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(Received 20 January 2023; accepted 28 March 2023; published 18 May 2023)

The climate is a complex nonequilibrium dynamical system that relaxes toward a steady state under the
continuous input of solar radiation and dissipative mechanisms. The steady state is not necessarily unique.
A useful tool to describe the possible steady states under different forcing is the bifurcation diagram, which
reveals the regions of multistability, the position of tipping points, and the range of stability of each steady state.
However, its construction is highly time consuming in climate models with a dynamical deep ocean, whose
relaxation time is of the order of thousand years, or other feedback mechanisms that act on even longer time
scales, like continental ice or carbon cycle. Using a coupled setup of the MIT general circulation model, we
test two techniques for the construction of bifurcation diagrams with complementary advantages and reduced
execution time. The first is based on the introduction of random fluctuations in the forcing and permits to explore
a wide part of phase space. The second reconstructs the stable branches using estimates of the internal variability
and of the surface energy imbalance on each attractor, and is more precise in finding the position of tipping
points.

DOI: 10.1103/PhysRevE.107.054214

I. INTRODUCTION

The climate is a dynamical complex system that is fueled
by the incoming solar radiation and reaches a steady state un-
der the effect of dissipation over a multitude of temporal and
spatial scales [1]. Under a given forcing (such as astronom-
ical Milankovitch cycles, or the increasing atmospheric CO2

content due to volcanism or present-day anthropogenic emis-
sions) the system can be driven out of the steady state. In such
conditions, the system can reach critical thresholds (or tipping
points) where its properties abruptly change, often in an irre-
versible way. Such behavior can be illustrated by the so-called
bifurcation diagram (BD), where a state variable (for example,
the mean surface air temperature) is plotted as a function of
the driving force, as schematically shown in Fig. 1 (second
row), together with the corresponding potential curve (first
row) for the different types of tipping mechanisms [2,3]: (1)
bifurcation-induced tipping (B-tipping), which occurs when
the deterministic system dynamics reach a bifurcation [4–12];
(2) noise-induced tipping (N-tipping), when the internal vari-
ability or “climate noise,” which occurs in the absence of
evolving external forcing and includes processes intrinsic to
the system (in the case of climate, to the atmosphere, ocean,
land, and cryosphere and their interactions [13]), increases to
exceed the height of a critical barrier separating two basins of
attraction, so that the system can access another dynamical so-
lution [14–16]; (3) shock-induced tipping (S-tipping), related
to sudden shocks that induce the passage from one state to
another, as happened when a huge asteroid presumably caused
the Cretaceous-Tertiary extinction 66 million years ago [17],
or when volcanic emissions initiated glaciation episodes [18];
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and (4) rate-induced tipping (R-tipping), when the rate of
change of the forcing or some internal parameter exceed a
critical value [19–21], allowing the system to cross, for exam-
ple, a moving basin boundary (note, however, that R-tipping
can be induced by different mechanisms and does not nec-
essarily requires multistability [3]). In climate physics, these
mechanisms are extensively studied to illustrate the stability
of tipping elements in the present-day climate [22,23] (two
examples, among many others, are the Arctic sea ice [24–28]
and the ocean overturning circulation [29–34]), bifurcations at
the global scale occurring in the geological past of our planet
leading to the snowball state [35–40] or to a state with an
ice-free equatorial waterbelt [41–44], and also to explore the
habitability of exoplanets [45–47].

BDs are easily obtained using energy balance mod-
els [4–6], the simplest in the hierarchy of climate models [48].
In intermediate complexity models [49] or low-resolution
general circulation models [9,12], BDs can still be constructed
with a reasonable computational cost. As the complexity of
the model increases, the amount of CPU time needed to per-
form series of simulations that explore a huge range of driving
force and initial conditions toward steady states becomes pro-
hibitive. Indeed, the standard method requires convergence
toward the steady state (or attractor) to obtain the BD, which
means to perform simulations over time scales of the order
of several times the relaxation time of the included climatic
components [48], which can be 103 years for the deep ocean,
104 years for the carbon equilibration between atmosphere
and ocean [12], and even higher for dynamical ice sheets.

Using a general circulation model (thus, at the top of
the hierarchy in model complexity) in coupled-aquaplanet
configuration (i.e., a planet entirely covered by the ocean
where fully nonlinear interactions are taken into account be-
tween atmosphere, ocean, and sea ice), Ragon et al. [50]
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FIG. 1. Tipping mechanisms in terms of potential landscape (first row) and corresponding bifurcation diagram (second row). Blue circles:
state of the system. Red/black arrows: evolution of landscape/state.

