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50 Years of Time Parallel Time Integration

Martin J. Gander

Abstract Time parallel time integration methods have received rexkinterest
over the last decade because of the advent of massivelygda@nputers, which
is mainly due to the clock speed limit reached on today’s @seors. When solving
time dependent partial differential equations, the tintection is usually not used
for parallelization. But when parallelization in spaceusates, the time direction
offers itself as a further direction for parallelizatiorh&'time direction is however
special, and for evolution problems there is a causalityqgipie: the solution later
in time is affected (it is even determined) by the solutioriieain time, but not the
other way round. Algorithms trying to use the time directionparallelization must
therefore be special, and take this very different propefrtize time dimension into
account.

We show in this chapter how time domain decomposition metheete invented,
and give an overview of the existing techniques. Time pakalethods can be clas-
sified into four different groups: methods basedwmultiple shootingmethods based
ondomain decomposition and waveform relaxatispace-time multigridnethods
anddirect time parallel methodd/Ve show for each of these techniques the main
inventions over time by choosing specific publications axlaning the core ideas
of the authors. This chapter is for people who want to quigéin an overview of
the exciting and rapidly developing area of research of fia&llel methods.

Martin J. Gander
Section of Mathematics, University of Geneva, Rue du Li@#k CP 64, 1211 Geneva 4, Switzer-
land, e-mail: martin.gander@unige.ch
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1 Introduction
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It has been precisely 50 years ago that the first visionariribomion to time parallel
time integration methods was made by Nievergelt [65]. WeashoFigure 1 an
overview of the many important contributions over the Iy fiears to this field of
research. The methods with iterative character are shoviheoleft, and the direct
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Fig. 1 An overview over important contributions to time parallettimods

time parallel solvers on the right, and large scale paraikethods are more toward
the center of the figure, whereas small scale parallel msthedful for multicore
architectures are more towards the left and right bordetiseoplot.

We also identified the four main classes of space-time grakthods in Figure
1 using color:

1.
2.

methods based anultiple shootingare shown in magenta,

methods based atomain decomposition and waveform relaxatéwa shown in
red,

3. methods based anultigrid are shown in blue,

. anddirect time parallel methodare shown in black.
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There have also been already overview papers, shown in gréégure 1, namely
the paper by Gear [41], and the book by Burrage [12].

The development of time parallel time integration methogians now half a
century, and various methods have been invented and regtemer this period.
We give a detailed account of the major contributions by gméag seminal papers
and explaining the methods invented by their authors.

2 Shooting Type Time Parallel Methods

Time parallel methods based on shooting solve evolutiohlpros in parallel using
a decomposition of the space-time domain in time, as shov#igiare 2. An itera-

-
Q4
Q3
Q;
Q
0 X

Fig. 2 Decomposition of the space-time domain in time for multgheoting type methods

tion is then defined, or some other procedure, which only ssksgions in the time
subdomains, to obtain an approximate solution over theestitne interval0, T).

2.1 Nievergelt 1964

Nievergelt was the first to consider a pure time decompasitio the parallel so-
lution of evolution problems [65]. He stated precisely fifigars ago at the time of
writing of this chapter, how important parallel computingsito become in the near
future:

“For the last 20 years, one has tried to speed up numericgbatation mainly by providing
ever faster computer§oday, as it appears that one is getting closer to the maximal
speed of electronic componenfeemphasis is put on allowing operations to be performed
in parallel. In the near future, much of numerical analysil have to be recast in a more
'parallel’ form.”

As we now know, the maximal speed of electronic componenssomdy reached 40
years later, see Figure 3.
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Fig. 3 Maximal speed of electronic components reached 40 yeansthé prediction of Nievergelt
(taken from a talk of Bennie Mols at the VINT symposium 12208.3)

Nievergelt presents a method for parallelizing the nuna¢iitegration of an or-
dinary differential equation, a process which “by all startimethods, is entirely se-
rial”. We consider in Nievergelt's notation the ordinaryfdiential equation (ODE)

y =f(xy), Y@ =yo, 1)

and we want to approximate its solution on the intefagb|. Such an approximation
can be obtained using any numerical method for integratiDg€) so-called time
stepping methods, but the process is then entirely se@leNievergelt proposes
instead to partition the intervéd, b] into subintervalsg =a<x; <... <xy=b, as
shown in his original drawing in Figure 4, and then introduttee following direct
time parallel solver:

Y. J:/

M, . y"-""N-l L
, Y: Yoz le:ﬂ

Y;z]: yZl ﬁ

YN-11 P~

XN-1 b=xy

Fig. 4 Firstidea by Nievergelt to obtain a parallel algorithm foe integration of a first order ODE
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1. Compute a rough predictigfl of the solutiony(x;) at each interface (see Figure
4), for example with one step of a numerical method with siepld = (b—
a)/N.

2. For a certain numbaev; of starting pointsy; 1,...,Yiwm atx; in the neighborhood
of the approximate solutioyfJ (see Figure 4), compute accurate (we assume here
for simplicity exact) trajectorieg; ;(x) in parallel on the corresponding interval
[%i,Xi+1], and alsoyo 1(X) on the first intervalxo, x1] starting atyo.

3. SetY; :=Yp1(X1) and compute sequentially for eaick 1,...,N — 1 the interpo-
lated approximation by

e finding the intervalj such that; € [y j, Vi j+1],
e determiningp such thatt; = pyi j + (1— p)yi j11, i.e.p= ;(':'7)'4':1
e setting the nextinterpolated value@ts toYi 1 := pyi j(Xi+1) + (1— P)Yi j+1(Xit1)-

For linear ODEs, this procedure does actually produce timegasult as the evalu-
ation of the accurate trajectory on the grid, ¥e=y(x) in our case of exact local
solves, there is no interpolation error, and it would in fauffice to have only two
trajectoriesM; = 2 in each subinterval, since one can also extrapolate.

In the non-linear case, there is an additional error dueteypolation, and Niev-
ergelt defines a class of ODESs for which this error remainguodntrol if one uses
Backward Euler for the initial guess with a coarse dte@and also Backward Euler
for the accurate solver with a much finer stepand he addresses the question on
how to choosé/; and the location of the starting poiry in the neighborhood. He
then concludes by saying

“The integration methods introduced in this paper are todganded as tentative examples

of a much wider class of numerical procedures in which peliath is introduced at the

expense of redundancy of computation. As such, their miggitsot so much in their use-
fulness as numerical algorithms as in their potential atopypes of better methods based
on the same principle. It is believed that more general aquored versions of these meth-
ods will be of great importance when computers capable afigi®y many computations
in parallel become available.”

What a visionary statement again! The method proposed fificieat compared to
any standard serial integration method, but when many geace are available, one
can compute the solution faster than with just one proce$sis is the typical sit-
uation for time parallel time integration methods: the gealot necessarily perfect
scalability or efficiency, it is to obtain the solution fastean sequentially.

The method of Nievergelt is in fact a direct method, and wé sge more such
methods in Section 5, but it is the natural precursor of thiéhods based on multiple
shooting we will see in this section.

2.2 Bellen and Zennaro 1989

The first to pick up the idea of Nievergelt again and to formd&velop an iterative
method to connect trajectories were Bellen and Zennarq]in [6
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“In addition to the two types of parallelism mentioned ahowe wish to isolate a third
which is analogous to what Gear has more recently calledlglisen across the timeHere
itis more appropriately called parallelism across thesstepfact, the algorithm we propose
is a realization of this kind of parallelism. Without dissug it in detail here, we want to
point out thathe idea is indeed that of multiple shootingand parallelism is introduced at
the cost of redundancy of computation.”

Bellen and Zennaro define their method directly at the disdevel, for a recur-
rence relation of the form

Yn+1 = Fnr1(Yn), Yo known. 2

This process looks entirely sequential, one needs to kpaw order to be able to
computeyy1. Defining the vector of unknowng:= (yo,y1,---,¥n,...) however,
the recurrence relation (2) can be written simultaneousir anany levels in the
fixed point form

where@(y) = (Yo,F1(Yo),F2(y1),---,Fa(Yn-1),-..). Bellen and Zennaro propose to
apply a variant of Newton’s method called Steffensen’s meétto solve the fixed
point equation (3). Like when applying Newton’s method amdgifying, as we
will see in detail in the next subsection, this leads to aratten of the form

Y = o(y¥) + Ap(y*) (y Tt —yb), (4)

whereA @ is an approximation to the differentiBkp, and they choose as initial guess
y9 = yo. Steffensen’s method for a nonlinear scalar equation ofive f (x) = 0 is

X1 = Xe— (%) f (%)
g0x) = f(x+ ff(>(<))(; — f(x)

)

and one can see how the functigix) becomes a better and better approximation of
the derivativef’(x) asf(x) goes to zero. As Newton’s method, Steffensen’s method
converges quadratically once one is close to the solution.

