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50 Years of Time Parallel Time Integration

Martin J. Gander

Abstract Time parallel time integration methods have received renewed interest
over the last decade because of the advent of massively parallel computers, which
is mainly due to the clock speed limit reached on today’s processors. When solving
time dependent partial differential equations, the time direction is usually not used
for parallelization. But when parallelization in space saturates, the time direction
offers itself as a further direction for parallelization. The time direction is however
special, and for evolution problems there is a causality principle: the solution later
in time is affected (it is even determined) by the solution earlier in time, but not the
other way round. Algorithms trying to use the time directionfor parallelization must
therefore be special, and take this very different propertyof the time dimension into
account.
We show in this chapter how time domain decomposition methods were invented,
and give an overview of the existing techniques. Time parallel methods can be clas-
sified into four different groups: methods based onmultiple shooting, methods based
on domain decomposition and waveform relaxation, space-time multigridmethods
anddirect time parallel methods. We show for each of these techniques the main
inventions over time by choosing specific publications and explaining the core ideas
of the authors. This chapter is for people who want to quicklygain an overview of
the exciting and rapidly developing area of research of timeparallel methods.

Martin J. Gander
Section of Mathematics, University of Geneva, Rue du Lievre2-4, CP 64, 1211 Geneva 4, Switzer-
land, e-mail: martin.gander@unige.ch
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1 Introduction

It has been precisely 50 years ago that the first visionary contribution to time parallel
time integration methods was made by Nievergelt [65]. We show in Figure 1 an
overview of the many important contributions over the last fifty years to this field of
research. The methods with iterative character are shown onthe left, and the direct
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Fig. 1 An overview over important contributions to time parallel methods

time parallel solvers on the right, and large scale parallelmethods are more toward
the center of the figure, whereas small scale parallel methods useful for multicore
architectures are more towards the left and right borders ofthe plot.

We also identified the four main classes of space-time parallel methods in Figure
1 using color:

1. methods based onmultiple shootingare shown in magenta,
2. methods based ondomain decomposition and waveform relaxationare shown in

red,
3. methods based onmultigrid are shown in blue,
4. anddirect time parallel methodsare shown in black.



Contents 5

There have also been already overview papers, shown in greenin Figure 1, namely
the paper by Gear [41], and the book by Burrage [12].

The development of time parallel time integration methods spans now half a
century, and various methods have been invented and reinvented over this period.
We give a detailed account of the major contributions by presenting seminal papers
and explaining the methods invented by their authors.

2 Shooting Type Time Parallel Methods

Time parallel methods based on shooting solve evolution problems in parallel using
a decomposition of the space-time domain in time, as shown inFigure 2. An itera-

t
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T

0 x

Fig. 2 Decomposition of the space-time domain in time for multipleshooting type methods

tion is then defined, or some other procedure, which only usessolutions in the time
subdomains, to obtain an approximate solution over the entire time interval(0,T).

2.1 Nievergelt 1964

Nievergelt was the first to consider a pure time decomposition for the parallel so-
lution of evolution problems [65]. He stated precisely fiftyyears ago at the time of
writing of this chapter, how important parallel computing was to become in the near
future:

“For the last 20 years, one has tried to speed up numerical computation mainly by providing
ever faster computers.Today, as it appears that one is getting closer to the maximal
speed of electronic components, emphasis is put on allowing operations to be performed
in parallel. In the near future, much of numerical analysis will have to be recast in a more
’parallel’ form.”

As we now know, the maximal speed of electronic components was only reached 40
years later, see Figure 3.
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Fig. 3 Maximal speed of electronic components reached 40 years after the prediction of Nievergelt
(taken from a talk of Bennie Mols at the VINT symposium 12.06.2013)

Nievergelt presents a method for parallelizing the numerical integration of an or-
dinary differential equation, a process which “by all standard methods, is entirely se-
rial”. We consider in Nievergelt’s notation the ordinary differential equation (ODE)

y′ = f (x,y), y(a) = y0, (1)

and we want to approximate its solution on the interval[a,b]. Such an approximation
can be obtained using any numerical method for integrating ODEs, so-called time
stepping methods, but the process is then entirely sequential. Nievergelt proposes
instead to partition the interval[a,b] into subintervalsx0 = a< x1 < .. . < xN = b, as
shown in his original drawing in Figure 4, and then introduces the following direct
time parallel solver:

Fig. 4 First idea by Nievergelt to obtain a parallel algorithm for the integration of a first order ODE
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1. Compute a rough predictiony0
i of the solutiony(xi) at each interface (see Figure

4), for example with one step of a numerical method with step size H = (b−
a)/N.

2. For a certain numberMi of starting pointsyi,1, . . . ,yi,Mi atxi in the neighborhood
of the approximate solutiony0

i (see Figure 4), compute accurate (we assume here
for simplicity exact) trajectoriesyi, j(x) in parallel on the corresponding interval
[xi ,xi+1], and alsoy0,1(x) on the first interval[x0,x1] starting aty0.

3. SetY1 := y0,1(x1) and compute sequentially for eachi = 1, . . . ,N−1 the interpo-
lated approximation by

• finding the intervalj such thatYi ∈ [yi, j ,yi, j+1],

• determiningp such thatYi = pyi, j +(1− p)yi, j+1, i.e. p=
Yi−yi, j+1
yi, j−yi, j+1

,

• setting the next interpolated value atxi+1 toYi+1 := pyi, j(xi+1)+(1−p)yi, j+1(xi+1).

For linear ODEs, this procedure does actually produce the same result as the evalu-
ation of the accurate trajectory on the grid, i.e.Yi = y(xi) in our case of exact local
solves, there is no interpolation error, and it would in factsuffice to have only two
trajectories,Mi = 2 in each subinterval, since one can also extrapolate.

In the non-linear case, there is an additional error due to interpolation, and Niev-
ergelt defines a class of ODEs for which this error remains under control if one uses
Backward Euler for the initial guess with a coarse stepH, and also Backward Euler
for the accurate solver with a much finer steph, and he addresses the question on
how to chooseMi and the location of the starting pointsyi, j in the neighborhood. He
then concludes by saying

“The integration methods introduced in this paper are to be regarded as tentative examples
of a much wider class of numerical procedures in which parallelism is introduced at the
expense of redundancy of computation. As such, their meritslie not so much in their use-
fulness as numerical algorithms as in their potential as prototypes of better methods based
on the same principle. It is believed that more general and improved versions of these meth-
ods will be of great importance when computers capable of executing many computations
in parallel become available.”

What a visionary statement again! The method proposed is inefficient compared to
any standard serial integration method, but when many processors are available, one
can compute the solution faster than with just one processor. This is the typical sit-
uation for time parallel time integration methods: the goalis not necessarily perfect
scalability or efficiency, it is to obtain the solution faster than sequentially.

The method of Nievergelt is in fact a direct method, and we will see more such
methods in Section 5, but it is the natural precursor of the methods based on multiple
shooting we will see in this section.

2.2 Bellen and Zennaro 1989

The first to pick up the idea of Nievergelt again and to formally develop an iterative
method to connect trajectories were Bellen and Zennaro in [6]:
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“In addition to the two types of parallelism mentioned above, we wish to isolate a third
which is analogous to what Gear has more recently called parallelism across the time. Here
it is more appropriately called parallelism across the steps. In fact, the algorithm we propose
is a realization of this kind of parallelism. Without discussing it in detail here, we want to
point out thatthe idea is indeed that of multiple shootingand parallelism is introduced at
the cost of redundancy of computation.”

Bellen and Zennaro define their method directly at the discrete level, for a recur-
rence relation of the form

yn+1 = Fn+1(yn), y0 known. (2)

This process looks entirely sequential, one needs to knowyn in order to be able to
computeyn+1. Defining the vector of unknownsy := (y0,y1, . . . ,yn, . . .) however,
the recurrence relation (2) can be written simultaneously over many levels in the
fixed point form

y = φ(y), (3)

whereφ(y) = (y0,F1(y0),F2(y1), . . . ,Fn(yn−1), . . .). Bellen and Zennaro propose to
apply a variant of Newton’s method called Steffensen’s method to solve the fixed
point equation (3). Like when applying Newton’s method and simplifying, as we
will see in detail in the next subsection, this leads to an iteration of the form

yk+1 = φ (yk)+∆φ(yk)(yk+1− yk), (4)

where∆φ is an approximation to the differentialDφ , and they choose as initial guess
y0

n = y0. Steffensen’s method for a nonlinear scalar equation of theform f (x) = 0 is

xk+1 = xk−g(xk)
−1 f (xk)

g(x) :=
f (x+ f (x))− f (x)

f (x)
,

and one can see how the functiong(x) becomes a better and better approximation of
the derivativef ′(x) as f (x) goes to zero. As Newton’s method, Steffensen’s method
converges quadratically once one is close to the solution.

Bellen and Zennaro show several results about Steffensen’smethod (4) applied
to the fixed point problem (3):

1. They observe that each iteration gives one more exact value, i.e. after one itera-
tion, the exact valuey1

1 = y1 is obtained, and after two iterations, the exact value
y2

2 = y2 is obtained, and so on. Hence convergence of the method is guaranteed
if the vectoryk is of finite length.