obtained the bifurcation diagram using the standard method
over time scales of thousands of years, thus excluding
nonlinear feedbacks on longer time scales such as those
induced by ice sheets and vegetation. The MIT general
circulation model [51,52] (MITgcm) is used here in the
same configuration, with coupled atmosphere-ocean-sea ice
at 2.8 ◦ horizontal resolution, 15 levels in an ocean depth of
3 km, and five pressure layers in the atmospheric column.
The atmospheric module is based on SPEEDY (Simplified
Parametrizations, primitivE-Equation DYnamics) [53] that
provides a rather realistic representation of the radiative
scheme despite the coarse vertical resolution, with the advan-
tage of requiring less computer resources than state-of-the-art
atmospheric modules. On the other hand, the ocean dynamics
is as accurate as in state-of-the-art Earth system models, and
this is crucial to include nonlinear feedbacks on millennial
time scales. Using this setup, it is possible to run nearly
200 years in 1 day using 13 cores on clusters like those at
the University of Geneva. The same MITgcm setup, with
an additional land module, has been successfully applied to
investigate the ocean dynamics during the Jurassic [54], the
present-day climate [55], and the climatic oscillations in the
Early Triassic.

Here we compare the standard technique to construct the
BD with two additional methods which require lower compu-
tational costs. We will describe such techniques in Sec. II, the
resulting BDs in Sec. III and we draw our conclusions on pros
and cons for each method and future developments in Sec. IV.

II. CONSTRUCTION OF BIFURCATION DIAGRAMS

We first describe the standard technique and the cor-
responding BD. Since, in this case, convergence to the
dynamical attractors is required over time scales comparable
to the longest feedback process in the setup (in our case,
until deep ocean equilibrium is reached), this BD is used for
comparisons with those obtained with less computationally

expensive techniques that will be described in the following
subsections.

A. Standard technique

The standard method for BD construction is based on the
theory of dynamical systems. The phase space can be divided
in basins of attraction, i.e., the minimal invariant closed sets
attracting an open set of initial conditions as time goes to in-
finity [56] for given values of the internal parameters (such as
viscosity, diffusion coefficients, albedo of different surfaces,
etc.) and external forcing. Note that under a constant forcing,
the system is ergodic [57], i.e., sufficiently long temporal av-
erages from a single simulation correspond to large ensemble
averages.

The first step is to consider a huge number of initial condi-
tions spanning a large part of phase space. Starting from these
initial conditions, the system then evolves in time until the
attractors are reached. Statistically steady-state conditions are
realized within each attractor in the climate system when its
global mean annual surface energy balance Fs, i.e., the sum of
sensible, latent, net solar, and long-wave radiation fluxes at the
surface, becomes nearly zero (<0.2 W m−2 in absolute value
in Ref. [58]). In general, simulation runs over n ∼ 5–10 times
the relaxation time trelax are needed to guarantee convergence
on the attractor [59], where trelax depends on the nonlinear
feedbacks implemented in the numerical simulation. In an
aquaplanet, there are no ice sheets (characterized by a time
scale of the order of 105 yr), and no vegetation (102–103

yr). An active carbon cycle between ocean and atmosphere
(104 yr) is also excluded, thus the deep-ocean dynamics is the
process with the largest relaxation time of the order of 103

yr. In our setup, it turns out to be between 500 and 2000 yr,
depending on the attractor (see Fig. 2(b) in Ref. [58]).

Five steady climates have been found in Brunetti et al. [58]
under the same forcing, represented by the same amount of
incoming solar radiation (S0 = 342 W m−2) and atmospheric
CO2 content (fixed at 326 ppm): snowball (where ice covers
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FIG. 2. Bifurcation diagram obtained with the standard method,
adapted from Ref. [50]. Solid lines correspond to stable branches.
Dashed lines are a sketch of theoretical unstable branches.

the entire surface), waterbelt (where an ocean belt survives
near the equator), cold state (with an ice cap extending to
43 ◦ latitude), warm state (with an ice cap comparable to
the present one, up to 60 ◦) and hot state (a planet with-
out ice). Simulations are stopped when the surface energy
imbalance Fs becomes lower than 0.2 W m−2 in absolute
value in Ref. [58], corresponding to an ocean temperature drift
dTo/dt = Fs/(cpρh) [60] lower than 0.05 ◦C per century, with
cp = 4000 J K−1 kg−1 being the specific heat capacity, ρ =
1023 kg m−3 the seawater density, and h = 3000 m the ocean
depth. Indeed, under such conditions, there is essentially no
drift in the annual averages of the climatic observables.

The second step is to slightly vary the forcing, starting from
each attractor, and let the system relax again [59]. In this way,
stable branches of the BD can be constructed. In practice,
in the aquaplanet simulations, Ragon et al. [50] performed
the following: the simulations are initialized from the five
attractors, found in Brunetti et al. [58] at S0 = 342 W m−2,
with slightly different values of the incoming solar radiation
until convergence. The CO2 content is kept constant. This
procedure is repeated until a B-tipping point is reached, i.e.,
where a shift of the state variable to a different attractor is
observed on a timescale of the order of hundreds of years.

