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Research in context 21 
 22 
Evidence before this study:  23 
We searched the literature on seizure prediction in MEDLINE from January 1, 1946, to June 1, 24 
2020, in Embase from January 1, 1974, to June 1, 2020, and in Google Scholar (first 200 relevant 25 
references) using comprehensive electronic search strategies combining terms “epilepsy”, 26 
“seizures”, “prediction”, “forecasting”, “cycles”, “patterns”, “circadian”, and “multidien”, with 27 
no language restrictions. Identified studies used different outcome measures, but most involved 28 
analyses of electroencephalography (EEG) to predict seizures minutes in advance, with variable 29 
success. A single prospective trial of an implanted device for chronic EEG demonstrated above-30 
chance accuracy of warnings for imminent seizures in 9 out of 15 enrolled subjects. Two studies 31 
in independent cohorts of subjects chronically implanted with intracranial electrodes showed 32 
that rates of interictal epileptiform activity oscillate in circadian and multiday (multidien) cycles 33 
that help determine seizure likelihood. Circadian cycles and seizure diaries were used in three 34 
studies to forecast seizures over short horizons, but we found no results on forecasting seizures 35 
several days in advance. 36 
 37 
Added value of this study:  38 
In a large cohort of people with drug-resistant focal epilepsy who had chronic EEG recorded by 39 
an approved clinical device, we demonstrate that circadian and multidien cycles can be 40 
leveraged to forecast seizures up to three days in advance in some subjects and 24 hours in 41 
advance in the majority of subjects. These results highlight the feasibility of seizure forecasting 42 
over horizons longer than previously possible. 43 
 44 
Implications of all the available evidence:  45 
Seizures are not entirely random events. Using cyclical patterns of brain activity to forecast 46 
seizures hours to days in advance may enable novel seizure warning systems and prevention 47 
strategies. Convergence of findings from multiple independent datasets suggests the 48 
generalizability of this approach in people with epilepsy, though this will require direct testing in 49 
prospective clinical trials.  50 
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Abstract 51 
 52 
Background 53 
For people with epilepsy, much suffering stems from the apparent unpredictability of seizures. 54 
Recently, converging evidence from studies using chronic electroencephalography (cEEG) 55 
revealed that brain activity in epilepsy demonstrates robust cycles, operating over hours 56 
(circadian) and days (multidien), which help determine fluctuating seizure risk. We hypothesized 57 
that cycles of brain activity can be leveraged to estimate future seizure probability, and we 58 
tested the feasibility of forecasting seizures days in advance. 59 
 60 
Methods 61 
This feasibility study involved retrospective analysis of cEEG (≥ 6 months; recorded between 62 
January 2004 and May 2018) collected with an FDA-approved implanted device in 175 adults 63 
with drug-resistant focal epilepsy followed at 35 centers across the USA. In distinct 64 
development and validation cohorts, subjects had ≥ 20 electrographic and disabling clinical 65 
(self-reported) seizures, respectively. In all subjects, the device stored interictal epileptiform 66 
activity (IEA) that revealed cycles of abnormal brain activity. Point process statistical models 67 
trained on initial portions of each subject’s data generated forecasts of seizure probability that 68 
were tested on subsequent unseen data and evaluated against surrogate time-series. The 69 
primary outcome was the percentage of subjects with forecasts showing improvement over 70 
chance (IoC).  71 
 72 
Findings  73 
Models incorporating information about IEA cycles generated daily seizure forecasts with IoC in 74 
15/18 (83%) subjects and 104/157 (66%) subjects in the development and validation cohorts, 75 
respectively. In many subjects, the forecasting horizon could be extended up to three days. 76 
Hourly forecasts, possible only in the development cohort, showed IoC in 18/18 (100%) 77 
subjects.  78 
 79 
Interpretation 80 
Seizure probability can be reliably forecasted days in advance using data from an approved 81 
device. For adults with focal epilepsy, personalized risk-stratification over days is 82 
unprecedented and may enable novel seizure prevention strategies. This study paves the way 83 
for prospective clinical trials that will establish how people with epilepsy may benefit from long-84 
horizon seizure forecasting.  85 
 86 
Funding 87 
None.   88 
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Introduction 89 
 90 

Epilepsy is defined by the seemingly random occurrence of spontaneous seizures. 91 
Although seizures are typically brief events that cumulatively amount to a small fraction of time, 92 
their unpredictability necessitates standing treatments and causes significant disability.1 People 93 
with epilepsy are plagued by constant uncertainty, and the looming threat of seizures has 94 
implications for personal safety, independence, and psychological well-being. Reliable methods 95 
to anticipate seizures would mark a paradigm shift in clinical epilepsy, mitigating this 96 
uncertainty and enabling time-varying, risk-based seizure prevention strategies.  97 

