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Résumé

Quand on travaille avec des groupes nilpotents, on pense généralement avoir
à faire à des groupes qui se comportent bien. Typiquement, le problème
des mots et le problème d’appartenance à des sous-groupes sont décidables
efficacement. Leur géométrie est également bien comprise, par exemple leurs
fonctions de croissance sont connues de manière bien plus précise que pour
d’autres groupes, grâce à des résultats de Pansu et Stoll faisant le lien avec
l’étude des groupes de Lie nilpotents.

Dans cette thèse, nous montrerons que ces groupes se comportent de manière
surprenante en plus d’un sens, et nous permettent ainsi de résoudre certains
problèmes de théorie des groupes via divers exemples aux propriétés ex-
otiques. Nos résultats vont dans différentes directions, parfois purement
géométrique comme pour le bord des horofonctions, ou algorithmique pour
les problèmes d’appartenance. Cependant, ces résultats restent liés par une
même intuition, tirée d’un modèle de chemins pour les groupes nilpotents,
spécifiquement les groupes de Heisenberg, d’Engel et de Cartan.

Premièrement, nous exhibons un groupe virtuellement nilpotent pour lequel
le nombre de géodésiques de longueur n croit de manière intermédiaire. Ceci
réponds à une question restée longtemps ouverte, et vient comme une sur-
prise, les efforts pour construire un tel exemple étant centrés principale-
ment sur des groupes à croissance intermédiaire. En passant, nous prouvons
différents résultats sur la géométrie des groupes virtuellement nilpotents, qui
seront utiles dans le reste de la thèse.

Par la suite, on étudie les bords des horofonctions de groupes nilpotents,
et de manière plus approfondie les groupes de Heisenberg et de Cartan.
Dans le premier cas, l’ensemble des points de Busemann est dénombrable,
et l’action sur le bord réduit est triviale. Dans le second cas, l’ensemble est
indénombrable, et l’action est non-triviale. Ceci réfute des conjectures de
Tointon et Yadin, et de Bader et Finkelshtein.

Dans un troisième temps, nous nous intéressons à des problèmes de décision,
et plus spécifiquement aux problèmes d’appartenance à un sous-monöıde et
à un sous-ensemble rationnel. On montre que le problème d’appartenance à
des sous-ensembles rationnels de H3(Z) est décidable, et en déduit le même
résultat pour les sous-monöıdes du groupe de Engel. Par ailleurs, on montre
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l’existence d’un groupe (nilpotent !) pour lequel le problème pour les sous-
monöıdes est décidable, mais celui pour les sous-ensembles rationnels est
indécidable. Ceci confirme une conjecture de Lohrey et Steinberg.

On regarde ensuite à la NG-rationalité des séries de croissance complètes
de certains groupes nilpotents, ainsi que certains groupes d’allumeur de
réverbères. Dans de nombreux cas, nous montrons que la série n’est pas
NG-rationnelle, voire pas NG-algébrique pour G = H3(Z). Ceci réponds
partiellement à deux questions de Grigorchuk, de la Harpe et Nagnibeda.

Dans le dernier chapitre, on étudie la série de Green d’un groupe virtuelle-
ment nilpotent introduit par Bishop et Elder et montre qu’elle n’est pas
holonomique. Il s’agit du premier exemple de ce type parmi les groupes
virtuellement nilpotents. La preuve repose sur un petit miracle permettant
de compter certains mots, et deux doses de théorie des nombres.
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Abstract

When working with nilpotent groups, we usually think having to deal with
a relatively tame class groups. Typically, the Word Problem and the sub-
group membership problem are decidable efficiently. Their geometry is also
relatively well-understood. For instance their growth functions are known
much more precisely than for other groups, thanks to results of Pansu and
Stoll making the link with nilpotent Lie groups.

In this thesis, we will highlight that these groups behave surprisingly in
many ways, and allow us to answer several problems in group theory, using
different examples with exotic properties. Our results go in many directions,
some purely geometric with the study of the horofunction boundary, and
others more algorithmic with membership problems. However, these results
stay connected by a same intuition, coming from a path model for nilpotent
groups, specifically the Heisenberg, Engel and Cartan groups.

First, we exhibit a virtually nilpotent group for which the number of geodesics
of length n has intermediate growth. This answer a long-standing open ques-
tion, and comes as a surprise as most efforts to construct such an example
were centered around groups of intermediate growth. As a byproduct, we
prove several results on the geometry of virtually nilpotent group, that will
be useful for the remainder of the thesis.

We follow by studying horofunction boundaries of nilpotent groups, with an
in-depth look at the Heisenberg and Cartan groups. For the former, the set
of Busemann points is countable and the action on the reduced boundary is
trivial. For the latter, the set is uncountable and the action is non-trivial.
This disproves conjectures of Tointon–Yadin and Bader–Finkelshtein.

In the third part, we look at decision problems, more specifically the mem-
bership problems to submonoids and rational subsets, and the identity prob-
lem. We prove that membership to rational subset of H3(Z) is decidable,
and deduce the same result for submonoids of the Engel group. In another
direction, we prove the existence of a (nilpotent!) group for which mem-
bership to submonoids is decidable, but membership to rational subsets is
undecidable. This confirms a conjecture of Lohrey and Steinberg.
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Next, we take interest in the NG-rationality of complete growth series of
some nilpotent groups, and the lamplighter groups. In many cases, we show
that the series is not NG-rational, and not NG-algebraic for G = H3(Z).
This partially answers questions of Grigorchuk, de la Harpe and Nagnibeda.

In the last chapter, we study the Green series of a virtually nilpotent group
introduced by Bishop and Elder, and show that it is not D-finite. This is
the first example of this type among virtually nilpotent groups. The proof
relies on a small miracle allowing to count some words, and a good dose of
number theory.
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J’aimerais remercier ceux qui m’ont appris des bouts de maths, des plus
basiques aux plus avancés. De ce que je me souviens, cela commence par
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Chapter 1

Introduction

This thesis explores different questions of Algorithmic and Geometric Group Theory,
with a focus on nilpotent groups. Finitely generated torsionfree nilpotent groups coin-
cide with groups of matrices with 1’s on the diagonal and 0’s below the diagonal. The
typical example is the 3-dimensional Heisenberg group. However, instead of considering
elements as matrices, we will consider them as classes of paths.

1 8 43
0 1 9
0 0 1



Figure 1.1: A matrix in H3(Z) and a lattice path representing it.

We will see how this geometric model can be useful to study not only geometric aspects
of nilpotent groups, but also algorithmic ones. Specifically, we study classical questions
such as membership problems and volume growth of groups, and some more modern
twists such as geodesic growth. We will see how these inform each other.

Geometric aspects

A common scheme in Geometric Group Theory is to consider groups as geometric
spaces, define some notion of growth and then characterize groups with growth in a
given regime by their algebraic properties. The first example is volume growth: given
a group G and a generating set S, we associate the volume growth function

βG,S(n) = #
{
g ∈ G

∣∣ ∥g∥S ⩽ n
}
,

where ∥g∥S is the word metric: the length of the shortest word over S evaluating to g.

11



12 CHAPTER 1. INTRODUCTION

Milnor famously asked two questions about the volume growth of groups [Mil68]:

� For which groups do we have βG,S(n) ⪯ nd for some constant d ⩾ 0? Milnor further
suggested the family of virtually nilpotent groups.

� Does the volume growth necessarily satisfy βG,S(n) ⪯ nd or βG,S(n) ⪰ exp(n)?

On the one hand, Gromov confirmed that groups with polynomial volume growth coin-
cide with virtually nilpotent groups [Gro81a]. This is the gold standard of theorems in
Geometric Group Theory, as it links a natural geometric condition (polynomial growth)
with a purely algebraic one (virtually nilpotent). Doing so, he introduced a large ma-
chinery, notably asymptotic cones, to make the link with nilpotent Lie groups.

On the other hand, Grigorchuk constructed a family of groups of intermediate growth
(i.e., whose growth is neither bounded above by polynomials, nor below by exponen-
tials). This demonstrates the diversity of groups. This family is now source of groups
with many intriguing properties [Gri85]. These results constitute an ideal to aim for.

However, these are not the only questions we can ask about growth, nor the only notions
of growth we can consider. For instance, a difficult question is about the regularity and
fine asymptotics of growth. Notably, Pansu proved that

βG,S(n) = c · nd + o(nd)

for c = c(G,S) ∈ R>0 and d = d(G) ∈ Z⩾0 as soon as G is virtually nilpotent [Pan83].
A long standing conjecture is to improve this estimate to βG,S(n) = c · nd + O(nd−1).
The progress has been slow toward this goal, Stoll proved the result for 2-step nilpotent
groups [Sto98], and combined work of Breuillard–Le Donne and Gianella gives

βG,S(n) = c · nd +O(nd− 1
s )

for general s-step nilpotent groups [BLD13; Gia17].

We can push further and ask about rationality of the (standard) growth series

ΣG,dS(t) =
∞∑
n=0

σG,S(n) · tn =
∑
g∈G

t∥g∥S ∈ N[[t]],

where σ(n) = β(n) − β(n − 1). (Rationality of Σ(t) implies β(n) = c · nd + O(nd−1).)
Cannon proved that this growth series were rational as soon as G is hyperbolic [Can84],
and Benson proved the same result for G virtually abelian [Ben87]. In both cases, the
underlying reason are strong language theoretic properties, which can be used to prove
more strongly that the complete growth series

Σ̂G,dS(t) =
∑
g∈G

g · t∥g∥S ∈ NG[[t]]
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is also rational [Lia96; GN97]. Among nilpotent groups, the picture is mixed. Stoll
proved that H5(Z) has a generating set for which the growth series is rational, and
another for which the series is transcendental [Sto96]. In contrast Duchin and Shapiro
proved that the (standard) growth series of (H3(Z), dS) is always rational [DS19]. This
begs the question whether the associated complete growth series are rational, and which
are the mechanisms underlying the rationality of growth series in some nilpotent groups.

Another active industry within Geometric Group Theory is to find alternate proof of
Gromov’s theorem (mentioned earlier). This is not only useful for pedagogical purposes:
different proofs give different informations on the group, some arguments can be more
effective, or generalize more easily (with the Gap Conjecture in mind). A recent attempt
in this direction is the study of the horofunction boundary ∂(G, d). This boundary was
introduced by Gromov [Gro81b]. It is the adherence of functions

φx(h) = d(x, h)− d(x, e)

within the space of functions G → Z (with the pointwise convergence topology). This
boundary has mostly been studied for hyperbolic, being closely related to the visual
boundary [WW06]. Recently, the horofunction boundary has been of a great use to
embed hyperbolic groups inside finitely presented simple groups [BBM17; BBMZ23].
Our motivation is somewhat different: G acts on its boundary ∂(G, d) via

g · φ(h) = φ(g−1h)− φ(g−1).

Something which should be clear from this formula is that φ : StabG(φ) → Z is an
homomorphism. In particular, finite orbits for the action G ↷ ∂(G, d) give rise to
virtual characters (that is, epimorphism φ : H ↠ Z, with H ⩽ G finite-index) which
are key ingredients in all known proofs of Gromov’s theorem.

This shifts the interest to finding finite orbits under some “small growth” hypothesis.
This was achieved by Tointon and Yadin for groups of linear growth [TY16], using the
set of Busemann points, which are limits of geodesic rays. They conjecture

Conjecture ([TY16]). Let (G, dS) be a polynomially growing group, then the set of
Busemann points in ∂(G, dS) is finite or countable.

Falling short of fixed points, we can also ask for horofunctions which are fixed up to
a bounded function. This is the approach explored by Bader and Finkelshtein [BF20].
More precisely, they consider the reduced boundary

∂r(G, dS) := ∂(G, dS)/O(1),

where O(1) is the space of bounded function G→ Z. They proved that G↷ ∂r(G, dS)
is trivial for G abelian and G = H3(Z), and further conjectured

Conjecture. Let (G, dS) be a nilpotent group, then the action G↷ ∂r(G, dS) is trivial.
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Another notion of growth is the geodesic growth of group. We consider the function

γG,S(n) = #
{
w ∈ S⋆ | ℓ(w) = ∥w̄∥S ⩽ n

}
,

which counts the number of geodesic words of length at most n. Most of the work
around geodesic growth as been done on the associated series, this is for instance a key
part of the argument of Cannon mentioned earlier. Perhaps for this reason, the two
analogs of Milnor questions were still open. For a characterization of groups (G,S)
with polynomial geodesic growth, we directly realize we are looking at a subclass of all
virtually nilpotent groups. Indeed, every element corresponds to at least one geodesic.
Moreover, basic groups like Z2 necessarily have exponential geodesic growth [Sha97].

This gives the impression that pairs (G,S) with polynomial geodesic growth are rare.
Despite this, a few families of examples were constructed, containing virtually abelian
groups [BBES12; Bis21], and even an example of the form H3(Z) ⋊ C2 [BE22]. A few
question that remained to be answered is whether polynomial geodesic growth is generic
or to the contrary very sparse, and giving a clear criterion. For the existence of a group
with intermediate geodesic growth, most of the effort has been concentrated on groups
of intermediate volume growths, going all the way back to 1993 [Gri14, p. 755-756].
The results so far have only been negative [Brö16] or inconclusive [Bis17].

At last, we can consider the Word Problem WP(G,S) = {w ∈ S⋆ | w̄ = eG}, and
consider the associated series

ΓG,S(z) =
∑
n⩾0

cn · zn ∈ N[[z]] where cn = #(WP(G,S) ∩ Sn).

This series is called the (rescaled) Green series. As for other combinatorial sequences,
there is a long tradition of trying to pinpoint ΓG,S(z) in the algebraic hierarchy

rational ⊂ algebraic ⊂ diagonal of rational ⊂ D-finite ⊂ D-algebraic.

This activity also has applications, as computing the Green series gives access to the
spectral radius, hence to amenability via Kesten criterion [Kes59], or even to much
more precise asymptotics for the return probabilities of random walks [Lal93; Woe12].
Moreover, there are strong links with the complexity of the Word Problem:

� The Green series is rational if and only if the Word Problem is regular, which
happens if and only if the group is finite [Ani72; Kou98],
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� It is conjectured that the series is algebraic if and only if the Word Problem is
context-free, which happens if and only if the group is virtually free [MS83]

� The Green series is a diagonal of rational if G is virtually Fm × Zn [Bis24]. Tthis
seems related to Word Problem recognizable by (Fm×Zn)-automata (in the sense
of [Kam06]), with few exceptions (eg. F2 × F2 with standard generating set).

An impressive result is that the Green series of amenable groups of super-polynomial
volume growth are not D-finite [BM20]. This left open the question for (non virtually
abelian) virtually nilpotent groups. Only very recently some partial (but convincing)
results were given by Pak and Soukup [PS22]: if we consider G = UTm(Z) the group of
unitriangular matrices of dimension m = 9.6 ·1085 (!) and let the generating set S vary,
either some series cannot be represented as a diagonal of rational series, or at least no
algorithm can give such a representation (meaning any proof would be ineffective).

In Chapter 4, we study the geometry of virtually nilpotent groups, with an emphasis
on geodesic growth. Our main result is the construction of a group (virtually 3-step
nilpotent!) with intermediate geodesic growth:

Theorem (4.C). The geodesic growth of the group

vE =
〈
a, t

∣∣ t2 = 1; [a, [a, at]] = [at, [a, at]] commutes with a, at
〉

with generating set S = {a±1, t} satisfies γgeod(n) ≍ exp
(
n3/5 · log(n)

)
.

More generally, we provide a criterion saying when the geodesic growth of a pair (G,S)
is sub-exponential, when G is virtually nilpotent (Theorem 4.A). For virtually 2-step
nilpotent groups, this specializes as a criterion for polynomial geodesic growth.

Along the way, we give estimates on word metrics in virtually nilpotent groups (Propo-
sition 4.1.1), which are used in the subsequent Chapters 5 and 7. Another application
is an extension of the Stoll–Breuillard–Le Donne–Gianella estimates on volume growth
mentioned earlier to virtually nilpotent groups:

Corollary (4.D). Let G be a virtually s-step nilpotent group, and S a finite symmetric
generating set. The volume growth satisfies

βG,S(n) = cG,S · nd +O(nd−δs),

where δs = 1 for s = 1, 2 and δs =
1
s
for s ⩾ 3.

In Chapter 5, motivated by the conjecture of Tointon and Yadin, we study the set of
Busemann points in ∂(G, dS) for 2-step and 3-step nilpotent groups.

� We give a characterization of orbits of Busemann points in Heisenberg groups
H2n+1(Z) (Theorem 5.3.3), in particular the set of Busemann points is countable.



16 CHAPTER 1. INTRODUCTION

� In contrast, in C = N2,3 the free nilpotent group of rank 2 and nilpotency class 3,
we exhibit uncountably many Busemann points (Theorem 5.5.6).

As a byproduct, we also disprove the conjecture of Bader and Finkelshtein.

InChapter 7, we study when complete growth series are rational, and more specifically
when they are NG-rational and NG-algebraic. These conditions translates into the
existence of a normal form with strong geometric properties. In turn, we isolate two
sufficient conditions to prove non-NG-rationality:

� The first one is purely geometrical, with dead ends and almost saddle elements
appearing. These are notions from “fine geometry”, meaning we can replace the
original metric dS by d̃ = dS + O(1) to study them. This allows us to apply this
criterion to lamplighter groups and (non virtually abelian) 2-step nilpotent groups.

� The second give the existence of a regular normal form consisting of (1 + ε)-quasi-
geodesics. Here we can replace the original metric by d̃ = dS + o(dS). This extra
freedom opens the door to use Pansu’s theorem comparing the word metrics on
nilpotent groups and associated CC-metrics. In particular, we apply the criterion
to (non virtually abelian) nilpotent groups of rank 2 and any nilpotency class.

In both cases, we conclude the complete growth series are never NG-rational. For
the Heisenberg group H3(Z), we conclude more strongly that the series are not NG-
algebraic. This provides the first examples where the standard growth series is rational,
and the complete growth series is not rational, and makes progress toward the conjecture
that complete growth series of (non virtually abelian) nilpotent groups is never rational.

Finally, in Chapter 8, we prove that the Green series ΓvH,S(z) of

vH = H3(Z)⋊ C2 =
〈
x, t

∣∣ t2 = [x, [x, txt]] = 1
〉

with respect to the generating multiset S = {x, x−1, t, t, t, t, t, t, t, t} is not D-finite.
We study the subword complexity of the sequence cn modulo some power of 2. This
leads us to count solutions to Diophantine equations, and look at some multiplicative
function. We conclude using a lemma of Garrabrant and Pak. This is the first example
of virtually nilpotent group whose Green series is not D-finite.

a

b
c

d
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Algorithmic aspects

Membership problems are some of the central motivating questions in algorithmic
(semi)group theory. In contrast with Dehn’s Word Problem [Deh10] which is easily and
efficiently decidable in linear groups [LZ77], even the most basic membership problems
already lie at the boundary between decidability and undecidability. The first problem
in this family is the Submonoid Membership. For a (semi)group G, we attempt to
produce algorithms with the following specifications:

(Uniform) Submonoid Membership (SMM(G))

Input: Elements g and g1, g2, . . . , gn ∈ G

Output: Decide whether g ∈ {g1, g2, . . . , gn}∗.

This problem was introduced by Markov [Mar47]. He gave the first undecidability
results in semigroup theory: there exist no algorithm deciding if g ∈ {g1, . . . , gn}∗,
where g, g1, . . . , gn ∈ Z6×6 are 6×6 integers matrices. These undecidability results were
extended to the Subgroup Membership in SL4(Z) by Mihailova [Mih58], and to the
Matrix Mortality problem in Z3×3 by Paterson [Pat70].

The next problem in line is the

(Uniform) Rational Subset Membership (RatM(G))

Input: An element g ∈ G and a rational subset R ⊆ G (defined by a finite state
automaton, labeled by elements in G).

Output: Decide whether g ∈ R.

Rational subsets where first considered inside free monoids, they are then called regular
language. Deciding membership to a language is one of the core problems in formal
language theory, and regular languages are specifically those languages for which a
read-only Turing machine can decide membership. This problem was solved in abelian
groups by Schützenberger–Eilenberg [ES69], and in free groups by Benois [Ben69]. It’s
only much more recently this problem was considered in more general groups such as
virtually abelian groups [Gru99], wreath products [LSZ15], solvable Baumslag-Solitar
groups [CCZ20] and others [KSS07; LS08; LS10; Gra20].

It should be noted that finitely generated submonoids are rational subsets:

start

g1
g2

g3

gn

···

Figure 1.2: An automaton defining the submonoid R = {g1, g2, . . . , gn}∗.
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Therefore, we have two natural problems, the first being a special case of the second, it
is natural to ask whether they are actually equivalent. This was first formally asked by
Lohrey and Steinberg [LS08], and they formulated a conjecture in a follow-up paper:

Conjecture ([LS10]). There exists a finitely generated group with decidable Sub-
monoid Membership, and undecidable Rational Subset Membership.

In Chapter 6, we study these problems within nilpotent groups. Our first result is

Theorem (6.C). Rational Subset Membership is decidable in H3(Z).

This is the first nilpotent group for which RatM(G) is shown to be decidable (except
for virtually abelian examples). The proof idea comes from a simple observation:

Figure 1.3: Every element in {x, y}∗ can be written as xn1yn2xn3yn4xn5 with ni ⩾ 0.

Generalizing this observation, we reduce the general Rational Subset Membership in
H3(Z) to a special case: the Knapsack problem. This is another modern twist on a
classical problem from computer science (in N) introduced relatively recently [MNU13].
This concludes as König, Lohrey and Zetzsche proved that the Knapsack problem is
decidable in H3(Z) [KLZ16], using deep results around Hilbert’s 10th problem [GS04].

As a corollary, we get that

Corollary (6.4.1). Submonoid Membership is decidable in the Engel group.

This extends on previous results of Colcombet, Ouaknine, Semukhin andWorrell solving
the Submonoid Membership in H3(Z) [COSW19].

Using a new reduction and known undecidability results for Rational Subset Mem-
bership in some 2-step nilpotent groups [KLZ16; MT17], we also confirm the Lohrey-
Steinberg conjecture:

Theorem (6.B). There exists a finitely generated 2-step nilpotent group with decidable
Submonoid Membership, and undecidable Rational Subset Membership.

(It should be noted that Shafrir provided an earlier example, specifically A ≀ Z2 with
A finite abelian. However, this work is still unpublished. The proof was nicely written
down in [Pot20], and a more general result is now available for Cp ≀ Zn [Don24].)
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Chapter 2

Background

2.1 Finitely generated groups as metric spaces

Let G be a group, generated as a monoid by a finite set S.1

Definition 2.1.1 (Word length). We consider G a group, and S a finite (monoid)
generating set. Moreover, we consider ω : S → R>0 a weight function.

� For every word w = s1s2 . . . sℓ ∈ S⋆, we define its length as

ℓω(w) := ω(s1) + ω(s2) + . . .+ ω(sℓ).

� There is an evaluation map ev : S⋆ → G. The image ev(w) is the element obtained
interpreting the word w as a product in G. For short ev(w) = w̄.

� The word length of an element g ∈ G is defined as

∥g∥S,ω := min{ℓω(w) | w ∈ S⋆ such that w̄ = g}.

Remark 2.1.2. We will often (but not always) make a few additional assumptions:

� Most of the time ω ≡ 1. In this case the subscript ω is dropped from the notations.

� S is symmetric if S = S−1. In that case, we have ∥g−1∥S = ∥g∥S. In particular,
the function dS(g, h) = ∥g−1h∥S is symmetric hence a genuine distance.

The geometrical realization of these length functions are Cayley graphs:

1Most of the time, we should picture S ⊆ G. However, this is not always the most practical.
Often, we should rather think of S as an abstract set of symbols, together with an evaluation map
ev : S⋆ → G, with possibly several symbols sent to the same element in G. This avoids the use of
multisets, for instance when considering decomposition and defining a weight of X in §4.1.1.

21
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Definition 2.1.3 (Cayley graph). Given a group G and a monoid generating set S,
the Cayley graph is Cay(G,S) = (V,E) where the vertex and edge sets are given by

V = G and E = {(g, gs) : g ∈ G, s ∈ S}.

Edges are considered oriented and labeled (so the edge g → gs is labeled by s).

The word metric dS coincide with the graph metric on Cay(G,S). A natural general-
ization of Cayley graphs, for coset spaces are Schreier graphs:

Definition 2.1.4 (Schreier graph). Given a group G, a subgroup H ⩽ G, and a monoid
generating set S, the Schreier graph is Sch(H\G,S) = (V,E) where

V = H\G and E = {(Hg,Hgs) : Hg ∈ H\G, s ∈ S}.

Edges are considered oriented and labeled (so the edge Hg → Hgs is labeled by s).

We can associate many invariants to such graphs.

Definition 2.1.5. To a triplet (G,S, ω), we associate two growth functions:

� The volume growth function of (G,S, ω) is

βG,S,ω(n) = #{g ∈ G : ∥g∥S,ω ⩽ n} = #BG,S,ω(e, n).

� The spherical growth function is σG,S,ω(n) = #{g ∈ G : ∥g∥S,ω = n}.

Volume growth is more robust to change in the metric (eg. when working up to quasi-
isometry), while the spherical growth is more practical when working with growth series
(eg. when working with geodesic normal forms). Concretely

Definition 2.1.6. Given two increasing functions f, g : Z>0 → Z>0, we say that

� g asymptotically dominates f (written f ⪯ g) if there exists a constant C > 0 such
that f(n) ⩽ C · g(Cn) for all n.

� f and g are asymptotically equivalent (written f ≍ g) if f ⪯ g and g ⪯ f .

Definition 2.1.7. Let (X, dX), (Y, dY ) be metric spaces. A map f : (X, dX)→ (Y, dY )
is a quasi-isometry if there exist constants λ ⩾ 1, C1, C2 ⩾ 0 constants such that

(a) For all x, x′ ∈ X, we have

1

λ
· dX(x, x′)− C1 ⩽ dY (f(x), f(x

′)) ⩽ λ · dX(x, x′) + C1.

(b) For all y ∈ Y , there exists x ∈ X such that dY (f(x), y) ⩽ C2.

If f only satisfies condition (a), we say that f is a quasi-isometric embedding. If λ = 1,
we talk about roughly isometric embedding and rough isometries.

Fact 2.1.8. Consider two quasi-isometric groups (G,S, ω) and (G′, S ′, ω′) (for instance
G,G′ equal, or abstractly commensurable), then βG,S,ω(n) ≍ βG′,S′,ω′(n).
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2.2 Reminders on convex geometry

We start by recalling a few notions from convex geometry, and most notably convex
polytopes. For a better view on the subject, see the reference book [Zie94].

Definition 2.2.1.

� A subset C ⊆ Rd is convex if λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1].

� Given a subset S ⊆ Rd, its convex hull is the smallest convex set containing S.
Equivalently, the convex hull is the set of convex combinations of elements of S:

ConvHull(S) :=

{
λ1s1 + . . .+ λksk

∣∣∣∣∣ k ∈ N, λi ∈ R⩾0 s.t.
k∑

i=1

λi = 1, si ∈ S

}
.

Convex subsets of special interest are convex polytopes. These can be defined in two
equivalent ways:

� A convex polytope is the convex hull of finitely many points in Rd.

� A convex polytope is a bounded subset of Rd that can be written as the intersection
of finitely many half-spaces {x ∈ Rd | fi(x) ⩽ ai} where fi : Rd → R are non-trivial
linear forms and ai ∈ R.

Accordingly, polytopes can be described in two ways:

� A V-representation for a polytope P is the data of finitely many points whose
convex hull is P .

� A H-representation for a polytope P is the data of finitely half-spaces {fi(x) ⩽ ai}
whose intersection is P .

Both descriptions have advantages: V-representations are most practical to produce
points inside the polytope, while H-representations are useful to check whether a point
lies in the polytope, or even in its interior. For this reason, it is desirable to find
algorithms to produce H-representations from V-representations (and vice versa). This
is a classical problem, the facet enumeration problem solved in general using Fourier-
Motzkin elimination. See for instance [Zie94, §1.2].

Finally, we recall two fundamental theorems:

Theorem 2.2.2 (Caratheodory). Fix S ⊆ Rd. For each point x ∈ ConvHull(S), there
exist d+ 1 elements s0, s1, . . . , sd ∈ S such that x ∈ ConvHull({s0, s1, . . . , sd}).

Theorem 2.2.3 (Hahn-Banach). Let C ⊂ Rd be a convex set and p ∈ Rd \ C. There
exists a non-zero linear form f : Rd → R such that f(x) ⩾ f(p) for all x ∈ C.
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2.3 Nilpotent groups

2.3.1 Definition and examples

Let us define the main players of this thesis, namely nilpotent groups:

Definition 2.3.1. The lower central series of G is the sequence of subgroups

γ1(G) = G and γi+1(G) = [γi(G), G] for all i ⩾ 1,

where [A,B] =
〈
[a, b]

∣∣ a ∈ A, b ∈ B〉. For instance γ2(G) = [G,G].

Definition 2.3.2. G is nilpotent of class c (or c-step nilpotent) if γc+1(G) = {e}.

Example 2.3.3. Some examples of nilpotent groups are the following

� Abelian groups are exactly 1-step nilpotent groups. Finitely generated abelian
groups are all isomorphic to direct products of cyclic groups:

G ≃ Zr × Z/d1Z× Z/d2Z× . . .× Z/dsZ
(Furthermore, the integers r and di are unique if we ask d1 | d2 | . . . | ds.) An
important characteristic of f.g. abelian group is their torsionfree rank rkQ(G) = r,
which is the rank of the torsionfree part in the previous decomposition.

� The Heisenberg groups are matrix groups

H2n+1(Z) =


1 a c

In bt

1

 ∣∣∣∣∣∣ a,b ∈ Zn, c ∈ Z

 .

These are alternatively given by the group presentation

H2n+1(Z) =
〈
x1, . . . , xn, y1, . . . , yn, z

∣∣ [xi, yi] = z, other commutators = e
〉
,

and are all 2-step nilpotent, with γ2(G) = ⟨z⟩.

� More generally, groups of unitriangular matrices are nilpotent. For instance

UT4(Z) =



1 a1,2 a1,3 a1,4

1 a2,3 a2,4
1 a3,4

1


∣∣∣∣∣∣∣∣ ai,j ∈ Z

 .

In general, UTn(Z) is nilpotent of class n− 1.

� Nilpotent groups of class c form a variety of groups, defined by the law

[g1, [g2, [ . . . , [gc, gc+1]]]] = e

for all gi ∈ G. In particular, we may define free nilpotent groups of any rank r and
any nilpotency class c, which we denote by Nr,c.

Among those, the Heisenberg group H3(Z) = UT3(Z) ≃ N2,2 and the Cartan group
C = N2,3 will be particularly important in the following chapters.
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2.3.2 Hirsch length

In this paragraph, we recall a notion of dimension for finitely generated nilpotent groups:
the Hirsch length. It generalizes the torsionfree rank for finitely generated abelian
groups. It should be noted that multiple notions of dimension for nilpotent groups
co-exist. For instance, the growth degree (aka homogeneous dimension) is another.

An important property is that f.g. nilpotent groups are Noetherian. More explicitly,

Fact 2.3.4. Subgroups of a finitely generated nilpotent groups are finitely generated.

In particular, the subgroups γi(G) are finitely generated, hence the successive quotients

γi(G)/γi+1(G)

are finitely generated abelian, hence have well-defined torsionfree ranks. Finally

Definition 2.3.5. The Hirsch length of a c-step nilpotent group G is defined as

h(G) =
c∑

i=1

rkQ
(
γi(G)/γi+1(G)

)
.

Proposition 2.3.6. Given a finitely generated nilpotent group G, we have

(a) For any exact sequence 1→ N → G→ Q→ 1, we have h(G) = h(N) + h(Q).

(b) For any subgroup H ⩽ G, we have h(H) ⩽ h(G) with equality iff [G : H] <∞.

2.3.3 Dealing with torsion

We recall some results about torsion in nilpotent groups:

Definition 2.3.7. Given a subgroup H ⩽ G, we define the isolator of H in G as

IG(H) = {g ∈ G : ∃n > 0 such that gn ∈ H}.

Fact 2.3.8 (See eg. [Khu93, §2.6]). If G is nilpotent, then IG(H) is a subgroup.

We add that, if H is normal/characteristic, then IG(H) is normal/characteristic too.
This is obvious as the definition is invariant under automorphisms of G.

The name comes from the following observation: if a subgroup K ⩽ G satisfies K ⩾
IG(H) and [K : IG(H)] <∞, then K = IG(H). Indeed, for all g ∈ K, we have

g[K:IG(H)]! ∈ IG(H)

by some pigeonhole principle. This means IG(H) is “isolated” in the lattice of subgroups
of G: it cannot be approached by finite-index overgroups.
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Isolators are useful to deal with torsion in two ways. First,

Lemma 2.3.9. Let G be finitely generated, torsion, solvable group. Then G is finite.

Proof. The proof is by induction on the class.

Base case. For abelian groups, this follows from the classification.

Induction. Suppose that the induction hypothesis holds for class c − 1 and let G be
a solvable group of class c. Observe that

(1) G/[G,G] is finitely generated, abelian and torsion, hence it is finite.

We deduce that [G,G] has finite-index in G, hence is finitely generated too.

(2) By induction, [G,G] is f.g., torsion, solvable of class c− 1, hence [G,G] is finite.

Combining (1) and (2), we deduce that G is finite.

Corollary 2.3.10. If G is finitely generated nilpotent, then

T = {g ∈ G : ∃n > 0 such that gn = e}

is a finite characteristic subgroup.

Proof. We have T = IG({e}) therefore T is a subgroup. Fact 2.3.4 tells us T is finitely
generated. Combining this with Lemma 2.3.9, we conclude that T is finite.

Second,

Lemma 2.3.11. Let G be a finitely generated group. Then G/IG([G,G]) ≃ Zd, and
every map G→ G/N with G/N torsionfree abelian factors through this first quotient.

We call G/IG([G,G]) the “torsionfree-abelianization” of G.

Proof. We first note that IG([G,G]) = π−1(IA({eA})) where π : G → G/[G,G] =: A is
the abelianization map, it follows that IG([G,G]) is a normal subgroup of G. Moreover,
given N ⊴ G, we have that

� G/N is abelian if and only if N ⩾ [G,G],

� G/N is torsionfree if and only if N = IG(N).

