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Chapter 1

Introduction

The P=W conjecture of De Cataldo, Hausel and Migliorini [CHM] relates two fil-
trations, the “weight” and the “perverse” one, on the cohomology of the moduli
space of Higgs bundles. Such conjecture was proven in [CHM] in the rank 2,
odd-degree case, using geometrical methods; in this thesis, we take the enumer-
ative approach to re-prove a part of this difficult problem. Our starting point is
the theory of equivariant integration developed in [HP] which, along with the
intersection formulas on the moduli space of stable bundles found in [Th1] and
[Z], allows us to write localization formulas on the moduli space of Higgs bun-
dles, which are powerful enough to formulate the enumerative version of P=W
(Theorem 7.0.2).

In Section 2, we briefly survey the basics of intersection theory, in order to set
our notation and, most importantly, to explain what we mean when we say we are
integrating a cohomology (or Chow) class. The Kodaira and Hirzebruch-Riemann-
Roch theorems, which lie at the heart of Witten’s localization formulas developed
as in [Th1] and [Z], are recalled at the end of the section.

In Section 3, the equivariant cohomology theory of a smooth manifold is de-
fined, following the classical text [GS]. After that, we formulate and prove the
basic localization formula for smooth compact manifolds with a torus action, fol-
lowing the proof given in [AB1]. Finally, important applications of such formula
are presented; in particular, the intersection theory of symmetric products of Rie-
mann surfaces will be used when writing the equivariant localization formulas for
the moduli space of Higgs bundles of rank 2.

Section 4 is dedicated to vector bundles and their moduli spaces. We introduce
Chern classes of vector bundles, the notion of slope-stability, and sketch the con-
struction of the moduli space of stable bundles as in [AB]. We introduce Witten’s
notation for expressing the cohomology classes of the moduli space, and explain
Thaddeus’ and Zagier’s intersection formulas of [Th1] and [Z]: they will be the
basis of our equivariant intersection formulas.

In Section 5 we review the definition and basic properties of Higgs bundles of
rank 2 and of their moduli space Mg. We focus on the equivariant cohomology of
such space with respect to the natural C∗-action, and on the compactification Mg

constructed in [Ha1]. Then, we review the definition of equivariant integration
as in [HP] and see how, through Kalkman’s formula (Lemma 4), this allows in
particular to compute classical integrals on the infinity divisor of Mg.
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In Section 6 we explain the classical Narasimhan-Seshadri correspondence be-
tween vector bundles over a Riemann surface and representations of the funda-
mental group, and how such correspondence extends to Higgs bundles, yielding
the nonabelian Hodge correspondence. The exposition follows closely [AB] and
[Hi1]. We also recall the basic notions of mixed Hodge structures, and formulate
the classical P=W conjecture of [CHM] for rank 2 Higgs bundles.

The new results of the research project are contained in Sections 7 and follow-
ing. Parts of these sections are the topic of the paper [CHSz], written by T. Hausel,
my advisor A. Szenes, and myself.

In Section 7 we compute the equivariant intersection formula on Mg in terms of
cohomology classes in Witten’s notation. Using Kalkman’s formula, we compute
a localization formula for the integrals on the infinity divisor of Mg. We also
introduce the notion of defect of a cohomology class and relate it to the order of
the pole appearing in the localization formula.

In Section 8 we formulate the enumerative version of P=W, and prove its equiv-
alence with the classical one of [CHM]. We then apply the formulas found in
Section 7 to formulate the matrix problem at top-defect and find the explicit solu-
tion for the classes βk. For the more general classes βk−hγh, we find and prove
determinantal criterion for the existence of a solution.

Finally, in Section 9 we examine the difficulties arising when dealing with the
pairing at lower defects (i.e. finding the higher defects of the solution to P=W).
We address such problem by rationalizing our localization formulas (Proposition
9.2.1); this allows us to find the homogeneous part of the solution to P=W of defect
one higher, in the case of the classes βk.
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Chapter 2

Intersection Theory

We can define intersection theory as the branch of algebraic geometry studying
subvarieties of a given variety, and the way they intersect. Actually, one rarely
wants to consider all subvarieties as distinct objects: what must be done is defining
an equivalence relation ∼ of subvarieties, which respects intersections:

A ′ ∼ A and B ′ ∼ B⇒ A ′ ∩B ′ ∼ A∩B. (2.1)

Our definition of intersection theory can thus be refined by saying that it deals
with the properties of the set of equivalence classes [A], for all subvarieties A of
a given variety X. In particular, we will have different theories depending on the
definition of the equivalence relation.

Once the relation has been chosen, one defines F(X) to be the free abelian
group over all subvarieties of X, and R∼(X) = F(X)/ ∼, where the relation ∼ has
been extended to F(X) by Z-linearity. Since (2.1) defines a product on the set of
equivalence relations, namely

[A] · [B] := [A∩B], (2.2)

we have that R∼(X) is a ring.
When it comes to a morphism f : X → Y, we should recall that f does not

respect intersections in general. However, the pre-image f−1 does, so that it is
natural to say that the functor X 7→ R∼(X) should be contravariant: there exists a
map f∗ : R∼(Y)→ R∼(X) defined by f∗[A] = [f−1(A)] (where we still extend f−1 by
Z-linearity to the free abelian group F(Y)); of course, in order for f∗ to be well-
defined, the equivalence relation ∼ must be respected by the morphism f. In this
way, we see that f∗ is a ring homomorphism.

Arguably the two most important instances of intersection theory come from
considering ∼ to be either rational equivalence or (co)-boundary. We will quickly
discuss the former in the following section, while the latter, which brings to (co)-
homology theory, will be the main subject of the present thesis.
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2.1 The Chow ring and Chern classes

Let M be a smooth complex quasi-projective variety of dimension m 1 and let
F(M) to be the free abelian group over its subvarieties. We say that a subvariety
Γ ⊆M×CP1 is graph-like if it is not contained in any fiber M× {p}, p ∈ CP1. For a
graph-like Γ and a point p ∈ CP1, we call Γp = Γ ∩ (M× {p}), which has constant
dimension for every p when it is non-empty. Intuitively, we can consider a graph-
like Γ ⊆ M×CP1 as defining an algebraic homotopy between Γp and Γq for any
two points p, q ∈ CP1.

Choose two distinct points {0,∞} ⊆ CP1: for X and Y subvarieties of M, we
define

X ∼ Y ⇐⇒ X = Γ0 and Y = Γ∞, for some graph-like Γ .

We say that the two subvarieties X and Y are rationally equivalent. We call the quo-
tient A(M) := F(M)/ ∼ the Chow group of M. Since rational equivalence respect
dimensions, we see that

A(M) =

m⊕
l=0

Al(M) (2.3)

where Al(M) is the subgroup consisting of equivalence classes of dimension l

subvarieties.
Notice that when considering the ring structure (2.2), the direct sum decom-

position (2.3) is not a grading. Indeed, if dimX = k and dimY = l we expect, for
general enough X and Y, to have dimX∩ Y = k+ l−m. Thus we define the Chow
ring to be A(M) as abelian group, but with the grading

A∗(M) =

m⊕
l=0

Al(M), with Al(M) := Am−l(M) for l = 0, . . . ,m. (2.4)

This is not enough yet to have a well-defined graded ring structure on A(M),
since we did not define what “general enough” means when we intersect two
subvarieties; moreover, we should check whether the intersection of subvarieties
respect rational equivalence.

We say that X and Y are generically transverse if for all p in a Zariski open
subset of X∩ Y, we have TpX+ TpY = TpM. The fundamental ingredient, that can
be considered the heart of intersection theory, is then the following lemma, which
allows us to say that A∗(X) is a graded commutative ring, with product defined as
in (2.2). For its proof we refer to Lemma A.1 in [EH], and to the references therein.

Theorem 2.1.1 (Moving Lemma). Let α ∈ Ak(M) and β ∈ Bl(M). Then there exist
generically transverse subvarieties X and Y ∈ F(M) such that [X] = α and [Y] = β.
Moreover, the class of [X∩ Y] only depends on α and β.

The issue of transversality remains when we want to define the pull-back map
f∗ of a morphism f : M → N. We say that Y ⊆ N is generically transverse to f if
f−1(Y) is reduced and codimNY = codimMf−1(Y). It can be shown (Lemma A.2
in [EH]) that this is equivalent to be generically tranverse to a particular finite

1We mention here that the richest part of this theory comes from considering much more general
schemes over a field. However for our exposition this assumption will be enough.

8



collection of subvarieties of Y. Therefore the Moving Lemma allows us to define
f∗ : A(N)→ A(M) by the following condition:

f∗(α) = [f−1(Y)] for Y generically transverse to f such that [Y] = α.

It is now easily shown that id∗ = id and (g ◦ f)∗ = f∗ ◦ g∗ when it makes sense.
In this way, we have a complete definition of the intersection theory on a smooth
quasi-projective variety M, based on rational equivalence.

Remark 2.1.2. Notice that A0(M) = Am(M) ' Z since the only dimension m

subvariety is M itself. Oppositely, Am(M) = A0(M) is the set of points up to ra-
tional equivalence, thus it can be a complicated object. If M is a smooth projective
variety, A1(M) is the set of Weil divisors on M up to linear equivalence, so that
A1(M) ' Pic(M).

Notice that the Chow group also has a notion of push-forward: for a morphism
f :M→ N and a subvariety X ⊆M of dimension l, we can define f∗[X] := [f(X)] ∈
Al(N); it can be shown this is a map of A∗(N)-modules, i.e.

f∗(f
∗β ·α) = β · f∗α, for α ∈ A(M), β ∈ A(N).

If dimM = m and dimN = n, we see that f∗ : Al(M) → An−m+l(N). In
particular, if M = {p} is a point, so that A(M) = A0(M) = Z, we have that
f∗[p] ∈ An(N) is the class of the point f(p) in the Chow ring of N. More interest-
ingly, if f :M→ {pt} is the constant map, the push-forward of f defines the degree
map deg f := f∗ : An(M)→ Z.

The Chow ring satisfies right-exact excision and the Mayer-Vietoris properties:
for i : X ↪→M, Y ⊆M closed embeddings, and j : U =M \X ↪→M, then we have

A(X∩ Y)→ A(X)⊕A(Y)→ A(X∪ Y)→ 0 (2.5)

A(X)
i∗−→ A(M)

j∗−→ A(U)→ 0 (2.6)

Example 1. Let An be the affine space of dimension n. If X ⊆ An is a proper
subvariety and p /∈ X, then letting Γ to be the projectivization of the cone of X
centered in p gives a rational equivalence between Γ1 = Y and the empty set Γ∞,
thus Y ∼ 0. This implies that A(An) = A0(An) = Z · [An].

Example 2. In general, letting U ⊆ An be a non-empty open subvariety, by the
previous Example and by (2.6) we have that A(U) = A0(U) = Z · [U].

Example 3. Using excision (2.6) and the classical stratification of CPn by affine
spaces, we see that Ak(CPn) = Z · [Ln−k] where Ln−k is any (n− k)-dimensional
linear subspace. Moreover, since Ln−k is the transversal intersection of k hyper-
planes, we have [Ln−k] = ζ

k where ζ ∈ A1(CPn) is the class of a hyperplane. It is
actually not difficult to show that this gives the full description of the Chow ring

A(CPn) ∼= Z[ζ]/(ζn+1).

Remark 2.1.3. We used the Moving Lemma as the foundation of intersection the-
ory. It should be mentioned here that although this approach has the advantage
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of being intuitive (and, most importantly, of giving the correct results!), it is not
the best in terms of theoretical bases, since there are some controversies on the
proofs of the strong version of it, namely the possibility to construct subvarieties
generically transverse to a morphism f :M→ N.

The modern theoretical framework of Fulton and MacPherson [Ful], [FMP]
makes the Moving Lemma unnecessary for the definition of the Chow ring and of
its functorial properties; moreover, it rigorously shows that the classical statements
of the Moving Lemma are indeed correct, so that they can be freely used in our
geometric intuitions.

The importance of the Chow ring in the present thesis relies on the fact that it
is the natural framework to define Chern classes of vector bundles in terms of its
sections.

Definition 2.1.4. Let V be a rank r vector bundle on a smooth variety M, and
let σ1, . . . ,σr be generically independent global sections of V . For k = 1, . . . , r we
define the k-th Chern class as

ck(V) := Z(σ1 ∧ · · ·∧ σr−k+1) ∈ Ak(M)

where we denote by Z(σ) the subvariety of M in which the section σ is zero.

It can be shown (see [EH]) that the class of ck(V) in the Chow group Ak(M) is
well-defined, i.e. it does not depend on the particular choice of the sections σi as
long as they are generically independent.

Of course, this does not define Chern classes for vector bundles with not
enough sections. In order to have a comprehensive definition, we use a classi-
cal result (see for example [MSt]) which allows us to extend the construction by
functoriality to all vector bundles. Thus we state, without proof, the following
theorem.

Theorem 2.1.5. [Existence of Chern classes] There is a unique way of assigning to every
vector bundle V of rank r on M and every k ∈ Z a class ck(V) ∈ Ak(M) such that

1. c0(V) = 1 and ck(V) = 0 for k > r.

2. If 0→ U→ V →W → 0 is a short exact sequence of vector bundles on M, then

ck(V) =

k∑
i=0

ci(U)ck−i(W).

3. If ϕ : N→M is a morphism, then for all k

ck(ϕ
∗V) = ϕ∗ck(V).

4. For bundles generated by global sections, ck(V) is as in Definition 2.1.4.

Point (2) is usually called Whitney’s formula; it can be expressed in a compact
form using the total Chern class

c(V) := 1 + c1(V) + . . . + cr(V) ∈ A(M)

using which Whitney’s formula simply becomes c(V) = c(U)c(W).
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Example 4. Letting L = O(1) be the line bundle on CPn corresponding to a hy-
perplane section H, we have c1(L) = [H] = ζ ∈ A1(CPn), thus for the tautological
bundle τ = L∗ we will have c1(τ) = −ζ. Denoting V the trivial (n+ 1)-bundle on
CPn and Q = V/τ the universal quotient bundle, Whitney’s formula gives

c(Q) =
1

1 − ζ
= 1 + ζ+ ζ2 + . . . + ζn ∈ A(CPn).

Although the Chow ring is a natural framework for introducing the intersec-
tion theory of a variety, a much coarser concept is sufficient for the scope of the
present thesis. We thus discuss the role of cohomology in the next section, keeping
the possibility of coming back to Chow groups in the (rare) cases it will be needed.

2.2 Cohomology and intersection numbers

For us, the cohomology of an algebraic variety M will be the singular cohomology
with complex coefficients Hi(M) = Hi(M; C).

Remark 2.2.1. Assuming M is smooth, assigning to subvariety the corresponding
non-compact cycle gives a homomorphism Ai(M) → HBM2i (M; Z), where we are
considering Borel-Moore homology; under Poincaré duality, this gives a homo-
morphism

Ai(M)→ H2i(M; Z).

Notice that if M is smooth and projective, then this is an isomorphism for i = 1,
since both objects are isomorphic to Pic(M).

With a slight abuse of notation, we denote the Chern class ck(V) ∈ H2k(M) of
a vector bundle V to be the image, under the homomorphism of Remark 2.2.1, of
ck(V) ∈ Ak(M) as in Definition 2.1.4 and Theorem 2.1.5.

For the rest of this section, we assume M is a smooth compact complex alge-
braic variety of complex dimension n. Then, Poincaré duality allows us to describe
the cohomology of M in terms of intersection data, as follows.

Definition 2.2.2. The integral is the map∫
M

: Hi(M) −→ C

which is identically 0 for i 6= 2n, and for i = 2n sends the class Poincaré-dual to a
point to 1 ∈ C. For a class α ∈ H2n(M), we write

∫
M α for its integral.

Given a set S = {α1, . . . ,αm} of generators of the cohomology ring H(M), the
intersection numbers of M relative to the generating set S are the complex numbers
of the form ∫

M

αi1 · · ·αik .

Of course, only products of top degree will yield non-zero intersection num-
bers. Enumerative geometry can be described as the study of the structure of such
intersection numbers. Typically, one is brought to consider a generating set of
integral classes αi ∈ Hi(M; Z): since Poincaré duality holds at the level of in-
tegral cohomology, such intersection numbers will be integers. However, this is
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not strictly necessary for the development of the theory, and one can equally well
work with more general, complex intersection numbers.

The following Lemma is of key importance for enumerative geometry.

Lemma 1. A class α ∈ Hi(M) is zero if and only if, for all β ∈ H2n−i(M),∫
M

αβ = 0.

Proof. It follows from the fact that the Poincaré duality is a perfect pairing.

This easy lemma has a striking consequence: assuming we know a set S of gen-
erators of the cohomology ring H(M), knowing the intersection numbers allows
(in principle) to find all the relations, thus describing the ring H(M) completely.
Enumerative geometry allows to transform any problem involving the cohomol-
ogy of a compact smooth variety into one about the combinatorial or analytic
structure of its intersection numbers. This is the point of view we will exploit in
the present thesis.

2.3 The Kodaira vanishing and Hirzebruch-Riemann-Roch
theorems

In the context of intersection theory on moduli spaces, two basic results on com-
plex algebraic variety provide a powerful tool to obtain striking formulas such as
the ones obtained by Witten originally for the moduli space of stable bundles.

We say that a holomorphic line bundle L on a complex manifold M is positive if
the curvature associated to its Chern connection (i.e. the unique connection whose
antiholomorphic part is the ∂-operator defining the holomorphic structure of L)
−iω where ω is a positive definite form. We say that a holomorphic line bundle
is negative if its dual is positive. We refer to [GH] for all these notions, which will
also be surveyed in Section 6.

Theorem 2.3.1 (Kodaira vanishing). Let M be a compact Kähler manifold and L a
negative line bundle. Then for i > 0, we have Hi(M;L) = 0.

The second result, the Hirzebruch-Riemann-Roch theorem, allows to express the
Euler characteristic

χ(M;V) :=
∑
i>0

(−1)idimHi(M;V)

of a holomorphic vector bundle V as an integral.
The statement of the theorem involves the Chern character ch(V) of the vector

bundle V ; this is defined as

ch(V) := eλ1 + . . . + eλr

where λ1, . . . , λr are the Chern roots of V . Moreover, we define the Todd class of a
bundle V as

td(V) :=
n∏
i=1

Q(λi), with Q(x) =
x

1 − e−x
= 1 +

x

2
+
x2

12
−
x4

720
+ . . .
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Theorem 2.3.2 (Hirzebruch-Riemann-Roch). If V is a holomorphic vector bundle over
a compact complex manifold M, then

χ(M;V) =
∫
M

ch(V)td(M). (2.7)

where ch(V) is the Chern character of V and td(M) is the Todd class of TM.

Notice, in particular, that if V is a line bundle which satisfies the hypotheses
of Kodaira vanishing, then (2.7) provides a formula for the dimension of the space
of sections H0(M;V) as a particular intersection number. This is a crucial step in
finding the intersection formulas developed in [Th1] for the moduli space of stable
bundles, which in turn are the basis for our intersection formulas on moduli spaces
of Higgs bundles.
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Chapter 3

Equivariant Cohomology and
Localization Formulas

Our moduli spaces are particular quotients of an algebraic variety under the action
of a reductive algebraic group. A fundamental tool to include the group action
into the theory is looking at the equivariant cohomology of the variety. This is an
extension of the usual cohomology theory, the use of which allows to introduce
the celebrated localization formulas of Berline-Vergne [BV] and Atiyah-Bott [AB1];
finding and exploiting such formulas for the moduli space of Higgs bundles will
be one of the goals of the present thesis.

3.1 Group actions on algebraic varieties

In this chapter we let G be a compact algebraic group, and M a compact manifold
of dimension n, on which G acts in an algebraic way, i.e. the action defines an
algebraic morphism G×M → M. We let MG be the set of fixed points of the
action. If m ∈ MG, then the differential of the action induces an action of G on
TmM, i.e. an algebraic representation of G.

Most of the time, we will concentrate on the case of G = T being a compact
torus of rank r; this implies that we can describe the action of G on the tangent
space to a fixed point TmM by its weight decomposition

TmM =
⊕
λ

Vλ

where λ ∈ Λ ⊆ t∗ is the weight lattice.

Remark 3.1.1. In fact, more is true. Cartan’s lemma states that such an action can be
linearized: for each fixed point m there is an invariant analytic open neighbour-
hood U of m, an embedding G ↪→ GL(n; C), and an analytic isomorphism U ∼= Cn

which is equivariant under that embedding. In particular, since the fixed locus on
Cn will be a linear subspace, this implies that MG is smooth.

If the action of G onM is free, then we know thatM/G is naturally an algebraic
variety; therefore we can naturally define an equivariant cohomology class to be a
class of H(M/G). However, in many interesting cases the action on M will not be
free, yet we want a cohomology theory which deals with such actions.

14



The main idea is that if E is a contractible topological space, the homotopy
type of E×M is the same to the one of M, so all cohomological data of the two
spaces must coincide. The idea is then to find a contractible 1 space EG with a free
G-action, and to define the Borel model of M as

MG := (EG×M)/G

where the G-action on the product is the diagonal one. Notice that this is a quo-
tient of a topological space with a free G-action.

Definition 3.1.2. The equivariant cohomology of M is the singular cohomology of its
Borel model; so we define

HG(M) := H(MG; C).