Bellen and Zennaro show several results about Steffenseetisod (4) applied
to the fixed point problem (3):

1. They observe that each iteration gives one more exacevadu after one itera-
tion, the exact valug} =y, is obtained, and after two iterations, the exact value
y5 =y, is obtained, and so on. Hence convergence of the method iargead
if the vectoryX is of finite length.

2. They prove that convergence is locally quadratic, asld$im general for Stef-
fensen’s method applied to non-linear problems.

3. The corrections at each step of the algorithm can be cardputparallel.

4. They also present numerically estimated speedups o848¢5 problem with
400 steps.
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In contrast to the ad hoc interpolation approach of Nievgrtiee method of Bellen
and Zennaro is a systematic parallel iterative method tees@currence relations.

2.3 Chartier and Philippe 1993

Chartier and Philippe return in [13] to the formalizationBéllen and Zennarg
which was given at the discrete level, and formulate theialiel integration method
at the continuous level for evolution problems:

“Parallel algorithms for solving initial value problemsrfdifferential equationdiave re-
ceived only marginal attention in the literature compared o the enormous work de-
voted to parallel algorithms for linear algebra. It is indeed generally admitted that the
integration of a system of ordinary differential equatiama step-by-step process is inher-
ently sequential.”

The underlying idea is to apply a shooting method, which wagrally developed
for boundary value problems, see [48] and references thet@ian initial value
problem, see also [49]. For a boundary value problem of tha fo

U =f(u), u0=a ul) =h, (5)

a shooting method also considers the same differentialteqydut as an initial
value problem,
W=f(u), uO0=a Uu0=s (6)

and one then tries to determine the so-called shooting peeas) the 'angle of
the cannon to shoot with’, such that the solution passesigirthe poinu(1) = b,
which explains the name of the method. To determine the sipparametes,
one needs to solve in general a non-linear equation, whigheiferably done by
Newton’s method, see for example [48].

If the original problem is however already an initial valueiplem,

u=f(u), u0=u’, xel0,1], 7

then there is in no target to hit at the other end, so at firsitsigeems shooting is
not possible. To introduce targets, one uses the ideauttiple shootingone splits
the time interval into subintervals, for example thrie3], [1, 2], [3,1], and then
solves on each subinterval the underlying initial valueopem

Up = f(uo), up = f(u), U, = f(up),
Uo(0) = Up, ui(3) = Uy, up(3) = Uy,

together with the matching conditions

14n diesem Artikel studieren wir verschiedene VersionareeiKlasse paralleler Algorithmen, die
urspringlich von A. Bellen und M. Zennaro fir Differengggichungen konzipiert und von ihnen
'across the steps’ Methode genannt worden ist.”
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1 2
Uo = UO, Ul = UO(g,Uo), U2 = ul(ﬁ,Ul).
Since the shooting parametésg, n = 0,1,2 are not known (except fady = u°),
this leads to a system of non-linear equations one has te,solv

Ug— uo
F(U):= | Ui—u(3.Uo) | =0, U= (Uop,Up,Uz)".
Uz —uy(5,U1)

If we apply Newton’s method to this system, like in the claabshooting method,
to determine the shooting parameters, we obtaik fer0,1,2, ... the iteration

Uk+l Uk 1 ! Uk —ul

G| _ [ % — 9t (1 yk 1 RS
Ui ) Tk T, N
u;" U; _T[Lji(%aujl_() 1 Uz —ui(5,U5)

Multiplying through by the Jacobian matrix, we find the reemce relation

U(l)(+1 UO,
k J
U™t = uo(3,U8) + S52(3, U (US T = Ug),
J
U§+1 - ul(%vujl_() + T&(%aujl.()(ui@rl - U:II.()

In the general case with shooting intervals, solving the multiple shooting equa-
tions using Newton’s method gives thus a recurrence relaticghe form

Uk+1 _ UO
%1 _ (8)
UKD = Un(tay2,U%) + 8 (th: 1, U (UKL —UK), n=0,1,2,...N,

and we recognize the form (4) of the method by Bellen and Zenr@hartier and
Philippe prove that (8) converges locally quadraticallyey then however already
indicate that the method is not necessarily effective oregdmproblems, and re-
strict their analysis to dissipative right hand sides, fdiiak they prove a global
convergence result. Finally, also discrete versions oatgerithm are considered.

2.4 Saha, Stadel and Tremaine 1996

Saha, Stadel and Tremaine cite the work of Bellen and Zer6aend Nievergelt
[65] as sources of inspiration, but mention already thetimiaof their algorithm to
waveform relaxation [53] in their paper on the integratidrihe solar system over
very long time [68]:

“We describe how long-term solar system orbit integrationld be implemented on a par-
allel computer. The interesting feature of our algorithrthisteach processor is assigned
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not to a planet or a pair of planets but to a time-interval. Thus, the 1st week, 2nd week,

., 1000th week of an orbit are computed concurrently. Toblpm of matching the input
to the (n+ 1)-st processor with the output of theth processor can be solved efficiently
by an iterative procedure. Our work is related to the scedallaveform relaxation meth-
ods..".

Consider the system of ordinary differential equations

y=f(y), Y(0)=yo,

or equivalently the integral formulation

o>+/o't f(y(s))ds

Approximating the integral by a quadrature formula, forraxde the midpoint rule,
we obtain for each timg, for y(tn) the approximation

1
Yn—YO+hz f QYmH‘H/m))a n:].,...,N. (9)

Collecting the approximationg, in a vectory := (Yo,Y1,...,Yn), the relation (9)
can again be written simultaneously over many steps as agiiedequation of the
form

y="F(y), (10)

which can be solved by an iterative process. Note that thdratizre formula (9)
can also be written by reusing the sums already computedletresieps,

Yn=Yn— 1+hf( (yn+yn 1), n=1...N, (11)

so the important step here is not the use of the quadraturaifar The interesting
step comes from the application of Saha, Stadel and Tremaémeely a Hamilto-
nian problem with a small perturbation:

p:_aqHa q:‘?pHa H(paqvt):Ho(p)+ng(p7q7t)

Denoting byy := (p,q), and f(y) := (—Hq(y),Hp(y)), Saha, Stadel and Tremaine
derive Newton’s method for the associated fixed point prok(l€0), as Chartier and
Philippe derived (8). Rewriting (8) in their notation gives

9Yn

gy, (e Y (Y1 =Y, (12)

Yol = Valtnes Yo) +
where the superscrigtdenotes the solution of the perturbed Hamiltonian system.
The key new idea of Saha, Stadel and Tremaine is to proposgpoxamation

of the derivative by a cheap difference for the unperturbachitonian problem,
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Y = VA (e 1, V) + Y3t 1. YD) — YA (tns 1, YY), (13)

They argue that with the approximation for the Jacobian us€d3), each itera-
tion now improves the error by a facter instead of quadratic convergence for the
Newton method (12), one obtains linear convergence.

They show numerical results for our solar system: using-HBrKepler’s law,
which leads to a cheap integrable system, and bt the planetary perturbations,
they obtain the results shown in Figure 5. They also canefudrify the possi-

_I TTTTIT T rrrror T IIIIHII T |'|_IHIII T T ¥|Il—
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l]\lllll . Il‘ _I_lkllll[ 1 KIIIHII Lol

1000 10* 10° 10°

Time in yr

Fig. 5 Maximum error in mean anomaly versus timeh = 73i2 days, compared to results from
the literature, from [68]

ble speedup with this algorithm for planetary simulationsrdong time. Figure
6 shows the iterations needed to converge to a relative effim— 15 in the plane-
tary orbits.

2.5 Lions, Maday and Turinici 2001

Lions, Maday and Turinici invented the parareal algorittmaishort note [55], al-
most independently of earlier work; they only cite the pdpe€Chartier and Philippe
[13]:

“On propose dans cette Note un schéma permettant de prdfitee architecture par-
allele pour la discrétisation en temps d’'une équaticgvalution aux dérivées partielles.
Cette méthode, basée sur un schéma d’Eotembine des esolutions grossires et des
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Fig. 6 Top linear scaling, and bottom logarithmic scaling of thenber of iterations to reach a
relative error of £— 15 as a function of the number of processors (time interedsjl

résolutions fines et inépendantes en temps en s'inspirant de ce qui est classique en
espace. La paral€lisation qui en résulte se fait dans la direction temporelle ce qui est
en revanche non classiqueElle a pour principale motivation les problemes en ten@es, r
d’ou la terminologie proposée dpdraréel.”