Despite decades of progress in the field of seizure prediction, such methods remain 98 
elusive.2 The landmark NeuroVista trial3 demonstrated feasibility of a cEEG-based advisory 99 
system that warned of seizures minutes in advance. Subsequent analyses4-10 of data from this 100 
trial yielded numerous transformative insights that propelled the field for years. However, 101 
limitations of these pioneering efforts include the relatively small size of the trial—ten subjects 102 
participated in the seizure advisory phase—and the fact that the implanted device used is no 103 
longer available. 104 

In the decade since the NeuroVista trial, cEEG from another device (RNS® System), one 105 
that is FDA-approved and increasingly used in clinical care for epilepsy,11 revealed pervasive 106 
daily (circadian12,13) and multi-day (multidien13) cycles of interictal epileptiform activity (IEA) 107 
that are biomarkers of seizure risk.13 With these long-timescale biomarkers,14-16 interest has 108 
recently shifted to probabilistic approaches to seizure forecasting,5,17,18 akin to weather 109 
forecasting, which leverage prior knowledge about cyclical patterns of seizure risk to estimate 110 
seizure probability over future time horizons. Since most prior work in the field has sought to 111 
identify seizure precursors in the minutes preceding seizure onset,2,8 an unresolved question 112 
concerns whether periods of heightened seizure risk (pro-ictal states18) can be anticipated over 113 
longer horizons. We hypothesized that seizure probability is determined by alignment of cyclical 114 
influences at multiple timescales as well as the temporal distribution of recent seizures.4,9,10,18 115 
Models that incorporate these factors to generate seizure risk forecasts will ultimately require 116 
validation in large, prospective clinical trials. Imminent feasibility of such trials hinges on 117 
evaluating how generalizable and valuable the approach may be on existing cEEG data, using a 118 
probabilistic framework that accounts for the fact that seizures may not occur every time risk is 119 
accurately forecasted to be high. 120 

Here, we address these questions in a feasibility study aimed at developing and 121 
validating statistical models to forecast the individual risk for electrographic and self-reported 122 
seizures based on temporal features extracted from up to ten years of cEEG data. The primary 123 
study outcome was the percentage of subjects for whom forecasting models demonstrated 124 
Improvement over Chance (IoC) at different forecasting horizons. Secondary outcomes involved 125 
quantifying model performance using statistical methods suitable for probabilistic forecasts.  126 

