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P H Y S I C S

Anomalous cooling of bosons by dimensional reduction
Yanliang Guo1†, Hepeng Yao2†, Sudipta Dhar1, Lorenzo Pizzino2, Milena Horvath1, 
Thierry Giamarchi2, Manuele Landini1, Hanns- Christoph Nägerl1*

Cold atomic gases provide a remarkable testbed to study the physics of interacting many- body quantum systems. 
Temperatures are necessarily nonzero, but cooling to the ultralow temperatures needed for quantum simulation 
purposes or even simply measuring the temperatures directly on the system can prove to be very challenging tasks. 
Here, we implement thermometry on strongly interacting two-  and one- dimensional Bose gases with high sensitivity 
in the nanokelvin temperature range. Our method is aided by the fact that the decay of the first- order correlation func-
tion is very sensitive to the temperature when interactions are strong. We find that there may be a substantial tem-
perature variation when the three- dimensional quantum gas is cut into two- dimensional slices or into one- dimensional 
tubes. Notably, the temperature for the one- dimensional case can be much lower than the initial temperature. Our 
findings show that this decrease results from the interplay of dimensional reduction and strong interactions.

INTRODUCTION
Cold atomic gases allow a remarkable degree of control over 
crucial parameters such as the interaction strength and the con-
fining potentials, making them ideal systems for studying the 
properties of strongly correlated quantum matter (1). Their di-
mensionality can be set freely, via, e.g., optical lattice potentials, 
and with this, they have enabled the study of a host of properties 
of interacting one- dimensional (1D) and 2D quantum systems. 
Highlights in 1D include the observation of bosonic fermioniza-
tion into the Tonks- Girardeau (TG) state (2–5), the driving of 
quench dynamics (6–9), the investigation into localization ef-
fects driven by longitudinal lattices (10–14) and disorder (15–
18), and the recent observation of spin- charge separation (19, 
20). Similarly, 2D systems based on cold atoms have allowed the 
study of the Berezinskii- Kosterlitz- Thouless transition (21, 22), 
the investigation of topological properties (23, 24), and the 
probing of frustrated phases (25). In all these works, it has been 
important to assure that the temperature is low enough com-
pared to the point of quantum degeneracy as nonzero tempera-
tures play a crucial role for the physical phenomena observed.

The presumably lowest temperatures for 2D and 1D systems 
have so far been achieved by slicing low- entropy 3D samples such 
as essentially pure atomic Bose- Einstein condensates (BECs) into 
layers or tubes by means of lattice potentials. While the tempera-
tures of the 3D sources can be determined to high accuracy, with 
values in the low- nanokelvin range (1), estimates of the tempera-
tures of the low- D systems have always been rather vague. Know-
ing the accurate temperatures for such systems is of broad interest, 
but determining them is recognized as a difficult task (16, 17, 21, 
26). Attempts to obtain a temperature value from, e.g., Bragg- 
spectroscopy data on 1D Luttinger liquids together with exact 
Bethe- ansatz modeling (27) were hampered by rather large sys-
tematic uncertainties. Here, we implement precise thermometry 
at the 1- nK level for strongly interacting 2D and 1D Bose gases. 
We utilize the fact that the first- order correlation function g(1) 

sensitively depends on temperature when interactions are strong. 
In the experiment, it is determined from a careful measurement 
of the momentum distribution, and the results of ab initio state- 
of- the- art quantum Monte Carlo calculations for various values of 
the temperature are used as a thermometer scale. We use the ther-
mometer to determine temperatures in 1D that are substantially 
lower than the starting temperatures, and by this show that dimen-
sional reduction does not necessarily lead to heating, in contrast 
to previous experimental situations (17, 21, 26, 28, 29). We are 
able to interpret this anomalous phenomenon by invoking an en-
tropy argument and find that our data fit well with the theoretical 
prediction. We attribute our findings to the interplay of tight con-
finement and strong interactions for bosons that are subject to 
fermionization.