Since the attractors are complex dynamical objects living
in a high-dimensional manifold [58,61], the projection of their
invariant (or natural) measure [62] on a given state variable,
as the surface air temperature T , is arbitrary [57,63]. It turns
out that different quantities are maximized in each attractor,
as found in Ref. [50], i.e., total precipitation and surface tem-
perature in hot state, intensity of the Lorenz energy cycle in
warm state, heat transport in cold state, and available potential
and kinetic energies in waterbelt, while snowball minimizes
all the above quantities. Thus, each climatic state would be
better represented by a different projection. However, in the
present study, the projection is performed, as commonly done
in the literature, in terms of the surface air temperature which
spans an interval of more than 70 ◦C from the snowball to the
hot state, thus differentiating well all the attractors.

The BD obtained in such a way is shown in Fig. 2, where
it can be seen that the range of stability of the warm state is
very small in comparison to the others, while the snowball
is stable over all the range of forcing that has been explored,
from 334 to 350 W m−2. The positions of B-tipping are also
evident, bracketing either end of the stable ranges for warm
and cold states, and the cold end of the waterbelt and hot state.
Note that the warm state may become unstable when carbon
exchanges between atmosphere and ocean are included, as
shown in Ref. [12] using a setup with a horizontal resolution
of 3.75 ◦.

Such BD has been obtained using a very computation-
ally expensive technique. The total simulation time ttot can
be estimated as ttot ∼ n(N + M ) trelax, where n ∼ 10 to reach
convergence, N ∼ 40 is the number of initial conditions in
the first step, and M ∼ 40 is the number of points on the
stable branches of the bifurcation diagram (see Fig. 2), giving
approximately ttot ∼ 800 trelax ∼ 8 × 105 yr. Of course, the
effective time can be optimized by launching N simulations
in parallel with different initial conditions, and by considering
separately each stable branch. Note, however, that the term
nMtrelax cannot be reduced further, since the initial conditions
at one forcing value are the final state of the previous one.

B. Method I: Random fluctuations in the forcing

The method is based on the idea described in Refs. [64,65]
of studying noise-induced transitions (N-tipping) between
basins of attraction. In order to explore the entire phase space
of the system, and not only the single basin of attraction
allowed in nonlinear deterministic dynamics, random fluctua-
tions of the incoming solar radiation are introduced around a
given value (S0 = 342 W/m2 in our setup) at discrete times.
Even if noise directly affects only a small fraction of degrees
of freedom, it propagates to all, since scales are interconnected
in the coupled climate model [64].

If η is a random number taken from a normal distribution
with zero mean and standard deviation σ , a new value of the
incoming solar radiation S is prescribed as S = S0(1 + η) at
regular temporal intervals �t1. We have tested several values
of the standard deviation, ranging from σ = 0.01 to 0.1, and
of the temporal interval, from �t1 = 1 yr to 100 yr. The
smaller �t1, the more uniformly the phase space is filled,
since the system cannot relax toward the attractor, and thus the
reconstruction of the position of the attractors in phase space
becomes unfeasible. On the contrary, too large values of �t1
are computationally expensive. On the other hand, the stan-
dard deviation σ regulates the range of forcing values being
explored and the portion of phase space than can be accessed,
a weaker noise corresponding to rarer transitions between
the basins of attraction [65]. Note that the time step used
in our simulations is half an hour (for the ocean dynamics),
much smaller than �t1, thus even if the forcing has Gaussian
fluctuations, the resulting time series of the state variable does
not correspond to white noise.

In our MITgcm setup, the values σ = 0.025 and �t1 = 10
yr correctly reproduce the attractors found in the BD with
the standard method (Fig. 2) in a reasonable amount of time.
Such values are model- and setup dependent. For example, in
the Planet Simulator (PlaSim), an open-source intermediate
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complexity climate model with slab ocean [66], the relaxation
time is governed by upper ocean processes and is of the order
of several decades for 5.6◦ of horizontal resolution and 10
atmospheric levels [65]. In this case, the reconstruction of
the invariant measure is obtained using σ = 0.18 and �t1 = 1
yr [65]. We find that a good reconstruction occurs after a total
simulation time of the order of ttot ∼ 104 yr. Using different
seeds for the random variable and/or changing the initial
conditions (S0 or any state variable, possibly using Monte
Carlo methods), such total time can be easily partitioned over
different sets of runs.

C. Method II: Reconstruction of stable branches

The first step coincides with that in the standard technique:
the attractors at a given forcing are needed as starting points
and are obtained by scanning a large ensemble of initial con-
ditions [58]. However, the second step differs. We require the
change in forcing to be small enough so that the invariant
measure on the attractor remains nearly the same [57], in
particular, its mean and standard deviation. In other words,
while the forcing is changed by �S, the corresponding varia-
tion on the attractor is small enough that the surface energy
imbalance remains nearly zero. This excludes the presence
of R-tipping and guarantees quasiergodicity of the system.
In practice, starting from each attractor found during the first
step, the forcing is changed by +�S (−�S) each �t2 = N2
yr in order to determine the upper (lower) stable branch in the
bifurcation diagram, until a tipping point is reached.