Remark 3.1.3. Since the classifying space is typically an infinite-dimensional man-
ifold, some care must be exercised in defining the cohomology of MG. We will not
discuss this technicality in detail, since the Weil or Cartan models which we will
describe in the next section provide a good, finite-dimensional way to compute
equivariant cohomology.

Example 5. If the action of G on M is free, then we can show that MG has the
same homotopy type of M/G, thus HG(M) ∼= H(M/G). At the other extreme,
consider the case when M = {pt} is a point where G acts trivially. Then we have

MG ' EG/G := BG.

Let M and N be two manifolds with a G-action, and let f : M → N be a G-
equivariant map. Then by looking at the Borel models we deduce that there is a
pull-back map

f∗G : HG(N)→ HG(M).

The space BG of Example 5 is called the classifying space of the group G. Its
cohomology ring H(BG) ∼= HG(pt) is of fundamental importance in the equivari-
ant theory: indeed, since the constant map M → {pt} is clearly G-equivariant, we
deduce that HG(M) is always an H(BG)-module.

Remark 3.1.4 (Push-forwards). Let f : N → M be a map of compact complex
manifolds and let dimM− dimN = q. Associated to f there is a push-foward map

f∗ : H
∗(N)→ H∗+q(M),

which can be defined by applying Poincaré duality on both sides and applying
the classical push-forward in homology. In the case f is a fibration, f∗ corresponds
to integration along the fibers; in the case f is an embedding, then letting Φ :

H∗−q(N)
∼−→ H∗(M,M \N) be the Thom isomorphism and j∗ : H∗(M,M \N) →

H∗(M) be the map induced by the inclusion of the pair (M, ∅), then f∗ = j∗ ◦Φ.
In the most general setting, these are the so-called Umkehr maps, an axiomatic
treatment of which can be found in [CK].

1More precisely, we only require it to be weakly contractible, i.e. with all homotopy groups
trivial.
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Since all this can be made G-equivariant, we have an analogous notion of equiv-
ariant push-forward, which we still denote by the same symbol

f∗ : H
∗
G(N)→ H

∗+q
G (M).

It satisfies the same functorial properties of the standard push-forward map: it is
covariant and it is a homomorphism of H∗G(N)-modules, i.e.

f∗(αf
∗β) = (f∗α)β.

It can be shown that, if f : N ↪→ M is an embedding and νN is the normal
bundle to N in M, then

f∗f∗1 = e(νN) (3.1)

the Euler class of νN. Similarly, in the equivariant setting, we have the same
formula involving the equivariant Euler class. Formula (3.1) is at the center of
localization formulas, both in the classical and equivariant setting.

Remark 3.1.5. It can be shown that in the case G = T is a torus of rank r (either
compact or complex), then

H(BT) ∼= C[u1, . . . ,ur].

We will mostly be interested, when talking about the moduli space of Higgs
bundles, in the case T = C∗, so that HT (M) will be a C[u]-algebra.

3.2 The Weil and Cartan models for Equivariant Cohomol-
ogy

Sometimes, computing the equivariant cohomology of G-manifolds by explicitly
finding their Borel model can be difficult. The Weil and the Cartan models allow to
describe the ring HG(M) in a more direct way. Except for Theorem 3.3.2, we refer
to Chapters 1-4 of [GS] for the proofs of the theorems contained in this section.

Definition 3.2.1. Let G be a compact reductive group and let g be its Lie algebra.
The Weil algebra Wg is defined as

Wg = ∧g∗ ⊗ Sg∗

i.e. the tensor product of the exterior and symmetric algebras. We make it a
graded algebra by stating that the elements of ∧1g∗ have degree one, and the ones
of S1g∗ have degree 2.

Fixing a basis {e1, . . . , en} of g∗, we define the contractions ιa for a = 1, . . . ,n
as linear endomorphisms of Wg such that, letting θi ∈ ∧1g∗ and zi ∈ S1g∗ the
corresponding basis elements,

ιaθ
b = δba, ιazb = 0

and extending it to be a degree 1 derivation; i.e.

ιa(xy) = ιa(x)y+ (−1)|x|xιa(y), for x,y ∈Wg∗.
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We say that an element x ∈Wg∗ is horizontal if ιax = 0 for all a.
We also make Wg∗ a differential graded algebra by defining the differential d as

dθa = za −
1
2
fajkθ

jθk, dza = −fajkθ
jzk

where the Einstein’s sum convention is used, and fcab are the Lie algebra structure
constants such that [ea, eb] = fcabec. We extend then the differential to Wg∗ by
making it a degree 1 derivation just like ιa. It is easily shown that d ◦ d = 0.

Finally, we define the Lie derivatives La for a = 1, . . . ,n as

La := ιad + dιa.

It can be shown that La is a degree 0 derivation, i.e.

La(xy) = La(x)y+ xLa(y), for x,y ∈Wg∗.

We say that an element x ∈ Wg∗ is basic if it is horizontal and Lax = 0 for all
a. Notice that the subspace of basic elements (Wg∗)bas forms a differential graded
subalgebra; in particular, it is a subcomplex with respect to the differential d, and
its cohomology is

H((Wg)bas, d) ∼= (Sg∗)G

Remark 3.2.2. With these definitions, Wg∗ is a G∗-space in the sense of Guillemin-
Sternberg [GS].

Notice that by standard differential geometry, ifM is a manifold with an action
of G, then contractions ιa and Lie derivatives La are naturally defined on the space
Ω(M) of differential forms. This brings us to the following definition.

Definition 3.2.3. Let M be a manifold with a G-action and let WG(M) := (M⊗
Wg∗)bas the basic subcomplex, which we call the Weil model.

Theorem 3.2.4. The cohomology of the Weil model is isomorphic to HG(M).

In particular, the cohomology of the basic subcomplex (Wg)bas is the equivari-
ant cohomology of a point, thus the cohomology of the classifying space for the
group G. Thus we have

HG(pt) ∼= (Sg∗)G

where the action of G on g∗ is the coadjoint one.
The Weil model can be written even more explicitly thanks to the following

definition.

Definition 3.2.5. Let M be a manifold with a G-action, define

CG(M) := (Sg∗ ⊗Ω(M))G

where the action on g∗ is the adjoint one, and make it a differential algebra by

dG := 1⊗ dM − za ⊗ ιa

where still we are using the sum convention on repeated indices (it can be verified
that this is indeed a differential). It is easy to see that (CG(M), dG) defines a
complex, which we call the Cartan model for the G-manifold M.

Theorem 3.2.6. The cohomology of the Cartan model is isomorphic to HG(M).
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3.3 Localization formulas

From now on, we will concentrate to the case in which G = T is a torus. Also, in
this section, we assume M is a compact complex manifold.

A very useful feature of equivariant cohomology is the existence of localization
formulas which allow to compute the push-forward maps to a point. We call the
integral such push-forward map

∫
M : HT (M)→ HT (pt).

Remark 3.3.1. Although we have used the same notation for usual cohomology
and Chow groups, this integral is quite different, in that

∫
M x for x ∈ HT (M)

will not be a number in general, but rather an element of the polynomial algebra
HT (pt) ∼= C[u1, . . . ,ur].

The main theorem of the present section is the following.

Theorem 3.3.2. [Localization formula] Let T be a torus acting on a smooth compact
complex manifold M. For each connected component F ⊆ MT , let ιF : F ↪→ M be the
natural embedding, and let νP be the normal bundle to F in M. Then for all ϕ ∈ HT (M),
we have ∫

M

ϕ =
∑
F⊆MT

∫
F

ι∗Fϕ

E(νF)
(3.2)

where the sum runs through all connected components of MT .

Proof. This proof is taken from [AB1] and it has a more “algebraic” flavour. Other
proofs can be found in [BV] and [Wi]. Let r be the rank of the torus T , so that

HT (pt) = C[u1, . . . ,ur] := R.

Let A be an R-module, and define its support to be

Supp(A) =
⋂

f: fA=0

Vf ⊆ tC

which is nothing but the variety associated to the torsion elements of A. For f ∈ R
a non-zero polynomial, we denote by Rf the localization of R with respect to the
multiplicative set made by the powers of f

Rf :=
{ r
fn

: r ∈ R, n > 0
}

and Af = A⊗R Rf. Notice that Af = 0 if and only if f is a torsion element; in
particular if Supp(A) ⊆ Vf, then Af = 0.

By considering A = HG(M), we see that this is a graded R-module, with
deg(ui) = 2; by considering the C∗-action λ ·h = λ2qh if h ∈ Aq, and λ ·ui = λ2ui,
then we see that Supp(A) is C∗-invariant, thus it is a cone.

Let i :MT ↪→M be the embedding of the fixed locus for the T action. Then, as
discussed previously, we have

ι∗ι∗1 = eT (νMT ) =
∏
F⊆MT

eT (νF) (3.3)
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the equivariant Euler class of the normal bundle to F inM. To compute it, consider
a connected component F of MT and p ∈ F; then the induced action of T on (νF)p
has no fixed directions by definition of the fixed locus, therefore it decomposes into
a direct sum of 2-dimensional nontrivial representations of T (we are considering
the real normal bundle here). After choosing an orientation of F and M, such
representations are described by characters λi : T → U(1), which can be written as

λi = exp

2π
√
−1

r∑
j=1

λijuj


if we recall that uj ∈ t∗ are the coordinates of t. Then we have

eT (νF) =
∏
i

r∑
j=1

λijuj ∈ R.

Denote the previous polynomial by fF and let f :=
∏
F⊆MT fF ∈ R. Then, by

definition and by (3.3), the map induced by ι∗ι∗ in the localization by f is invertible,
and for all class φ ∈ HT (M), we have

φ =
∑
F⊆MT

ιF∗ι
∗
Fφ

eT (νF)
(3.4)

with self-evident notation for ιF and ιF. Applying the push-forward to a point
π∗ : HT (M) → R (which is by definition the integral

∫
M) to (3.4) we obtain the

result.

3.4 Examples

We summarize here a few remarkable examples which will be useful in the fol-
lowing sections.

3.4.1 Compact Riemann surfaces

Let M = Σg be a compact Riemann surface of genus g > 0. Then it is well known
that H1(Σg) is generated as vector space by cycles ai and bi for i = 1, . . . ,g, which
satisfy the intersection properties

aiaj = bibj = 0, aibj = δi,jω

where ω ∈ H2(Σg) is the Poincaré dual to [Σg] ∈ H0(Σg), so that
∫
Σg
ω = 1 by

definition.
Notice that since there is only one generator of even cohomology, namely ω,

the Chern class of any complex vector bundle over Σg must be an integer multiple
of ω. Letting L be a line bundle over Σg, we have

c1(L) = (degL)ω,
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so that the Chern character of L is 1 + (degL)ω. It is well-known that the degree
of the tangent bundle TΣg is χ(M) = 2 − 2g, so that

c1(TΣg) = (2 − 2g)ω.

In particular the Todd class of Σg is 1 + (1 − g)ω. The Hirzebruch-Riemann-Roch
formula then reads

H0(Σg;L) −H1(Σg;L) =
∫
Σg

ch(L)td(M) = degL− g+ 1,

which is the classical Riemann-Roch formula for line bundles on a Riemann sur-
face.

3.4.2 Grassmannians

Consider the Grassmannian manifold Gr(n,k), which is the space of k-dimensional
subspaces of a fixed complex vector space V of dimension n. It is a compact
complex manifold of dimension k(n − k), which comes with two distinguished
vector bundles: the tautological bundle S, whose fiber at a point [H] ∈ Gr(n,k) is
the space H itself, and the trivial bundle V of rank n, of which S is naturally a
subbundle. The quotient bundle Q is the one fitting into the exact sequence

0→ S→ V → Q→ 0. (3.5)

We write the total Chern classes of S and Q as

c(S) = 1 + s1 + . . . + sk,

c(Q) = 1 + q1 + . . . + qn−k,

which are related by c(S)c(Q) = 1, because of (3.5). This allows, recursively, to
compute the qi’s as polynomial expressions in the si’s: here are the first ones

q1 = −s1, q2 = s2
1 − s2, q3 = −s3

1 + 2s1s2 − s3.

Notice that such expressions for qi are completely formal, therefore are valid even
if i > n− k, for which qi = 0 trivially. This gives relations in the cohomology
ring of Gr(n,k), and the main theorem in the study of such ring is that these are a
complete set of relations, i.e.

H∗(Gr(n,k)) ∼= C[s1, . . . , sk]/(qn−k+1, . . . ,qn).

In particular, the cohomology ring of the Grassmannian is generated by the Chern
classes si for i = 1, . . . ,n− k.

In order to compute geometrically the classes si, we need to pick generic sec-
tions γ1, . . . ,γk−i+1 of S, and check the locus the subspace they generate is not of
maximal dimension. To do this, let λi for 1 6 i 6 k be integers such that

n− k > λ1 > . . . > λk > 0 (3.6)
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and define, for λ := (λ1, . . . , λk) and for F = (Vi)
n
i=0 an arbitrary complete flag of

V , the locus

Σλ(V) = {[H] ∈ Gr(n,k) : dim(Vn−k+i−λi ∩H) > i, for all i > 0}.

These loci are called Schubert cells, and their definition can be considered an assign-
ment of incidence conditions of a subspace H against the spaces of the complete
flag F. The study of the products of the cohomology classes σλ := [Σλ(F)] is at
the core of Schubert calculus, one of the first and most important landmark in in-
tersection theory. As for the Chern classes, it can be shown (see for instance [EH])
that

si = (−1)iσ(1,...,1)

where on the subscript there are i ones (and k− i zeros, which are omitted in the
writing). Similarly, we have qi = σi. Notice that each σλ ∈ H2|λ|(Gr(n,k)), thus
the top class is ω := σ(n−k,...,n−k) (with k entries) so that∫

Gr(n,k)
σ(n−k,...,n−k) = 1.

Notice that since the cohomology ring of the Grassmannian is generated by the
Chern classes si, all intersection theory on Gr(n,k) is encoded into the generating
function

Fn,k(t1, . . . , tk) :=
∫

Gr(n,k)
(1 − t1s1 − . . . − tksk)−1.

Now we choose n distinct integers

a1 < a2 < . . . < an

and let T = C∗ act on Cn by

z · (x1, . . . , xn) = (za1x1, . . . , zanxn),

an action which naturally descends to the Grassmannian Gr(n,k). There are
(
n
k

)
fixed points corresponding to the subspaces spanned by vi1 , . . . , vik where the vi’s
are the vectors of the canonical basis of Cn. We want to use the localization for-
mula of Theorem 3.3.2 to deal with the intersection theory on Gr(n,k). Notice that
S and Q are naturally T -equivariant bundles: we will denote the corresponding
equivariant chern classes still by si and qi.

Then it can be shown as in [Zi] that the localization formula gives

Fn,k(t1, . . . , tk) =
1
k!

Res
z1,...,zk=∞

∏
i 6=j(zi − zj)

(1 − t1e1 − . . . − tkek)
∏n
i=1
∏k
j=1(ai − zj)

where ei = ei(z1, . . . , zk) are the elementary symmetric polynomials. It is rather
surprising that such expression does not depend on the particular choice of the
weights ai. Since we are taking residues at only one point, the order of the
residues will not matter. As mentioned, this formula contains all intersection
numbers for Gr(n,k), and can be used to extract information about its cohomol-
ogy ring. However, the level of difficulty of Schubert calculus suggests that using
the expression of Fn,k in practice is not so easy.
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3.4.3 Symmetric products

In our study of the moduli space of Higgs bundles, the symmetric products of
the Riemann surface Σg will play a key role, they being identified with some
connected components of the fixed locus with respect to the natural C∗-action.
What follows are the basic results on their cohomology ring, due to Macdonald
[Mac] and also found in [Th1]. For the sake of ease of notation, we will denote the
Riemann surface Σg by X, and its i-th symmetric product by X(i). The generators
of the first cohomology group H1(X; Z) are ai, bi for i = 1, . . . ,g. We define the
universal divisor ∆ ⊆ Xi ×X as

∆ = [{(S,p) ∈ Xi ×X : p ∈ S}] ∈ H2(Xi ×X; Z)

which we decompose in Künneth components as

∆ = η+
∑
j

(ζiai − ξibi) + i[X]

thus yielding classes η ∈ H2(Xi; Z) and ξi, ζi ∈ H1(Xi; Z) which generate the
cohomology ring of Xi; we write σj := ξjζj and σ =

∑
j σj. Notice that σ2

j = 0,
thus if k > 0, σk/k! is the k-th elementary symmetric polynomial in the σj’s, which
is a sum of

(
g
k

)
monomials. Now, for any multi-index I without repeats, we have∫

Xi

ηi−|I|σI = 1

so that for any two formal power series A(x) and B(x),∫
Xi

A(η) exp(B(η)σ) =
∞∑
k=0

∫
Xi

A(η)
B(η)kσk

k!
=

=

g∑
k=0

(
g

k

)
Res
η=0

(
A(η)B(η)k

ηi−k+1 dη
)

= Res
η=0

dη
ηi+1A(η)(1 + ηB(η))g. (3.7)

Since the even cohomology of Xi is generated by η and σ, formula (3.7) encodes
all intersection numbers on Xi. It will be used in a following section to prove the
residue formulas for equivariant integrals on the moduli space of Higgs bundles.
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Chapter 4

Vector Bundles

In this section, we will introduce the main concepts related to vector bundles
which will be used in the present thesis. In particular, the focus will be on the
definition and basic properties of the moduli space of stable bundles over Riemann
surfaces, in the case the rank and the degree are coprime: in this case, the moduli
space will be a smooth compact complex manifold. We will then briefly investigate
the intersection theory on such space through the celebrated Witten’s intersection
formulas, introduced in [Wi] and proved in several different ways in [Wi], [Th1]
and [JK].

4.1 Chern classes

Let V be a rank r vector bundle over a compact smooth manifold M. We have seen
in Definition 2.1.4 and in the following Theorem 2.1.5 that we can associate classes
ci(V) ∈ Ai(M) in the Chow ring of M. Through the homomorphism of Remark
2.2.1 we can see that there are corresponding cohomology classes, still called Chern
classes and still denoted by ci(V) ∈ H2i(M; Z).

IfM = Σg is a compact Riemann surface of genus g > 0, we make the following
definition.

Definition 4.1.1. Let V be a vector bundle over a Riemann surface Σg. The degree
of V is defined as

deg(V) := c1(V) ∈ Z

under the isomorphism H2(Σg, Z) ∼= Z given by the complex structure of Σg.

Remark 4.1.2. One can also define the degree more in general, for a vector bundle
over a projective variety. However, the definition above is sufficient for the scope
of the present thesis.

One of the most important feature of a vector bundle is its stability, which tells
us which vector bundles should be considered in the moduli problem.

Definition 4.1.3. Let V be a vector bundle over a Riemann surface Σg. Its slope is
defined as the ratio between the degree and the rank of V :

µ(V) :=
deg(V)
rk(V)

.
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We say that V is semi-stable if for all subbundles W ⊆ V , we have µ(W) 6 µ(V). If
strict inequality holds for all proper subbundles, we say that V is stable.

Stability is essentially a condition about automorphisms of a vector bundle.

Proposition 4.1.4. Let V be a stable vector bundle. Then the only automorphisms of V
are multiplication by a non-zero scalar.

Proof. The essential step is proving that if U and V are semi-stable bundles and
µ(U) > µ(V), then there are no nonzero homomorphisms φ : U → V . Indeed,
letting W be the image of φ, by (semi-)stability of V and by definition of slope we
have

µ(U) 6 µ(W) 6 µ(V) (4.1)

thus bringing to a contradiction. Assume now that µ(U) = µ(V); if U is stable then
(4.1) forces φ to be an injective, and if V is stable (4.1) forces φ to be surjective.
Thus we can conclude that if V is stable, any endomorphism of V is either 0 or an
isomorphism. This means that End(V) is a finite-dimensional division algebra over
C, therefore End(V) ∼= C because C is algebraically closed.

Lemma 2. Let V be a vector bundle such that deg(V) and rk(V) are coprime. Then V is
semi-stable if and only if it is stable.

Proof. Assume V is not stable. Then there is a proper U ⊆ V such that µ(U) =
µ(V), which means rk(U) < rk(V) and

deg(U) · rk(V) = deg(V) · rk(U)

which implies that deg(V) and rk(V) have a common factor.

The set of line bundles of degree 0 over Σg forms a group under the tensor
product; this is a dimension g variety called the Jacobian and denoted by Jac(Σg).
Its importance in our setting lies in the fact that tensorizing a vector bundle E over
Σg by an element of the Jacobian does not change the rank and degree of E, and
preserves its stability.

4.2 The cohomology of the moduli space

The key result states that the moduli problem for vector bundles is “good”, mean-
ing that there exists a reasonable variety Nssg (n,d) parametrizing all semi-stable
vector bundles over Σg up to isomorphism. The source of the following proof is
[AB], Section 7.

Theorem 4.2.1. There exists a coarse moduli space Nssg (n,d) of semi-stable vector bun-
dles, which is a compact singular complex variety of dimension n2(g− 1) + 1. The moduli
space of stable vector bundles is a smooth subvariety.

Sketch of the proof. Fix a vector bundle E of rank n and degree d on Σg. In order
to describe a holomorphic structure on E, we need to specify the ∂-operator so
that the holomorphic sections of E will be the ones such that ∂u = 0. Any such
operator will be of the form

∂ = ∂0 +B
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with ∂0 the anti-holomorphic Cauchy-Riemann operator defined by the complex
structure of Σg, and B ∈ Ω0,1(End(E)). Therefore, letting C(E) be the space of such
operators, then C(E) is an affine space based on the vector space Ω0,1(End(E)).
The automorphism group Aut(E) acts naturally on C(E): our moduli space will be,
by definition, the quotient of the subset Css(E) corresponding to the semi-stable
bundles with respect to the action of Aut(E).