It follows that G/IG([G,G]) is torsionfree abelian, hence ≃ Zd if G is finitely generated.
Moreover if a quotient G/N is torsionfree abelian, then N ⩾ IG([G,G]).
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2.4 Nilpotent Lie groups

2.4.1 Mal’cev completion

We explain a construction liking finitely generated nilpotent groups and nilpotent Lie
groups. This link is key in multiple parts of the thesis.

Theorem 2.4.1 (Mal’cev). Let H be finitely generated, torsionfree, nilpotent group.
Then H embeds as a cocompact lattice inside a simply connected nilpotent Lie group H̄.

Sketch of proof. Consider the descending series of normal subgroups

H ⊵ IH([H,H]) ⊵ IH(γ3(H)) ⊵ . . . ⊵ IH(γc(H)) ⊵ IH(γc+1(H)) = {e}.

(The last equality follows from H being torsionfree.) The successive quotients are
finitely generated (Fact 2.3.4), torsionfree and abelian, so we have

∀i = 1, 2, . . . , c, IH(γi(H))/IH(γi+1(H)) ≃ Zri .

Consider gi,1, . . . , gi,ri ∈ IH(γi(H)) forming a base modulo IH(γi+1(H)). By construc-
tion, every element g ∈ H can be written uniquely as

g = g
m1,1

1,1 . . . g
m1,r1
1,r1

g
m2,1

2,1 . . . gmc,rc
c,rc

for mi,j ∈ Z. This allows to identify H ←→ Zh, where h =
∑c

i=1 ri is the Hirsch length
of H. The gi,j form a Mal’cev basis, and the exponents mi,j are the Mal’cev coordinates.

Now, the key observation is that multiplication and inversion under this identification
are given by polynomials in the coordinates (see [LR04, §2.1]). Therefore, we can extend
these operations to (Rh, · ). We note that

� The operations are analytical (polynomial).

� The different axioms of groups passes to (Rh, ·) as Zh is Zariski dense. Similarly,
(Rh, ·) is nilpotent of class c since (Zh, · ) ≃ H is nilpotent of class c.

� Rh is obviously simply connected, and Zh is cocompact.

This proves that any f.g. torsionfree c-step nilpotent group H embeds in a simply
connected c-step nilpotent Lie group H̄ = (Rh, ·), as a cocompact lattice.

Remark 2.4.2. Similarly, we can define the rational Mal’cev completion, extending the
operations to H̄Q := (Qh, · ). These two constructions are central in the QI classification
of nilpotent groups: given two f.g., torsionfree, nilpotent groups G and H,

� It is known that G and H are commensurable if and only if ḠQ ≃ H̄Q.

� It is conjectured that G and H are quasi-isometric if and only if Ḡ ≃ H̄.

See [Cor18, §19.7] for a discussion.
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2.4.2 Lie algebra and exponential coordinates

We recall shortly the standard construction which associate to any real Lie group (Γ, · )
a real Lie algebra (g, [ · , · ]g). As Γ is a Lie group, we have smooth left-multiplication
maps Lg : Γ→ Γ: x 7→ gx defined for each g ∈ G. This allows to define

g =
{
X ∈ X(Γ)

∣∣ ∀g ∈ Γ, Lg∗Xe = Xg

}
≃ TeΓ ≃ Rh,

where X(Γ) is the set of vector fields on Γ. This vector space is naturally equipped with
a Lie bracket [ · , · ]g : g×g→ g, defined as [X, Y ]g = X ◦Y −Y ◦X. Some computations
show that [ · , · ]g is bilinear, anti-symmetric, and satisfies the Jacobi identity

∀X, Y, Z ∈ g, [X, [Y, Z]g]g + [Y, [Z,X]g]g + [Z, [X, Y ]g]g = 0.

Definition/Fact 2.4.3 (Exponential map). For each X ∈ g, there exists a unique
smooth path γ : [0, 1]→ Γ such that

γ(0) = e and ∀t ∈ [0, 1], dγ|t = Xγ(t).

This allows to define the exponential map exp: g→ Γ via exp(X) := γ(1). Moreover,

� If Γ is simply connected and nilpotent, then exp: g→ Γ is a diffeomorphism.

� For every m ∈ Z, we have exp(X)m = exp(mX).

Let us suppose Γ is simply connected. The first point allows to identify Γ and g.
In particular, given any system of coordinates on the vector space g ≃ Rh, we get
coordinates on Γ. Such coordinates are called exponential coordinates. These have
much better properties than Mal’cev coordinates (especially if taken adapted with a
gradation of g). For instance, the second point translates as gm = mh, or in coordinates

(v1, v2, . . . , vh)
m = (mv1,mv2, . . . ,mvh)

for all m ∈ Z. We take this opportunity to define gµ := µ · g for all g ∈ Γ and µ ∈ R
(or more formally gµ := exp(µ log(g)), where log : Γ→ g is the inverse of exp).

More generally, multiplication in Γ is given by the Baker–Campbell–Hausdorff (BCH)
formula. However, we will usually try to avoid it, and actually only use it in the case
of simply connected 2-step nilpotent Lie groups:

Proposition 2.4.4 (BCH formula, 2-step nilpotent case). Let Γ ≃ g be a simply
connected 2-step nilpotent Lie group, then for all g, h ∈ Γ, we have

g · h = g + h+
1

2
[g, h]g.

In particular, we have [g, h] := g · h · g−1 · h−1 = [g, h]g, so we can drop the subscript.
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We can decompose Γ ≃ g = V1⊕V2, where V1 is an arbitrary complement of V2 = [g, g].
Let Pr : Γ→ V1 and A : Γ→ V2 be the associated projection. (A holds for “areas”, see
Section 3.1.) As Γ is 2-step nilpotent, we observe that [g, h] only depends on Pr(g) and
Pr(h), so we can consider [ · , · ] : V1 × V1 → V2 instead.

Proposition 2.4.5 (BCH formula, 2-step nilpotent, in gradation). Let Γ = V1 ⊕ V2 be
a simply connected 2-step nilpotent Lie group. For all g, h ∈ Γ, we have

Pr(g · h) = Pr(g) + Pr(h),

A(g · h) = A(g) + A(h) +
1

2
[Pr(g),Pr(h)].

More generally, if g1, g2, . . . , gn ∈ Γ, then

Pr(g1g2 . . . gn) = Pr(g1) + Pr(g2) + . . .+ Pr(gn),

A(g1g2 . . . gn) =
n∑

i=1

A(gi) +
1

2

∑
i<j

[
Pr(gi),Pr(gj)

]
.

2.4.3 The Stoll metric (aka polytopal sub-Finsler metrics)

In this paragraph, we consider Γ a simply connected nilpotent Lie group.

Definition 2.4.6. A subset X ⊆ Γ is a Lie generating set if

⟨xµ | x ∈ X,µ ∈ R>0⟩ = Γ

as an abstract group. IfX is symmetric, we can equivalently ask that the set of elements
[x1, [x2, . . . [xk−1, xk] . . .]]g with xi ∈ X and k ⩾ 1 generates g as a vector space.

Typical examples are generating sets of lattices.

Definition 2.4.7 (R-words). Fix a finite Lie generating set X for Γ, and ω : X → R>0

a weight. An R-word is an expression w = xµ1

1 ·x
µ2

2 · . . . ·x
µk

k with xi ∈ X and µi ∈ R>0.
We denote the set of R-words by X⋆

R. For each R-word w, we define the followings:

� Its length: ℓX,ω(w) =
∑k

i=1 µi · ω(xi),

� The total exponent of a letter x ∈ X in a word w: |w|x =
∑

i:xi=x µi,

� Its coarse length: k(w) = k.

Definition 2.4.8 (Stoll metric). Given Γ a simply connected nilpotent Lie group, X a
finite Lie generating set and ω : X → Z>0 a weight function, we define

∥h∥Stoll,X,ω = inf
{
ℓω(w)

∣∣∣ w ∈ X⋆
R and w = h

}
.

Most notably, if X is a generating set of a torsionfree nilpotent group H, then X is a
Lie generating set for the Mal’cev completion Γ = H̄. Since X⋆ ⊂ X⋆

R, we have

∀h ∈ H, ∥h∥X,ω ⩾ ∥h∥Stoll,X,ω .
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2.4.4 The Abelian case

We first have a look at the Abelian case and make some useful observations. See
[DLM12] for a more thorough treatment. We have Γ = Rd. In this case, the Stoll
metric has a very geometrical interpretation:

Lemma 2.4.9. The Stoll metric coincide with a “Minkowski norm”: for all v ∈ Rd,

∥v∥Stoll,X,ω = ∥v∥Mink,P := min {λ ⩾ 0 | v ∈ λP} ,

where P = ConvHull
{

x
ω(x)

∣∣ x ∈ X
}
⊂ Rd. Moreover, an R-word xµ1

1 · . . . · x
µk

k is

geodesic if and only if all xi

ω(xi)
lie on a common facet of P.

Proof. We can reduce ourselves to the case ω̃ ≡ 1 by setting X̃ =
{

x
ω(x)
| x ∈ X

}
⊂ Rd.

The case v = 0 is trivial. Suppose v ̸= 0 and let m = ∥v∥Mink,P > 0.

We first construct an R-word representing v of length m. Consider F the minimal face
of P containing 1

m
· v. By the Caratheodory theorem, there exists d vertices of F, say

x1, . . . , xd ∈ X, such that 1
m
· v ∈ ConvHull(x1, . . . , xd), i.e.,

∃ν1, . . . , νd ⩾ 0 such that ν1 + . . .+ νd = 1 and ν1x1 + . . .+ νdxd =
1

m
· v

and therefore v = xν1m1 · . . . · xνdmd .

vx1

x2

Next we show that any R-word xµ1

1 · . . . · x
µk

k such that all letters xi lie on a common
face F are geodesics. Consider another R-word yλ1

1 · . . . ·y
λℓ
ℓ ∈ X⋆

R representing the same
element as xµ1

1 · . . . · x
µk

k . As F is a face, there exists a linear form f : Rd → R such that
f(p) ⩽ 1 for all p ∈ P , with equality if and only if p ∈ F. It follows that

µ1+ . . .+µk = f(xµ1

1 · . . . ·x
µk

k ) = f(yλ1
1 · . . . ·y

λℓ
ℓ ) = λ1f(y1)+ . . .+λℓf(yℓ) ⩽ λ1+ . . .+λℓ

which means xµ1

1 · . . . · x
µk

k has indeed minimal length. In particular, this applies to the
previously constructed R-word (of length m) for v: we have ∥v∥Stoll,X = m.
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2.4.5 The 2-step nilpotent case

In the 2-step nilpotent case, Stoll proves more than we could bargain for:

Lemma 2.4.10 ([Sto98, Lemma 3.3]). There exists a constant K such that, for each
R-word w ∈ X⋆

R, there exists another w′ ∈ X⋆
R satisfying the following conditions:

� Both words represent the same elements w = w′ in Γ.

� For each letter x ∈ X, we have |w|x ⩾ |w′|x. In particular, ℓω(w) ⩾ ℓω(w
′).

� w′ has uniformly bounded coarse length, precisely k(w′) ⩽ K.

If w is geodesic, then so is w′, and we have |w|x = |w′|x for all x ∈ X.

Corollary 2.4.11. Let Γ be a simply connected 2-step nilpotent Lie group. Every
element g ∈ Γ is represented by a geodesic w ∈ X⋆

R with coarse length k(w) ⩽ K.

Proof. Follows from Lemma 2.4.10 by compactness of{
w ∈ X⋆

R

∣∣∣ w̄ = g, ℓ(w) ⩽ ∥g∥Stoll,X,ω + 1 and ℓ(w) ⩽ K
}
,

and continuity of the evaluation map.

He deduces the following result, which is central multiple proofs of this thesis:

Proposition 2.4.12 (Rough isometry, [Sto98, Proposition 4.3]). Let H be a torsion-
free 2-step nilpotent group, with a finite generating set X and ω : X → Z>0 a weight
function. Then there exists a constant C = C(X,ω) such that

∀h ∈ H, ∥h∥Stoll,X,ω ⩽ ∥h∥X,ω ⩽ ∥h∥Stoll,X,ω + C.

When considering words w ∈ X⋆, there is usually a trade-off between having small
coarse length k(w), and having length ℓω(w) close to ∥w∥X,ω. However, in the 2-step
nilpotent case, this trade-off does not happen. Analyzing the proofs of Lemma 4.2 and
Proposition 4.3 of [Sto98], we see that the word w ∈ X⋆ evaluating to h, and witnessing
∥h∥X,ω ⩽ ∥h∥Stoll,X,ω + C, has bounded coarse length. More precisely,

Lemma 2.4.13 (The best of both worlds). There exists K ⩾ 0 such that any element
h ∈ H can be written as h = xm1

1 xm2
2 . . . xmk

k with xi ∈ X, mi ∈ Z>0, k ⩽ K and

ℓω(x
m1
1 xm2

2 . . . xmk
k ) ⩽ ∥h∥Stoll,X,ω + C ⩽ ∥h∥X,ω + C.

Remark 2.4.14. The Stoll paper only treats the case of symmetric generating set,
with weight function ω ≡ 1. However the argument adapts to our more general setting.
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2.4.6 Carnot-Caratheory metrics

In this paragraph, we introduce Carnot-Caratheodory metrics. In case the underlying
Minkowski metric is defined by a polytope, this is a special case of the Stoll metric.
However, we give another point of view, which we will later extend in Chapter 3. Most
of this material (and more) can be found in [BLD13; LD17]

Let Γ be a simply connected nilpotent Lie group. As previously, we decompose it as
Γ ≃ g = V1 ⊕ [g, g], where V1 is a linear complement of [g, g], and denote Pr : Γ → V1
the projection on the first coordinate. We consider the left-invariant distribution

∆ =
⋃
g∈Γ

(Lg∗V1)g ⩽ TΓ.

Definition 2.4.15. An absolutely continuous curve γ : [0, ℓ]→ Γ is horizontal if

dγ|t ∈ ∆γ(t) for almost all t ∈ [0, ℓ].

Fact 2.4.16 (Chow–Rashevskii, see eg. [Mon02, Chapter 2]). For every element g ∈ Γ,
there exists an horizontal path starting from γ(0) = e and ending at γ(ℓ) = g.

This allows to define a metric on Γ:

Definition 2.4.17 (CC-metric). Let Γ = V1 ⊕ [Γ,Γ] be a simply connected nilpotent
Lie group, and P ⊂ V1 a full-dimensional, centrally symmetric, compact, convex set.
We define

∥g∥CC,P = inf
{
ℓP(γ)

∣∣ γ is an horizontal path from e to g
}
,

where ℓP(γ) =
∫
∥Pr∗(dγ|t)∥Mink,P · dt. Typically, we consider P the polytope

P = ConvHull

{
Pr(x)

ω(x)
: x ∈ X

}
,

where (X,ω) is a finite weighted Lie generating set. In that case, we write ∥ · ∥CC,X,ω.
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Remark 2.4.18. Observe that Pr∗ |∆g is bijective for all g ∈ Γ. In particular, for
a given absolutely continuous path γ̂ : [0, ℓ] → V1 such that γ̂(0) = 0, there exists a
unique horizontal path γ : [0, ℓ] → Γ such that γ(0) = e and γ̂ = Pr ◦γ. With that
point of view, we have the alternative formula

ℓP(γ) = ℓP(γ̂) =

∫ ℓ

0

∥dγ̂|t∥Mink,P · dt.

Another key take-away is that we could define Γ as the set of absolutely continuous
paths in V1 up to a well-chosen equivalence relation. For instance, comparing with the
Definition 2.4.3, elements of V1 ⊆ Γ are represented by straight segments in V1.

This class of metrics has a nice property, under an additional assumption:

Definition 2.4.19. A Lie algebra is stratifiable if there exists V1 ⩽ g such that

g = V1 ⊕ V2 ⊕ . . .⊕ Vs

where Vi+1 = [V1, Vi]g and [V1, Vs]g = {0}. It is stratified if such a decomposition is
specified. This extends to simply connected Lie groups.

Definition/Fact 2.4.20. Given a stratified simply connected Lie group Γ decomposed
as V1 ⊕ V2 ⊕ . . .⊕ Vs and λ ∈ R, we defined the dilation map

δλ :

(
Γ −→ Γ

(v1,v2, . . . ,vs) 7−→ (λv1, λ
2v2, . . . , λ

svs)

)
.

(Equivalently, we define δλ|Vi
= λi · id.) Then

� If λ ̸= 0, then δλ : Γ→ Γ is an automorphism of Lie group.

� In the formalism of Remark 2.4.18, the dilation corresponds to an homothety of
factor λ of the curve in V1. In particular, we have

∥δλg∥CC = |λ| · ∥g∥CC .

(Here, the CC-metric needs to be defined for the same V1.)

Example 2.4.21. All key examples in the thesis are stratifiable:

� All 2-step nilpotent groups are stratifiable.

� The free nilpotent Lie groups (i.e., the Mal’cev closure of Nr,c) are stratifiable.

� The Engel group Ē is stratifiable

In all cases, we can take V1 any linear complement of [g, g].

Remark 2.4.22. Stratified nilpotent Lie groups equipped with an (adapted) CC-metric
are called Carnot groups. These are central in Geometric Group Theory, being the
asymptotic cones of finitely generated nilpotent groups.
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As for Stoll metrics, one of the main objectives is to estimate word metrics ∥ · ∥X,ω by
the associated CC-metrics ∥ · ∥CC,X,ω. In general, we have the following:

Theorem 2.4.23 ([Pan83]). Let H be finitely generated torsionfree nilpotent group,
and (X,ω) a weighted symmetric generating set (ω(x−1) = ω(x)). Then

∥h∥X,ω ∼ ∥h∥CC,X,ω as ∥h∥ → ∞.

See also [BLD13, Theorem 4]. We isolate a lemma in their proof:

Lemma 2.4.24. Let Γ be a simply connected, s-step nilpotent Lie group, and F ⊂ Γ a
finite set. We define the “piecewise flattening map”

fl:

(
F ⋆ −→ Pr(F )⋆

x 7−→ Pr(x)

)
.

(extended as a morphism). Then, for all w ∈ F ⋆
R, we have dCC

(
w̄, fl(w)

)
= O

(
ℓ(w)

s−1
s

)
.

Sketch of proof. For each g ∈ F , we denote g = Pr(g) · cg with cg ∈ [Γ,Γ]. We define

S1 =
{
Pr(g)

∣∣ g ∈ F} , S2 =
{
cg
∣∣ g ∈ F} and Si =

{
[g, h]

∣∣ g ∈ Sj, h ∈ Si−j, 0 < j < i
}
.

Recall that [γi(Γ), γj(Γ)] ⊆ γi+j(Γ) hence Ss+1 = {e}. Consider w ∈ F ⋆ and rewrite it

w̄ =
(
Pr(g1)cg1

)
· · ·
(
Pr(gℓ)cgℓ

)
= Pr(g1) · · ·Pr(gℓ) · w̄s · w̄s−1 · . . . · w̄2

= fl(w) · w̄s · w̄s−1 · . . . · w̄2

where wi ∈ S⋆
i . For instance w2 = cg1 · · · cgℓ , and w3 contains the commutator [cg1 ,Pr(g2)]

which appears when “pushing” cg1 to the right of Pr(g2). Every letter of wi corresponds
to a tuple of letters of Pr(g1)cg1 · · ·Pr(gℓ)cgℓ with total weight i (where Pr(g) has weight
1 and cg has weight 2) with at least one cg (as we do not permute the Pr(g) themselves).
There are O(ℓi−1) such tuples so that ℓ(wi) = O(ℓi−1) and finally

∥w̄i∥CC = O
(
ℓ

i−1
i

)
,

using distortion of γi(Γ), giving the desired conclusion.

g
g

g
h

h

h g
g

Figure 2.1: Comparison of the path w and fl(w) in V1.
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These estimates can be improved under an additional assumption:

Definition 2.4.25. A simply connected nilpotent Lie group Γ is ideal (or strictly non-
singular) if, for all z ∈ Z(Γ) and g ∈ Γ \ Z(Γ), there exists h ∈ Γ such that z = [g, h].

Example 2.4.26. This is quite a strong condition.

� Examples of ideal groups are the Heisenberg groups Γ = H2n+1(R).

� A non-example is Γ = H3(R) × R (as z = (0, 0, 0; 1) ∈ Z(Γ) cannot be written as
a commutator). This example is important in [Bre14; BLD13]

� All stratifiable ideal groups are nilpotent of class 2. [LDNG18, Theorem A.1]

� A non-stratifiable ideal group of class 3 is given in [Gor95, Example II], see also
group N5,2,2 in the catalog [LDT22]. This group is given by the diagram:

X Y1

Y2

Y3

Z

Meaning the associated Lie algebra admits a basis {X, Y1, Y2, Y3, Z} with only non-
zero commutators [X, Y1] = Y2 and [X, Y2] = [Y1, Z] = Y3.

Theorem 2.4.27 ([Kra02; Tas22]). If (H, dX,ω) is a torsionfree, 2-step nilpotent group
whose Mal’cev completion H̄ is ideal, then there exists K such that

∀h ∈ H, ∥h∥CC,X,ω −K ⩽ ∥h∥X,ω ⩽ ∥h∥CC,X,ω +K.

As H is cocompact in H̄, it follows that (H, dX,ω) ↪→ (H̄, dCC,X,ω) is a rough isometry.

Whether this generalizes for ideal nilpotent groups of higher nilpotency class remains
an open question, see [Fuj16, Question 4].
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2.5 Formal languages

Let us start with some basic definitions, and introduce the usual terminology:

Definition 2.5.1.

� An alphabet A is a set (finite or infinite). Elements of A are letters.

� A word over A is a sequence of letters. These sequences can either be finite, or be
indexed by N (infinite) or Z (bi-infinite). The empty word is denoted ε.

� We denote by A⋆ the set of all finite words over A (including the empty word ε).
Equivalently, this is the free monoid over A (with the concatenation operation).

� A (formal) language is a subset L ⊆ A⋆.

Languages are central in computer sciences. For instance, any decision problem can be
reformulated as the membership problem to a language. Indeed, the input the decision
problem can be encoded as finite words over the alphabet A = {0, 1}. We define

L =
{
w ∈ {0, 1}⋆ : the answer is YES

}
.

The decision problem then is equivalent to deciding if a word belong to L. Of course,
in this level of generality, not much can be done. For this reason, many classes of
languages were defined over time. For the purpose of this thesis, we will only consider
the first two levels in Chomsky hierarchy: regular languages and context-free languages.

2.5.1 Regular languages

Regular languages form the lowest class of languages in the Chomsky hierarchy of
complexities. Informally, a language is regular if its membership problem can be decided
by some computer with finite memory. Our model of computer is the following:

Definition 2.5.2. An automaton is a 5-uple M = (V,A, δ, v0, accept) where

� V is a set of states / vertices.

� A is the alphabet.

� δ ⊆ V ×A×V is the transition function. An element (v1, a, v2) ∈ δ should be seen
as an oriented edge from v1 to v2, labeled by a.

� v0 ∈ V is the initial / start vertex. (Indicated by start→.)

� accept ⊆ V is the set of “accept” / terminal vertices. (Indicated by .)

An automaton is finite if both V and δ are finite.
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Here are some examples of finite automata:

start

zZ
zZ

Figure 2.2: M recognizing L = {ε} ∪ {zn, Zn | n ⩾ 1}

start
t

t

t
T

t

Figure 2.3: M for L = {tn | n ≡ 1, 2 (mod 3)}

start

zZ
a

aa

za

Z z

z
Z

z

z
Z

Figure 2.4: M for L ←→
ev

C2 ≀ Z

Some additional terminology around automata will be needed:

Definition 2.5.3.

� An automaton is deterministic whenever, for all v ∈ V and a ∈ A, there exists at
most one edge exiting v and labeled by a (i.e.,

∣∣({v} × {a} × V ) ∩ δ∣∣ ⩽ 1).

� An automaton is saturated whenever, for all v ∈ V and a ∈ A, there exists at least
one edge exiting v and labeled by a (i.e.,

∣∣({v} × {a} × V ) ∩ δ∣∣ ⩾ 1).

� For v1, v2 ∈ V , we say that v2 is accessible from v1 is there exists an oriented path
from v1 to v2 in M . An automaton is trim if, for all v ∈ V , there exists t ∈ accept
such that t is accessible from v and v is accessible from v0.

� A strongly connected component is a maximal subset C ⊆ V such that, for every
v1, v2 ∈ C, the state v2 is accessible from v1 (and reciprocally).

For instance, automata in Figure 2.2 and 2.3 are deterministic, but not in Figure 2.4.
The automaton in Figure 2.3 is not trim.

Definition 2.5.4. A finite automaton M recognizes a word w ∈ A⋆ if w can be read
along some oriented path from the initial state v0 to some terminal state v ∈ accept. A
language L ⊆ A⋆ is regular if it can be written as

L = {w ∈ A⋆ | w is recognized by M}

for some finite automaton M = (V,A, δ, v0, accept).

Remark 2.5.5. The automaton M recognizes the empty word ε if v0 ∈ accept.
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A fundamental result in the theory is Rabin–Scott theorem:

Theorem 2.5.6 ([RS59]). Every regular language L ⊆ A⋆ is recognized by a trim,
deterministic automaton. Moreover, such an automaton can be constructed effectively
from an automaton recognizing L.

Proof. Let M = (V,A, δ, v0, accept) be an automaton recognizing L. We define a new
deterministic (and saturated) automaton M ′ = (V ′,A, δ′, v′0, accept′) recognizing L.
This construction is called the “powerset construction”. We define

� V ′ = P(V ) the powerset of V .

� For every S ⊂ V (i.e., S ∈ V ′) and a ∈ A, we define

δ′(S, a) :=
{
w ∈ V

∣∣ ∃v ∈ S such that (v, a, w) ∈ δ
}
,

and let δ′ = {(S, a, δ′(S, a)) | S ⊆ V, a ∈ A}.

� v′0 = {v0}.

� accept′ = {S ⊆ V | S ∩ accept ̸= ∅}.

The key observation is that the vertex reached inM ′ when starting from v′0 and following
a word w ∈ A⋆ is exactly the set of vertices we could reach in M when starting from
v0 following the same word w. By definition of accept′, it recognizes L.

We can then trim this automaton, removing every vertex which is not accessible from
v′0, or from which we cannot reach any vertex in accept′.

2.5.2 Context-free languages

Definition 2.5.7. A context-free grammar is a 4-uple (A,N , P, S), where

� A is a finite set of terminals, and N is a finite set of non-terminals.

� P is a finite set of production rules of the form Y → u, with Y ∈ N and u ∈
(A ⊔N )⋆. Formally, P is a finite subset of N × (A ⊔N )⋆.

� S ∈ N is the start symbol.

We write v → w if there exist l, r ∈ (A ⊔N )⋆ and a production rule Y → u such that
v = lY r and w = lur. Moreover we write u ∗→ v if there exists a derivation

u→ v1 → v2 → . . .→ vn−1 → v.

The language produced by the grammar is the set L = {w ∈ A⋆ | S ∗→ w}. A language
is context-free if it is produced by a context-free grammar.
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Several desirable properties for context-free grammar are the following:

Definition 2.5.8. A context-free grammar is

� unambiguous if each word w ∈ L admits a unique leftmost derivation, i.e., a unique
derivation Y0 → v1 → . . . → vn−1 → w in which each production rule vi →
vi+1 replaces the leftmost non-terminal in vi. Equivalently, every word w ∈ L
corresponds to a unique derivation tree.

� expansive if there exists a non-terminal Y such that Y ∗→ w1Y w2Y w3. Otherwise,
the grammar is non-expansive (or pseudo-linear)

We recall a fundamental result of Chomsky and Schützenberger on these languages:

Theorem 2.5.9 ([CS63],[Kui70, Theorem 4]). If a language L is produced by an un-
ambiguous context-free grammar, then its growth series

ΣL(t) =
∞∑
n=0

#{w ∈ L : ℓ(w) = n} · tn ∈ N[[t]]

is algebraic. If furthermore the grammar is non-expansive, then ΣL(t) is rational.

Example 2.5.10. We give multiples examples of different flavors:

(a) The set of palindromes over the alphabet A = {a, b} is defined by the grammar

S → ε | a | b | aSa | bSb.

The symbol “|” means “or”. This grammar is unambiguous and non-expansive,
and indeed its growth series is rational: we have ΣL(t) = 1 + 2t+ 2t2ΣL(t) hence

ΣL(t) =
1 + 2t

1− 2t2
= 1 + 2t+ 2t2 + 4t3 + 4t4 + . . . .

(b) The set of “correct string of parenthesis” is defined by the two rules S → [S]S and
S → ε. An example of derivation is

S → [S]S → [ ]S → [ ][S]S → [ ][[S]S]S → [ ][[ ]S]S → [ ][[ ]]S → [ ][[ ]]

corresponding to the derivation tree

S

[ S ] S

ε
[ S ] S

[ S ] S
ε

ε ε
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This grammar is unambiguous and expansive, and indeed the series is algebraic:

ΣL(t) = t · ΣL(t) · t · ΣL(t) + 1 =⇒ ΣL(t) =
1−
√
1− 4t2

2t2
.

(c) Fix ui, vi, wi ∈ S⋆. The grammar

S → w0Xw2Y w6

X → u1Xv1 | w1

Y → u2Y v2 | w3Zw5

Z → u3Zv3 | w4

generates the language

L =
{
w0u

n1
1 w1v

n1
1 w2u

n2
2 w3u

n3
3 w4v

n3
3 w5v

n2
2 w6

∣∣ n1, n2, n3 ⩾ 0
}
.

This is a typical example of Dyck loop, which are central to Section 7.4.

(d) We consider the lamplighter group

C2 ≀ Z =
〈
a, z | a2 = [a, znaz−n] = e for all n ⩾ 1

〉
.

The language of ShortLex representatives for the generating set {a, z±} (ordered
a < z−1 < z) is produced by the unambiguous context-free grammar

S → QaQLQR | QaQLzFR | QaQRz
−1FL;

L→ a | z−1Lz | az−1Lz;

R→ a | zRz−1 | azRz−1;

FL → QaQL | Qaz
−1FL

FR → QaQR | QazFR

Qa → ε | a; QL → ε | z−1Lz; QR → ε | zRz−1

We may deduce the associated growth series (recovering a formula of [Joh91])

ΣG,S(t) =
(1 + t)3(1− t)2(1 + t+ t2)

(1− t2 − t3)2(1− t− t2)
.

Another important class of examples comes from groups:

Theorem 2.5.11 ([MS83]). Let (G,S) be a marked group. Then the Word Problem

WP(G,S) := {w ∈ S⋆ : w̄ = eG}

is context-free if and only if G is virtually free. In that case,WP(G,S) is unambiguously
context-free (even deterministically context-free).
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2.5.3 Rational transduction

Definition 2.5.12. A finite-state transducer in a 6-uple (V,A,B, δ, v0, accept) with

� V is a finite set.

� A,B are two alphabets.

� δ ⊆ V ×(A⊔{ε})×B⋆×V is a transition function. An element (v1, a, w, v2) should
be seen as an oriented edge from v1 to v2, with label a | w.

� v0 ∈ V is the start vertex.

� accept ⊆ V is the set of terminal vertices.

A transducer recognizes a rational relation R ⊆ A⋆ ×B⋆. (A pair (v, w) belong to R if
the words v and w can be read along a common path v0 → accept.) Often, this relation
is a (partial) function. In this case, its domain is a regular language L ⊆ A⋆.

Example 2.5.13. The following transducer defines a rational function. The domain is
{0, 1}∗1, the set of valid strings of digits of positive integers in binary, read in reverse.
On input the string for n ∈ Z>0, it outputs the string for n+ 1.

start

1|0

0|1
1|1

0|0

0|0 1|1

1|01

Proposition 2.5.14 (See eg. [Niv68]). Consider a language L ⊆ A⋆. Its “image” by
the relation is R(L) :=

{
w ∈ B⋆

∣∣ ∃v ∈ L, (v, w) ∈ R}. Then
(a) If L is regular, then R(L) is regular.

(b) If L is context-free, then R(L) is context-free.

(c) If R is a (partial) function and L is unambiguously context-free, then R(L) is
unambiguously context-free. [Niv68, Corollaire 1, p.429]

Points (a) and (b) are parts of a more general theorem: “cones of languages” are closed
under rational transduction. Examples of cones are the class of regular languages, or
the class of context-free languages.

2.6 Rational subsets

Definition 2.6.1. Let G be group (or a monoid).

� A subset R ⊆ G is rational (of G) if there exists a regular language L ⊆ S⋆ and a
monoid morphism ev : S⋆ → G such that R = ev(L).

� A subset R ⊆ G is unambiguously rational if furthermore ev : L → R is one-to-one.
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Remark 2.6.2. We denote the alphabet as S as it will usually be identified with ev(S),
which is typically a generating set for G. However, this picture is not always ideal:

� Multiple elements s, s′ ∈ S might be send to the same element ev(s) = ev(s′), and
still we consider two words usv and us′v as distinct.

� The set ev(S) might not generate G. This is key in Theorem 2.6.3 below. We will
also consider rational subsets inside non-finitely-generated groups, eg. H3(Q).

However, if ev(S) generates G (as a monoid), then for every rational subset R ⊆ G,
there exists a regular language L ⊆ S⋆ such that R = ev(L).

2.6.1 A better language

Given a regular L ⊆ S⋆ recognized by a deterministic finite-state automaton M , and
evaluating to ev(L) = R inside a group G. We construct a new regular language which
still evaluates to R and has a few additional properties.

Theorem 2.6.3. From the automaton M , we can effectively compute

� an alphabet X ⊔ Y equipped with an evaluation map ev : X ⊔ Y → G

� a rational function dec : L → X⋆Y : w 7→ w̃ with domain L which is into,

� a weight function ω : X ⊔ Y → Z>0

such that ev(w̃) = ev(w) and ℓω(w̃) = ℓ(w) for all w ∈ L. As a corollary,

(a) L̃ := dec(L) satisfies ev(L̃) = R

(b) If L is bounded, then L̃ is bounded.

(c) If ev : L → R is bijective, then ev : L̃ → R is bijective.

Moreover, L̃ satisfies a strong form of the pumping lemma: if uxv ∈ L̃ with x ∈ X,
then uxnv ∈ L̃ for all n ⩾ 1.

(d) As a corollary, ⟨ev(X ⊔ Y )⟩ = ⟨R⟩.

The construction is inspired from Stallings’ “automata theoretic” proof of the Nielsen–
Schreier theorem, and a result of Gilman [Gil87, Lemma 5]. Different aspects of the
construction are central in Chapters 4, 6 and 7.