2. They prove that convergence is locally quadratic, as it holds in general for Stef-
fensen’s method applied to non-linear problems.

3. The corrections at each step of the algorithm can be computed in parallel.
4. They also present numerically estimated speedups of 29-53 for a problem with

400 steps.
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In contrast to the ad hoc interpolation approach of Nievergelt, the method of Bellen
and Zennaro is a systematic parallel iterative method to solve recurrence relations.

2.3 Chartier and Philippe 1993

Chartier and Philippe return in [13] to the formalization ofBellen and Zennaro1,
which was given at the discrete level, and formulate their parallel integration method
at the continuous level for evolution problems:

“Parallel algorithms for solving initial value problems for differential equationshave re-
ceived only marginal attention in the literature compared to the enormous work de-
voted to parallel algorithms for linear algebra. It is indeed generally admitted that the
integration of a system of ordinary differential equationsin a step-by-step process is inher-
ently sequential.”

The underlying idea is to apply a shooting method, which was originally developed
for boundary value problems, see [48] and references therein, to an initial value
problem, see also [49]. For a boundary value problem of the form

u′′ = f (u), u(0) = a, u(1) = b, (5)

a shooting method also considers the same differential equation, but as an initial
value problem,

u′′ = f (u), u(0) = a, u′(0) = s, (6)

and one then tries to determine the so-called shooting parameters, the ’angle of
the cannon to shoot with’, such that the solution passes through the pointu(1) = b,
which explains the name of the method. To determine the shooting parameters,
one needs to solve in general a non-linear equation, which ispreferably done by
Newton’s method, see for example [48].

If the original problem is however already an initial value problem,

u′ = f (u), u(0) = u0, x∈ [0,1], (7)

then there is in no target to hit at the other end, so at first sight it seems shooting is
not possible. To introduce targets, one uses the idea ofmultiple shooting: one splits
the time interval into subintervals, for example three,[0, 1

3], [
1
3,

2
3], [

2
3,1], and then

solves on each subinterval the underlying initial value problem

u′0 = f (u0), u′1 = f (u1), u′2 = f (u2),

u0(0) = U0, u1(
1
3) = U1, u2(

2
3) = U2,

together with the matching conditions

1 “In diesem Artikel studieren wir verschiedene Versionen einer Klasse paralleler Algorithmen, die
ursprünglich von A. Bellen und M. Zennaro für Differenzengleichungen konzipiert und von ihnen
’across the steps’ Methode genannt worden ist.”
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U0 = u0, U1 = u0(
1
3
,U0), U2 = u1(

2
3
,U1).

Since the shooting parametersUn, n = 0,1,2 are not known (except forU0 = u0),
this leads to a system of non-linear equations one has to solve,

F(U) :=





U0−u0

U1−u0(
1
3,U0)

U2−u1(
2
3,U1)



= 0, U = (U0,U1,U2)
T .

If we apply Newton’s method to this system, like in the classical shooting method,
to determine the shooting parameters, we obtain fork= 0,1,2, . . . the iteration





Uk+1
0

Uk+1
1

Uk+1
2



=





Uk
0

Uk
1

Uk
2



−







1
− ∂u0

∂U0
(1

3,U
k
0) 1

− ∂u1
∂U1

(2
3,U

k
1) 1







−1




Uk
0 −u0

Uk
1 −u1(

1
3,U

k
0)

Uk
2 −u1(

2
3,U

k
1)



 .

Multiplying through by the Jacobian matrix, we find the recurrence relation

Uk+1
0 = u0,

Uk+1
1 = u0(

1
3,U

k
0)+

∂u0
∂U0

(1
3,U

k
0)(U

k+1
0 −Uk

0),

Uk+1
2 = u1(

2
3,U

k
1)+

∂u1
∂U1

(2
3,U

k
1)(U

k+1
1 −Uk

1).

In the general case withN shooting intervals, solving the multiple shooting equa-
tions using Newton’s method gives thus a recurrence relation of the form

Uk+1
0 = u0,

Uk+1
n+1 = un(tn+1,Uk

n)+
∂un
∂Un

(tn+1,Uk
n)(U

k+1
n −Uk

n), n= 0,1,2, . . .N,
(8)

and we recognize the form (4) of the method by Bellen and Zennaro. Chartier and
Philippe prove that (8) converges locally quadratically. They then however already
indicate that the method is not necessarily effective on general problems, and re-
strict their analysis to dissipative right hand sides, for which they prove a global
convergence result. Finally, also discrete versions of thealgorithm are considered.

2.4 Saha, Stadel and Tremaine 1996

Saha, Stadel and Tremaine cite the work of Bellen and Zennaro[6] and Nievergelt
[65] as sources of inspiration, but mention already the relation of their algorithm to
waveform relaxation [53] in their paper on the integration of the solar system over
very long time [68]:

“We describe how long-term solar system orbit integration could be implemented on a par-
allel computer. The interesting feature of our algorithm isthateach processor is assigned
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not to a planet or a pair of planets but to a time-interval. Thus, the 1st week, 2nd week,
. . . , 1000th week of an orbit are computed concurrently. The problem of matching the input
to the(n+1)-st processor with the output of then-th processor can be solved efficiently
by an iterative procedure. Our work is related to the so-calledwaveform relaxation meth-
ods. . . ”.

Consider the system of ordinary differential equations

ẏ= f (y), y(0) = y0,

or equivalently the integral formulation

y(t) = y(0)+
∫ t

0
f (y(s))ds.

Approximating the integral by a quadrature formula, for example the midpoint rule,
we obtain for each timetn for y(tn) the approximation

yn = y0+h
n−1

∑
m=0

f (
1
2
(ym+1+ ym)), n= 1, . . . ,N. (9)

Collecting the approximationsyn in a vectory := (y0,y1, . . . ,yN), the relation (9)
can again be written simultaneously over many steps as a fixedpoint equation of the
form

y = F(y), (10)

which can be solved by an iterative process. Note that the quadrature formula (9)
can also be written by reusing the sums already computed at earlier steps,

yn = yn−1+h f(
1
2
(yn+ yn−1)), n= 1, . . . ,N, (11)

so the important step here is not the use of the quadrature formula. The interesting
step comes from the application of Saha, Stadel and Tremaine, namely a Hamilto-
nian problem with a small perturbation:

ṗ=−∂qH, q̇= ∂pH, H(p,q, t) = H0(p)+ εH1(p,q, t).

Denoting byy := (p,q), and f (y) := (−Hq(y),Hp(y)), Saha, Stadel and Tremaine
derive Newton’s method for the associated fixed point problem (10), as Chartier and
Philippe derived (8). Rewriting (8) in their notation gives

Yk+1
n+1 = yε

n(tn+1,Y
k
n )+

∂yε
n

∂Yn
(tn+1,Y

k
n )(Y

k+1
n −Yk

n ), (12)

where the superscriptε denotes the solution of the perturbed Hamiltonian system.
The key new idea of Saha, Stadel and Tremaine is to propose an approximation

of the derivative by a cheap difference for the unperturbed Hamiltonian problem,
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Yk+1
n+1 = yε

n(tn+1,Y
k
n )+ y0

n(tn+1,Y
k+1
n )− y0

n(tn+1,Y
k
n ). (13)

They argue that with the approximation for the Jacobian usedin (13), each itera-
tion now improves the error by a factorε; instead of quadratic convergence for the
Newton method (12), one obtains linear convergence.

They show numerical results for our solar system: using forH0 Kepler’s law,
which leads to a cheap integrable system, and forεH1 the planetary perturbations,
they obtain the results shown in Figure 5. They also carefully verify the possi-

Fig. 5 Maximum error in mean anomalyM versus time,h= 7 1
32 days, compared to results from

the literature, from [68]

ble speedup with this algorithm for planetary simulations over long time. Figure
6 shows the iterations needed to converge to a relative errorof 1e−15 in the plane-
tary orbits.

2.5 Lions, Maday and Turinici 2001

Lions, Maday and Turinici invented the parareal algorithm in a short note [55], al-
most independently of earlier work; they only cite the paperby Chartier and Philippe
[13]:

“On propose dans cette Note un schéma permettant de profiterd’une architecture par-
allèle pour la discrétisation en temps d’une équation d’évolution aux dérivées partielles.
Cette méthode, basée sur un schéma d’Euler,combine des ŕesolutions grossìeres et des
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Fig. 6 Top linear scaling, and bottom logarithmic scaling of the number of iterations to reach a
relative error of 1e−15 as a function of the number of processors (time intervals)used

r ésolutions fines et ind́ependantes en temps en s’inspirant de ce qui est classique en
espace. La paralĺelisation qui en résulte se fait dans la direction temporelle ce qui est
en revanche non classique. Elle a pour principale motivation les problèmes en temps réel,
d’où la terminologie proposée de ’parar éel’.”

