

Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Présentation / Intervention

2017

Open Access

This version of the publication is provided by the author(s) and made available in accordance with the copyright holder(s).
Towards automatic geolocalisation of speakers of European French
Scherrer, Yves; Goldman, Jean-Philippe

How to cite

SCHERRER, Yves, GOLDMAN, Jean-Philippe. Towards automatic geolocalisation of speakers of European French. In: International Conference on Language Variation in Europe (ICLAVE 9). Malaga (Spain). 2017.

This publication URL: https://archive-ouverte.unige.ch/unige:95474

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

Towards automatic geolocalisation of speakers of European French

Yves Scherrer & Jean-Philippe Goldman University of Geneva

Data

Simulation and methods:

- Clustering and shibboleth detection
- Recursive feature elimination

Crowdsourced results

Ask a speaker n questions and predict his/her most likely area of origin (one out of m areas) with p% accuracy.

Ask a speaker n questions and predict his/her most likely area of origin (one out of m areas) with p% accuracy.

Comment appelez-vous cette pâtisserie? Pain au raisin Escargot Cagouille Schnäcke Alsacienne Pain russe

Ask a speaker n questions and predict his/her most likely area of origin (one out of m areas) with p% accuracy.

Ask a speaker n questions and predict his/her most likely area of origin (one out of m areas) with p% accuracy.

Goals:

- Provide a playful incentive to attract participants for further inquiries
- Collect more data
- Observation → Prediction
- Explore scientific analysis methods of the <u>already collected data</u>

⇒ select questions and areas to maximize accuracy

Ask a speaker n questions and predict his/her most likely area of origin (one out of m areas) with p% accuracy.

expected accuracy of predictions //

Number and type of questions asked

Number and type of predicted areas □□

Previous work:

- Create a geolocalisation model using data from atlases
- Select n questions on the basis of a dialectologist's knowledge
- Use the same m areas as in the original data
- Assess accuracy post-hoc (compare model predictions with participants' real origins)

(Leemann since 2013)

(parlometre.ch - TSR - 2015)

Previous work:

- Create a geolocalisation model using data from atlases
- Select n questions on the basis of a dialectologist's knowledge
- Use the same m areas as in the original data
- Assess accuracy post-hoc (compare model predictions with participants' real origins)

Our approach:

- ... from online inquiries
- Select optimal n questions by statistics
- Select optimal m areas by statistics
- Estimate accuracy (given n and m)
 using the same data as for model
 creation and
- Assess accuracy post-hoc, compare with estimates

Data

Project Français de nos régions (Avanzi, Glikman et al., 2015)

→ online surveys to inquire about regionalisms in European French (France, Belgium, Switzerland).

Survey 1	Survey 2
May 2015 - May 2016	September 2015 - May 2016
40 questions	90 questions
12 000 participants	8 000 participants

Comment appelez-vous cette pâtisserie ?

- Pain au raisin
- Escargot
- Cagouille
- Schnäcke
- Alsacienne
- Pain russe
- Autre (précisez) :

Simulation

Simulation framework: {questions} + {areas} → prediction accuracy

Idea: Leave-one-out method using two views of the same dataset

- Train model on aggregated data of all except one participant
- Predict origin of left-out participant, compare to ground truth

We do not leave out the test participant from the aggregated data:

- Much faster, as we don't have to train a new model for each participant
- Since training data are aggregated and there are always > 1 participants per area, there is never an exact correspondence between training and test data
- Preliminary tests show good correlation with true leave-one-out method

Simulation

Simulation framework: {questions} + {areas} → prediction accuracy

Two preprocessing steps:

- 1. Settle on initial set of areas: FR départements, BE provinces, CH cantons (110)
- 2. Match participants from Survey 1 with participants from Survey 2 (same origin)

Two approaches to find {questions} and {areas}:

- 1. Clustering and shibboleth detection
- 2. Recursive feature elimination

1. Determine the most relevant areal partition using

1. Determine the most relevant areal partition using

2. Use the **shibboleth** detection algorithm (Prokic, Çöltekin & Nerbonne 2012) to find the most characteristic questions for each area (e.g. 5 shibboleths/cluster)

2. Use the **shibboleth** detection algorithm (Prokic, Çöltekin & Nerbonne 2012) to find the most characteristic questions for each area (e.g. 5 shibboleths/cluster)

Simulation results:

- 10 clusters, all 130 questions → 65.1% correct
 - The results are very sensitive to the cluster borders:
 - -24% between 4 and 5 clusters; -21% between 10 and 11 clusters
 - It is difficult to determine a "good" number of clusters and an optimal cluster algorithm
- 10 clusters, 14 manually defined questions → 67.0% correct
 - Few carefully selected questions are better than all questions
- 10 clusters, 20 questions determined by shibboleth detection → 61.8% correct
 - Unintuitive choice of questions (standard variants for most areas)
 - Clusters are defined on all data, not on single determining questions

- 1. The linguistic variables may have several variants with different distributions. Treat each variant separately.
- Some variants are hardly ever used or show no geographic variation at all. Discard them first.
- 3. Train a classifier with the remaining variants, remove the one variant that contributes least to the classification, repeat.
- 4. Use the 110 atomic areas and distance between centroids throughout the process. At the end, dynamically extend the areas to their immediate and second-order neighbors.