RESULTS
The experiment starts with an interaction- tunable 3D BEC of 
1.5 × 105 Cs atoms (30) prepared in the lowest magnetic hyper-
fine state ∣F, mF〉 = ∣ 3,3〉, held in a crossed- beam dipole trap with 
trap frequencies ωx,y,z = 2π × [18.6(2),19.3(3),26.8(3)] Hz along 
the three main axes x, y, and z of the setup and levitated along the 
vertical x direction against gravity by a magnetic field gradient. 
The BEC is in the Thomas- Fermi regime with the 3D s- wave 
scattering length a3D tuned to a3D ≈ 190a0. One (or two) counter-
propagating optical lattice beams along the z (and y) direction 
are gradually ramped up in 500 to a potential depth of Vz = 30Er 
(Vy = 30Er), with Er = π2ℏ2/(2ma2) the recoil energy, cutting the 
3D system into an ensemble of 2D layers that lie in the x- y plane 
(or an array of 1D tubes along the x- direction), as sketched in 
Fig. 1A. Here, a = λ/2 is the lattice spacing with λ = 1064.5 nm 
as the wavelength of the lattice light. After loading the atoms into 
the lattice, the initial crossed- beam dipole trap is ramped down 
in 100 ms. For the layers, the trap frequencies are ωx,y,z = 2π × 
(10.1(2),10.1(2),11k) and these change to ωx,y,z = 2π × (14.3(2),11k,11k) 
Hz for the set of 1D tubes. The offset magnetic field is then 
ramped up adiabatically to set a3D ≈ 620a0. This takes the 3D 
BEC into the strictly 2D regime with 2D interaction parameter 
γ2D = 1.5 or into the strictly 1D regime with the Lieb- Linger pa-
rameter γ1D = 20 (see the Supplementary Materials). For this 
value, the 1D system is deep in the fermionized TG regime (3, 4).
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Precise nanokelvin thermometry
We now detail the thermometer operation in the various dimen-
sionalities. The method for 3D is standard and has been used widely 
in the past. In short, the temperature is determined from the expan-
sion rate of the noncondensed fraction of the quantum gas in time- 
of- flight (TOF) after switching off all trapping fields. Crucially, the 
interparticle interaction is zeroed at the start of TOF by means of a 
Feshbach resonance’s zero crossing (30) to avoid any residual inter-
action effects. Bimodal fits on the density profiles for varying TOF 
times give the 3D temperature (see the Supplementary Materials). 
Typically, eight different TOF times are chosen, and each time, the 
experiment is repeated two times. Figure 1B provides the results of 
a typical measurement, for which we find T3D = 12.5(4) nK. In 2D 
and 1D, the interacting gases do not show a bimodal distribution 
and a Boltzmann fit cannot be done. However, the one- body corre-
lation function g (1)(x, x�, y, y�) = ⟨Ψ̂

†
(x�, y�)Ψ̂(x, y)⟩ shows a decay 

that has a strong temperature dependence. In the experiment, we 
determine it by a measurement of the momentum distribution n(k) 
via the TOF technique to obtain the integrated correlation function 
G(1)(x, y) = ∬ dx′dy′g(1)(x′ + x, y′ + y, x′, y′) via Fourier transform. 

We then compare it to the results of an ab  initio quantum Monte 
Carlo (QMC) approach to simulate the system (31). Its many- body 
Hamiltonian is given by

with U (̂r) being the short- range repulsive two- body interaction 
and V(r) being the external harmonic potential. The function G(1)(x, 
y) is then computed for various temperatures using the worm algo-
rithm. Note that simulating one weighted tube (layer) gives us the 
same result for G(1)(x, y) as taking into account the whole atom dis-
tribution in the array of tubes (layers) (see the Supplementary Mate-
rials). Figure 1B presents typical experimental data for G(1)(x,0) 
in 1D and 2D and compares the data to the results of the QMC 
simulations for various temperatures. Clearly, the QMC data serve 
as a very sensitive ruler for the temperature. For 2D, we obtain 
T2D = 17(1) nK, and the temperature in 1D is T1D = 9(1) nK. The 
accuracy is set by the systematic discrepancy (see Fig. 1B and fig. 
S2). Evidently, the system is hotter in 2D, and then colder in 1D. The 
1D data can be cross- checked using the analytical form of the 

�H =
∑

j

[
−

ℏ2

2m
∇2

j
+ V (�rj)

]
+

∑

j< k

U(�rj −�rk) (1)

Fig. 1. Sketch of the experimental setup and typical thermometry data for the various dimensions. (A) the initial nearly spherical 3d Bec (center) is cut either into 
an ensemble of 2d layers (top) or into an array of 1d tubes (bottom) via the optical force of one or two pairs of counterpropagating and interfering laser beams (arrows). 
the temperature scale illustrates the normal and anomalous temperature change when the dimensionality is switched for two slightly different initial conditions. 
(B) example data for the temperature measurements in 2d (top), 3d (middle), and 1d (bottom). For 2d and 1d, the calculated one- body correlation function G(1)(x,0) is 
plotted as a function of distance x/a for various temperatures (solid lines, with the temperature indicated by the color coding) and compared to the measured data (blue 
circles). the experimental statistical error from 20 repetitions is smaller than the size of the symbols. For the 2d case, the system has a weighted atom number N