Lions, Maday and Turinici explain their algorithms on theple scalar model
problent
y=-ay, on[0,T], y(0)=yo. (14)

The solution is first approximated using Backward Euler antttme gridT,, with
coarse time stedT,

Y, -Yi+aATYL, =0, Y&=vyo (15)

The approximate solution valu¥s are then used to compute on each time interval
[Tn, Tni1] exactly and in parallel the solution of

=—ays, Ya(Tn) =Ys- (16)
One then performs fdt= 1,2, ... the correction iteration

1. Compute the jumpSs :=yK | (Ta) —
2. Propagate the jumps, | — 5k+aAT HH_Sﬁ 5 =0.

2 “Pour commencer, on expose l'idee sur I'exemple simple”
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3. SetyX™l:=yk | (Ty)+ 0K and solve in parallel

Yﬁrl = _ay(n+17 on [TannJrl]a yEJrl(Tn) = YrI‘(Jrl'

The authors prove the following error estimate for this aitipon 3

Proposition 1 (Lions, Maday and Turinici 2001).The parareal scheme is of order
k, i.e. there existsics.t.

Yo —y(Ta)[+ max |yK(t) —y(t)| < AT,

te[TnaTn+l]

This result implies that with each iteration of the pararggbrithm, one obtains
a numerical time stepping scheme which has a truncatiom #rad is one order
higher than before. So for a fixed iteration numbgone can obtain high order
time integration methods that are naturally parallel. Th#éhars then note that the
same proposition also holds for Forward Euler. In both @iszation schemes how-
ever, the stability of the higher order methods obtaineti Wit parareal correction
scheme degrades with iterations, as shown in Figure 7 ta&enthe original publi-

cation [55]. The authors finally show two numerical examptee for a heat equa-

Euler implicite

ordre 1 implicite =
ordre 2 implicite « -
ordre 3 implicite -

Euler explicite e
ordre 1 explicite ===== :
ordre 2 explicite «=«
", ordre 4 implicite = ordre 3 explicite e
+  ordre 5 implicite - : : ordre 4 explicite ==
* drdre 10 implicite ===== : : [ ordre 5 explicite =+=
} Grdre 16 implicite eee eee [ deet0-eenlioi
# grdre 20 implicite ===« -+

ordre 20 explicite v+

0o 10 0 80 40 05 1 15 2 25

Fig. 7 Stability of the parareal algorithm as function of the item, on the left for Backward
Euler, and on the right for Forward Euler

tion where they obtain a simulated speedup of a factor 8 withfrocessors, and
one for a semi-linear advection diffusion problem, wher@aaant of the algorithm
is proposed by linearization about the previous iteratesesthe parareal algorithm
was only defined for linear problems. Here, the speedup oédas 18.
Let us write the parareal algorithm now in modern notatidgrealy for the non-
linear problem
u = f(u), u(ty) = up. a7

The algorithm is defined using two propagation operators:

1. G(to,t1,u1) is a rough approximation ta(t,) with initial conditionu(t;) = us,
2. F(tz,t1,u1) is @ more accurate approximation of the solutigty) with initial
conditionu(t;) = uj.

3 “C'est alors un exercice que de montrer la:”
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Starting with a coarse approximatioly at the time pointso, ts,to, . . ., tn, for exam-
ple obtained usin@, the parareal algorithm performs foe= 0,1, ... the correction
iteration

Uri](ij:} = F (tn+17tna Ur|‘|() + G(tn+1atn7 Ur|‘|(+l) - G(tn+17tn7 Url]() (18)
Theorem 1 (Parareal is a Multiple Shooting Method [40]).The parareal algo-
rithm is a multiple shooting method

au
Urﬁ% = Un(tns12,Uf) + a—U:(thrlaUrh()(Uer —-Uf, (19)

where the Jacobian has been approximated in (18) by a diféeren a coarse grid.

We thus have a very similar algorithm as the one proposed by, Sstadel and
Tremaine [68], the only difference being that the Jacobreximation does not
come from a simpler model, but from a coarser discretization

We now present a very general convergence result for thegar@gorithm ap-
plied to the non-linear initial value problem (17), whichntains accurate estimates
of the constants involved:

Theorem 2 (Convergence of Parareal [28])Let F(tn,1,tn,UX) denote the exact
solution att; and G(tn+1,tn,Ur‘,<) be a one step method with local truncation error
bounded by @ATP+L, If

|Gt +AT,t,x) — G(t+AT,t,y)| < (14+CAT)|x—Y]|,

then the following error estimate holds for (18):

max u(ty) — 0¥ < SAT ™ L ATIN T KN ) max Ju(ts) — US| (20)
1<n<N (tn nt= k! ( 2 JL!( D02 (tn "
(C1T)* )T (ke 1)aT) A7 pk 0
< 2 P —Uy.
<€ AT max lu(tn) — Uy (21)

The proof uses generating functions and is just over a pagg kee [28]. One
can clearly see the precise convergence mechanisms of theeghalgorithm in
this result: looking in (20) on the right, the product termirgially growing, for
k=1,2,3 we get the productd — 1, (N—1)(N—2), (N—1)(N—-2)(N—3) and
so on, but as soon &s= N the product contains the factor zero, and the method has
converged. This is the property already pointed out by Bedled Zennaro in [6].
Next looking in (21), we see that the method’s order increaseach iteratiok by

p, the order of the coarse propagator, as already shown by aday and Turinici
in their proposition for the Euler method. We have howevso @ precise estimate
of the constant in front in (21), and this constant contréedter than linear, since it
is an algebraic power @; T divided byk! (the exponential term is not growing as
the iterationk progresses). This division Wy is the typical convergence behavior
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found in waveform relaxation algorithms, which we will seemore detail in the
next section.

3 Domain Decomposition Methods irSpace-Time

Time parallel methods based on domain decomposition seblet®on problems in
quite a different way in parallel from multiple shooting bdsmethods. The decom-
position of the space-time domain for such methods is showFigure 8. Again

9 Q; Q3 Qq Qs

0 X

Fig. 8 Decomposition of the space-time domain for domain decoitipngime parallel methods

an iteration is then used, which computes only solutionshenldcal space-time
subdomaing?;. Since these solutions are obtained over the entire seectithe

window [0, T] before accurate interface values are available from thghheiring

subdomains over the entire time window, these methods acetimhe parallel in
this sense, and they are known under the name waveform tiglaxa

3.1 Picard and Lindedbf 1893/1894

The roots of waveform relaxation type methods lie in thetexise proofs of solu-
tions for ordinary differential equations of Picard [66]dahindelof [54]. Like the
alternating Schwarz method invented by Schwarz to proveédifiehlet principle
[71] and hence existence of solutions of Laplace’s equatioigeneral domains,
Picard invented his method of successive approximatiopsdee the existence of
solutions of the specific class of ordinary differential atijons:

“Les méthodes d’approximation dont nous faisons usage te@oriquement susceptibles
de s’appliquer a toute équatiomais elles ne deviennent vraiment iréressantespour
I'etude des propriétés des fonctions définies par d¢gméons differentielles qus I'on ne
reste pas dans les@néralités et si I'on envisage certaines classesduations”

Picard thus considers ordinary differential equationsefform
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V(t) = f(v(t)), tel0,T], (22)

with given initial conditionv(0). In order to analyze if a solution of such a non-linear
problem exists, he proposed the nowadays called Picaatidar

VI(t) :v(0)+'/(;t fV(1)dr, n=12..., (23)

whereV?(t) is some initial guess. This transforms the problem of sgtie ordi-
nary differential equation (22) into a sequence of problesing only quadrature,
which is much easier to handle. Picard proved convergentgsiteration in [66],
which was sufficient to answer the existence question. Ithirdeldf a year later
who gave the following convergence rate estimate in [54]:

Theorem 3 (Superlinear Convergence)On bounded time intervalsa [0, T], the
iterates (23) satisfy the superlinear error bound

cmn
n!

IV=Vw < [V =V7o, (24)

where C is the Lipschitz constant of the nonlinear right haia f.

We see in the convergence estimate (24) the same term appéeathe parareal
convergence estimate (21). This term is typical for the eogence of waveform
relaxation methods we will see next, and thus the commentabhSStadel and
Tremaine in the quote at the beginning of Subsection 2.4sifigd.

3.2 Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982

The Picard iteration was not very successful as an iteratigéhod for concrete
computation$ but in the circuit community, an interesting variant waseleped

based on a decomposition of the circuit by Lelarasmee, Raell Sangiovanni-
Vincentelli [53]:

“The Waveform Relaxation (WR) method is an iterative metiimdanalyzing nonlinear
dynamical systems in the time domain. The method, at eacatiida, decomposes the
system into several dynamical subsystems, each of which isayzed for the entire
given time interval.”