Proof. We start with an automaton M = (V, S, δ, v0, accept) recognizing R which is
both deterministic and trim. Let

X =

tat−1

∣∣∣∣∣∣
t ∈ S⋆ labels a simple path v0 → p
a ∈ S⋆ labels a simple cycle p→ p
both paths only intersect at p


Y =

{
y
∣∣ y ∈ S⋆ labels a simple path v0 → q ∈ accept

}
with the obvious evaluation map ev(tat−1) := ev(t) ev(a) ev(t)−1 and ev(y) := ev(y).
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▶ We define the decomposition map

Any word w ∈ L is accepted by a unique path v0 → accept in the automaton M . This
path decomposes as a product of conjugates tiait

−1
i , via a loop-erasure algorithm:

w
=

t1

a1

·
t2

a2

·
t3

a3 · y

Figure 2.5: A path decomposed as a product of “freeze frames” of the loop-easure algorithm.

The resulting word w̃ = (t1a1t
−1
1 ) . . . (tℓaℓt

−1
ℓ ) · y ∈ L̃ is the decomposition of w. This is

indeed a rational function, defined by the transducer T = (U, S,X ⊔ Y, δT , u0, { })

� U =
{
t ∈ S⋆

∣∣ t labels a simple path e→ p in M
}
⊔ { }.

� u0 = ε ∈ U is the initial vertex,

� is the only of terminal vertex.

� The transition function is

δT =
{
(t, s, ε, ts)

∣∣ ts is still a simple path v0 → p in M
}

⊔

(t, s, t′at′−1, t′)

∣∣∣∣∣∣
ts decomposes as ts = t′a with

t′ ∈ S⋆ labels a simple path v0 → p
a ∈ S⋆ labels a simple cycle p→ p


⊔
{
(t, ε, t, )

∣∣ t ∈ S⋆ labels a simple path v0 → p ∈ accept
}

Note that δT is almost deterministic: for every t ∈ U and s ∈ S, there exists at
most on element (t, s, v, t′) ∈ δT . This follows from M being deterministic. The
few ε-transitions do not change the fact that every word w ∈ L is accepted by a
unique path, hence the resulting transduction is indeed a function.

start

a

a
b

a
b

c

c

Figure 2.6: An automaton M
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ε

start

a a2bb2

a | ε a | ε

a | a3

b | a(ab)a−1

b | εb | ε

a | baa | b(ba)b−1

c | aca−1 c | a2c(a2)−1c | bcb−1c | b2c(b2)−1

ε | a2
ε | b

Figure 2.7: The corresponding transducer T .

This proves that L̃ := dec(L) is a regular language, more explicitely

L̃ =

{
x1x2 . . . xℓ y ∈ X⋆Y

∣∣∣∣ ti is a prefix of ti+1ai+1 for 1 ⩽ i ⩽ ℓ− 1
tℓ is a prefix of y

}
.

Moreover the decomposition map is injective as the sequence of “freeze frames” (this
should be called a “movie”) is sufficient to reconstruct w ∈ L.

▶ We take ω(tat−1) = ℓ(a) and ω(y) = ℓ(y). It should be clear that ev(w̃) = ev(w)
(hence point (a), and (c) using injectivity) and ℓω(w̃) = ℓ(w).

(b) We have βL(n) = βL̃,ω(n) ⪰ βL̃(n). If L is bounded, then L and therefore L̃ have

polynomial growth, hence L̃ is bounded by [Tro81].

(d) We prove that ⟨ev(X ⊔ Y )⟩ = ⟨R⟩.

Take x = tat−1 ∈ X, where t labels a path v0 → p. As the automaton M is trim, there
exists a path p → q ∈ accept labeled by some word v ∈ S⋆. Consider tuv ∈ L and
xx2 . . . xℓy ∈ L̃ its decomposition. Observe that x2 . . . xℓy ∈ L̃ too, so

x = (xx2 . . . xℓy)(x2 . . . xℓy)
−1 ∈ R ·R−1 ⊆ ⟨R⟩ .

On the other side, we have Y ⊆ R ⊆ ⟨R⟩. This proves the inclusion ev(X ⊔ Y ) ⊆ ⟨R⟩.
The reverse inclusion is clear as L̃ ⊆ X⋆Y hence R ⊆ ⟨ev(X ⊔ Y )⟩.

Corollary 2.6.4 ([Gil87, Lemma 5]). Let G be a group and R ⊆ G a (unambiguous)
rational subset. Suppose that a subgroup H ⩽ G contains R, then R is a (unambiguous)
rational subset of H. Moreover, the result is effective.
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2.6.2 Going to finite-index subgroups

Example 2.6.5. An important example for Theorem 2.6.3 is G group and H a finite-
index subgroup. For any ev : S → G, we can consider the language

WP(H\G,S) = {w ∈ S⋆ | w̄ ∈ H}.

This language is regular, recognized by the Schreier graph Sch(H\G,S) seen as an
automaton. We recall the definition of Schreier graphs:

� The vertex set is V = H\G,

� The edges/transition function is δ = {(Hg, s,Hgs̄)}.

In order to make into an automaton, we take v0 = H and accept = {H}. We have

X =

{
tat−1

∣∣∣∣ t ∈ S⋆ labels a simple path H → Ht
a ∈ S⋆ labels a simple cycle Ht→ Ht

}
ev−→ H

and Y = {ε}.

The decomposition map w.r.t. this specific automata is particularly useful. We deduce
the following Lemma, which complements nicely with Gilman’s result:

Lemma 2.6.6. Let G be a group and H ⩽ G is a finite-index subgroup,

(a) If R ⊆ G is rational, then Hg ∩R is rational for each g ∈ G.

If moreover we are given an automaton M = (V, S, δ, v0, accept) for a language L ⊆ S⋆

such that ev(L) = R, and the Schreier graph Sch(H\G,S), then

(b) We can effectively compute an automaton for L̃ such that ev(L̃) = Hg ∩R

(c) We can effectively compute {Hg : Hg ∩ R ̸= ∅} and compute a subset K ⊆ L
consisting of a unique representative for each of these cosets.

Proof. (ab) Consider the decomposition map defined from the automaton Sch(H\G,S)
(with terminal vertex Hg), whose domain is {w ∈ S⋆ | w̄ ∈ Hg}. Then

L̃ = dec(L)

is the desired regular language (over X ⊔ Y , with ev(X) ⊆ H).

Alternatively, here is an explicit construction for an automaton (over S). We consider
the tensor product of Sch(H\G,S) and M :

- V ′ = H\G× V - v′0 = (H, v0) - accept′ = {Hg} × accept

- (Hg1, v1)
s→ (Hg2, v2) if and only if Hg1s = Hg2 and v1

s→ v2.

This new automaton recognizes the language L ∩ {w ∈ S⋆ | w̄ ∈ Hg}.
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(c) For each coset, one can compute an automaton for Hg ∩ R and then decide if the
intersection is non-empty: does there exists a path v′0 → accept′? If yes, a representative
is given by w ∈ L labeling the first path found.

Remark 2.6.7. If a finite presentation G = ⟨S | R⟩ is given, then the Todd–Coxeter
algorithm computes Sch(H\G,S) from generators for H (given as words over S), so
Sch(H\G,S) does not need to be part of the input.



Chapter 3

A geometrical model

As stated in Section 2.4.6, simply connected nilpotent Lie groups Γ can be endowed
with left-invariant distributions

⋃
g(Lg∗V1)g, and every element of Γ can be reached by

an horizontal path starting at e. Moreover, absolutely continuous paths in Γ/[Γ,Γ]
(starting at 0) correspond to horizontal paths in Γ (starting at e) via the lift map.
Therefore elements of Γ can be seen as equivalence classes of paths in Γ/[Γ,Γ]. In
this chapter, we make this equivalence relation explicit for some groups, namely the
Heisenberg, Engel and Cartan groups.

This model was already widely used for H3(R), see for instance [BLD13; DM14]. For
the Cartan group, it appears briefly in [Wal11, Section 4] and [AH22].

3.1 The Heisenberg, Engel and Cartan groups

In this section, we define models for some simply connected nilpotent Lie groups. We
consider Π the monoid of absolutely continuous paths in R2 starting from (0, 0), with
concatenation as operation (see Figure 3.1). Our groups are defined as quotients Π/∼
for appropriate equivalence relations∼. For any path g ∈ Π, we define three parameters:

(1) its second endpoint ĝ = (xg, yg) ∈ R2.

(�) a distribution of winding numbers. First, we get a closed path gc by concatenating
g with the segment back from ĝ to (0, 0). Then the function Wg : R2 \ Im(gc)→ Z
is defined as Wg(x, y) = the winding number of gc around (x, y). (See Figure 3.1.)

(2) its total algebraic (or “balayage”) area

A(g) =

∫∫
R2

Wg(x, y) dx dy =

∫ (
gxg

′
y − g′xgy

)
dt.

47
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(3) its (non-normalized) barycenter (or center of gravity)

B(g) =

∫∫
R2

(x, y) ·Wg(x, y) dx dy.

These parameters behave quite well with concatenation:

Proposition 3.1.1. Given two paths g, h, their concatenation gh has parameters

ĝh = ĝ + ĥ,

A(gh) = A(g) + A(h) +
1

2
det
(
ĝ, ĥ
)
,

B(gh) = B(g) +B(h) + ĝ · A(h) + 1

3
(2ĝ + ĥ) · 1

2
det
(
ĝ, ĥ
)
.

Proof. The relation ĝh = ĝ + ĥ is obvious. The key observation is the decomposition

Wgh = Wg +Wh ◦ τ−ĝ ± χ△((0,0),ĝ,ĝ+ĥ),

where

� τv : R2 → R2 is the translation by v,

� △
(
(0, 0), ĝ, ĝ + ĥ

)
is the convex hull of those three points, χ△((0,0),ĝ,ĝ+ĥ) denotes

its characteristic function, and the sign ± depends on the order of (0, 0), ĝ and
ĝ + ĥ on the boundary of the triangle (−1 if clockwise and +1 if anti-clockwise).

Here is a pictorial explanation:

+1

−1
+1

+2

(0, 0)

ĝ

ĥ

+1

−1

+1

+2

(0, 0)

ĝ

ĝ + ĥ

+1

+2

+2+1

+1

0

(0, 0)

ĝ + ĥ

+1

Figure 3.1: Pictures of g, h and gh and some winding numbers.

It only remains to compute A(gh) and B(gh) using the decomposition. Observe that
1
2
det(ĝ, ĥ) is the signed area of the triangle △

(
(0, 0), ĝ, ĝ + ĥ

)
, and its (normalized)

center of gravity is given by 1
3

(
0+ ĝ + (ĝ + ĥ)

)
.
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As a corollary, we can define different quotients:

� g ∼ h ⇐⇒ ĝ = ĥ, we get as a quotient R2.

� g ∼ h ⇐⇒ (ĝ = ĥ and A(g) = A(h)), we get as a quotient H3(R).

� g ∼ h ⇐⇒ (ĝ = ĥ, A(g) = A(h) and By(g) = By(h)) (same “y-coordinate of the
barycenter”), we get as a quotient the Engel group E.

� g ∼ h ⇐⇒ (ĝ = ĥ, A(g) = A(h) and B(g) = B(h)), we get as a quotient the
Cartan group C, the free 3-step nilpotent Lie group of rank 2.

In each case, the concatenation operation goes to the quotient, and the inverse path
gives a multiplicative inverse, so Π/∼ defines a group.

X Y X Y

Z

X Y

Z

T

X Y

Z

T1 T2

Figure 3.2: The commutator diagrams for the different Lie groups obtained

In each case, the subgroup generated by x and y, the unit segments from 0 to (1, 0)
and (0, 1) respectively, is a cocompact lattice. In the second case, we get

⟨x, y⟩ ≃ H3(Z) = ⟨x, y | [x, [x, y]] = [y, [x, y]] = e⟩ .

3.2 Metabelian nilpotent groups

In this section, we extends the previous models to rank 2 metabelian nilpotent groups.
To keep things simple, we formulate the results in the “finitely generated” case. The
key motivation is the following model for the free metabelian group of rank 2:

Theorem 3.2.1 ([DV05]). Let ⟨x±, y±⟩ be the monoid of lattices paths in Z2, starting
at 0, with concatenation. Consider the equivalence relation

g ∼ h ⇐⇒ (ĝ = ĥ and Wg = Wh)

Then ⟨x±, y±⟩ /∼ is a group isomorphic to M2, the free metabelian group of rank 2.

Remark 3.2.2. We can identify [M2,M2] with
⊕

Z2 Z, the group of finitely supported
functions f : Z2 → Z, with addition. Each element g ∈ [M2,M2] corresponds to

fg(a, b) := Wg

(
a+

1

2
, b+

1

2

)
.

For instance g = [x, y] corresponds to δ0.



50 CHAPTER 3. A GEOMETRICAL MODEL

As 2-generated metabelian nilpotent groups are quotients of M2, this indicates that
elements can be described in terms of ĝ and Wg. It turns out this can be formulated
quite cleanly, keeping track of a few parameters defined from Wg.

Definition 3.2.3. The space of polynomial of degree at most n is denoted Rn[X, Y ].
For instance R2[X, Y ] = ⟨1, X, Y, X2, XY, Y 2⟩. By convention R−1[X, Y ] = {0}.

Definition 3.2.4. Let f : R2 → R be a function, and v ∈ R2. We define

∆vf(x) := f(x+ v)− f(x).

Theorem 3.2.5. Let V ⩽ Rn[X, Y ] be a linear subspace closed under ∆ (i.e., for all
P ∈ V and v ∈ R2, we have ∆vP ∈ V ). We define

KV =

{
g ∈M2

∣∣∣∣ ĝ = 0 and ∀P ∈ V,
∫∫

P (x) ·Wg(x) · dx = 0

}
.

Then KV ⊴M2, and the quotient group M2/KV is (n+ 2)-step nilpotent.

Proof. We first observe that, if g ∈ [M2,M2] (i.e., if ĝ = 0) and h ∈M2, then

W[h,g] = Wg ◦ τ−ĥ −Wg = ∆−ĥWg (3.2.6)

0

ĥ

+

−
h

g

h−1

g−1

▶ Let us prove that KV is normal. We consider g ∈ KV and h ∈ M2. Obviously we

have [̂h, g] = 0. Moreover, for all P ∈ V , we have∫∫
P (x) ·W[h,g](x) · dx =

∫∫
P (x) ·∆−ĥWg(x) · dx =

∫∫
∆ĥP (x) ·Wg(x) · dx = 0

as ∆ĥP ∈ V and g ∈ KV . This proves that [h, g] ∈ KV , hence KV is normal.

▶ We prove that M2/KV is (n + 2)-step nilpotent. We consider g ∈ [M2,M2] and
h0, h1, . . . , hn ∈M2. Using Formula (3.2.6) iteratively, we get

W[h0,h1,...,hn,g] = ∆−ĥ0
∆−ĥ1

. . .∆−ĥn
Wg

and therefore∫∫
P (x) ·W[h0,h1,...,hn,g](x) · dx =

∫∫
∆ĥ0

∆ĥ1
. . .∆ĥn

P (x) ·Wg(x) · dx = 0,

since ∆ĥ0
∆ĥ1

. . .∆ĥn
P (x) ≡ 0 for all P ∈ Rn[X, Y ] (as deg(∆vP ) ⩽ degP − 1). This

proves that [h0, h1, . . . , hn, g] ∈ KV , hence M2/KV is (n+ 2)-step nilpotent.
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Moreover, the reciprocal holds:

Theorem 3.2.7. Every 2-generated, metabelian, c-step nilpotent group is a quotient of
M2/KV with V = Rc−2[X, Y ].

Proof. We consider the relatively free group in the variety of metabelian c-step nilpotent
groups, which we denote by L2,c = M2/γc+1(M2). We naturally have an epimorphism
α : L2,c ↠M2/KV . The objective is to prove that α is injective.

For every m,n ⩾ 0 such that m+ n = c− 1, we have

fm,n :=
[
x, x, . . . , x︸ ︷︷ ︸

m copies

, y, y, . . . , y︸ ︷︷ ︸
n copies

, [x, y]
]
∈ γc+1(M2).

Using the identification from Remark 3.2.2, we have

fm,n(a, b) = ∆m
x̂ ∆

n
ŷδ0(a, b) = (−1)m+n−a−b

(
m

a

)(
n

b

)
(which is 0 if (a, b) /∈ [[0,m]]× [[0, n]]). For instance, for c = 6, we have

1 1 −5 10 −10 5

1 −3 3 −1

−2 6 −6 2

1 −3 3

= =

modulo γ7(G). Using these relations, we can prove that, for every f ∈ [M2,M2], there
exists f̃ such f − f̃ ∈ γc+1(M2) and

supp(f̃) ⊆ Tc := {(a, b) ∈ Z2 | a, b ⩾ 0, a+ b ⩽ c− 1}.

We deduce the existence of an epimorphism β : Z|Tc| ↠ [L2,c, L2,c]. It follows that

h(L2,c) ⩽ 2 + |Tc| = 2 +
(c− 1)(c− 2)

2
= 2 + dimRc−1[X, Y ] = h(M2/KV ),

with equality only if β is an isomorphism. As h(L2,c) = h(kerα) + h(M2/KV ), we
conclude that h(kerα) = 0 and β is an isomorphism. From that last point, we see that
L2,c is torsionfree, hence the only possibility for h(kerα) = 0 is that kerα = {e}.

3.3 Further questions and remarks

An obvious direction of research is

Problem 3.A. Generalize this discussion to groups of higher rank.
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There is another model for Mr, which is perhaps more practical for this purpose. We
consider E⃗Zr the set of oriented edges of Zr

E⃗Zr = {(v,v ± ei) | v ∈ Zd}.

For each edge e = (v,v ± ei), the reverse edge is ⃗e = (v ± ei,v). For each lattice path

g ∈
〈
x±1 , . . . , x

±
r

〉
, we define its “flow function” Fg : E⃗Zr → Z

Fg(e) = #times e is used by g −#times ⃗e is used by g

Theorem 3.3.1 ([DV05]). Let
〈
x±1 , . . . , x

±
r

〉
be the monoid of lattices paths in Zr start-

ing at 0. Consider the equivalence relation

g ∼ h ⇐⇒ Fg = Fh.

Then
〈
x±1 , . . . , x

±
r

〉
/∼ is a isomorphic to Mr, the free metabelian group of rank r.

Remark 3.3.2. We can recover ĝ from Fg, looking at the divergence:

d∗Fg(v) :=
∑

e:ω(e)=v

Fg(e)
!
= δĝ − δ0.

This condition characterizes functions Fg corresponding to paths in E⃗Zr starting at 0

(among finitely supported functions F : E⃗Zr → Z with F ( ⃗e) = −F (e)).

The question now becomes

Problem 3.B. Express the equivalence relations∼ on
〈
x±1 , . . . , x

±
r

〉
defining metabelian

nilpotent groups in terms of Fg.

Problem 3.C. Generalize in the setting of Lie groups.

While integrating winding numbers against polynomials can easily be extended to the
continuous setting, the correct continuous analog of Fg is not entirely clear. For H3(R),
what we are looking for is probably the formula

A(g) =

∫ (
gxg

′
y − g′xgy

)
dt.

∗ ∗ ∗

Another tempting question is to strengthen Theorem 3.2.7.

Conjecture 3.D. Every torsionfree 2-generated metabelian nilpotent group is isomor-
phic to M2/KV for some finite dimensional V ⩽ R[X, Y ] closed under ∆.



Chapter 4

Intermediate geodesic growth

In this chapter, we study the geodesic growth of (marked) groups (G,S). In the spirit
of Milnor questions on volume growth, we study if and when it can be polynomial,
exponential, or intermediate. A word w ∈ S∗ is a geodesic if ℓ(w) = ∥w∥S. The
geodesic growth function of (G,S) is then defined as

γ(n) = γG,S
geod(n) = #

{
w ∈ S⋆

∣∣ w is geodesic and ℓ(w) ⩽ n
}
.

We should mention that geodesic growth is sensitive to the choice of a generating set.
Indeed, Bridson, Burillo, Elder and Šunić proved that any infinite group G admits a
generating set S such that γG,S

geod(n) grows exponentially [BBES12, Example 6].1

0 0

Figure 4.1: The Cayley graphs of G = Z w.r.t. S = {±1} and S′ = {±1,±1}.
The geodesic growth are γZ,S(n) = 2n+ 1 and γZ,S′

(n) = 2n+2 − 3.

Therefore, Bridson et al. ask the following questions:

Question 1. Characterize groups G with polynomial geodesic growth, that is, with
γG,S
geod(n) ⪯ nd for some constant d ⩾ 0 and for at least one generating set S.

Question 2. Does there exists a pair (G,S) with intermediate geodesic growth?

In the same paper, Bridson et al. proposed some partial answers. Their main theorem
is a sufficient condition for polynomial geodesic growth:

Theorem ([BBES12, Theorem 1]). Let G be a finitely generated group. If there exists
an element a ∈ G such that H = ⟨⟨a⟩⟩G is a finite-index abelian subgroup, then there
exists a symmetric generating set S such that (G,S) has polynomial geodesic growth.

1This holds if we allow generatingmultisets. Otherwise, the only virtually nilpotent counter-example
is G = Z (as a corollary of Theorem 4.A), and any other hypothetical counter-example would be of
intermediate volume growth (as exponential volume growth implies exponential geodesic growth).
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This includes all virtually cyclic groups, and also groups like

vZ = Z2 ⋊ C2 =
〈
a, t | t2 = [a, at] = 1

〉
,

where C2 = ⟨t | t2 = e⟩. Subsequently, Bishop and Elder [BE22] proved that the group

vH = H3(Z)⋊ C2 =
〈
a, t | t2 = [a, [a, at]] = 1

〉
has polynomial geodesic growth w.r.t. the generating set S = {a±, t}.

In the opposite direction, Bridson et al. showed that any group factoring onto Z2 has ex-
ponential geodesic growth w.r.t. every generating set. This applies for finitely generated
nilpotent groups which are not virtually cyclic [BBES12, Lemma 13]. We generalize
most of these results in the following criterion.

Setup. Let G be a virtually s-step-nilpotent group, with S a finite generating set.
Consider H a torsion-free, s-step nilpotent, finite-index, normal subgroup of G.2

We consider the isolator of the commutator subgroup

IH([H,H]) =
{
h ∈ H | ∃n > 0, hn ∈ [H,H]

}
.

We get out of this data a map Pr: H ↠ H/IH([H,H]) ≃ Zd, and an action of the finite
group F = G/H on H/IH([H,H]) (by conjugation). We define the multiset3

A = A(S) =

{
Pr(ā)

ℓ(a)
∈ Qd

∣∣∣∣ a ∈ S⋆ labels a simple cycle in Sch(H\G,S)
}
,

where Sch(H\G,S) denotes the Schreier graph. Finally, we define a polytope P(S) =
ConvHull(A(S)F ), where AF denotes the orbit of A under conjugation by F .

Theorem 4.A. If no two elements of A(S) lie on a common facet of P(S), then the
geodesic growth is subexponential. More precisely, we give the following upper bounds:

� If s ⩽ 2, the geodesic growth is bounded above by a polynomial.

� If s ⩾ 3, the geodesic growth is bounded above by

γG,S
geod(n) ⪯ exp

(
nαs log(n)

)
,

with 0 < αs < 1 an explicit constant (eg. α3 = 3/5).

Otherwise the geodesic growth is exponential.

2We can always find such an H: G has a finite-index s-step nilpotent group H ′, which contains a
finite-index torsion-free subgroup H ′′ [Hir46, Thm 3.23]. Finally H ′′ contains a finite-index subgroup

H = core(H ′′) =
⋂
g∈G

gH ′′g−1 ⊴ G.

3A(S) is multiset in the following sense: any point p ∈ Qd appears as many times in A(S) as there
are simple cycles a ∈ S∗ such that p = Pr(ā)/ℓ(a).
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In particular, we reduce the “virtually 2-step nilpotent” case of Question 1 to the
characterization of finite subgroups F ⩽ GLd(Z) with a certain property, as follows:

Corollary 4.B. Let G be a finitely generated, virtually 2-step-nilpotent group. Consider
H ⊴ G a torsion-free, 2-step nilpotent, finite-index, normal subgroup of G. This defines
an action of F = G/H on Zd ≃ H/IH([H,H]). The following assertions are equivalent:

(i) There exists a generating set S such that (G,S) has polynomial geodesic growth.

(ii) There exists a finite set A ⊂ Zd such that P = ConvHull(AF ) is a full-dimensional
polytope, and no two elements of A lie on the same facet of P.

Proof. We have to prove (ii)⇒ (i). We construct a generating set from A = {p1, . . . , pm}
as follows. Consider S0 a fixed generating set for G, and define

Sn = S0 ∪ {an1 , . . . , anm} for all n ∈ Z>0,

where ai are elements of H satisfying Pr(ai) = pi. Observe that the new generators
ani ∈ H only add loops in the Cayley graph of G/H, and therefore

A(Sn) = A(S0) ∪ nA.

For n large enough, we have P(Sn) = ConvHull(nAF ) and A(S0)∩ ∂P(Sn) = ∅. At this
point, the hypothesis on A implies that (G,Sn) has polynomial geodesic growth.

Remark. The statement of this last result can be adapted if we only allow symmetric
generating sets S. The only other modification needed is

(ii’) There exists a symmetric finite set A ⊂ Zd such that P = ConvHull(AF ) is a
full-dimensional polytope, and no two elements of A lie on the same facet of P.

Note that conditions (ii) and (ii’) are not equivalent. An example is given by the group
G2 = Z2 ⋊C2 where C2 = ⟨r⟩ acts by 180◦ rotations (see also [BBES12, Example 16]).
If we only look at symmetric sets A, we always have AC2 = A ∪−A = A, so that both
vertices of any facet of P belong to A. In contrast G2 satisfies condition (ii):

Figure 4.2: A = {(1, 0), (0, 1), (−1,−1)} in purple and P(S) in green.

This means that the geodesic growth of G2 is polynomial w.r.t. S = {x, y, (xy)−1, r},
and exponential w.r.t. any symmetric generating set (as shown in [BBES12]).
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Regarding Question 2, we get the following affirmative answer:

Theorem 4.C. The geodesic growth of the group

vE =
〈
a, t

∣∣ t2 = 1; [a, [a, at]] = [at, [a, at]] commutes with a, at
〉

with generating set S = {a±1, t} satisfies γgeod(n) ≍ exp
(
n3/5 · log(n)

)
.

Note that this group is virtually 3-step nilpotent, more precisely it admits an index-2
subgroup isomorphic to the so-called “Engel group”. In some sense, this is the next
smallest candidate for intermediate geodesic growth, as virtually abelian have either
polynomial or exponential geodesic growth (see [Bis21]), and the same holds true in
virtually 2-step nilpotent groups (see Theorem 4.A). The construction relies on the
same trick as examples vZ and vH of Bridson and al. and Bishop-Elder. Our proof
re-uses some of their ideas, combined with insights from nilpotent geometry.

As a byproduct, we provide estimates on the volume growth βG,S(n) of virtually nilpo-
tent groups G. A celebrated result due to Pansu [Pan83] states that

βG,S(n) = cG,S · nd + o(nd)

whenever G is virtually nilpotent. Subsequently the error term was refined whenever
G is 2-step nilpotent [Sto98] and more generally s-step nilpotent [BLD13; Gia17]. We
extend these results to virtually s-step nilpotent groups:

Theorem 4.D (Corollary 4.1.6). Let G be a virtually s-step nilpotent group, and S a
finite symmetric generating set. The volume growth satisfies

βG,S(n) = cG,S · nd +O(nd−δs),

where δs = 1 for s = 1, 2 and δs =
1
s
for s ⩾ 3.

(The error term coincides with Gianella’s error term for nilpotent groups.) Finally, in
Corollary 4.3.4, we disprove a conjecture by Breuillard and Le Donne stating that, in
any torsion-free nilpotent group H with a symmetric generating set X, we should have

∥g∥X − ∥g∥Stoll,X = OH,X(1)

[BLD13, Conjecture 6.5]. This conjecture was made in an effort to improve the volume
growth estimate to βG,S(n) = cnd +O(nd−1).

Organization of the chapter. Section 4.1 gathers some results on word metrics
in virtually nilpotent group. We compare word metrics in virtually nilpotent groups
and the corresponding nilpotent subgroups, and give some local structure for geodesics.
Section 4.2 is devoted to the proof of Theorem 4.A. In Section 4.3, we do a deeper dive
into the Engel group. We provide fine lower bounds on word length of some elements,
and prove the lower bound on geodesic growth needed for Theorem 4.C. This chapter
makes heavy use of Section 2.4.3 from the preliminaries.
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4.1 Generalities on virtually nilpotent groups

Let us start with some general observations on virtually nilpotent groups. In this
section, G is a group with a finite (non-weighted) generating set S. Let H be a finite-
index, torsion-free, s-step nilpotent subgroup. We do not require H to be normal.

4.1.1 A generating set for H

We consider the set X defined in Example 2.6.5, that is,

X(S) =

{
tat−1

∣∣∣∣ t ∈ S⋆ labels a simple path H → Ht
a ∈ S⋆ labels a simple cycle Ht→ Ht

}
ev−→ H

with a weight function ω : X → Z>0 defined by ω(tat−1) = ℓ(a).

Let us do some reminders and observations:

� We have a decomposition map

dec :

(
{w ∈ S⋆ | w̄ ∈ H} −→ X⋆

w 7−→ w̃

)
which is injective, and such that ev(w̃) = ev(w) and ℓω(w̃) = ℓ(w). The specific
construction of this map will be useful in Sections 4.1.2 and 4.2.

� Since S is a generating set of G (i.e., ev(S⋆) = G), we have ev(WP(H\G,S)) = H
hence H = ⟨X⟩. (This is an easy case of Theorem 2.6.3(d).)

� The equality ℓω(w̃) = ℓ(w) implies that ∥h∥X,ω ⩽ ∥h∥S for all h ∈ H.

4.1.2 Sub-linear control between word metrics

We have ∥h∥X,ω ⩽ ∥h∥S for all h ∈ H. The goal of this paragraph is to prove an
inequality in the other direction. In order to state our result, we first define a sequence
(αs)s⩾2 ⊂ [0, 1). It starts with α2 = 0 and then

∀s ⩾ 3, αs =
1− 1

s
αs−1

2− αs−1 − 1
s

.

An induction shows that 0 ⩽ αs ⩽ 1− 1
s
< 1. We can now state our main inequality:

Proposition 4.1.1. Let G be a virtually s-step nilpotent group, and H a finite-index,
torsion-free, s-step nilpotent subgroup of G. We consider S a generating set for G and
X the associated generating set for H, with the weight function ω : X → Z>0. Then

∀h ∈ H, ∥h∥X,ω ⩽ ∥h∥S ⩽ ∥h∥X,ω +O
(
∥h∥αs

X,ω

)
.
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We need some preparatory results. First a classical lemma, see eg. [DK18, §14.1.3]

Lemma 4.1.2 (Distortion). Let H be a finitely generated torsion-free s-step nilpotent
group. Consider ∥ · ∥E an Euclidean norm on γs(H) ≃ Zc. Then for z ∈ γs(H)

∥z∥X,ω = Θ
(
∥z∥1/sE

)
as ∥z∥E →∞.

Next we need the following generalization of Lemma 2.4.13:

Lemma 4.1.3 (k versus ℓω). Any element h ∈ H with ∥h∥X,ω = n can be represented
by a word v ∈ X⋆ with coarse length k(v) = O(nαs) and length ℓω(v) = n+O(nαs).

Proof. We argue by induction on s. The case s = 2 (in which αs = 0) is Lemma 2.4.13.

Suppose the induction hypothesis holds for s−1 ⩾ 2. Consider h ∈ H with ∥h∥X,ω = n.
Let u ∈ X⋆ be a geodesic word representing h. We can decompose u as a product
u = u1u2 . . . um with m = nβ + O(1) pieces of length n1−β + O(1) for β ∈ (0, 1) which
will be chosen later. By induction hypothesis, there exist words vi ∈ X⋆ such that

vi = ui mod γs(H), k(vi) = O
(
n(1−β)αs−1

)
and ℓω(vi) = n1−β +O

(
n(1−β)αs−1

)
.

Observe that the error zi = ūiv̄
−1
i ∈ γs(H) has length

∥zi∥X,ω ⩽ ℓω(ui) + ℓω(vi) = O(n1−β),

hence ∥zi∥E = O(n(1−β)s) by Lemma 4.1.2. Therefore, the total error z = z1z2 . . . zm
has size ∥z∥E = O(nβ · n(1−β)s). The same lemma delivers vz ∈ X⋆ such that vz = z

and ℓω(vz) = O(n1− s−1
s

β). Finally, let v = v1v2 . . . vmvz ∈ X⋆. We have v = h, and

k(v) ⩽
m∑
i=1

k(vi) + k(vz) = nβ ·O(n(1−β)αs−1) +O(n1− s−1
s

β),

ℓω(v) =
m∑
i=1

ℓω(vi) + ℓω(vz) = n+ nβ ·O(n(1−β)αs−1) +O(n1− s−1
s

β).

To conclude, we fine-tune β = 1−αs−1

2−αs−1− 1
s

so that β + (1− β)αs−1 = 1− s−1
s
β = αs.

Remark 4.1.4. The first exponents α2 = 0 and α3 =
3
5
are optimal (Corollary 4.3.4).

Later αs can probably be improved. For instance, Gianella has proved a result analogous
to Lemma 4.1.3 with αs =

s
s+2

if we allow v to be an R-word. [Gia17, Lemma 40]

Proof of Proposition 4.1.1. Let us prove the right inequality. Using the Lemma 4.1.3,
any element h ∈ H of length ∥h∥X,ω = n can be represented by a word

v = (t1a1t
−1
1 )m1 . . . (tkakt

−1
k )mk ∈ X⋆
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with k(v) = O(nαs) and ℓω(v) = n+O(nαs). We convert this word into

w = t1 a
m1
1 u1 . . . tk a

mk
k uk ∈ S⋆,

where ui ∈ S⋆ is a geodesic representative for t−1
i . This word has length

ℓ(w) = ℓω(v) +
k∑

i=1

(
ℓ(ti) + ℓ(ui)

)
⩽ ℓω(v) + k(v)

(
[G : H] + max

t
∥t−1∥S

)
= n+O(nαs),

so that ∥h∥S ⩽ ∥h∥X,ω +O
(
∥h∥αs

X,ω

)
as announced.