 127 
  128 
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Methods 129 
 130 
Study design and participants  131 
This feasibility study involved development of seizure forecasting models in a ‘development 132 
cohort’ of 18 subjects who were implanted with the RNS® System (NeuroPace, Inc., Mountain 133 
View, CA, USA) for clinical indications and followed at two centers (University of California, San 134 
Francisco, and California Pacific Medical Center, USA). Forecasting models were subsequently 135 
validated by including cEEG data and self-reported seizures obtained from a ‘validation cohort’ 136 
of 157 participants in the nine-year long-term treatment trial (LTT) of the RNS System11,19 that 137 
took place between January 2004 and May 2018 across 34 centers in the USA (appendix, pp 10–138 
11; ClinicalTrials.gov identifiers: NCT00079781, NCT00264810, and NCT00572195). All involved 139 
centers obtained authorization from their institutional review board to recruit adults with 140 
medically-refractory focal epilepsy in the original trials and for subsequent data analysis. 141 
Existing cEEG data and seizure logs were screened for eligibility: > 6 months of continuous 142 
hourly IEA count data without large gaps and ≥ 20 electrographic or self-reported seizures but < 143 
50% days with seizures, as the utility of forecasting in individuals with very frequent seizures is 144 
likely low.3 All 175 included subjects provided written informed consent for analysis of their 145 
data. 146 
 147 
Procedure 148 
The RNS System utilizes customizable algorithms to detect pathological brain activity, as 149 
previously detailed.13 For each subject, IEA time-series from two RNS System detectors 150 
(appendix, pp 10–16) were selected for periods of continuous data with stable detection 151 
settings > 6 months. For all subjects, the first few months of cEEG (median [range] 222 d [28–152 
362 d]) after device implantation were discarded to account for time needed by clinicians to 153 
optimize detection parameters. 154 
 155 
Self-reported seizures are the current gold-standard for clinical trials in epilepsy, but 156 
electrographic seizures evident on cEEG are more objective and obviate subjects’ reporting 157 
biases.20 Therefore, we examined two types of seizures drawn from distinct, non-overlapping 158 
cohorts of subjects: (1) Timestamps of electrographic seizures from cEEG in the development 159 
cohort (N=18), identified through detections of prolonged epileptiform activity exceeding a 160 
clinically pre-specified duration, typically 15−40s. For each subject and each period of stable 161 
detection settings, a Board-certified epileptologist (V.R.R.) verified visually that ≥90% of these 162 
detections corresponded to electrographic seizures in stored electrocorticograms, as described 163 
in detail previously13; (2) Diaries of self-reported seizures in the validation cohort (N=157), 164 
recorded by participants in the LTT as number of seizures (’simple motor’, ’simple other’, 165 
’complex partial’, and ’generalized tonic-clonic’) per calendar day. According to the 2017 166 
International League Against Epilepsy classification, we considered ’complex partial’ and 167 
’generalized tonic-clonic’ as the disabling ‘seizures with impaired awareness’ studied here and 168 
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excluded subjects without disabling seizures. As subjects did not report the time of day for their 169 
seizures, these data could only be used for daily and not for hourly forecasts.  170 
 171 
Statistical analysis 172 
Forecasting models: To forecast seizure probabilities—continuous values between 0 (no risk of 173 
seizure occurrence) and 1 (seizure occurrence is certain)—we used past IEA, occurrence times 174 
of past seizures, and cyclical variables (hereafter, collectively referred to as ‘temporal features’) 175 
as inputs for point process generalized linear models (PP-GLMs). Models were estimated on 176 
training data and evaluated on chronologically subsequent test data. PP-GLMs are established 177 
tools in neuroscience research21,22 that provide a flexible statistical framework to evaluate the 178 
association between sequences of event (seizure) times represented as binary (or count) time-179 
series and temporal features upon which event probability may depend. Hourly IEA time-series 180 
were available for electrographic and self-reported seizure cohorts, allowing determination of 181 
circadian and multidien cycles of epileptic brain activity in all subjects (N=175).13 We trained PP-182 
GLMs with a log-link function and a conditionally Poisson distribution22 to output the probability 183 
of a seizure as a function of these cycles and other temporal features (appendix, pp 9–10) from 184 
subject-specific datasets comprising the shorter of 480 d or 60% of the subject’s total data. To 185 
prevent inflation of our performance metrics (see below) through the well-known phenomenon 186 
of seizure clustering, we defined ‘seizure-days’ or ’seizure-hours’ as binary events regardless of 187 
the seizure count and used these as training labels. The large amount of previously unseen 188 
testing data (Individually: minimum of 40% of data, >800 d in most subjects and up to 8 y; In 189 
total: 73% of data with 211,005 d) ensured that the models were not overfit for a small number 190 
of seizures and enabled assessment of forecasting performance in a probabilistic framework. 191 
 192 
Outcomes: Subject-specific forecast performance was quantified on held-out test datasets (i.e. 193 
index test) containing unseen seizures (i.e. reference standard: days or hours with self-reported 194 
or electrographic seizures) using two complementary metrics that are fully described in the 195 
appendix (pp 1–9): (i) for various seizure warning threshold probabilities, the area under the 196 
curve (AUC) of sensitivity (proportion of all seizures captured during warning) vs. corrected 197 
proportion of time in warning;23 (ii) Brier skill score (BSS), adapted from meteorology,5,17 which 198 
evaluates performance in relation to a naïve predictor (here, a randomly shuffled forecast).  199 
 200 
Based on these metrics, the primary outcome was Improvement over Chance (IoC), a binary 201 
outcome defined at the individual level through comparison of the original AUC to chance-level 202 
AUC, calculated from forecasts issued on surrogate data (see Statistical significance).2,5,8,23 In 203 
addition, secondary outcomes involved quantifying individual forecast performance. We 204 
calculated the median AUC across subjects with IoC (and the entire cohort) to evaluate 205 
discrimination, the goal of a deterministic forecast (do forecasts differ when their 206 
corresponding observations differ? see appendix, pp 1–9). AUC depends heavily on forecast 207 
horizon and pro-ictal state duration, and AUC is less than 1 even for a reliable forecast 208 
(appendix, p 8). This motivated the additional use of the BSS, which assesses model resolution 209 
(are different forecasts associated with different outcomes?) and calibration (how close are 210 
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forecasted probabilities to observed probabilities?), the goals of a probabilistic forecast 211 
(appendix, pp 1–9). Reliability diagrams5 were used to compare observed and forecasted 212 
seizure probabilities. 213 
 214 
Post-hoc analyses: To characterize individualized forecasts in terms of time-varying risk, we 215 
defined pro-ictal states as periods of time with forecasted probability above the individual 216 
expected seizure probability (appendix, pp 1–9). Based on these adjusted values, we report the 217 
average duration of pro-ictal states and the relative risk for seizures in pro-ictal as compared to 218 
low-risk states. We evaluated the overlap between forecasted probabilities and observed 219 
seizures as a function of circadian and multidien cycle phases and AUC as a function of the 220 
strength of seizure cycles, quantified as the phase-locking value (appendix, p 24).13 221 
 222 
Sensitivity analyses: Robustness of our results was assessed by systematically varying the 223 
amount of training data and the retraining interval (appendix, pp 21–23).  224 
 225 
Statistical significance: To determine individual chance-level AUCs, 200 surrogates were 226 
generated for each temporal feature: (1) for the recent seizure, circadian, and weekly 227 
distribution models, by randomly shuffling the seizure time-series under the null hypothesis 228 
that the seizure process is memoryless (i.e. events are independent of one another); (2) for the 229 
IEA-based features, by randomizing phases of underlying cycles, under the null hypothesis that 230 
seizure timing does not depend on trends in IEA.24,25 Significance was assessed with a false 231 
discovery rate (FDR) at α = 0·05 across all subjects to correct for multiple testing. As a 232 
supplementary statistical analysis, significance of AUC was assessed by comparing the number 233 
of seizures correctly identified by the model and by chance for a given fraction of time under 234 
warning (appendix, p 28).23,26 Analyses were performed with MATLAB R2019a, R 3·4·4, and 235 
Python 3·7·4. 236 
 237 
Role of funding source 238 
This study received no targeted funding. All authors had full access to data and had 239 
responsibility for the decision to submit for publication. 240 
 241 
Data sharing 242 
Deidentified individual data in the form of IEA counts and electrographic seizures from the 18 243 
subjects in the development cohort, as well as code created and used for this paper, will be 244 
freely available at #DOI will be made available upon acceptance# as of July 1, 2021 for at least 245 
20 years. A short explanation of the data is also provided. Original study protocols, statistical 246 
analysis plan, and informed consent forms are not available for this retrospective study. Data 247 
for the validation (self-reported seizure) cohort is property of NeuroPace, Inc. and is not 248 
available.  249 
 250 
  251 
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Results 252 
 253 
We collected retrospective cEEG data from two cohorts of subjects implanted with the RNS 254 
System (Fig. 1a, mean duration per subject 1484 d, range 227–3502 d). Between January 1, 255 
2018 and October 1, 2019, we screened 72 and 256 subjects, and we included 18 and 157 256 
subjects in distinct cohorts for forecasting model development and validation, respectively 257 
(flow diagram). The development cohort comprised 10 subjects whose cEEG data we previously 258 
published13 but here extended to include two years of subsequent recordings, plus 8 new 259 
subjects. The validation cohort comprised a subset of participants in the nine-year RNS System 260 
Long-term Treatment Trial (LTT)19, from which only limited cEEG data has been published12. 261 
cEEG data (Fig. 1b) from this cohort was used to validate forecasting models, which were then 262 
tested against the published dataset of self-reported seizures from the LTT19. Baseline 263 
characteristics for the two cohorts were similar, with median age 38 [IQR 32–51] and 35 [IQR 264 
25–43], and 44% (8/18) and 47% (74/157) females, respectively, with a preponderance of 265 
multifocal and mesio-temporal epilepsies (Table 1). 266 