The last step is to prove that such a quotient is a compact algebraic variety, i.e.
that the conormal bundle to the semistable locus has a well-defined dimension.
First of all, the normal bundle to an orbit of C(E) is H1(Σg; End(E)) (see [AB]);
still for [AB], the conormal bundle to the semistable locus is also H1(Σg; End(E)).
The complement of Css(E) is a union of locally closed orbits (which form the
Shatz stratification). The dimension is computed with the Hirzebruch-Riemann-
Roch theorem which says

h0(Σg; End(E)) − h1(Σg; End(E)) = c1(End(E)) + rk(End(E))(1 − g).

For stable bundles, the proof of Proposition 4.1.4 implies that h0(Σg; End(E)) = 1
is given by scalar multiplications, and finally c1(End(E)) = c1(E

∗ ⊗ E) = 0. Since
the stable locus is an open subset of the semi-stable one, we obtain the dimension
of the statement of the theorem. Still by proposition 4.1.4, the bundles on the stable
locus have no nontrivial automorphisms, thus the isotropy group is constantly C∗

on such locus and the quotient will be smooth.

Since we have showed in Lemma 2 that if (n,d) = 1, then semi-stability and
stability coincide, we immediately have the following corollary.

Corollary 4.2.2. If (n,d) = 1, the moduli space of semi-stable bundles Ng(n,d) is a
smooth compact complex variety.

Actually, when it comes to cohomology, the moduli space Ng(n,d) only de-
pends on the remainder of d modulo n, since we have the following.

Proposition 4.2.3. For any integer m, there is an isomorphism

Ng(n,d) ' Ng(n,d+mn).

Proof. Fixing a line bundle L of degree 1 on Σg, and E ∈ Ng(n,d), then E⊗ L⊗m
has rank n and degree d +mn, so that tensorizing with L⊗m gives the desired
isomorphism.

In this thesis, we will concentrate on the case of rank 2, odd-degree vector
bundles over Riemann surfaces and with fixed determinant.

Definition 4.2.4. Fix a line bundle Λ on Σg of degree 1. We denote by Ng the
subvariety of Ng(2, 1) whose elements have determinant Λ.

Notice that Ng is the fiber of the determinant map Ng(2, 1)→ Pic1(Σg). Propo-
sition 4.2.3 says that there is nothing special about setting d = 1: any odd degree
will yield isomorphic moduli space.

Since Ng(n,d) is a fine moduli space, there exists a universal vector bundle

Eg → Ng(n,d)× Σg
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such that for all E ∈ Ng(n,d), (Eg)|E×Σg ' E. Actually, such bundle is not
uniquely defined: letting π : Ng(n,d) × Σg → Ng(n,d) be the projection, and
letting L be any line bundle over Ng(n,d), the tensorized Eg ⊗ π∗L is another
universal bundle.

In the case of rank 2 stable bundles, however, we have an explicit way to de-
scribe the generators of the cohomology ring. Indeed, the vector bundle End(Eg)
is well-defined, and its first Chern class is 0. Letting ω ∈ H2(Σg) and ei ∈ H1(Σg)
for i = 1, . . . , 2g be a standard basis of the cohomology of the Riemann surface, we
can use the Künneth theorem to write

c2(End(Eg)) = 2α⊗ω+ 4
2g∑
i=1

ψi ⊗ ei −β⊗ 1 ∈ H∗(Ng)⊗H∗(Σg). (4.2)

Then we have the following central theorem, which is a particular case of a
more general

Theorem 4.2.5. The Künneth components α ∈ H2(Ng), β ∈ H4(Ng) and ψ ∈ H3(Ng)
defined in (4.2) generate the cohomology ring of Ng.

This means that there is a surjective map C[α,β]⊗∧[ψi]� H∗(Ng). In order to
fully describe the cohomology ring of H∗(Ng), one needs then to find the kernel
of such map. The first result in this direction is Mumford’s conjecture, which we
state as in Zagier [Z].

Theorem 4.2.6. Let π : N4g−3 × Σg → N4g−3 be the first projection, then the kernel
of the map C[α,β]⊗∧[ψi] � H∗(Ng) is generated by the Chern classes ci(π!E4g−3),
written in terms of the α, β and ψj, for i > 2g.

Instead of explaining the direct proof of this result, we will link it to the inter-
section theory on the moduli space; this approach is present in [Th1] and [Z].

4.3 Intersection formulas on Ng

A major breakthrough in the study of the cohomology ring of Ng is found in [Th1],
in which the intersection numbers are obtained by the use of the Verlinde formula.

The Quillen determinant line bundle L on the space of holomorphic structures
C(E) on a fixed complex vector bundle E → Σg has been introduced in [Q]. Its
fiber at an operator ∂ is

L∂ = ∧top (Ker∂
)∗ ⊗∧top (Coker∂

)
.

It can be shown (see [Th1]) that L⊗2 passes to the quotient, defining a line bundle
on Ng which we call L.

Theorem 4.3.1 (Verlinde formula). For k even and g > 2, we have

h0(Ng;Lk/2) =

(
k+ 2

2

)g−1 k+1∑
m=1

(−1)m+1(
sin mπ

k+2

)2g−2 . (4.3)
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Notice that already the fact that the sum in (4.3) gives an integer number is not
so obvious.

It can be shown [N] that the canonical bundle of Ng is negative, therefore the
Hirzebruch-Riemann-Roch formula (2.7), together with Kodaira vanishing theo-
rem 2.3.1, implies that

h0
(
Ng;Lk/2

)
=

∫
Ng

ch(Lk/2)td (Ng) .

Still by [N], we have that c1(L) = α and, in the notation of (4.2),

td(Ng) = exp(α)

(
1
2
√
β

sinh 1
2
√
β

)2g−2

thus eventually, after some straightforward computing (see [Th1] for the details),
we have ∫

Ng

αmβn = (−1)g−1 m!
(m− g+ 1)!

22g−2(2m−g+1 − 2)Bm−g+1 (4.4)

where Bi is the i-th Bernoulli number; of course, this formula is valid only if
m+ 2n = 3g− 3, otherwise the integral is zero for degree reasons.

In order to compute the missing integrals, i.e. the ones involving the ψi’s we
introduce the classes γi := ψiψi+g for i = 1, . . . ,g and

γ := −2
g∑
i=1

γi. (4.5)

The following Proposition, found in Thaddeus [Th1], allows us to compute all
integrals on Ng.

Proposition 4.3.2. All integrals on Ng are zero except the ones of the form∫
Ng

αmβnγi1 · · ·γip

with m+ 2n+ 3p = 3g− 3. Moreover,∫
Ng

αmβnγi1 · · ·γip =
(g− p)!
(−2)pg!

∫
Ng

αmβnγp =
(g− p)!

(−2)p−1(g− 1)!

∫
Ng−1

αmβnγp−1

where the last equality is valid for g > 3.

Actually, we are interested in a slightly different way to compute integrals on
Ng. More specifically, we want a generating function which produces the integrals
on Ng as a function of g, so that no recursive calculation as the one in Proposition
4.3.2 will be needed.

This was the approach taken by Witten in [Wi] to compute general integrals
over moduli spaces of flat connections. We use the results in [Z] and modify them
in order to comply with the notations we are using, that are fundamentally the
ones of [Th1].
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We need one more piece of notation, which will also be used and re-introduced
in Section 5 when talking about equivariant integrals on the moduli space of Higgs
bundles. Notice that if P ∈ C[y2] is a polynomial, and P̃ ∈ C[y] is such that
P(y) = P̃(−y2) then we can write a Künneth component decomposition, similar to
the one of (4.2):

P̃(c2(End(E))) = P(2) ⊗ω+

2g∑
i=1

P(ei) ⊗ ei + P(0) ⊗ 1 ∈ H∗(Ng)⊗H∗(C) (4.6)

which defines a family of cohomology classes P(2), P(ei) and P(0) for all polyno-
mials P ∈ C[y2]. Formula (4.2) is a particular case of (4.6) in the case P = −y2.

It is easy to see that

[−y2/2](2) = α, [y2](0) = β, [−y2/4](ei) = ψi, [−y4/4](2) = αβ+ 4γ, (4.7)

To show this, note that, for polynomials P,Q ∈ C[y2], we have

[PQ](2) = P(2)Q(0) + P(0)Q(2) +

g∑
i=1

(
P(ei)Q(ei+g) − P(ei+g)Q(ei)

)
.

Then we obtain (4.7) by setting P = y2/2 and Q = −y2/2 in this formula.

Remark 4.3.3. In general, for any polynomial P ∈ C[y2], we can write the contrac-
tion P(2) in terms of classes α, β and γ in the following way:

P(2) =
2γ−αβ
β
√
β
P ′(
√
β) −

2γ
β
P ′′(

√
β). (4.8)

To show this, set t = y2. Then by the Leibnitz rule we have

(tk) ′′ = k(k− 1)tk−2(t ′)2 + ktk−1t ′′.

Now by substituting (t ′)2 → −8γ, t ′′ 7→ −2α, t → β we deduce that if Q(t) =
P(
√
t), then

P(2) = −2αQ ′(β) − 8γQ ′′(β),

where the derivatives of Q are taken with respect to the variable t. The formula
follows from the identities

d
dt

=
1

2y
d

dy
,

d2

dt2 =
1

4y2

(
d2

dy2 −
1
y

d
dy

)
.

Using the notations just introduced, we can write the final formula for the
integrals on Ng following the results found in [Z]. The following Theorem will be
of fundamental importance for computing the equivariant integrals on the moduli
space of Higgs bundles, of which Ng is a connected component of the fixed locus
for the natural C∗-action.

Theorem 4.3.4. Let T ∈ C[y2] and P ∈ y2C[y2]. Then∫
Ng

T(0) exp(P(2)) = Res
y=0

22g−1T(y)P ′′(y)g

y2g−2 [exp(P ′(y)) − exp(−P ′(y))]
(4.9)
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Proof. Changing variables via Q(T) = y2 in Proposition 2 of [Z], we obtain∫
Ng

f(β)eu(β)α+w(β)γ∗ = Res
y=0

(−4)g−1f(y2)u(y2)g

y2g−2 sinh(yu(y2) + y3w(y2))
. (4.10)

Observe that substituting γ∗ = αβ− 2γ in (4.8) 1 one arrives at

P(2) = −αP ′′(
√
β) + γ∗

(
P ′′(

√
β)/β− P ′(

√
β)/β

√
β
)

(note that the coefficient of γ∗ is a polynomial since P is divisible by y2). Finally,
performing the substitutions

f(β) = T(
√
β), u(β) = −P ′′(

√
β), w(β) = P ′′(

√
β)/β− P ′(

√
β)/β

√
β

in (4.10), we obtain (4.9).

1Notice that formula (6) in [Z] matches the one in [Th1] at page 14, but the γ’s defined in the two
papers differ by a sign. Therefore, we have to apply the formulas in [Z] by changing the sign of γ
wherever it appears.
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Chapter 5

Higgs Bundles

We now turn our attention onto more complex1 objects on a Riemann surface,
namely Higgs bundles, which in some way extend what has been discussed so far
about vector bundles. We let Σg be a genus g compact Riemann surface and K be
its canonical line bundle.

Definition 5.0.1. A Higgs bundle (or Higgs pair) of rank n, degree d over Σg is a
pair (E,Φ) with E a rank n, degree d holomorphic vector bundle over Σg and a
holomorphic section Φ ∈ Γ(End(E)⊗ K), called the Higgs field. A Higgs subbundle
of a Higgs bundle (E,Φ) is a subbundle F ⊆ E such that (F,Φ|F) is a Higgs bundle.

Notice that F ⊆ E is a Higgs subbundle if and only if Φ(F) ⊆ F⊗K. Similarly to
the notion of stability for a vector bundle, we say that a Higgs bundle is semi-stable
if for all Higgs subbundles F ⊆ E, we have µ(F) 6 µ(E). If strict inequality holds for
proper subbundles, we say that the Higgs bundle (E,Φ) is stable. Lemma 2 implies
that if the rank and the degree are coprime, then a Higgs bundle is semistable if
and only if it is stable.

Similarly to the case of vector bundles, we have the following.

Theorem 5.0.2. There exists a coarse moduli space Mss
g (n,d) of semi-stable rank n,

degree d Higgs bundles over Σg. It is a complex quasi-projective variety of complex di-
mension 2n2(g− 1) + 2. The smooth locus Mg(n,d) is the moduli space of stable Higgs
bundles.

Remark 5.0.3. Unlike the moduli space Ng(n,d) of stable bundles, Mg(n,d) is
not compact ([Hi1]). This implies that we cannot use the standard techniques of
intersection theory to investigate the cohomology of such space. However, we will
see in the following sections how, through its equivariant cohomology, we can
develop a suitable intersection theory on Mg as well.

In the present thesis, we will focus on the case of rank 2, degree 1 Higgs
bundles: we call Mg(GL2) the corresponding moduli space. By associating to each
Higgs bundle (E,Φ) ∈Mg(GL2) the determinant bundle ∧2E, we obtain a map

Mg(GL2)→ Pic1(Σg).

1In all senses.
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Notice that the fibers of this map are all isomorphic, with isomorphism given by
tensorizing by an appropriate element of Jac(Σg). We fix any line bundle L ∈
Pic1(Σg) and we define

Mg(SL2) := {(E,Φ) ∈Mg(GL2)| ∧
2 E ' L, TrΦ = 0}.

Finally, if Λ ∈ Jac(Σg) is such that Λ⊗2 ' O, then ∧2(E ⊗ Λ) ' ∧2E. This
defines an action of the group Γ of 2-torsion points of Jac(Σg) on Mg(SL2): the
main protagonist of what follows will be the quotient space

Mg(PGL2) := Mg(SL2)/Γ .

We will denote such space simply by Mg. It is a semi-projective variety of dimen-
sion 6g− 6, with orbifold singularities corresponding to the fixed points for the
action of Γ ' Z

2g
2 .

Remark 5.0.4. Let E be a stable rank 2, degree 1 bundle. Then any traceless Higgs
field Φ ∈ H0(Σg; End0(E)⊗ K) gives a stable Higgs bundle (E,Φ) ∈ Mg(SL2). By
Serre duality, this is canonically an element of the dual of H1(M; End0(E)), which
is the tangent bundle to Ng. Therefore, we can see that the cotangent bundle T∗Ng
is canonically embedded in Mg(SL2).

Definition 5.0.5. The Hitchin map is the morphism

h : Mg(SL2)→ A := H0(Σg,K⊗2)

given by
h(E,Φ) := detΦ.

This map clearly descends to the quotient Mg: we still call the induced map the
Hitchin map, and we denote it by h as well.

Notice that, by the Riemann-Roch theorem, the dimension of the target of h is
3g− 3, which is exactly half the dimension of Mg(SL2). This is not a coincidence:
in fact one of the main theorems in the topology of the moduli space of Higgs
bundles, already present in [Hi1], states that the Hitchin map displays Mg(SL2) as
a complete integrable system over A, whose fibers are particular Prym varieties.

5.1 The C∗-action and the Białynicki-Birula decomposition

Any moduli space of Higgs bundles carries a natural action of T := C∗, given by

λ · (E,Φ) = (E, λΦ).

This will be the main ingredient in our study of the equivariant theory of Mg:
the torus action we will consider will be precisely the natural C∗ action described
above.

In particular, although we have seen that the moduli space Mg is not compact,
the fixed locus MT

g is compact. This will be of fundamental importance in the defi-
nition of the equivariant integral on Mg and on exploiting its properties. In order
to do this, we need a precise description of the fixed locus.
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Proposition 5.1.1. We have

MT
g ' F0 t F1 t . . .t Fg−1

where F0 ' Ng and for 1 6 i 6 g− 1, Fi ' S2g−2i−1(Σg) is a symmetric product of Σg.

Proof. Clearly, all Higgs bundles of the form (E, 0) for E a stable bundle are fixed
for the T action. These give a connected component F0 isomorphic to Ng, which
is compatible with the embedding Ng ⊆ T∗Ng ⊆ Mg corresponding to the zero
section of the cotangent bundle.

Now consider a bundle of the form E = L⊕ΛL−1 with 1 6 degL 6 g− 1, and
a Higgs field Φ such that Φ|ΛL−1 = 0, and Φ|L is a nonzero map of line bundles
φ : L→ ΛL−1K. We can thus locally write Φ as a lower triangular matrix

Φ =

(
0 0
φ 0

)
with φ 6= 0. Given λ ∈ C∗, we choose one of its square roots µ, and define
Dµ = Diag(µ−1,µ). Then we immediately see that

λΦ = DµΦD
−1
µ

which means that (E,Φ) ∈ MT
g , since the Higgs bundle λ · (E,Φ) is isomorphic to

(E,Φ) via the isomorphism induced by Dµ.
As the degree of ΛL−2K is 2g− 1− 2 degL, such a map gives us a divisor on Σg,

which is an element of S2g−2 degL−1(Σg) of the corresponding symmetric product
of the curve. Of course, such a section exists if and only if deg(ΛL−2K) > 0, i.e. if
degL 6 g− 1. Therefore we have found the other components of the fixed locus
as Fi ∼= S2g−2i−1(C), i = 1, . . . ,g− 1.

By looking at the eigenvalues of Φ, it is clear that if λΦ is similar to Φ, then
Φ must be nilpotent. Therefore, the Higgs bundles we found are the only ones in
the fixed locus.

The C∗-action allows to partition Mg following the flows with respect to it. For
p ∈MT

g we define
Up := {x ∈ X| lim

λ→0
λx = p}

upward flow from p and
Dp := {x ∈ X| lim

λ→∞ λx = p}
downward flow from p. Then

Mg =
⋃
p∈MT

g

Up

is called the Bialinycki-Birula decomposition of M and

C :=
⋃
p∈MT

g

Dp
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is the Bialinycki-Birula decomposition of C ⊂ Mg, called the core of M. Let MT =⋃
i Fi be the decomposition of the fixed point set into connected components as in

Proposition 5.1.1; then
Ui =

⋃
p∈Fi

Up ⊂M

and
Di =

⋃
p∈Fi

Dp ⊂M

are affine bundles over Fi.

5.2 The (equivariant) cohomology of the moduli space

From now on, when we talk about the equivariant cohomology of Mg, we use the
T action defined in the previous section. Thus we see that HT(Mg) is a finitely
generated module over the equivariant cohomology of a point HT(pt), which we
will identify with the polynomial ring in a single variable u:

HT(pt) = H∗(BT) ∼= C[u].

It can be seen [HV2] that the Higgs moduli spaces are semi-projective with
respect to the T-action, and this, in particular, implies their formality: additively,
we have a H∗(BT) ∼= C[u]-module isomorphism

H∗T(Mg) ∼= H∗(Mg)⊗H∗(BT) = H∗(Mg)[u]. (5.1)

In [HT1] a universal Higgs bundle endowed with a compatible T-action over
M× C was constructed. While the rank-2 vector bundle E is only unique up to
tensoring with a line bundle on M, the rank-4, T-equivariant vector bundle End(E)
is unambiguously defined. Now we fix an appropriate basis of H∗(Σg):

• we denote by 1 the canonical generator of H0(Σg);

• we denote by ω the Poincaré dual of the class of a point in H2(Σg);

• finally, we choose elements e1, . . . , e2g ∈ H1(Σg), which form a symplectic
basis of H1(Σg), i.e. for i < j, they satisfy eiej = δi+g−j,0 ·ω.

The Künneth decomposition of the second T-equivariant Chern class of End(E)

c2(End(E)) = 2α⊗ω+ 4
2g∑
i=1

ψi ⊗ ei −β⊗ 1 ∈ H∗T(Mg)⊗H∗(Σg) (5.2)

provides us2 with well-defined equivariant classes α ∈ H2
T(Mg), ψi ∈ H3

T(Mg) and
β ∈ H4

T(Mg). It is proved in [HT2] that α,ψi and β generate the T-equivariant
cohomology ring H∗T(Mg) as an H∗(BT) algebra. Their images in ordinary coho-
mology, in other words, the Künneth components of the second non-equivariant

2Note that the definition of the universal classes in [CHM, (1.2.10)] as well as in [HV1, (5.1)] do
not have the correct scalars. The correct ones are as in (5.2) and as in [HT2, (1.5)]. This discrepancy
in the scalars does not effect the arguments in [CHM, HV1].
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Chern class of the vector bundle End(E), generateH∗(Mg). One can use this obser-
vation to give an explicit embedding H∗(Mg) → H∗T(Mg) yielding (5.1). For this
reason, we will use the same notation α,β and ψi, for the Künneth components of
the second non-equivariant Chern class of End(E) as well.

We are not going to investigate closely the ring structure of HT(Mg), however
we have the following classical result, whose proof can be found in [Ki].

Lemma 3. We have a ring isomorphism HT(Mg)/uHT(Mg) ' H(Mg).