The motivation for this method was really the extremely dagriowth of integrated
circuits, which made it difficult to simulate a new generatiof circuits on the
present generation computerselarasmee, Ruehli and Sangiovanni-Vincentelli ex-
plain the waveform relaxation algorithm on the concretengxa of a MOS ring

4 “Actually this method of continuing the computation is highnefficient and is not recom-
mended”, see [60]

5 “The spectacular growth in the scale of integrated circhéig designed in the VLSI era has
generated the need for new methods of circuit simulatiotari@ard” circuit simulators, such as
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oscillator shown in Figure 9. The reason why this circuitssitbating can be seen

+5 +5 +5
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=

I
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Fig. 9 Historical example of the MOS ring oscillator, for which tvaveform relaxation algorithm
was derived

as follows: suppose the voltage at nodesquals 5 volts. Then this voltage is con-
nected to the gate of the transistor to the right, which vhills open, and hence
the voltage at node, will be pulled down to ground, i.e. 0 volts. This is however
connected to the gate of the next transistor to the right ofvhich will thus close,
andvs will be pulled up to 5 volts. These five volts will now feedbacokthe gate
of the transistor to the left of;, which will thus open, and thug,, which was by
assumption at 5 volts, will be pulled down to ground at 0 yatsd we see how the
oscillation happens.

Using the laws of Ohm and Kirchhoff, the equations for suchreud can be
written in form of a system of ordinary differential equats

V(t) =f(v(t)), O0<t<T,

wherev = (v1,V2,Vv3), andg is the initial state of the circuit.

If the circuit is extremely large, so that it does not fit anyremon one single
computer, the waveform relaxation algorithm is based oridba of decomposing
the circuit into subcircuits, as shown in Figure 10. The i@ cut the wires with
which the subcircuits are connected, and then to assumthtratare small voltage
sources on the wires that were cut, which feed in the voltagewas calculated at
the previous iteration. This leads to the iterative method

Vk+l _ fl(vk+l \/157\/k)7

owk“ — (v VL V). (25)
Gyt = fa(VK, Vs, V5.

SPICE and ASTAP, simply take too much CPU time and too muctageto analyze a VLSI
circuit”, see [53]
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Fig. 10 Decomposition of the MOS ring oscillator circuit for the vedwrm relaxation algorithm

1

1

Since in the circuit simulation community signals alongesirare called 'wave-
forms’, this gave the algorithm the nariaveform Relaxatiarwe see in (25) that
on the right all neighboring waveforms have been relaxetiégprevious iteration,
which results in a Jacobi type relaxation known in numetinakr algebra, which is
entirely parallel. Naturally one could also use a Gaussi&éype relaxation which
would then be sequential.
We show in Figure 11 a historical numerical convergenceysfad the MOS

ring oscillator taken from [53]. We can see that this cirtwis the property that the
waveform relaxation algorithm converges in a finite numiesteps. This can be
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Fig. 11 Historical convergence result for the MOS ring oscillatamfi [53]
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understood by the finite propagation speed of the informaticthis circuif, and

we will see this again when looking at hyperbolic equatiorthe following section.
The convergence of waveform relaxation methods depenaisgdir on the type of
equations that are being solved, and the general convergestienate of Lindelodf
(24), also valid for waveform relaxation, is not always ghar

3.3 Gander 1996

The waveform relaxation algorithm from the previous subisaccan be naturally
extended to partial differential equations, as it was shmj@4]:

“Motivated by the work of Bjgrhus [8], we show how one can wserlapping domain
decomposition to obtain a waveform relaxation algorithmfor the semi-discrete heat
equation which converges at a rate independent of the meampter.”

The idea is best explained for the simple model problem obtteedimensional heat
equation,
du=0dxu, O<x<1l t>0 (26)

with given initial conditionu(x,0) = up(x) and homogeneous boundary conditions.
Like in the waveform relaxation algorithm, where the citauas partitioned into
subcircuits, one partitions the domdih= (0, 1) into overlapping subdomains, say
Q1=(0,8)andQ; = (a,1), a < B, and then performs the iteration

ou] = Oy, O0<x<B,t>0,
uj(B.t) = uz (B.), 27
O U5 = Oy, a<x<1lt>0,

ud(a,t) = ul Ha,t).

Since the decomposition is overlapping like in the clagsivarlapping Schwarz
method for steady problems, and time dependent problensoared in each iter-
ation like in waveform relaxation, these algorithms ardezhSchwarz Waveform
Relaxationalgorithms. One can show that algorithm (27) convergesiligeon un-
bounded time intervals, see [39], and superlinearly on bedrnime intervals, see
[42]. Both results can be found for nonlinear problems i [2he superlinear con-
vergence rate in Schwarz waveform relaxation algorithnfiagter than in classical
waveform relaxation methods for circuits, since the heabdéledecay gives addi-
tional contraction. If the equation is a wave equation, thea obtains convergence
in a finite number of steps, see for example [29]. Much betgaraform relaxation
methods can however be obtained using the new concept ofiaptl transmission
conditions we will see next.

6 “Note that since the oscillator is highly non unidirectibdiae to the feedback fronds to the
NOR gate, the convergence of the iterated solutions is eetlievith the number of iterations
being proportional to the number of oscillating cycles dénest”, see [53]
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3.4 Gander, Halpern and Nataf 1999

It was shown in [32] that the Dirichlet transmission coratits used for the informa-
tion exchange do not lead to good convergence behavior @¢hevarz waveform
relaxation algorithm:

“We then show that th®irichlet conditions at the artificial interfaces inhibit t he in-
formation exchangebetween subdomains and therefore slow down the convergérice
algorithm.”

This observation holds for all types of partial differehgguations, also for steady
state problems [63]. The key new idea is to introduce morecéffe transmission

conditions, which leads for the model problem (26) to the S®hwarz waveform

relaxation algorithm

ou] = Oy, O0<x<B,t>0,
glug(ﬁat) = glugil(ﬁvt)a (28)
O U = OxxU3, a<x<l1lt>0,

Bou(a,t) = Bou) Y(a,t).

If one chooses#; = d,, + DtN> and %, = dh, + DtNy, wherez?nj denotes the normal
derivative, and Dtl)\l denotes the Dirichlet to Neumann operator of the subdomain
i, then algorithm (28) converges in two iterations, indepearily of the overlap: it
becomes a direct solver. This can be generalizéditerations withN subdomains,
or one iteration when using an alternating sweep, and is titenying mecha-
nism for the good convergence of the sweeping preconditi@eently presented in
[20]. Since the DtN operators are in general expensiveafledoptimized Schwarz
waveform relaxatioomethods use local approximations; for a complete treatment
of advection reaction diffusion equations see [30, 7], asdtfie wave equation,
see [33, 29]. An overview for steady problems and referemessbe found in
[26]. We show in Figure 12 as an illustration for an advectieaction diffusion
equation and a decomposition into eight overlapping suladiesrhow much faster
optimized Schwarz waveform relaxation methods convergepawed to classical
Schwarz waveform relaxation methods. While the Dirichi@bsmission conditions
in the left column greatly inhibit the information exchandgiee absorbing condi-
tions (here second order Taylor conditions) lead almosticadly to a very good
approximation already in the very first iteration. For mar®imation, see [30, 7].
Waveform relaxation methods should thus never be used Vaiisical transmission
conditions, also when applied to circuits; optimized traission conditions have
also been proposed and analyzed for circuits, see for exahp2] and references
therein.
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Fig. 12 Snapshots in time of the first classical Schwarz waveformxeglon iteration in the left
column, and the first optimized Schwarz waveform relaxatieration in the right column: the
exact solution is shown in solid red, and the Schwarz wawefetaxation approximation in dashed
blue
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3.5 Recent Developments

Other domain decomposition methods for steady problems been recently pro-
posed and analyzed for time dependent problems: for theecgexice properties
of the Dirichlet-Neumann Waveform Relaxation algorithee $59, 35], and for the
Neumann-Neumann Waveform Relaxation algorithm, see [5ffpBa convergence
analysis, and [45] for well posedness of the algorithm.

It is also naturally possible to combine the multiple shogtmethod and the
Schwarz waveform relaxation methods, which leads to a spisxeedecomposition
of the form shown in Figure 13. A parareal Schwarz waveforiaxagion algorithm

0 X

Fig. 13 Space-time decomposition for Parareal Schwarz Waveforax&gon

for such decompositions was proposed in [34], see also fB&] method which uses
waveform relaxation as a solver within parareal. These ouliterate simultane-
ously on sets of unknowns in the space-time domain, as theedpae multigrid
methods we will see next.

4 Multigrid Methods in Space-Time

The methods we have seen so far were designed to be natuasdijeh the time
decomposition methods based on shooting use many prosedsng the time axis,
the waveform relaxation methods use many processors ip#weslimensions. The
multigrid methods we see in this section are not naturalialpel, but their compo-
nents can be executed in parallel in space-time, since tbhey simultaneously on
the entire space-time domain, as indicated in Figure 14.

4.1 Hackbusch 1984

The first such method is the parabolic multigrid method dgyed by Hackbusch in
[44]. Like other multigrid methods, the smoother can be ralyimplemented in
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0 X
Fig. 14 Space-time multigrid methods work simultaneously on theéespace-time domain

parallel in space, and in the parabolic multigrid method,dtnoother operates over
many time levels, so that interpolation and restriction barperformed in parallel
in space-time.