In both cohorts, forecasting models were individually estimated on the first portion of 267 
each subject’s data, the ‘training datasets’, and tested on non-overlapping individual ‘testing 268 
datasets’ containing a total of 767 electrographic (median 19% [IQR 13–29] days with seizures) 269 
and 27,658 self-reported seizures (median 9% [IQR 5–16] days with seizures) that were 270 
previously unseen (see Methods). To forecast seizure probability with horizons of hours to days, 271 
models incorporated past IEA, occurrence times of past seizures, and cyclical variables as inputs 272 
(hereafter, ‘temporal features;’ Fig. 1c, Table 2). Individual subjects had excellent 273 
correspondence between forecasts and seizures (Fig. 1d–h). 274 

As a primary outcome, and for each temporal feature, we determined which subjects 275 
might benefit from forecasting with our models by calculating improvement over chance (IoC: 276 
AUC relative to chance-level, Table 2). Daily forecasts incorporating information only about 277 
recent seizures, weekly seizure distribution, or recent IEA produced IoC less often than models 278 
using information from multidien IEA cycles, for which IoC was observed in 15/18 (83%) and 279 
104/157 (66%) subjects for electrographic and self-reported seizures, respectively (Fig. 2a; Table 280 
2). With multidien IEA cycles alone, the forecast horizon could be extended up to three days 281 
while maintaining IoC in 2/18 (11%) and 61/157 (39%) subjects for electrographic and self-282 
reported seizures, respectively (Fig. 2b).  283 