5.3 Compactification of the moduli space

A compactification Mg ⊃ Mg was constructed in [Ha1]. The construction there
was with symplectic cutting, producing a projective variety Mg. There is an alge-
braic version of this construction explained in [HV2] for a general semiprojective
variety. This yields the following in our case: Mg comes with an ample line bun-
dle L ∈ Pic(Mg) ∼= Z the generator of the Picard group. The T-action can be
linearized, and with an appropriate linearization we can construct the GIT quo-
tient

Z := Mg//T = (Mg \∪iDi)/T (5.3)

This is a projective orbifold of dimension 6g−7. We can add it as divisor at infinity
to compactify M as follows.

Mg := (Mg ×C)//T = (Mg ×C \ (∪iDi)× {0})/T. (5.4)

Mg is a projective orbifold of dimension 6g − 6, which has the decomposition
Mg = Mg ∪Z. From the quotient construction, we have the Kirwan map

κ : H∗T(Mg) ∼= H∗T(Mg ×C)→ H∗(Mg) (5.5)

which is surjective [Ki]. Thus H∗(Mg) is generated by κ(α), κ(ψi), κ(β) and κ(u).
By abuse of notation, we will denote these by α ∈ H2(Mg)), ψi ∈ H3(Mg)), β ∈
H4(Mg)), respectively, and the additional new class by η = κ(u) ∈ H2(Mg)).

We also see that the Hitchin map of Definition (5.0.5) is T-equivariant when
T acts on A with weight 2, and thus we can extend the Hitchin map as follows
[Ha1]:

h : Mg → A,

A ∼= P(A×C) is a projective space of dimension 3g− 3.

5.4 Equivariant integrals and residue formulas

We now mimic the localization formula for compact varieties to define equivariant
integrals in our cases. The main idea behind that is the fact that although Mg is
not compact, its fixed locus MT

g is (we say that Mg is a circle-compact manifold).
The (formal) equivariant integral of a class x ∈ H∗T(Mg) is then defined [HP] as

a sum over the fixed-point components∮
Mg

x :=
∑

F∈π0(MT
g)

∫
F

x|F
eT(NF)

∈ C[u,u−1] (5.6)
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where eT(NF) is the equivariant Euler class of the normal bundle to F ⊆Mg. The
equivariant integral thus is a functional of degree −2 dimMg on H∗T(Mg), taking
values in Laurent polynomials in u. Sometimes we will allow the class x to be in a
completion of H∗T(Mg), and in this case, the values will be in Laurent series in u.

With this definition we have the following formula for (usual) integrals over
the compact infinity divisor Z, following from results in [Ka], [Le] and [EG].

Lemma 4. Let dZ = dimZ = 6g− 7 and x ∈ H2dZ
T (Mg). Then we have∫

Z

κZ(x) = −Res
u=0

(∮
Mg

x

)
du, (5.7)

where κZ(x) is the composition of the Kirwan map 5.5 with the restriction to Z.

In order to have nicer formulas, we reintroduce Witten’s notation in the context
of Mg. Our equivariant intersection formulas will be written using this notation.

We recall that we defined in (5.2) universal classes as Künneth components of
the second Chern class of the bundle End(E)). More generally, we let the permu-
tation group S2 act on C[y] by y 7→ −y and take P ∈ C[y]S2 , an even polynomial.
Then there is a polynomial P̃ such that P(y) = P̃(−y2). We form the class

P̃(c2(End(E))) ∈ H∗T(M×C),

and we introduce the following notation for its Künneth components:

P̃(c2(End(E))) = P(2) ⊗ω+

2g∑
i=1

P(ei) ⊗ ei + P(0) ⊗ 1 ∈ H∗T(M)⊗H∗(C);

this defines a family of equivariant cohomology classes P(2),P(ei),P(0) ∈ H∗T(M).
Similarly to what has been seen in the case of vector bundles in (4.7) and

Remark 4.3.3, we have

[−y2/2](2) = α, [y2](0) = β, [−y2/4](ei) = ψi, [−y4/4](2) = αβ+ 4γ, (5.8)

where

γ = −2
g∑
i=1

ψiψi+g. (5.9)

Also, just like in Remark 4.3.3, we have

P(2) =
2γ−αβ
β
√
β
P ′(
√
β) −

2γ
β
P ′′(

√
β). (5.10)

This, in particular, implies that all intersection numbers involving the classes
α, β and γ are encoded in the numbers of the form

∮
Mg
T(0) exp(Q(2)). Indeed,

we can choose for example Q = −Ay2/2−Gy4/4, getting any class by subsequent
derivatives with respect to the formal variables A and G. Now, we have the result
analogous to 4.3.2 also in the setting of the moduli space of rank 2 Higgs bundles,
if we add polynomials in the class u too. Because of this, we extend the notation
T(0) by letting T be a polynomial in y2 and u; in this case, we mean that u(0) = u.
Therefore, all equivariant intersection numbers on Mg are encoded in the integral∮
Mg
T(0) exp(Q(2)). In Theorem 7.1.1, we will find a compact formula for such

integral, thus paving the way to the intersection theory on Mg.
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Chapter 6

Nonabelian Hodge Theory and
P=W

One of the groundbreaking results in the study of the moduli space of vector bun-
dles over a Riemann surface Σg is the relation it has with the moduli space of flat
connections, which in turn can be described via representations of the fundamen-
tal group of Σg: this is the classical Narasimhan-Seshadri theorem 6.1.4.

An analogous statement, the nonabelian Hodge correspondence (NHC), is true for
the Higgs moduli space. The case of rank 2 Higgs bundles, which is the one
we state in Theorem 6.3.1 is already present in [Hi1], while the treatment of the
general case can be found in [Si].

The NHC gives a real analytic diffeomorphism between the Higgs moduli
space and the character variety MB, which is naturally a complex affine manifold.
It can be seen that the NHC does not respect the two algebraic structures (i.e. it is
not an algebraic isomorphism), thus the natural question is how the cohomology
rings of these two varieties are related through the NHC.

It turns out that the cohomology of MB has a nontrivial mixed Hodge struc-
ture, while the same structure on Mg is trivial. However, since the NHC gives
an isomorphism between the two cohomologies, there should be some particular
structure on Mg which reflects the mixed Hodge structure on MB. It turns out
that the right structure to consider is the so-called perverse filtration on Mg, which
is closely related to the geometry of the Hitchin map. The link between these two
structures is stated in the P=W theorem, proven for the first time in [CHM] for rank
2 Higgs bundles. In the same article, the precise relationship between the two
structures has been conjectured in all ranks, leading to the P=W conjecture, one of
the most challenging open problems in the study of Higgs moduli spaces.

6.1 Connections and the Narasimhan-Seshadri theorem

We will first examine the case of vector bundles, which gives the Narasimhan-
Seshadri theorem. Let E be a vector bundle of rank r and degree k on a complex
manifold M. As already discussed in Section 4, we can define different holomor-
phic structures on E: loosely speaking, one wants to specify which sections of E are
holomorphic. Notice that if we have specified a set of local sections for a holomor-
phic frame e1, . . . , er on an open set U, and if αi ∈ Ωi(U), then we can define the
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operator ∂ on E-valued differential forms by defining it locally as

∂

r∑
i=1

αi ⊗ ei =
r∑
i=1

∂αi ⊗ ei.

Indeed, it can be seen that such an operator does not depend on the particular
holomorphic frame chosen: it does define a global operator

∂ : Ωi,j(M;E)→ Ωi,j+1(M;E). (6.1)

Conversely, if such an operator is defined, then we can say that a section s is holo-
morphic if ∂(s) = 0. Therefore, specifying a holomorphic structure on E is equivalent
to defining an operator as in (6.1).

Since M is a complex manifold, we have a Cauchy-Riemann differential oper-
ator ∂0 on differential forms. It can be shown [AB] that if

∂ = ∂0 +B

then B ∈ Ω0,1(M; End(E)). In order to have the condition ∂2
= 0, we need B to

satisfy the two equations
∂0B = 0, B∧B = 0. (6.2)

Notice that if M = Σg is a compact Riemann surface, the conditions (6.2) are au-
tomatically satisfied, therefore B can be chosen arbitrarily. We collect the remarks
done so far in a Lemma.

Lemma 5. The space C(E) of holomoprhic structures on E is an affine space, with under-
lying vector space Ω0,1(M; End(E)).

Now, the automorphism group Aut(E) acts on C(E) by conjugation of ∂. After
specifying the proper stability conditions as in Definition 4.1.3, the moduli space
of semistable bundles is Nss(r,k) = Css(E)/Aut(E).

Closely related to what we discussed is the concept of connection. Let G be
a compact connected Lie group with Lie algebra g, let M be a complex manifold,
and let π : P →M be a principal G-bundle over M. A connection on P is a form

ω ∈ Ω1(P; g),

i.e. a form with values in the Lie algebra g, such that

1. Letting Rg be the right action of G on P along its fibers, we have the relation
R∗gω = Adg−1ω, where on the right-hand side we are using the adjoint action
of G on g.

2. For each ξ ∈ g, letting ξP be the fundamental vector field of ξ on P induced
by the G-action, we have ιξMω = ξ.

For such a form, the commutator [ω,ω] ∈ Ω2(P; g) is well defined: its value on a
pair X, Y of vector fields is simply [ω(X),ω(Y)] ∈ g. We define the curvature of the
connection ω by

F(ω) := dω+ [ω,ω].
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We say that a connection is flat if its curvature is zero.
By condition (2) of the definition of a connection, we see that ω induces a

splitting of the tangent space of P as

TP = Kerπ∗ ⊕Kerω (6.3)

The section of Kerω are, by definition, vector fields X such that ιXω = 0: we
call such a vector field horizontal. Similarly, we call the vector fields of Kerπ∗
vertical: they are simply the ones tangent to the fibers, so that the G-action gives
a natural isomorphism (Kerπ∗)p ' g for all p ∈ P. Notice that π∗ gives an
isomorphism Kerω ' TM: we define the horizontal lift of a vector field X ∈ X(M)

as the corresponding X̃ ∈ Kerω under such isomorphism.
Now, if G acts on a vector space V , we can define the associated vector bundle

E = P×G V ,

so that its sections Γ(M;E) can be identified by the G-equivariant maps P → V .
Letting s ∈ Γ(M;E) be a section of E, its covariant derivative is defined as

∇s ∈ Ω1(M;E) : ιX∇s = X̃ · π∗s,

i.e. the derivative in the X̃-direction of the function π∗s = s ◦ π. In many books
and papers, the definition of a connection on E coincides with what we have called
the covariant derivative ∇. We denote by A(E) the set of connections on E.

Now assume G = U(r) is the unitary group. Decomposing the covariant
derivative by

∇ = ∇1,0 +∇0,1

following the Hodge decomposition induced by the complex structure of M, one
can show [GH, §0.5] that ∇0,1 induces a holomorphic structure on E. Therefore,
we have a map

A(E)→ C(E), ∇ 7→ ∇0,1 (6.4)

Notice however that since the decomposition of ∇ depends on the metric of M,
the map 6.4 also depends on the particular metric on M.

Now we focus on the case M = Σg is a Riemann surface. Assume that a
connection ω is flat; it is a classical result [KN] that that such a connection is
determined by the holonomy, i.e. a homomorphism

π1(Σg)→ G (6.5)

up to conjugation by G. Explicitly, since π1(Σg) is generated by 2g elements ai,bi
for i = 1, . . . ,g with the only relation

∏g
i=1[ai,bi] = e

1, we have that a flat connec-
tion corresponds to a 2g-uple

(Ai,Bi)
g
i=1 ∈ G

2g such that
g∏
i=1

[Ai,Bi] = Id.

In the case G = SU(r), the holonomy is a unitary representation of π1(Σg) of
dimension r.

1Here we mean the group commutator, i.e. [x,y] = xyx−1y−1.
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Remark 6.1.1. If the bundle E on the Riemann surface Σg admits a flat connection,
then it must have degree 0. Indeed, letting A be a connection with curvature F(A),
let ω ∈ Ω2(Σg) be such that π∗ω = F(A) (such form exists since F(A) is basic),
then [AB] ∫

Σg

ω = −2πic1(E).

Notice in particular that the integral does not depend on the particular connection
A: it is a topological datum of the vector bundle E.

Because of Remark 6.1.1, in order to deal with bundles of different degrees,
we cannot simply consider a homomorphism such as (6.5); this is why we must
introduce central extensions of π1(Σg) and the corresponding notion of Yang-Mills
connection.

Definition 6.1.2. Let ? be the Hodge star operator induced by the complex struc-
ture on Σg. A connection A on a principal bundle over Σg is called Yang-Mills, or
harmonic, if

∇A ? F(A) = 0, (6.6)

which are called Yang-Mills equations.

In the same way flat connections are associated to representations of the fun-
damental group as in (6.5), Yang-Mills connections are associated [AB] to repre-
sentations of the fundamental central extension of π1(Σg). This allows to define
a one-to-one correspondence between such representations and stable bundles of
any degree, namely the Narasimhan-Seshadri correspondence.

By the presentation of π1(Σg), it follows that there exists a universal central
extension ΓR:

0→ R→ ΓR → π1(Σg)→ 0

or, quotienting out by Z,

0→ Z→ ΓR → U(1)× π1(Σg)→ 0. (6.7)

Now we fix a U(1)-principal bundle Q → Σg equipped with a fixed harmonic
connection A with curvature −2πiω, with ω the volume form on M [AB]. Letting
Σ̃g → Σg be the universal covering, then Q ×Σg Σ̃g is a U(1) × π1(Σg)-bundle,
with a harmonic connection with curvature −2πiω. This can in turn seen, via
the morphism of (6.7), as a ΓR-principal bundle, with harmonic connection of
curvature −2πiω. Finally, if

ρ : ΓR → G

is a representation of ΓR, we have an induced G-connection Aρ on Σg by pushing
forward along ρ. It can be shown [AB] that this is a one-to-one correspondence.

Proposition 6.1.3. The correspondence ρ 7→ Aρ induces a bijective correspondence be-
tween conjugacy classes of homomorphisms ΓR → G and equivalence classes of Yang-Mills
connections on Σg.

Now the main theorem of the present section, due to Narasimhan and Seshadri
[NS], is the following.
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Theorem 6.1.4. Under the correspondence of Proposition 6.1.3, a vector bundle is stable
if and only if it comes from an irreducible representation ρ : ΓR → U(r).

This allows to represent the moduli space of stable bundles via the correspond-
ing character variety, as in the following Proposition, the proof of which can be
found in [AB, §6].

Proposition 6.1.5. For G = U(r) we have a real analytic diffeomorphism

Nssg (r,k) '

{
(Ai,Bi)

g
i=1 ∈ U(r)

2g |

g∏
i=1

[Ai,Bi] = e2kπi/r

}
/U(r)

where the action on the right is by diagonal conjugation.

Remark 6.1.6. Notice that the diffeomorphism of Proposition 6.1.5 is real analytic,
but the space on the left is a complex variety. This allows to define a complex
structure on the space on the right.

When we turn to Higgs bundles, we have a parallel of Narasimhan-Seshadri
theorem, called the nonabelian Hodge correspondence. However, since the corre-
sponding character variety is a complex variety in its own, one can compare the
two complex structures.

The NHC is a real analytic diffeomorphism, but since the moduli space of
Higgs bundles is not compact, a real analytic diffeomorphism does not neces-
sarily give an algebraic isomorphism. Actually, this is indeed the case, so that
the resulting diffeomorphism will transform the two mixed Hodge structures (see
Section 6.4) in the two cohomology rings. The precise relation between the two
structures is encoded in the P=W theorem.

6.2 Self-duality equations on Riemann surfaces

When Hitchin first introduced the concept of Higgs bundle in [Hi1], he started
with the discussion of self-duality equations on a Riemann surfaces, showing that
the solutions of such equations naturally correspond to stable Higgs bundles.

Let Σg be a compact, genus g > 1 Riemann surface (the condition on the genus
will become clear in what follows), and let P be a principal G-bundle over Σg with
a connection A. We let V = gC and we let G act on it via the adjoint representation.
The complex vector bundle E = P×G V is called the complexified adjoint bundle as-
sociated to P. Recall that, since the metric on Σg is set, the (0, 1)-component ∇(0,1)

A

of the covariant derivative of the connection A defines a holomorphic structure on
E. A Higgs field is by definition a section Φ ∈ Ω1,0(Σg;E). Letting F(A) to be the
curvature of A, we say that the pair (A,Φ) satisfies the self-duality equations if{

F(A) + [Φ,Φ∗] = 0
∇(0,1)
A Φ = 0

Here Φ∗ is the conjugate transpose in GC under some unitary representation of G,
and since Φ is a 1-form, we have written

[Φ,Φ∗] = ΦΦ∗ +Φ∗Φ.

The first theorem proven in [Hi1] is the following.
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Theorem 6.2.1. [Hi1] Let G = SO(3), P be a principal G-bundle over Σg, let E be the
complexified adjoint bundle and assume the pair (A,Φ) satisfies the self-duality equations.
Then if L ⊆ E is a Φ-invariant subbundle, we have

deg(V) 6
1
2

deg(E).

In order to define a moduli space, one needs to specify the notion of auto-
morphism of the objects we want to parametrize. In this case, we define a gauge
transformation to be a smooth section of the bundle of groups P ×G G where G
acts on itself by conjugation. A gauge transformation acts in a natural way on
(A,Φ) by conjugating Φ and by classical gauge action [KN] on the connection A;
such action preserves the self-duality equations. We call gauge equivalent two pairs
which differ by a gauge transformation.

Theorem 6.2.2. [Hi1, 2.7] If (A1,Φ1) and (A2,Φ2) are isomorphic via an automorphism
of E which brings ∇A1 into ∇A2 and Φ1 to Φ2, then (A1,Φ1) and (A2,Φ2) are gauge-
equivalent.

From this basic ingredient, Hitchin deduces the following.

Theorem 6.2.3. [Hi1, 5.7] Let E be a rank 2, odd degree vector bundle over a compact
Riemann surface Σg of genus g > 1, and let Mg be the space of solutions to self-duality
equations on E with fixed induced connection on ∧2E. Then Mg is a smooth complex
manifold of dimension 6g− 6.

Therefore, Theorem 6.2.3 provides a way to describe Higgs bundles over a
Riemann surface, in terms of the self-duality equations.

6.3 The nonabelian Hodge correspondence

Notice that Theorem 6.2.1 allows us to use interchangebly the notion of stable
Higgs bundles with fixed determinant, and the one of solutions to self-duality
equations. Therefore, for this section, we are justified to switch back to Higgs
bundles.

The key observation contained in [Hi1] is that if (A,Φ) is a solution to the
self-duality equations, then the PSL(2; C)-connection

∇ := ∇A +Φ+Φ∗

is flat and irreducible. Moreover, if any two such connections are equivalent under
complex gauge transformations, then the original pairs are gauge-equivalent.

The last ingredient is a theorem by Donaldson [D] which states that any irre-
ducible flat connections is complex gauge-equivalent to a connection of the form
A+ψ where (A,ψ) satisfy the self-duality equations.

Therefore, by repeating the argument done in the case of stable bundles, we
arrive to the following theorem, which is a generalization of Proposition 6.1.5 in
the case of Higgs bundles.
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Theorem 6.3.1 (Nonabelian Hodge correspondence). The moduli space of stable SL2-
Higgs bundles of odd degree on a Riemann surface Σg with g > 2, is diffeomorphic to the
moduli space of flat SL(2; C)-connections:

MB :=

{
(Ai,Bi)

g
i=1 ∈ SL(2; C)2g |

g∏
i=1

[Ai,Bi] = −Id

}
/SL(2; C) (6.8)

where the quotient is by the diagonal conjugation action.

This space MB is called the Betti moduli space, and it is an affine variety. In the
following, we will see that the algebraic structure of MB is very different from the
one of M. Such a difference will bring naturally to the P=W theorem.

6.4 Mixed Hodge structures on smooth algebraic varieties

The mixed Hodge structure of an algebraic variety is a way to generalize the
concept of Hodge structure to the non-compact or non-smooth cases. Since we
will only be concerned to the mixed Hodge structure of MB or Mg, we will just
discuss the smooth, non-compact case.

The first, fundamental theorem is due to Deligne [De]; it states the existence of
mixed Hodge structures for complex algebraic varieties.

Theorem 6.4.1. Let X be a complex algebraic variety. For each j, there exists an increasing
weight filtration

0 =W−1 ⊆W0 ⊆W1 ⊆ . . . ⊆W2j = H
j(X; Q)

and a decreasing Hodge filtration

Hj(X; Q) = F0 ⊇ F1 ⊇ . . . ⊇ Fm ⊇ Fm+1 = 0

such that the filtration induced by F on the complexification of the graded pieces of the
weight filtration GrWl :=Wl/Wl−1 is such that, for all p = 0, . . . , l, we have

GrW
C

l = FpGrW
C

l ⊕ Fl−p+1GrW
C

l

This means that the Hodge filtration F• endows the graded piece GrWl with a
pure Hodge structure of weight l. It is shown in the articles [De] that such structure
is compatible with maps induced by algebraic morphisms f : X → Y, with the
Künneth isomorphism and with cup products. As mentioned, we will focus on
the case of smooth complex varieties.

Proposition 6.4.2. Assume X is smooth connected of complex dimension d. Then we have
the following.

• The forgetful map Hkc(X)→ Hk(X) is compatible with mixed Hodge structures.

• Wj−1H
j(X) = 0, and the pure part

PH∗(X) := ⊕kWkHk(X) ⊆ Hk(X)

is a subring.
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• If i : X→ Y is a smooth compactification, then Im(i∗) = PH∗(X).