4.1.3 A parte: Volume growth of virtually nilpotent groups

Let us recall the state-of-the-art for growth of finitely generated nilpotent groups:

Theorem 4.1.5 ([Sto98; Gia17]). Let H be a finitely generated s-step nilpotent group,
and X be a symmetric generating set. We have

βH,X(n) = cH,X · nd +O(nd−δs),
where

� d = d(H) =
∑s

i=1 i · rankQ
(
γi(H)

/
γi+1(H)

)
∈ Z⩾0 is the Bass-Guivarc’h exponent,

� cH,X ∈ R>0 is the volume of the unit ball in the asymptotic cone of (H,X) with its
associated Carnot-Caratheodory metric.

� δs = 1 for s = 1, 2 and δs =
1
s
for s ⩾ 3.

The statement extends if we add a weight function ω : X → Z>0 into the picture. Our
modest contribution is to extend this result to virtually nilpotent groups

Corollary 4.1.6. Let G be a finitely generated, virtually s-step nilpotent group, and
S be a symmetric generating set. Let H be a finite-index, torsion-free, s-step nilpotent
group, with the associated generating set X and weight function ω : X → Z>0. We have

βG,S(n) = [G : H] · cH,X,ω · nd +O(nd−δs).

Proof. Let j = [G : H], and decompose G =
⊔j

i=1 tiH. Picking ti as short as possible,
we may assume that ∥ti∥S < j for all i. We have

j⊔
i=1

ti ·
(
BG,S(n− j) ∩H

)
⊆ BG,S(n) ⊆

j⊔
i=1

ti ·
(
BG,S(n+ j) ∩H

)
Combining this with Proposition 4.1.1, we get the inclusions

j⊔
i=1

ti ·BH,X,ω

(
n− j −O(nαs)

)
⊆ BG,S(n) ⊆

j⊔
i=1

ti ·B(H,X,ω)(n+ j)

hence, by Theorem 4.1.5,

j · cH,X,ω ·
(
n− j −O(nαs)

)d
+O(nd−δs) ⩽ βG,S(n) ⩽ j · cH,X,ω · (n+ j)d +O(nd−δs),

that is, βG,S(n) = [G : H] · cH,X,ω · nd +O(nd−δs) as αs ⩽ 1− δs < 1 for all s.
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4.1.4 Structure of almost-geodesics

We give local conditions on almost geodesic v ∈ X⋆. Essentially, most short subwords
of v should be geodesics in the abelianization (Pr(H̄), ∥ · ∥Mink). More precisely

Definition 4.1.7. Let H be a torsion-free s-step nilpotent group, X a finite generating
set, and ω : X → Z>0 a weight function. Consider Pr : H ↠ H/IH([H,H]) ≃ Zd and

P = ConvHull

{
Pr(x)

ω(x)

∣∣∣∣ x ∈ X} ⊆ Rd.

A word u ∈ X ∪X2 is called costly if

� u = x with Pr(x)
ω(x)

not on the boundary of P, or

� u = xy with Pr(x)
ω(x)

, Pr(y)
ω(y)

not on a common facet of P.

For v ∈ X⋆, we define N(v) as the number of occurrences of costly subwords in v.

Proposition 4.1.8. There exists a constant δ = δ(H,X, ω) > 0 such that

∀v ∈ X⋆, ℓω(v) ⩾ ∥v∥X,ω + δ ·N(v)−O
(
∥v∥αs

X,ω

)
.

In some sense, this result is a quantified, discrete analog to the “(s−1)-iterated blowup”
result of Hakavuori and Le Donne. [HLD23, Corollary 1.4]

Proof. By Lemma 2.4.9, for each costly word u, there exists u′ ∈ X⋆
R such that Pr(u) =

Pr(u′) and that ℓω(u)− ℓω(u′) > 0. We fix a real number δ such that

0 < δ <
1

2
min

{
ℓω(u)− ℓω(u′) | u is costly

}
.

We now argue by induction on s.

▶ We first initialize for s = 2: Consider a word v ∈ X⋆ with N = N(v) occurrences of
costly subwords. Say M ⩾ 1

2
N of these occurrences are disjoints, we denote them by

u1, . . . , uM . We replace ui in v by u′i, thus defining a new R-word v′.

Observe that v′ has the same abelianization Pr(w′) = Pr(w). It only differs in areas:

z(v′)− z(v) =
M∑
i=1

(
z(u′i)− z(ui)

)
∈ [H̄, H̄] ≃ Rc

(using Proposition 2.4.5). Recall that [H̄, H̄] is quadratically distorted in H̄ (Lemma
4.1.2 but for Lie groups, see rather [Gui73, Lemme II.1] or [Bre14, Theorem 2.7]), hence

∥z(v′)− z(v)∥Stoll,X,ω = O
(
M

1
2

)
.
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Therefore, there exists an R-word vz with ℓω(vz) = O
(
M

1
2 ) and v = v′vz. It follows

ℓω(v) = ℓω(v
′vz) +

M∑
i=1

(
ℓω(ui)− ℓω(u′i)

)
− ℓω(vz)

⩾ ∥v∥Stoll,X,ω +M ·min
{
ℓω(u)− ℓω(u′) | u is costly

}
−O

(
M

1
2

)
⩾ ∥v∥X,ω − C +

1

2
N ·min

{
ℓω(u)− ℓω(u′) | u is costly

}
− O

(
N

1
2

)
⩾ ∥v∥X,ω + δ ·N(v) − O(1),

where we have used Proposition 2.4.12 for the second inequality.

▶ Suppose that the induction hypothesis holds for s−1 ⩾ 2. Consider v ∈ X⋆ of length
ℓω(v) = n. We decompose v as a product v = v1v2 . . . vm with m = nβ +O(1) pieces of
length n1−β +O(1). Using the hypothesis, there exists ui ∈ X⋆ such that

ui = vi mod γs(H) and ℓω(ui) ⩽ ℓω(vi)− δ ·N(vi) +O
(
n(1−β)αs−1

)
.

We repeat part of the proof of Lemma 4.1.3: the error zi = v̄iū
−1
i ∈ γs(H) has length

∥zi∥X,ω ⩽ ℓω(ui) + ℓω(vi) = O(n1−β)

The same argument using distortion gives a word uz ∈ X⋆ such that uz = z1z2 . . . zm
and ℓω(uz) = O(n1− s−1

s
β). Finally, let u = u1u2 . . . umuz ∈ X⋆. We have u = v, and

∥v∥X,ω ⩽ ℓω(u) =
m∑
i=1

ℓω(ui) + ℓω(uz)

⩽
m∑
i=1

(
ℓω(vi)− δN(vi) +O

(
n(1−β)αs−1

))
+O(n1− s−1

s
β)

⩽ ℓω(v)− δ
(
N(v)−m

)
+O

(
nβ+(1−β)αs−1

)
+O(n1− s−1

s
β).

Fine-tuning β = 1−αs−1

2−αs−1− 1
s

gives us the desired result.

4.2 Criterion for sub-exponential geodesic growth

From now on, we suppose H is a torsion-free, s-step nilpotent, finite index, normal
subgroup of G. As in Section 4.1.1, we consider the labeled graph Sch(H\G,S) and

X(S) =

{
tat−1

∣∣∣∣ t ∈ S⋆ labels a simple path H → Ht
a ∈ S⋆ labels a simple cycle Ht→ Ht

}
ev−→ H

with a weight function ω : X → Z>0 defined by ω(tat−1) = ℓ(a).

Remark. Observe that Sch(H\G,S) is transitive since H is normal, hence a word
a ∈ S⋆ labels a simple cycle Ht → Ht if and only if it labels a simple cycle H → H.
We can therefore say a word a ∈ S⋆ is a simple cycle without ambiguity.
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The proof naturally splits into two cases.

▶ First, we suppose that two elements of A(S) lie on the same facet of P(S), and we
conclude (G,S) has exponential geodesic growth. We already provide exponentially
many geodesics in the virtually abelian quotient G/IH([H,H]). Observe that

P(S)
def
= ConvHull

({
Pr(ā)

ℓ(a)

∣∣∣∣ a ∈ S⋆ simple cycle

}G/H
)

= ConvHull

{
Pr(x)

ω(x)

∣∣∣∣ x ∈ X} .
is the polytope that governs the Minkowski norm on Ĥ = H/IG([H,H]) ≃ Zd w.r.t.
the natural generating multiset X̂ = Pr(X), with the weight function ω̂(x̂) = ω(x).

Consider distinct simple cycles a, b ∈ S⋆ (in particular ā, b̄ ∈ X) such that

Pr(ā)

ℓ(a)
=

Pr(ā)

ω(a)
and

Pr(b̄)

ℓ(b)
=

Pr(b̄)

ω(b)

lie on a common facet of P(S). Then, for all w ∈ {a, b}⋆, we have

ℓ(w) = ℓω̂(ŵ) = ∥Pr(w̄)∥Mink,P ⩽ ∥Pr(w̄)∥X̂,ω̂ ⩽ ∥w̄∥X,ω ⩽ ∥w̄∥S .

(The second equality follows from Lemma 2.4.9, and the last inequality from the easy
part of Proposition 4.1.1.) All these words are geodesics, which concludes. ◀

From now on, we work towards an upper bound. First, we work specifically on geodesics
w ∈ S⋆ evaluating in the subgroup H.

▶ Under the hypothesis that no two elements of A(S) lie on the same facet of P(S), we
prove that the coarse length of the decomposition w̃ ∈ X⋆ (defined in §4.1.1) satisfies

k(w̃) ⩽ N(w̃) · [G : H] + 1 (4.2.1)

for any word w ∈ S⋆ evaluating in H. Let us write

w̃ = xm1
1 xm2

2 · . . . · x
mk
k with xi ̸= xi+1 for all i.

The decomposition process not only gives this sequence of generators (xi) ∈ X, but
also two sequences of simple paths (ti) ∈ S⋆ and simple cycles (ai) ∈ S⋆ such that
xi = t̄iāit̄

−1
i . Observe that, for each i, one of ti and ti+1 is a prefix of the other

(depending on where the walk re-intersects itself). Consider a time i such that ti+1 is a
prefix of ti (including the case ti+1 = ti). In particular, we can rewrite xi+1 = t̄ib̄i+1t̄

−1
i

for some simple cycle bi+1 ∈ S⋆. (bi+1 is a cyclic permutation of ai+1.)

tiai ti+1

ai+1

ti

bi+1

ti = ti+1

ai
ai+1 = bi+1

Figure 4.3: xi = ti ai t
−1
i and xi+1 = ti+1 ai+1 t

−1
i+1 = ti bi+1 t

−1
i . The limit case ti = ti+1.
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As xi ̸= xi+1, we have ai ̸= bi+1. Now our hypothesis on A(S) kicks in: both points

Pr(āi)

ℓ(ai)
and

Pr(b̄i+1)

ℓ(bi+1)

cannot lie on a common facet of P. We get the same conclusion for

Pr(xi)

ω(xi)
and

Pr(xi+1)

ω(xi+1)

after conjugation by ti. We conclude that the subword xixi+1 is costly in the sense of
Proposition 4.1.8 (hence counted in N(w̃)), as soon as ti+1 is a prefix of ti.

In order to avoid this situation, the path ti should be a proper prefix of ti+1. This
means the ti’s usually get longer and longer, but they have lengths bounded between 0
and [G : H]− 1. Combining these two observations, we get the desired bound.

▶ We are now able to combine everything. Consider a word w ∈ S⋆ representing an
element h ∈ H. Propositions 4.1.1 and 4.1.8 give us

∥h∥S ⩽ ∥h∥X,ω +O
(
∥h∥αs

X,ω

)
ℓ(w) = ℓω(w̃) ⩾ ∥h∥X,ω + δ ·N(w̃)−O

(
∥h∥αs

X,ω

)
for some constant δ > 0. If w is a geodesic, then ℓ(w) = ∥h∥S and therefore

δ ·N(w̃) = O
(
∥h∥αs

X,ω

)
= O

(
ℓ(w̃)αs

)
.

Combined with the inequality (4.2.1), we get a constant C = C(G,S) > 0 such that

k(w̃) ⩽ C · ℓ(w̃)αs . (4.2.2)

▶ We obtain the desired upper bound. The inequality (4.2.2) gives an injection{
w ∈ S⋆

∣∣ w is geodesic with w ∈ H
}
↪→
{
v ∈ X⋆

∣∣ k(v) ⩽ C · ℓ(v)αs
}

sending w 7→ w̃. Observe that ℓ(w̃) ⩽ ℓω(w̃) = ℓ(w), hence

#
{
w ∈ S⋆

∣∣w is geodesic, ℓ(w) ⩽ n, w ∈ H
}
⩽ #

{
v ∈ X⋆

∣∣ k(v) ⩽ C · nαs , ℓ(v) ⩽ n
}
.

Note that, in to order to construct a word v satisfying these conditions, it suffices to
pick Cnαs cut points along an interval of length n, pick a letter to fill each of the first
Cnαs “blocks”, and leave the last block empty.

| || | | |x3 x3 x3 x1 x1 x1 x1 x4 x4 x4

This translates into a crude upper bound of

#
{
v ∈ X⋆

∣∣ k(v) ⩽ C · nαs , ℓ(v) ⩽ n
}
⩽
(
(n+ 1) |X|

)Cnαs

≍ exp
(
Cnαs log(n)

)
.

To conclude, each geodesic w in (G,S) can be decomposed as a product

w = w1s1w2s2 . . . sk−1wk,

where each wi ∈ S⋆ is a geodesic ending up in H, si ∈ S, and k ⩽ [G : H], which gives
an upper bound on γgeod(n) of the same type.
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4.3 Geometry of the Engel group

As our main example, we consider a lattice inside the group Ē defined in Section 3.1.
More specifically, we take the lattice generated by the straight segments a and b from
0 to (1, 1) and (1,−1) respectively. This group is given by the presentation

E =
〈
a, b

∣∣ [a, [a, b]] = [b−1, [a, b]] is central
〉
.

Throughout, we fix X = {a±, b±} as a generating set.

+

−

+

+

−

+

−

Figure 4.4: A word overX and an equivalent path. Both satisfy ĝ = (24, 0) and A(g) = By(g) = 0.

4.3.1 An observation of Stoll and lower bound on word length

In unpublished notes [Sto10], Stoll shows that a key result (Corollary 2.4.11 above) fails
in the Engel group4 Ē. Specifically, he proves that

Proposition ([Sto10]). The element g1 represented by a segment from 0 to (1, 0) has
Stoll length ∥g1∥Stoll,X = 1, but is not represented by any R-word of length 1.

By a compactness argument, this proves that Lemma 2.4.13 does not extend either:

Corollary. Consider gn ∈ E the element represented by a segment to (n, 0). There
does not exist a sequence of R-words wn representing gn such that the coarse lengths
k(wn) are uniformly bounded and ℓ(wn) ⩽ ∥gn∥Stoll,X + o(n) = n+ o(n).

Proof of the Corollary. We argue by contradiction, and suppose such a sequence of
words does exist. After rescaling by a factor of 1

n
, we get a sequence of R-words of

length 1 + o(1) and coarse length ⩽ K, all representing g1. However, R-words with
length ⩽ 2 and coarse length ⩽ K form a compact set, so some subsequence converges
to an R-word representing g1 of length 1 and coarse length ⩽ K, a contradiction.

4Stoll works with the Cartan group, but his argument works just as well for the Engel group.
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In what follows, we quantify the dependence between k(wn) and ℓ(wn)− ∥gn∥Stoll. We
use that the horizontal path is a (particularly bad) abnormal curve in E.

Proposition 4.3.1 (By back from the depths). There exists C > 0 such that, for any
w ∈ X⋆

R with endpoint ŵ = (n, 0) and length ℓ(w) = n+∆, we have

−By(w̄) ⩾
1

24

n3(
k(w)− 1

)2 − C ·∆2 ·max

{
∆;

n

k(w)− 1

}
.

Proof. We decompose the path w into a main path (in purple), and some loops and
boundary mess (in orange), and estimate the contribution of each part to −By(w̄).

(0, 0) (n, 0)

−1

−2

+1

+2

−1

+1

+1

−1
+1

−1
+1 −1

Figure 4.5: The decomposition of a word w. The purple curve is obtained from the interval
between the last crossing of the line x = 0 and the first crossing of x = n, after loop-erasure.

By “contribution”, we mean that the winding number distribution of w splits as the
sum of the winding numbers of the purple curve and the orange curves (with the
added dashed segments). Integrating against the y-coordinate gives two contributions
to By(w), which we denote By(purple curve) and By(orange curves).

▶ We first estimate the contribution of the purple main path. Note that this path is
simple (and we cured out boundary mess), so the winding number of any point is ±1
if the point lies between the x-axis and the curve - more precisely +1 if it lies below
the x-axis and −1 if it lies above - and 0 otherwise. In particular, the contribution is
non-positive, and bounded by the contribution of the following green area:
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ai

0 n

Figure 4.6: The green area decomposed into k′ trapezoids, and the blue triangles included inside.

The green area is composed of k′ trapezoids/triangles, with k′ ⩽ 2k(w) − 2 (each
segment delimits at most 2 trapezoids if it crosses the x-axis, at most 1 otherwise, and
the first and last segments cannot cross the axis). In turn, we bound the contribution
of each slice by that of a triangle (with basis and height ai) included inside it:

−By(purple curve) ⩾ −By(green zone) ⩾ −By(blue triangles) =
k′∑
i=1

a2i
2
· ai
3
. (4.3.2)

Finally, since
∑k′

i=1 ai = n, the generalized mean inequality gives

−By(purple curve) ⩾
1

6

n3

k′2
⩾

1

24

n3

(k(w)− 1)2
.

▶ To control the contribution of orange curves, we need to control both their total area
and the y-coordinates. Observe that the purple curve (without the dashed segments)
has length at least n as it joins the lines x = 0 and x = n. It follows that the orange
curves have total length at most ∆, hence the two dashed segments too. Therefore

By(orange curves) ⩽
∫∫

R2

|y| · |Worange curves(x, y)| · dx dy

⩽ ymax ·
∫∫

R2

|Worange curves(x, y)| · dx dy

⩽ ymax · I · (2∆)2, (4.3.3)

where ymax is the largest distance from points of the path w to the x-axis, and I is the
isoperimetric constant of (R2, ∥ · ∥Mink,X) (here I = 1

8
). If ymax is reasonably small, say

ymax ⩽ Lmax
{
∆; n

k(w)−1

}
for L = 10max{

√
I, 1}, then

−By(w̄) ⩾ −By(purple)−By(orange) ⩾
1

24

n3

(k(w)− 1)2
− 4LI ·∆2 ·max

{
∆;

n

k(w)− 1

}
.

▶ The only remaining case is when ymax is unreasonably large: ymax ⩾ Lmax
{
∆; n

k(w)−1

}
.

In particular, ymax −∆ is larger than (1− 1
L
)ymax, (L− 1)∆ and (L− 1) n

k(w)−1
.

We improve our bound on −By(green zone) using that the curve w goes through some
point p = (xp,±ymax) far away from the x-axis:
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ymax

∆

2(ymax −∆)

p

T

(0, 0) (n, 0)

In this case, there exists a large triangle T which the R-word w cannot enter. Indeed,
for any point q in the interior of T , we have

dMink

(
(0, 0), q

)
+ dMink(q, p) > dMink

(
(0, 0), p

)
+∆

dMink(p, q) + dMink

(
q, (n, 0)

)
> dMink

(
p, (n, 0)

)
+∆

so any R-word passing through the four points (0, 0), p, q and ŵ = (n, 0) would have
length > n + ∆. This implies that the triangle T must be included inside the green
region. Moreover, as previously, we have a lower bound on −By for the green regions
on both sides of T , composed of at most 2k(w)− 2 trapezoids.

Combining equations (4.3.2), (4.3.3) and the existence of T , we get

−By(w̄) ⩾ −By(green area)− ymax · 4I∆2

⩾
1

24

(
n− 2(ymax −∆)

)3
(k(w)− 1)2

+
1

3
(ymax −∆)3 − ymax · 4I∆2

⩾
1

24

n3

(k − 1)2
− 1

4
(y −∆)

n2

(k − 1)2
+

1

3
(y −∆)3 − 4I · y∆2

⩾
1

24

n3

(k − 1)2
+ (y −∆)3

(
1

3
− 1

4(L− 1)2
− 4IL

(L− 1)3

)
⩾

1

24

n3

(k(w)− 1)2
.

(In the third step, we use (n−h)3 ⩾ n3−3n2h for all h ⩽ 3n and ymax ⩽ 1
2
(n+∆).)

We deduce the following quantified version of the main result of [Sto10]:

Corollary 4.3.4. There exists C ′ > 0 s.t., for all w ∈ X⋆
R representing gn, we have

ℓ(w)− ∥gn∥Stoll,X ⩾ C ′ · k(w)−
2
3 · ∥gn∥Stoll,X .

If moreover n ≡ 0 (mod 6), then gn ∈E and ∥gn∥X − ∥gn∥Stoll,X = Ω
(
∥gn∥

1
3
Stoll,X

)
.
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Proof. Observe that ŵ = ĝn = (n, 0) and By(w̄) = By(gn) = 0, therefore

0 ⩾
1

24

n3

(k(w)− 1)2
− C∆2max

{
∆;

n

k(w)− 1

}
⇐⇒ max

{
∆3;

n∆2

k(w)− 1

}
⩾

1

24C

n3

(k(w)− 1)2

⇐⇒ ∆ ⩾ min

{
3

√
1

24C

n3

(k(w)− 1)2
;

√
1

24C

n2

k(w)− 1

}
.

Since ∥gn∥Stoll,X = n, this implies that

ℓ(w)− ∥gn∥Stoll,X ⩾

√
1

24C
· k(w)−

2
3 · ∥gn∥Stoll,X .

Finally, as k(w) ⩽ ℓ(w) for all w ∈ X⋆, we have ∥gn∥X−∥gn∥Stoll,X ⩾ C ′ ·∥gn∥
1
3
Stoll,X .

The first part of Corollary 4.3.4 matches the best known upper bound:

Lemma ([Gia17, Lemma 40]). Let H̄ be a simply connected s-step nilpotent Lie
group, and X a finite Lie generating set. There exists C ′′ > 0 such that, for every
K ≫ 1 and every g ∈ H̄, there exists an R-word w ∈ X⋆

R representing g such that

k(w) ⩽ K and ℓ(w)− ∥g∥Stoll,X ⩽ C ′′ ·K− 2
s · ∥g∥Stoll,X + C ′′.

Whether this bound is sharp in s-step nilpotent groups with s ⩾ 4 remains open.
The second part of Corollary 4.3.4 disproves a conjecture of Breuillard and Le Donne
[BLD13, Conjecture 6.5]. (The conjecture states that the difference should be an O(1).)

4.3.2 Matching lower bound in a virtually Engel group

In this paragraph, we prove Theorem 4.C, considering the semi-direct product

vE =E ⋊ C2 =
〈
a, t

∣∣ t2 = 1; [a, [a, at]] = [at, [a, at]] commutes with a, at
〉

(so C2 = ⟨t⟩ acts by symmetry along the y-axis, and in particular tat = b−1), with the
generating set S = {a±, t}. First, we may compute A(S) and P(S), so that Theorem 1
gives the upper bound γgeod(n) ⪯ exp

(
n3/5 · log(n)

)
.

t

t

a

a−1

a

a−1

A(S)
P(S)
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It remains to prove a matching lower bound, i.e., to construct a lot of geodesics. We
fix κ > 0 a small constant (to be determined) and 0 < ε < 1

10
. For any n even integer,

let K ≈ κn3/5 be another even integer, and m = n
2K

. We show that words of the form

w = am1ta−(m1+m2)tam2+m3t . . . ta−(mK−1+mK)tamK ∈ S⋆

with 2
∑

imi = n and |mi −m| ⩽ nε, are all geodesics for n large enough.

m3

t

am2

am3

Figure 4.7: The path in E corresponding to a geodesic in vE.

▶ First, we compute By for the corresponding element w. Note that w ∈ E (as K is
even), so this makes sense. Let δi = mi −m (so that

∑
i δi = 0), we have

−By(w) =
K∑
i=1

m3
i

3
=

K∑
i=1

(m+ δi)
3

3
=
Km3

3
+

K∑
i=1

(
mδ2i +

δ3i
3

)
=

n3

24K2
+O(n1+2ε).

(4.3.5)

▶ Next, we take a shorter word v ∈ {a±, t}⋆ ending up in the same coset as w (that is
the E coset), and with same endpoint v̂ = ŵ = (n, 0), and prove that By(v̄) < By(w̄).
This implies that w is a geodesic, as no shorter word represents the same element.

Consider the decomposition ṽ ∈ X⋆. Its coarse length and length are

k(ṽ)− 1 ⩽ “number of t in v” = K − d (for some even d)

ℓ(ṽ) = “number of a±1 in v” < n+ d.

Note that, as you need at least n letters “a±1” to reach v̂ = (n, 0), the shortening
relative to w has to come from the number of “t” in v, so that 2 ⩽ d ⩽ K − 2.

Combining Proposition 4.3.1 and the equation (4.3.5), we get

By(w̄)−By(v̄) ⩾
n3

24

(
1

(K − d)2
− 1

K2

)
− C · d2 ·max

{
d;

n

K − d

}
−O(n1+2ε).

Now we split into two cases:

� If d ⩾ K − n
K
, then the term n3

24(K−d)2
dominates and By(w̄) > By(v̄).
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� If d ⩽ K − n
K
. We have 1

(K−d)2
− 1

K2 ⩾ 2d
K3 by the mean value theorem, hence

By(w̄)−By(v̄) ⩾
n3

12
· d
K3
− C · d ·K2 −O(n1+2ε)

= d

(
1

12κ3
− Cκ2

)
· n6/5 − o(n6/5)

> 0

as long as κ < 5

√
1

12C
and n is large enough.

▶ In conclusion, all those words w are geodesics. Moreover there are many degrees of
freedom left, leading to plenty of geodesics of length n +K. Indeed, the values of the
partial sums

(∑r
i=1mi

)
r=1,...,K−1

can be picked independently in [rm− 1
2
nε, rm+ 1

2
nε].

This shows that, for all n large enough even and K ≈ κn3/5 even, we have

γgeod
(
n+K

)
⩾ (nε)K−1 ≍ exp

(
εκ · n3/5 · log(n)

)
.

Since the function γgeod(n) is increasing, this bound extends for all n. □

4.4 Further questions and remarks

Plenty of questions remain open. The question we would most like to see solved is

Conjecture 4.A. If the geodesic growth of (G,S) is polynomial, with S a symmetric
generating set, then G is virtually 2-step nilpotent.

Among the possible counter-examples (all virtually nilpotent), treating the virtually
3-step nilpotent cases would be sufficient, as G factors onto G/γ4(H). We emphasize
“symmetric” as we have the following intriguing example:

Conjecture 4.B. The geodesic growth of vE w.r.t. S = {a, b, (ab)−1, t} is polynomial.

In contrast, in an E-by-finite group, any symmetric generating set S such that P(S)
has vertices on the x-axis will yield exponential geodesic growth (as the x-axis is fixed
by automorphisms ofE), and any generating set S such that P(S) has no vertex on the
x-axis should yield super-polynomial geodesic growth.

A(S)

P (S)
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More generally,

Question 4.B’. Can we construct virtually s-step nilpotent groups with polynomial
geodesic growth on top of any filiform nilpotent groups of type I

Fs =
〈
x, y1, y2, . . . , ys

∣∣ [x, yi] = yi+1, [x, ys] = [yi, yj] = 1
〉
?

These groups have few abnormal curves, covering only the y1-direction (see [BNV22]).

∗ ∗ ∗

If Conjecture 4.A holds, then Theorem 4.B reduces the characterization of groups of
polynomial geodesic growth (for symmetric generating set) to the following question:

Problem 4.C. Characterize finite subgroups F ⩽ GLd(Z) for which
(ii’) there exists a finite symmetric set A ⊂ Zd such that P = ConvHull(AF ) is

full-dimensional and each facet of P contains at most one point of A.

Ideally, the characterization should be algorithmic. Given F as a finite set of integer-
valued matrices, one should be able to decide whether or not the condition is satisfied. In
contrast, [BBES12, Theorem 1] quoted in the introduction gives the sufficient condition

(iii’) There exists a ∈ Zd such that P = ConvHull({±a}F ) is full-dimensional.

This condition is clearly algorithmic. It is therefore natural to ask

Question 4.D. Are conditions (ii’) and (iii’) equivalent?

We expect a negative answer, but were not able to find a counter-example.

∗ ∗ ∗

Regarding the Breuillard–Le Donne conjecture, we would like to propose the following
weakening (already proven for 3-step nilpotent groups, see [Gia17, Proposition 45]):

Conjecture 4.E. Let (H,X) be a f.g., torsionfree, metabelian, nilpotent group. Then

∀h ∈ H, ∥h∥X − ∥h∥Stoll,X = O(∥h∥1/3X ).

The idea in the more general setting would be the following: when approximating a
geodesic v in the sub-Finsler space to get a genuine word w ∈ X⋆, we create a linear
error term in winding number (i.e., ∥Ww −Wv∥ℓ1 = O(ℓ(v))). The error in γ2(G)/γ3(G)
can be reduced to O(1) for the correct choice of w; this is the idea of Stoll [Sto98]. The

higher order terms can be fixed at cost O(ℓ
1
3 ) as they are (at least) cubically distorted.
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Finally, we would like to reiterate

Question 4.F ([Gri14, Problem 13]). Does there exist a pair (G,S) of intermediate
geodesic growth and intermediate volume growth?

Exponential geodesic growth has been established in several examples of intermediate
volume growth by [Brö16], for instance the first Grigorchuk group with standard gener-
ating set. The simplest open example is the Fabrikowski–Gupta group. We isolate this
question since an answer in either direction would require new insight on these groups.



Chapter 5

Horofunction boundaries

Horofunction boundaries (or horoboundaries) were defined by Gromov in [Gro81b]. The
horofunction boundary ∂(X, d) is a topological boundary, which allows to compactify
any proper metric spaces (X, d). This comes in contrast with other boundaries which
are often ill-defined or trivial: the horofunction boundary ∂(G, dS) is well-defined and
non-trivial for any infinite group G endowed with a word metric dS.

A key feature of this boundary is that any action by isometry on (X, d) extends as
an action by homeomorphisms on ∂(X, d). In particular, when (X, d) = (G, dS) is a
Cayley graph, the action by left-multiplication extends to an action on the boundary.

One of the primary motivations is an observation due to Anders Karlsson [Kar08]:

If the horoboundary contains a finite orbit G · φ, then G contains a finite-index
subgroup which factors onto Z. (φ : Stab(φ)→ Z is a non-trivial homomorphism.)

In particular, if one could prove that all finitely generated groups of polynomial growth
admit a finite orbit in their horoboundary, this would provide an alternative proof of
Gromov’s theorem on groups of polynomial growth [Gro81a]. This was indeed verified
for finitely generated nilpotent groups [Wal11], however we would like to prove this
statement without using the nilpotent structure, or under weaker growth conditions
such as βG,S(n) ⪯ nlog(n), or even βG,S(n) ⪯ exp(

√
n) [RGY24].

This leads us in two different directions:

The first possibility is to find “small” invariant subsets. A nice invariant subset to
work with is the set of Busemann points, that is, the set of limits of geodesic rays. For
instance, Tointon and Yadin managed to prove that any group growing at most linearly
as finitely many Busemann points [TY16]. They formulate a conjecture:

Conjecture (Tointon–Yadin [TY16]). If G has polynomial growth, then the set of
Busemann points in the horoboundary ∂(G, dS) is countable.

73
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The second possibility we will consider is to look for “fixed points up to small errors”.
Horofunctions are real-valued functions on the underlying space X, so one way to
formalize this is to look at the reduced horofunction boundary

∂r(X, d) := ∂(X, d)/Cb(X,R),

where Cb(X,R) is the set of bounded continuous functions f : X → R. This is the path
explored by Bader and Finkelshtein: they proved that, if G is abelian, or G = H3(Z),
then G↷ ∂r(G, dS) is trivial. They also formulated the following conjecture:

Conjecture (Bader–Finkelshtein [BF20]). If G is a finitely generated nilpotent group,
then the action of G on its reduced horoboundary ∂r(G, dS) is trivial.

We will see that both answers strongly depend on the nilpotency class.

We first provide a complete classification of orbits of Busemann points for a family of
2-step nilpotent groups, including the discrete Heisenberg groups (see Theorem 5.3.3
for a precise statement). This implies the following result:

Theorem 5.A. Let H be a finitely generated, torsionfree, 2-step nilpotent group with
[H,H] ≃ Z, and S any generating set. Then ∂(H, dS) contains only finitely many orbits
of Busemann points. In particular, there are only countably many Busemann points.

This extends previous results for abelian groups [Rie02; Dev02] and H3(Z) with its
standard generating set [Wal11]. We also prove the second conjecture in class 2:

Theorem 5.B (Theorem 5.4.1). Let G be a finitely generated 2-step nilpotent group,
and S a finite generating set. Then the action G↷ ∂r(G, dS) is trivial.

However, in class c ⩾ 3, both conjectures fail. Precisely, we construct an explicit family
of geodesic rays γu in (C, dS) (with S the standard generating set) parametrized by
unit vectors u ∈ S1. The associated Busemann points satisfy the following property:

Theorem 5.C (Theorem 5.5.6). The Busemann points [bγu ] are pairwise distinct, and
their orbits are infinite in the reduced horoboundary ∂r(C, dS).

This can be extended for free nilpotent groups of class c ⩾ 3.

Along the way, we prove some transfer results for quotients, rough isometries, and more
generally roughly isometric embeddings (Propositions 5.2.5 and 5.2.1). Combining this
with work of Fisher and Nicolussi Golo [FNG21], we get the following result

Theorem 5.D (Corollary 5.4.4). Let H3(Z) be the 3-dimensional Heisenberg group,
and S any generating set. Then ∂(H3(Z), dS) has the cardinality of the continuum.

This indicates that “almost all” horofunctions on H3(Z) are non-Busemann, contrasting
with the case of abelian groups. This extends a result of [WW06].
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5.1 Preliminaries

5.1.1 Horofunctions and Busemann points

We first define the horofunction boundary of a general proper metric space (X, d). In
what follows, we will choose (X, d) to be a finitely generated group with a word metric,
or a simply connected nilpotent Lie group with a sub-Finsler metric.

Definition 5.1.1 (Horofunction boundary). Let (X, d) be a proper metric space, to-
gether with a base point e ∈ X. Consider the embedding ι : X → C(X,R) sending

x 7→
(
φx(∗) = d(x, ∗)− d(x, e)

)
,

where C(X,R) is the set of continuous functions X → R with the topology of uniform
convergence on compact sets. The horofunction boundary (or horoboundary) is defined
as ∂(X, d) := Cl(ι(X)) \ ι(X), and functions φ ∈ ∂(X, d) are called horofunctions.