In order to explain the method, we consider the parabolic RDE.Zu = f
discretized by Backward Euler:

(I +AtL)up = up_1 + At (tn). (29)

Hackbusch makes the following comment about this equation

“The conventional approach is to solve (29) time step by tatep;u, is computed from
Un—1, thenu,,1 from u, etc. The following process will be different. Assume thatis
already computed or given as an initial ste®émultaneously, we shall solve forup, 1,
Uni2y oy Untk In one step of the algorithm”

In the method of Hackbusch, one starts with a standard srapéihthe problem
at each time step. L& be the iteration matrixA := | + At.Z; then one partitions
the matrix into its lower triangular, diagonal and uppearigular partA =L+ D +
U, and uses for example as a smoother the Gauss-Seideldtecater many time
levels:

forn=1:N

forj=1:v _
uh= (L+D) Y (—Uub t+uY_, +Atf(ty));
end;
end;

We see that the smoothing process is sequential in time: mtéhés to finish the
smoothing iteration at time step— 1 in order to obtainyy_,, before one can start
the smoothing iteration at time stepsinceuy_, is needed on the right hand side.
After smoothing, one restricts the residual in space-tikeeih a classical multi-
grid method to a coarser grid, before applying the procedrmersively. Hackbusch
first only considers coarsening in space, as shown in Figbrénlthis case, one
can prove that standard multigrid performance can be aedigw this method. If
one however also coarsens in time, one does not obtain sthnddtigrid perfor-
mance, and the method can even diverge. This is traced bagidkbusch to errors
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Fig. 15 Original figure of Hackbusch about the coarsening in thelpai@multigrid method

which are smooth in space, but non smooth in time. Hackbukdtrates the per-
formance of the method by numerical experiments for buoyativen flow with
finite difference discretization.

4.2 Lubich and Ostermann 1987

Lubich and Ostermann [56] used the waveform relaxationeodid define a space-
time multigrid method:

“Multi-grid methods are known to be very efficient solvers &liptic equations. Various
approaches have also been given to extend multi-grid tqaksito parabolic problems. A
common feature of these approaches is that mult-grid methoel applied onlgfter the
equation has been discretized in time. In the present nothalératherapply multi-grid

(in space) directly to the evolution equatiord

Their work led to the so-calleblultigrid Waveform Relaxatioalgorithm. The eas-
iest way to understand it is to first apply a Laplace transfartine evolution prob-
lem, assuming for simplicity a zero initial condition,

w+Llu=f = A@)i:=si+Lpd="f.

One then applies a standard multigrid method to the Laplaesformed linear
systemA(s)d = f. LetA(s) = L+ D~+sl+U be again the lower triangular, diagonal
and upper triangular part of the matexs). A standard two grid algorithm would
then start with the initial guefug(”s), and perform fon=0,1,2,... the steps

forj=1:v _
Gh(s) = (L+D+sl)L(—ua) (s) + f(9));
end; .
05, 1(8) = G (s) + PAC'R(f — Al (s));
smooth again;

whereR and P are standard multigrid restriction and prolongation opmsafor
steady problems, and the coarse matrix can be defined usimdeaki®d approach,
Ac :=RAP.
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Applying the inverse Laplace transform to this algorithne,ebtain the multigrid
waveform relaxation algorithm: the smoothing step

(sl+L+D)Gk(s) = —uUa(s)+ f(s)
becomes in the time domain
aul+ (L+D)u,+Uul-t=1,

which is a Gauss Seidel Waveform Relaxation iteration, sg#esé&ction 3.2. The
coarse correction

0n.1(9) := U1 (8) + PA. 'R(f — AR (9))

becomes back in the time domain

solvev; + Lyv=R(f —dupy — Lnuy),

0 _ WV
Un 1= Up + PV

This is a time continuous parabolic problem on a coarseapagsh.

Lubich and Ostermann prove for the heat equation and finfterdnce dis-
cretization that red-black Gauss Seidel smoothing is ngbasd as for the stationary
problem, but still sufficient to give typical multigrid coexgence, and that damped
Jacobi smoothing is as good as for stationary problems. Uiti®es show with nu-
merical experiments that in the multigrid waveform reléoatalgorithm one can
use locally adaptive time steps.

4.3 Horton and Vandewalle 1995

Horton and Vandewalle are the first to try to address the prolaf time coarsening
in [46]:

“In standard time-stepping techniques multigrid can bedusgan iterative solver for the
elliptic equations arising at each discrete time step. Bytrest,the method presented in
this paper treats the whole of the space-time problem simuétneously”

They first show that time coarsening does not lead to multigeirformance, since
the entire space-time problem is very anisotropic becatideedime direction. To
address this issue, they explain that one could either oseslinoothers, which is
related to the multigrid waveform relaxation algorithm wa/é seen in Subsection
4.2, or the following two remedies:

1. Adaptive semi-coarsening in space or time depending®@anisotropy,
2. Prolongation operators only forward in time.

For the heat equation with finite difference discretizatammd Backward Euler,
BDF2 and Crank-Nicolson, Horton and Vandewalle performtaitkd local Fourier
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mode analysis, and show that good contraction rates canthedbr space-time
multigrid V-cycles, although not quite mesh independenty€les are needed to
get completely mesh independent convergence rates. Témdésrare illustrated by
numerical experiments for 1d and 2d heat equations.

4.4 Emmett and Minion 2012

There are several steps in the development of the solver 8FA&hich stands for
Parallel Full Approximation Scheme in Space-Time. The ulyd® iteration is a
deferred correction method [61]:

“This paper investigates a variant of the parareal algoritiist outlined by Minion and
Williams in 2008 that utilizes deferred correction strategy within the parareal itera-
tions.”

We thus have to start by explaining the deferred correctiethod. Consider the
initial value problem
u' = f(u), u(0)=up. (30)

We can rewrite this problem in integral form
t
u(t) = u(0) + / f(u(t))dr. (31)
0

Let U(t) be an approximation with erret) := u(t) — G(t). Insertingu(t) = G(t) +
e(t) into (31), we get

Gi(t) + e(t) = u(0) + /0 £ (0(1) + e())dr. (32)

Defining the functiorF (u) := u(0) + Jg f(u(1))dt —u(t) from the equation (31),
the residuat (t) of the approximate solution(f) is

F(t) == F(0) = G(0) + : £(6(7))dT — i(t), 33)

and thus from (32) the error satisfies the equation
e(t) = u(0)+ /Ot £(di(7) + e(1))dT — a(t)
— ) +/Ot F(di(t) + e(1)) — f(a(1))dr,
or written as a differential equation

€(t) =r'(t)+ f(G(t) +et)) — f(G(t)). (34)



28 Contents

The idea of integral deferred correction is to choose a niocalemethod, for ex-
ample Forward Euler, and to get a first approximation of thetsm of (30) by
computing

Om1 = Om+Atf(0m), form=0,1,... M—1

With these values, one then computes the residual define@8)naf the pointsy,
m=0,1,...,M using a high order quadrature formula. One then solves tloe er
equation (34) in differential form again with the same nuicemethod, here For-
ward Euler,

€mi1 = En+Imi1— Fm+ At(f(Tm+ &) — f(m)). (35)

Adding this correction, one obtains a new approximatignt-eny, for which one
can show in our example of Forward Euler that the order hagésed by one, i.e.
it is now a second order approximation. One can continueptfiisess and increase
the order up to the order of the quadrature used.

This spectral deferred correction iteration can also besicened as an iterative
method to compute the Runge-Kutta method correspondinget@aadrature rule
used to approximate the integral: if we denoteulythe initial approximation ob-
tained by forward Eulen® := (o, Ty, ...,0w)", each integral deferred correction
corresponds to one step in the non-linear fixed point itenati

uk = F(u* 1t up), (36)

whereu is the initial condition from (30). The classical applieatiof integral de-
ferred correction is to partition the time intery@l T] into subintervalgT;_1,Tj],
j=12,...,J, and then to start on the first subinter{&, T;] to compute approx-
imationsu‘{ by performingK steps of (36) before passing to the next time interval
[T1, T2], see also Figure 18 for an example with= 3. The overall iteration is there-
fore

U\ = Uo;
forj=1:J
computeu? as Euler approximation of;_1, Tj];
fork=1:K
Uk = F (Ul )
end;

end;

We see that this is purely sequential, like a time steppirf@ise: in each time
subinterval, one first has to finish tie spectral deferred corrections, before one
can pass to the next time subinterval. Minion proposed ih fi®t to wait for each
time subinterval to finish, and to replace the inner upddtmgula by

Ul =F (U uf 1), (note the lower case!), (37)

which means that one can now perform the spectral deferngdatmns on many
time subinterval§T;_1, T;] in parallel. This is very similar to the iteration of Womble
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we will see in Subsection 5.3. In the approach of Minion, thisowever combined
with a coarse correction from the parareal algorithm, ss likke using a more and
more accurate fine integrator, as the iteration progresses.

