditional rc,a comes down to the 

interpretation. The former can be interpreted similarly to the classical R2 , as it measures the proportional reduction in PQL, 

whereas the latter is less commonly interpreted as a concordance correlation coefficient between observed and predicted 

values. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.ecosta.2021.05. 

005 . 
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