We observe that, since X is proper (hence second countable), every horofunction can be
seen as a limit φ(∗) = limn→∞ φxn(∗) for some sequence (xn) ⊆ X. An interesting case
is when the sequence is a geodesic ray, in which case the sequence φxn always converges.

Definition 5.1.2. Let T ⊆ [0,∞) be an unbounded subset (e.g. T = N), and γ : T →
X be a mapping. We say that

� γ is a geodesic ray if, for all s, t ∈ T , we have d(γ(s), γ(t)) = |t− s|.

� γ is an almost geodesic ray if for all ε > 0, there is N ∈ N such that

∀s, t ∈ T ∩ [N,∞), |d(γ(t), γ(s)) + d(γ(s), γ(0))− t| < ε.

Lemma 5.1.3 ([Rie02, Lemma 4.5]). Let γ : T → X be an almost geodesic ray. Then
bγ := limt→∞ φγ(t) exists, such limits are called Busemann points.

Let g be an isometry of (X, d). By [Rie02, Proposition 4.10], g extends uniquely to
an homeomorphism of Cl(ι(X)), sending ∂(X, d) to itself. This defines a (left) group
action Iso(X) ↷ ∂(X, d) by homeomorphisms, given by the explicit formula

(g · ϕ)(x) = ϕ
(
g−1(x)

)
− ϕ
(
g−1(e)

)
.

Moreover, the action Iso(X) ↷ (X, d) sends almost geodesic rays to almost geodesic
rays, hence Iso(X) ↷ ∂(X, d) sends Busemann points to Busemann points.

5.1.2 Busemann points on Cayley graphs

Let us consider the special case of horofunctions on graphs. The graph structure allows
to simplify some definitions and problems. For instance,
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� The topology is discrete, hence the topology of uniform convergence on compact
sets coincides with the topology of pointwise convergence.

� Every Busemann point is the limit of a geodesic [WW06, Lemma 2.1].

We also have the following folklore lemma:

Lemma 5.1.4 (see eg. [TY16, Lemma 2.4]). In a graph (G, d), any Busemann point bγ
is represented by a geodesic η starting at η0 = e.

Sketch of proof. The integer-valued sequence d
(
γn, e

)
− d
(
γn, γ0

)
is decreasing, so it is

constant for n ⩾ N , for some N . In particular, we have

∀n ⩾ N, d(γn, e) = d(γn, γN) + d(γN , e).

This means that η = ([geodesic path from e to γN ], γN , γN+1, . . .) is a geodesic ray,
starting at e, which eventually coincides with γ. In particular, bη = bγ.

For the study of Cayley graphs and their horoboundary, we have a rich structure given
by graph labeling, left translations and homomorphisms. We consider G a group, with
S a finite symmetric generating set, and dS the induced word metric. Any infinite path
(xn)n⩾0 starting at x0 = e can be parametrized by an infinite word γ = s1s2 · · · ∈ S∞,
with si = γ−1

i γi+1. We denote prefixes of γ by γn := s1s2 · · · sn ∈ Sn. The associated
group elements are denoted as γ̄n ∈ G (so γ̄n = xn).

Definition 5.1.5. The language of infinite geodesics is

Geo(G,S) = {γ ∈ S∞ | ∀n, dS(e, γ̄n) = n}.

In this formalism, Lemma 5.1.4 easily gives the following:

Lemma 5.1.6. In a Cayley graph (G, dS),

(a) Every Busemann point is represented by an infinite geodesic word γ ∈ Geo(G,S).

(b) Two Busemann points lie in the same orbit if and only if they are represented by
infinite geodesic words which are cofinal, i.e., equal up to removing finite prefixes.

Proof. Given g ∈ G and γ ∈ Geo(G,S), the Busemann point g · bγ is represented by a
geodesic with the same labeling, starting from g. So the construction in Lemma 5.1.4
gives a geodesic word η representing g · bγ in the same cofinality class as γ.

Reciprocally, given two infinite geodesics γ = uw and η = vw (with u, v ∈ S⋆ finite
prefixes and w ∈ S∞ the common infinite suffix) we have bγ = ū · bw = ūv̄−1 · bη.
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5.1.3 Previous work on Abelian groups

We recall several facts on horofunctions of Abelian groups.

Theorem 5.1.7 ([WW06, Prop 3.5]). Horofunctions on ∂(Zr, S) are Busemann points.

Therefore every horofunction on ∂(Zr, dS) is represented by an infinite geodesic word
γ = s1s2 · · · ∈ Geo(Zr, S). Let B = ConvHull(S) ⊂ Rr be the convex hull of S. We
state a lemma which is implicitly used in the previous work [Dev02; Wal11].

Definition 5.1.8. Given an infinite word γ ∈ S∞, the set of directions of γ is the set
of letters of S with infinitely many occurrences in γ. We denote it by Dγ.

Lemma 5.1.9. Consider an abelian group (Zr, S), and γ ∈ S∞ an infinite word.

(a) If γ is a geodesic, the minimal face of B containing Dγ is proper. Equivalently,
there exists a proper face F containing all but finitely many letters of γ.

(b) Reciprocally, if a proper face F ⊂ B contains all letters of γ, then γ is geodesic.

We will give its proof in a more general setting (see Proposition 5.3.1). The minimal
face containing Dγ is the face associated to γ. How these associated faces relate to
Busemann points might not be clear, until the following result:

Theorem 5.1.10 ([Dev02, Section 4]). Let γ1, γ2 be infinite geodesic words in (Zr, S).

(a) If bγ1 = bγ2, then γ1 and γ2 are associated to the same face F of B.

(b) Reciprocally, if all letters of γ1 and γ2 belong to F, then bγ1 = bγ2.

(c) bγ1 , bγ2 lie in the same orbit if and only if γ1, γ2 are associated to the same face F.

Remark 5.1.11. Part (c) follows from the first two parts and Lemma 5.1.6(b).

5.1.4 Reduced horoboundary

In general it is difficult to compute horofunctions since this requires to compute some
distances exactly. In particular, the horoboundary of a Cayley graph (i.e., its topology)
typically depends on the choice of a generating set. However, once we ignore bounded
errors, working with horofunctions often become much more manageable. In some
cases, the resulting boundary even becomes a quasi-isometry invariant.

Definition 5.1.12. Let Cb(X,R) be the set of bounded continuous functions X → R.
The quotient space ∂r(X, d) = ∂(X, d)/Cb(X,R) is called the reduced horoboundary of
(X, d). Elements of the reduced horoboundary are denoted by [φ].

Example 5.1.13. The reduced boundary of a proper, complete, Gromov hyperbolic
space is homeomorphic to its Gromov boundary [WW05, Proposition 4.4]. It is invariant
under quasi-isometries.
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We generalize the notion of Busemann points to roughly Busemann points. Those are
limits of roughly geodesic ray, and are only defined in ∂r(X, d).

Definition 5.1.14. Let T ⊆ [0,∞) be an unbounded set. A ray γ : T → X is roughly
geodesic if there exists C ⩾ 0 such that

∀s, t ∈ T, |t− s| − C ⩽ d(γ(s), γ(t)) ⩽ |t− s|+ C.

Lemma 5.1.15. Let γ be a roughly geodesic ray. Then all limits points of γ in ∂(X, d)
coincide in ∂r(X, d). We denote this common limit by [bγ].

Remark 5.1.16. Despite the notation, [bγ] may not contain any Busemann point.
A Busemann point in ∂r(X, d) is a class containing a Busemann point, and a rough
Busemann point is a class containing a rough Busemann point.

Proof. Up to a change of the constant C, we may suppose that 0 ∈ T and γ0 = e. Take
x ∈ X and m,n ∈ T such that m ⩾ n. We have

φγm(x)− φγn(x) =
(
d(x, γm)− d(e, γm)

)
−
(
d(x, γn)− d(e, γn)

)
=
(
d(x, γm)− d(x, γn)

)
+ d(γ0, γn)− d(γ0, γm)

⩽ d(γm, γn) + d(γ0, γn)− d(γ0, γm)
⩽
(
|m− n|+ C

)
+ (n+ C)− (m− C) = 3C

This proves that lim supφγm(x) ⩽ lim inf φγn(x) + 3C hence any two limits points of
the sequence (φγn)n∈S (which do exist by compactness of Cl(ι(X))) are at distance at
most 3C from each other (in the sup metric) hence coincide in ∂r(X, d).

5.2 Transfer results

In this section, we give two basic transfer results for rough isometries (and roughly
isometric embeddings), and for graph coverings.

5.2.1 Rough isometries and reduced boundary

Since the reduced horoboundary ignores additive errors, it should behave nicely with
the coarse setting, meaning it should be stable under rough isometries (Definition 2.1.7).

Proposition 5.2.1. Let (X, dX), (Y, dY ) be two proper metric spaces. Given a roughly
isometric embedding f : X → Y , we can define a surjective map

f ∗ :

(
Cl(ι(f(X))) ∩ ∂r(Y, dY ) −→ ∂r(X, dX)

[φ] 7−→ [φ ◦ f ]

)
.

Moreover,

� If G↷ X, Y by isometries and f is G-equivariant, then f ∗ is G-equivariant.

� If f is a rough isometry, then f ∗ is a bijection ∂r(Y, dY )→ ∂r(X, dX).
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Proof. Fix e ∈ X and f(e) ∈ Y two basepoints.

▶ Well-defined: Consider φ ∈ Cl(f(X))∩ ∂(Y, dY ). We fix (xn) ⊆ X s.t. f(xn)→ φ in
∂(Y, dY ), and a subsequence (xnk

) such that xnk
→ ψ ∈ ∂(X, dX). We have

|φ(f(g))− ψ(g)|

= lim
k→∞

∣∣∣(dY(f(g), f(xnk
)
)
− dY

(
f(e), f(xnk

)
))
−
(
dX(g, xnk

)− dX(e, xnk
)
)∣∣∣

⩽ 2C1

so that [φ ◦ f ] = [ψ] ∈ ∂r(X, dX). Moreover, given two representatives φ, φ′ ∈ [φ],

∥φ ◦ f − φ′ ◦ f∥L∞(X) ⩽ ∥φ− φ
′∥L∞(Y ) <∞

so that [φ ◦ f ] = [φ′ ◦ f ].

▶ Surjectivity: Consider [ψ] ∈ ∂r(X, dX), and (xn) ⊆ X such that xn → ψ. As
Cl(f(X))∩∂(Y, dY ) is compact, there exists φ ∈ Cl(f(X))∩∂(Y, dY ) and a subsequence
(xnk

) such that f(xnk
)→ φ. Using the first computation, we have

f ∗([φ]) = [φ ◦ f ] = [ψ].

▶ Equivariance: For x ∈ X, we have

((g · φ) ◦ f)(x) = φ(g · f(x))− φ(g · f(e)) = φ(f(g · x))− φ(f(g · e)) = (g · (φ ◦ f))(x).

▶ New domain: We suppose that f is a rough isometry and prove that

Cl(f(X)) ∩ ∂r(Y, dY ) = ∂r(Y, dY ).

Fix [φ] ∈ ∂r(Y, dY ) and a sequence (yn) ⊆ Y such that yn → φ. As f is a rough
isometry, we can find (xn) ⊆ X such that dY (yn, f(xn)) ⩽ C2. As ∂(Y, dY ) is compact,
there is a subsequence xnk

such that f(xnk
)→ φ′ ∈ ∂(Y, dY ). We have

|φ(g)− φ′(g)|

= lim
k→∞

∣∣∣(dX(g, ynk
)− dX

(
f(e), ynk

))
−
(
dY
(
g, f(xnk

)
)
− dY

(
f(e), f(xnk

)
))∣∣∣

⩽ 2C2

so that [φ] = [φ′] ∈ Cl(f(X)).

▶ Inverse: There exists a rough isometry g : Y → X such that

dX
(
g(f(x)), idX(x)

)
⩽ C2.

It follows that |ψ ◦ g ◦ f − ψ| ⩽ C2 for all ψ ∈ ∂(X, dX), as horofunctions are 1-
Lipschitz, hence f ∗(g∗([ψ]) = [ψ ◦ g ◦ f ] = [ψ], i.e., f ∗ ◦ g∗ = id∂r(X,dX). Similarly,
g∗ ◦ f ∗ = id∂r(Y,dY ). We conclude that f ∗ is a bijection.
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5.2.2 Graph coverings

In this section, we relate boundaries of graphs and their coverings. Our result mostly
apply to Busemann points. In order to state our results, we need a few definitions:

Definition 5.2.2. Let G andH be two graphs (possibly with loops and multiple edges).
A graph covering is a surjection π : G ↠ H which is a local isomorphism, i.e.,

∀v ∈ V G, π : Nv → Nπ(v)

is a bijection, where Nv = {e ∈ EG | v is incident to e}.

Example 5.2.3. The main examples from come group quotients: any epimorphism
π : G↠ H induces a graph covering π : Cay(G,S) ↠ Cay(H, π(S)). More generally, we
can consider Cay(G,S) ↠ Sch(K\G,S) for any subgroup K ⩽ G.

Definition 5.2.4. Let Geo(G) be the set of geodesics rays γ = (γn)n⩾0 in G starting a
γ0 = e. For every subset Π ⊆ Geo(G), we define

∂(Π) = {bγ | γ ∈ Π} and ∂r(Π) = {[bγ] | γ ∈ Π}.

In particular, ∂(Geo(G)) is the entire set of Busemann points in ∂(G, d).

The main result of the subsection is the following:

Proposition 5.2.5. Consider a graph covering π : G ↠ H, and let

Π = {γ ∈ Geo(G) | π(γ) is eventually geodesic in H},
Πr = {γ ∈ Geo(G) | π(γ) is roughly geodesic in H}.

Consider γ, η ∈ Geo(G).

(1) Suppose that bγ = bη, then γ ∈ Π ⇐⇒ η ∈ Π. Moreover, the map

π∗ :

(
∂(Π) −→ ∂(Geo(H))
bγ 7−→ bπ(γ)

)
is well-defined and surjective.

(2) Suppose that [bγ] = [bη], then γ ∈ Πr ⇐⇒ η ∈ Πr. Moreover, the map

π∗ :

(
∂r(Πr) −→ ∂r(H, d)
[bγ] 7−→ [bπ(γ)]

)
is well-defined.

Since Π ⊆ Πr, we deduce that the restriction π∗ : ∂
r(Π) → ∂r(Geo(H)) is well-defined

and surjective. Moreover, if G ↷ G,H by isometries and π is G-equivariant, then the
subsets ∂(Π), ∂r(Π) and ∂r(Πr) are G-invariant and π∗ is G-equivariant.

Remark 5.2.6. For part (2), we could get away with π : X → Y a “rough submetry”
(i.e., dY (π(x), π(x

′)) ⩽ dX(x, x
′) + C) between general proper metric spaces.
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For the proof, we need a lemma due to Walsh, which is useful to distinguish/identify
Busemann points in ∂(G, d), and coarse variation in ∂r(X, d).

Lemma 5.2.7 ([Wal11, Proposition 2.1]). Consider γ, η ∈ Geo(G). TFAE

(a) γ and η converge to the same Busemann point, that is, bγ = bη in ∂(G, d).

(b) For all n, there exists m ⩾ n such that d(γm, ηn) = d(ηm, γn) = m− n.

(c) There is a geodesic ray sharing infinitely many points with both γ and η.

Lemma 5.2.8. Consider γ, η two roughly geodesic rays in (X, d). TFAE

(a) [bγ] = [bη] in ∂
r(X, d).

(b) There exists C ⩾ 0 such that, for all n ∈ Tγ (resp. Tη), there exists m ∈ Tη (resp.
Tγ) such that m ⩾ n and d(ηm, γn) ⩽ m− n+ C (resp. d(γm, ηn) ⩽ m− n+ C).

(c) There is a roughly geodesic ray sharing infinitely points with γ and η.

Proof. Suppose γ and η are roughly geodesic with γ0 = η0 = e and parameter D ⩾ 0.

(a) ⇒ (b): Fix bγ, bη, limits points of γ and η respectively. There exists E ⩾ 0 such
that |bγ(x)− bη(x)| ⩽ E for all x ∈ X. In particular, this holds for x = γn.

� We have bγ(γn) ⩽ lim supm∈Tγ
d(γm, γn)− d(γm, e) ⩽ −n+ 2D.

� There exists m ∈ Tη with m ⩾ n such that

bη(γn) ⩾ d(ηm, γn)− d(ηm, e)− 1 ⩾ d(ηm, γn)−m−D − 1

Combining both, we get −E ⩽ bγ(γn) − bη(γn) ⩽ m − n + 3D + 1 − d(ηm, γn) hence
d(ηm, γn) ⩽ m− n+ (3D + E + 1) =: m− n+ C.

(b) ⇒ (c): There exists a strictly increasing sequence (ni)i⩾0 such that, for all k ⩾ 0,
we have n2k ∈ Tγ and n2k+1 ∈ Tη and

d(ηn2k+1
, γn2k

) ⩽ n2k+1 − n2k + C,

d(γn2k+2
, ηn2k+1

) ⩽ n2k+2 − n2k+1 + C

We define ζ(n2k) = γ(n2k) and ζ(n2k+1) = η(n2k+1) (with domain Tζ = {ni}). Then ζ
is roughly geodesic with parameter max{C,D}.

The implication (c) ⇒ (a) follows directly from Lemma 5.1.15.

Proof of Proposition 5.2.5. We consider as basepoints e ∈ G and π(e) ∈ H.

(2) Let γ, η be roughly geodesic rays starting at γ0 = η0 = e such that [bγ] = [bη]. By
Lemma 5.2.8, there exists a roughly geodesic ray ζ interpolating between the two.
Suppose that π(γ) is roughly geodesic with parameter C ′.
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Consider m > n in Tζ . Take l > m such that ζl = γl. Then

d(π(ζm), π(ζn)) ⩽ d(ζm, ζn) ⩽ m− n+ C

and

d(π(ζm), π(ζn)) ⩾ d(π(ζl), π(ζ0))− d(π(ζl), π(ζm))− d(π(ζn), π(ζ0))
⩾ (l − 0− C ′)− (l −m+ C)− (n− 0 + C)

= m− n− (C ′ + 2C)

as π : G → H is a submetry.

Using the same argument with π(ζ) and π(η), we conclude that π(η) is roughly
geodesic too, proving the first part of the statement. Using the other direction of
Lemma 5.2.8, we conclude that [bπ(γ)] = [bπ(η)], proving that π∗ is well-defined.

(1) Essentially the same with Lemma 5.2.7.

For the surjectivity, we observe that any geodesic (any path) γ ∈ Geo(H) can
be lifted in G using the graph covering property. This gives us a geodesic ray
γ̃ ∈ Geo(G) such that γ = π(γ̃), in particular γ̃ ∈ Π and π∗(bγ̃) = bγ.

For the invariance/equivariance, take γ ∈ Π and g ∈ G. By Lemma 5.1.4, there exists
η ∈ Geo(G) such that η eventually coincides with the translate g · γ (up to a shift of
indices), in particular bη = g · bγ. Observe that π(η) eventually coincides with g · π(γ),
proving that η ∈ Π (hence g · bγ ∈ ∂(Π)) and

π∗(g · bγ) = π∗(bη) = g · bπ(γ) = g · π∗(bγ).

The proof is essentially the same for ∂r(Πr).

5.3 Busemann points on Heisenberg groups

Throughout this section, we consider G a torsionfree 2-step nilpotent group, and S a
finite symmetric generating set. Note that Ḡ can be identified with its Lie algebra g
via the exponential map. Hence the convex hull B = ConvHull(S) ⊂ Ḡ is well-posed.
Moreover, we decompose Ḡ = V1 ⊕ V2 (with V2 = [Ḡ, Ḡ]). Let Pr : Ḡ → V1 be the
abelianization map. Since Pr is a homomorphism, Pr(B) is the convex hull of Pr(S).

5.3.1 Infinite geodesic words

The main goal of this subsection is to extend Lemma 5.1.9 in the setting of finitely
generated, torsionfree, 2-step nilpotent groups. Using the previous notations, we prove

Proposition 5.3.1. Let G be a torsionfree 2-step nilpotent group, and S a finite sym-
metric generating set. For any infinite geodesic word γ ∈ Geo(G,S), there exists a
proper face F ⊂ Pr(B) such that all but finitely many letters of γ projects to F.

This argument makes heavy use of the content of Section 2.4.3.
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Proof. For every pair {s, t} ⊂ S such that Pr(s) and Pr(t) do not lie on a common face
of Pr(B), there exists an R-word v = v(s, t) such that Pr(st) = Pr(v̄) and

ℓ(v) < 2 = ℓ(st).

We denote by z(s, t) ∈ [Ḡ, Ḡ] the element satisfying st = v̄z. Let δ > 0 be the minimum
value of 2− ℓ(v(s, t)) over all such pairs.

Consider γ ∈ S∞ and let us partition S = Dγ ⊔Dc
γ. We suppose that no proper face of

Pr(B) contains Pr(Dγ), and provide a finite subword v of γ such that

∥v̄∥Stoll < ℓ(v)− C,

hence neither v nor γ can be geodesic w.r.t. the word metric (by Proposition 2.4.12).

By hypothesis, γ can be decomposed as

γ = w0 · s1u1t1 · w1 · s2u2t2 · w2 · . . . · wn−1 · snuntn · wn · w∞

where

� ui, wi ∈ S⋆ are finite words, with all the (finitely many) instances of Dc
γ in γ

appearing in w0, and w∞ ∈ S∞ is an infinite word,

� si, ti ∈ Dγ are individual letters such that the projections Pr(si),Pr(ti) do not lie
on a common face for each i ∈ {1, 2, . . . , n},

� for each s ∈ Dγ, we have |wn|s ⩾ K |u1u2 . . . un|s + C,

� the parameter n can be made arbitrarily large.

The subword we are looking for is

v = s1u1t1 · w1 · s2u2t2 · w2 · . . . · wn−1 · snuntn · wn.

As Ḡ is 2-step nilpotent, the derived subgroup [Ḡ, Ḡ] is central, we can rewrite

v = s1u1t1w1 · . . . · snuntnwn

= [s1, u1]u1s1t1w1 · . . . · [sn, un]unsntnwn

= u1v1w1 · . . . · unvn · wn · [s1, u1] . . . [sn, un] · z1 . . . zn,

where vi = v(si, ti) and zi = z(si, ti) defined earlier (the key properties being siti = vizi
and ∥vi∥Stoll ⩽ 2− δ). In particular, we have

∥u1v1w1 · . . . · unvn∥Stoll ⩽ |s1u1t1w1 · . . . · snuntn|S − nδ,

and
∥z1 . . . zn∥Stoll = O(

√
n),

so we only need good estimates on ∥wn · [s1, u1] . . . [sn, un]∥Stoll, i.e., a short R-word
representing wn · [s1, u1] . . . [sn, un]. Using Lemma 2.4.10, we can find w′

n ∈ S⋆
R such

that w̄n = w̄′
n and k(w′

n) ⩽ K. Two cases present themselves:
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� If |w′
n|s < |wn|s − C for some s ∈ S, then ℓ(w′

n) < ℓ(wn)− C too and

∥v∥Stoll ⩽ |s1u1t1 · w1 · s2u2t2 · w2 · . . . · wn−1 · snuntn · w′
n|S < ℓ(v)− C,

so can conclude without much of the conversation above.

� Otherwise, we have |w′
n|s ⩾ |wn|s − C ⩾ K |u1u2 . . . un|s for all s. Knowing that

k(w′
n) ⩽ K, the pigeonhole principle implies that the R-word w′

n contains a power
sλs with λs ⩾ |u1u2 . . . un|s for each s ∈ Dγ.

From w′
n, we construct a short word w′′

n representing wn · [s1, u1] . . . [sn, un]. For each
generator s ∈ S∞, we replace in w′

n the previous power sλs by the R-word

s−|un|s/λs
n . . . s

−|u1|s/λs

1 · sλs · s|u1|s/λs

1 . . . s|un|s/λs
n

so that ℓ(w′′
n) = ℓ(w′

n) + 2
∑

s∈S∞
1
λs
|u1u2 . . . un|s ⩽ ℓ(wn) + 2 |Dγ|. Putting every-

thing together, the triangle inequality gives

∥v̄∥Stoll ⩽ ∥u1v1w1 · . . . · unvn∥Stoll + ∥wn · [s1, u1] . . . [sn, un]∥Stoll + ∥z1 . . . zn∥Stoll
⩽
(
ℓ(s1u1t1w1 · . . . · snuntn)− nδ

)
+
(
ℓ(wn) + 2 |Dγ|

)
+O(

√
n)

= ℓ(v)− nδ +O(
√
n) + 2 |Dγ|

< ℓ(v)− C

for n large enough.

5.3.2 Orbits of Busemann points

In this section, we consider H a finitely generated, torsionfree, 2-step nilpotent group,
with the additional condition [H,H] = ⟨z⟩ ≃ Z. These coincide with lattices inside
H2k+1(R)× Rℓ (see e.g. [Sto96, Lemma 7.1]).

The goal is to generalize Theorem 5.1.10 and classify orbits of Busemann points in
∂(H, dS), for any finite symmetric generating set S. In view of Proposition 5.3.1, we
might expect that orbits of Busemann points are once again classified by proper faces
of Pr(B). However, the conclusion is not so straightforward, and we often need more
information to chose in which orbit a given Busemann point bγ fits. Namely, for each
geodesic ray γ ∈ Geo(H,S), we define

� Dγ ⊆ S, the set of letters that appears infinitely often in γ.

� Eγ ⊆ B, the minimal face of B containing Dγ.

� Fγ ⊆ Pr(B), the minimal face of Pr(B) containing Pr(Dγ).

Note that Eγ is a face of B ∩ Pr−1(Fγ), and Fγ is a proper face of Pr(B).

Definition 5.3.2. A face F ⊂ Pr(B) is commutative if ⟨F⟩ ⩽ H̄ is abelian.
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Theorem 5.3.3. Let (H,S) be a 2-step nilpotent group with [H,H] = ⟨z⟩ ≃ Z. Con-
sider two geodesic rays γ1, γ2 ∈ Geo(H,S).

(a) If bγ1 = bγ2, then Fγ1 = Fγ2. Moreover, if this face is commutative, then Eγ1 = Eγ2.

(b) Reciprocally, if

(1) all the letters of γ1, γ2 belong to E with E commutative, or

(2) all the letters of γ1, γ2 project to F with F non-commutative,

then bγ1 = bγ2.

(c) The Busemann points bγ1 , bγ2 are in the same orbit if and only if

(1) Fγ1 = Fγ2 is commutative and Eγ1 = Eγ2, or

(2) Fγ1 = Fγ2 is non-commutative.

In particular, ∂(H, dS) contains only finitely many orbits of Busemann points (since B
has only finitely many faces), hence countably many Busemann points.

Before coming to a proof of Theorem 5.3.3, let us do some anagrams!

Definition 5.3.4. For w ∈ S⋆, we define

Zw = {g ∈ ⟨z⟩ : ∃w′ a reodering of w such that w̄′ = w̄g} ⊆ [H,H] ≃ Z.

This definition extends to infinite words γ ∈ S∞, letting Zγ =
⋃

n⩾0 Zγn , where γn ∈ S⋆

is the prefix of length n of γ.

Lemma 5.3.5. Let (H,S) be a 2-step nilpotent group with [H,H] = ⟨z⟩ ≃ Z. Consider
s, t ∈ S such that [s, t] ̸= e. Then, for any word w ∈ S∗ containing the letters s, t, s, t
in that order, the set Zw ⊂ Z contains both positive and negative numbers.

Proof. We will show the existence of w′ such that w̄′ = w̄za with a > 0. Without lost
of generality, we suppose w = s v1 t v2 s v3 t. We split into different cases:

� If [s, v1tv2] ̸= e, then either w′ = s2v1tv2v3t or w
′ = v1tv2s

2v3t satisfies. (More
precisely, the first satisfies if [s, v1tv2] = za with a > 0, and the second otherwise.)

� If [t, v2sv3] ̸= e, then either w′ = sv1t
2v2sv3 or w′ = sv1v2sv3t

2 satisfies.

� Otherwise, we have w̄ = sv1t
2v2sv3. Moreover

[s, v1t
2v2] = [s, v1tv2] · [s, t] ̸= e,

hence either w′ = s2v1t
2v2v3 or w′ = v1t

2v2s
2v3 satisfies.

Lemma 5.3.6. Let (H,S) be a 2-step nilpotent group with [H,H] = ⟨z⟩ ≃ Z. Consider
an infinite word γ ∈ S∞ satisfying γ ∈ D∞

γ . Then Zγ = ⟨[s, t] : s, t ∈ Dγ⟩.
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Proof. The inclusion Zγ ⊆ ⟨[s, t] : s, t ∈ Dγ⟩ is clear. In particular, the statement is
true if [s, t] = e for all s, t ∈ Dγ. From now on, we suppose the existence of s, t ∈ Dγ

such that [s, t] ̸= e. Let’s make some observations on Zγ:

� Lemma 5.3.5 implies that Zγ (seen as a subset of Z) is unbounded above and below.

� Consider δ = max{|a| : ∃s, t ∈ S, [s, t] = za}. Then Zγ ⊆ Z is a δ-net, meaning
thickening Zγ gets you Zγ + [−δ, δ] = R. Indeed, every reordering of γn can be
obtained by successively permuting pairs of consecutive letters s, t, hence changing
the value by a commutator [s, t] = za with |a| ⩽ δ at each step.

� There exists u ∈ D⋆
γ such that Zu ⊇ ⟨[s, t] : s, t ∈ Dγ⟩∩ [−δ, δ]. For instance, if one

enumerates Dγ = {s1, s2, . . . , sn}, then

u = (s1s2)
N(s1s3)

M . . . (s1sn)
M(s2s3)

M . . . (sn−1sn)
M

satisfies when M is large enough.

Let γ = γnωn with ωn the infinite suffix. For n large enough, we can reorder γn into a
word starting with u, say γ′n = uv. Fix za ∈ ⟨[s, t] : s, t ∈ Dγ⟩ s.t. γ̄′n = γ̄nz

a. Then

Zγ = a+ Zγ′
nωn ⊇ a+ Zu + Zvωn = ⟨[s, t] : s, t ∈ Dγ⟩

as Zu ⊇ ⟨[s, t] : s, t ∈ Dγ⟩ ∩ [−δ, δ] and Zvωn is a δ-net.

Proof of Theorem 5.3.3. (a) We suppose that bγ1 = bγ2 .

▶ By Proposition 5.3.1, all but finitely many letters of γi project to a proper face Fγi ,
therefore Pr(γi) is eventually geodesic in (Pr(H), dPr(S)). We use Proposition 5.2.5(1)
and conclude that bPr(γ1) = bPr(γ2). Finally, Theorem 5.1.10 gives Fγ1 = Fγ2 .

▶ Suppose that F = Fγ1 = Fγ2 is commutative.

Let SF := S ∩ Pr−1(F). Then S±1
F generates a discrete abelian subgroup A ⩽ H.

Let Ā ⩽ H̄ be the Mal’cev completion of A, and ConvHullĀ(S
±1
F ) the convex hull

of S±1
F in Ā. By Theorem 5.1.10, the orbits of Busemann points of (A, S±1

F ) are in
one-to-one correspondence with the faces of ConvHullĀ(S

±1
F ). Note that the faces of

ConvHullĀ(S
±1
F ) ∩ Pr−1(F) coincides with the faces of B ∩ Pr−1(F).

By Lemma 5.2.7, there exists γ ∈ Geo(H,S) which intersect γ1 and γ2 infinitely often.
We have bγ = bγ1 = bγ2 , so all but finitely many letters belong to SF. In particular,
these rays are eventually geodesic in (A, S±

F ). Now we can use the other direction of
Lemma 5.2.7: as γ, γ1, γ2 are eventually geodesic and γ intersects γ1 and γ2 infinitely
many times, we have bγ1 = bγ2 in ∂(A, S±

F ), hence Eγ1 = Eγ2 by Theorem 5.1.10.
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(b1) Let F be a commutative face and E be a face of

ConvHullĀ(S
±1
F ) ∩ Pr−1(F) = B ∩ Pr−1(F).

Consider infinite words γ1, γ2 ∈ S∞ such that all the letters belong to E. In particular,
we have γ1, γ2 ∈ Geo(A, S±

F ). By Theorem 5.1.10, γ1 and γ2 yield the same Busemann
points in (A, S±

F ). By Lemma 5.2.7, there exists γ ∈ Geo(A, S±
F ) intersecting with γ1, γ2

infinitely many times. Necessarily γ ∈ S∞
F . Since Pr(SF) ⊂ F, γ1, γ2 and γ are also

geodesic rays in (H,S). By Lemma 5.2.7 again, we have bγ1 = bγ2 in ∂(H, dS).

(b2) Consider γ, η ∈ Geo(H,S) such that F = Fγ = Fη is a non-commutative face and
all letters of γ, η belong to SF. We prove that bγ = bη. More specifically, we fix a prefix
ηm of η, and attempt to extend it into a longer geodesic joining the path γ. Fix n such
that all occurrences of letters of SF \Dγ in γ = γnωn belong to γn.

Observe that ⟨Dγ⟩ is a finite-index subgroup of ⟨SF⟩. Indeed, we have

1 ⟨Dγ⟩ ∩ ⟨z⟩ ⟨Dγ⟩ Pr ⟨Dγ⟩ 1

1 ⟨SF⟩ ∩ ⟨z⟩ ⟨SF⟩ Pr ⟨SF⟩ 1

(1)

Pr

(2)

Pr

where the inclusion (1) has finite-index as both are non-trivial subgroup of ⟨z⟩ (since
the face F is non-commutative), and (2) has finite-index as both are lattices in the
hyperplane of Pr(H) = V1 supporting F. Therefore, there exists u1 ∈ S⋆

F such that
γ̄−1
n · ηmu1 ∈ ⟨Dγ⟩. Using [Wal11, Lemma 4.2], there exist u2, v ∈ D⋆

γ such that

ηmu1 · u2 = γn · v.

As every letter of Dγ appears infinitely many times in ωn, there exists a prefix w1 ∈ D⋆
γ

of ωn (so γp = γnw1 for p > n) containing all the letters of v. Then w1 can be reordered
as w′

1 = vu3 for some u3 ∈ D⋆
γ, and w̄

′
1 = w̄1g with g ∈ ⟨[s, t] : s, t ∈ Dγ⟩.

Using Lemma 5.3.6, we have g−1 ∈ Zωp , hence there exists a prefix w2 ∈ D⋆
γ of ωp (so

γq = γpw2 for q > p) which can be reordered as w′
2 with w̄′

2 = w̄2g
−1.