Lions, Maday and Turinici explain their algorithms on the simple scalar model
problem2

ẏ=−ay, on [0,T], y(0) = y0. (14)

The solution is first approximated using Backward Euler on the time gridTn with
coarse time step∆T,

Y1
n+1−Y1

n +a∆TY1
n+1 = 0, Y1

0 = y0. (15)

The approximate solution valuesY1
n are then used to compute on each time interval

[Tn,Tn+1] exactly and in parallel the solution of

ẏ1
n =−ay1

n, y1
n(Tn) =Y1

n . (16)

One then performs fork= 1,2, . . . the correction iteration

1. Compute the jumpsSk
n := yk

n−1(Tn)−Yk
n .

2. Propagate the jumpsδ k
n+1− δ k

n +a∆Tδ k
n+1 = Sk

n, δ k
0 = 0.

2 “Pour commencer, on expose l’idée sur l’exemple simple”
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3. SetYk+1
n := yk

n−1(Tn)+ δ k
n and solve in parallel

ẏk+1
n =−ayk+1

n , on [Tn,Tn+1], yk+1
n (Tn) =Yk+1

n .

The authors prove the following error estimate for this algorithm 3

Proposition 1 (Lions, Maday and Turinici 2001).The parareal scheme is of order
k, i.e. there exists ck s.t.

|Yk
n − y(Tn)|+ max

t∈[Tn,Tn+1]
|yk

n(t)− y(t)| ≤ ck∆Tk.

This result implies that with each iteration of the pararealalgorithm, one obtains
a numerical time stepping scheme which has a truncation error that is one order
higher than before. So for a fixed iteration numberk, one can obtain high order
time integration methods that are naturally parallel. The authors then note that the
same proposition also holds for Forward Euler. In both discretization schemes how-
ever, the stability of the higher order methods obtained with the parareal correction
scheme degrades with iterations, as shown in Figure 7 taken from the original publi-
cation [55]. The authors finally show two numerical examples: one for a heat equa-

Fig. 7 Stability of the parareal algorithm as function of the iteration, on the left for Backward
Euler, and on the right for Forward Euler

tion where they obtain a simulated speedup of a factor 8 with 500 processors, and
one for a semi-linear advection diffusion problem, where a variant of the algorithm
is proposed by linearization about the previous iterate, since the parareal algorithm
was only defined for linear problems. Here, the speedup obtained is 18.

Let us write the parareal algorithm now in modern notation, directly for the non-
linear problem

u′ = f (u), u(t0) = u0. (17)

The algorithm is defined using two propagation operators:

1. G(t2, t1,u1) is a rough approximation tou(t2) with initial conditionu(t1) = u1,
2. F(t2, t1,u1) is a more accurate approximation of the solutionu(t2) with initial

conditionu(t1) = u1.

3 “C’est alors un exercice que de montrer la:”
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Starting with a coarse approximationU0
n at the time pointst0, t1, t2, . . . , tN, for exam-

ple obtained usingG, the parareal algorithm performs fork= 0,1, . . . the correction
iteration

Uk+1
n+1 = F(tn+1, tn,U

k
n)+G(tn+1, tn,U

k+1
n )−G(tn+1, tn,U

k
n). (18)

Theorem 1 (Parareal is a Multiple Shooting Method [40]).The parareal algo-
rithm is a multiple shooting method

Uk+1
n+1 = un(tn+1,U

k
n)+

∂un

∂Un
(tn+1,U

k
n)(U

k+1
n −Uk

n), (19)

where the Jacobian has been approximated in (18) by a difference on a coarse grid.

We thus have a very similar algorithm as the one proposed by Saha, Stadel and
Tremaine [68], the only difference being that the Jacobian approximation does not
come from a simpler model, but from a coarser discretization.

We now present a very general convergence result for the parareal algorithm ap-
plied to the non-linear initial value problem (17), which contains accurate estimates
of the constants involved:

Theorem 2 (Convergence of Parareal [28]).Let F(tn+1, tn,Uk
n) denote the exact

solution at tn+1 and G(tn+1, tn,Uk
n) be a one step method with local truncation error

bounded by C1∆T p+1. If

|G(t +∆T, t,x)−G(t+∆T, t,y)| ≤ (1+C2∆T)|x− y|,

then the following error estimate holds for (18):

max
1≤n≤N

|u(tn)−Uk
n| ≤

C1∆Tk(p+1)

k!
(1+C2∆T)N−1−k

k

∏
j=1

(N− j) max
1≤n≤N

|u(tn)−U0
n | (20)

≤
(C1T)k

k!
eC2(T−(k+1)∆T)∆T pk max

1≤n≤N
|u(tn)−U0

n |. (21)

The proof uses generating functions and is just over a page long, see [28]. One
can clearly see the precise convergence mechanisms of the parareal algorithm in
this result: looking in (20) on the right, the product term isinitially growing, for
k = 1,2,3 we get the productsN−1, (N−1)(N−2), (N−1)(N−2)(N−3) and
so on, but as soon ask= N the product contains the factor zero, and the method has
converged. This is the property already pointed out by Bellen and Zennaro in [6].
Next looking in (21), we see that the method’s order increases at each iterationk by
p, the order of the coarse propagator, as already shown by Lions, Maday and Turinici
in their proposition for the Euler method. We have however also a precise estimate
of the constant in front in (21), and this constant contractsfaster than linear, since it
is an algebraic power ofC1T divided byk! (the exponential term is not growing as
the iterationk progresses). This division byk! is the typical convergence behavior
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found in waveform relaxation algorithms, which we will see in more detail in the
next section.

3 Domain Decomposition Methods inSpace-Time

Time parallel methods based on domain decomposition solve evolution problems in
quite a different way in parallel from multiple shooting based methods. The decom-
position of the space-time domain for such methods is shown in Figure 8. Again

t

Ω1 Ω2 Ω3 Ω4 Ω5

T

0 x

Fig. 8 Decomposition of the space-time domain for domain decomposition time parallel methods

an iteration is then used, which computes only solutions on the local space-time
subdomainsΩ j . Since these solutions are obtained over the entire so-called time
window [0,T] before accurate interface values are available from the neighboring
subdomains over the entire time window, these methods are also time parallel in
this sense, and they are known under the name waveform relaxation.

3.1 Picard and Lindel̈of 1893/1894

The roots of waveform relaxation type methods lie in the existence proofs of solu-
tions for ordinary differential equations of Picard [66] and Lindelöf [54]. Like the
alternating Schwarz method invented by Schwarz to prove theDirichlet principle
[71] and hence existence of solutions of Laplace’s equationon general domains,
Picard invented his method of successive approximations toprove the existence of
solutions of the specific class of ordinary differential equations:

“Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles
de s’appliquer à toute équation,mais elles ne deviennent vraiment int́eressantespour
l’étude des propriétés des fonctions définies par les équations différentielles quesi l’on ne
reste pas dans les ǵenéralit és et si l’on envisage certaines classes d’équations.”

Picard thus considers ordinary differential equations of the form
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v′(t) = f (v(t)), t ∈ [0,T], (22)

with given initial conditionv(0). In order to analyze if a solution of such a non-linear
problem exists, he proposed the nowadays called Picard iteration

vn(t) = v(0)+
∫ t

0
f (vn−1(τ))dτ, n= 1,2, . . . , (23)

wherev0(t) is some initial guess. This transforms the problem of solving the ordi-
nary differential equation (22) into a sequence of problemsusing only quadrature,
which is much easier to handle. Picard proved convergence ofthis iteration in [66],
which was sufficient to answer the existence question. It wasLindelöf a year later
who gave the following convergence rate estimate in [54]:

Theorem 3 (Superlinear Convergence).On bounded time intervals t∈ [0,T], the
iterates (23) satisfy the superlinear error bound

||v− vn||∞ ≤
(CT)n

n!
||v− v0||∞, (24)

where C is the Lipschitz constant of the nonlinear right handside f .

We see in the convergence estimate (24) the same term appear as in the parareal
convergence estimate (21). This term is typical for the convergence of waveform
relaxation methods we will see next, and thus the comment of Saha, Stadel and
Tremaine in the quote at the beginning of Subsection 2.4 is justified.

3.2 Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982

The Picard iteration was not very successful as an iterativemethod for concrete
computations4, but in the circuit community, an interesting variant was developed
based on a decomposition of the circuit by Lelarasmee, Ruehli and Sangiovanni-
Vincentelli [53]:

“The Waveform Relaxation (WR) method is an iterative methodfor analyzing nonlinear
dynamical systems in the time domain. The method, at each iteration, decomposes the
system into several dynamical subsystems, each of which is analyzed for the entire
given time interval.”