The PFASST algorithm proposed in [19] is based on using thallphdeferred
correction iteration above as a smoother in a multigrid &plproximation scheme
in space-time for non-linear problems:

“The method is iterative with each iteration consistingleferred correction sweeps per-
formed alternately on fine and coarse space-time discretitins. The coarse grid prob-
lems are formulated using a space-time analog ofuthi@pproximation scheme popular
in multigrid methods for nonlinear equations.”

The method has successfully been applied to non-lineatgmabin [19, 77, 76],
but there is so far no convergence analysis for PFASST.

4.5 Neumuller 2014

The new idea in this multigrid variant is to replace the dlzepoint smoothers by
block Jacobi smoothers. Suppose we discretize the heati@oua

U =Au+f

globally in space-time by an implicit method, for examplecBaard Euler. Then
we obtain a block triangular linear system in space-timénefform

Ay ug f

B, Ay V) f2
Bs Az us [ = | fa | . (38)

Bn An Un fn

The space-time multigrid method consists now of applyingwa flamped block
Jacobi smoothing steps, inverting the diagonal blogks before restricting by
standard multigrid restriction operators in space-tima woarser grid, and recur-
sively continuing. One can show that for the heat equatioshave (see Martin
Neumdiller's PhD thesis [64]):

e The optimal damping parameter for the block Jacobi smoather= %

e One always obtains good smoothing in time (semi-coarsesiafivays possi-
ble).
For % > C, one also obtains good smoothing in space.

e One V-cycle in space suffices to invert the diagonal blogksn the Jacobi
smoother.

This multigrid method has excellent scaling propertiestiier heat equation, as it
was shown in [64], from which the example in Table 1 is takeme Tesults are for
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the 3D heat equation, and computed on the Vienna Scientitist&il VSC-2; see
also [37] and [36].

Weak Scaling Strong Scaling
cored - doffiter]time]| 4+ doffiter] time]
1 4 59768 9 | 6.8|409661202432 9 |6960.7
2 8| 119534 9 | 8.1)(409¢61202432 9 |3964.9
4] 16/ 239077 9 | 9.2|(409661202432 9 |2106.2
8| 32| 478144 9| 9.2)/409661202432 9 |1056.0
16| 64| 956288 9 | 9.2[|409661202432 9 | 530.4
32| 128 1912576 9 | 9.3|40966120243%2 9 | 269.5
64| 256/ 3825152 9 | 9.4//40966120243%2 9 | 135.2
128 512 7650304 9 | 9.4{{409661202432 9 | 68.2
256/1024 15300608 9 | 9.4/|40966120243%2 9 | 34.7]
51202048 30601216 9 | 9.4/|40966120243%2 9 | 17.9
10244096 61202432 9 | 9.4{1409661202432 9 9.4
20488192122404864 9 | 9.5//40966120243% 9 5.4

Table 1 Scaling results for the space-time multigrid method witbckl Jacobi smoother; all sim-
ulations performed by M. Neumdiller

5 Direct Solvers in Space-Time

The time parallel solvers we have seen so far were all iterafihere have been also
attempts to construct direct time parallel solvers. Theedath small scale parallel
direct solvers and also large scale parallel direct solvers

5.1 Miranker and Liniger 1967

The first small scale direct parallel solver was proposed linahker and Liniger
[62], who also were very much aware of the naturally seqaéngture of evolution
problems:

“It appears at first sight that the sequential nature of theemcal methods do not permit
a parallel computation on all of the processors to be pegdiniwe say thathe front of

computation is too narrow to take advantage of more than one processer.us consider
how we might widen the computation front.”

Fory = f(x,y), Miranker and Liniger consider the predictor correctonfatas

Vo = Vit S(F0R)— T0F2), Yara = Vit (TR )+ TOR)).
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This process is entirely sequential as they illustratet witigure, a copy of which is
shown in Figure 16 on the left. They then consider the modfiedlictor corrector

[ ]
®
®
)
U

/
Il /
& =/L\‘t Cc Cc

n-1 n n+l n-2 n-l ;" n n+l

Fig. 16 Symbolic representation by Miranker and Liniger of an etyisequential predictor cor-
rector method on the left, and a parallel one on the right

formulas

V=Yoot 20100 Vo =Yeat a (TR + FOr))

Those two formulas can now be evaluated in parallel by tweessors, as illus-
trated in Figure 16 on the right. Miranker and Liniger theowtow one can sys-
tematically derive a general class of numerical integraticethods which can be
executed on &processors in parallel, and present a stability and coeverganal-

ysis for those methods.

Similar parallelism can also be obtained with the block icipbne-step meth-
ods developed by Shampine and Watts in [72]. These methaddifisrent time
stepping formulas to advance several time levels at onaeafr@arly numerical
comparison for parallel block methods and parallel predicbrrector methods, see
Franklin [23]. These methods are ideally suited to be usetherfew cores of a
multicore processor, but they do not have the potentialdigyd scale parallelism.

5.2 Axelson and Verwer 1985

Boundary value methods for initial value problems are a toétrege. A very good
early introduction is the paper by Axelson and Verwer [4]:

“Hereby we concentrate on explaining the fundamentals @fntlethod because for initial
value problems the boundary value method seems to be faikiyawn [...] In the forward-
step approach, the numerical solution is obtained by stephirough the grid [...] In this
paper, we will tackle the numerical solution in a completdifferent way [...] We will
considery = f(x,y) as a two point boundary value problem with a given value at the
left endpoint and an implicitly defined value, by the equatian y = f(x,y), at the right
endpoint.”
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It is best to understand boundary value methods by lookiraysimple example
Suppose we discretize= f(y) with the explicit midpoint rule

Y1 —Yn-1—2hf(yn) =0, yo=y(0).

Since the explicit midpointrule is a two step method, we alsed an initial approx-
imation fory;. Usually, one defineg fromyg using a one step method, for example
here by Backward Euler. In boundary value methods, one $8gves an unknown,
and uses Backward Euler at the endpgjnto close the system, imposing

YN —Yn-1—2hf(yn) =0.

For a linear probleny = ay, the midpoint rule and Backward Euler to define
gives the triangular linear system

1-ah Y1 Yo
—2ah 1 Y2 Yo

-1 -2ah1 Y3 |=]0 . (39)
—1-2ahl YN 0

For the boundary value method, leavipgfree and using Backward Euler on the
right gives the tridiagonal system

—2ah 1 Y1 Yo

-1 —2ah 1 Yo 0
L ys | =| 0. (40)

—1-2ah 1 : :

-1 1-ah YN 0

The tridiagonal system can now be solved either directlyaloydrization, or also by
iteration, thus working on all time levels simultaneously.

It is very important however to realize that boundary valuethmds are com-
pletely different discretizations from initial value meths. The stability properties
often are the contrary when one transforms an initial vale¢ad into a boundary
value method. We show in Figure 17 numerical examples fanitial value method
(39) and boundary value method (40). We see that for a degaylution,a < 0,
the initial value method is exhibiting stability problemehile the boundary value
method is perfectly stable (top row of Figure 17). For grayveolutionsa > 0 it
is the opposite, the initial value method gives very goodrapimations, while the
boundary value method needs extremely fine time steps toecgevbottom row
of Figure 17). One can therefore not just transform an inédue method into a
boundary value method in order to obtain a parallel solveg, twas to first carefully
study the properties of the new method obtained, see [1@ridieferences therein.

7 This example had already been proposed by Fox in 1954
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Fig. 17 Stability comparison of initial value and boundary valuetioels

Now if the method has good numerical properties and thetiagdystem can well
be solved in parallel, boundary value methods can be arcttgavay of solving an

evolution problem in parallel, see for example [9], whereszlBvard Euler method
is proposed to precondition the boundary value method. iShEsll sequential, but
if one only uses subblocks of the Backward Euler method asopiitioner, by

dropping the connection after, say, every 10th time stemrallel preconditioner
is obtained. Such methods are called nowadays block boyrdhare methods, see
for example [11]. If one introduces a coarse mesh with a eoiategrator, instead
of the backward Euler preconditioner, and does not use agtherlying integrator

a boundary value method any more, but just a normal time stgmzheme, the

approach can be related to the parareal algorithm, see onghe [3].
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5.3 Womble 1990

The method presented by Womble in [80], see also the earbek Wy Saltz and
Naik [69], is not really a direct method, it is using iteratsy but not in the same
way of the iterative methods we have seen so far:

“Parabolic and hyperbolic differential equations are ftelved numerically by time step-
ping algorithms. These algorithms have been regarded amiseal in time; that is, the
solution on a time level must be known before the computdiorthe solution at subse-
guent time levels can start. While this remains true in ppilec we demonstrate thitis
possible for processors to perform useful work on many timedvels simultaneously

The relaxation idea is similar to the one later used by Miniof61] as a smoother
in the context of PFASST, see Subsection 4.4, but not for arded correction
iteration. In order to explain the method, we discretizeghebolic problem

U =2Lu+f

by an implicit time discretization and obtain at each timepst linear system of the
form
Anun = fn+ Bnun_1.