As secondary outcomes, we quantified forecast performance for subjects with IoC using 284 
two complementary metrics, each addressing a distinct question (appendix, pp 1–9): (i) Area 285 
under the curve (AUC, sensitivity vs. corrected time in warning)—How valuable is a forecast 286 
given the amount of time spent in warning?, and (ii) Brier skill score5,17—How well does the 287 
forecast perform relative to a reference strategy (BSS = 1 for perfect forecast; BSS = 0 for no 288 
improvement over a random predictor)? Median AUC was 0·74 [IQR 0·70-0.79] and 0·70 [IQR 289 
0·65-0·75], and median BSS was 0·23 [IQR 0·18-0·30] and 0·13 [IQR 0·05-0·20] in the 290 
development (electrographic seizures) and validation (self-reported seizures) cohorts, 291 
respectively (Fig. 2a, c; all median values in Table 2; appendix, pp 17–18). A reliability diagram5 292 
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showed that resolution (Fig. 2d, highest bin average is below 1) and calibration were good, but 293 
not perfect, with forecasted probabilities above 25% being overconfident (i.e. below the 294 
diagonal line of perfect calibration, Fig. 2d).  295 

As a post-hoc analysis, we characterized the durations of forecasted pro-ictal states, i.e. 296 
the tendency for daily forecasts to remain high over consecutive days (Fig. 1f). To allow for 297 
comparison across subjects, we averaged peak-aligned forecasts centered within subjects 298 
around expected seizure probability (appendix, pp 1–9). This enabled visualization of pro-ictal 299 
states as contiguous periods of heightened seizure probability lasting 3–9 d and aligning well 300 
with the distributions of observed electrographic and self-reported seizures (Fig. 3). Average 301 
relative risk (RR) for self-reported and electrographic seizures occurring during forecasted pro-302 
ictal versus low-risk states was 9·4 [95% CI 4·5–14·9] and 3·7 [95% CI 2·8–4·7]) across subjects 303 
with IoC. Model performance also correlated with phase-locking values between seizures and 304 
multidien IEA cycles13 (Pearson r=0·6547±2·7×10-3, Wald test, p<0·0001; appendix, p 24), 305 
suggesting that the most forecastable individuals can be identified in advance. 306 

To further characterize performance of daily forecasts, we carried out sensitivity 307 
analyses to inclusion criteria (appendix, pp 19–20) and to training conditions. In both cohorts, 308 
longer training duration and iterative retraining (appendix, p 23), improved model performance 309 
and the calibration of output forecast probability (Fig. 2d; appendix, pp 21–22).  310 

Forecasting days-long pro-ictal states over long horizons may not be ideal for all 311 
patients,27,28 so we asked whether our approach allows refinement of forecasts to shorter 312 
horizons. Equivalent outcomes were obtained for hourly forecasting, which was only possible 313 
for electrographic seizures, as subjects in the validation cohort reported seizure days but not 314 
hours. Multivariate models incorporating instantaneous phases of circadian and multidien 315 
cycles and the recent circadian distribution of seizures5 yielded the best-performing hourly 316 
forecasts of electrographic seizures (Fig. 4a, c; appendix, p 25), and IoC was observed in 18/18 317 
subjects (100%; Table 2; appendix, pp 25–26). The forecasting horizon could be extended up to 318 
14 h while maintaining IoC in 8/18 subjects (44%; Fig. 4b). Across subjects, highest forecasted 319 
seizure probabilities occurred when critical phases of multidien and circadian cycles aligned (Fig. 320 
4d).  321 
 322 

  323 
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Discussion 324 
 325 
Here, we forecasted electrographic seizures and self-reported seizures—a gold standard metric 326 
for clinical trials in epilepsy—up to three days in advance. To our knowledge, this represents an 327 
unprecedented horizon for personalized seizure risk-stratification. Daily forecasts were above 328 
chance in the majority of the 175 adults with focal epilepsy involved in this feasibility study 329 
(15/18 and 104/157 in development and validation cohorts, respectively). In all subjects for 330 
whom it was possible (18/18), forecasts of electrographic seizures achieved finer temporal 331 
resolution on the scale of hours. Included subjects were treated with an implanted 332 
neurostimulation device and may not be representative of all people with epilepsy, though 333 
diverse focal epilepsies were represented in our cohorts, and seizure cycles are independent of 334 
brain stimulation.13,15  335 