The motivation for this method was really the extremely rapid growth of integrated
circuits, which made it difficult to simulate a new generation of circuits on the
present generation computers5. Lelarasmee, Ruehli and Sangiovanni-Vincentelli ex-
plain the waveform relaxation algorithm on the concrete example of a MOS ring

4 “Actually this method of continuing the computation is highly inefficient and is not recom-
mended”, see [60]
5 “The spectacular growth in the scale of integrated circuitsbeing designed in the VLSI era has
generated the need for new methods of circuit simulation. “Standard” circuit simulators, such as
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oscillator shown in Figure 9. The reason why this circuit is oscillating can be seen

2

+5 +5 +5

v v v

u

1 3

Fig. 9 Historical example of the MOS ring oscillator, for which thewaveform relaxation algorithm
was derived

as follows: suppose the voltage at nodev1 equals 5 volts. Then this voltage is con-
nected to the gate of the transistor to the right, which will thus open, and hence
the voltage at nodev2 will be pulled down to ground, i.e. 0 volts. This is however
connected to the gate of the next transistor to the right ofv2, which will thus close,
andv3 will be pulled up to 5 volts. These five volts will now feedbackto the gate
of the transistor to the left ofv1, which will thus open, and thusv1, which was by
assumption at 5 volts, will be pulled down to ground at 0 volts, and we see how the
oscillation happens.

Using the laws of Ohm and Kirchhoff, the equations for such a circuit can be
written in form of a system of ordinary differential equations

v′(t) = f(v(t)), 0< t < T,
v(0) = g,

wherev = (v1,v2,v3), andg is the initial state of the circuit.
If the circuit is extremely large, so that it does not fit any more on one single

computer, the waveform relaxation algorithm is based on theidea of decomposing
the circuit into subcircuits, as shown in Figure 10. The ideais to cut the wires with
which the subcircuits are connected, and then to assume thatthere are small voltage
sources on the wires that were cut, which feed in the voltage that was calculated at
the previous iteration. This leads to the iterative method

∂tvk+1
1 = f1(v

k+1
1 ,vk

2,v
k
3),

∂tvk+1
2 = f2(vk

1,v
k+1
2 ,vk

3),

∂tv
k+1
3 = f3(vk

1,v
k
2,v

k+1
3 ).

(25)

SPICE and ASTAP, simply take too much CPU time and too much storage to analyze a VLSI
circuit”, see [53]
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Fig. 10 Decomposition of the MOS ring oscillator circuit for the waveform relaxation algorithm

Since in the circuit simulation community signals along wires are called ’wave-
forms’, this gave the algorithm the nameWaveform Relaxation. We see in (25) that
on the right all neighboring waveforms have been relaxed to the previous iteration,
which results in a Jacobi type relaxation known in numericallinear algebra, which is
entirely parallel. Naturally one could also use a Gauss-Seidel type relaxation which
would then be sequential.

We show in Figure 11 a historical numerical convergence study for the MOS
ring oscillator taken from [53]. We can see that this circuithas the property that the
waveform relaxation algorithm converges in a finite number of steps. This can be

Fig. 11 Historical convergence result for the MOS ring oscillator from [53]
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understood by the finite propagation speed of the information in this circuit6, and
we will see this again when looking at hyperbolic equations in the following section.
The convergence of waveform relaxation methods depends strongly on the type of
equations that are being solved, and the general convergence estimate of Lindelöf
(24), also valid for waveform relaxation, is not always sharp.

3.3 Gander 1996

The waveform relaxation algorithm from the previous subsection can be naturally
extended to partial differential equations, as it was shownin [24]:

“Motivated by the work of Bjørhus [8], we show how one can useoverlapping domain
decomposition to obtain a waveform relaxation algorithm for the semi-discrete heat
equation which converges at a rate independent of the mesh parameter.”

The idea is best explained for the simple model problem of theone dimensional heat
equation,

∂tu= ∂xxu, 0< x< 1, t > 0 (26)

with given initial conditionu(x,0) = u0(x) and homogeneous boundary conditions.
Like in the waveform relaxation algorithm, where the circuit was partitioned into
subcircuits, one partitions the domainΩ = (0,1) into overlapping subdomains, say
Ω1 = (0,β ) andΩ1 = (α,1), α < β , and then performs the iteration

∂tun
1 = ∂xxun

1, 0< x< β , t > 0,
un

1(β , t) = un−1
2 (β , t),

∂tun
2 = ∂xxun

2, α < x< 1, t > 0,
un

2(α, t) = un−1
1 (α, t).

(27)

Since the decomposition is overlapping like in the classical overlapping Schwarz
method for steady problems, and time dependent problems aresolved in each iter-
ation like in waveform relaxation, these algorithms are called Schwarz Waveform
Relaxationalgorithms. One can show that algorithm (27) converges linearly on un-
bounded time intervals, see [39], and superlinearly on bounded time intervals, see
[42]. Both results can be found for nonlinear problems in [25]. The superlinear con-
vergence rate in Schwarz waveform relaxation algorithms isfaster than in classical
waveform relaxation methods for circuits, since the heat kernel decay gives addi-
tional contraction. If the equation is a wave equation, thenone obtains convergence
in a finite number of steps, see for example [29]. Much better waveform relaxation
methods can however be obtained using the new concept of optimized transmission
conditions we will see next.

6 “Note that since the oscillator is highly non unidirectional due to the feedback fromv3 to the
NOR gate, the convergence of the iterated solutions is achieved with the number of iterations
being proportional to the number of oscillating cycles of interest”, see [53]



Contents 21

3.4 Gander, Halpern and Nataf 1999

It was shown in [32] that the Dirichlet transmission conditions used for the informa-
tion exchange do not lead to good convergence behavior of theSchwarz waveform
relaxation algorithm:

“We then show that theDirichlet conditions at the artificial interfaces inhibit t he in-
formation exchangebetween subdomains and therefore slow down the convergenceof the
algorithm.”

This observation holds for all types of partial differential equations, also for steady
state problems [63]. The key new idea is to introduce more effective transmission
conditions, which leads for the model problem (26) to the newSchwarz waveform
relaxation algorithm

∂tun
1 = ∂xxun

1, 0< x< β , t > 0,
B1un

1(β , t) = B1un−1
2 (β , t),

∂tun
2 = ∂xxun

2, α < x< 1, t > 0,
B2un

2(α, t) = B2un−1
1 (α, t).

(28)

If one choosesB1 = ∂n1+DtN2 andB2 = ∂n2+DtN1, where∂n j denotes the normal
derivative, and DtNj denotes the Dirichlet to Neumann operator of the subdomain
j, then algorithm (28) converges in two iterations, independently of the overlap: it
becomes a direct solver. This can be generalized toN iterations withN subdomains,
or one iteration when using an alternating sweep, and is the underlying mecha-
nism for the good convergence of the sweeping preconditioner recently presented in
[20]. Since the DtN operators are in general expensive, so-calledoptimized Schwarz
waveform relaxationmethods use local approximations; for a complete treatment
of advection reaction diffusion equations see [30, 7], and for the wave equation,
see [33, 29]. An overview for steady problems and referencescan be found in
[26]. We show in Figure 12 as an illustration for an advectionreaction diffusion
equation and a decomposition into eight overlapping subdomains how much faster
optimized Schwarz waveform relaxation methods converge compared to classical
Schwarz waveform relaxation methods. While the Dirichlet transmission conditions
in the left column greatly inhibit the information exchange, the absorbing condi-
tions (here second order Taylor conditions) lead almost magically to a very good
approximation already in the very first iteration. For more information, see [30, 7].
Waveform relaxation methods should thus never be used with classical transmission
conditions, also when applied to circuits; optimized transmission conditions have
also been proposed and analyzed for circuits, see for example [1, 2] and references
therein.
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Fig. 12 Snapshots in time of the first classical Schwarz waveform relaxation iteration in the left
column, and the first optimized Schwarz waveform relaxationiteration in the right column: the
exact solution is shown in solid red, and the Schwarz waveform relaxation approximation in dashed
blue
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3.5 Recent Developments

Other domain decomposition methods for steady problems have been recently pro-
posed and analyzed for time dependent problems: for the convergence properties
of the Dirichlet-Neumann Waveform Relaxation algorithm, see [59, 35], and for the
Neumann-Neumann Waveform Relaxation algorithm, see [51, 35] for a convergence
analysis, and [45] for well posedness of the algorithm.

It is also naturally possible to combine the multiple shooting method and the
Schwarz waveform relaxation methods, which leads to a space-time decomposition
of the form shown in Figure 13. A parareal Schwarz waveform relaxation algorithm

t

Ωi j

T

0 x

Fig. 13 Space-time decomposition for Parareal Schwarz Waveform Relaxation

for such decompositions was proposed in [34], see also [58] for a method which uses
waveform relaxation as a solver within parareal. These methods iterate simultane-
ously on sets of unknowns in the space-time domain, as the space-time multigrid
methods we will see next.

4 Multigrid Methods in Space-Time

The methods we have seen so far were designed to be naturally parallel: the time
decomposition methods based on shooting use many processors along the time axis,
the waveform relaxation methods use many processors in the space dimensions. The
multigrid methods we see in this section are not naturally parallel, but their compo-
nents can be executed in parallel in space-time, since they work simultaneously on
the entire space-time domain, as indicated in Figure 14.

4.1 Hackbusch 1984

The first such method is the parabolic multigrid method developed by Hackbusch in
[44]. Like other multigrid methods, the smoother can be naturally implemented in
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Fig. 14 Space-time multigrid methods work simultaneously on the entire space-time domain

parallel in space, and in the parabolic multigrid method, the smoother operates over
many time levels, so that interpolation and restriction canbe performed in parallel
in space-time.