2D
∼ 3950 

with radial trapping frequency ω2D

x
∕2π = 10.1 Hz . For the 1d case, the system has a weighted atom number N1D

∼ 63 with longitudinal trapping frequency 
ω1D

x
∕2π = 14.3 Hz . the scattering length is set to a3D = 620a0 for both 2d and 1d. the QMc calculations are under the experimental conditions and its error bars are less 

than 1%. For the 3d case, a typical tOF dataset with the squared Gaussian waist σ2 obtained from a bimodal fit as a function of the squared tOF duration ttOF is presented. 
the linear fit (dashed line) directly gives the 3d temperature. the three insets are example tOF absorption images for the respective dimensionality.
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correlation function. For a trapped 1D TG gas, it reads G(1)(x) ∼ 
e−ηx/a with η = m kBkTa/(2ℏ2n0) (32). With n0 = 0.9/a and ηexp = 0.48, 
we find Tanalytical

1D
= 9.1 nK. This agrees well with the QMC prediction.

The data above were taken for a specific set of parameters. We 
now perform cross- checks by varying the initial 3D temperature, 
the trapping frequency, and the interaction strength to elucidate the 
mechanism behind the anomalous cooling. For example, by chang-
ing the efficiency of the evaporative cooling process in the initial 3D 
dipole trap, we prepare 3D quantum- degenerate samples at various 
initial temperatures Ti with varying condensate fractions (see details 
in the Supplementary Materials). These samples are then transferred 
into 1D tubes and we measure the final temperature Tf as before. 
Such temperature data are shown in Fig. 2A. Clearly, anomalous 
cooling occurs when the initial temperatures are sufficiently low, i.e., 
20 nK and below. Typically, we see a decrease of 20 to 40% from the 
initial 3D temperature, with a temperature difference that is far 
more than 1- nK thermometer resolution. However, above Ti ≈ 20 nK, 
the dimensional change leads to heating.
Anomalous cooling mechanism
Invoking an entropy picture sheds light onto the anomalous cooling 
phenomenon and demonstrates the important role played by the 
dimensionality of the quantum many- body system. Figure 2B illus-
trates the population of the energy levels of the quantum harmonic 
oscillator in the different dimensionalities. The entropy S is known 
to increase with the number of accessible configurations W, i.e., S ∼ 
ln W. At high temperatures for an ideal (thermal) gas, it is domi-
nated by the density- of- states effect. The well- known Sackur- Tetrode 
equation predicts a d log T dependence of S, where d = 1,2, or 3 is 
the integer dimensionality, giving strictly higher S in 3D with re-
spect to 1D (assuming ω is fixed). This typically leads to heating 
when reducing the dimensionality. In the quantum low- temperature 

regime, the behavior of S can change drastically depending on statis-
tical effects. In 3D, the presence of the BEC reduces configurations 
and leads to a superlinear ∝T5/2 growth of S with T (33). For 1D 
gases, fermionization and the absence of condensation lead to sub-
linear growth. This gives rise to a crossing of the entropy curves, 
enabling cooling at low enough initial temperatures.

Specifically, when the dimension of the system is reduced from 
3D, two processes happen. On one hand, the condensate nature of 
the initial system is undermined. In 3D, the system is a nearly pure 
BEC with a small noncondensed fraction at low temperatures. Most 
of the atoms populate the ground state. In 2D, the nature of the con-
densate is weakened and the system exists only as a quasicondensate 
with a decay of the first- order correlations. This suggests an increase 
in the number of possible configurations C in energy space for a 
given nonzero temperature T. In the extreme case of a strongly in-
teracting gas in 1D, the system has fermionized. The particles are 
filled into the energy levels as ideal fermions and the excitations 
happen around the Fermi surface. On the other hand, the degenera-
cy of the energy levels becomes less as the dimensionality is reduced. 
This leads to the decrease of the number of possible configurations 
C. Thus, as a result of the competition of these two processes, one 
can reach a situation C1D > C3D > C2D. For constant entropy, as a 
result of careful adiabatic loading the lattice, one may thus obtain 
T1D < T3D < T2D.