Such systems are often solved by iteration. If we want to ustatéonary iterative
method, for example Gauss-Seidel, we would partition th&ima, = Ly + Dy +
U, its lower triangular, diagonal, and upper triangular pafhen starting with an
initial guessul, one solves fok=1,2,...,K

(Ln + Dn)uﬁ - —UnuE71 + fn + Bnuﬁil. (41)

The key idea to break the sequential nature is to modify thigtion slightly so
that it can be performed in parallel over several time stigsiffices to not wait for
convergence of the previous time level, but to iterate like

(Ln+ Dn)Ur] = —Unurrl + f+ Bnuﬁijia (42)

which is the same idea also used in (37). Womble obtaine@ guoibd results with

this approach, and he was the first person to really demaegiractical speedup
results with this time parallel method on a 1024-processashime. Even though it
was later shown that only limited speedups are possible thighrelaxation alone
[16], the work of Womble made people realize that indeed fian@llelization could

become an important direction, and it drew a lot of attentmmard time-parallel

algorithms.
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5.4 Worley 1991

Worley was already in his PhD thesis in 1988 very interesteteéoretical limits on
the best possible sequential and parallel complexity wiodnrgy PDEs. While the
ultimate sequential algorithm for such a problem of size O(n) on a sequential
machine, it i<O(logn) on a parallel machine. In [81], Worley presented an addition
direct time parallelization method, which when combinethvmultigrid waveform
relaxation leads to a nearly optimal time-parallel iteratinethod:

“The waveform relaxation multigrid algorithm is normaliyjplemented in a fashiahat is
still intrinsically sequential in the time direction . But computation in the time direction
only involves solving linear scalar ODEs. If the ODEs arevedlusing a linear multistep
method with a statically determined time step, then each G@@#&tion corresponds to the
solution of a banded lower triangular matrix equation, quiealently, a linear recurrence.
Parallelizing linear recurrence equations has been stughéensively. In particulaif a
cyclic reduction approach is used to parallelize the linearecurrence, then parallelism
is introduced without increasing the order of the serial conplexity. “

The approach is based on earlier ideas for the parallel @ratuof recurrence re-
lations [50] and the parallel inversion of triangular medss [70]. Worley explains
the fundamental idea as follows: suppose we want to solvéitiagonal matrix
equation

a1 X1 f1
a1 @ | _ | f ' (43)
ag2 as3 X3 f3
ay3 a4 Xa fa
Then one step of the cyclic reduction algorithm leads to a ma#rix equation of
half the size,
a1
az2 Xo fo—zif
= 44
(—%2%2 a44) (X4> <f4—%f3 ' (44)

i.e. we simply computed the Schur complement to eliminat&lées with odd in-
dices. For a bigger bidiagonal matrix, this process can peated, and we always
obtain a bidiagonal matrix of half the size. Once a two by tystem is obtained,
one can solve directly, and then back-substitute the valb&sined to recover the
values of the eliminated variables. Each step of the cyeliciction is parallel, since
each combination of two equations is independent of therstiSmilarly the back-
substitution process is also parallel. Cyclic reductiothisrefore a direct method
to solve a linear forward recurrence in parallel, and thaiden be generalized to
larger bandwidth using block elimination. The serial coaxly of simple forward
substitution in the above example is,3vhereas the cyclic reduction serial com-
plexity is 7n (or 5n if certain quantities are precomputed), and thus the dlyori
is not of interest for sequential computations. But perfednm parallel, the com-
plexity of cyclic reduction becomes a logarithmnnand one can thus obtain the
solution substantially faster in parallel than just by fardl substitution. For fur-
ther theoretical considerations and numerical result®mhination with multigrid
waveform relaxation, see [47]. A truly optimal time-paehlhlgorithm, based on a
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preconditioner in a waveform relaxation setting using a Fasurier transform in
space to decouple the unknowns, and cyclic reduction in ¢tamebe found in [75].

5.5 Sheen, Sloan and Thoae 1999

A new way to solve evolution problems with a direct method amgtlel was pro-
posed in [73]:

“These problems are completely independent, and can there®be computed on sep-
arate processors with no need for shared memory. In contrast, the normal-lsjegtep
time-marching methods for parabolic problems are not easitallelizable.”,

see also [15]. The idea is to Laplace transform the problem,then to solve a
sequence of steady problems at quadrature nodes used faurtierical evaluation
of the inverse Laplace transform, and goes back to the soluti the frequency
domain of hyperbolic problems, see for example [18]. Suppes have the initial
value problem

U +Au=0, u(0)=uo,

whereA represents a linear operator. Applying a Laplace transtorthis prob-
lem in time with complex valued Laplace transform parametdeads to the
parametrized equation

s+ Al = ug, (45)

and to obtain the solution in the time domain, one has to pertbe inverse Laplace
transform

u(t) = % /r eta(s)ds (46)

wherel™ is a suitably chosen contour in the complex plane. If thegiretkin (46)

is approximated by a quadrature rule with quadrature nedesne only needs to
computeu(s) from (45) ats = sj, and these solutions are completely independent
of one another, see the quote above, and can thus be perfannpadallel. This
direct time parallel solver is restricted to problems wheaplace transform can
be applied, i.e. linear problems with constant coefficiemthe time direction, and
one needs a solver that works with complex numbers for (41 .However a very
successful and efficient time parallel solver when it candeslusee [74, 78, 52, 17].

5.6 Maday and Ronquist 2008

A new idea for a direct time parallel solver by diagonaliaativas proposed in [57]:

“Pour briser la nature intrinsequement séquentiellestizcésolution, on utiliskalgorithme
de produit tensoriel rapide.”
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To explain the idea, we discretize the linear evolution oty = Lu using Back-
ward Euler,

1 1
Aty L uz f1 + i) Uo
—45 a5 L Uz fa
2 2 .
1 1
“ay g L)\ i

Using the Kronecker symbol, this linear system can be writtecompact form as
Balx—l®Lu=f, (47)

wherely is the identity matrix of the size of the spatial unknowns] &nis the
identity matrix of the size of the time direction unknownadahe time stepping
matrix is
1
g
B :: Atz Atz
11
Aty Aty
If Bis diagonalizableB = SDS %, one can rewrite the system (47) in factored form,
namely
(S® Iy)(diagD — L))(S 1@ ly)u = f, (48)

and we can hence solve it in 3 steps:

(a) (S®|x)g - f7
(b) (= —-Lw'=g", 1<n<N,
() (Stelu=w.

Note that the expensive step (b) requiring a solve with tistesy matrix. can now
be done entirely in parallel for all time levels Maday and Ronquist obtain with
this algorithm for the 1d heat equation close to perfectdppeThey recommend
to use a geometric time medi, = p<~1At;, with p = 1.2, since “choosing much
closer to 1 may lead to instabilities”. This algorithm is wefined if identical time
steps are used, since it is not possible to diagonalize addndck ! For a precise
truncation error analysis for a geometric time grid, a rooffcerror analysis due to
the diagonalization, and error estimates based on the-ofitbetween the two, see
[31].
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5.7 Christlieb, Macdonald and Ong 2010

The integral deferred correction methods we have alreagly iseSubsection 4.4 in
the context of PFASST can also be used to create naturalllf soade parallelism
[14]:

“...we discuss a class of defect correction methods whidasly adapted to creapar-
allel time integrators for multicore architectures.”

As we see in the quote, the goal is small scale parallelisnmigticore architec-
tures, as in the early predictor corrector and block metHome Subsection 5.1.
The new idea introduced by Christlieb, Macdonald and Ong isibdify integral
deferred correction so that pipelining becomes possiblgchwleads to so called
RIDC (Revisionist Integral Deferred Correction) methoiswe have seen already
in Subsection 4.4, the classical integral deferred caoeahethod is working se-
quentially on the time point groupg, l1,...,l;_1 we show in Figure 18 taken from
[14], corresponding to the time intervdl, T1], [T1, T2], . . ., [Ts—1, T3] in Subsection
4.4. For each time point group, one has to evaluate in the step (35) of integral

to t1 to ts ts ts te tn-3 tn—2 iIn-1 tn
. ° ° ° ° ° ° . ° . °
[too o to2  to3] [tr—10 tr-11 tr-12 ty_13|
Iy [i}.() t1,1 t1,2 tl.S} Iy
I

Fig. 18 Classical application of integral deferred correctiomtymie taken from [14]

deferred correction the quadrature formula for (33) at time.1, using quadrature
points at timetj o,tj 1,...,tjm, 0 < m< M, whereM = 3 in the example shown in
Figure 18. Only once all deferred correction steps on the fioint groupl; are
finished, one can start with the next time point grdyp;, the method is like a
sequential time stepping method.