The tipping point is attained when one of the three fol-
lowing criteria is satisfied: (i) the standard deviation within
the N2 points for each forcing value becomes larger than the
internal variability on the attractor (an early warning of critical
slowing down of the dynamics [67]); (ii) the N2 points turn
out to be ordered in time, pointing from the original attractor
toward a new one; or (iii) the surface energy imbalance Fs
becomes much larger than zero (in our setup, larger than
0.5 W m−2 in absolute value, which is slightly larger than
the threshold 0.2 W m−2 used to characterize the convergence
to an attractor). When one of these criteria is satisfied, the
system is no longer on the initial dynamical attractor and is
approaching the unstable branch where a shift toward a new
basin of attraction takes place.

We have tested different values of �S from 0.1 to
0.5 W m−2 and N2 from 10 to 100. Like in the previous
case, the choice is model dependent. We have checked that in
our setup good agreement with the bifurcation diagram from
the standard technique (that is very accurate, albeit highly
time consuming) is obtained when �S � 0.25 W m−2 and
N2 � 20. With less points, the criterium based on the standard
deviation is not applicable (low statistics). With larger �S the
position of B-tipping is less accurate and the requirement of
remaining on the same original attractor cannot be satisfied,
while too small values require large CPU time. The total
simulation time can be estimated as ttot = nN trelax + M2�t2,
where M2 is the number of points in the forcing along all
the branches. The second term M2�t2 is smaller than the
analogous in the standard model, nMtrelax, since �t2 � trelax.
Note that a small �S corresponds to a large value of M2, thus
implying that �t2 can be set to a small value since the system
is near the attractor, and Method II can still save time.

FIG. 3. Normalized two-dimensional histogram obtained with
Method I by adding random fluctuations with standard deviation
σ = 0.025 to the incoming solar radiation S0 at regular temporal
intervals �t1 = 10 yr. The diverging color map goes from low (blue)
to high density of points (red).

III. RESULTS

We take advantage of the BD obtained with the standard
(computationally expensive) technique to test the other two
methods described in Secs. II B and II C, and understand under
which conditions they can be applied.

A. Method I

We construct the bifurcation diagram by plotting the
normalized two-dimensional histogram (projection of the in-
variant measure) in terms of the global annual surface air
temperature and the forcing, as shown in Fig. 3 using a stan-
dard deviation of the normal distribution equal to σ = 0.025
and time interval �t1 = 10 yr. Other BDs obtained for dif-
ferent values of σ and �t1 are provided in the Supplemental
Material (Fig. S1) [68]. As can be seen, the overall structure of
the phase plane corresponds quite well to that in the standard
BD (see Fig. 2). The main attractors (hot, cold, waterbelt, and
snowball) can be easily recognized and correspond to regions
of high density of points. However, the uncertainty in the exact
position of the attractors is large, so that, for example, the
warm state, with a short stable branch, cannot be distinguished
from the hot climate and, in general, it is not possible to
precisely infer the edges of the stable branches.

Moreover, a region with increased density different from
the ones that correspond to the five attractors appears at
T ∼ −20 ◦C that may correspond to an additional steady
state. This can be checked by performing simulations with-
out noise starting from initial conditions in such regions
of high density, and let the system relax towards a steady
state under fixed forcing, i.e., until the surface energy im-
balance becomes negligible. It turns out that the feature at
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FIG. 4. (a) Bifurcation diagram obtained with Method II; red arrows show the positions of B-tipping obtained with this method and (b–e)
their enlargements, with colors corresponding to the location of tipping from (b) cold to hot; (c) cold to snowball; (d) warm to cold, warm to
hot, hot to colder climates; and (e) waterbelt to hot. Color bar refers to the time (in years) since the last change in the forcing.

T ∼ −20 ◦C is only transient, as shown in the Supplemental
Material (Fig. S2) [68]: the system remains near such value of
temperature for nearly 100 yr with a small surface imbalance
but eventually is attracted to the waterbelt.

B. Method II

Starting from the five attractors found in Ref. [58] at
S0 = 342 W/m2, the stable branches are derived by chang-
ing the forcing by �S each N2 years. The resulting BD is
shown in Fig. 4 using �S = 0.1 W m−2 and N2 = 100 (20
for waterbelt upper branch). As can be seen, the five stable
branches can be recovered. If �S is too large, the edges of
the stable branches are not correctly reproduced, as shown

in the Supplemental Material (Fig. S3) [68]. Moreover, by
applying the criteria listed in Sec. II C to determine the po-
sition of B-tipping, we check that they correspond well to
those found with the standard technique [see Fig. 4(a) and
its enlargements, Figs. 4(b)–4(e), where the red arrows cor-
respond to B-tipping and the color bar corresponds to the
time ordering of the N2 points]. In Fig. 5, two examples of
evolution (hot to colder climates and cold to snowball) show
when the system abandons the attractor at the point where the
standard deviation of the temperature becomes larger than the
internal variability on the attractor and/or |Fs| > 0.5 W m−2