1. The linguistic variables may have several variants with different distributions. Treat each variant separately.

Binarize data: 130 n-ary variables → 639 binary variables

2. Some variants are hardly ever used or show no geographic variation at all. Discard them first.

Single-pass feature elimination based on χ^2 score

Remove variables that are least statistically dependent on area

Lowest average distance with 150 variants

3. Train a classifier with the remaining variants, remove the one variant that contributes least to the classification, repeat (= recursive feature elimination).

We test two classifiers: SVM and MaxEnt

Both classifiers achieve much better simulation results than the χ^2 method

MaxEnt slightly worse than SVM

4. At the end, dynamically extend the areas to their immediate and second-order

neighbors.

Simulation results with 20 variants / 17 questions:

66.2% correct on second-order neighbors

Quiz des expressions de nos régions/

Connaissez-vous ces expressions de nos régions? Participez au quiz!

Localisezmoi! /

Dites-nous comment yous parlez, on vous dira d'où vous venez!

Comment ça se dit chez vous ? /

Comment survivent, voyagent et meurent les particularismes linguistiques ? Répondez à quelques questions sur vos usages linguistiques.

Localisez-le!

Comment sont perçus les différents accents du français? Essayez d'identifier la région d'origine des locuteurs que vous allez entendre.

Localisez-moi!

Question 2 sur 15

Comment appelez-vous ce fruit rouge, avec lequel on fait d'excellentes confitures?

Myrtilles Brimbelles

Localisez-moi!

Résultat: les départements en rouge représentent votre origine linguistique la plus probable.

Cliquez sur votre département d'origine

Aidez-nous à valoriser vos	
réponses en répondant à c	E
questionnaire	

Où avez-vous passé la plus grande partie de votre

jeunesse? Pays: Code postal: Adresse électronique (facultatif, ne sera pas diffusée à des tiers) Année de naissance Sexe

Sauvegarder les changements

Partagez sur Facebook

Three versions

- Feature elimination with SVM 4000
- Manual selection of 15 questions

40% of participants provided sociolinguistic info (country+zip, age, gender, email)

Social networks sharing and media coverage

Crowdsourced data		Part	Best	5-Best	Neighb-1	Neighb-2
•	Feature elimination ME	1631	11 %	43 %	40 %	62 %
•	Feature elimination SVM	1679	13 %	47 %	47 %	64 %
•	Manual selection	54	5 %	16 %	12 %	18 %
•	Random		<1 %	4.5%	~4.5%	~9%

(110 areas - f-score)

Crowdsourced data	Part	Best	5-Best	Neighb-1	Neighb-2
Feature elimination MEFeature elimination SVMManual selectionRandom	1631 1679 54	11 % 13 % 5 % <1 %	43 % 47 % 16 % 4.5%	40 % 47 % 12 % ~4.5%	62 % 64 % 18 % ~9%
Simulated data		Best	5-Best	Neighb-1	Neighb-2
Feature elimination MEFeature elimination SVMManual selection		14 % 13 % 10 %	49 % 46 % 36 %	47 % 46 % 40 % (110 areas	64 % 64 % 57 % - f-score)

Discussion

- Attempt to apply machine learning techniques for question (and area) selection
 - ⇒ estimate success of crowdsourced linguistic campaign before launch
- Automatic selection better than manual? (to be confirmed)
- Crowdsourced geolocalisation also means data collection
 - ⇒ donnezvotrefrancais.fr

Towards automatic geolocalisation of speakers of European French

Yves Scherrer & Jean-Philippe Goldman University of Geneva

Retained features from the SVM classifier:

Pain au chocolat / chocolatine / couque au chocolat / ...

Ving[t]

Crayon de papier / de bois / gris / ...

Nonante / quatre-vingt-dix

Péguer

Gouttière / cheneau

Il est midi vingt / et vingt / vingt

Dîner / déjeuner

Pain aux raisins / escargot / schnäcke

Je vais y faire / le faire

Faire tomber / tomber / échapper

Séchoir / étendoir / étendage / tancarville

Moin[s]

Escargot / cagouille / luma

Dégun / personne

Retained features from the MaxEnt classifier:

Septante / soixante-dix

Ving(t)

Il est midi vingt / et vingt / vingt

Pain au chocolat / chocolatine / couque au chocolat / ...

Crayon de papier / de bois / gris / ...

Ça joue / ça va

Gorgée / schlouk / lichette

Gouttière / cheneau

Stan[d]

Empêtrer / encoubler / achouper / ..

Dîner / déjeuner

Péguer

Pain aux raisins / escargot / schnäcke

Séchoir / étendoir / étendage / tancarville

Papier ménage / Sopalin / essuie-tout

Si vous voulez parler d'une personne qui fumait et qui ne fu ll a eu fumé (mais il ne fume plus).