In order to explain the method, we consider the parabolic PDEut +L u = f
discretized by Backward Euler:

(I +∆ tL )un = un−1+∆ t f (tn). (29)

Hackbusch makes the following comment about this equation

“The conventional approach is to solve (29) time step by timestep;un is computed from
un−1, thenun+1 from un etc. The following process will be different. Assume thatun is
already computed or given as an initial state.Simultaneously, we shall solve forun+1,
un+2, . . . ,un+k in one step of the algorithm.”

In the method of Hackbusch, one starts with a standard smoother for the problem
at each time step. LetA be the iteration matrix,A := I +∆ tL ; then one partitions
the matrix into its lower triangular, diagonal and upper triangular part,A= L+D+
U , and uses for example as a smoother the Gauss-Seidel iteration over many time
levels:

for n= 1 : N
for j = 1 : ν

u j
n = (L+D)−1(−Uu j−1

n +uν
n−1+∆ t f (tn));

end;
end;

We see that the smoothing process is sequential in time: one first has to finish the
smoothing iteration at time stepn−1 in order to obtainuν

n−1, before one can start
the smoothing iteration at time stepn, sinceuν

n−1 is needed on the right hand side.
After smoothing, one restricts the residual in space-time like in a classical multi-

grid method to a coarser grid, before applying the procedurerecursively. Hackbusch
first only considers coarsening in space, as shown in Figure 15. In this case, one
can prove that standard multigrid performance can be achieved for this method. If
one however also coarsens in time, one does not obtain standard multigrid perfor-
mance, and the method can even diverge. This is traced back byHackbusch to errors
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Fig. 15 Original figure of Hackbusch about the coarsening in the parabolic multigrid method

which are smooth in space, but non smooth in time. Hackbusch illustrates the per-
formance of the method by numerical experiments for buoyancy-driven flow with
finite difference discretization.

4.2 Lubich and Ostermann 1987

Lubich and Ostermann [56] used the waveform relaxation context to define a space-
time multigrid method:

“Multi-grid methods are known to be very efficient solvers for elliptic equations. Various
approaches have also been given to extend multi-grid techniques to parabolic problems. A
common feature of these approaches is that mult-grid methods are applied onlyafter the
equation has been discretized in time. In the present note weshall ratherapply multi-grid
(in space) directly to the evolution equation.”

Their work led to the so-calledMultigrid Waveform Relaxationalgorithm. The eas-
iest way to understand it is to first apply a Laplace transformto the evolution prob-
lem, assuming for simplicity a zero initial condition,

ut +Lhu= f =⇒ A(s)û := sû+Lhû= f̂ .

One then applies a standard multigrid method to the Laplace transformed linear
systemA(s)û= f̂ . LetA(s) = L+D+sI+U be again the lower triangular, diagonal
and upper triangular part of the matrixA(s). A standard two grid algorithm would
then start with the initial guess ˆu0

0(s), and perform forn= 0,1,2, . . . the steps

for j = 1 : ν
û j

n(s) = (L+D+ sI)−1(−Uû j−1
n (s)+ f̂ (s));

end;
û0

n+1(s) = ûν
n(s)+PA−1

c R( f̂ −Aûν
n(s));

smooth again;

whereR and P are standard multigrid restriction and prolongation operators for
steady problems, and the coarse matrix can be defined using a Galerkin approach,
Ac := RAP.
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Applying the inverse Laplace transform to this algorithm, we obtain the multigrid
waveform relaxation algorithm: the smoothing step

(sI+L+D)û j
n(s) =−Uû j−1

n (s)+ f̂ (s)

becomes in the time domain

∂tu
j
n+(L+D)u j

n+Uu j−1
n = f ,

which is a Gauss Seidel Waveform Relaxation iteration, see Subsection 3.2. The
coarse correction

û0
n+1(s) := ûν

n(s)+PA−1
c R( f̂ −Aûν

n(s))

becomes back in the time domain

solvevt +LHv= R( f − ∂tuν
n −Lhuν

n),
u0

n+1 = uν
n +Pv.

This is a time continuous parabolic problem on a coarse spatial mesh.
Lubich and Ostermann prove for the heat equation and finite difference dis-

cretization that red-black Gauss Seidel smoothing is not asgood as for the stationary
problem, but still sufficient to give typical multigrid convergence, and that damped
Jacobi smoothing is as good as for stationary problems. The authors show with nu-
merical experiments that in the multigrid waveform relaxation algorithm one can
use locally adaptive time steps.

4.3 Horton and Vandewalle 1995

Horton and Vandewalle are the first to try to address the problem of time coarsening
in [46]:

“In standard time-stepping techniques multigrid can be used as an iterative solver for the
elliptic equations arising at each discrete time step. By contrast,the method presented in
this paper treats the whole of the space-time problem simultaneously.”

They first show that time coarsening does not lead to multigrid performance, since
the entire space-time problem is very anisotropic because of the time direction. To
address this issue, they explain that one could either use line smoothers, which is
related to the multigrid waveform relaxation algorithm we have seen in Subsection
4.2, or the following two remedies:

1. Adaptive semi-coarsening in space or time depending on the anisotropy,
2. Prolongation operators only forward in time.

For the heat equation with finite difference discretizationand Backward Euler,
BDF2 and Crank-Nicolson, Horton and Vandewalle perform a detailed local Fourier
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mode analysis, and show that good contraction rates can be obtain for space-time
multigrid V-cycles, although not quite mesh independent. F-cycles are needed to
get completely mesh independent convergence rates. These results are illustrated by
numerical experiments for 1d and 2d heat equations.

4.4 Emmett and Minion 2012

There are several steps in the development of the solver PFASST, which stands for
Parallel Full Approximation Scheme in Space-Time. The underlying iteration is a
deferred correction method [61]:

“This paper investigates a variant of the parareal algorithm first outlined by Minion and
Williams in 2008 that utilizesa deferred correction strategy within the parareal itera-
tions.”

We thus have to start by explaining the deferred correction method. Consider the
initial value problem

u′ = f (u), u(0) = u0. (30)

We can rewrite this problem in integral form

u(t) = u(0)+
∫ t

0
f (u(τ))dτ. (31)

Let ũ(t) be an approximation with errore(t) := u(t)− ũ(t). Insertingu(t) = ũ(t)+
e(t) into (31), we get

ũ(t)+e(t) = u(0)+
∫ t

0
f (ũ(τ)+e(τ))dτ. (32)

Defining the functionF(u) := u(0)+
∫ t

0 f (u(τ))dτ −u(t) from the equation (31),
the residualr(t) of the approximate solution ˜u(t) is

r(t) := F(ũ) = ũ(0)+
∫ t

0
f (ũ(τ))dτ − ũ(t), (33)

and thus from (32) the error satisfies the equation

e(t) = u(0)+
∫ t

0
f (ũ(τ)+e(τ))dτ − ũ(t)

= r(t)+
∫ t

0
f (ũ(τ)+e(τ))− f (ũ(τ))dτ,

or written as a differential equation

e′(t) = r ′(t)+ f (ũ(t)+e(t))− f (ũ(t)). (34)
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The idea of integral deferred correction is to choose a numerical method, for ex-
ample Forward Euler, and to get a first approximation of the solution of (30) by
computing

ũm+1 = ũm+∆ t f (ũm), for m= 0,1, . . . ,M−1.

With these values, one then computes the residual defined in (33) at the pointstm,
m= 0,1, . . . ,M using a high order quadrature formula. One then solves the error
equation (34) in differential form again with the same numerical method, here For-
ward Euler,

em+1 = em+ rm+1− rm+∆ t( f (ũm+em)− f (ũm)). (35)

Adding this correction, one obtains a new approximation ˜um+ em, for which one
can show in our example of Forward Euler that the order has increased by one, i.e.
it is now a second order approximation. One can continue thisprocess and increase
the order up to the order of the quadrature used.

This spectral deferred correction iteration can also be considered as an iterative
method to compute the Runge-Kutta method corresponding to the quadrature rule
used to approximate the integral: if we denote byu0 the initial approximation ob-
tained by forward Euler,u0 := (ũ0, ũ1, . . . , ũM)T , each integral deferred correction
corresponds to one step in the non-linear fixed point iteration

uk = F(uk−1,u0), (36)

whereu0 is the initial condition from (30). The classical application of integral de-
ferred correction is to partition the time interval[0,T] into subintervals[Tj−1,Tj ],
j = 1,2, . . . ,J, and then to start on the first subinterval[T0,T1] to compute approx-
imationsuk

1 by performingK steps of (36) before passing to the next time interval
[T1,T2], see also Figure 18 for an example withM = 3. The overall iteration is there-
fore

uK
0,M = u0;

for j = 1 : J
computeu0

j as Euler approximation on[Tj−1,Tj ];
for k= 1 : K

uk
j = F(uk−1

j ,uK
j−1,M);

end;
end;

We see that this is purely sequential, like a time stepping scheme: in each time
subinterval, one first has to finish theK spectral deferred corrections, before one
can pass to the next time subinterval. Minion proposed in [61] not to wait for each
time subinterval to finish, and to replace the inner updatingformula by

uk
j = F(uk−1

j ,uk
j−1,M), (note the lower casek !), (37)

which means that one can now perform the spectral deferred corrections on many
time subintervals[Tj−1,Tj ] in parallel. This is very similar to the iteration of Womble
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we will see in Subsection 5.3. In the approach of Minion, thisis however combined
with a coarse correction from the parareal algorithm, so it is like using a more and
more accurate fine integrator, as the iteration progresses.