In order to obtain parallelism, the idea is to increase the sif the time point
groupsM to contain more points than the quadrature formula needs.can then
pipeline the computation, as shown in Figure 19: the numbeguadrature points is
still four, butM is much larger, and thus the Euler prediction step and threction
steps of the integral deferred correction can be executgiallel, since all the
values represented by the black dots are available sinadtasty to compute the
next white ones, after an initial setup of this new 'compiotatront’.

This leads to small scale parallel high order integratorelvivork very well on
multicore architectures. When run in parallel, RIDC caredivgh order accuracy
in a time comparable to the time of the low order integratiathod used, provided
the startup costs are negligible.
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correction (I =3) ® O
correction ([ =2) ' ® °® 1‘/ Q/\\O
1o
. pr T T TN
correction ([ = 1) A ® ® Wb )
prediction - L] ® e s

tm—3 lm-2 Im—1 Im tm+1

Fig. 19 RIDC way to compute integral deferred correction type mé#hio a pipelined way, figure
taken from [14]

5.8 Gittel 2012

A new direct time parallel method based on a completely apgihg decomposi-
tion of the time direction was proposed in [43]:

“We introduce anoverlapping time-domain decomposition methodfor linear initial-
value problems which gives rise to an efficient solution rodtlfor parallel computers
without resorting to the frequency domain. This paralletme exploits the fact thdio-
mogeneous initial-value problems can be integrated much faer than inhomogeneous
problemsby using an efficient Arnoldi approximation for the matrixpexential function.”

This method, called ParaExp [27], is only defined for lineeshems, and espe-
cially suited for the parallel time integration of hyperiegbroblems, where most
large scale time parallel methods have severe difficulfiesg Krylov subspace
remedy, see [22, 38, 67], but reorthogonalization costshirtig high). ParaExp
works very well also on diffusive problems [27], as we wilkalillustrate with a

numerical experiment. To explain the method, we considelitiear system of evo-
lution equations

u'(t)=Au(t) +g(t), te[0,T], u(0)=uo.

The ParaExp algorithm is based on a completely overlapp@mpmposition, as
shown in Figure 20: the time intervl, T] is decomposed into subintervélls T, :=

T), [T1, T4, [T2, T4, @and[T3, T4]. ParaExp is a direct solver, consisting of two steps:
first one solves on the initial parts of the overlapping degosition,[0, T1], [T1, T2,

[T2, T3], and (T3, T4] the non-overlapping inhomogeneous problems (shown id soli
red in Figure 20)

Vi(t) = Avj(t) +9(t), Vi(Tj-1)=0, te[Tj_1,Tjl,

and then one solves the overlapping homogeneous problémsrisn dashed blue
in Figure 20)

wi(t) =Awj(t), wj(Tj-1) =Vj-1(Tj-1), te[Tj1,T]
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Ug¢-—————"""7] -

T() T1 T2 T3 T4

Fig. 20 Overlapping decomposition and solution strategy of PgpaEx

By linearity, the solution is then simply obtained by sumiomt

k
u(t) =w(t)+ > wj(t) withksuchthat t € [T1,Ti.
=1

Like in many time parallel methods, this seems to be absurde ghe overlapping
propagation of the linear homogeneous problems is redunalad the blue dashed
solution needs to be integrated over the entire time intdéya@]! The reason why
substantial parallel speedup is possible in ParaExp isrtbat-optimal approxi-
mations of the matrix exponential are known, and so the h@megus problems
in dashed blue become very cheap. Two approaches work vty prejection
based methodsvhere one approximates (t) ~ exptA)v from a Krylov space
built with S:= (I — A/g)~A, andexpansion based methqaghich approximate
exp(tAV ~ Z?;éﬁj (t)pj (A)v, wherep; are polynomials or rational functions. For
more details, see [27].

We show in Table 2 the performance of the ParaExp algorithpliegto the

serial parallel effi-
a?| f To error | max(11) | max(tz) | error |ciency
0.1 1 ||2.54e-01|3.64e-04|4.04e-02|1.48e-02(2.64e-04| 58 %
0.1/ 5{|1.20e+001.31e-04|1.99e-01|1.39e-02(1.47e-04| 71 %
0.1|25||6.03e+004.70e-05|9.83e-01|1.38e-02|7.61e-05| 76 %
1(1]/7.30e-01{1.56e-04|1.19e-01|2.70e-02(1.02e-04| 63 %
1(5]|1.21e+004.09e-04|1.97e-01|2.70e-02(3.33e-04| 68 %
1 (25||6.08e+001.76e-04|9.85e-01|2.68e-02(1.15e-04| 75 %
10| 1||2.34e+0Q6.12e-05(3.75e-01|6.31e-02|2.57e-05| 67 %
10| 5| 2.31e+0Q4.27e-04(3.73e-01|6.29e-02|2.40e-04| 66 %
10|25|| 6.09e+0Q4.98e-04(9.82e-01|6.22e-02|3.01e-04| 73 %

Table 2 Performance of ParaExp on a Wave Equation

wave equation from [27],

Au(t,X) = a2duu(t,x) + hat() sin(27ft), x,t e (0,1),
u(t,0) = u(t,1) = u(0,x) = U'(0,x) = 0,
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where hatf) is a hat function centered in the spatial domain. The probie
discretized with a second order centered finite differerteime in space using
Ax = &, and RK45 is used in time withty = min{5-104/a,1.5-103/f} for
the inhomogeneous solid red problems. The homogeneousdiddie problems
were solved using a Chebyshev exponential integrator, gard@&ssors were used
in this set of experiments. We see that the parallel effigiexidParaExp is excel-
lent for this hyperbolic problem, and it would be difficultrfother time parallel
algorithms to achieve this.

ParaExp also works extremely well for parabolic problenas.tRe heat equation

du(t,X) = adwu(t,x) + hat)sin(2rft), x,t e (0,1),
u(t,0) = u(t,1)=0, u(0,x)=4x(1—x),

we show numerical results from [27] in Table 3. The heat eéqonatas discretized

serial parallel effi-
a | f T error | max(11) | max(t2) | error |ciency
0.01] 1 {|4.97e-02|3.01e-04{1.58e-02|9.30e-03[2.17e-04| 50 %
0.01] 10{|2.43e-01|4.14e-04{7.27e-02|9.28e-03|1.94e-04| 74 %
0.01J100|| 2.43e+0(Q1.73e-04{7.19e-01|9.26e-03|5.68e-05| 83 %
0.1| 1 [|4.85e-01{2.24e-05|1.45e-01|9.31e-03|5.34e-06| 79 %
0.1]| 10(|4.86e-01{1.03e-04|1.45e-01|9.32e-03|9.68e-05| 79 %
0.1]100|| 2.42e+0(Q1.29e-04|7.21e-01|9.24e-03|7.66e-05| 83 %
1| 1 |/4.86e+007.65e-08|1.45e+009.34e-03|1.78e-08| 83 %
1 |10/|4.85e+0(8.15e-06| 1.45e+0(9.33e-03|5.40e-07| 83 %
1 |100||4.85e+003.26e-05| 1.44e+009.34e-03|2.02e-05| 84 %

Table 3 Performance of ParaExp on the heat equation

using centered finite differences in space with= %1, and again an RK45 method

in time was used witiito = min{5-10~*/a,1.5-10-3/f} for the inhomogeneous
problems, the homogeneous ones being solved also with aySihebexponential
integrator. For the heat equation, 4 processors were usede®@that again excellent
parallel efficiency is obtained with the ParaExp algoritkior. more information and
numerical results, see [27].

6 Conclusions

The efforts to integrate evolution problems in parallelrspaw five decades. We
have seen that historically methods have grown into fodedht classes of time
parallel methodsshooting type methodstarting with Nievergeltdomain decom-
position and waveform relaxation methostsirting with Lelarasmee, Ruehli and
Sangiovanni-Vincentellispace-time multigrid methodsarting with Hackbusch,
anddirect time parallel solverstarting with Miranker and Liniger. An important
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area which was not addressed in this review is a systematipadson of the per-
formance of these methods, and a demonstration that thgsadthins are really
faster than classical algorithms in a given parallel corapaomal environment. Such
aresult on a 512 processor machine was shown for the spaesaxtultigrid wave-
form relaxation algorithm in [79], compared to space patafiultigrid waveform
relaxation and standard time stepping, see also [47] foiftsesn an even larger ma-
chine, and [5]. A very recent comparison can be found in tloetsiote [21], where
the authors show that above a certain number of processmrsarallel algorithms
indeed outperform classical ones. Time parallel methodscarrently a very ac-
tive field of research, and many new developments extendiadatest directions
we have seen, like Parareal, Schwarz-, Dirichlet-NeumadrN®&umann-Neumann
waveform relaxation, PFASST and full space-time multigadd RIDC and Para-
Exp, are to be expected over the coming years. These willlaegpage the power
of new multicore and very large scale parallel computerbénrtear future.

Acknowledgement:The author is very thankful for the comments of Stefan Van-
dewalle, which greatly improved this manuscript and alsaente content more
complete.
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