This physical picture is confirmed by calculations of the entropy. 
For 3D trapped bosonic gases in the quantum regime (33), the en-
tropy is S3D = (7A𝜁(3)∕5

√
2)(15a3DN∕σ)1∕5(T∕ℏω)5∕2 with A = 

10.6, σ =
√
ℏ∕mω is the oscillator length, and ω = (ωxωyωz)

1∕3 . In 
the 1D case, the entropy S1D = −∂ ΩTG/∂ T of a TG gas can be 
computed from the grand potential ΩTG (34), with the trap treated 
under the local density approximation (see calculations in the 

Fig. 2. Cooling versus heating and the physical picture behind anomalous cooling. (A) the final temperature of the 1d system Tf (blue circles) as a function of the 
initial temperature of the 3d system Ti. the error bars are smaller than the size of the symbols. the analytical predictions are shown as orange and green solid curves. For 
these data, the 1d systems are always deeply in the tG regime. the inset displays the low- temperature data for which cooling is observed. the letters a, b, and c mark data 
points that are referenced in c1 and c2. (B) illustration of the configuration picture in 3d, 2d, and 1d on the basis of the quantum harmonic oscillator. the energy levels 
indicate the total energy taking all the weakly confined directions into account, with the horizontal axis indicating one of them. the green arrows indicate the effect of the 
nonzero temperatures. (C1 and C2) the entropy per particle S/NkB for the 3d trapped system (blue line) and the 1d tubes deeply in the tG regime (red line) as a function 

of the temperature T. the experimental parameters are ωx,y,z = 2π × (18.6,19.3,26.8) hz and N1D
= 72 for the data in (c1) and ωx,y,z = 2π × (29.4,27.1,39.9) hz and N1D

= 120 

for the data in (c2). the green dots reflect the three cases shown in (A), among which a and b show the cooling effect, while c shows heating.
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Supplementary Materials). These entropy curves are shown in 
Fig. 2C for our set of parameters. Below a certain temperature Tc

i
 , 

the entropy for 1D is higher than in 3D. When keeping the entropy 
constant, the system’s temperature has to drop when the dimension-
ality is reduced from 3D to 1D, see, e.g., a and b in Fig. 2A. Our data 
reflect this. Above Tc

i
 , a temperature increase is expected. This is also 

captured by our data. In Fig. 2A, we add the prediction for the tem-
perature decrease and increase during dimensional reduction. Our 
data fit the predictions reasonably well. Only for the lowest tempera-
tures do we find a decrease that is not as pronounced as predicted, 
most likely due to some small nonadiabaticity during the lattice- 
loading process. We note that the cooling mechanism observed here 
is reminiscent of the adiabatic demagnetization cooling technique 
(35, 36). However, in our case, there is no discrete spin degree of 
freedom into which entropy can be pumped.

Cooling conditions
We next turn to the influence of a change of the longitudinal 
trapping frequency ωx for the 1D systems. By means of the 
crossed- beam trap, we can tune ωx/2π from 14.3(2) Hz to 34.2(3) 
Hz. Our data, shown in Fig. 3B1, shows that the 1D temperature 
then varies from 9 to 21 nK. This confirms our entropy and con-
figuration picture: stiffening of the confinement reduces the 
number of accessible configurations, as shown schematically in 
Fig. 3A, and hence leads to an increase of the temperature. As is 
well known, adiabatic compression of a Boltzmann gas leads to 
heating, and decompression leads to cooling. Our data show 
that also a TG gas has the same behavior. We note that the lower 
limit 14.3 Hz for ωx is set by the residual transversal trapping 
force of the y-  and z- lattice beams. Reducing this value would 
require some anti- trapping, which could be done by means of an 
additional blue- detuned laser beam, and with this even lower 
1D temperatures should be possible.

We finally address the role of strong interactions. In the ex-
periment, after preparing the 1D tubes, we ramp a3D to a value 

between 7a0 and 620a0, with an uncertainty of 3a0, varying γ 
between 0.1 and 20 by more than 2 orders of magnitude given our 
typical atom number N  . We find a clear temperature dependence 
on γ as seen in Fig. 3B2. As γ is increased, the 1D temperature 
drops continuously. Above γ ≈ 1, the temperature settles to a con-
stant value. Evidently, more configurations become accessible as 
the system starts to fermionize, as sketched in Fig. 3A, leading to 
a reduction of the temperature, and beyond γ1D ≈ 1, the system’s 
fermionization is complete for a system in equilibrium.