The PFASST algorithm proposed in [19] is based on using the parallel deferred
correction iteration above as a smoother in a multigrid fullapproximation scheme
in space-time for non-linear problems:

“The method is iterative with each iteration consisting ofdeferred correction sweeps per-
formed alternately on fine and coarse space-time discretizations. The coarse grid prob-
lems are formulated using a space-time analog of thefull approximation scheme popular
in multigrid methods for nonlinear equations.”

The method has successfully been applied to non-linear problems in [19, 77, 76],
but there is so far no convergence analysis for PFASST.

4.5 Neum̈uller 2014

The new idea in this multigrid variant is to replace the classical point smoothers by
block Jacobi smoothers. Suppose we discretize the heat equation

ut = ∆u+ f

globally in space-time by an implicit method, for example Backward Euler. Then
we obtain a block triangular linear system in space-time of the form















A1

B2 A2

B3 A3
. . .

. . .
Bn An





























u1

u2

u3
...

un















=















f1
f2
f3
...
fn















. (38)

The space-time multigrid method consists now of applying a few damped block
Jacobi smoothing steps, inverting the diagonal blocksAn, before restricting by
standard multigrid restriction operators in space-time toa coarser grid, and recur-
sively continuing. One can show that for the heat equation, we have (see Martin
Neumüller’s PhD thesis [64]):

• The optimal damping parameter for the block Jacobi smootheris ω = 1
2.

• One always obtains good smoothing in time (semi-coarseningis always possi-
ble).

• For ∆ t
∆h2 ≥C, one also obtains good smoothing in space.

• One V-cycle in space suffices to invert the diagonal blocksAn in the Jacobi
smoother.

This multigrid method has excellent scaling properties forthe heat equation, as it
was shown in [64], from which the example in Table 1 is taken. The results are for
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the 3D heat equation, and computed on the Vienna Scientific Cluster VSC-2; see
also [37] and [36].

Weak Scaling Strong Scaling
cores 1

∆T dof iter time 1
∆T dof iter time

1 4 59768 9 6.8 4096 61202432 9 6960.7
2 8 119536 9 8.1 4096 61202432 9 3964.8
4 16 239072 9 9.2 4096 61202432 9 2106.2
8 32 478144 9 9.2 4096 61202432 9 1056.0

16 64 956288 9 9.2 4096 61202432 9 530.4
32 128 1912576 9 9.3 4096 61202432 9 269.5
64 256 3825152 9 9.4 4096 61202432 9 135.2

128 512 7650304 9 9.4 4096 61202432 9 68.2
256 1024 15300608 9 9.4 4096 61202432 9 34.7
512 2048 30601216 9 9.4 4096 61202432 9 17.9

1024 4096 61202432 9 9.4 4096 61202432 9 9.4
2048 8192 122404864 9 9.5 4096 61202432 9 5.4

Table 1 Scaling results for the space-time multigrid method with block Jacobi smoother; all sim-
ulations performed by M. Neumüller

5 Direct Solvers in Space-Time

The time parallel solvers we have seen so far were all iterative. There have been also
attempts to construct direct time parallel solvers. There are both small scale parallel
direct solvers and also large scale parallel direct solvers.

5.1 Miranker and Liniger 1967

The first small scale direct parallel solver was proposed by Miranker and Liniger
[62], who also were very much aware of the naturally sequential nature of evolution
problems:

“It appears at first sight that the sequential nature of the numerical methods do not permit
a parallel computation on all of the processors to be performed. We say thatthe front of
computation is too narrow to take advantage of more than one processor...Let us consider
how we might widen the computation front.”

Fory′ = f (x,y), Miranker and Liniger consider the predictor corrector formulas

yp
n+1 = yc

n+
h
2
( f (yc

n)− f (yc
n−1)), yc

n+1 = yc
n+

h
2
( f (yp

n+1)+ f (yc
n)).
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This process is entirely sequential as they illustrated with a figure, a copy of which is
shown in Figure 16 on the left. They then consider the modifiedpredictor corrector

Fig. 16 Symbolic representation by Miranker and Liniger of an entirely sequential predictor cor-
rector method on the left, and a parallel one on the right

formulas

yp
n+1 = yc

n−1+2h f(yp
n), yc

n = yc
n−1+

h
2
( f (yp

n)+ f (yc
n−1)).

Those two formulas can now be evaluated in parallel by two processors, as illus-
trated in Figure 16 on the right. Miranker and Liniger then show how one can sys-
tematically derive a general class of numerical integration methods which can be
executed on 2s processors in parallel, and present a stability and convergence anal-
ysis for those methods.

Similar parallelism can also be obtained with the block implicit one-step meth-
ods developed by Shampine and Watts in [72]. These methods use different time
stepping formulas to advance several time levels at once. For an early numerical
comparison for parallel block methods and parallel predictor corrector methods, see
Franklin [23]. These methods are ideally suited to be used onthe few cores of a
multicore processor, but they do not have the potential for large scale parallelism.

5.2 Axelson and Verwer 1985

Boundary value methods for initial value problems are a bit strange. A very good
early introduction is the paper by Axelson and Verwer [4]:

“Hereby we concentrate on explaining the fundamentals of the method because for initial
value problems the boundary value method seems to be fairly unknown [...] In the forward-
step approach, the numerical solution is obtained by stepping through the grid [...] In this
paper, we will tackle the numerical solution in a completelydifferent way [...]We will
consider ẏ= f (x,y) as a two point boundary value problem with a given value at the
left endpoint and an implicitly defined value, by the equation ẏ= f (x,y), at the right
endpoint.”
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It is best to understand boundary value methods by looking ata simple example7.
Suppose we discretize ˙y= f (y) with the explicit midpoint rule

yn+1− yn−1−2h f(yn) = 0, y0 = y(0).

Since the explicit midpoint rule is a two step method, we alsoneed an initial approx-
imation fory1. Usually, one definesy1 from y0 using a one step method, for example
here by Backward Euler. In boundary value methods, one leavesy1 as an unknown,
and uses Backward Euler at the endpointyN to close the system, imposing

yN − yN−1−2h f(yN) = 0.

For a linear problem ˙y= ay, the midpoint rule and Backward Euler to definey1

gives the triangular linear system














1−ah
−2ah 1
−1 −2ah 1

...
...

.. .
−1 −2ah 1





























y1

y2

y3
...

yN















=















y0

y0

0
...
0















. (39)

For the boundary value method, leavingy1 free and using Backward Euler on the
right gives the tridiagonal system















−2ah 1
−1 −2ah 1

...
...

.. .
−1 −2ah 1

−1 1−ah





























y1

y2

y3
...

yN















=















y0

0
0
...
0















. (40)

The tridiagonal system can now be solved either directly by factorization, or also by
iteration, thus working on all time levels simultaneously.

It is very important however to realize that boundary value methods are com-
pletely different discretizations from initial value methods. The stability properties
often are the contrary when one transforms an initial value method into a boundary
value method. We show in Figure 17 numerical examples for theinitial value method
(39) and boundary value method (40). We see that for a decaying solution,a < 0,
the initial value method is exhibiting stability problems,while the boundary value
method is perfectly stable (top row of Figure 17). For growing solutions,a > 0 it
is the opposite, the initial value method gives very good approximations, while the
boundary value method needs extremely fine time steps to converge (bottom row
of Figure 17). One can therefore not just transform an initial value method into a
boundary value method in order to obtain a parallel solver, one has to first carefully
study the properties of the new method obtained, see [10, 11]and references therein.

7 This example had already been proposed by Fox in 1954
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Fig. 17 Stability comparison of initial value and boundary value methods

Now if the method has good numerical properties and the resulting system can well
be solved in parallel, boundary value methods can be an attractive way of solving an
evolution problem in parallel, see for example [9], where a Backward Euler method
is proposed to precondition the boundary value method. Thisis still sequential, but
if one only uses subblocks of the Backward Euler method as preconditioner, by
dropping the connection after, say, every 10th time step, a parallel preconditioner
is obtained. Such methods are called nowadays block boundary value methods, see
for example [11]. If one introduces a coarse mesh with a coarse integrator, instead
of the backward Euler preconditioner, and does not use as theunderlying integrator
a boundary value method any more, but just a normal time stepping scheme, the
approach can be related to the parareal algorithm, see for example [3].
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5.3 Womble 1990

The method presented by Womble in [80], see also the earlier work by Saltz and
Naik [69], is not really a direct method, it is using iterations, but not in the same
way of the iterative methods we have seen so far:

“Parabolic and hyperbolic differential equations are often solved numerically by time step-
ping algorithms. These algorithms have been regarded as sequential in time; that is, the
solution on a time level must be known before the computationfor the solution at subse-
quent time levels can start. While this remains true in principle, we demonstrate thatit is
possible for processors to perform useful work on many time levels simultaneously.”