To date, there has been only one prospective trial (NeuroVista3) of a seizure advisory 336 
system, which provided short-term (minutes) warnings of imminent seizures demonstrating 337 
above-chance accuracy in 9 out of 15 (60%) enrolled subjects (10 of these subjects completed a 338 
4-month testing period). Subsequent analyses on the same dataset showed that even the most 339 
difficult cases were predictable to some extent through crowd-sourced computational efforts.6-8 340 
In comparison, our feasibility study involved ten times more subjects, testing and validating a 341 
single computational approach for periods up to 10 years, and forecast horizons several orders 342 
of magnitude longer (hours to days).  343 

To evaluate forecasting model performance rigorously, we comprehensively report 344 
measurements of risk, discrimination, resolution, and calibration (explained in appendix, pp 1–345 
9). During forecasted pro-ictal states, the average RR of occurrence of electrographic and self-346 
reported seizures was 9·4 and 3·7, respectively, placing cycles of epileptic brain activity among 347 
the strongest predictors of seizures discovered to date. While RR is a well-established metric in 348 
medicine, it is limited to the evaluation of probabilistic forecasts at a single threshold value, 349 
whereas the BSS circumvents this limitation, offering a refined interpretation of forecast 350 
performance as a continuum (appendix, pp 1–9). A recent study in nine subjects employed 351 
probabilistic methods similar to ours within a circadian framework and yielded BSS ranging 352 
0·02–0·2 at a forecast horizon of one minute.5 In comparison, our study provided well-353 
calibrated forecasts, as illustrated in a reliability diagram (Fig. 2b), and median BSS of 0·23 [IQR 354 
0·18–0·30] (electrographic seizures) and 0·13 [IQR 0·05–0·20] (self-reported seizures). Another 355 
key distinction of our work is that daily forecasts of higher seizure probabilities were aggregated 356 
over days-long pro-ictal states (Fig. 3), providing smooth forecasts rather than flickering alerts 357 
based on real-time detection of evanescent seizure precursors. This may improve the 358 
interpretability of forecasts for people with epilepsy.3  359 
 This study has limitations. Implanted devices are associated with surgical risks and may 360 
not be suitable for all people with epilepsy who desire seizure forecasts, motivating 361 
development of minimally-invasive methods to monitor seizure risk biomarkers.1,4 Cycles of IEA 362 
may be more tractable than biomarkers requiring high sampling rate intracranial EEG,29 opening 363 
the possibility that certain novel methods, like sub-scalp EEG,30 could be viable for forecasting. 364 
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Our models did not incorporate common seizure triggers, such as medication non-compliance, 365 
which could account for some apparent ’false negatives.’ Self-reported seizure data was drawn 366 
from a large, prospective, nine-year clinical trial11,19—arguably the most well-curated clinical 367 
seizure dataset of this chronicity—but inaccuracy of seizure self-reports3,20 and small gaps in the 368 
data could have led to under-estimation of model performance. Finally, to dissect the potential 369 
contribution of different temporal features, this feasibility study focused on explicit statistical 370 
models that are computationally efficient, modest in their training requirements, and 371 
incorporated cycles of IEA using an accurate but non-causal estimation of the instantaneous 372 
phases. Thus, conclusions should be regarded as hypothesis-generating rather than clinical 373 
evidence.8 374 

In summary, our results corroborate an emerging view that seizures are not entirely 375 
random events.8 Given the large sample size, these results validate and powerfully extend our 376 
previous findings based solely on electrographic seizures,13 and they suggest the generalizability 377 
of using multiscale cyclical biomarkers in epileptic brain activity to forecast clinically-relevant 378 
seizures over long horizons. Moreover, our study indicates that seizure forecasting is feasible 379 
with existing neurotechnology in widespread clinical use (~3,000 patients currently implanted in 380 
the U.S.) and need not await novel industrial developments. Future prospective clinical trials 381 
should assess directly the ways in which people with epilepsy benefit from replacing constant 382 
uncertainty about seizures with “measured uncertainty” (forecasted risk) at different horizons, 383 
which has not been established by this or prior studies. To that end, we propose a nested 384 
approach to personalized seizure forecasting: (1) patient-specific multidien cycles reveal pro-385 
ictal states days in advance; (2) circadian IEA cycles and peak seizure times reveal hours of high 386 
risk;5 and (3) real-time detections of seizure precursors2 provide imminent seizure warnings 387 
conditioned on prior probability from (1) and (2). Future work will also involve miniaturization 388 
of devices, integration of cEEG with multimodal physiological data,1 optimization of forecasting 389 
models, and elucidation of mechanisms underlying cycles in epilepsy.  390 
 391 
  392 
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Legends 393 
 394 

 Development cohort Validation cohort 
N 18 157 

Age in years (median [IQR]) 38 [32-51] 35 [25-43] 
Percent females 44% (8/18) 47% (74/157) 