• The Poincaré duality

Hk(X)×H2d−k
c (X)→ H2d

c (X) ∼= Q(−d)

is compatible with mixed Hodge structures, where Q(−d) is the pure mixed Hodge
structure on Q with weight 2d and Hodge filtration Fd = Q, Fd+1 = 0.

In particular, we have Wj+1H
j
c(X) ' Hjc(X).

One can apply this theory to the case X = MB the Betti moduli space of (6.8).
We will not explain in detail the computation of the weight and Hodge filtration
for MB, and we refer to [HV1] for the following result.

Theorem 6.4.3. The classes α ∈ H2(MB), β ∈ H4(MB) and ψi ∈ H3(MB) have all
homogeneous weight 4. Therefore, γ ∈ H6(MB) has homogeneous weight 8. Moreover,
the pure part of H∗(MB) is generated by β.

Recall that the classes α, ψi and β have been defined in (5.2) on the moduli
space of Higgs bundles Mg. Since this is diffeomorphic to MB via the nonabelian
Hodge correspondence of Theorem 6.3.1, they are naturally cohomology classes
of MB as well.

6.5 The perverse filtration and the P=W theorem

The situation is very different in the case of the moduli space of Higgs bundles Mg.
Indeed, it is shown in [CM] that the mixed Hodge structure carried by Mg is pure,
i.e. H∗(Mg) = PH∗(Mg). In particular, α has weight 2, the ψi have weight 3 and
β has weight 4. This already implies that the nonabelian Hodge correspondence
is not an algebraic isomorphism.

Under the nonabelian Hodge correspondence of Theorem 6.3.1, the weight
filtration of MB is carried to a filtration in the cohomology ring of Mg: the natural
question is to describe geometrically such filtration. The answer to such question
has been given by De Cataldo, Hausel and Migliorini in [CHM] in the case in
exam, and conjectured for the moduli space of Higgs bundles of all ranks in the
same article.

Definition 6.5.1. Let h : Mg → A ' C3g−3 be the Hitchin map of Definition
5.0.5, and for s > 0 let Λs ⊆ A be a general s-dimensional subspace. The perverse
filtration on the cohomology group Hj(Mg) is defined as

PpH
j(Mg) := Ker

{
Hj(Mg)→ Hj(h−1(Λj−p−1))

}
(6.9)

The main theorem proven in [CHM] is the celebrated P=W in rank 2.

Theorem 6.5.2. Under the isomorphism given by the nonabelian Hodge correspondence,
we have

W2kH
∗(MB) =W2k+1H

∗(MB) = PkH
∗(Mg)
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Chapter 7

The Equivariant Localization
Formula on Mg

The main result of the present thesis is a new approach to the P=W theorem,
which does not rely on the geometric properties of the moduli space Mg, but only
on the structure of the equivariant intersection formulas. We obtain partial results
towards a new proof for the rank 2 case.

The first idea comes from another description of the perverse filtration of Defi-
nition 6.5.1, using the compactification Mg defined in (5.4) and the corresponding
infinity divisor (5.3). We refer to [CM] and [CHM] for the general definition of the
perverse filtration on an algebraic variety; for us, it is enough to know that there
is a well-defined perverse filtration on the cohomology of the compactification M

as well. The description we are giving in what follows will be enough for our
purposes.

For the sake of notational simplicity, from now on we will drop the index in
Mg and simply write M.

Proposition 7.0.1. Let i : M → M be the natural embedding. Then x ∈ Pk(Hj(M)) if
and only if there exists a y ∈ Pk−1(H

j−2(M)) such that (x+ ηy)η3g−2−j+k = 0.

Proof. From the properties of the perverse truncation functor pτ6p [CM], [CHM],
which commutes with the restriction to the open A ⊂ A, we have that the embed-
ding i : M→M induces the inclusion

i∗(Pk(H
∗(M)) ⊂ Pk(H∗(M)). (7.1)

On the other hand, from the (η,L)-decomposition1 of [CM, Corollary 2.1.7],
we see that i∗(Pk(H∗(M)) induces a filtration on i∗(H∗(M)) ∼= H∗(M) satisfying a
relative Hard Lefschetz theorem of the same type as the perverse filtration P on
H∗(M). It follows from this and (7.1) that actually

i∗(Pk(H
∗(M))) = Pk(H

∗(M)). (7.2)

1Note that we use the notation η = ηZ for the class L in [CM] while η in [CM] denotes an ample
class on M.
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On the projective M we can use [CM, Proposition 5.2.4.(39)] to deduce2 that

Pk(H
j(M)) =

3g−2−j+k∑
l=0

im(ηl)∩ ker(η3g−2−l−j+k), (7.3)

where η : Hj(M)→ Hj+2(M) denotes multiplication by η ∈ H2(M) by an abuse of
notation.

Now if 0 6= x ∈ Hj(M) and x̃ ∈ Hj(M) is a lift of x, then x̃ /∈ im(η), since
i∗(η) = 0. It follows then from (7.2) and (7.3) that

x ∈ Pk(Hj(M))⇔ η3g−2−j+kx̃ = 0 for some x̃ ∈ Hj(M) lift of x.

Considering the composition H∗(M) → H∗T(M) (cf. §5.3) with the Kirwan
map (5.5), it is clear that any lift of x will have the form x̃ = x + ηy for some
y ∈ Hj−2(M). Finally, again by (7.2) and (7.3), we see that x ∈ Pk(Hj(M)) if and
only if such y ∈ Pk−1(H

j−2(M)), and this completes the proof.

We are ready to formulate the enumerative version of P=W.

Theorem 7.0.2 (Enumerative P=W). The P=W Theorem 6.5.2 holds for G = PGL2 if
and only if for all g > 2, l > 0 and m > 0 there is an extension βlγm + ηq(α,β,γ,η) of
βlγm ∈ H∗(Z) such that∫

Z

η3g−3−2l−2m(βlγm + ηq(α,β,γ,u))x = 0 (7.4)

for all x ∈ H∗(Z).

Proof. Notice that for any class v ∈ H∗(M), we have
∫
M vη =

∫
Z v, and the restric-

tion map H∗(M)→ H∗(Z) is surjective as both rings are generated by the universal
classes and η. Therefore, Equation (7.4) is equivalent to∫

M

η3g−2−2l−2m(βlγm + ηq(α,β,γ,η))x = 0

for all x ∈ H∗(M). By Poincaré duality, this is, in turn, equivalent to

η3g−2−2l−2m(βlγm + ηq(α,β,γ,η)) = 0. (7.5)

By Proposition 7.0.1, (7.5) implies that αkβlγm ∈ P2k+2l+4m(H2k+4l+6m(M)) for
all k, l and m. Since α, β and γ have weight respectively 2, 2 and 4, Proposition
7.2.1 and Theorem 6.4.3 imply that

PkH
∗(M) ⊆W2k(M)

for all k > 0. Finally, as in [CHM], this, the relative Hard Lefschetz theorem [CM,
Theorem 2.1.4] and the curious Hard Lefschetz theorem [HV1, Theorem 1.1.5]
imply Theorem 6.5.2 for G = PGL2.

2Proposition 5.2.4 is claimed for a smooth total space, but as explained in [CM, Theorem 2.3.1]
the results hold for non-smooth varieties for intersection cohomology, and thus for orbifolds with
ordinary cohomology.
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Conversely, assuming Theorem 6.5.2 holds, then for all l > 0 and m > 0, we
have

βlγm ∈ P2l+4m(H4l+6m(M)).

Still by Proposition 7.0.1 this implies that there exists a lift ỹ ∈ H2l+4m(M) of βlγm

such that ỹη3g−2−2l−2m = 0, and by Proposition 7.2.1 below, we can choose such a
lift to be Sp(2g, Z) invariant; therefore, it is of the form ỹ = βlγm + ηq(α,β,γ,η)
for some polynomial q. Then, by Poincaré duality on M we have∫

M

η3g−2−2l−2m(βlγm + ηq(α,β,γ,η))x = 0

for all x ∈ H∗(M). Finally, since
∫
M ηv =

∫
Z v for all v the proof is complete.

Remark 7.0.3. There is a straightforward generalization of the result above for
PGLn. We have universal generators for H∗(Md

Dol(PGLn)), whose weights on the
character variety side have been computed in [HV1, Sh] and the curious Hard
Lefschetz theorem in H∗(Md

B (PGLn)) has been proved in [Me].

7.1 Equivariant integrals on Mg

From Theorem 7.0.2, it becomes clear that in order to approach the P=W theorem
from an enumerative standpoint, we need to find useful intersection formulas on
Z. Thanks to Lemma 4, this would follow from a formula for the equivariant
integrals on Mg.

The first foundational result is a useful intersection formula for the equivariant
integrals on Mg, which can be seen as the analogue of the one in Theorem 4.3.4
for Higgs bundles.

Theorem 7.1.1. ∮
M

T(0) exp(Q(2)) =

=
∑

r∈{0,u,−u}

Res
y=r

2−1T · (Q ′′ − 2u/(u2 − y2))g

ug−1
(
eQ

′ u−y
u+y − e−Q

′ u+y
u−y

)
y2g−2(u2 − y2)g−1

dy

Proof. To calculate the equivariant integral as defined in (5.6), we need to list the
components of the fixed point set MT of the circle action and identify the corre-
sponding normal bundles. This data may be found in [HT2, §4,5,6], and thus we
will only brief it here. There are two sorts of stable T-fixed Higgs bundles (E,Φ)
(cf. Proposition 5.1.1):

• E is stable and Φ = 0. This set of Higgs bundles forms a copy N ⊂M of the
moduli of stable bundles, which extends to the embedding T∗N ⊂M.

• E = L⊕ΛL−1, 1 6 degL 6 g− 1, Φ|ΛL−1 = 0, and Φ|L is a nonzero map of
line bundles L → ΛL−1K. The list of fixed point set of this second type is
Fi ∼= S

2g−2i−1(C), i = 1, . . . ,g− 1.
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We thus have, by (5.6),

∮
M

T(0) exp(Q(2)) =

∫
N

T(0) exp(Q(2))

eT(NN)
+

g−1∑
i=1

∫
Fi

T(0) exp(Q(2))

eT(NFi)
(7.6)

We start by describing a formula for multiplicative characteristic classes on
N. Let B(t) be a formal power series and for a vector bundle V denote by B(V)
the corresponding multiplicative characteristic class of the V : denoting the Chern
roots of V by ti, i = 1, . . . , rank(V), this class is the product

∏
i B(ti).

Lemma 6. Let B(t) be a formal power series with B(0) 6= 1. Then

B(TN) = [B(0)B(y)B(−y)]g−1
(0) exp

([
B̂(y) + B̂(−y)

]
(2)

)
, (7.7)

where B̂(t) satisfies ∂
∂t B̂(t) = − logB(t).

Proof. Denote by π the projection C×N → N and by ω the positive integral gen-
erator of the second cohomology of C. Then by [Z] we have, for k > 0,

sk(TN) = π∗((g− 1)(sk(Ad(U))ω− sk+1(Ad(U))/(k+ 1)). (7.8)

Here sk is the power sum symmetric polynomial (in any number of variables), i.e.
sk(b1,b2, . . . ) = bk1 + bk2 + . . .

We write B(TN) as exp (
∑
i log(B(ti))), and then we apply the equality (7.8) to

the sum in the exponential. The result is two terms, the first of which contributes
a factor B(Ad(U))g−1 ∩ 1, while the second gives exp(B̂(Ad(U))∩ω), where 1 and
ω are, as usual, the positive integral generators of H0(C, Z) and H2(C, Z), respec-
tively. The Chern roots of Ad(U) are 0,±y, and using the notation introduced in
Section 4.3, we obtain (7.7).

Now we can calculate the first term of the (7.6). Observe that eT(T
∗N)−1 is a

multiplicative class of TN corresponding to the function

B(t) = Ψ(t)
def
= 1/(u− t)

Then

Ψ̂(t) = −(u− t) log(u− t) − t with
d
dt
Ψ̂(t) = log(u− t) and

d2

dt2 Ψ̂(t) =
−1
u− t

and
1

eT(T∗N)
=

1
ug−1

[
1

(u− y)(u+ y)

]g−1

(0)
exp

([
Ψ̂(y) + Ψ̂(−y)

]
(2)

)
.

We have
d

dy
(Ψ(y) +Ψ(−y)) = log(u− y) − log(u+ y)

d2

dy2 (Ψ(y) +Ψ(−y)) =
−1
u− y

+
−1
u+ y
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Now, combining this with (4.9) and (7.7) shows that∫
N

T(0) exp(Q(2))

eT(T∗N)
=

1
2

Res
y=0

T · (Q ′′ − 2u/(u2 − y2))g

ug−1
(
eQ

′ u−y
u+y − e−Q

′ u+y
u−y

)
y2g−2(u2 − y2)g−1

dy.

(7.9)
This calculates the first summand of (7.6) since, being N ⊆ M a Lagrangian sub-
variety, we have NN = T∗N.

Now let Fi ' S2g−2i−1(C) for i = 1, . . . ,g be the other components of the fixed
point set. To evaluate ∫

Fi

T(0) exp(Q(2))

eT(NFi)
∈ C(u),

first we compute T(0)|Fi and Q(2)|Fi . For this we define (c.f. [HT2, §5]) universal
classes η ∈ H2(Fi) and ξi ∈ H1(Fi) for i = 1 . . . 2g by computing the first Chern
class of the universal divisor ∆ ⊂ Fi ×C ∼= S2g−2i−1(C)×C in Künneth decompo-
sition:

c1(∆) = (2g− 2i− 1)ω+

2g∑
i=1

ξiei + η ∈ H2(Fi ×C) =

= H0(Fi)×H2(C)⊕H1(Fi)×H1(C)⊕H2(Fi)×H0(C).

We also define θi = ξiξi+g for i = 1 . . .g and θ =
∑g
i=1 θi. With these notations

we have.

Lemma 7. We have

T(0)|Fi = T(η− u) ∈ H
∗
T(Fi)

∼= H∗(Fi)[u] (7.10)

and

Q(2)|Fi = (1 − 2i)Q′(η− u) − θQ′′(η− u) ∈ H∗T(Fi) ∼= H∗(Fi)[u] (7.11)

Proof. Recall from last displayed line of proof of [HT2, (6.1)] that

−c2(End(E))|Fi = ((1 − 2i)ω+ η− u+

2g∑
j=1

ξjej)
2.

We get (7.10) immidiately and that

[y2k](2)|Fi = (1 − 2i)(2k)(η− u)2k−1 +

(
2k
2

)
(−2θ)(η− u)2k−2.

This in turn yields (7.11)

Next we need a formula for the equivariant Euler class eT(NFi).

Lemma 8. We have

eT(NFi) = (2u− η)g+2i−2 exp
(

θ

η− 2u

)
(u)g−1(u− η)−2i+g exp

(
θ

η− u

)
·(η− u)2i−2+g exp

(
θ

u− η

)
= ug−1(−1)g(η− u)2g−2(2u− η)g+2i−2 exp

(
θ

η− 2u

)
.

48



Proof. We know that the tangent bundle of M restricted to Fi can be computed as

TM|Fi
∼= R1π∗

(
End0(E)

Ad(Φ)→ End0(E)⊗KC
)

,

where π : Fi ×C → Fi is the projection. To compute this first we have from [HT2,
(6.1)]

chT(End0(E)) =

= 1 + exp

(1 − 2i)ω+ η− u+

2g∑
j=1

ξjej

+ exp

(2i− 1)ω− η+ u−

2g∑
j=1

ξjej

 .

Thus we can compute

chT(TM|Fi) = − chT

(
Rπ∗

(
End0(E)

Ad(Φ)→ End0(E)⊗KC
))

= π∗ (chT(End0(E)(−1 + exp(u) ch(KC))td(C))
= π∗ (chT(End0(E))(−1 + exp(u) + (g− 1)(1 + exp(u))σ))
= exp(2u)((g− 1) exp(−η) + exp(−η)(2i− 1 − θ)

+ exp(u)((g− 1)(1 + exp(−η)) − exp(−η)(2i− 1 − θ)

+((g− 1)(1 + exp(η)) − exp(η)(2i− 1 + θ)

+ exp(−u)((g− 1) exp(η) + exp(η)(2i− 1 + θ)

= exp(2u)((2i− 2) exp(−η) +
g∑
i=1

exp(−η− θi))

+ exp(u)((g− 1) − 2i exp(−η)) −
g∑
i=1

exp(−η− θi))

+((g− 1) − 2i exp(η)) −
g∑
i=1

exp(η+ θi))

+ exp(−u)((2i− 2) exp(η) +
g∑
i=1

exp(η+ θi)).

The four lines give the contributions from the four weight spaces of the T-action
on TM|Fi : weight 2, weight 1, weight 0 and weight −1. The 0 weight space corre-
sponds to the tangent space TFi < TM|Fi . Removing it will yield the normal bundle
NFi of Fi in M. Thus

chT(NFi) = exp(2u)((2i− 2) exp(−η) +
g∑
i=1

exp(−η− θi))

+ exp(u)((g− 1) − 2i exp(−η)) −
g∑
i=1

exp(−η− θi))

+ exp(−u)((2i− 2) exp(η) +
g∑
i=1

exp(η+ θi)).

Formal computation now gives the Lemma.
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The final ingredient is the intersection theory on symmetric products, exam-
ined in §3.4.3. For any power series A(x) ∈ C[[x]] and B(x) ∈ C[[x]] we have (cfr.
Formula (3.7)) ∫

Fi

A(η) exp(B(η)θ) = Res
x=0

{
A(x) (1 + xB(x))g

x2g−2i

}
dx.

So we can proceed to compute with y = x− u∫
Fi

T(0) exp(Q(2))

eT(NFi)
=

∫
Fi

T(η− u) exp ((1 − 2i)Q′(η− u) − θQ′′(η− u))

ug−1(−1)g(η− u)2g−2(2u− η)g+2i−2 exp
(

θ
η−2u

)
=

(−1)g

ug−1

∫
Fi

T(η− u) exp ((1 − 2i)Q′(η− u))
(η− u)2g−2(2u− η)g+2i−2 exp

((
−Q′′(η− u) +

1
2u− η

)
θ

)
=

(−1)g

ug−1 Res
x=0

T(x− u) exp ((1 − 2i)Q′(x− u))
(
1 + x

(
−Q′′(x− u) + 1

2u−x

))g
dx

(x− u)2g−2(2u− x)g+2i−2x2g−2i

= u1−g Res
y=−u

T(y) exp ((1 − 2i)Q′(y))
y2g−2(u− y)g+2i−2(u+ y)g−2i

(
Q′′(y) −

1
u+ y

−
1

u− y

)g
dy

We note that the right hand side of this expression has no pole at y = −u for
i > g thus the residue vanishes and so we have

g−1∑
i=1

∫
Fi

T(0) exp(Q(2))

eT(NFi)

=

g−1∑
i=1

u1−g Res
y=−u

{
T(y) exp ((1 − 2i)Q′(y))

y2g−2(u− y)g+2i−2(y+ u)g−2i

(
Q′′(y) −

1
u+ y

−
1

u− y

)g}
dy

=

∞∑
i=1

u1−g Res
y=−u

{
T(y) exp ((1 − 2i)Q′(y))

y2g−2(u− y)g+2i−2(y+ u)g−2i

(
Q′′(y) −

1
u+ y

−
1

u− y

)g}
dy

= Res
y=−u

T · (Q ′′ − 2u/(u2 − y2))g

ug−1
(
eQ

′ u−y
u+y − e−Q

′ u+y
u−y

)
y2g−2(u2 − y2)g−1

dy.

Finally we note that the expression in this residue is odd in y and so will give
the same result at y = u. Thus we can conclude that

g−1∑
i=1

∫
Fi

T(0) exp(Q(2))

eT(NFi)
=

=
1
2

∑
r∈{u,−u}

Res
y=r

T · (Q ′′ − 2u/(u2 − y2))gdy

ug−1
(
eQ

′ u−y
u+y − e−Q

′ u+y
u−y

)
y2g−2(u2 − y2)g−1

Together with (7.9) this completes the proof of the Theorem.
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7.2 The Sp(2g, Z) action

Note that the orientation preserving index-2 subgroup of the mapping class group
of the Riemann surface underlying C acts on H∗(C) via3

Σ := Sp(2g, Z)

acting on H0(C) and H2(C) trivialy and by preserving the symplectic structure on
H1(C) given by the intersection pairing.

We see that Σ acts on H3(M) ∼= H1(C), where we identify H3(M) with H1(C)
by mapping ψi to ei and letting Σ act trivially on C[u]. This will also yield an
action of Σ on H3

T(M) ∼= H3(M)⊗C[u], where the identification is again done by
mapping the equivariant ψi to the non-equivariant one. Finally we will let Σ act
on H2

T(M) and H4
T(M) and so on α and β trivially.

Proposition 7.2.1. The action defined above induces an action of Σ on H∗T(M) by C[u]-
algebra automorphisms, and on H∗(Z) by ring automorphisms. The perverse filtrations on
H∗(M) and on H∗(Z) are invariant under this action.

Proof. We observe that the equivariant intersection numbers∮
M

αkβl
2g∏
i=1

ψmi

i ∈ C(u)

are invariant with respect to this action of Σ. This follows from the fact that in
(5.6) the expression for the equivariant Euler class eT(T

∗N) coming from (7.8) is
invariant under Σ. Analogously, the formula in Lemma 8 is Σ-invariant.