The relaxation idea is similar to the one later used by Minionin [61] as a smoother
in the context of PFASST, see Subsection 4.4, but not for a deferred correction
iteration. In order to explain the method, we discretize theparabolic problem

ut = L u+ f

by an implicit time discretization and obtain at each time step a linear system of the
form

Anun = fn+Bnun−1.

Such systems are often solved by iteration. If we want to use astationary iterative
method, for example Gauss-Seidel, we would partition the matrix An = Ln+Dn+
Un, its lower triangular, diagonal, and upper triangular parts. Then starting with an
initial guessu0

n, one solves fork= 1,2, . . . ,K

(Ln+Dn)u
k
n =−Unuk−1

n + fn+Bnu
K
n−1. (41)

The key idea to break the sequential nature is to modify this iteration slightly so
that it can be performed in parallel over several time steps.It suffices to not wait for
convergence of the previous time level, but to iterate like

(Ln+Dn)u
k
n =−Unuk−1

n + fn+Bnu
k−1
n−1, (42)

which is the same idea also used in (37). Womble obtained quite good results with
this approach, and he was the first person to really demonstrate practical speedup
results with this time parallel method on a 1024-processor machine. Even though it
was later shown that only limited speedups are possible withthis relaxation alone
[16], the work of Womble made people realize that indeed timeparallelization could
become an important direction, and it drew a lot of attentiontoward time-parallel
algorithms.
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5.4 Worley 1991

Worley was already in his PhD thesis in 1988 very interested in theoretical limits on
the best possible sequential and parallel complexity when solving PDEs. While the
ultimate sequential algorithm for such a problem of sizen is O(n) on a sequential
machine, it isO(logn) on a parallel machine. In [81], Worley presented an additional
direct time parallelization method, which when combined with multigrid waveform
relaxation leads to a nearly optimal time-parallel iterative method:

“The waveform relaxation multigrid algorithm is normally implemented in a fashionthat is
still intrinsically sequential in the time direction . But computation in the time direction
only involves solving linear scalar ODEs. If the ODEs are solved using a linear multistep
method with a statically determined time step, then each ODEsolution corresponds to the
solution of a banded lower triangular matrix equation, or, equivalently, a linear recurrence.
Parallelizing linear recurrence equations has been studied extensively. In particular,if a
cyclic reduction approach is used to parallelize the linearrecurrence, then parallelism
is introduced without increasing the order of the serial complexity. “

The approach is based on earlier ideas for the parallel evaluation of recurrence re-
lations [50] and the parallel inversion of triangular matrices [70]. Worley explains
the fundamental idea as follows: suppose we want to solve thebidiagonal matrix
equation









a11

a21 a22

a32 a33

a43 a44

















x1

x2

x3

x4









=









f1
f2
f3
f4









. (43)

Then one step of the cyclic reduction algorithm leads to a newmatrix equation of
half the size,

(

a22

− a43
a33

a32 a44

)(

x2

x4

)

=

(

f2−
a21
a11

f1
f4−

a43
a33

f3

)

, (44)

i.e. we simply computed the Schur complement to eliminate variables with odd in-
dices. For a bigger bidiagonal matrix, this process can be repeated, and we always
obtain a bidiagonal matrix of half the size. Once a two by two system is obtained,
one can solve directly, and then back-substitute the valuesobtained to recover the
values of the eliminated variables. Each step of the cyclic reduction is parallel, since
each combination of two equations is independent of the others. Similarly the back-
substitution process is also parallel. Cyclic reduction istherefore a direct method
to solve a linear forward recurrence in parallel, and the idea can be generalized to
larger bandwidth using block elimination. The serial complexity of simple forward
substitution in the above example is 3n, whereas the cyclic reduction serial com-
plexity is 7n (or 5n if certain quantities are precomputed), and thus the algorithm
is not of interest for sequential computations. But performed in parallel, the com-
plexity of cyclic reduction becomes a logarithm inn, and one can thus obtain the
solution substantially faster in parallel than just by forward substitution. For fur-
ther theoretical considerations and numerical results in combination with multigrid
waveform relaxation, see [47]. A truly optimal time-parallel algorithm, based on a
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preconditioner in a waveform relaxation setting using a fast Fourier transform in
space to decouple the unknowns, and cyclic reduction in timecan be found in [75].

5.5 Sheen, Sloan and Thoḿee 1999

A new way to solve evolution problems with a direct method in parallel was pro-
posed in [73]:

“These problems are completely independent, and can therefore be computed on sep-
arate processors, with no need for shared memory. In contrast, the normal step-by-step
time-marching methods for parabolic problems are not easily parallelizable.”,

see also [15]. The idea is to Laplace transform the problem, and then to solve a
sequence of steady problems at quadrature nodes used for thenumerical evaluation
of the inverse Laplace transform, and goes back to the solution in the frequency
domain of hyperbolic problems, see for example [18]. Suppose we have the initial
value problem

ut +Au= 0, u(0) = u0,

whereA represents a linear operator. Applying a Laplace transformto this prob-
lem in time with complex valued Laplace transform parameters leads to the
parametrized equation

sû+Aû= u0, (45)

and to obtain the solution in the time domain, one has to perform the inverse Laplace
transform

u(t) =
1

2π i

∫

Γ
estû(s)ds, (46)

whereΓ is a suitably chosen contour in the complex plane. If the integral in (46)
is approximated by a quadrature rule with quadrature nodessj , one only needs to
computeu(s) from (45) ats= sj , and these solutions are completely independent
of one another, see the quote above, and can thus be performedin parallel. This
direct time parallel solver is restricted to problems whereLaplace transform can
be applied, i.e. linear problems with constant coefficientsin the time direction, and
one needs a solver that works with complex numbers for (45). It is however a very
successful and efficient time parallel solver when it can be used, see [74, 78, 52, 17].

5.6 Maday and Ronquist 2008

A new idea for a direct time parallel solver by diagonalization was proposed in [57]:

“Pour briser la nature intrinsèquement séquentielle de cette résolution, on utilisel’algorithme
de produit tensoriel rapide.”
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To explain the idea, we discretize the linear evolution problemut = Lu using Back-
ward Euler,













1
∆ t1

−L
− 1

∆ t2
1

∆ t2
−L

. . .
. . .

− 1
∆ tN

1
∆ tN

−L






















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u2
...

uN











=











f1+
1

∆ t1
u0

f2
...
fN











.

Using the Kronecker symbol, this linear system can be written in compact form as

(B⊗ Ix− It ⊗L)u = f, (47)

whereIx is the identity matrix of the size of the spatial unknowns, and It is the
identity matrix of the size of the time direction unknowns, and the time stepping
matrix is

B :=













1
∆ t1

− 1
∆ t2

1
∆ t2
. . .

. . .
− 1

∆ tN
1

∆ tN













.

If B is diagonalizable,B= SDS−1, one can rewrite the system (47) in factored form,
namely

(S⊗ Ix)(diag(D−L))(S−1⊗ Ix)u = f, (48)

and we can hence solve it in 3 steps:

(a) (S⊗ Ix)g = f,
(b) ( 1

∆ tn
−L)wn = gn, 1≤ n≤ N,

(c) (S−1⊗ Ix)u = w.

Note that the expensive step (b) requiring a solve with the system matrixL can now
be done entirely in parallel for all time levelstn. Maday and Ronquist obtain with
this algorithm for the 1d heat equation close to perfect speedup. They recommend
to use a geometric time mesh∆ tk = ρk−1∆ t1, with ρ = 1.2, since “choosingρ much
closer to 1 may lead to instabilities”. This algorithm is notdefined if identical time
steps are used, since it is not possible to diagonalize a Jordan block ! For a precise
truncation error analysis for a geometric time grid, a round-off error analysis due to
the diagonalization, and error estimates based on the trade-off between the two, see
[31].
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5.7 Christlieb, Macdonald and Ong 2010

The integral deferred correction methods we have already seen in Subsection 4.4 in
the context of PFASST can also be used to create naturally small scale parallelism
[14]:

“. . . we discuss a class of defect correction methods which iseasily adapted to createpar-
allel time integrators for multicore architectures.”

As we see in the quote, the goal is small scale parallelism formulticore architec-
tures, as in the early predictor corrector and block methodsfrom Subsection 5.1.
The new idea introduced by Christlieb, Macdonald and Ong is to modify integral
deferred correction so that pipelining becomes possible, which leads to so called
RIDC (Revisionist Integral Deferred Correction) methods.As we have seen already
in Subsection 4.4, the classical integral deferred correction method is working se-
quentially on the time point groupsI0, I1, . . . , IJ−1 we show in Figure 18 taken from
[14], corresponding to the time intervals[T0,T1], [T1,T2], . . . , [TJ−1,TJ] in Subsection
4.4. For each time point groupI j , one has to evaluate in the step (35) of integral

Fig. 18 Classical application of integral deferred correction, picture taken from [14]

deferred correction the quadrature formula for (33) at timet j ,m+1, using quadrature
points at timet j ,0, t j ,1, . . . , t j ,M, 0< m< M, whereM = 3 in the example shown in
Figure 18. Only once all deferred correction steps on the time point groupI j are
finished, one can start with the next time point groupI j+1, the method is like a
sequential time stepping method.