Percent males 56% (10/18) 53% (83/157) 
Seizure studied Electrographic seizures Self-reported disabling seizures 
Bilateral focus 50% (9/18) 46% (73/157) 

Left-sided focus 33% (6/18) 39% (62/157) 
Right-sided focus 17% (3/18) 14% (22/157) 

Mesiotemporal lobe epilepsy 83% (15/18) 64% (101/157) 
Frontal lobe epilepsy 0% (0/18) 9% (14/157) 

Multilobar epilepsy 6% (1/18) 12% (19/157) 
Other neocortical epilepsy 11% (2/18) 15% (23/157) 

Percentage of days with seizures 
in training datasets (median 

[IQR]) 

25% [17-29] 15% [10-25] 

Percentage of days with seizures 
in testing datasets (median [IQR]) 

19% [13-29] 9% [5-16] 

Table 1. Demographics and seizure characteristics of all subjects in the development and 395 
validation cohorts. 396 
  397 
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 398 
 Forecasts 

Horizon Daily Hourly 
Cohort Development 

 (N=18) 
Validation 

(N=157) 
Development 

(N=18) 
Reference 

standard 
Electrographic 

seizures 
Self-reported 

disabling seizures 
Electrographic 

Seizures 
Study outcome 1° 2° 1° 2° 1° 2° 

Metric IoC AUC BSS IoC AUC BSS IoC AUC BSS 

Te
m

po
ra

l f
ea

tu
re

s 

Recent 
seizures 

2/18 
(11%) 

0.62 
(0.60) 

0.06  
(0.03) 

43/157 
(27%) 

0.58 
(0.57) 

0.012 
(0.009) 

6/18 
(33%) 

0.57 
(0.52) 

0.002 
(0.00) 

Recent IEA 0/18 
(0%) 

NA 
(0.61) 

NA 
(0.02) 

51/157 
(32%) 

0.62 
(0.58) 

0.04 
(0.01) 

5/18 
(28%) 

0.64 
(0.60) 

0.008 
(0.006) 

Circadian IEA 
phases 

NA NA NA NA NA NA 8/18 
(44%) 

0.65 
(0.62) 

0.01 
(0.01) 

Circadian 
seizure 

distribution 

NA NA NA NA NA NA 11/18 
(61%) 

0.62 
(0.59) 

0.008 
(0.002) 

Weekly 
seizure 

distribution  

0/18 
(0%) 

NA 
(0.54) 

NA 
(0.00) 

0/157 
(0%) 

NA 
(0.56) 

NA 
(0.004) 

NA NA NA 

Multidien 
phases 

15/18 
(83%) 

0.74 
(0.73) 

0.23 
(0.17) 

103/157 
(66%) 

0.70 
(0.66) 

0.13 
(0.07) 

15/18 
(83%) 

0.70 
(0.70) 

0.024 
(0.018) 

Multivariate NA NA NA NA NA NA 18/18 
(100%) 

0.75 
(0.75) 

0.036 
(0.035) 