Thus we deduce that the intersection numbers on N and Fi are invariant under
Σ as the Σ action on H∗(N) and H∗(Fi) comes from the mapping class group of
C. It follows that the ideal of relations among the universal generators α,β,ψi of
H∗T(M) is invariant under Σ, thus getting an action of Σ on H∗T(M) by C[u]-algebra
automorphisms extending the one on H2

T(M)⊕H3
T(M)⊕H4

T(M) defined above.
In turn, by (5.7) we get that all intersection numbers on Z will be invariant

by Σ, which will yield a Σ-action on H∗(Z) by ring automorphisms. Thus, since∫
Z x =

∫
M ηx, we see that the perverse filtration on H∗(M) will be Σ invariant, and

finally also the one on H∗(M) by Proposition 7.0.1.

7.3 Integrals on the infinity divisor

The formula in Theorem 7.0.2 is an explicit statement, which ought to follow from
Theorem 7.1.1 thanks to Lemma 4, but this calculation rather difficult to perform.
The main reason is that it involves cancellation of two rather different terms: the
residues of a differential form at y = 0 and at y = u. In this section we mitigate
this problem, and rewrite our statement in a completely local form.

Let us consider expression in Theorem 7.1.1. First we observe that the expres-
sion in parenthesis may be rewritten as follows

eQ
′ u− y

u+ y
− e−Q

′ u+ y

u− y
=

(u− y tanh(Q ′/2))(u− y coth(Q ′/2))
u2 − y2 .

3We note that our notation for Γ and Σ are swapped from the notation in [HT2], this is to be more
in line with the notation of Γ used in [HT3].
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The equivariant integral thus is the sum of the residues of the expression

Ω(u,y) =
2−2T · ((u2 − y2)Q ′′ − 2u)g

ug−1 sinh(Q ′)(u− y tanh(Q ′/2))(u− y coth(Q ′/2))y2g−2(u2 − y2)2g−2

(7.12)
at y = 0 and y = ±u. Let us find all the other poles of this form. The following
statement is an easy consequence of the implicit function theorem. Its proof will
be omitted.

Proposition 7.3.1. a. Let us assume that T(0) = 1 and Q = Ay2 + P(y), where A is a
nonzero constant, P is an even polynomial of degree > 2. Then for u sufficiently small,
there is a c > 0 such that the form Ω in (7.12) has the following poles inside the unit disc:

• at y = 0, of order 2g− 1

• at y = ±u of order 2g− 2

• simple poles at y = ±b0, where |b0 −
√
u/A| < cu2 for a constant c.

b. If P = 0, i.e. Q = Ay2, then we can describe all remaining poles of Ω(u,y): these
are simple poles at y = bn, n ∈ Z \ {0}, where |bn − πin| < cu.

Remark 7.3.2. When P = 0, the numbers Bu = {bn, n ∈ Z} are the solutions of
the Bethe ansatz for the Yang-Yang model [YY]. This was a crucial observation
of [MNSh], who also studied a special case of these equivariant integrals in order
to find a regularized volume of the Higgs moduli. Their formula, obtained using
mathematically nonrigorous methods, is an infinite sum over Bu, and can be easily
recovered by applying the Residue Theorem to Theorem 7.1.1.

The most important part of Proposition 7.3.1 is that for Q = Ay2 + P(y), and u
sufficiently small, the only poles of Ω(u,y) in the disc {y : |y| < 2u} are the poles
y = 0,−u,u. In this case, we have an integral representation

Res
y=0,±u

Ω(u,y)dy =

∫
|y|=2ε

Ω(u,y)dy

and thus

Res
u=0

Res
y=0,±u

Ω(u,y)dydu =

∫
|u|=ε

∫
|y|=2ε

Ω(u,y)dydu.

To perform the last double integral, we must first fix the magnitude of u to
be equal to ε, and then compute the y-residues inside the circle of the y-plane of
radius 2ε. However, as the last expression is an integral over a product of circles,
we can apply Fubini’s theorem and write our integral as∫

|u|=ε

∫
|y|=2ε

Ω(u,y)dydu =

∫
|y|=2ε

∫
|u|=ε

Ω(u,y)dudy.

Finally, we convert this last integral into residues again. Now we fix a value
of y of magnitude 2ε and look for poles of our form inside the circle of radius ε
in the u-plane. Again, studying the denominator, we see that we have a pole at
u = 0, but the factor u2 − y2 now does not contribute. We have a pole, however, at
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the point u = y tanh(Q ′/2), because this is of order u ∼ 4ε2 � ε. This leads to the
following residue identity:

Res
u=0

Res
y=0,±u

Ω(u,y)dydu = Res
y=0

[
Res
u=0

+ Res
u=y tanh(Q ′/2)

]
Ω(u,y)dudy.

Combining this with (7.12), we arrive at the following formula for integration
on Z:∫

Z

T(0) exp(Q(2)) = −Res
y=0

[
Res
u=0

+ Res
u=y tanh(Q ′/2)

]
(

2−2T · ((u2 − y2)Q ′′ − 2u)g dudy
ug−1 sinh(Q ′)(u− y tanh(Q ′/2))(u− y coth(Q ′/2))y2g−2(u2 − y2)2g−2

)
.

(7.13)

The second term may be further simplified since the pole of Ω(u,y)du at
u = y tanh(Q ′/2) is simple, and thus to calculate the residue, we simply perform
the substitution u = y tanh(Q ′). Using the identities

sinh(a)(tanh(a/2) − coth(a/2)) = −2, tanh2(a/2) − 1 =
−1

cosh2(a/2)

and sinh(a) = 2 sinh(a/2) cosh(a/2), the denominator turns into

−2y · yg−1 tanhg−1(Q ′/2) · y2g−2 · y2(2g−2) cosh−2(2g−2)(Q ′/2),

while the numerator is

2−2T(u = y tanh(Q ′/2)) cosh−2g(Q ′/2)(−y2Q ′′ − y sinh(Q ′))g.

Canceling the similar factors we arrive at

Res
y=0

2−2T(u = y tanh(Q ′/2)) · cosh−2g(Q ′/2) · (−y2Q ′′ − y sinh(Q ′))g dy

−2y · yg−1 tanhg−1(Q ′/2) · y2g−2 · y2(2g−2) cosh−2(2g−2) =

Res
y=0

−2−3T(u = y tanh(Q ′/2)) · cosh2g−4(Q ′/2) · (−yQ ′′ − sinh(Q ′))g dy
tanhg−1(Q ′/2) · y6g−6

. (7.14)

Thus formula (7.13) yields the following result:

Proposition 7.3.3. We have the following formula for the intersection numbers of Z:∫
Z

T(0) exp(Q(2)) =

Res
y=0

Res
u=0

−2−2T · ((u2 − y2)Q ′′ − 2u)g dudy
ug−1 sinh(Q ′)(u− y tanh(Q ′/2))(u− y coth(Q ′/2))y2g−2(u2 − y2)2g−2+

Res
y=0

2−3T(u = y tanh(Q ′/2)) · cosh2g−4(Q ′/2) · (−yQ ′′ − sinh(Q ′))g dy
tanhg−1(Q ′/2) · y6g−6

. (7.15)

Notice that if the polynomial T is divisible by ηg−1, then the first residue at
u = 0 vanishes. In particular, if k 6 g− 1, we obtain
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Corollary 7.3.4. Define

R
Q
g,k(y) := (−1)g2−3

(
sinh(Q ′/2)

y

)2g−2k−2

cosh2k−2(Q ′/2)
(
Q ′′ +

sinh(Q ′)
y

)g
,

then, for 1 6 k 6 g− 1,∫
Z

η3g−3−2kT(0)exp(Q(2)) = Res
y=0

dy
y4k−1 T(u = y · tanh(Q ′/2))RQg,k(y). (7.16)

7.4 Defects and the order of the pole

We denote simply by Rg,k(y) the function appearing in (7.16) when we set Q =
−Ay2/2 −Gy4/4. Notice that it is a holomorphic function around y = 0. Then
(5.8) and Corollary 7.3.4 tell us that∫

Z

η3g−3−2kαi(4γ)jβmηnexp(Q(2)) =

Res
y=0

dy
y4k−1y

2m∂iA(∂G − y2∂A)
j(y tanh(Q ′/2))nRg,k(y).

Let R̃g,k = Rg,k(y,G = y−2G̃): notice that it is still a holomorphic function in y.
Then, since ∂G = y2∂

G̃
, we get∫
Z

η3g−3−2kαi(4γ)jβmηnexp(Q(2)) =

Res
y=0

dy
y4k−1y

2m+2n+2j∂iA(∂G̃ − ∂A)
j(tanh(Q ′/2)/y)nR̃g,k(y)

and in this formula, we are taking the residue of a meromorphic function with a
pole at y = 0 of order 4k− 1 − 2m− 2n− 2j. Since the order of the pole of the
sum two meromorphic functions is at most the maximum between the orders of
the two poles, we are brought to make the following definition.

Definition 7.4.1. We define the defect of a monomial in α,β,γ and η via the as-
signment

def(α) = 0, def(β) = def(γ) = def(η) = 2

and extending it by multiplicativity. We also define the defect of any polynomial
in α,β,γ and η to be the minimum of the defects of its monomials.

Notice that if x is a class in α,β and γ, so that it can be seen as a class x ∈
Hi(M), then we immediately verify

def(x) = i− wt(x)

where wt(x) is the weight of x.
By Theorem 7.0.2 we immediately get the following.

Corollary 7.4.2. If for every x ∈ H∗(Z) we can find y ∈ H∗(Z) with∫
Z

η3g−3−def(x)(x+ ηy)r = 0, for all r ∈ H∗(Z)

then P=W holds for M.
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Chapter 8

The matrix problem for the
top-defect pairing

Thanks to Corollary 7.4.2, the proof of P=W reduces to a matrix problem for every
generator of the cohomology of Z, i.e. monomials in α, β and the ψi. We will
treat here the case of βk at top-defect, and solve the matrix problem. Afterwards,
we will examine the case of the monomials βk−hγh and prove a criterion for
the solvability of the relevant matrix problem. The pairing at lower defects for
the monomials will be examined in §9, in which we will show that the problem
becomes much more involved even for the “simplest” case βk.

8.1 The classes βk

In this section we will prove the following.

Theorem 8.1.1. Let g > 2 and 1 6 k 6 g− 1. There exists a unique class Fk ∈ H∗(Z)
such that, for all P ∈ H∗(Z) with def(P) = 2k− 2, we have∫

Z

η3g−3−2k(βk + ηFk)P = 0. (8.1)

In the entire section, we will always assume that 1 6 k 6 g− 1.
In order to prove Theorem 8.1.1, we need to show that the pairing

(F,P) 7→
∫
Z

η3g−3−2kFP,

F ∈ H4k(Z), def(F) = 2k, P ∈ H6g−8(Z), def(P) = 2k− 2

where we are taking defect-homogeneous F and P, is degenerate; moreover, we
need an element of its kernel to be of the form βk + ηFk for some Fk.

To compute the matrix of the pairing, we choose the following basis of the F
classes

Fk,a1,n1 := β
a1−n1(4γ)n1ηk−a1αk−a1−n1 , with

{
0 6 n1 6 a1,
a1 +n1 6 k,
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and the following basis of the P-classes

Pk,a2,n2 := β
a2−n2(4γ)n2ηk−1−a2α3g−3−k−a2−n2 , with 0 6 n2 6 a2 6 k− 1.

The coefficients have been chosen in order to make computations easier later.
We then perform a column operation and define the matrix Mk of the pairing

as follows:

(Mk)
a2,n2
a1,n1

:=
(−2)k−a1

(k− a1 −n1)!n1!

∫
Z η

3g−3−2kFk,a1,n1Pk,a2,n2∫
Z η

3g−3−2kFk,k,0Pk,a2,n2

(8.2)

Therefore Theorem 8.1.1 is equivalent to finding a vector in the kernel of MT
k

whose coefficient corresponding to the term βk (i.e. the row indexed by (a1,n1) =
(k, 0)) is nonzero.

Lemma 9. We have

(Mk)
a2,n2
a1,n1

=

(
3g− 3 − a1 −n1 − a2 −n2

k− a1 −n1

)(
g−n2

n1

)
.

Proof. We will use the formula of Corollary 7.3.4 choosing the polynomial Q =
−Ay2/2 −Gy4/4. First of all we perform the computations for

F̃k,a1,n1 := β
a1−n1(αβ+ 4γ)n1ηk−a1αk−a1−n1 ,

P̃k,a2,n2 := β
a2−n2(αβ+ 4γ)n2ηk−1−a2α3g−3−k−a2−n2 .

Let us write G̃ = Gy2, so that ∂G = y2∂
G̃

. Then by Corollary 7.3.4 we have∫
Z

η3g−3−2kF̃k,a1,n1 P̃k,a2,n2 =

∂
3g−3−a1−a2−n1−n2
A ∂n1+n2

G̃
Res
y=0

dy
y

(
tanh(−Ay/2 − G̃y/2)

y

)2k−1−a1−a2

R̃g,k(A, G̃;y)

where R̃g,k(A, G̃;y) := Rg,k(A, G̃/y2;y). We see that the form we are taking the
residue of has a simple pole, thus its residue is computed by evaluating at y = 0.
Now

R̃g,k(A, G̃; 0) = 22k−1−g(A+ G̃)2g−2k−2(A+ 2G̃)g

and the tanh factor gives (−A/2 − G̃/2)2k−1−a1−a2 . Therefore we have∫
Z

η3g−3−2kF̃k,a1,n1 P̃k,a2,n2 =

= (−1)a1+a2+12−g+a1+a2∂
3g−3−a1−a2−n1−n2
A ∂n1+n2

G̃
(A+ G̃)2g−3−a1−a2(A+ 2G̃)g

(notice that the integral does not depend on k). Then using the classes 4γ in the
definitions of Fk,a1,n1 and Pk,a1,n1 amounts to change variable B = A+ G̃, so that
the formula becomes ∫

Z

u3g−3−2kFk,a1,n1Pk,a2,n2 =
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= (−1)a1+a2+12−g+a1+a2∂
3g−3−a1−a2−n1−n2
B ∂n1+n2

G B2g−3−a1−a2(B+G)g =

= (−1)a1+a2+12−g+a1+a2(3g− 3 − a1 − a2 −n1 −n2)!(n1 +n2)!
(

g

n1 +n2

)
,

dividing out and using the coefficients of (8.2) we obtain

(Mk)
a2,n2
a1,n1

=

(
3g− 3 − a1 −n1 − a2 −n2

k− a1 −n1

)(
g−n2

n1

)
and the proof is complete.

Lemma 9 allows us to relate the matrix Mk with a particular evaluation oper-
ator on polynomials in two variables.

Corollary 8.1.2. Let v = (va1,n1)06n16a1
n1+a16k

be a row vector, and let

pv(X,Z) :=
∑

06n16a1
a1+n16k

va1,n1

(
3g− 3 − a1 −n1 −Z

k− a1 −n1

)(
g−X

n1

)

Then vMk = (pv(n2,a2 +n2))06n26a26k−1.

We are now ready to find a vector in the kernel of MT
k .

Proposition 8.1.3. Let

va1,n1
k := Res

t=0

(−1)k−a1−n1(1 + t)g−k−2(1 + 2t)g−n1dt
ta1−n1+1 , 0 6 n1 6 a1, a1 +n1 6 k.

Then ∑
06n16a1
a1+n16k

va1,n1
k (Mk)

a2,n2
a1,n1

= 0

for all a2,n2 with 0 6 n2 6 a2 6 k− 1. In particular, the vector vk is in the kernel of
MT
k .

Proof. Define

Vg,k(X,Z; v,w) := (1 − v)−3g+k+2+Z(1 +w)g−X,

then we see that
(3g−3−a1−n1−Z

k−a1−n1

)(
g−X
n1

)
= Resv,w=0

Vg,k(X,Z;v,w)dvdw
vk−a1−n1+1wn1+1 , therefore

(Mk)
a2,n2
a1,n1

= Res
v,w=0

Vg,k(n2,a2 +n2; v,w)dvdw
vk−a1−n1+1wn1+1 . (8.3)

Now notice that

(1 + t)g−k−2(1 + 2t)gVg,k(X,Z;−t,
t2

1 + 2t
) = (1 + t)Z−2X(1 + 2t)X := K(X,Z; t).

(8.4)
For 0 6 n2 6 a2 6 k− 1, the values of (X,Z) = (n2,n2 + a2) belong to

Γk := {(X,Z) ∈ Z2 | X > 0, 2X 6 Z 6 X+ k− 1}.

57



Notice that for (X,Z) ∈ Γk, K(X,Z; t) is a polynomial in t of degree Z−X 6 k− 1;
therefore, by defining

pk(X,Z) := Res
t=0

dt
tk+1K(X,Z; t) (8.5)

we find that pk(X,Z) = 0 on Γk. Then, by taking the Taylor series of the left hand
side of (8.4), we have

Res
t=0

dt
tk+1 (1 + t)g−k−2(1 + 2t)gVg,k(X,Z;−t,

t2

1 + 2t
) =

=
∑

06l,n6∞Res
t=0

(1 + t)g−k−2(1 + 2t)g

tk+1 (−t)l
(

t2

1 + 2t

)n
Res
v,w=0

Vg,k(X,Z; v,w)dvdw
vl+1wn+1 =

=
∑

l+2n6k

Res
t=0

(1 + t)g−k−2(1 + 2t)g−n

tk−l−2n+1 Res
v,w=0

Vg,k(X,Z; v,w)dvdw
vl+1wn+1 = pk(X,Z)

(8.6)
the last equality being formula (8.4). Since pk(n2,a2 + n2) = 0 for 0 6 n2 6 a2 6
k− 1, we conclude thanks to Corollary (8.1.2) by substituting l = k− a1 − n1 in
the sum (8.6).

From this we can find the solution to Equation (8.1), and show that such solu-
tion is unique.

Theorem 8.1.4 (Lowest defect). The solution to Equation (8.1) is

βk + uFk =
1

pk(g, 3g− k− 2)
Res
t=0

dt
tk+1 (1 +βt)g−k−2(1 + 2βt)ge2ηt(α− 4γt

1+2βt)

Proof. By Proposition 8.1.3 and by (8.2) we have that setting

F̃k := Res
t=0

∑
l+2n6k

(−1)l(1 + t)g−k−2(1 + 2t)g−n(−2)l+ndt
tk−l−2n+1n!l!

βk−l−2n(4γ)nηl+nαl =

Res
t=0

(1 + t)g−k−2(1 + 2t)gβkdt
tk+1

∑
06l,n6∞

1
n!l!

(
2tαη
β

)l( −8t2γη

β2(1 + 2t)

)n
=

= Res
t=0

dt
tk+1 (1 +βt)g−k−2(1 + 2βt)ge2ηt(α− 4γt

1+2βt)

then we have
∫
Z u

3g−3−2kF̃kP = 0 for all P with defect 2k− 2. We see that the
coefficient of the term βk in F̃k is

pk(g, 3g− k− 2) = Res
t=0

dt
tk+1 (1 + t)g−k−2(1 + 2t)g

which is clearly positive for g > k+ 2 since all exponents are, while for g = k+ 1
we have pk(k+ 1, 2k+ 1) = 2k+1 − 1, still positive for k > 1. Thus we can in any
case divide out and obtain the result.
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Remark 8.1.5. Define DZ and DX,−1 to be respectively the operators such that

DZf(Z) = f(Z+ 1) − f(Z), DX,−1f(X) = f(X− 1) − f(X)

for any function f. Then we immediately see that

DZK(X,Z; t) = tK(X,Z; t), DX,−1K(X,Z; t) =
t2

1 + 2t
K(X,Z; t).

This means that we can also prove Proposition 8.1.3 by using the Newton interpo-
lation formula∑
l+2n6k

(−1)lDlZD
n
X,−1| X=g

Z=3g−k−2
pk(X,Z)

(
3g− 3 + l− k−Z

l

)(
g−X

n

)
= pk(X,Z),

which is true since pk is a polynomial of degree k if we set degZ = 1 and degX = 2.
Thus, we find another expression for the vector in the kernel of MT

k , namely

va1,n1
k = (−1)k−a1−n1Dk−a1−n1

Z DnX,−1| X=g
Z=3g−k−2

pk(X,Z), 0 6 n1 6 a1, a1 +n1 6 k.

The last formula tells us that the polynomials pk(X,Z) generate the solution to the
equation in Theorem 8.1.1 via subsequent applications of the discrete difference
operators DZ and DX,−1 and evaluations at the point (X,Z) = (g, 3g− k− 2).

Remark 8.1.6. We immediately verify that

D2
Z,−1K(X,Z; t) = −DXK(X,Z; t),

thus for all k we have

D2
Z,−1pk(X,Z) = −DXpk(X,Z), (8.7)

which has the shape of a heat equation in which both X and Z are discrete. Actu-
ally, it can be shown that for all k > 1, pk(X,Z) is the only polynomial solution to
Equation (8.7) with initial condition

pk(0,Z) =
(
Z

k

)
.

In the following Theorem, we see that the solution found in 8.1.4 is the only
one which solves Equation (8.1) at the top defect.

Theorem 8.1.7. The kernel of MT
k is one-dimensional. Therefore, the lowest defect part

Fk of the solution to the equation in Theorem 8.1.1 is unique.

Proof. Thanks to Remark 8.1.2, we have to show that by letting

Γk = {(X,Z) ∈ Z2 | X > 0, 2X 6 Z 6 X+ k− 1}

there exists only one (up to multiplication by a constant) polynomial of degree at
most k in X and Z (recall that degZ = 1 and degX = 2) which vanishes on Γk.