In order to obtain parallelism, the idea is to increase the size of the time point
groupsM to contain more points than the quadrature formula needs. One can then
pipeline the computation, as shown in Figure 19: the number of quadrature points is
still four, butM is much larger, and thus the Euler prediction step and the correction
steps of the integral deferred correction can be executed inparallel, since all the
values represented by the black dots are available simultaneously to compute the
next white ones, after an initial setup of this new ’computation front’.

This leads to small scale parallel high order integrators which work very well on
multicore architectures. When run in parallel, RIDC can give high order accuracy
in a time comparable to the time of the low order integration method used, provided
the startup costs are negligible.
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Fig. 19 RIDC way to compute integral deferred correction type methods in a pipelined way, figure
taken from [14]

5.8 Güttel 2012

A new direct time parallel method based on a completely overlapping decomposi-
tion of the time direction was proposed in [43]:

“We introduce anoverlapping time-domain decomposition methodfor linear initial-
value problems which gives rise to an efficient solution method for parallel computers
without resorting to the frequency domain. This parallel method exploits the fact thatho-
mogeneous initial-value problems can be integrated much faster than inhomogeneous
problemsby using an efficient Arnoldi approximation for the matrix exponential function.”

This method, called ParaExp [27], is only defined for linear problems, and espe-
cially suited for the parallel time integration of hyperbolic problems, where most
large scale time parallel methods have severe difficulties (for a Krylov subspace
remedy, see [22, 38, 67], but reorthogonalization costs might be high). ParaExp
works very well also on diffusive problems [27], as we will also illustrate with a
numerical experiment. To explain the method, we consider the linear system of evo-
lution equations

u′(t) = Au(t)+g(t), t ∈ [0,T], u(0) = u0.

The ParaExp algorithm is based on a completely overlapping decomposition, as
shown in Figure 20: the time interval[0,T] is decomposed into subintervals[0,T4 :=
T], [T1,T4], [T2,T4], and[T3,T4]. ParaExp is a direct solver, consisting of two steps:
first one solves on the initial parts of the overlapping decomposition,[0,T1], [T1,T2],
[T2,T3], and[T3,T4] the non-overlapping inhomogeneous problems (shown in solid
red in Figure 20)

v′j(t) = Av j(t)+g(t), v j(Tj−1) = 0, t ∈ [Tj−1,Tj ],

and then one solves the overlapping homogeneous problems (shown in dashed blue
in Figure 20)

w′
j(t) = Aw j(t), w j(Tj−1) = v j−1(Tj−1), t ∈ [Tj−1,T]
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Fig. 20 Overlapping decomposition and solution strategy of ParaExp

By linearity, the solution is then simply obtained by summation,

u(t) = vk(t)+
k

∑
j=1

w j(t) with k such that t ∈ [Tk−1,Tk].

Like in many time parallel methods, this seems to be absurd, since the overlapping
propagation of the linear homogeneous problems is redundant, and the blue dashed
solution needs to be integrated over the entire time interval [0,T]! The reason why
substantial parallel speedup is possible in ParaExp is thatnear-optimal approxi-
mations of the matrix exponential are known, and so the homogeneous problems
in dashed blue become very cheap. Two approaches work very well: projection
based methods, where one approximatesan(t) ≈ exp(tA)v from a Krylov space
built with S := (I −A/σ)−1A, andexpansion based methods, which approximate
exp(tA)v ≈ ∑n−1

j=0 β j(t)p j(A)v, wherep j are polynomials or rational functions. For
more details, see [27].

We show in Table 2 the performance of the ParaExp algorithm applied to the

serial parallel effi-
α2 f τ0 error max(τ1) max(τ2) error ciency
0.1 1 2.54e−01 3.64e−04 4.04e−02 1.48e−02 2.64e−04 58 %
0.1 5 1.20e+001.31e−04 1.99e−01 1.39e−02 1.47e−04 71 %
0.1 25 6.03e+004.70e−05 9.83e−01 1.38e−02 7.61e−05 76 %
1 1 7.30e−01 1.56e−04 1.19e−01 2.70e−02 1.02e−04 63 %
1 5 1.21e+004.09e−04 1.97e−01 2.70e−02 3.33e−04 68 %
1 25 6.08e+001.76e−04 9.85e−01 2.68e−02 1.15e−04 75 %
10 1 2.34e+006.12e−05 3.75e−01 6.31e−02 2.57e−05 67 %
10 5 2.31e+004.27e−04 3.73e−01 6.29e−02 2.40e−04 66 %
10 25 6.09e+004.98e−04 9.82e−01 6.22e−02 3.01e−04 73 %

Table 2 Performance of ParaExp on a Wave Equation

wave equation from [27],

∂ttu(t,x) = α2∂xxu(t,x)+hat(x)sin(2π f t), x, t ∈ (0,1),

u(t,0) = u(t,1) = u(0,x) = u′(0,x) = 0,
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where hat(x) is a hat function centered in the spatial domain. The problem is
discretized with a second order centered finite difference scheme in space using
∆x = 1

101, and RK45 is used in time with∆ t0 = min{5 ·10−4/α,1.5 ·10−3/ f} for
the inhomogeneous solid red problems. The homogeneous dashed blue problems
were solved using a Chebyshev exponential integrator, and 8processors were used
in this set of experiments. We see that the parallel efficiency of ParaExp is excel-
lent for this hyperbolic problem, and it would be difficult for other time parallel
algorithms to achieve this.

ParaExp also works extremely well for parabolic problems. For the heat equation

∂tu(t,x) = α∂xxu(t,x)+hat(x)sin(2π f t), x, t ∈ (0,1),

u(t,0) = u(t,1) = 0, u(0,x) = 4x(1− x),

we show numerical results from [27] in Table 3. The heat equation was discretized

serial parallel effi-
α f τ0 error max(τ1) max(τ2) error ciency

0.01 1 4.97e−02 3.01e−04 1.58e−02 9.30e−03 2.17e−04 50 %
0.01 10 2.43e−01 4.14e−04 7.27e−02 9.28e−03 1.94e−04 74 %
0.01 100 2.43e+001.73e−04 7.19e−01 9.26e−03 5.68e−05 83 %
0.1 1 4.85e−01 2.24e−05 1.45e−01 9.31e−03 5.34e−06 79 %
0.1 10 4.86e−01 1.03e−04 1.45e−01 9.32e−03 9.68e−05 79 %
0.1 100 2.42e+001.29e−04 7.21e−01 9.24e−03 7.66e−05 83 %
1 1 4.86e+007.65e−08 1.45e+009.34e−03 1.78e−08 83 %
1 10 4.85e+008.15e−06 1.45e+009.33e−03 5.40e−07 83 %
1 100 4.85e+003.26e−05 1.44e+009.34e−03 2.02e−05 84 %

Table 3 Performance of ParaExp on the heat equation

using centered finite differences in space with∆x= 1
101, and again an RK45 method

in time was used with∆ t0 = min{5 ·10−4/α,1.5 ·10−3/ f} for the inhomogeneous
problems, the homogeneous ones being solved also with a Chebyshev exponential
integrator. For the heat equation, 4 processors were used. We see that again excellent
parallel efficiency is obtained with the ParaExp algorithm.For more information and
numerical results, see [27].

6 Conclusions

The efforts to integrate evolution problems in parallel span now five decades. We
have seen that historically methods have grown into four different classes of time
parallel methods:shooting type methodsstarting with Nievergelt,domain decom-
position and waveform relaxation methodsstarting with Lelarasmee, Ruehli and
Sangiovanni-Vincentelli,space-time multigrid methodsstarting with Hackbusch,
anddirect time parallel solversstarting with Miranker and Liniger. An important
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area which was not addressed in this review is a systematic comparison of the per-
formance of these methods, and a demonstration that these algorithms are really
faster than classical algorithms in a given parallel computational environment. Such
a result on a 512 processor machine was shown for the space-time multigrid wave-
form relaxation algorithm in [79], compared to space parallel multigrid waveform
relaxation and standard time stepping, see also [47] for results on an even larger ma-
chine, and [5]. A very recent comparison can be found in the short note [21], where
the authors show that above a certain number of processors time-parallel algorithms
indeed outperform classical ones. Time parallel methods are currently a very ac-
tive field of research, and many new developments extending the latest directions
we have seen, like Parareal, Schwarz-, Dirichlet-Neumann and Neumann-Neumann
waveform relaxation, PFASST and full space-time multigrid, and RIDC and Para-
Exp, are to be expected over the coming years. These will helpleverage the power
of new multicore and very large scale parallel computers in the near future.

Acknowledgement:The author is very thankful for the comments of Stefan Van-
dewalle, which greatly improved this manuscript and also made the content more
complete.
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