[following criteria (i) and (iii) in Sec. II C, respectively).
Another interesting feature in Figs. 4(a) and 4(c) is the

transition from the cold state to colder climates. When the
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FIG. 5. Temporal evolution of (a and c) mean global surface energy imbalance Fs and (b and d) surface air temperature T , with superposed
incoming solar radiation (right axes) for (top) hot to colder climates and (bottom) cold to snowball. The strip in (a) and (c) corresponds to an
imbalance of ±0.5 W m−2. Shadow areas in (b) and (d) correspond to the standard deviation in temperature within N2 = 100 points.

system loses stability on the cold branch, it is attracted first
by transient structures, like the one at T = −20 ◦C. Then,
instead of relaxing to the waterbelt, it is directly attracted to
the snowball. This can be understood by remembering that
the climate state lives on a high-dimensional space that we
are arbitrarily projecting to a single-state variable (the surface
air temperature). In a higher-dimensional space, the two cli-
matic trajectories (the transition from cold to snowball and
the waterbelt stable branch) would not cross each other. This
behavior and the fact that an analogous crossing occurs in
the transition from hot to snowball [see Fig. 4(a)] show that
the waterbelt climate is not well described by a single state
variable.

Finally, the dependence of the invariant measure can be
investigated, as done here, in terms of the incoming solar radi-
ation S for a fixed atmospheric CO2 content. The opposite can
also be considered: different CO2 for fixed S [12]. An example
is shown in the Supplemental Material (Fig. S4) [68] where,
however, the MITgcm setup does not include the feedback of
the atmospheric carbon with the ocean.

IV. SUMMARY AND CONCLUSIONS

We have tested two methods for the construction of BDs
in general circulation models (GCM), where the number and
timescale of nonlinear feedback mechanisms make the com-
putational costs of the standard method prohibitive. Such
diagrams store crucial information about the nonlinear struc-
ture of the climate system, like the regions of multistability,
the kind of tipping, the amplitude of climatic oscillations, or
the intensity of forcing necessary to give rise to a climatic
shift.

In the first method, random fluctuations of the forcing
allow to explore the entire phase space of the climate sys-
tem [65]. The choice of parameters for such a method, i.e.,
the standard deviation of the Gaussian fluctuations and the
temporal interval after which the forcing randomly changes
its value, is model dependent. However, once the parameters
are fixed, such a method gives an overall picture of the phase
space projected on a given state variable, revealing the number
of attractors and their position. The disadvantage is that the
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attractors with small stable branches may be blurred and the
position of B-tippings is not precise.

The second method reconstructs the stable branches of the
attractors [30] by changing the forcing by a small amount that
guarantees the system to remain on the same attractor until
a B-tipping is reached. The signature of a shift is given by
increased variance of the internal variability, nonnull surface
energy imbalance, or an ordered temporal sequence of points
toward another climatic state. The advantage of such a method
is that the reconstruction of B-tipping is quite accurate with
much lower computational costs with respect to the standard
method.

The two methods can be used in sequence when no pre-
vious information on the attractors is available: a first guess
on the position of tipping points and the extension of stable
branches can be obtained using Method I. Then, simulations
with the standard method or Method II can be performed to
fill in the details of the bifurcation diagram, depending on the
desired level of precision.

The proposed methods have been described by project-
ing the high-dimensional space of the attractors to a single
state variable (global annual mean of surface air temperature).
Of course, they can be applied using other projections, and
averages over different temporal and spatial scales. This is
particularly useful in order to develop early warning indicators
that are based not only on temporal series but also on spatial
information [69,70]. From the BD one can infer the forcing
that induces a tipping and perform a detailed analysis in space
to identify where the main changes take place, since gridded
data in general circulation models permit this kind of spatial
studies. The advantage is that spatial early warning indicators
do not need a long temporal record to get a meaningful signal,
thus they play a crucial role in identifying tipping mecha-
nisms from data sets with irregular or infrequent temporal
resolution [71].

BDs can also be applied to estimate the climate sensi-
tivity [57,72,73], in particular, to analyze how this metric

depends on the attractor, on the nonlinear feedback mecha-
nisms included in the simulations within a given integration
time, on the phase space region explored by the considered
initial conditions, and on the perturbation amplitude, all as-
pects recently discussed in Ref. [74].

Apart from the fundamental and practical interest of ob-
taining the BD for our present-day climate, there are many
aspects that are worth analyzing. An open question is, for
example, whether the attractors and the BD are model de-
pendent. The robustness of the results presented here should
be tested against other climatic models and other BD recon-
struction methods [64,75]. For this comparison, analogous
numerical setups should be chosen at the level of horizon-
tal or vertical resolutions and included nonlinear feedback
mechanisms. Important information on the description of the
nonlinear processes and their interplay can be gained from
such comparison of BDs produced by different models, that
can be used to improve algorithms and to correct biases.
This is why we suggest including the comparison of BDs
in coarse-resolution GCMs with simplified configurations in
the Tipping Point Model Intercomparison Project (TipMIP)
beside that of Earth System Models in the present-day config-
uration [76].