59



Letting p(X,Z) be such a polynomial, we can write it as

p(X,Z) =
bk/2c∑
i=0

pi(Z)

(
X

i

)
where deg(pi) 6 k− 2i. Since p(0,Z) = p0(Z) vanishes in Z = 0, 1, . . . , k− 1, we
see that p0(Z) = λ0

(
Z
k

)
for some constant λ0. Then

q1(X,Z) =
1
X
(p(X,Z) − p(0,Z)) =

bk/2c∑
i=1

pi(Z)

i

(
X− 1
i− 1

)
and q1(1,Z) = p1(Z) vanishes in the k− 2 points 2, 3, . . . , k− 1, therefore pi(Z) =
λi
(
Z−2
k−2

)
. Continuing this way, we see that we can write p(X,Z) as

p(X,Z) =
bk/2c∑
i=0

λi

(
Z− 2i
k− 2i

)(
X

i

)
for some constant λi. Now, for 1 6 j 6 bk/2c, we have 2j 6 k 6 j+ k− 1, therefore

0 = p(j,k) =
bk/2c∑
i=0

λi

(
j

i

)
, for 1 6 j 6 bk/2c.

These are bk/2c independent conditions on the λi’s, thus the space of polynomials
of degree at most k in Z and X which vanish on Γk is at most one-dimensional. By
the way, we know that the polynomial pk(X,Z) = Rest=0

dt
tk+1 (1 + t)X(1 + 2t)Z−2X

satisfies this condition, therefore the space is exactly one-dimensional.

8.1.1 Factorization of Mk

The matrix Mk defined in (8.2) can be conveniently written as a product of two
matrices Mk = QkSk, where Sk is a matrix with integer entries and Qk is trian-
gular with ±1 on the diagonal. This factorization has some striking consequences
in itself (see Proposition 8.1.8), and will be of key importance in Section 8.1.2,
where it will be used to give the determinantal criterion for P=W at top defect (see
Corollary 8.1.11).

Define the following matrix:

(Qk)
b,m
a,n = (−1)k+beb+m−a−n(3g− 2 − k, 3g− 1 − k, . . . , 3g− 3 − a−n)·

·en−m(g−n+ 1,g−n+ 2, . . . ,g) (8.8)

where ei(x1, . . . , xj) is the i-th elementary symmetric polynomial in x1, . . . , xj. Here
we adopt the convention that ei(x1, . . . , xj) = 0 if i < 0 and ei(x1, . . . , xj) = 1 if
0 6 j < i. The indexing of Qk satisfies 0 6 n 6 a 6 k, a+n 6 k and the same for
b and m.

Let also Sk be the matrix defined by

(Sk)
a2,n2
a1,n1

= nn1
2 (a2 +n2)

k−n1−a1 (8.9)
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where the rows are indexed by the pairs (a1,n1) with 0 6 n1 6 a1 6 k, n1 +a1 6 k
and the columns by the pairs (a2,n2) with 0 6 n2 6 a2 6 k− 1. Here we adopt
the convention that 00 = 1 (hence the last row of Sk is a row of 1’s).

Then a direct computation shows that

Mk = QkSk (8.10)

and since Qk is invertible (being upper triangular with ±1 on the diagonal) we see
that KerMk = KerSk. In particular, although the entries of Mk are polynomials in
g, its kernel is generated by vectors of Zk(k+1)/2, thus independent from g.

It is easy to write the inverse of Qk as

(Q−1
k )b,m

a,n = (−1)k+bhb+m−a−n(3g− 2 − k, 3g− 1 − k, . . . , 3g− 2 − b−m)·

·hn−m(g,g− 1, . . . ,g−m) (8.11)

where hr(x1 . . . , xn) is the complete symmetric function of degree r, which is the
sum of all monomials of total degree r in the variables x1, . . . , xn; by convention,
hr = 0 for r < 0. The fact that this is indeed the inverse of Qk is a direct conse-
quence of the classical identity

n∑
r=0

(−1)rerhn−r = δ0,n,

which is true for any number of variables.
With this we can show that, in the case of the classes βk, the perverse filtration

is actually a grading.

Proposition 8.1.8. For all k > 1, we have βk /∈ P2k−1(H
4k(M)).

Proof. Following Proposition 7.0.1 and Theorem 7.0.2, we write the equation∫
Z

η3g−4−2k(βk + ηF)P = 0

which must be in particular valid for all P with def(P) = 2k. We thus define M̃k

to be the matrix of the pairing (F,P) 7→
∫
Z η

3g−4−2k(ηF)P with def(F) = 2k− 2,
def(P) = 2k, and with an extra row corresponding to βk. Then it is easy to see
that if we define

(S̃k)
a2,n2
a1,n1

= nn1
2 (a2 +n2)

k−n1−a1 (8.12)

where the rows are indexed by the pairs (a1,n1) with 0 6 n1 6 a1 6 k, n1 +a1 6 k
and the columns by the pairs (a2,n2) with 0 6 n2 6 a2 6 k, then

QkS̃k = M̃k

with notations as in (8.8). Since S̃k is obtained by Sk by adding some columns,
and since KerSTk is one-dimensional generated by the coefficients of

pk(X,Z) = Res
t=0

dt
tk+1 (1 + t)Z−2X(1 + 2t)X,

then KerS̃Tk = (0) if and only if there exist values of 0 6 n2 6 a2 6 k such that
pk(n2,a2 +n2) 6= 0. Since pk(0,k) = 1, we can conclude.

61



8.1.2 The classes βk−hγh

We now consider the general case of the extension problem, namely for 1 6 k 6
g− 1 and 0 6 h 6 k, ∫

Z

η3g−3−2k(βk−h(4γ)h + ηF)P = 0 (8.13)

where we ask for the existence of some F ∈ C[α,β,γ,η] such that (8.13) is satisfied
for all P ∈ C[α,β,γ,η].

We shall still consider only the top-defect part of the pairing, namely we look
for an F with def(F) = 2k− 2 such that Equation (8.13) is satisfied for all P with
def(P) = 2k− 2. Therefore, we see that F is a sum of monomials of the form

Fk,h,a1,n1 := β
a1−n1(4γ)n1ηk−1−a1αk+h−a1−n1

for 0 6 n1 6 a1 6 k − 1, and a1 + n1 6 k + h. Analogously, P is a sum of
monomials of the form

Pk,h,a2,n2 := β
a2−n2(4γ)n2ηk−1−a2α3g−3−k−h−a2−n2 ,

for 0 6 n2 6 a2 6 k− 1 and a2 + n2 6 3g− 3 − h− k. Notice that if we consider
the general case g > k+ 1, the condition on a2 + n2 is not redundant. However,
from n2 6 a2 6 k− 1 we can deduce a2 +n2 6 2k− 2, so the condition on a2 +n2
becomes redundant if 2k− 2 6 3g− 3 − h− k, that is

3g > 3k+ h+ 1. (8.14)

Fixing values of 0 6 h 6 k, we call the range of values of g which satisfy (8.14) the
redundancy range. The "smallest" case in which g > k+ 1 falls out the redundancy
range is k = h = 3, g = 4.

By Proposition 7.0.1, the top-defect part of the statement of the Enumerative
P=W Conjecture in the redundancy range is the following.

Conjecture 1. Let k > 1 and 0 6 h 6 k be integers. In the redundancy range, there
exists a unique defect-homogeneous F ∈ H∗(Z) with def(F) = 2k− 2 such that for every
defect-homogeneous P ∈ H∗(Z) with def(P) = 2k− 2, Equation (8.13) is satisfied.

The case h = 0 was proved in last section. We will give an equivalent state-
ment for Conjecture 1 in terms of the non-vanishing of a particular determinant
involving the polynomials pk(X,Z) defined in the previous section.

Let

(Mk,h)
a2,n2
a1,n1

=

(
3g− 3 − a1 −n1 − a2 −n2

k+ h− a1 −n1

)(
g−n2

n1

)
(8.15)

for 0 6 n1 6 a1 6 k− 1, a1 +n1 6 k+ h, plus the extra row (n1,a1) = (h,k), and
0 6 n2 6 a2 6 k− 1.

In the redundancy range, the matrix of the pairing

(F,P) 7→
∫
Z

η3g−3−2k(ηF)P

for defect-homogeneous classes F and P with def(F) = def(P) = 2k− 2, is Mk,h
without the last row (n1,a1) = (h,k). Such row corresponds to multiplication with
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βk−h(4γ)h, therefore Conjecture 1 is equivalent to stating that in the redundancy
range, Ker(MT

k,h) is one-dimensional, and the entries of its vectors corresponding
to the class βk−hγh are nonzero.

Notice that Mk,h is a submatrix of Mk+h of Definition 8.2. The number of
columns of Mk,h is

ck,h =
k(k+ 1)

2
.

while the number of rows is

rk,h = ck,h −

⌊
(k− h+ 1)(k− h− 3)

4

⌋
= ck+h,0 +

h(h+ 3)
2

. (8.16)

In particular, if h = k− 3, Mk,h is a square matrix, if k > h > k− 2 then rk,h =
ck,h+ 1 and if h 6 k− 4 the number of rows is strictly smaller than the number of
columns.

Definition 8.1.9. For 0 6 h 6 k, let Sk,h be the matrix defined as

(Sk,h)
a2,n2
a1,n1

= (a2 +n2)
k+h−a1−n1nn1

2

with 0 6 n2 6 a2 6 k− 1 and 0 6 n1 6 a1 6 k+ h, a1 + n1 6 k+ h; here we are
using the convention 0n = 0 for all n except 00 = 1.

Lemma 10. The dimension of Ker(STk,h) is (h+ 1)(h+ 2)/2. A basis of the kernel is
given by the coefficients of the polynomials

Zjpk+h−i(X,Z), 0 6 j 6 i 6 h

where pk is the polynomial defined in (8.5).

Proof. Let v = (va1,n1)a1,n1 be a vector in Ker(STk,h). This means that the polyno-
mial

pv(X,Z) =
∑
a1,n1

va1,n1X
n1Zk+h−a1−n1

vanishes at integers X and Z with X > 0 and 2X 6 Z 6 X+ k− 1. All polynomials
of the form

Zjpk+h−i(X,Z), 0 6 j 6 i 6 h

where pk is the polynomial defined in (8.5), satisfy this condition. The number of
such polynomials is (h+ 1)(h+ 2)/2, so let us show they are linearly independent.
Since the case h = 0 is the content of Theorem 8.1.7, suppose k > h > 1.

We will prove the equivalent statement that the polynomials

pi,j(X,Z) :=
(
Z− h− k+ j

j

)
pk+h−i(X,Z), 0 6 j 6 i 6 h

are linearly independent. To show this, simply form the matrix

(Th)
06a6b6h
06j6i6h = pi,j(h− b,h+ k− b+ a)

and notice that, up to rearranging rows and columns, Th is a triangular matrix
with powers of two as diagonal entries, thus it has nonzero determinant. We
deduce that

dimKerSTk,h > (h+ 1)(h+ 2)/2.
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Conversely, assume p(X,Z) is a polynomial of the form

p(X,Z) =
∑

06n6a
n+a6k+h

λn,aX
nZk+h−a−n

which vanishes on

Γk = {(X,Z) ∈ Z2 | 0 6 X 6 k− 1, 2X 6 Z 6 X+ k− 1}.

If we define degZ = 1 and degX = 2, then p(X,Z) is a polynomial of degree k+ h.
By changing basis, we can write it in the following way

p(X,Z) =
b(k+h)/2c∑
i=0

pi(Z)

(
X

i

)
where deg(pi) = k+h− 2i. We see that p0(Z) = p(0,Z) vanishes on Z = 0, . . . ,k−
1, thus we must have

p0(Z) =

h∑
j=0

λ0,j

(
Z

k+ j

)
for some constants λ0,j. Then we consider

q1(X,Z) :=
1
X
(p(X,Z) − p(0,Z)) =

b(k+h)/2c∑
i=1

pi(Z)

i

(
X− 1
i− 1

)
and we see that p1(Z) = q1(0,Z) vanishes on Z = 2, . . . ,k− 1, so that

p1(Z) =

h∑
j=0

λ1,j

(
Z− 2
k− 2 + j

)
.

We can continue this way up to i = [k/2], deducing that

pi(Z) =

h∑
j=0

λi,j

(
Z− 2i
k− 2i+ j

)
, for i 6 bk/2c.

For bk/2c < i 6 b(k+ h)/2c, we do not have any conditions on the vanishing
of the polynomials pi(Z), but we can write anyway

pi(Z) =

h∑
j=2i−k

λi,j

(
Z− 2i
k− 2i+ j

)
, for bk/2c 6 i 6 b(k+ h)/2c

which is a general polynomial in Z of degree k+ h− 2i. Putting everything to-
gether, we can write

p(X,Z) =
b(k+h)/2c∑
i=0

h∑
j=max(0,2i−k)

λi,j

(
Z− 2i
k− 2i+ j

)(
X

i

)
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and p(X,Z) vanishes on 0 6 X 6 bk/2c, 2X 6 Z 6 k− 1. The vector space of such
polynomials has dimension

dk,h = (bk/2c+ 1)(h+ 1) +
b(k+h)/2c∑
i=bk/2c+1

(h+ k− 2i+ 1).

We now impose conditions for p(X,Z) to vanish on other points of Γk. Similarly
to the proof of Theorem 8.1.7, setting p(l,k) = 0 for 1 6 l 6 bk/2c, we obtain

l∑
i=0

(
l

i

)
λi,0 = p(l,k) = 0 for 1 6 l 6 bk/2c,

which are bk/2c independent conditions on the λi,0 for 1 6 i 6 bk/2c. Analo-
gously, we have p(l,k+ 1) = 0 for 2 6 l 6 b(k+ 1)/2c, which gives

l∑
i=0

(
l

i

)
((k+ 1)λi,0 + λi,1) = 0, for 2 6 l 6 b(k+ 1)/2c.

With this we find b(k+ 1)/2c− 1 independent conditions on the λi,1’s for 2 6 i 6
b(k+ 1)/2c, once the λi,0 are chosen. Continuing this way, we obtain b(k+ j)/2c− j
independent linear conditions on the λi,j’s for all 0 6 j 6 h. We conclude that

dimKerSTk,h 6 dk,h −

h∑
j=0

(b(k+ j)/2c− j) = (h+ 1)(h+ 2)/2

where the last equality is tedious but straightforward to verify, thus completing
the proof.

Definition 8.1.10. Let {v1, . . . , v(h+1)(h+2)/2} be independent vectors of Ker(STk,h).
We define Q̃k,h as the matrix obtained by replacing the last (h+ 1)(h+ 2)/2 rows
of the matrix Qk+h(g, 3g− 3) defined in (8.8) by the vectors vi.

With the same method used to obtain (8.10), we can show that Q̃k,h satisfies

Q̃k,h(g, 3g− 3)Sk,h = M̃k,h (8.17)

where M̃k,h is obtained byMk,h by adding h(h+ 3)/2 zero rows, and by replacing
the row corresponding to βk−h(4γ)h with a zero row. Analogously, if we define
Q̂k,h to be Qk+h with the last rows except the one corresponding to βk−hγh

replaced with h(h+ 3)/2 independent vectors of KerSTk,h, we get

Q̂k,h(g, 3g− 3)Sk,h = M̂k,h

where M̂k,h is obtained by Mk,h by adding h(h+ 3)/2 zero rows.
Thus, information on Q̃k,h and Q̂k,h would lead to the solution of the matrix

problem. A particularly good result would follow if Q̃k,h were invertible.

Lemma 11. Let pk(X,Z) be the polynomials defined in (8.5).

65



1. Let
Bk,h(X,Z) = (Zjpk+h−i(X−n,Z−m))06n6m6h

06j6i6h .

Then we have detQ̃k,h(g, 3g− 3) = ck,hdetBk,h(g, 3g− 2 − k) for some nonzero
constants ck,h.

2. detQ̂k,h(g, 3g− 3) is the determinant of a first minor of B(g, 3g− 2 − k).

3. Define
Wk,h(X,Z) := det(pk(X− h+ i,Z+ j))06j6h

06i6h. (8.18)

Then, up to a nonzero constant,

det(Q̃k,h(g, 3g− 3)) =
h∏
i=0

Wk,i(g, 3g− k− i− 2).

Proof. Let us choose the basis of Ker(STk,h) given by the polynomials Zjpk+h−i(X,Z)
with 0 6 j 6 i 6 h and let us construct Qk,h accordingly.

We consider the matrix Ck,h = Q̃k,h(Qk+h)
−1, where Qk+h is the matrix de-

fined in (8.8). This is a block upper-triangular matrix with a square block of size
(h+ 1)(h+ 2)/2 at the bottom-right corner and with all other blocks of size 1, each
containing a 1; thus our determinant is equal to the determinant of the bottom-
right block (up to a sign: it is easy to see that this sign is +, since the bottom-right
minor of size (h+ 1)(h+ 2)/2 of Qk+h has determinant 1).

To compute it we use (8.11) along with the identity

a∑
i=0

(−1)i
a!

(a− i)!
hb−i(x, . . . , x− i) = (x− a)b

which is valid for all integers a and b: with this we can take appropriate linear
combinations of the last (h + 1)(h + 2)/2 columns of (Qk+h)

−1 to obtain a ma-
trix whose entry ((a,n), (b,m)) is (y − b −m + 1)k+h−a−n(x −m)n in the last
(h + 1)(h + 2)/2 columns. This amounts to performing column operations on
Q̃k,h(Qk+h)

−1, so this procedure does not change its determinant up to multi-
plying by nonzero constants.

Recalling that the last (h+ 2)(h+ 1)/2 rows of Q̃k,h consist of the coefficients
of Zjpk+h−i(X,Z), the determinant is then equal to the one in the statement and
this proves Point 1. Point 2 is shown similarly when the row which is eliminated
corresponds to the polynomial among (Zjpk+h−i)i,j which is not considered, and
the column is the index of Qk+h corresponding to the class βk−h(4γ)h. To show
Point 3, use repeatedly the identity pk(X,Z + 1) − pk(X,Z) = pk−1(X,Z) in the
matrix Bk,h.

Point 2. of the previous Lemma immediately yields the following.

Corollary 8.1.11. If Q̃k,h(g, 3g− 3) is invertible, then there exists a vector in KerSTk,h

which can be discarded to give an invertible Q̂k,h(g, 3g− 3).

Theorem 8.1.12. Assume Q̃k,h(g, 3g− 3) is invertible. Then there exists a unique solu-
tion to Equation (8.13).
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Proof. If Q̃k,h is invertible, then by Corollary 8.1.11 we can choose a Q̂k,h that is
also invertible. This proves that

rkM̃k,h = rkM̂k,h

since both are equal to rkSk,h. Now since M̂k,h is obtained by M̃k,h by replacing a
zero row with the row corresponding to βk−hγh, we deduce that such row must
be a linear combination of the others, thus giving a solution to (8.13).

Now since KerSTk,h has dimension (h + 2)(h + 1)/2, and since M̃k,h has ex-
actly (h+ 2)(h+ 1)/2 zero rows, it follows that KerMT

k,h must be one-dimensional,
therefore the solution to (8.13) is unique.

Extensive numerical computations has brought us to state the following.

Conjecture 2. In the redundancy range, Wk,h(g, 3g− k− h− 2) > 0.

Conjecture 2 would imply the existence and uniqueness of the lowest defect
part of the solution to Equation (8.13) in the redundancy range. Here we provide
a proof for h = 1.

Proposition 8.1.13. If g > k+ 1, then Wk,1(g, 3g− k− 3) > 0.

Proof. With a simple change of variables, we can rewrite the polynomials pk as

pk(X,Z) = Res
t=0

dt
tk+1 (1 + t)X(1 − t)X−Z+k−1

therefore, we can rewrite the determinants Wk,1(X,Z) as

Res
t0,t1=0

dt0dt1

tk+2
0 tk+1

1

((1 + t0)(1 + t1))
X−1(1 − t0)

X−Z+k−1(1 − t1)
X−Z+k−2(t2

0 − t
2
1).

We decompose it as
Wk,1 =W0

k,1 −W
1
k,1

accordingly to the terms of the Vandermonde factor t2
0 − t

2
1. Then we have the

following

Lemma 12. For all k > 1, we have

(k− 1)W0
k,1(X,Z) − (k+ 1)W1

k,1(X,Z) = 2(X− 1)Wk−1,1(X− 1,Z− 2)

Proof of the lemma. We immediately see that

W0
k,1(X,Z) = pk(X− 1,Z)pk−1(X− 1,Z− 2),

W1
k,1(X,Z) = pk+1(X− 1,Z)pk−2(X− 1,Z− 2).

Moreover we have the easily proven formulas

(k+ 1)pk+1(X,Z) = Xpk(X− 1,Z− 2) + (Z−X− k)pk(X,Z),

pk(X− 1,Z) = pk−1(X− 2,Z− 2) + pk(X− 2,Z− 1),

pk(X,Z) = pk(X,Z− 1) + pk−1(X,Z− 1).

Applying in order the first, second and third formula to the statement, we get the
result.
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Now we can prove the Proposition 8.1.13 by induction on k. Assume that we
found the domain where (X− 1)Wk−1,1(X− 1,Z− 2) > 0, then

W1
k,1(X,Z)

W0
k,1(X,Z)

6
k− 1
k+ 1

< 1

if W0
k,1(X,Z) > 0, thus yielding the domain for Wk,1 by the Lemma.