DISCUSSION
In conclusion, we have realized a thermometer for strongly inter-
acting 1D and 2D quantum gases. We are capable of measuring 
temperatures for such strongly correlated systems in the low- 
nanokelvin range with 1- nK precision. With this thermometer, we 
have found that cooling may occur as the dimensionality is re-
duced from 3D to 1D, notably different from the heating that has 
been observed in most experiments so far (17, 21, 26, 28, 29). We 
note that recent work (37) has also found evidence for cooling in 
a regime similar to ours, though without further exploration of 
the mechanism or of the systematics. We have investigated into 
the requirements of the anomalous cooling effect and have found 
that extreme conditions of very low initial temperatures, strong 
interactions, and small 1D trapping frequencies are needed. In 
view of this effect, one can now optimize the formation process of 
low- D quantum gases, in particular for the case of box- like trap-
ping conditions (38). Next, a variety of phenomena in low- D, for 
which the temperature plays an important role, can now be ex-
plored with much better control, such as Anderson localization 
(15), the pinning (12) and Bose glass transitions (16, 18), the 
dimensional crossover (39), and out- of- equilibrium dynamics 
with, e.g., prethermalization (9), dynamical fermionization (8), 
correlated transport (40), and the implementation of quantum- 
field machines (41).

Fig. 3. Conditions for anomalous cooling. (A) illustration of the configuration picture for the fermionized tG gas, compared to the one with a higher trapping frequency 
ωx or a weaker interaction strength. (B1 and B2) the measured 1d temperature Tf as a function of the longitudinal trapping frequency ωx (B1) and the interaction strength 
γ (B2). the black dashed line indicates the initial 3d temperature Ti.
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MATERIALS AND METHODS
Preparation of the experiment
Our experiment starts with a 3D BEC containing around 1.5 × 105 
Cs atoms that are prepared in the lowest magnetic hyperfine state ∣F, 
mF〉 = ∣3,3〉 and confined in a crossed- beam dipole trap with a 3D 
trapping frequency ωx,y,z/2π = (18.6,19.3,26.8) Hz. The atoms are 
levitated against gravity by means of a magnetic field gradient ∇B ∼ 
31.1 G/cm oriented along the vertical direction, i.e., x direction in 
the Results section. The 3D s- wave scattering length is set to a3D ≈ 
190a0, which puts the BEC in the Thomas- Fermi (TF) regime. The 
details of the trapping and cooling procedures are described in (30, 
42). We adiabatically load the BEC into an optical lattice with a 
lattice depth up to 30Er, generated from two orthogonally and hori-
zontally propagating retro- reflected laser beams at a wavelength λ = 
1064.5 nm, to prepare an ensemble of 2D Bose gases or an array of 
1D gases. The lattice results in a tight transversal harmonic trapping 
frequency of ωz/2π = 11 kHz. The weak radial confinement in 2D 
and the longitudinal one in 1D caused by the combined lattice trap-
ping potentials give ω2D

x
∕2π = 10.1(2) Hz and ω1D

x
∕2π = 14.3(2) 

Hz. During the loading process, almost all layers (2D) or tubes (1D) 
are in the 2D and 1D TF regime for weak repulsive interactions. We 
can hence calculate the initial occupation number in each 2D layer 
or each 1D tube through the global chemical potential and the total 
atom number (27, 43). When in the lattice, we adiabatically raise 
the 3D scattering length up to a3D = 620a0 by means of a broad 
magnetic Feshbach resonance (42). The ramp time (50 ms) is chosen 
carefully, i.e., slow enough to avoid any excitations of the breathing 
modes in the gas.

The quantum Monte Carlo simulation
The numerical simulations carried out for the thermometry is based 
on the path- integral Monte Carlo method (44). Here, we perform 
the calculations similar to (31, 39, 45, 46). We simulate the system 
with the Hamiltonian of Eq. 1 in the “Precise nanokelvin thermom-
etry” section with the presence of a harmonic trap, both in the 2D 
and 1D case. Within the grand canonical ensemble, we simulate 
the system with a given temperature T, interaction strength g, and 
chemical potential μ (equivalently the particle number N). Taking 
advantage of the worm algorithm implementation (47, 48), we 
run the numerics efficiently and compute the one- body correlation 
function G(1)(x, y) in the open worldline configuration. The numer-
ical calculations make use of the ALPS scheduler library and statisti-
cal analysis tools (49–51).
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