The data that support the findings of this study were gen-
erated by the MIT general circulation model that is openly
available on GitHub (version c67f) [77].

ACKNOWLEDGMENTS

We are grateful to Sacha Medaer and Enzo Samy Ferrao
for running some of the MITgcm simulations with noise. We
thank Alexis Gomel and Jérôme Kasparian for useful discus-
sions. The computations were performed on the Baobab and
Yggdrasil clusters at the University of Geneva. We acknowl-
edge the financial support from the Swiss National Science
Foundation (Sinergia Project No. CRSII5_180253).

[1] M. Ghil and V. Lucarini, Rev. Mod. Phys. 92, 035002 (2020).
[2] P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, Philos. Trans.

R. Soc. A 370, 1166 (2012).
[3] A. Vanselow, L. Halekotte, and U. Feudel, Theor. Ecol. 15, 29

(2022).
[4] M. I. Budyko, Tellus Ser. A 21, 611 (1969).
[5] W. D. Sellers, J. Appl. Meteorol. 8, 392 (1969).
[6] M. Ghil, J. Atmos. Sci. 33, 3 (1976).
[7] V. Lucarini, K. Fraedrich, and F. Lunkeit, Q.J.R. Meteorol. Soc.

136, 2 (2010).
[8] D. Ferreira, J. Marshall, and B. Rose, J. Clim. 24, 992 (2011).
[9] B. E. J. Rose, J. Geophys. Res. Atmos. 120, 1404 (2015).

[10] D. Ferreira, J. Marshall, T. Ito, and D. McGee, Geophys. Res.
Lett. 45, 9160 (2018).

[11] M. Gupta, J. Marshall, and D. Ferreira, J. Clim. 32, 3727 (2019).
[12] F. Zhu and B. E. J. Rose, J. Clim. 36, 547 (2022).
[13] C. Deser, A. Phillips, V. Bourdette, and H. Teng, Clim. Dyn. 38,

527 (2012).
[14] B. F. Farrell and D. S. Abbot, Clim. Past 8, 2061 (2012).

[15] R. Wordsworth, Astrophys. J. Lett. 912, L14 (2021).
[16] M. Baum and M. Fu, Geochem. Geophys. Geosyst. 23,

e2022GC010611 (2022).
[17] J. D. O’Keefe and T. J. Ahrens, Nature (London) 338, 247

(1989).
[18] F. A. Macdonald and R. Wordsworth, Geophys. Res. Lett. 44,

1938 (2017).
[19] P. Ashwin, C. Perryman, and S. Wieczorek, Nonlinearity 30,

2185 (2017).
[20] C. W. Arnscheidt and D. H. Rothman, Proc. R. Soc. A. 476,

20200303 (2020).
[21] A. Hoyer-Leitzel and A. N. Nadeau, Chaos 31, 053133

(2021).
[22] T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht,

S. Rahmstorf, and H. J. Schellnhuber, Proc. Natl. Acad. Sci.
USA 105, 1786 (2008).

[23] D. I. A. McKay, A. Staal, J. F. Abrams, R. Winkelmann,
B. Sakschewski, S. Loriani, I. Fetzer, S. E. Cornell, J.
Rockström, and T. M. Lenton, Science 377, eabn7950 (2022).

054214-7

https://doi.org/10.1103/RevModPhys.92.035002
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1007/s12080-021-00522-w
https://doi.org/10.3402/tellusa.v21i5.10109
https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1976)033<0003:CSFAST>2.0.CO;2
https://doi.org/10.1002/qj.543
https://doi.org/10.1175/2010JCLI3580.1
https://doi.org/10.1002/2014JD022659
https://doi.org/10.1029/2018GL077019
https://doi.org/10.1175/JCLI-D-18-0883.1
https://doi.org/10.1175/JCLI-D-21-0984.1
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.5194/cp-8-2061-2012
https://doi.org/10.3847/2041-8213/abf7c7
https://doi.org/10.1029/2022GC010611
https://doi.org/10.1038/338247a0
https://doi.org/10.1002/2016GL072335
https://doi.org/10.1088/1361-6544/aa675b
https://doi.org/10.1098/rspa.2020.0303
https://doi.org/10.1063/5.0046420
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1126/science.abn7950


MAURA BRUNETTI AND CHARLINE RAGON PHYSICAL REVIEW E 107, 054214 (2023)

[24] I. Eisenman and J. S. Wettlaufer, Proc. Natl. Acad. Sci. USA
106, 28 (2009).

[25] K. C. Armour, I. Eisenman, E. Blanchard-Wrigglesworth, K. E.
McCusker, and C. M. Bitz, Geophys. Res. Lett. 38, L16705
(2011).

[26] D. S. Abbot, M. Silber, and R. T. Pierrehumbert, J. Geophys.
Res.: Atmos. 116, D19120 (2011).

[27] T. J. W. Wagner and I. Eisenman, J. Clim. 28, 3998 (2015).
[28] K. Hill, D. S. Abbot, and M. Silber, SIAM J. Appl. Dyn. Syst.