To summarize, we have ηmu1u2u3w
′
2 ∈ S⋆

F a geodesic extension of ηm such that

ηmu1u2u3w′
2 = γnvu3w′

2 = γnw′
1w

′
2 = γnw1w2 = γ̄q.

This can be repeated, extending γq to join η, hence bγ = bη by Lemma 5.2.7.

(c) follows from parts (a) and (b), together with Lemma 5.1.6(b).
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5.4 Reduced boundaries of 2-step nilpotent groups

The main objective of this section is Theorem 5.B, which we recall here:

Theorem 5.4.1. Let G be a finitely generated 2-step nilpotent group, and S a finite
generating set. Then the action G↷ ∂r(G, dS) is trivial.

Let us make an important observation: we have roughly isometric homomorphisms

(G, dS) −↠ (G/T, dS) ↪−→ (G/T , d).

with T = IG({e}) the (finite!) torsion subgroup of G. Here, d either stands for the
Stoll metric d = dStoll,S (Theorem 2.4.12), or for the Pansu limit metric d = dCC when

G/T is ideal (Theorem 2.4.27). Using Proposition 5.2.1, this allows to identify

∂r(G, dS)
∼←− ∂r(G/T, dS)

∼←− ∂r(G/T , d).

Since everything is G-equivariant, we only have to prove that G↷ ∂r(G/T , d) is trivial.

5.4.1 The Heisenberg group

We observe that work of Fisher and Nicolussi Golo on (H3(R), dCC) [FNG21] translates
easily in the discrete case, where we recover old and new results.

We identify H3(R) with its Lie algebra V1 ⊕ V2, with V1 ≃ R2 and V2 ≃ R. Recall
Pr : H3(R)→ V1 is the abelianization map. Moreover the group operation is given by

(a, b, c) · (a′, b′, c′) =
(
a+ a′, b+ b′, c+ c′ +

1

2
(ab′ − a′b)

)
.

Given a finite symmetric set S ⊂ H3(R) generating a lattice H = ⟨S⟩, we define

� s1, . . . , s2N the vertices of P := ConvHull(Pr(S)), numbered counterclockwise. We
take the convention that s0 = s2N .

� ek := sk − sk−1.

� ω : V1 × V1 → R defined by ω
(
(a, b), (a′, b′)

)
= a′b− ab′.

� αk(v) =
ω(ek,v)
ω(ek,sk)

for v ∈ V1.

Fisher and Nicolussi Golo characterize all the horofunctions of (H3(R), dCC). Up to
bounded functions, their result can be re-stated as

Theorem 5.4.2 ([FNG21, Theorem 5.2]). The horofunctions of a polygonal sub-Finsler
Heisenberg group (H3(R), dCC) are, up to bounded functions, classified as follows:

(Vertical) φ(v, c) = −∥v∥Mink,P := min{λ ⩾ 0 | v ∈ λP},

(Non-vertical) φ(v, c) = rαk(v) + (1− r)αk−1(v) for some r ∈ [0, 1],
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(Mixed)

φ(v, c) =

{
αi(v) if ω(si,v) ⩽ 0 (resp. ⩾ 0),

rαi(v) + (1− r)αi−1(v) if ω(si,v) ⩾ 0 (resp. ⩽ 0),

or

φ(v, c) =

{
αi−1(v) if ω(si,v) ⩽ 0 (resp. ⩾ 0),

rαi(v) + (1− r)αi−1(v) if ω(si,v) ⩾ 0 (resp. ⩽ 0),

for some r ∈ [0, 1].

Proposition 5.4.3 ([FNG21, Proposition 6.4]). H3(R) ↷ ∂r(H3(R), dCC) is trivial.

Combined with Proposition 5.2.1, we get

Corollary 5.4.4. Consider a lattice H ⩽ H3(R) with a generating set S

(a) The action H ↷ ∂r(H, dS) is trivial.

(b) ∂r(H, dS) (hence ∂(H, dS)) has the cardinality of the continuum.

Part (a) is a slight generalization of [BF20, Theorem B].

Part (b) comes in stark contrast with Theorem 5.1.7: on abelian groups, every horo-
function is a Busemann point. As proven in Theorem 5.3.3, ∂(H, dS) contains only
countably many Busemann points, hence most horofunctions are non-Busemann.

5.4.2 General case

We prove the following result in the “polytopal sub-Finsler setting”. Combined with
observations at the beginning of the section, this implies Theorem 5.B.

Theorem 5.4.5. Let Γ be a simply connected 2-step nilpotent Lie group, and S a finite
Lie generating set. Then the action Γ ↷ ∂r(Γ, dStoll,S) is trivial.

We start with a lemma from linear algebra

Lemma 5.4.6. Let (V, dE) be an Euclidean vector space, U ⩽ V a vector subspace,
and S ⊂ V a finite (multi)set. Let u ∈ U and v ∈ V satisfying

dE
(
u,Vect(S ′)

)
⩽ 2dE

(
v,Vect(S ′)

)
for all S ′ ⊆ S such that Vect(S ′) ̸⩾ U. Suppose moreover v =

∑
s∈S λs · s with λs ⩾ 0.

Then there exist αs ∈ [−C,C] such that

u =
∑
s∈S

αsλs · s.

where C = C(S) > 0 only depends on S.
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Proof. The proof splits in two steps:

(1) We construct inductively a subset B ⊂ S which freely generates Vect(B) ⩾ U,
such that λs is “large” for every s ∈ B.

(2) We estimate the coefficients of u in the basis B.

(1) We start with B0 = ∅. Suppose Bi−1 is defined, and Vect(Bi−1) ̸⩾ U. We have

dE
(
v,Vect(Bi−1)

)
⩾

1

2
dE
(
u,Vect(Bi−1)

)
Therefore, there exists si ∈ S such that

dE
(
λsisi,Vect(Bi−1)

)
⩾

1

2 |S|
dE
(
u,Vect(Bi−1)

)
.

Let Bi = Bi−1 ∪ {si}. We iterate until Vect(Bd) ⩾ U, and declare B = Bd.

(2) Let Hi = Vect(B \ {si}). We define αsi ∈ R such that u ∈ αsi · λsisi + Hi (and
αs = 0 if s /∈ B). We obviously have u =

∑
s∈S αsλs · s. Moreover,

|αsi | =
dE(u,Hi)

dE(λsisi,Hi)
=

dE(u,Hi)

dE(λsisi,Vect(Bi−1))
· dE(si,Vect(Bi−1))

dE(si,Hi)
.

The first factor is bounded by 2 |S| since

dE(u,Hi) ⩽ dE(u,Vect(Bi−1)) ⩽ 2 |S| · dE(λsisi,Vect(Bi−1)).

The second factor takes only finitely many values for a fixed S.

Proof of Theorem 5.4.5. We decompose Γ = V1 ⊕ V2, with Pr: Γ → V1 the abelianiza-
tion map. We consider d = dStoll,S on Γ, and dE an Euclidean metric on V1.

Let φ = limφgn an horofunction on (Γ, d). Among vector subspaces W ⩽ V1 such that

lim inf
n

dE(Pr(gn),W) <∞,

we consider U a minimal subspace satisfying the property. Up to taking a subsequence,
we may suppose dE(Pr(gn),U) ⩽ D for all n. Observe that, if W ̸⩾ U, then

lim inf
n

dE(Pr(gn),W) =∞

(otherwise lim inf dE(Pr(gn),U ∩W) < ∞, contradicting the minimality of U). We
decompose Pr(gn) = un + εn with un ∈ U and εn ∈ U⊥. For h, x ∈ Γ, we have

|φgn(x)− h · φgn(x)| =
∣∣∣( ∥∥x−1gn

∥∥− ∥gn∥ )− ( ∥∥x−1hgn
∥∥− ∥hgn∥ )∣∣∣

⩽
∣∣∣ ∥∥x−1gn

∥∥− ∥∥x−1hgn
∥∥ ∣∣∣+ ∣∣∣ ∥hgn∥ − ∥gn∥ ∣∣∣

⩽
∣∣∣ ∥∥x−1gn

∥∥− ∥∥x−1hgn
∥∥ ∣∣∣+ ∥h∥ .
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Since x−1hgn = x−1gn[h, gn]h = x−1gn[h,un] · [h, εn]h, we may continue with

⩽
∣∣∣ ∥∥x−1gn

∥∥− ∥∥x−1gn[h,un]
∥∥ ∣∣∣+ ∥[h, εn]∥+ 2 ∥h∥

⩽
∣∣∣ ∥∥x−1gn

∥∥− ∥∥x−1gn[h,un]
∥∥ ∣∣∣+ 4 ∥h∥+ 2 ∥εn∥Mink,Pr(S) .

Observe that ∥εn∥E ⩽ D, hence ∥εn∥Mink = O(D) as norms on finite-dimensional vector
spaces are bi-Lipschitz. It only remains the deal with the first term.

We fix n large enough so that, for each R ⊂ S such that Vect(Pr(R)) ̸⩾ U, we have

dE
(
Pr(gn),Vect(Pr(R))

)
⩾ 2dE

(
Pr(x),Vect(Pr(R))

)
+D. (5.4.7)

Using Lemma 2.4.11, there exists a geodesic R-word wn = sλ1
1 . . . sλk

k ∈ S∗
R representing

x−1gn with k ⩽ K. Using Lemma 5.4.6 for u = un, v = un + εn − Pr(x), there exist
α1, . . . , αk such that |αi| ⩽ C = C(KS) and Pr(sα1λ1

1 . . . sαkλk
k ) = un, therefore

x−1gn[h,un] = hα1sλ1
1 h

−α1 . . . hαksλk
k h

−αk ,

proving that ∥x−1gn[h,un]∥ ⩽ ∥x−1gn∥ + 2CK ∥Pr(h)∥Mink,Pr(S). The same argument

shows that ∥x−1gn∥ ⩽ ∥x−1gn[h,un]∥+ 2CK ∥Pr(h)∥Mink,Pr(S). We conclude

|φgn(x)− h · φgn(x)| ⩽ (2CK + 4) ∥h∥+OS(D) = OS(∥h∥) +OS,φ(1).

Remark 5.4.8. The result cannot be extended to virtually nilpotent groups. For
instance, for D∞ = ⟨s, t | s2 = t2 = e⟩, the horoboundary ∂(D∞, dS) consists of exactly
two Busemann points b(st)∞ and b(ts)∞ . We have t · b(st)∞ = b(ts)∞ = −b(st)∞ .

e
st

Figure 5.1: The Cayley graph Cay(D∞, {s, t}).

However, if G contains a finite-index, torsionfree, 2-step nilpotent subgroup H, then
we have two roughly isometric homomorphisms (Proposition 4.1.1)

(G, dS)←−↩ (H, dX,ω) ↪−→ (H̄, dStoll,X,ω),

so Proposition 5.2.1 allows to identify

∂r(G, dS)
∼−→ ∂r(H, dX,ω)

∼←− ∂r(H̄, dStoll,X,ω).

As everything is H-equivariant, we conclude that H ↷ ∂r(G, dS) is trivial, so the action
G↷ ∂r(G, dS) factors through a finite group G/⟨⟨H⟩⟩G.
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5.5 Busemann points on the Cartan group

In this section, we consider the lattice C in the Cartan group (see Section 3.1) generated
by the segments x and y from 0 to (1, 0) and (0, 1) respectively.

5.5.1 Construction

We are going to define a Busemann point γu for each direction u ∈ S1 in the plane.
Directions can also be parametrized by equivalence classes [a :b] ∈

(
R2 \ {(0, 0)}

)/
R+.

Note that, in order to define an infinite path γ = (γn)n⩾0, we only need to fix γ0 ∈ C,
and its projection γ̂ = (γ̂n)n⩾0 ∈ Z2 ≃ C/[C,C]. The curve γ is the unique lift. In this
case, we take γu,0 = e, and (γ̂u,n)n⩾0 which best approximates the ray R+u. Precisely,
unit squares in the grid fall into two categories, depending whether the ray passes above
or below their center. γ̂u is the boundary of the two regions formed.

γ̂u
R+u

Whenever u = [a :b] with a, b odd integers, the ray passes through the center of infinitely
many squares. We choose that γ̂u alternates above and below these squares.

Note that γ̂u is geodesic in Z2, so γu is an infinite geodesic in C, hence defines a
Busemann point in ∂(C, dS). We will see these points are distinct in ∂r(C, dS).

5.5.2 Computations of lengths

We first prove a lower bound on the length of certain elements.

Lemma 5.5.1. If g ∈ C such that ĝ = γ̂u,n and ∥g∥S = n+∆, then〈
B(g);u⊥

〉
⩽
〈
B(γu,n);u

⊥〉+O(∆3)

where u⊥ is the image of u under a rotation of +90◦. As a corollary, we have that

∥hγu,n∥S = n+ Ω
(

3
√
⟨B(h);u⊥⟩

)
for h ∈ [C,C] with ⟨B(h);u⊥⟩ > 0.
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Remark 5.5.2. If ⟨B(h);u⊥⟩ ⩽ 0, we only get the (trivial) inequality ∥hγu,n∥ ⩾ n.

The proof follows the same scheme as Proposition 4.3.1.

Proof. We first explain how the first inequality implies the corollary. Take g = hγu,n.
As h ∈ [C,C], we indeed have ĝ = γ̂u,n and

B(hγu,n) = B(h) +B(γu,n)

so, if we define ∆ = ∥g∥S − n, we have that

⟨B(h);u⊥⟩ ⩽ O(∆3) ⇐⇒ ∆ = Ω
(

3
√
⟨B(h);u⊥⟩

)
.

▶ Now, the main inequality! As ĝ = γ̂u,n, we have B(g)−B(γu,n) = B(gx)−B(γu,nx)
for all x ∈ C, so we are going to estimate ⟨B(gδ);u⊥⟩ instead of ⟨B(g);u⊥⟩, where δ is
the interval of γu between γ̂u,n and the next intersection with the ray R+u.

γu,n

δ

Figure 5.2: The path δu,nδ

Fix a geodesic path representing g. We decompose the concatenation gδ as follows:
we first remove all loops, and draw them in blue. We also cut the parts until the
last crossing of R−u, and from the first crossing of “R+u after ĝδ”. The remaining is
the “main part”, drawn in green. The green simple curve and the blue multi-curve
both define a winding number distribution (see Figure 5.3), hence both of them have a
well-defined (non-normalized) barycenter. Moreover, we have

B(gδ) = B(green area) +B(blue area),

hence we can estimate both contributions to ⟨B(gδ);u⊥⟩ separately.
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+1

−1

+1

−1

−1

g

δ

+1

−1

+1

−1

−1

+1

Figure 5.3: Decomposition of geodesic representing g

▶ Let’s first suppose the entire path gδ stays within a 2∆-neighborhood of Ru.

First observe that, by construction, both γu,nδ and the green path are simple curves.
Their winding numbers (after closing using Ru) are ±1 or 0. More specifically, +1’s
only appear below Ru, and −1’s only appear above Ru, so the contribution of each
region between gδ (or γu,nδ) and Ru to ⟨B;u⊥⟩ is negative. Moreover, for each square
cut in two by Ru, one of the two halves has to have non-zero winding number. Now we
realize that γu,nδ is defined so that ⟨B(γu,nδ);u

⊥⟩ is closest to 0 among simple curves
reaching the same endpoint, we have〈

B(green area);u⊥
〉
⩽
〈
B(γu,nδ);u

⊥〉 < 0.

On the other hand, for the blue area, the length of the blue loops is bounded by 2∆. It
follows that the total blue area is bounded by I(2∆)2 for some isoperimetric constant
I > 0 (for the grid, I = 1

16
). As all this area lies within 2∆ from Ru, we get that〈

B(blue area);u⊥
〉
⩽ 8I∆3

and finally
〈
B(gδ);u⊥

〉
⩽
〈
B(γu,nδ);u

⊥〉+ 8I∆3.



5.5. BUSEMANN POINTS ON THE CARTAN GROUP 95

▶ Let’s suppose the furthest gδ gets from Ru is exactly L∆, for some L ⩾ 2.

As before, the blue contribution is bounded by
〈
B(blue area);u⊥

〉
⩽ 4LI∆3. On the

other hand, the curve gδ goes through a point p at distance L∆ from Ru. This forces
the green area to contain a large triangle, disjoint from the forced half-cut squares.

p

L∆

⩽ ∆

⩾ (L− 3
2
)∆

Ru

⩾
√
2(L− 3

2
)∆

w = −1

It follows that〈
B(green area);u⊥)

〉
⩽
〈
B(γu,nδ);u

⊥〉+ 〈B(green triangle);u⊥
〉

⩽
〈
B(γu,nδ);u

⊥〉− √2
6

(
L− 3

2

)3

∆3

hence ⟨B(gδ);u⊥⟩ ⩽ ⟨B(γu,nδ);u
⊥⟩+

(
4LI −

√
2
6

(
L− 3

2

)3 )
∆3.

▶ Finally, we observe that L 7→ 4LI −
√
2
6

(
L− 3

2

)3
is eventually decreasing, so〈

B(gδ);u⊥
〉
⩽
〈
B(γu,nδ);u

⊥〉+M∆3

where M = max
{
8I, 4LI −

√
2
6

(
L− 3

2

)3 | L ⩾ 2
}
.

Next we give an upper bound on the length of specific elements.

Lemma 5.5.3. For h ∈ [C,C] and n large enough (depending on h), we have

∥hγu,n∥S =

{
n+O

(
3
√
⟨B(h);u⊥⟩+ |A(h)|

)
+O(1) if

〈
B(h);u⊥

〉
⩾ 0,

n+O
(

3
√
|A(h)|

)
+O(1) if

〈
B(h);u⊥

〉
⩽ 0.

If moreover u is not of the form [a : b] for integers a, b such that a xor b is even, then
we can improve the estimates and eliminate the dependence on |A(h)|:

∥hγu,n∥S =

{
n+O

(
3
√
⟨B(h);u⊥⟩

)
+O(1) if

〈
B(h);u⊥

〉
⩾ 0,

n+O(1) if
〈
B(h);u⊥

〉
⩽ 0.
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Proof. We are looking for a short path representing hγu,n. We modify the path γu,n
(with n large) to change the values of A and B from A(γu,n) and B(γu,n) to

A(hγu,n) = A(h) + A(γu,n) and B(hγu,n) = B(h) +B(γu,n).

We fine tune the parameters A, ⟨B;u⟩ and ⟨B;u⊥⟩ in three steps at the appropriate cost
under the different hypothesis. The different operations are local, hence the endpoint
γ̂u,n remains unchanged all along. We control how the length ℓ of the considered path
evolves after each step. Initially, ℓ = ∥γu,n∥S = n.

▶ First, we modify A by exactly p (p ∈ Z) at a cost O(1). Let’s first suppose u ̸=
(±1, 0), (0,±1). Suppose p > 0. We find p squares which intersect the ray Ru, around
which γ̂u goes clockwise.

c

w = −1

w = 0

−→ c

w = 0

w = +1

Each time we flip a unit square (from clockwise to counter-clockwise), we add 1 to the
winding numbers on the full square, so the parameters change by

A→ A+ 1,

B → B + c

The distance from c to Ru being at most
√
2/2, the component ⟨B;u⊥⟩ changes by at

most
√
2/2. On the other hand ⟨B;u⟩ changes essentially by ∥c∥E. After flipping all p

squares, the total effect of this operation is

A→ A+ p,

⟨B;u⟩ → ⟨B;u⟩+O(p2)

⟨B;u⊥⟩ → ⟨B;u⊥⟩+O(p),

ℓ→ ℓ.

(If we take the first p squares along the line around which γ̂u goes clockwise, that
∥c∥E = O(p) for each square, which explains why ⟨B;u⟩ → ⟨B;u⟩+ O(p2). As we will
see later, the size of this change actually doesn’t matter.) If u = (±1, 0), (0,±1), this
doesn’t quite work, we instead do the following change:

−→
p

with the same effect except ℓ→ ℓ+ 2.



5.5. BUSEMANN POINTS ON THE CARTAN GROUP 97

Under the hypothesis that u is not of the form [a :b] with a, b integers such that a xor
b is even, we can do better. We modify A by exactly p, at cost 0, and only modifying
⟨B;u⊥⟩ by O(1) (and not O(p) as before).

Thanks to the hypothesis, we can find unit squares with center c either on the ray
R+u (if u = [a : b] with a, b odd integers), or at distance at most 1

|p| from the ray (for

irrational slopes). Then, as before, we can select |p| of them to flip from clockwise to
counter-clockwise (if p > 0) or the other way around (if p < 0). After flipping all p
squares, the total effect of this operation is

A→ A+ p,

⟨B;u⟩ → ⟨B;u⟩+Ou(p
3)

⟨B;u⊥⟩ → ⟨B;u⊥⟩+O(1),

ℓ→ ℓ.

(The variation in ⟨B;u⟩ may be huge, but this is nothing to worry about.1)

▶ Next we change ⟨B;u⊥⟩ by approximately q at the appropriate cost.

⋆ If q > 0, we can find b ∈ Z2 such that ⟨b;u⊥⟩ = q +O(1) and ⟨b;u⟩ = O(1) (hence
∥b∥E = q +O(1)), and z ∈ [C, [C,C]] such that B(z) = b.

Because [C, [C,C]] is cubically distorted inside C, we have ∥z∥S = O( 3
√
q). (See for

instance [DK18, Corollary 14.16].) So we can find a loop of this length evaluating
to z, and then glue it at any point along γu. The total effect is

A→ A

B → B + b

⟨B;u⟩ → ⟨B;u⟩+O(1)

⟨B;u⊥⟩ → ⟨B;u⊥⟩+ q +O(1)

ℓ→ ℓ+O( 3
√
q)

⋆ If q < 0. There exists v ∈ {(±1, 0)(0,±1)} s.t. ⟨v;u⟩ ⩾
√
2/2,

without lost of generality let us assume that v = (1, 0). In partic-
ular we also have ⟨(0, 1);u⊥⟩ ⩾

√
2/2.

u
u⊥

For n large, we can find two disjoint sub-strings α, β in the untouched part of the
path γ̂u, with |q| occurrences of the letter x each (because ⟨(1, 0);u⟩ > 0). We
assume that both α, β start with an x.

1The subscript u indicates the implied constants in Ou(p
3) might depend on u.
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For 0 ⩽ k ⩽ |q|, let αk be the prefix of α which stop right after the kth occurrence
of x. By convention α0 = ∅. We define βk similarly. The operation is the following:
we replace the string αk by y2αky

−2, and the string βk by y−2βky
2. We prove that,

for an appropriate k, the value ⟨B;u⊥⟩ changes by q +O(1).

αk

βk

×

×

c−

×

×

c+

What happens when we replace k by k+1? The winding numbers inside two 1× 2
rectangles change by −1 and +1 respectively. So the effect is

Ak → Ak+1 = Ak + 2− 2

Bk → Bk+1 = Bk + 2(c+ − c−)

Recall that, by construction, the ray R+u passes in between the two red crosses in
the previous picture. In particular,

√
2

4
⩽
〈
(0, 0.5);u⊥

〉
⩽
〈
c−;u

⊥〉 ⩽ 〈(0, 1.5);u⊥〉 ⩽ 3

2

Similarly, we get −3
2
⩽ ⟨c+;u⊥⟩ ⩽ −

√
2
4
. Overall, this gives

−6 ⩽
〈
Bk+1;u

⊥〉− 〈Bk;u
⊥〉 ⩽ −√2 < −1

It follows that we can find k such that ⟨Bk;u
⊥⟩ − ⟨B;u⊥⟩ = ⟨Bk;u

⊥⟩ − ⟨B0;u
⊥⟩

falls at distance at most 3 from q. The total effect is

A→ A

⟨B;u⟩ → ⟨B;u⟩+O(q2)

⟨B;u⊥⟩ → ⟨Bk;u
⊥⟩ = ⟨B;u⊥⟩+ q +O(1)

ℓ→ ℓ+ 8

▶ Finally we change ⟨B;u⟩ by approximately r at a cost O(1). We glue two loops
[x, y]−1 and [x, y] on γ̂u, at a distance approximately r from each other.
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−1

+1

r +O(1)

Specifically, if c+ and c− are the centers of the two square loops, we ensure that
∥(c+ − c−)− qu∥E = O(1). The total effect of this operation is then

A→ A,

B → B + (c+ − c−)

⟨B;u⟩ → ⟨B;u⟩+ r +O(1),

⟨B;u⊥⟩ → ⟨B;u⊥⟩+O(1),

ℓ→ ℓ+ 8.

▶ Applying the three steps (in that order), we transform the curve (γ̂u,k)0⩽k⩽n with
parameters A(γu,n) and B(γu,n) into another curve with parameters

A(h) + A(γu,n) +O(1) and B(h) +B(γu,n) +O(1).

For the second step, one need to take q = ⟨B(h);u⊥⟩ + O(|A(h)|) in the general case,
or q = ⟨B(h);u⊥⟩ + O(1) under the extra hypothesis. This new curve has length
ℓ = n + O(1) + O(max{ 3

√
q; 1}) + O(1). Finally, we can fix the last O(1) difference of

the endpoint in C at an extra O(1) cost. Overall, this gives the desired upper bound

∥hγu,n∥S ⩽ ℓ = n+O(max{ 3
√
q; 1}).

5.5.3 Back to horofunctions

Theorem 5.5.4. There exists C1, C2 > 0 such that, for all h ∈ [C,C], we have

C1
3
√
⟨−B(h);u⊥⟩ ⩽ bγu(h) ⩽ C2

3
√
⟨−B(h);u⊥⟩+ |A(h)|+ C2 if

〈
−B(h);u⊥

〉
⩾ 0,

0 ⩽ bγu(h) ⩽ C2
3
√
|A(h)|+ C2 if

〈
−B(h);u⊥

〉
⩽ 0.

If moreover u is not of the form [a : b] for integers a, b such that a xor b is even, then
we can improve the estimates and remove the dependence on A(h) :

bγu(h) =

{
Θ
(

3
√
⟨−B(h);u⊥⟩

)
if
〈
−B(h);u⊥

〉
> 0,

O(1) if
〈
−B(h);u⊥

〉
⩽ 0.

Proof. This follows directly from Lemma 5.5.1 and 5.5.3, given that

bγu(h) = lim
n→∞

d(γn, h)− d(γn, e) = lim
n→∞

∥∥h−1γn
∥∥
S
− n

The only missing piece is ∥h−1γu,n∥S ⩾ n, which is true because h−1γu,n has length n
in the abelianization (same endpoint as γu,n).
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Remark 5.5.5. This should be compared with the discrete Heisenberg group H3(Z),
and more generally pairs (G,S) with “property EH” of [BF20], for which φ(h) = O(1)
for all horofunction φ ∈ ∂(G,S) and all h ∈ [G,G].

Finally, we are ready to prove our main theorem

Theorem 5.5.6. All Busemann points [bγu ] are distinct in the reduced boundary ∂r(C, dS).
Moreover, the stabilizer of [bγu ] for the action C ↷ ∂r(C, dS) satisfies

StabC([bγu ]) ⩽ {g ∈ C : ĝ ∈ Ru}

(which is [C,C] for u irrational).

Proof. Consider two distinct directions u, v ∈ S1. There exists b ∈ Z2 such that〈
−b;u⊥

〉
> 0 and

〈
−b; v⊥

〉
⩽ 0. Consider h ∈ [C, [C,C]] such that B(h) = b, then

bγu(h
n) = Θ( 3

√
n)

bγv(h
n) = O(1).

In particular bγu − bγv is not a bounded function, that is, [bγu ] ̸= [bγv ].

▶ Now let us have a look at StabC([bγu ]). Fix
� g ∈ C such that ĝ /∈ Ru or equivalently ⟨ĝ;u⊥⟩ ≠ 0
� h ∈ [C,C] such that A(h) > 0 and B(h) = 0, for instance
h = [x, y][x−1, y−1].

+1

+1

Let C1, C2 > 0 be the constants in Theorem 5.5.4 such that

bγu(∗) ⩾ C1 · 3
√
⟨−B(∗);u⊥⟩ if ⟨−B(∗);u⊥⟩ ⩾ 0,

bγu(∗) ⩽ C2 · 3
√
|A(∗)|+ C2 if ⟨−B(∗);u⊥⟩ ⩽ 0.

Fix m ∈ Z such that C1
3
√
m⟨ĝ;u⊥⟩ > C2. (In particular, m⟨ĝ;u⊥⟩ > 0.) We can

estimate the values of γu and gm · γu at hn:

bγu(h
n) ⩽ C2 · 3

√
nA(h) + C2

(gm · bγu)(hn) := bγu(g
−mhn)− bγu(g−m)

= bγu
(
hn[g−m, hn]g−m

)
+Og,u(1)

= bγu(h
n[g, h]−mn) +Og,u(1) (1)

⩾ C1
3
√
m⟨ĝ;u⊥⟩ · 3

√
nA(h) +Og,u(1) (2)

using that
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(1) bγu is 1-Lipschitz, we can extract the g−m from the right at a cost of ∥gm∥S.

(2) One can compute B(hn[g, h]−mn) = −mnB([g, h]) = −mn
(
ĝ · A(h)

)
.

Letting n→ +∞, we conclude that bγu and gm · bγu are not at bounded distance apart.
This means gm doesn’t fix [bγu ], hence neither does g.

Remark 5.5.7. The same computation shows that E ↷ ∂r(E, dS) is not trivial, for

E =
〈
x, y

∣∣ [x, [x, y]] = [x, [y, [x, y]] = [y, [y, [x, y]] = e
〉

the Engel group and S = {x±, y±}. Specifically, the orbit of [bγu ] where u = [1 : 0]
(that is [bx∞ ]) is infinite. However, it is not clear whether ∂(E, S) contains countably
or uncountably many Busemann points.

Looking at larger groups, we get uncountably many Busemann points in many nilpotent
groups, combining the previous result and Proposition 5.2.5.

Corollary 5.5.8. Let Nr,c be the free nilpotent group of rank r ⩾ 2 and step c ⩾ 3 with
the standard generating set S. Then ∂r(Nr,c, dS) contains uncountably many Buseman
points, and the action Nr,c ↷ ∂r(Nr,c, dS) is non-trivial.

Proof. Since any free nilpotent group of rank r ⩾ 2 and step c ⩾ 3 surjects onto
the Cartan group C, the uncountably many Busemann points constructed in C lift to
uncountably many Busemann points in Nr,c, by Proposition 5.2.5.

5.6 Further questions and remarks

In the spirit of the Ron-George–Yadin conjecture “∂(G, dS) is finite if and only if G
virtually cyclic”, we propose the following conjecture:

Conjecture 5.A. Let G be a group and S a finite generating set. The horoboundary
∂(G, dS) is countable if and only if G is virtually abelian.

A motivation to look at these groups is another observation of Karlsson: if ∂(G, dS) is
countable, then G↷ ∂(G, dS) admits a finite orbit [Kar08, Corollary 5].

The direction ⇐ is part of work in progress with Kenshiro Tashiro. It is not clear how
to tackle the direction ⇒; even the case of 2-step nilpotent groups is not completely
settled. If Ḡ is ideal, we can reduce the problem to ∂r(Ḡ, dCC) (see Section 5.4) and
use the description of horofunctions on Carnot groups via Pansu derivatives [FNG21].
For groups whose Mal’cev closure is not ideal, this approach would require a better
understanding of horofunctions for subFinsler group, without Pansu derivatives.
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We also propose the following weakening of the Tointon–Yadin conjecture:

Conjecture 5.B. If G is 2-step nilpotent, then the set of orbits of Busemann points in
∂(G, dS) is finite. In particular, there are at most countably many Busemann points.

We do not adventure in a complete characterization of group with countably many
Busemann points, as many other groups (or rather marked groups) may enter the
picture. For instance, filiform groups (such as the Engel group), or pairs (G, dS) with
sub-exponential geodesic growth (including virtually Cartan groups, see Chapter 4)
may only have countably many Busemann points.

Note that Conjecture 5.B reduces to the only case (N2,r, Sr), the free 2-step nilpotent
group of r with its standard generating set. Indeed, if G is 2-step nilpotent, generated
by S of size |S| = r, then there exists an epimorphism f : N2,r → G such that f(Sr) = S,
hence we can apply Proposition 5.2.5.

∗ ∗ ∗

In the computation leading to Theorem 5.5.4, the upper bound presents a non-trivial
“number theoretic” dependence in u. We expect that a matching lower bounds can be
proven. This behavior should not be present for sub-Finsler metrics.

Conjecture 5.C. Let (C, dS) be the Cartan group with the standard generating set.

(a) If u = [a : b] with a ̸≡ b (mod 2), then

∀h ∈ [C,C], bγu(h) = Θ
(

3
√
|A(h)|+ ⟨−B(h), u⊥⟩

)
.

(b) For every subFinsler metric d on C̄. For every φ ∈ ∂(C̄, d), we have

∀h ∈ [C̄, C̄], B(h) = 0 =⇒ φ(h) = O(1).

(Or more strongly, φ(h) does not depend on A(h), up to a bounded function.)

As an interesting corollary, this would imply that |dS − d| is not bounded for any choice
of subFinsler metric d on C̄, answering a question of Enrico Le Donne.

∗ ∗ ∗

Pierre Pansu asked if we could fix the conjecture of Bader–Finkelshtein by a “more
reduced” boundary. Specifically, for each α ∈ [0, 1), let us consider

Oα(G,R) :=
{
f : G→ R

∣∣ f(g) = O(∥g∥αS)
}

the space of functions growing slower than some given power of the norm.

Question 5.D. Let (G, dS) be a finitely generated nilpotent group. Does there exist
α ∈ [0, 1) such that the action G↷ ∂(G, dS)/O

α(G,R) is trivial.

For the specific example φ = bγu on (C, dS) we have computed, we have only shown

that |g · φ(h)− φ(h)| = Ω(∥h∥2/3S ), so α = 2
3
seems plausible in this case.
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Finally, let us return to our original motivation: the existence of non-trivial virtual
characters. For 2-step nilpotent groups, we proved that G ↷ ∂r(G, dS) is trivial. This
means that, for all φ ∈ ∂(G, dS) and g ∈ G, we have

∀h ∈ G, |g · φ(h)− φ(h)| ⩽ Cφ,g.

For some horofunctions, this can be improved to

∀g, h ∈ G, |g · φ(h)− φ(h)| ⩽ Cφ,

where the constant Cφ does not depend on g, which can be rewritten as

∀g, h ∈ G, |φ(gh)− φ(g)− φ(h)| ⩽ Cφ,

i.e., φ is a quasi-morphism. As H2
b (G,R) = {0} for amenable groups, we conclude the

existence of a homomorphism φ̃ : G → R such that |φ(h)− φ̃(h)| = O(1). As every
horofunction is unbounded, we conclude that φ̃ is a non-trivial character.