Table 2. Primary and secondary study outcomes. Percentage of subjects with Improvement 399 
over Chance (IoC) for different temporal features, where IoC was obtained by comparing the 400 
area under the curve (AUC) of the original data with the AUC of 200 surrogate time-series with 401 
alpha < 0.05 adjusted for false-discovery rate correction. Data are median AUC and median 402 
Brier skill score (BSS) among subjects with IoC (entire cohort). 1°: primary, 2°: secondary.  403 
 404 
  405 
  406 
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407 
Figure 1. Individual seizure risk forecasting in one subject. (a) Responsive Neurostimulation 408 
(RNS®) System, comprising a cranially-implanted neurostimulator connected to two four-409 
contact intracranial depth leads (shown, for example, in hippocampus, red) and/or cortical strip 410 
leads (shown unconnected) that provide chronic electroencephalography (cEEG). (b) From these 411 
recordings, the RNS System provides hourly counts of detections of interictal epileptiform 412 
activity (IEA) and electrographic seizures (not shown). (c-e) Entire test dataset from one subject 413 
(S7) showing input temporal features, output daily forecasts, and observed seizures. (c) Time-414 
series of IEA averaged over one calendar day (‘daily IEA’), underlying multidien cycle, and 415 
electrographic seizures that serve as some of the input temporal features for the forecasting 416 
model. (d) Daily forecast of seizure probability (gradient-colored lines) at 24-hour horizon (D+1) 417 
generated by a model (grey arrow) trained on ten months of data (not shown) and run on seven 418 
months of held-out test data (shown here) using input variables from c. Higher forecasted 419 
probabilities (red) form days-long pro-ictal states (red shadow) during which daily probability of 420 
seizures is continuously above the expected probability, defined as the long-term average daily 421 
seizure frequency calculated over months of training data (‘E’, here 0·19 seizures per day). (e) 422 
Seizures observed during and outside of pro-ictal states over these seven months. (f) Average 423 
pro-ictal state illustrated by peak-aligned average probability forecasts (top) and corresponding 424 
temporal distribution of seizures (bottom, shown as stacked individual events and percentage 425 
of total count on y-axis). (g) Hourly forecasts of seizure probability based on hourly IEA and its 426 
circadian cycle (not shown) refining pro-ictal states into hours of relatively higher and lower 427 
seizure risk. BSS: Brier skill score. (h) Seizures observed over this period of nine days.  428 
  429 
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430 
Figure 2. Performance of daily forecasts of electrographic and self-reported seizures. (a) 431 
Distributions of univariate daily forecast performance (at 24-h horizon) quantified as the area 432 
under the curve (AUC) across subjects. When models incorporated multidien phase information, 433 
AUC showed improvement over chance (IoC) for 83% and 66% of subjects (color dots, p<0.05) in 434 
the development cohort (with recorded electrographic seizures) and the validation cohort (with 435 
self-reported seizures), respectively. Shaded areas in these and subsequent violin plots show 436 
kernel density estimates to highlight the shape of the distribution of the entire cohort; darker 437 
shading is the interquartile range and horizontal white line is the median. (b) AUC as a function 438 
of forecasting horizon longer than 24-hour using multidien phase as the input variable, to be 439 
compared to forecast at 24-hour horizon in a. (c) As in (a), daily forecasts based on multidien 440 
phases of IEA yielded both higher AUC and Brier skill score (BSS) than other models. The BSS 441 
represents improvement (skill, color dots) of mean squared forecast error (Brier score) relative 442 
to a reference randomly shuffled forecast; BSS range is −∞ to 1, with 0 being no skill relative to 443 
reference forecast and 1 being a perfect forecast. (d) Reliability diagram showing observed 444 

a b

c d Without retraining
With retraining

Forecasted probability

O
bs

er
ve

d 
pr

ob
ab

ili
ty

BS
S

AU
C

Forecasting horizon [number of days in advance]

Recent
seizures

Weekly
distribution

Recent
IEA

Multidien
phases

Recent
seizures

Weekly
distribution

Recent
IEA

Multidien
phases

Electrographic seizures (development cohort, N = 18)
Self-reported seizures (validation cohort, N = 157) 
Lack of improvement over chance



16 

seizure probability vs. binned forecasted probabilities of electrographic seizures (green, N=18 445 
subjects) and self-reported seizures (orange, N=157 subjects). Empirical curves for a set of 446 
forecasts generated by models before (empty dots) and after (filled dots) re-training after every 447 
seizure are compared to the dashed diagonal line of perfect calibration (shading indicates 95% 448 
confidence intervals (CI)).  449 
  450 
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 451 

 452 
Figure 3. Pro-ictal states. (a) Peak-aligned normalized average forecast probabilities for all 453 
subjects in the electrographic seizures (development) cohort (N=18, rows, ranked by width of 454 
pro-ictal state) reveal days-long periods of seizure probability higher than the expected seizure 455 
probability (E). (b) Distributions of observed seizure probabilities averaged in the same way align 456 
well with periods of high risk. (c) and (d) show data analogous to (a) and (b) from the self-reported 457 
seizures (validation) cohort (N=157). Cyan boundaries depict estimated durations of pro-ictal 458 
states, which range from three to five days in the majority of subjects and more than seven days 459 
in a minority of subjects. Most subjects whose forecasts did not show IoC reside at the bottom, 460 
outside of the cyan boundaries. 461 
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463 
Figure 4. Hourly forecasts of electrographic seizures. Hourly forecasts were not possible for 464 
self-reported seizures because time resolution of these data was one day. (a) Distributions of 465 
univariate and multivariate hourly forecast performance (at 1-h horizon) quantified as the AUC 466 
across subjects. Multivariate models incorporated information from circadian and multidien 467 
phases of IEA, as well as the circadian distribution of seizures, yielding AUC with IoC in 18 out of 468 
18 (100%) subjects (color dots, p<0.05). (b) AUC as a function of forecasting horizon hours in 469 
advance of seizures. (c) As in (a), multivariate models yielded both higher AUC and BSS than 470 
univariate models. (d) Phase-space map across 18 subjects showing alignment of critical phases 471 
of circadian and multidien cycles with observed seizures (contours represent percentiles), 472 
coinciding with times of highest forecasted seizure probability. 473 
 474 
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