From the expression of W0
k,1 given in the proof of the Lemma, we easily find

W0
k,1(X,Z) > 0 for

{
X > k,
Z > X+ k− 1.

Now since W1,1(X,Z) = Z, we find

Wk,1(X,Z) > 0 for

{
X > k,
Z > X+ k− 1.

Finally, if g > k+ 1, we have 3g− k− 3 > g+ k− 1 and the proof is complete.

Remark 8.1.14. We also managed to prove that Wk,h(g, 3g − k − h − 2) > 0 for
g > k+ h+ 2. The proof will be provided in a forthcoming work.

Remark 8.1.15. Notice that, in any case, Wk,h(g, 3g− k−h− 2) is a nonzero poly-
nomial in g with positive leading term. Therefore, existence and uniqueness of the
solution to Equation (8.13) is assured for g big enough (depending on k and h).

Remark 8.1.16. If g > k+ 1 is outside the redundancy range, then the matrix of the
pairing (F,P) 7→

∫
Z u

3g−3−2k(ηF)P can still be defined with the same formula (and
the same rows and columns range) as in Definition 8.15: it is indeed easily shown
that if 3k+ 3 6 3g 6 3k+ h, then the extra columns in Mk,h are automatically
zero. Thus, the solution to Equation (8.13), even outside the redundancy range,
is given by an element of KerMT

k,h whose entry corresponding to βk−h(4γ)h is
nonzero.

However, in this range, computer calculations have shown that, although a so-
lution to Equation (8.13) still exists, we have detQ̃k,h = 0 and the solution is never
unique at the level of polynomials in α, β, γ and η. By considering the difference
of two such solutions, we have noticed that they come from the relations in H∗(M)
described in [HT2]. Therefore, we conjecture that the solution to Equation (8.13)
is in any case unique in cohomology.

68



Chapter 9

The matrix problem at lower
defects

In order to find a full solution to Equation (8.1), one needs to deal with the case
when the pairing

(F,P) 7→
∫
Zg

u3g−3−2k(uF)P =: 〈F,P〉g,k

is not at top-defect. Indeed, assume we have found F0 with defect 2k− 2 such that,
for all defect-homogeneous P of defect 2k− 2, we have 〈F0,P〉g,k = 0. The next
step would then to find a polynomial F1 such that for all P1 of defect 2k− 4, one
has

〈F0 + F1,P1〉g,k = 0. (9.1)

We can assume the defect of F1 to be 2k, so that Equation (9.6) will hold for
P of defect 2k − 2 as well. Inductively, the full solution of (8.1) will be a sum
F = F0 + F1 + . . . + Fk−1 such that

〈F0 + F1 + . . . + Fk−1,P〉g,k = 0

for all P, and with defect-homogeneous Fi with defect 2k+ 2i− 2.
For the solution of (9.1), we notice that the pairing 〈F1,P〉g,k for P of ho-

mogeneous defect 2k − 4 is still a top-defect pairing. Moreover, recalling that
deg F1

g,k = 2k− 1 and degP = 3g− 4, F1
g,k and P must be sums of the monomials

F1
a1,n1

= βa1−n1γn1uk−a1αk−1−a1−n1 , with 0 6 n1 6 a1, a1 +n1 6 k− 1

P1
a2,n2

= βa2−n2γn2uk−2−a2α3g−2−a2−n2 , with 0 6 n2 6 a2 6 k− 2.

Therefore, the pairing at these defects is described exactly by the matrixMk−1 and
Equation 9.6 is equivalent to the following.

Theorem 9.0.1. Let F0 be the solution to Equation (8.1) at top-defect, define the vector

wa2,n2 = 〈F
0,P1

a2,n2
〉g,k, with 0 6 n2 6 a2 6 k− 2.

Then solving Equation (9.6) is equivalent to finding a vector v1 such that

v1Mk−1 = w.
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Notice that the entries of vector w of the statement of Theorem 9.0.1 are the
result of pairings of defect two less than the top one. In order to make such a
pairing more tractable, we perform a change of variables for F and P.

9.1 Rationalizing the generating function

Recall that in searching for a solution to Equation (8.1), we adopted the intersection
formula of Corollary 7.3.4 by choosing the polynomial Q = −Ay2/2 − Cy4/4.
However, the formula is valid for any polynomial multiple of y2, with any number
of formal variables. We will use a polynomial which will yield a rational generating
function.

In particular, we choose

QF = 2
∫

arctanh(Ay+Cy3)dy

QP = 2
∫

arctanh(Ey+Hy3)dy.

This amounts to a change of basis for the spaces of polynomials F and P.

Definition 9.1.1. Define Φ : C[α,β,γ,u]→ C[α,β,γ,u] via the following rules

• Φ is C[β,u]-linear;

• Φ(αiγj) = (−2)−i−j+1∂iA
∣∣
A=0∂

j
C

∣∣
C=0

∫
arctanh(Ay+Cy3)dy.

Proposition 9.1.2. Let Ω ∈ C[α,β,γ,u] be any class, then

Φ(Ω) = Ω+Θ

with def(Θ) > def(Ω).

Proof. Write

Q = 2
∫

arctanh(Ay+Cy3)dy = Ay2 +
A3 + 3C

6
y4 +

A5 + 5A2C

15
y6 + . . . =

=

∞∑
n=1

Pn(A,C)y2n

where the Pn’s are polynomials with rational coefficients in A and C. Therefore
we have

Q(2) = 2
∞∑
n=1

n((n− 2)αβ− (n− 1)γ)βn−2Pn = −2αA− 2γC+ r

with r = r(α,β,γ,A,C) with defect 4.
Thus we can write exp(Q(2)) = exp(−2(αA+ γC))exp(r) so that

∂mA∂
n
Cexp(Q(2))

∣∣
A=0
C=0

=
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=
∑

06i6m
06j6n

(
m

i

)(
n

j

)
∂iA∂

j
Cexp(−2(αA+ γC))∂m−i

A ∂
n−j
C exp(r)

∣∣
A=0
C=0

.

Now we have that

def∂m−i
A ∂

n−j
C exp(r)

∣∣
A=0
C=0

= 2(m+n− i− j)

and ∂iA∂
j
Cexp(−2(αA+γC))

∣∣
A=0
C=0

= (−2)i+jαiγj. This completes the proof for the

classes of the form αmγn, the term αmγn corresponding to the term (i, j) = (m,n)
in the above sum, and Θ being the remaining terms. The proof for monomials
which contain u and β follows immediately, as long as the proof for any class, by
C[β,u]-linearity.

By ordering the monomials in C[α,β,γ,u] in any way such that Ω1 ≺ Ω2 if
defΩ1 < defΩ2, we have by Proposition 9.1.2 that Φ = Id+ T where T is a strictly
lower triangular endomorphism of C[α,β,γ,u] so we have the following.

Corollary 9.1.3. The endomorphism Φ is a C[β,u]-isomorphism.

So if we find some F ∈ C[α,β,γ,u] such that Φ(F) satisfies Theorem 8.1.1, the
theorem itself would follow. Notice that the lowest defect part of Φ(F) and the
one of F are equal, so the effects of such a change of basis is only seen at higher
defects.

After substituting the power series QF and QP in (7.16), we make the change
of variables B = A+Cy2 and J = E+Hy2, to obtain∫

Z

u3g−3−2kexp(QF(2) +Q
P
(2)) = (9.2)

= Res
y=0

(B+ J)2g−2k−2

y4k−1
(B+ J+ (C+H)y2 − (B2H+ J2C)y4)g(1 +BJy2)2k−2

((1 −B2y2)(1 − J2y2))2g−2 :=

:= Res
y=0

Rg,k(B,C, J,H;y)

up to some non-zero constant depending only on g. When multiplying the inte-
grand by T(0), the substitution rule becomes

β 7→ y2, u 7→ (B+ J)y2

1 +BJy2 .

Notice that in this way, the generating function in (9.2) has become rational.

9.2 The general matrix pairing

We now write the most general matrix pairing, valid for F and P of any defect, in
the basis obtained by the automorphism Φ. We let F to be double homogeneous of
degree 2k− 1 and defect 2k+ 2(e− 1), and P to be double homogeneous of degree
3g− 4 and defect 2k− 2(d+ 1).
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Then uF must be a linear combination of the terms

Fek,a1,n1
:= βa1−n1γn1uk−a1+eαk−a1−n1−e, with


0 6 n1 6 a1,
a1 +n1 6 k− e,
0 6 e 6 k− 1

Notice that for e = k, the only possible class is u2k, which gives automatically zero
when multiplied by u3g−3−2k, so we do not consider such case.

Similarly, P must be a linear combination of the terms

Pdk,a2,n2
:= βa2−n2γn2uk−1−a2−dα3g−3−a2−n2+d, with

{
0 6 n2 6 a2 6 k− 1 − d,
0 6 d 6 k− 1.

Notice that all the monomials in P with perverse degree at least k will give
zero after being multiplied by an F of perverse degree k, so they can be safely
discarded. Then thanks to Formula (9.2) we have∫

Z

u3g−3−2kΦ(Fek,a1,n1
)Φ(Pdk,a2,n2

) = (9.3)

= (−2)3−3g−k−d+e+a1+a2∂n1
C |C=0∂

n2
H |H=0∂

3g−3−a2−n2+d
J |J=0∂

k−a1−n1−e
B |B=0·

·Res
y=0

y2(a1+a2−n1−n2)

(
(B+ J)y2

1 +BJy2

)2k−1−a1−a2+e−d

Rg,k(B,C, J,H;y).

We then perform a column operation and ignore the powers of −2 for the
moment: we define the relevant matrix Mg,k as follows:

(Mg,k)
d,a2,n2
e,a1,n1

:=
1

n1!(k− e−n1 − a1)!

∫
Z u

3g−3−2kΦ(Fek,a1,n1
)Φ(Pdk,a2,n2

)∫
Z u

3g−3−2kΦ(Fdk,k−d,0)Φ(Pdk,a2,n2
)

(9.4)

Therefore Theorem 8.1.1 is equivalent to finding a vector in the kernel of MT
g,k

whose coefficient corresponding to the term βk is nonzero. We now perform a
change of variables to simplify the formula further.

Proposition 9.2.1. Let

Vg,k(X,Z;q, v,w) =
(1 − v(1 − q))−g+k−X+Z(1 +w(1 − q))g−X

(1 − q)2g−2(1 − v)2g−X−2(1 + qv)g−1 .

Then we have

(Mg,k)
d,a2,n2
e,a1,n1

= Res
q,v,w=0

Vk(n2,a2 +n2 − e)dqdvdw
qd−e+1vk−a1−n1−e+1wn1+1 (9.5)

Proof. We have to perform some algebraic manipulations of (9.3). Notice that

∂n1
C |C=0∂

n2
H |H=0∂

k−a1−n1−e
B |B=0 Res

y=0

(B+ J)2k−1−a1−a2+e−dy2(2k−1−n1−n2+e−d)

(1 +BJy2)2k−1−a1−a2+e−d
Rg,k

is a monomial in J of degree 3g− 3 − a2 − n2 + d, which is precisely the order of
J-derivative we are going to take. Therefore, the effect of the J-derivative is the
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same as setting J = 1 and multiply by (3g− 3 − a2 − n2 + d)!, which is a factor
only depending on a2, n2 and d, which will be simplified out in the ratio (9.4), so
it can be discarded.

Then notice that applying ∂H|H=0 amounts to multiplying by y2(1+B2y2) and
lowering by 1 the exponent of the factor (B+ 1 + (C+H)y2 − (B2H+C)y4), and
eventually setting H = 0.

After these manipulations we are left with

(Mg,k)
d,a2,n2
e,a1,n1

= ∂n1
C |C=0∂

k−a1−n1−e
B |B=0·

·Res
y=0

(B+ 1)2g−3−a1−a2−d+e(B+ 1 +Cy2 −Cy4)g−n2(1 +By2)a1+a2+d−e−1

n1!(k− a1 −n1 − e)!y2(d−e+n1)+1(1 −B2y2)2g−n2−2(1 − y2)2g−2 =

= Res
B,C,y=0

(B+ 1)2g−3−a1−a2−d+e(B+ 1 +Cy−Cy2)g−n2(1 +By)a1+a2+d−e−1

Cn1+1Bk−a1−n1−e+1yd−e+n1+1(1 −B2y)2g−n2−2(1 − y)2g−2

in which we also changed variable y2 7→ y (the ratio in formula (9.4) is implic-
itly taken here since the corresponding denominator is easily seen to be 1). By
rearranging the factors, we find

(Mg,k)
d,a2,n2
e,a1,n1

=

= Res
B,C,y=0

(
B+ 1

B(1 +By)

)k−a1−n1−e+1(
B+ 1

Cy(1 +By)

)n1+1( 1 +By

y(B+ 1)

)d−e+1

·

(B+ 1)2g−k−4−a2+e(B+ 1 +Cy−Cy2)g−n2(1 +By)k−e+a2ydBdCdy
(1 −B2y)2g−n2−2(1 − y)2g−2

Thus we perform the change of variable

q =
y(B+ 1)
1 +By

, v =
B(1 +By)

B+ 1
, w =

Cy(1 +By)

B+ 1

which after some computations and substituting X = n2, Z = a2 +n2 exactly gives
Formula (9.5).

Remark 9.2.2. Notice that the Vg,k(X,Z; v,w) in the proof of Proposition 8.1.3 is
just the one of Proposition 9.2.1 when setting q = 0.

Motivated by Proposition 9.2.1, we consider the map

evk : C[X,Z]→ Ck(k+1)/2, evk(p) = (p(n,a+n))06n6a6k−1,

then the full statement for βk, at all perversities, is the following.

Conjecture 3. Let k > 1. Then there exist complex numbers λkl,n,e for e = 0, . . . ,k− 1
and l+ 2n 6 k− e such that, for all d = 0, . . . ,k− 1, we have

k−1∑
e=0

∑
l+2n6k−e

λkl,n,e Res
q,v,w=0

Vk−e(X,Z;q, v,w)dqdvdw
qd−e+1vl+1wn+1 ∈ Ker(evk−d).

We will see how, through this formalism, we can find the next term F1 of the
solution to Equation (8.1).
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9.3 The second term

We let
H0(X,Z; t) := (1 + t)Z−2X(1 + 2t)X

so that pk(X,Z) = Rest=0
dt
tk+1H0(X,Z; t) are the polynomials of (8.5). Recall that

the key relation was

(1 + t)g−k−2(1 + 2t)gVk

(
X,Z; 0,−t,

t2

1 + 2t

)
= K0(X,Z; t)

so that the coefficients of F0 are the ones of (1 + t)g−k−2(1 + 2t)g multiplied by
different powers of the factors (−t) and t2

1+2t , namely

λkl,n,0 = Res
t=0

dt
tk+1 (−t)

l

(
t2

1 + 2t

)n
(1 + t)g−k−2(1 + 2t)g.

Thanks to Proposition 9.2.1, we see that our goal is to find λkl,n,1 such that∑
l+2n6k

λkl,n,0 Res
q,v,w=0

Vk(X,Z;q, v,w)dqdvdw
q2vl+1wn+1 +

+
∑

l+2n6k−1

λkl,n,1 Res
v,w=0

Vk−1(X,Z; 0, v,w)dvdw
vl+1wn+1 ∈ Ker(evk−1).

For the next term, we are interested in ∂qVk, so we compute (we omit X and Z
for notational convenience):

Res
q=0

dq
q2 Vk(q, v,w) = ∂q|q=0Vk(q, v,w) =

= −v∂vVk(0, v,w) −
(
w−

v(1 +w)

1 − v

)
∂wVk(0, v,w)+

+

(
2(g− 1)

1 − v
−
v(1 + v)

1 − v
+
v2 − (g− 1)(2 − v)v

1 − v

)
Vk(0, v,w)

and after some straightforward simplifications we have

Res
q=0

dq
q2 Vk(X,Z;q, v,w) = (1 − v)Z−3g+k−1(1 +w)g−X·

·
(
(g− 1)(v− 1)(v− 2) + v(Z−X+ k− g) + (g−X)

w(v− 1)
w+ 1

)
The following Lemma is proven by an explicit computation and induction on

k.

Lemma 13. For polynomials p and q in X and Z and k > 1, write p ≡k q meaning that
evk(p− q) = 0. Then we have

Res
t=0

dt
tk
∂

∂v
Vk(X,Z; 0,−t,

t2

1 + 2t
) ≡k−1 Res

t=0

dt
tk

3g+Zt− k− 2
1 + t

Vk(X,Z; 0,−t,
t2

1 + 2t
)

Res
t=0

dt
tk

∂

∂w
Vk−1(X,Z; 0,−t,

t2

1 + 2t
) ≡k Res

t=0

dt
tk−2

g−X

(1 + t)2Vk(X,Z; 0,−t,
t2

1 + 2t
).
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Actually we can get an explicit solution from the expression of ∂u|u=0 and
from the equivalences just stated, together with the obvious Vk ≡evk−1 0.

Proposition 9.3.1. Let
H1(X,Z; t) :=

:= (1 + t)Z−2X(1 + 2t)X
(
g− 1 −

g− 2
t+ 1

+
3g+Zt− k− 2

1 + t
+ (g−X)

t2

(1 + t)2

)
and let

pk,1(X,Z) := −Res
t=0

dt
tk
H1(X,Z; t).

Then the entries of the vector

vk,1 := (DlZD
n
X,−1

∣∣∣Z=3g−k−1
X=g

pk,1(X,Z))l+2n6k−1

are the coefficients of the solution F1 to Equation (9.1).

Proof. Recall from Remark 8.1.5 that letting

H0(X,Z; t) := (1 + t)Z−2X(1 + 2t)X, pk(X,Z) := Res
t=0

dt
tk+1H0(X,Z; t),

then if we define

vk,0 = (DlZD
n
X,−1|Z=3g−k−2

X=g
pk(X,Z))l+2n6k

then vk,0Mk,0 = 0. Now, the statement of the Proposition is that

vk,0Mk,1 + vk,1Mk−1,0 = 0. (9.6)

To prove Equation (9.6) we notice that

DlZD
n
X,−1H1(X,Z; t) =

tl+2n

(1 + 2t)n
(H1(X,Z; t) + (n+ l)H0(X,Z; t))

and that degpk,1 = k− 1 where degZ = 1 and degX = 2. Therefore vk,1Mk−1,0,
when writing out the definition, is the (values in X and Z) of the Taylor expansion
of

Res
t=0

dt
tk

(H1(g, 3g− k− 1; t)Vk−1(X,Z; 0,−t,
t2

1 + 2t
)+ (9.7)

−H0(g, 3g−k−1; t)(t∂vVk−1(X,Z; 0,−t,
t2

1 + 2t
)−

t2

1 + 2t
∂wVk−1(X,Z; 0,−t,

t2

1 + 2t
))).

On the other side, since

DlZD
n
X,−1H0(X,Z; t) =

tl+2n

(1 + 2t)n
H0(X,Z; t)

we have that vk,0Mk,1 is the Taylor expansion of

Res
t,u=0

dt
tk+1 (H0(g, 3g− k− 2; t)

du
u2 Vk(X,Z;u,−t,

t2

1 + 2t
))
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but now we notice that

−Res
u=0

du
u2 H0(g, 3g− k− 2; t)Vk(X,Z;u,−t,

t2

1 + 2t
)+

+tH1(g, 3g− k− 1; t)Vk−1(X,Z; 0,−t,
t2

1 + 2t
)+

−tH0(g, 3g− k− 1; t)(t∂vVk−1(X,Z; 0,−t,
t2

1 + 2t
)+

−t
t2

1 + 2t
∂wVk−1(X,Z; 0,−t,

t2

1 + 2t
)) =

= (1 + t)Z−2X(1 + 2t)X(2 + g(t− 2) + t(Z−X))

and it is easy to see that

Res
t=0

dt
tk+1 (1 + t)Z−2X(1 + 2t)X(2 + g(t− 2) + t(Z−X)) = 0

for X > 0, Z > 2X and Z− X 6 k− 2. Noticing that vk,0Mk,1 + vk,1Mk−1,0 is just
the vector of the values in the region just considered, this completes the proof.

9.4 Conclusions

In order to find the full solution to Equation (8.1), one needs to find the coefficients
λkl,n,e of Conjecture 3 for all e 6 k− 1. We have not been able to find the higher
generating functions He, though the key to deal with higher q-derivatives of Vk
seems to be the following relation

∂qVk +
v

1 − q
∂vVk +

(
w

1 − q
−
v(1 +w(1 − q))

(1 − v)(1 − q)2

)
∂wVk =

=

(
2(g− 1)

(1 − q)(1 − v)(1 + qv)
−

v(1 + v)

(1 − q)(1 − v)(1 + qv)
+
v2 − (g− 1)(2 − v)v

(1 − v)(1 + qv)

)
Vk.

satisfied by Vk. With this, we can hope to find the lower defects of the solution for
βk in a similar way to the one used in the proof of Proposition 9.3.1. For the more
general classes βk−hγh, already the problem at top-defect seems to be much more
complicated, and we have not been able to find any higher-defect solution.

Notice also that the higher-defect part of the solution is not unique, since we
can simply multiply the lowest-defect part of the solution for k− 1 by u to get a
class which vanishes when multiplied by a class P of defect k− 2. Eventually, the
space of solutions to (8.1) will be an affine space of dimension k.
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