15, 1163 (2016).
[29] H. Stommel, Tellus 13, 224 (1961).
[30] S. Rahmstorf, Nature (London) 378, 145 (1995).
[31] J. Gregory, O. Saenko, and A. Weaver, Clim. Dyn. 21, 707

(2003).
[32] S. Rahmstorf, M. Crucifix, A. Ganopolski, H. Goosse, I.

Kamenkovich, R. Knutti, G. Lohmann, R. Marsh, L. A. Mysak,
Z. Wang et al., Geophys. Res. Lett. 32, L23605 (2005).

[33] E. Hawkins, R. S. Smith, L. C. Allison, J. M. Gregory, T. J.
Woollings, H. Pohlmann, and B. de Cuevas, Geophys. Res. Lett.
38, L10605 (2011).

[34] W. Weijer, W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. Hu,
L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and
J. Zhang, J. Geophys. Res. Oceans 124, 5336 (2019).

[35] G. H. Roe and M. B. Baker, J. Clim. 23, 4694 (2010).
[36] A. Voigt and J. Marotzke, Clim. Dyn. 35, 887 (2010).
[37] A. Voigt, D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke,

Clim. Past 7, 249 (2011).
[38] R. Pierrehumbert, D. Abbot, A. Voigt, and D. Koll, Annu. Rev.

Earth Planet Sci. 39, 417 (2011).
[39] A. Voigt and D. S. Abbot, Clim. Past 8, 2079 (2012).
[40] J. Hörner, A. Voigt, and C. Braun, J. Adv. Model. Earth Syst.

14, e2021MS002734 (2022).
[41] D. S. Abbot, A. Voigt, and D. Koll, J. Geophys. Res.: Atmos.

116, D18103 (2011).
[42] J. Yang, W. R. Peltier, and Y. Hu, J. Clim. 25, 2711 (2012).
[43] J. Yang, W. R. Peltier, and Y. Hu, J. Clim. 25, 2737 (2012).
[44] C. Braun, J. Hörner, A. Voigt, and J. G. Pinto, Nat. Geosci. 15,

489 (2022).
[45] R. Boschi, V. Lucarini, and S. Pascale, Icarus 226, 1724 (2013).
[46] J. Checlair, K. Menou, and D. S. Abbot, Astrophys. J. 845,

132 (2017).
[47] J. H. Checlair, S. L. Olson, M. F. Jansen, and D. S. Abbot,

Astrophys. J. Lett. 884, L46 (2019).
[48] K. McGuffie and A. Henderson-Sellers, A Climate Modelling

Primer (John Wiley & Sons, New York, 2005).
[49] V. Lucarini and T. Bódai, Nonlinearity 30, R32 (2017).
[50] C. Ragon, V. Lembo, V. Lucarini, C. Vérard, J. Kasparian, and

M. Brunetti, J. Clim. 35, 2769 (2022).
[51] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey,

J. Geophys. Res. 102, 5753 (1997).
[52] J. Marshall, C. Hill, L. Perelman, and A. Adcroft, J. Geophys.

Res. 102, 5733 (1997).
[53] F. Molteni, Clim. Dyn. 20, 175 (2003).
[54] M. Brunetti, C. Vérard, and P. O. Baumgartner, J. Palaeogeogr.

4, 371 (2015).

[55] M. Brunetti and C. Vérard, Clim. Dyn. 50, 4425 (2018).
[56] S. H. Strogatz, Nonlinear Dynamics and Chaos, with Ap-

plications to Physics, Biology, Chemistry, and Engineering
(Westview Press, Boulder, 1994).

[57] T. Tél, T. Bódai, G. Drótos, T. Haszpra, M. Herein, B. Kaszás,
and M. Vincze, J. Stat. Phys. 179, 1496 (2020).

[58] M. Brunetti, J. Kasparian, and C. Vérard, Clim. Dyn. 53, 6293
(2019).

[59] G. Drótos, T. Bódai, and T. Tél, Eur. Phys. J. Spec. Top. 226,
2031 (2017).

[60] J. Marshall and R. A. Plumb, Atmosphere, Ocean, and Climate
Dynamics: An Introductory Text (Elsevier, 2008), p. 229.

[61] F. Falasca and A. Bracco, Phys. Rev. X 12, 021054 (2022).
[62] The natural measure of an attractor describes the probability

distribution of the permitted states in phase space, that is, how
frequently various parts of the attractor are visited by the orbit.
The natural measure is also said to be invariant under the dy-
namical system to specify that it does not change under time
evolution, as defined in J. P. Eckmann and D. Ruelle, Rev. Mod.
Phys. 57, 617 (1985).

[63] D. Faranda, G. Messori, and S. Vannitsem, Tellus A: Dyn.
Meteorol. Oceanogr. 71, 1554413 (2019).

[64] V. Lucarini and T. Bódai, Nonlinearity 33, R59 (2020).
[65] G. Margazoglou, T. Grafke, A. Laio, and V. Lucarini, Proc. R.