It is natural to ask if this line of argument can be extended for more general groups.

Question 5.E. Let G be a finitely generated nilpotent group. Does there exist φ ∈
∂(G, dS) and β ∈ [0, 1) such that

∀g, h ∈ G, |g · φ(h)− φ(h)| = O
(
max{∥g∥S , ∥h∥S}

β
)
?

More generally, if we restrict to g ∈ Hφ a finite-index subgroup, does the same hold
true for G growing sufficiently slowly (say βG(n) ⪯ nlog(n) or exp(

√
n))?

Question 5.F. Fix β ∈ (0, 1). Consider a map φ : G→ R such that

∀g, h ∈ G, |φ(gh)− φ(g)− φ(h)| = O
(
max{∥g∥S , ∥h∥S}

β
)
.

Suppose G is amenable (or grows sub-exponentially). Can we conclude the existence
of a homomorphism φ̃ : G→ R such that |φ(g)− φ̃(g)| = O(∥g∥βS) ?
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Chapter 6

Membership problems

This chapter focuses on two decision problems, namely the Submonoid and Rational
Subset Membership problems. For a group G (either given as a matrix group, or
endowed with a finite generating set S) we look for algorithms with specifications:

Submonoid Membership problem (SMM(G))

Input: Elements g and g1, g2, . . . , gn ∈ G (defined as matrices or words over S).

Output: Decide whether g ∈ {g1, g2, . . . , gn}∗.

Rational Subset Membership problem (RatM(G))

Input: An element g ∈ G (given either as a matrix or as a word over S) and a
rational subset R ⊆ G (defined by a finite state automaton, labeled by
elements in G given either as matrices or as words over S).

Output: Decide whether g ∈ R.

Both problems are known to be decidable for a few classes of groups, starting with
free groups [BS86] and virtually abelian groups [Gru99]. We suggest to have a look at
surveys [Lo15b; Don23; Lo24] for a better picture.

Finally, we recall the Knapsack Problem which plays a role. This problem is a special
case of Rational Subset Membership, introduced more recently in [MNU13].

Knapsack problem (KS(G))

Input: Elements g and g1, g2, . . . , gn ∈ G (defined as matrices or words over S).

Output: Decide whether g ∈ {g1}∗ {g2}∗ . . . {gn}∗.

This sub-problem is known to be decidable in a much larger class of group. This includes
hyperbolic groups [MNU13] and co-context-free groups [KLZ16].

105
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Finitely generated submonoids are rational, hence the decidability of RatM(G) implies
the decidability of SMM(G). A natural question is whether the reciprocal holds:

Question (Lohrey-Steinberg). Does there exist a finitely generated group with decid-
able Submonoid Membership and undecidable Rational Subset Membership?

Lohrey and Steinberg proved both problems are recursively equivalent in RAAGs [LS08]
and infinitely-ended groups [LS10]. However, they conjecture a positive answer for more
general groups. They also note that the existence of such a group is equivalent to the
property “SMM(G) is decidable” not being closed under free products [LS10, §4].

start
eG

g1

eG

g2 g3 gk

· · ·

Figure 6.1: Finite state automaton relative to the Knapsack problem

For (non virtually abelian) nilpotent groups, the full picture is not clear yet.

� The Knapsack problem (hence RatM(G)) is undecidable in large nilpotent groups,
most notably G = H3(Z)k and Nk,2 for k ≫ 1. [Lo15a; KLZ16; MT17]

� Submonoid Membership is undecidable in H3(Z)k for k ≫ 1. [Rom23]

Both results rely on the negative solution to Hilbert’s 10th problem: there exists no
algorithm deciding whether a Diophantine equation (or system of equations) admits an
integer solution [Mat93]. On the positive side, the list of results is even shorter:

� The Knapsack problem in decidable in H2m+1(Z) for all m ⩾ 1. [KLZ16]

� Colcombet, Ouaknine, Semukhin and Worrell proved that Submonoid Membership
is decidable in H2m+1(Z) for all m ⩾ 1. [COSW19]

Note that the former relies on deep results on quadratic Diophantine equations [GS04],
whereas the latter is elementary. This points to RatM(G) being harder than SMM(G),
hence the hope to separate both problems within the class of nilpotent groups.

As a first step, we re-interpret and extend Colcombet and al.’s result:

Theorem 6.A (Theorem 6.2.1). There exists an algorithm with specifications

Input: A finitely presented nilpotent group G (given by a finite presentation), a
finite set S ⊂ G and an element g ∈ G (given as words).

Output: Finitely many instances gi
?
∈ Ri of the Rational Subset Membership in a

subgroup H ⩽ G such that g ∈ S∗ if and only if gi ∈ Ri for some i.

Moreover, it solves these instances if h([H,H]) = h([G,G]), with h the Hirsch length.

Note that, if h([G,G]) ⩽ 1, e.g. for H2m+1(Z), then either h([H,H]) = h([G,G]) or H
is virtually abelian. In both cases the instances of RatM(H) are decidable.
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In a more conceptual direction, Theorem 6.A can be used to construct examples con-
firming the conjecture of Lohrey and Steinberg:1

Theorem 6.B (Corollary 6.2.3). There exists a nilpotent group of class 2 with decidable
Submonoid Membership and undecidable Rational Subset Membership.

Remark. It is crucial to consider the uniform version of the Rational Subset Mem-
bership in the previous result. Indeed the instances of RatM(H) we need to solve will
depend on g ∈ G, even for a fixed submonoid S∗ ⊆ G.

Our second main result deals with the discrete Heisenberg group

H3(Z) =


1 a c
0 1 b
0 0 1

 ∣∣∣∣∣∣ a, b, c ∈ Z

 ≃ 〈x, y ∣∣ [x, [x, y]] = [y, [x, y]] = 1
〉
.

The Heisenberg group is the smallest (non virtually-abelian) f.g. nilpotent group, in the
sense that it embeds in all such groups. We prove the following:

Theorem 6.C (Theorem 6.3.9). H3(Z) has decidable Rational Subset Membership.

We actually prove a stronger result: it is decidable whether an equation with rational
constraints in H3(Z) admits a solution. This extends on [DLS15].

Along the way, we provide results with application to the following decision problem:

Identity problem (Id(G))

Input: A finite sets of elements S ⊂ G (eg. given as matrices or words).

Output: Decide whether the sub-semigroup S+ contains the neutral element eG.

This is a natural variation on the Matrix Mortality problem introduced by Markov.
Instead of asking whether the zero matrix can be written as a product of elements of a
subset S given as input, we ask for the identity matrix. This problem was first studied
in [CK10], with important contributions [BP09; Do24a; Do24b] for F2 × F2, nilpotent
groups of class ⩽ 10, and metabelian groups respectively.

Building on work of Dong [Do24a], we prove the following result:

Theorem 6.D (Theorem 6.1.3). The Identity problem is decidable in every finitely
generated nilpotent group G.

The algorithm is uniform in the group (i.e., we could take G = ⟨X | R⟩ as input).
Moreover, for a fixed group G, the algorithm runs in polynomial time.

1An earlier example is A ≀ Z2 with A ̸= 1 finite abelian. See the Bachelor thesis [Pot20], based on
an argument of Doron Shafrir [unpublished, 2018]. I thank Markus Lohrey for telling me about it.
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6.1 The Identity problem

6.1.1 Characterization of finite-index subgroups

We give a useful result, which can be understood as a discrete version of the Chow-
Rashevskii theorem in sub-Riemannian geometry. This allows to detects finite-index
subgroups among sub-semigroups. An equivalent result was independently proven by
Doron Shafrir [Sha24a, Theorem 2].

Proposition 6.1.1. Let G be a finitely generated nilpotent group, and consider the map
Pr: G↠ G/I([G,G]) ≃ Zr. For any set S ⊆ G, the following assertions are equivalent

(a) ConvHull(Pr(S)) ⊆ Rr contains a ball B(0, ε) for some ε > 0.

(b) For every non-zero linear form f : Rr → R, there exists s ∈ S s.t. f(Pr(s)) < 0.

(c) For every non-zero homomorphism f ′ : G→ R, there exists s ∈ S s.t. f ′(s) < 0.

(d) The sub-semigroup S+ is a finite-index subgroup of G.

If S is finite, we can restrict to non-zero homomorphism f ′ : G→ Z.

We start with a quick lemma translating that a subgroup H ⩽ Zr has infinite index if
and only if it is included inside an hyperplane.

Lemma 6.1.2. A subgroup H ⩽ Zr has infinite index if and only if there exists a
non-zero morphism f : Zr ↠ Z such that H ⩽ ker(f).

Proof. First if H ⩽ ker(f) for some morphism f : Zr → Z, then

[G : H] ⩾ [G : ker(f)] = |Z| =∞.

If H has infinite-index, then Zr/H is an infinite, finitely generated, abelian group, hence
factors onto Z. The composition Zr ↠ Zr/H ↠ Z provides the desired f .

Proof of Proposition 6.1.1. (a) ⇒ (b) is trivial, and ¬(a) ⇒ ¬(b) is Hahn-Banach for
C the interior of ConvHull(Pr(S)) and p = 0. The equivalence (b) ⇔ (c) follows from

Pr∗ :

(
Hom(G/IG([G,G]),R) −→ Hom(G,R)

f 7−→ f ◦ Pr

)
being an isomorphism. The map Pr∗ is onto as any homomorphism f ′ : G→ R factors
through G/IG([G,G]) ≃ Zr since R is torsionfree abelian.

(d) ⇒ (b) follows from Lemma 6.1.2 with H = Pr(S+). We prove that (a,b,c) ⇒ (d),
arguing by induction on the nilpotency class c. Let P = ConvHull(Pr(S)).
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Base case. We have c = 1, i.e., G ≃ Zr × T with T finite abelian. We prove that
−Pr(s) ∈ Pr(S)+ for all s ∈ S, hence that Pr(S)+ is a subgroup (as S is non-empty).

� We first assume that S is finite, it follows that P is a convex polytope. Consider the
ray from 0 through −Pr(s). This ray intersects some facet F of P at −xPr(s) for
some x > 0 as B(0, ε) ⊂ ConvHull(Pr(S)). Using Caratheodory’s Theorem, there
exist r vertices Pr(s1), . . . ,Pr(sr) of F such that

∃y1, . . . , yr ∈ R⩾0 summing to 1, such that − xPr(s) = y1 Pr(s1) + . . .+ yr Pr(sr).

Moreover we may assume x ∈ Q>0 and yi ∈ Q⩾0 as the coefficients of the underlying
system are integers. Finally, we multiply by some well-chosen positive integer N in
order to cancel out denominators, and get

−Pr(s) = (Nx− 1) · Pr(s) +Ny1 · Pr(s1) + . . .+Nyr · Pr(sr) ∈ Pr(S)+.

� If S is infinite, we can find some finite subset S0 ⊂ S such that 0 lies in the interior
of P0 = ConvHull(Pr(S0)) and S0 ∋ s. Now we may repeat the previous argument
with S0 and conclude that −Pr(s) ∈ Pr(S0)

+ ⊆ Pr(S)+.

This proves that Pr(S)+ is a subgroup. This can be extended to S+. Indeed, for each
s ∈ S, there exists w ∈ S+ such that sw ∈ T hence (sw)|T | = eG.

Finally Pr(S)+ is not included inside any hyperplane (condition (b)), hence Pr(S)+ has
finite index in Zr by Lemma 6.1.2, and therefore S+ has finite-index in G.

Induction. Suppose that the induction hypothesis holds for c − 1 ⩾ 1. We fix G of
nilpotency class c, i.e., γc+1(G) = {eG}, and a subset S ⊆ G satisfying condition (abc).
We prove that (i.) S+ ∩ γc(G) is a finite-index subgroup in γc(G), and deduce that (ii.)
S+ is a finite-index subgroup in G.

i. Proof that S+ ∩ γc(G) is a finite-index subgroup in γc(G).

Note that γc(G) is finitely generated abelian and S+ ∩ γc(G) = (S+ ∩ γc(G))+. This is
exactly the setup for the base case! We verify condition (c): for each non-zero morphism
f ′ : γc(G)→ R, we provide t ∈ S+ ∩ γc(G) such that f ′(t) < 0. (Claim 4)

Claim 1. H = S+ γc(G) is a finite-index subgroup of G.

For any non-zero homomorphism g′ : G/γc(G)→ R, the composition

G G/γc(G) Rπ g′

is a non-zero morphism hence there exists s ∈ S s.t. g′(π(s)) < 0. This means that
π(S) ⊆ G/γc(G) satisfies condition (c). However, G/γc(G) has nilpotency class c − 1.
By induction hypothesis, it follows that π(S)+ is a finite-index subgroup of G/γc(G).
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Claim 2. For each g ∈ G, we have gM ∈ H for M = lcm
(
1, 2, . . . , [G : H]

)
.

Equivalently there exists wg ∈ S+ and zg ∈ γc(G) ⩽ Z(G) such that gM = wgzg.

By the pigeonhole principle, there exist 0 ⩽ i < j ⩽ [G : H] such that giH = gjH

hence gj−i ∈ H. It follows that gM = (gj−i)
M
j−i ∈ H which proves the claim.

Claim 3. For each homomorphism f ′ : γc(G) → R, either f ′ ≡ 0, or there exist
g ∈ G and h ∈ γc−1(G) such that f ′([g, h]) < 0.

Indeed,
{
[g, h]

∣∣ g ∈ G, h ∈ γc−1(G)
}
is a symmetric generating set for γc(G), hence

either f([g, h]) = 0 for all g, h and f ′ ≡ 0, or the desired g, h do exist.

Claim 4. There exists t ∈ S+ ∩ γc(G) such that f ′(t) < 0.

Take g ∈ G and h ∈ γc−1(G) as in Claim 3. Since [g, h] ∈ γc(G) ⩽ Z(G), one has
[gp, hq] = [g, h]pq for all p, q ∈ Z. In particular, for any p ∈ Z>0, we have

[g, h]M
2p2 = [gMp, hMp] = wp

gw
p
hw

p
g−1w

p
h−1 ·

(
zgzhzg−1zh−1

)p
for some wg, zg, wh, zh, wg−1 , zg−1 , wh−1 , wh−1 as in Claim 2. It follows that

f ′
(
wp

gw
p
hw

p
g−1w

p
h−1

)
=M2p2 · f ′([g, h])− p · f ′(zgzhzg−1zh−1

)
< 0

for p large enough. The element is t = wp
gw

p
hw

p
g−1w

p
h−1 ∈ S+ ∩ γc(G).

ii. Proof that S+ is a finite-index subgroup inside G.

First we show that S+ is a subgroup of G. For each s ∈ S, there exists w ∈ S+ such that
sw ∈ γc(G): this follows from the fact that s must have an inverse wz in H = S+γc(G)
(with w ∈ S+ and z ∈ γc(G)) by Claim 1. So sw ∈ S+ ∩ γc(G) which is a subgroup by
(i.), and thus we deduce that (sw)−1 ∈ S+ ∩ γc(G) which implies s−1 = w(sw)−1 ∈ S+.

Finally, we show that S+ has finite index in G. The index of S+ in G is given by[
G : S+

]
= [G : S+γc(G)] · [S+γc(G) : S

+]

=
[
G/γc(G) : S+/

(
S+ ∩ γc(G)

)]
·
[
γc(G) : S

+ ∩ γc(G)
]
<∞,

using several times the isomorphism theorem HK/K ≃ H/H ∩K for K ⩽ NG(H).

6.1.2 The algorithm

Theorem 6.1.3. The Identity problem is uniformly decidable in f.g. nilpotent groups.

Input: A finite presentation G = ⟨X | R⟩ and a finite set S ⊂ (X ∪X−1)∗.

Output: Decide whether g ∈ S+.

We present our own algorithm which mixes group theory and convex geometry.
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Proof. We initiate with G0 = G and S0 = S.

(1) Compute the “torsionfree-abelian-isation” of Gt, that is, compute the map

Pr: Gt −→ Gt/IGt([Gt, Gt]) ↪−→ Qr,

where the last map has full rank. Suppose Gt = ⟨X | R⟩. There is a canonical map
π : FX → QX . (We write elements of QX as sum of elements of X.)

� Compute a basis of Vect(π(R)) and complete it with x1, . . . , xr ∈ X.

� Then Qr =
⊕r

i=1Qxi and Pr is the projection along Vect(π(R)).

(2) Write P = ConvHull(Pr(St)) as the intersection of half-spaces fi(x) ⩾ ai with
fi : Qr → Q non-zero linear forms and ai ∈ Q. This requires to convert the V-
representation of the polytope to an H-representation.

(3) Check the sign of each ai.

� If ai < 0 = fi(0) for all i, this means that 0 lies in the interior of P , we may
conclude that eG ∈ S+

t ⊆ S+ using Proposition 6.1.1 (or Lemma 6.1.7).

� If there exists some ai > 0, we conclude that eG /∈ S+. Indeed

fi(Pr(s1s2 . . . sℓ)) =
ℓ∑

j=1

fi(Pr(sj)) ⩾ ℓai > 0 = fi(Pr(eG))

for any word s1s2 . . . sℓ ∈ S+
t .

� Otherwise, we go back to step (1) with new inputs

Gt+1 =
⋂

i:ai=0

ker(fi ◦ Pr) and St+1 = St ∩Gt+1.

This will give the same answer as eG ∈ S+
t if and only if eG ∈ S+

t+1. Indeed, for
any element s̃ ∈ S \ Snew, there exists i such that ai = 0 (hence fi(Pr(s)) ⩾ 0
for all s ∈ S) and fi(Pr(s̃)) > 0. In particular, for any w ∈ S+

t containing s̃,

fi(Pr(w)) ⩾ fi(Pr(s̃)) > 0 = fi(Pr(eG))

so that w ̸= eG.

Note that a presentation for Gt+1 can be effectively computed combining the
solutions for problems (III) and (IV) of [MMNV22, p. 5427].

It remains to justify that the algorithm terminates. The key observation is that the
Hirsch length h(G) decreases at each loop. Indeed, there exists some i such that ai = 0.
We have Gt+1 ⩽ ker(fi ◦ Pr), hence

h(Gt+1) ⩽ h(ker(fi ◦ Pr)) = h(Gt)− h(Z) = h(Gt)− 1.

It follows that the algorithm either terminates, or we get to the point where Gt = {eG}.
In the later case, either St = ∅ or St = {eG}, we can easily conclude in both cases.
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Remark 6.1.4. This algorithm seems quite wasteful. The presentation, and especially
the words representing the elements of S in the successive generating sets gets larger.
A better implementation (in P) is given by Dong [Do24a, Algorithm 1]:

(0) Identify S0 = S as subsets of the Lie algebra g of the Q-Mal’cev completion of ḠQ.

(1) Let St = {s1, s2, . . . , sℓ} ⊂ g. Compute C the cone of solutions x ∈ Qℓ
⩾0 to

x1s1 + x2s2 + . . .+ xℓsℓ = 0 mod [St, St]

where [St, St] = VectQ
{
[si1 , si2 ], [si1 , si2 , si3 ], . . . , [si1 , . . . , sic ] : si ∈ St

}
.

(2) Let St+1 = {si | ∃x ∈ C with xi > 0}.

(3) If St+1 = St, we conclude that eG ∈ S+ (⋆). If St+1 = ∅, we conclude eG /∈ S+.
Otherwise, go back to step (1) with input St+1.

The tricky part (only proven for groups of nilpotency class c ⩽ 10 in [Do24a]) is the
justification of (⋆). The condition St+1 = St means that, in ⟨Si⟩ /I([Si, Si]), we can
write 0 as a positive combination of all the si, hence 0 sits in the interior of the convex
hull ConvHull(Pr(Si)), and we may apply Proposition 6.1.1.

6.1.3 A parte - Alternate proof via orders

We provide a alternative, weaker lemma which is still sufficient to prove the correctness
of Algorithm 6.1.3. The proof uses the theory of left-invariant orders. (This allows for
a very short proof, at the cost of being far from self-contained.)

Definition 6.1.5. Let G be a group and ≻ a partial order on G

� ≻ is left-invariant if, for all g, h, h′ ∈ G, we have h ≻ h′ =⇒ gh ≻ gh′.

� A total left-invariant order ≻ is Conradian if, for all g, h ∈ G such that g, h ≻ eG,
we have ghn ≻ h for some n ⩾ 1.

A fundamental theorem about Conradian order is Conrad’s theorem [Con59, Thm 4.1],
see also [DNR14, Corollary 3.2.28] for a modern treatment.

Theorem 6.1.6 (Conrad). Let G be a finitely generated group and ≻ a Conradian order
on G. There exists an homomorphism f : G→ R such that g ≻ eG implies f(g) ⩾ 0.

Lemma 6.1.7. Let G be a finitely generated torsion-free nilpotent group, and fix S ⊆ G.
If eG /∈ S+, then there exists a non-zero morphism f : G→ R s.t. f(s) ⩾ 0 for all s ∈ S.

Proof. As eG /∈ S+, we can define a partial left-invariant order

g < h ⇐⇒ g−1h ∈ S+.

This order satisfies s > eG for all s ∈ S. Using [Rhe72, Theorem 4], we can extend this
order to a total left-invariant order ≻ on G. Moreover the order ≻ is Conradian using
[Rhe72, Theorem 2]. The existence of f now follows from Conrad’s theorem.
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6.2 Dimension gain for Submonoid Membership

6.2.1 Proof of Theorem 6.A

We prove Theorem 6.A, which we re-state for the reader’s convenience:

Theorem 6.2.1. There exists an algorithm with specifications

Input: A finitely presented nilpotent group G, a finite set S ⊂ G, and g ∈ G.

Output: Finitely many instances {gi
?
∈ Ri} of the Rational Subset Membership in a

subgroup H ⩽ G such that g ∈ S∗ if and only if gi ∈ Ri for some i.

Moreover, the algorithm solves these instances if h([H,H]) = h([G,G]).

Proof. First, we may assume eG ∈ S. The proof splits into three steps

(1) We compute the image of S through Pr: G ↠ G/IG([G,G]) ≃ Zr. Using this
quotient, we define a subgroup H ⩽ G (depending only on S) and a partition
S = S0 ⊔ S+. For each s ∈ S, we look whether Pr(s) is invertible in Pr(S)∗ ⩽ Zr.

(2) We reduce the problem g ∈ S∗ to finitely many instances of RatM(H).

(3) In the case when h([H,H]) = h([G,G]), we solve the previous instances of RatM(H).

The first step follows [COSW19, Theorem 7] closely, while the last step generalizes
“Case II” from the same proof. The observation of the second step seems new.

▶ First we compute a map Pr: G → Zr from a presentation for G. We consider
the polytope ConvHull(Pr(S)) ∋ 0 given by a V-representation (namely, Pr(S)). We
can compute an H-representation (H for half-space), that is, a finite set of inequalities
{fi(v) ⩾ ai} with fi : Zr → Z non-zero linear form and ai ∈ Z such that

ConvHull(Pr(S)) =
{
v ∈ Rr

∣∣ ∀i ∈ I, fi(v) ⩾ ai
}

This is the classical facet enumeration problem. (See [Zie94, Section 1.2] and references
therein for a thorough treatment.) We compute a maximal linearly independent set
{f1, f2, . . . , fs} of linear forms among all inequalities fi(v) ⩾ 0 in the H-representation,
and define an homomorphism f : G→ Zs via

f(h) =
(
f1(Pr(h)), f2(Pr(h)), . . . , fs(Pr(h))

)
.

The image of f : G → Zs has finite-index (by linear independence), and f(S) ⊂ Zs
⩾0.

We define H = ker f and partition S into S0 = S ∩H and S+ = S \H.

Geometric intermezzo: We are looking at the minimal face F of ConvHull(Pr(S))
containing 0 (i.e., no proper sub-face of F contains 0). This face is given by

F = ConvHull(Pr(S)) ∩K = ConvHull(Pr(S0))

where K =
{
v ∈ Rr

∣∣ fi(v) = 0 for i = 1, 2, . . . , s
}
. The minimality of F can be

stated as “there exists ε > 0 such that B(0, ε) ∩K ⊂ F”.
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▶ There exists only finitely many words w = u1u2 . . . uk ∈ S⋆
+ such that

f(w̄) =
k∑

i=1

f(ui) = f(g)

(Indeed, k is bounded by the sum of the components of f(g).) For each word w, we
need to decide whether g ∈ S∗

0u1S
∗
0u2S

∗
0 . . . S

∗
0ukS

∗
0 . Observe that

S∗
0 · u1S∗

0 · u2S∗
0 · . . . · ukS∗

0 = S∗
0 ·
(
v1S0v

−1
1

)∗ · (v2S0v
−1
2

)∗ · . . . · (vkS0v
−1
k

)∗ · vk
where vi = u1u2 . . . ui hence the problem can be restated as

gv−1
k

?
∈ R := S∗

0 ·
(
v1S0v

−1
1

)∗ · (v2S0v
−1
2

)∗ · . . . · (vkS0v
−1
k

)∗ ⊆ H

which is an instance of the Rational Subset Membership Problem in H.

We note that algorithms presented in [MMNV22] allow to compute a presentation forH,
and then rewrite all elements gv−1

k ∈ H and visv
−1
i ∈ H as words over the corresponding

generating set. (Problems (III), (IV) and (II) in the article.)

▶ We solve the Membership problem under the hypothesis h([G,G]) = h([H,H]).

Observe that IG([G,G]) = IH([H,H]). Indeed, we have IG([G,G]) ⩽ H as H is the
kernel of f : G→ Zs with Zs torsionfree abelian, and

m =
[
IG([G,G]) : [H,H]

]
=
[
IG([G,G]) : [G,G]

][
[G,G] : [H,H]

]
<∞.

For every g ∈ IG([G,G]), we have gm! ∈ [H,H] hence g ∈ IH([H,H]), proving the
observation. In particular, we can identify H/IH([H,H]) = H/IG([G,G]) = Pr(H).

Condition (a) of Proposition 6.1.1 (for H and S0) now reads “F = ConvHull(Pr(S0))
contains a ball B(0, ε) ∩K”, which holds by minimality of F . We conclude that S∗

0 is
a finite-index subgroup of H. Finally, the problem can be restated as

⟨S0⟩ gv−1
k ∩

(
v1S0v

−1
1

)∗ · (v2S0v
−1
2

)∗ · . . . · (vkS0v
−1
k

)∗ ?
= ∅

which is easily decided using Lemma 2.6.6(c).

6.2.2 Proof of Theorem 6.B

We give a lemma on abstract commensurability classes of subgroups of N2,m×Zn. Some
ideas can already be found in [GG55, Theorem 7].

Lemma 6.2.2. Any subgroup H ⩽ N2,m × Zn admits a finite-index subgroup H ′ ⊴ H
isomorphic to N2,k × Zℓ for some k ⩽ m and ℓ ⩽

(
m
2

)
−
(
k
2

)
+ n.
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Proof. Let G = N2,m × Zn and fix a subgroup H ⩽ G. Consider the map

α : N2,m × Zn −→ N2,m −→ Zm

The image α(H) ⩽ Zm is isomorphic to Zk for some k ⩽ m. Fix g1, . . . , gk ∈ H such
that {α(gi)} is a basis for α(H).

Claim 1. The morphism N2,k ↠ ⟨gi⟩ sending xi 7→ gi is an isomorphism.

As N2,k is torsionfree, any non-trivial subgroup has positive Hirsch length, hence any
proper quotient satisfies h(Q) < h(N2,k). On the other side, the abelianization of
⟨gi⟩ is Zk by construction, and its derived subgroup is generated by the

(
k
2

)
linearly

independent commutators [gi, gj] with i < j (as the α(gi) form a linearly independent
subset of Zm). This implies that ⟨gi⟩ cannot be a proper quotient of N2,k.

Observe that K = kerα is the center of G, in particular is abelian. We have

K K/ ⟨gi⟩ ∩K T × Z(
m
2 )−(

k
2)+n Z(

m
2 )−(

k
2)+n∼

where T is some finite abelian group. Indeed K ≃ Z(
m
2 )+n and ⟨gi⟩ ∩ K ≃ Z(

k
2). We

denote the whole composition by β, and the composition of the first two arrows by γ.

The image β(H ∩K) ⩽ Z(
m
2 )−(

k
2)+n is isomorphic to Zℓ for some ℓ ⩽

(
m
2

)
−
(
k
2

)
+n. Fix

h1, . . . , hℓ ∈ H ∩K such that {β(hj)} is a basis of β(H ∩K).

Claim 2. As K is abelian, β : ⟨hj⟩↠ β(H ∩K) ≃ Zℓ is an isomorphism.

Claim 3. We have H ′ := ⟨gi, hj⟩ ≃ N2,k × Zℓ. It suffices to check that

� ⟨gi⟩ and ⟨hj⟩ commutes, which is true as ⟨hj⟩ ⩽ K = Z(G).

� ⟨gi⟩ ∩ ⟨hj⟩ = 1, which is true as ⟨hj⟩ ⊂ K, β|⟨hj⟩ is injective and β|⟨gi⟩∩K is zero.

Claim 4. H ′ ⊴ H and H/H ′ is finite.

As α(H ′) = α(H), we have [H ′, H ′] = [H,H] and therefore H ′ ⊴ H. Moreover,

H/H ′ ≃ H ∩K/H ′ ∩K ≃ γ(H ∩K)/γ(H ′ ∩K) ≃ γ(H ∩K) ∩ T

using the Nine lemma, the third isomorphism theorem, and the Nine lemma again.

1 1 1

1 H ′ ∩K H ′ α(H ′) 1

1 H ∩K H α(H) 1

1 H ∩K/H ′ ∩K H/H ′ 1

1 1

≀

∼

1 1

1 γ(H ′ ∩K) β(H ′ ∩K) 1

1 γ(H ∩K) ∩ T γ(H ∩K) β(H ∩K) 1

1 γ(H ∩K) ∩ T γ(H ∩K)/γ(H ′ ∩K) 1

1 1

∼

≀

∼

It should be noted that everything is effectively computable from generators for H.
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Finally, Theorem 6.B follows easily:

Corollary 6.2.3. There exist m,n ⩾ 0 such that N2,m × Zn has decidable Submonoid
Membership Problem and undecidable Rational Subset Membership Problem.

Proof. Consider a group G = N2,m × Zn with undecidable RatM(G) and m minimal.
Such a group does exist by [KLZ16], and [MT17] even proves m ⩽ 26.

We prove that SMM(G) is decidable. Using Theorem 6.2.1, the problem reduces to
finitely many instances of RatM(H) for subgroups H ⩽ G with h([H,H]) < h([G,G]).
However Lemma 6.2.2 tells us such subgroups admit finite-index subgroups H ′ ≃ N2,k×
Zℓ with k < m and ℓ ⩽

(
m
2

)
−
(
k
2

)
+ n. In turn, RatM(H) reduces to RatM(N2,k × Zℓ)

using Lemma 2.6.6(a), and the latter is decidable as k < m.

Remark 6.2.4. It is important that subgroups of N2,m×Zn fall into finitely many ab-
stract commensurability classes, otherwise RatM(H) could be decidable for each group
H without any uniform algorithm working for all H. Here, we can compute the values
of k and ℓ, and decide which of the finitely many algorithms to apply.

6.3 Rational subsets are bounded

The goal of this section is to prove the following technical proposition

Proposition 6.3.1. Let R ⊆ H3(Z) be a rational subset, i.e., R = ev(L) for some
regular language L ⊆ S⋆. There exists a bounded regular language L′ such that R =
ev(L′). Moreover, an automaton for L′ can be effectively computed.

Recall a regular language is bounded if it satisfies the following equivalent conditions:

Theorem ([Tro81]). Fix Σ an alphabet and K ⊆ Σ⋆ a regular language. TFAE

(a) K has polynomial growth.

(b) K is bounded, i.e., K ⊆ {w1}∗{w2}∗ . . . {wr}∗ for some wi ∈ Σ⋆.

(c) K is a finite union of languages t0 {u1}∗ t1 {u2}∗ t2 . . . {us}∗ ts with ti, ui ∈ Σ⋆.

6.3.1 The Abelian case

We first prove the analogous result for (virtually) abelian groups, using a classical result
due to Eilenberg and Schützenberger.

Theorem 6.3.2 ([ES69]). Let G be an abelian group and R be a rational subset, then
R is unambiguously rational. Moreover, given a language L such that ev(L) = R, we
can effectively compute a regular normal form L′ for R.

Corollary 6.3.3. Any rational subset of a virtually abelian group can be represented
by a bounded regular language L′. Moreover, L′ can be effectively computed.
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Proof. Take L′ the normal form from Theorem 6.3.2, and let S be the (finite) set of
elements appearing as labels on an automaton recognizing L. Note that ℓ(w) ⩾ ∥w̄∥S
for all w ∈ S∗ hence βL′(n) ⩽ β(⟨S⟩,S)(n), but ⟨S⟩ is f.g. virtually abelian hence has
polynomial growth, so L′ has polynomial growth hence is bounded.

6.3.2 Reduction to automata with start = accept = {v}
This is a technical subsection to reduce to the case start = accept = {v} (i.e., to the
case of rational submonoids). In this subsection, G can be an arbitrary group.

We consider a general rational subset R = ev(L), where L is accepted by a, automaton
M = (V, S, δ, v0, accept).

▶ Using a loop-erasure algorithm, we decompose each word w ∈ L as

w = w0s1w1s2 . . . sℓwℓ

where s1, s2, . . . , sℓ ∈ G label a simple path v0
s1→ v1

s2→ . . .
sℓ→ vℓ with vℓ ∈ accept, and

each wi ∈ S⋆ labels a cycle vi → vi. We proceed as follows:

Start at the vertex v0 and skip directly to the last visit of v0, hence bypassing a (possibly
empty) cycle w0 from v0 to v0, then go to the next vertex. Each time you enter a new
vertex vi, skip directly to the last visit of vi (bypassing another cycle), then keep going.

w s1s2 . . . sℓw1

w2 w3

Figure 6.2: A path in the automaton and its decomposition

▶ It follows that

L =
⋃
Lv0→v0 · s1 · Lv1→v1 · s2 · . . . · sℓ · Lvℓ→vℓ

where the union is taken over simple paths v0
s1→ v1

s2→ . . .
sℓ→ vℓ with vℓ ∈ accept, and

Lv→v is the language of words labeling cycles v → v. The union is finite, and each
language Lv→v is regular (accepted by the G-automaton Mv→v = (V, δ, v, {v})).