Soc. A 477, 20210019 (2021).
[66] K. Fraedrich, H. Jansen, E. Kirk, U. Luksch, and F. Lunkeit,

Meteorol. Z. 14, 299 (2005).
[67] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R.

Carpenter, V. Dakos, H. Held, E. H. van Nesl, M. Rietkerk, and
G. Sugihara, Nature (London) 461, 53 (2009).

[68] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.107.054214 for additional figures obtained
with different parameters in Methods I and II (Figs. S1 and
S3), a description of the transient feature observed around
T ∼ −20 ◦C in Fig. 3 (Fig. S2), BD in terms of the atmospheric
CO2 content at fixed incoming solar radiation (Fig. S4).

[69] J. J. Nijp, A. J. Temme, G. A. van Voorn, L. Kooistra, G. M.
Hengeveld, M. B. Soons, A. J. Teuling, and J. Wallinga, Global
Change Biol. 25, 1905 (2019).

[70] V. N. Livina, Nat. Clim. Chang. 13, 15 (2023).
[71] A. Génin, S. Majumder, S. Sankaran, A. Danet, V. Guttal,

F. D. Schneider, and S. Kéfi, Methods Ecol. Evol. 9, 2067
(2018).

[72] F. Ragone, V. Lucarini, and F. Lunkeit, Clim. Dyn. 46, 1459
(2016).

[73] A. S. von der Heydt and P. Ashwin, Dyn. Stat. Clim. Syst.
1, dzx001 (2017).

[74] R. Bastiaansen, P. Ashwin, and A. S. von der Heydt, Proc. R.
Soc. A 479, 20220483 (2023).

[75] Y. Zhang, J. Bloch-Johnson, D. M. Romps, and D. S. Abbot,
J. Adv. Model. Earth Syst. 13, e2021MS002505 (2021).

[76] https://global-tipping-points.org/programme/breakout-
workshops/how-to-advance-modelling-of-climate-tipping-
points-tipmip-workshop/.

[77] http://mitgcm.org/, https://github.com/MITgcm/MITgcm.

054214-8

https://doi.org/10.1073/pnas.0806887106
https://doi.org/10.1029/2011GL048739
https://doi.org/10.1029/2011JD015653
https://doi.org/10.1175/JCLI-D-14-00654.1
https://doi.org/10.1137/15M1037718
https://doi.org/10.3402/tellusa.v13i2.9491
https://doi.org/10.1038/378145a0
https://doi.org/10.1007/s00382-003-0359-8
https://doi.org/10.1029/2005GL023655
https://doi.org/10.1029/2011GL047208
https://doi.org/10.1029/2019JC015083
https://doi.org/10.1175/2010JCLI3545.1
https://doi.org/10.1007/s00382-009-0633-5
https://doi.org/10.5194/cp-7-249-2011
https://doi.org/10.1146/annurev-earth-040809-152447
https://doi.org/10.5194/cp-8-2079-2012
https://doi.org/10.1029/2021MS002734
https://doi.org/10.1029/2011JD015927
https://doi.org/10.1175/JCLI-D-11-00189.1
https://doi.org/10.1175/JCLI-D-11-00190.1
https://doi.org/10.1038/s41561-022-00950-1
https://doi.org/10.1016/j.icarus.2013.03.017
https://doi.org/10.3847/1538-4357/aa80e1
https://doi.org/10.3847/2041-8213/ab487d
https://doi.org/10.1088/1361-6544/aa6b11
https://doi.org/10.1175/JCLI-D-21-0148.1
https://doi.org/10.1029/96JC02775
https://doi.org/10.1029/96JC02776
https://doi.org/10.1007/s00382-002-0268-2
https://doi.org/10.1016/j.jop.2015.09.001
https://doi.org/10.1007/s00382-017-3883-7
https://doi.org/10.1007/s10955-019-02445-7
https://doi.org/10.1007/s00382-019-04926-7
https://doi.org/10.1140/epjst/e2017-70045-7
https://doi.org/10.1103/PhysRevX.12.021054
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1080/16000870.2018.1554413
https://doi.org/10.1088/1361-6544/ab86cc
https://doi.org/10.1098/rspa.2021.0019
https://doi.org/10.1127/0941-2948/2005/0043
https://doi.org/10.1038/nature08227
http://link.aps.org/supplemental/10.1103/PhysRevE.107.054214
https://doi.org/10.1111/gcb.14591
https://doi.org/10.1038/s41558-022-01573-5
https://doi.org/10.1111/2041-210X.13058
https://doi.org/10.1007/s00382-015-2657-3
https://doi.org/10.1093/climsys/dzx001
https://doi.org/10.1098/rspa.2022.0483
https://doi.org/10.1029/2021MS002505
https://global-tipping-points.org/programme/breakout-workshops/how-to-advance-modelling-of-climate-tipping-points-tipmip-workshop/
http://mitgcm.org/
https://github.com/MITgcm/MITgcm