If we managed to find bounded regular languages L′
v→v such that ev(L′

v→v) = ev(Lv→v),
we would be done with the language

L′ =
⋃

s1s2...sℓ

L′
v0→v0

· s1 · L′
v1→v1

· s2 · . . . · sℓ · L′
vℓ→vℓ

which is bounded, regular, and evaluates toR. This is the subject of the next subsection.
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6.3.3 Main discussion

We now fix G = H3(Z). It is often useful to think of it as the lattice generated by x, y

in H3(R) (see Section 3.1). Recall that [x, y] = z, and more generally [g, h] = zdet(ĝ,ĥ).

We consider an automaton M = (V, S, δ, v, {v}) recognizing a language L, evaluating
to a rational subset R. In particular L is a submonoid of S⋆, and R is a submonoid of
H3(Z). As in Theorem 2.6.3, let

X =

t̄ ū t̄−1

∣∣∣∣∣∣
t ∈ S⋆ labels a simple path v → p
u ∈ S⋆ labels a simple cycle p→ p
both paths only intersect at p

 .

We will work with both L and L̃ defined in Theorem 2.6.3. (Note that Y = {ε}.)

Let Pr : H3(Z) ↠ Z2 : g 7→ ĝ be the abelianization map. We discuss depending on the
subset positively spanned by Pr(X), i.e., depending on

{λ1y1 + . . .+ λryr | λi ∈ R⩾0, yi ∈ Pr(X)}.

(1) If Pr(X) is included in a line.

(2) If Pr(X) spans the whole plane (i.e., 0 belong to the interior of ConvHull(Pr(X))).

(3) If Pr(X) spans a half-plane.

(4) If Pr(X) spans a cone.

In each case, we provide an (effectively computable) bounded regular language L′ such
that ev(L′) = ev(L). Case (4) will take most of our time.

(1) Pr(X) spans {0}, a ray or a line

In this case, the subgroup ⟨X⟩ is abelian (isomorphic to {e}, Z or Z2, but one might as
well think we work in ZX). As R is rational in ⟨X⟩ (Corollary 2.6.4), we can compute
a bounded regular language L′ ⊂ ⟨X⟩⋆ representing R (Corollary 6.3.3).

(2) Pr(X) spans the whole plane

For each x ∈ X, the set R contains wv→p x
mwp→v, where wp→q are fixed words labeling

paths p→ q, and m is arbitrarily large. Applying Proposition 6.1.1 for S = R, we get
that R is a subgroup, hence R = ⟨X⟩ by Theorem 2.6.3(d). A Mal’cev basis is given by

� a, b ∈ ⟨X⟩ such that Pr(a),Pr(b) form a basis of Pr(⟨X⟩) ⩽ Z2. These can be found
using Gaussian elimination on the matrix with vectors Pr(x) (x ∈ X) as rows.

� zd ∈ ⟨X⟩ with d > 0 minimum. (This d exists as zdet(Pr(a),Pr(b)) = [a; b] ∈ ⟨X⟩, and
can be found as the Subgroup Membership is decidable in H3(Z) [Mal58].)

We deduce a regular normal form L′ = {apbq(zd)r | p, q, r ∈ Z} ⊂ G⋆ for R.
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(3) Pr(X) spans a half-plane

By hypothesis, we can find

� s̄ ā s̄−1 and t̄ c̄ t̄−1 ∈ X such that â,0 and ĉ ∈ Z2 are aligned in that order. We also
fix s̃ ∈ S⋆ labeling a path from the endpoint of s to v. Define t̃ ∈ S⋆ similarly.

� b ∈ L such that b̂ doesn’t lie on the same line. (Take r̄ ūr̄−1 ∈ X such that û doesn’t
lie on the line. Fix r̃ ∈ S⋆ from the endpoint of r to v, and take b = rur̃.)

Each vector v ∈ Z2 can be decomposed uniquely as v = α(v) · â+ β(v) · b̂.

Lemma 6.3.4. There exists a computable K ⩾ 0 such that, if g ∈ R satisfies β(ĝ) ⩾ K,
then g can be written as

g = ev
(
san1 s̃ · bm · tcn2 t̃ · bm · san3 s̃ · bn4 · w

)
where m is fixed, n1, n2, n3, n4 ∈ Z⩾0, and w varies in a fixed finite subset of L.

Proof. Let h(n1, n2, n3, n4) = ev
(
san1 s̃ · bm · tcn2 t̃ · bm · san3 s̃ · bn4

)
. We fix p, q ∈ Z>0

such that pâ+ qĉ = 0. In particular, we have

Pr
(
h(n1 + p, n2 + q, n3, n4)

)
= Pr

(
h(n1, n2, n3, n4)

)
= Pr

(
h(n1, n2 + q, n3 + p, n4)

)
Let us see how the area changes under the same transformations:

A
(
h(n1 + p, n2 + q, n3, n4)

)
− A

(
h(n1, n2, n3, n4)

)
= pA(a) + qA(c) + [pâ;mb̂+ Pr(s̃t)

]︸ ︷︷ ︸
d+(m)

A
(
h(n1, n2 + q, n3 + p, n4)

)
− A

(
h(n1, n2, n3, n4)

)
= pA(a) + qA(c)− [pâ;mb̂+ Pr(t̃s)

]︸ ︷︷ ︸
d−(m)

We fix m large enough so that d+(m) · d−(m) < 0 and fix d = gcd(d+, d−).

Consider the finite-index normal subgroup N =
〈
ad, bd, cd, zd

〉
. The quotient Cayley

graph is easily constructed. (To know if g, h ∈ H3(Z) lie in the same coset, compare
Pr(g),Pr(h) in Z2/d⟨Pr(a),Pr(b),Pr(c)⟩ and A(g), A(h) in Z/dZ.) Using Lemma 2.6.6,
we construct a finite subset K ⊂ L representing each coset of N intersecting R.

We take K = β(Pr(h(0, 0, 0, 0))) + maxw∈K β(ŵ). Recall that R is a submonoid in
H3(Z), hence its image in the finite quotient H3(Z)/N is a subgroup. It follows that,
for any g ∈ R, we can find w ∈ K such that

N · w̄ = N · h(0, 0, 0, 0)−1g

(as g and h(0, 0, 0, 0) ∈ R). If furthermore β(g) ⩾ K, there exists m1,m2,m4 ∈ Z⩾0 s.t.

Pr(g) = Pr
(
h(0, 0, 0, 0)

)
+ d
(
m1 Pr(a) +m2 Pr(c) +m4 Pr(b)

)
+ Pr(w̄)

= Pr
(
h(dm1, dm2, 0, dm4)w̄

)
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(We can ensurem1,m2 ⩾ 0 as Pr(a),Pr(c) are colinear, in opposite direction. Moreover,
dm4 = β(ĝ)− β(Pr(h(0, 0, 0, 0)))− β(ŵ) ⩾ β(ĝ)−K ⩾ 0.) Finally

A(g) ≡ A
(
h(0, 0, 0, 0)w̄

)
≡ A

(
h(dm1, dm2, 0, dm4)w̄

)
(mod d)

hence, using the two transformations described above, we can find n1, n2, n3, n4 ∈ Z⩾0

such that g = h(n1, n2, n3, n4)w̄.

Finally, we can decompose into two (effectively computable) regular languages

L = {w ∈ L | β(ŵ) ⩾ K} ⊔ {w ∈ L | β(ŵ) < K} =: Lreg ⊔ Labn.

� The first term can be replaced by a bounded regular language

L′
reg = {san1 s̃ · bm · tcn2 t̃ · bm · san3 s̃ · bn4 · w | w ∈ K} ⊆ L.

Using Lemma 6.3.4, we have ev(Lreg) ⊆ ev(L′
reg) ⊆ ev(L) = R.

� For the second term, we compute a trim automaton for Labn and compute the set
X associated to each strongly connected component. For each component, Pr(X)
is contained in the line through Pr(a). We can apply the arguments of §6.3.2 and
§6.3.3 to get a bounded regular language L′

abn such that ev(Labn) = ev(L′
abn).

The language we are looking for is L′ = L′
reg ∪ L′

abn.

(4) Pr(X) spans a cone

We construct a bounded regular language L′
+ such that

{g ∈ ev(L) | A(g) ⩾ 0} ⊆ ev(L′
+) ⊆ ev(L).

Obviously, we can do the same thing for elements of negative area, hence taking the
union of both languages gives the desired bounded regular language L′.

Consider

� tat−1 with t a simple path from v to some p, and a a simple loop from p to p such

that Pr(ā) belong on the lower side of the cone, and A(tat−1)
∥Pr(a)∥ is maximized. We also

fix t̃ ∈ S⋆ labeling a path back from p to v.

� s−1bs with s a simple path from some q to v, and b a simple loop from q to q such

that Pr(b̄) belong on the upper side of the cone, and A(s−1bs)
∥Pr(b)∥ is maximized. We also

fix s̃ ∈ S⋆ labeling a path from v to q.

Each v ∈ Z2 can be decomposed uniquely as v = α(v) · â+β(v) · b̂. Moreover, v belongs
to the cone if and only if α(v) ⩾ 0 and β(v) ⩾ 0.
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(4a) There does not exist x ∈ X such that Pr(x) = 0 and A(x) > 0.

This is the difficult case. If ĝ is far from the border of the cone, and A(g) is far from
its maximum (for a fixed value of ĝ), then we can found a word representing g is a
bounded sub-language of L.

Lemma 6.3.5. There exist computable K,m ⩾ 0 such that, if g ∈ R satisfies

0 ⩽ A(g) ⩽ 1
2
[a; b] · α(ĝ)β(ĝ) + A(tat−1) · α(ĝ) + A(s−1bs) · β(ĝ)−K,

α(ĝ) ⩾ K and β(ĝ) ⩾ K,

then g can be written as

g = ev
(
tan1 t̃ · s̃bn2s · tan3 t̃ · w · s̃bp1s · tat̃ · s̃bp2s · . . . · tat̃ · s̃bpms

)
where n1, n2, n3, p1, p2, . . . , pm varies in Z⩾0 and w varies in a fixed finite subset of L.

Proof. Let

h(n1, n2, n3;w; p1, . . . , pm) = ev
(
tan1 t̃ · s̃bn2s · tan3 t̃ ·w · s̃bp1s · tat̃ · s̃bp2s · . . . · tat̃ · s̃bpms

)
The operation (pi, pi+1)→ (pi + 1, pi+1 − 1) preserves ĥ, and decreases the area by

A
(
h(. . . , pi, pi+1, . . .)

)
− A

(
h(. . . , pi + 1, pi+1 − 1, . . .)

)
= [s · tat̃ · s̃; b].

Note that stt̃s̃ labels a cycle in the automaton, so α(Pr(stt̃s̃)) ⩾ 0. Let

d = [s · tat̃ · s̃; b] =
(
1 + α(Pr(stt̃s̃))

)
· [a; b] ⩾ [a; b] > 0.

We fix m = 2d + 1 and consider N =
〈
ad, bd, zd

〉
. Using Lemma 2.6.6(c), we compute

a finite set K ⊂ L containing a representative for each coset of N intersecting R.

For each g ∈ R, we find parameters so that h(. . .) = g. We split this into four steps

(1) We find w ∈ K such that g = h(0, 0, 0;w; 0, . . . , 0) in G/N .

(2) For K (computably) large enough, we find N1, Pm ⩾ 0 such that

g = h(N1, 0, 0;w; 0, . . . , 0, Pm)

in G/N and G/[G,G] = Z2. Moreover A(g) ⩽ A(h).

(3) For K large enough, we find n1, n2, n3, pm ⩾ 0 with n2 ⩽ 3
5
β(ĝ) and

g = h(n1, n2, n3;w; 0, . . . , 0, pm)

in G/N and G/[G,G] = Z2. Moreover

A(h) ⩾ A(g) ⩾ A(h)− d
(
3

5
β(ĝ) + β(Pr(t̃s̃st))

)
[a; b].

(4) For K large enough, we find n1, n2, n3, p1, . . . , pm ⩾ 0 such that g = h(. . .).
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(1) Take w ∈ K such that

w = (tt̃ · s̃s · tt̃)−1 · g ·
(
s̃s · tat̃ · s̃s · . . . · tat̃ · s̃s

)−1
in G/N.

Such a w exists as the image of the monoid R in G/N is a subgroup.

(2) Take

N1 = α(ĝ)− α(ĥ(0, 0, 0;w; 0, . . . , 0))
Pm = β(ĝ)− β(ĥ(0, 0, 0;w; 0, . . . , 0))

For K computably large enough, we have N1, Pm ⩾ 0. By construction, we have

ĝ = ĥ(N1, 0, 0;w; 0, . . . , 0, Pm).

Moreover d | N1, Pm, hence g and h still coincide in G/N . The area of h is given by

A(taN1 · v · bPms) =
1

2
[a; b] · α(ĝ)β(ĝ) + A(tat−1) · α(ĝ) + A(s−1bs) · β(ĝ)− C(w)

with v = t̃s̃stt̃w(s̃stat̃)m−1s̃, and C(w) computable. For K computably large enough,
we may therefore assume A(g) ⩽ A(h(N1, 0, 0;w; 0, . . . , 0, Pm)).

a a a

b

b

b

b

ĝ

t

v

s

Figure 6.3: The path corresponding to h(N1, 0, 0;w; 0, . . . , 0, Pm).

Indeed, the big triangle has area 1
2
[a; b] · α(ĝ)β(ĝ). The smaller regions bordered by a

and b have area A(tat−1) and A(s−1bs) respectively, and there are N1 and Pm of those.

(3) Next, we apply two transformations in order

� (n2, pm)→ (n2 + d, pm − d). This doesn’t change ĥ, and decreases the area by

A
(
g(N1, n2, 0;w; 0, . . . , 0, pm)

)
− A

(
g(N1, n2 + d, 0;w; 0, . . . , 0, pm − d)

)
= [s · tt̃ · w · (s̃s · tat̃)m−1 · s̃; bd] > 0

Repeat as long as n2 ⩽ 3
5
β(ĝ) and A(h) ⩾ A(g).
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� (n1, n3)→ (n1 − d, n3 + d). This doesn’t change ĥ, and decreases the area by

A
(
g(n1, n2, n3;w; . . .)

)
− A

(
g(n1 − d, n2, n3 + d;w; . . .)

)
= [ad; t̃ · s̃bn2s · t] = d

(
n2 + β(Pr(t̃s̃st))

)
[a; b]

Repeat as long as n1 ⩾ 0 and A(h) ⩾ A(g).

At the end of this process, we have found an element h(n1, n2, n3;w; 0, . . . , 0, pm) with
n1, n2, n3, pm ⩾ 0 and n2 ⩽ 3

5
β(ĝ), which coincides with g in G/N and G/[G,G].

Moreover, as we cannot apply the second step anymore, we have

0 ⩽ A(g)− A(h) ⩽ d
(
n2 + β(Pr(t̃s̃st))

)
[a; b] ⩽ d

(
3

5
β(ĝ) + β(Pr(t̃s̃st))

)
[a; b]

Here we use that A(g) ⩾ 0. If we had continued until the conditions n2 ⩽ 3
5
β(ĝ) and

n1 ⩾ 0 were the limiting conditions, we would have reached an area of

A(h) ≈ A

(
0,

3

5
Pm, N1;w; 0, . . . , 0,

2

5
Pm

)
≈ − 1

10
[a; b] · α(ĝ)β(ĝ) < 0 ⩽ A(g)

for K computably large enough. So the condition A(h) ⩾ A(g) stopped us.

(4) Finally, we use the operation (pi, pi+1)→ (pi+1, pi+1−1). We can use this operation
up to (m− 1) · (Pm − n2) times, decreasing the area by exactly d each time. The total
variation obtainable is therefore larger than

2d ·
(
2

5
β(ĝ)− β(ĥ(0, 0, 0;w; 0, . . . , 0))

)
· d ⩾ d

(
3

5
β(ĝ) + β(Pr(t̃s̃st))

)
[a; b]

as d ⩾ [a; b] and β(ĝ) ⩾ K. In conclusion, we have A(h) = A(g) at some point.

As in the previous case, we decompose L into two regular languages, with all elements
in the first set treated by Lemma 6.3.5, and all elements in the second case following
the border of the cone (hence being easier to treat). We first need a lemma to take care
of the “area condition” with a finite state automaton.

Lemma 6.3.6. Consider a word w ∈ L and x1x2 . . . xℓ ∈ X∗ its decomposition. Let

M(w) = #
{
i
∣∣ 1 ⩽ i ⩽ ℓ and α(xi), β(xi) > 0

}
N(w) = #

{
(i, j)

∣∣ 1 ⩽ i < j ⩽ ℓ and α(xj), β(xi) > 0
}

There exists a computable constant L such that, if

A(w̄) ⩾
1

2
[a; b] · α(ŵ)β(ŵ) + A(tat−1) · α(ŵ) +B(s−1bs) · β(ŵ)−K,

then M(w), N(w) ⩽ L.
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Proof. Let

∆ = max
({
A(x) | x ∈ X

}
∪ {0}

)
δ = min

({
α(x), β(x) | x ∈ X

}
\ {0}

)
We can bound the area of w̄ by

A(w̄) =
∑
i<j

1

2
[xi;xj] +

∑
i

A(xi)

=
1

2
[a; b]

(∑
i<j

α(xi)β(xj)− α(xj)β(xi)

)
+
∑
i

A(xi)

⩽
1

2
[a; b]

(∑
i

α(xi) ·
∑
j

β(xj)−N(w) · δ2
)
+

+
∑

i:β(xi)=0

α(xi)A(tat
−1) +

∑
i:α(xi)=0

β(xi)A(s
−1bs) +M(w) ·∆

⩽
1

2
[a; b] · α(ŵ)β(ŵ) + A(tat−1) · α(ŵ) +B(s−1bs) · β(ŵ) +

+M(w) ·∆−N(w) · δ2

hence M(w) ·∆−N(w) · δ2 ⩾ −K. Combining with
(
M(w)

2

)
⩽ N(w) we get

K ⩾
δ2

2
·M(w)

(
M(w)− 1

)
−∆ ·M(w)

hence M(w) ⩽ L for some computable L. Finally N(w) ⩽ 1
δ2
(M(w) ·∆+ k).

We decompose the language L̃ given by Theorem 2.6.3 as

L̃ =
{
w̃ ∈ L̃

∣∣∣ α(ŵ), β(ŵ) ⩾ K and N(w) ⩾ L
}
⊔
{
complement

}
=: Lreg ⊔ Labn

� We replace Lreg by the bounded regular language

L′
reg =

{
ta∗t̃ · s̃b∗s · ta∗t̃ · w · (s̃b∗s · tat̃)m−1 · s̃b∗s

∣∣ w ∈ K}
so that {g ∈ ev(Lreg) | A(g) ⩾ 0} ⊆ ev(L′

reg) ⊆ R.

� For the second term, we compute a trim automaton for Labn and compute the set
X associated to each strongly connected component.

For each component, Pr(X) is contained in the line through Pr(a) or through
Pr(b). We can apply §6.3.2 and case (1) of the proof to get a bounded regular
language L′

abn such that ev(L′
abn) = ev(Labn).

The language we are looking for is L′
+ = L′

reg ∪ L′
abn.
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(4b) There does exist x ∈ X such that Pr(x) = 0 and A(x) > 0.

This case is similar to case (3). We fix r, c, r̃ ∈ S⋆ labeling a path v → p, a cycle p→ p
and a path p→ v respectively, such that ĉ = 0 and A(c̄) > 0.

Lemma 6.3.7. There exists a computable K ⩾ 0 such that, if g ∈ R satisfies

A(g) ⩾ 0, α(ĝ) ⩾ K and β(ĝ) ⩾ K,

then g can be written as g = ev
(
s̃bn1s · tan2 t̃ · rcn3 r̃ · w

)
where n1, n2, n3 varies in Z⩾0

and w varies in a fixed finite subset of L.

Proof. We introduce the notation

h(n1, n2, n3) = ev
(
s̃bn1s · tan2 t̃ · rcn3 r̃

)
.

Say c = zd. We consider N =
〈
ad, bd, zd

〉
. Using Lemma 2.6.6(c), we construct a finite

subset K ⊂ L of representatives for each coset of N intersecting R. For g ∈ R, we take

� w ∈ K such that w̄ = h(0, 0, 0)−1g in G/N .

� n1 = α(ĝ)− α(ĥ(0, 0, 0))− α(ŵ) and n2 = β(ĝ)− β(ĥ(0, 0, 0))− β(ŵ)

� n3 =
1
d

(
A(g)− A

(
h(n1, n2, 0) · w̄

))
.

We should note that n1, n2, n3 are integers with d | n1, n2. Moreover, if we suppose
α(ĝ), β(ĝ) ⩾ K for some large K, we have n1, n2 ⩾ K − C1(w) ⩾ 0 and

A
(
h(n1, n2, 0) · w̄

)
= −1

2
[a; b] · n1n2 + C2(w) · n1 + C3(w) · n2 + A(w) ⩽ 0

where C1, C2, C3 are computable, implying n1, n2, n3 ⩾ 0. Exactly how large K needs
to be can be computed. Finally g = h(n1, n2, n3) · w̄.

Finally, we decompose L into two regular languages

L = {w ∈ L | α(ŵ), β(ŵ) ⩾ K} ⊔ {w ∈ L | α(ŵ) < K or β(ŵ) < K} =: Lreg ⊔ Labn.

� The first term can be replaced by a bounded regular language

L′
reg =

{
s̃bn1s · tan2 t̃ · rcn3 r̃ · w

∣∣ n1, n2, n3 ⩾ 0, w ∈ K
}
⊆ L

Using Lemma 6.3.7, we have {g ∈ ev(Lreg) | A(g) ⩾ 0} ⊆ ev(L′
reg) ⊆ ev(L).

� For the second term, we compute a trim automaton for Labn and compute the set
X associated to each strongly connected component. For each component, Pr(X)
is contained in the line through Pr(a) or through Pr(b). We can apply §6.3.2 and
§6.3.3 to get a bounded regular language L′

abn such that ev(L′
abn) = ev(Labn).

The language we are looking for is L′
+ = L′

reg ∪ L′
abn.
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6.3.4 Proof of Theorem 6.C

Finally, we prove that RatM(H3(Z)) is decidable, using Proposition 6.3.1. We prove a
stronger result about solving equations under rational constraints.

Definition 6.3.8. An equation with rational constraints in G is the data of

� an element w ∈ F (x1, . . . , xn) ∗G and

� n rational subsets R1, . . . , Rn ⊆ G.

This equation admits a solution if there exists (g1, . . . , gn) ∈ R1 × . . . × Rn such that
w(g1, . . . , gn) := f(w) = eG, where f is the homomorphism

f :

F (x1, . . . , xn) ∗G −→ G
g 7−→ g
xi 7−→ gi

 .

This generalizes the Rational Subset Membership g
?
∈ R, as we may consider the

equation x1 = g under the rational constraint x1 ∈ R.

Theorem 6.3.9. There exists an algorithm which takes as input an equation with ra-
tional constraints in H3(Z), and decides whether it admits a solution.

This extends the analogous result without rational constraints, due to Duchin, Liang
and Shapiro. The proof is a straightforward adaptation of [DLS15, Theorem 3] and
[KLZ16, Theorem 6.8], with Proposition 6.3.1 as a starting point.

Proof. We first prove the statement under the extra assumption that each rational
constraint is given as Ri = hi,0 {ki,1}∗ hi,1 {ki,2}∗ hi,2 . . . hi,ℓi−1 {ki,ℓi}∗ hi,ℓi . (Such a set
will be called “Knapsack-like”.) In particular, a generic element of Ri is given as

gi = gi(n1, . . . , nℓi) = hi,0 k
n1
i,1 hi,1 {ki,2}∗ hi,2 . . . hi,ℓi−1 {ki,ℓi}∗ hi,ℓi

with nj ∈ N. In coordinates, the existence of a solution reduces to the system{
ŵ(g1, . . . , gn) = 0

A(w(g1, . . . , gn)) = 0

This system consists of two linear and one quadratic equations, with coefficients in 1
2
Z

and unknowns ni,j ∈ N, hence we can decide if it admits a solution using [GS04].

In general, we can write each rational constraint as Ri =
⋃mi

j=1Rij where each Rij is
Knapsack-like using Proposition 6.3.1. Therefore, we only have to check whether one
of m1 . . .mn system with Knapsack-like constraints admits a solution. The final answer
is “Yes” if any of these answers is yes, “No” otherwise.
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Remark 6.3.10. It should be noted that the result about Rational Subset Membership
can be extended to H3(Q) as every finitely generated subgroup of H3(Q) is (effectively)
isomorphic to a subgroup of H3(Z). Indeed, given a finite set of matrices

Mi =

1 ai ci
0 1 bi
0 0 1

 ∈ H3(Q) (i = 1, 2, . . . , r),

find N ̸= 0 such that Nai, Nbi, N
2ci ∈ Z. The dilation δN : (a, b, c) 7→ (Na,Nb,N2c) is

an automorphism H3(Q)→ H3(Q) such that δN
(
⟨Mi⟩

)
⩽ H3(Z).

6.4 Further questions and remarks

Note that the decidability of RatM(H3(Z)) proven in the chapter, combined with the
reduction Theorem 6.A, allows to conclude

Corollary 6.4.1. The Engel group

E =
〈
x, y1, y2, y3

∣∣ [x, yi] = yi+1 for i = 1, 2, [x, y3] = [yi, yj] = 1
〉

has decidable Submonoid Membership.

Indeed, this nilpotent group has Hirsch length h(E) = 4, hence any infinite-index
subgroup admits a finite-index subgroup isomorphic to 1, Z, Z2, Z3 or H3(Z). It can
be seen as a subgroup of the unitriangular matrices UT4(Z):

E ≃ Z3 ⋊X Z =

{(
Xn y
0 1

) ∣∣∣∣ n ∈ Z, y ∈ Z3

}
where X =

1 1 0
0 1 1
0 0 1

 .

For this reason, extending Theorem 6.C to higher Heisenberg group is desirable.

Conjecture 6.A. Higher H2m+1(Z) have decidable Rational Subset Membership.

In turn, this would imply that Submonoid Membership is decidable in f.g. nilpotent
groups if h([G,G]) ⩽ 2, or if G = N2,3 × Zn, N3,2 × Zn.2 Indeed, all of their subgroups
satisfy h([H,H]) = 0, 1, 3. For G = N2,3 × Zn, this follows from Lemma 6.2.2.

Most algorithms presented rely on results on quadratic Diophantine equations which
are completely ineffective [Sie72; GS04]. There is one exception though:

Problem 6.B. Find effective bounds on the complexity of the Submonoid Membership
in G = H2m+1(Z)× Zn. Is this problem in P (for fixed m,n)?

2A few months after this article was first made public, Doron Shafrir proved a case of this conjecture
sufficient to conclude that these groups have decidable Submonoid Membership [Sha24b].
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One may wonder for which class of groups can the Rational Subset Membership be
reduced to the Knapsack problem (as in Proposition 6.3.1):

Question 6.C. Characterize groups G such that every rational subset R ⊆ G can be
represented by a bounded regular language L′ ⊂ G⋆. In particular, does this hold if

1. G is 2-step nilpotent with cyclic derived subgroup?

2. G is 2-step nilpotent?

3. G =E is the Engel group?

4. Does any group of super-polynomial growth have this property?

▶ Using Theorem 2.6.3(b) and Lemma 2.6.6, we can prove that this property passes to
quotients, subgroups and finite-index overgroups.

▶ Recall that 2-step nilpotent groups with infinite cyclic derived subgroup contain
copies ofH2m+1(Z)×Zn as finite-index subgroups, see [Sto96, Lemma 7.1]. In particular,
we only have to consider G = H2m+1(Z)× Zn to answer Question 6.C.1.

A positive answer to Question 6.C.1 would be particularly interesting as it would imply
decidability for the Rational Subset Membership for those groups. Indeed, the Knapsack
problem is also decidable for those groups (adapting the proof of [KLZ16, Theorem 6.8]
from H3(Z)× Zn to H2m+1(Z)× Zn, then using [KLZ16, Theorem 7.3]).

▶ An instance of Question 6.C.2 of special interest is

G = N2,r =
〈
x1, x2, . . . , xr

∣∣ 2-step nilpotent
〉

with R = {x1, x2, . . . , xr}∗. A positive answer (effective in r) would allow to reduce
the Submonoid Membership Problem to the Knapsack Problem in any 2-step nilpotent
groups. In turn, this would provide an example of group with decidable Submonoid
Membership and undecidable Knapsack problem (adapting the proof of Corollary 6.2.3).
Note that the answer is positive for r = 2, as

{x, y}∗ = {x}∗{y}∗ x {y}∗{x}∗ ⊔ {y}∗

in N2,2 = H3(Z). This equality is one of the key motivations behind Proposition 6.3.1.

▶ The property fails for the free 3-step nilpotent group of rank 2

G = N3,2 =
〈
x, y

∣∣ 3-step nilpotent
〉
.

For instance R = {x, y}∗ cannot be represented by a bounded regular language. Let
L′ ⊂ G⋆ be a bounded regular language such that ev(L′) ⊆ R, say

L′ =
I⋃

i=1

vi,0 {wi,1}∗ vi,1 {wi,2}∗ vi,2 . . . vi,ℓi−1{wi,ℓi}∗ vi,ℓi .
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Observe that ŵi,j ∈ Z2
⩾0, otherwise the word

w = vi,0 vi,1 . . . vi,j−1w
N
i,j vi,j . . . vi,ℓi ∈ L′

will project to ŵ = N · ŵi,j +O(1) /∈ Z2
⩾0 = Pr(R) for N large enough.

Take a direction u ∈ R2
⩾0 which is not proportional to any of the ŵi,j and take an

element γu,n ∈ {x, y}∗ of length n which best follows the ray R+u (see Section 5.5).
Adapting computations from Sections 4.3 and 5.5, we have〈

B(γu,n)−B(w̄);u⊥
〉
= Θu(n

3)

for all elements w ∈ L′ such that ŵ = γ̂u,n. In particular, γu,n /∈ ev(L′) for n large.

▶ We expect that no group of super-polynomial growth has the property. We confirm
this conjecture for solvable groups and linear groups.

Lemma 6.4.2. Suppose that there exists an epimorphism π : G↠ Z and two elements
x, y ∈ G such that π(x), π(y) > 0 and R = {x, y}∗ ⊂ G is a free submonoid. Then G
doesn’t have the property.

Proof. We first observe that #{g ∈ R | π(g) ⩽ n} ≍ 2n. (In particular, this set is very
much finite.) On the other side, let us consider a language

L′ := h0 · g∗1 · h1 · g∗1 · . . . · g∗d · hd ⊂ G⋆

such that ev(L′) ⊆ R. Then π(gi) ⩾ 0, with equality if and only if gi has finite order.
Consider T = {i ∈ [[1, d]] | gi is torsion}. We compute

#{g ∈ ev(L′) | π(g) ⩽ n0 + n} ⩽
∏
i∈T

|⟨gi⟩| ·
(
n+ d− |T |
d− |T |

)
⪯ nd−|T |,

where n0 = π(h0h1 . . . hd). As bounded regular languages are a finite union of languages
of the previous type, this proves that no bounded regular language may represent R.

This lemma obviously applies to non-abelian free groups. In [Bre07, Theorem 1.4],
Breuillard proves that every f.g. virtually solvable group admits a finite-index subgroup
for which the lemma applies. The Tits alternative concludes for linear groups.
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Chapter 7

Complete growth series

We are interested in fine properties of growth functions of groups. Recall that, for a
metric group (G, d), its spherical growth function is

σG,d(n) = #
{
g ∈ G

∣∣ ∥g∥ := d(e, g) = n
}
.

When studying the “regularity” of a sequence, it is natural to consider the associated
series, and indeed a large literature looks at the spherical growth series of a group (G, d)

ΣG,d(t) =
∞∑
n=0

σ(n) · tn =
∑
g∈G

z∥g∥ ∈ N[[t]].

The key questions are to prove or disprove rationality (or algebraicity) of this series, or
at least to compute its radius of convergence (the growth rate).

In this chapter, we will look at an even richer sequence, namely Sn =
∑

∥g∥=n g, seen as

elements of the group semiring NG. Just as in the standard case, the sequence (Sn)n
gives rise to a growth series: the complete (spherical) growth series of G

Σ̂G,d(t) =
∞∑
n=0

Sn · tn =
∑
g∈G

g · t∥g∥ ∈ NG[[t]].

Once again, the main question is whether the series are rational or not. Here there are
two different notions of rationality: being NG-rational or ZG-rational (see Section 7.1
for the necessary definitions). The interest of rationality for standard growth series is
that their coefficients are relatively easy to compute: they satisfy a linear recurrence
equation. Moreover precise asymptotics are known. Similarly, if the complete growth
series is ZG-rational, then the list of elements of length n satisfies some linear recurrence
relations. In some sense, being NG-rational is even better (see Remark 7.1.12).

131
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Proving complete growth series are NG-rational (and sometimes computing them) has
been central since their introduction in the two thesis of Liardet and Nagnibeda. They
both prove strong positive results: Liardet proved that Σ̂G,dS(t) is NG-rational for any
virtually abelian group G [Lia96], and Grigorchuk and Nagnibeda proved the same
result for hyperbolic groups [GN97]. Combined with the following known (and easy)
implications, this recovers more classical results due to Benson and Cannon respectively.

Σ̂ is ZG-rat. Σ is Z-rat.

Σ̂ is NG-rat. Σ is N-rat.

Σ̂ is ZG-alg. Σ is Z-alg.

Σ̂ is NG-alg. Σ is N-alg.

Figure 7.1: Implications between different properties (see Remark 7.1.6).

On the side of negative results, much less was known. This is illustrated by the following
question of Grigorchuk and de la Harpe, and Grigorchuk and Nagnibeda:

Question 1 ([GH97]). Does there exists (G, dS) such that the complete growth

series Σ̂G,dS(t) is not rational, while the standard growth series ΣG,dS(t) is rational?

They suggest G = H3(Z) with its standard generating set. More generally,

Conjecture 2 ([GN97]). If G is nilpotent and the complete growth series Σ̂G,dS(t)
is rational. Does this implies that G is virtually abelian?

We answer positively to the first question and make progress toward the second, when
understanding “rational” as “NG-rational”. We isolate two necessary conditions:

Theorem 7.A (Theorem 7.2.5). Let (G, d) be a metric group. Suppose that

� (G, dS) contains dead ends of arbitrarily large depth (and G is infinite), or

� (G, dS) contains almost saddle elements of arbitrarily large depth and fixed margin.

Then Σ̂G,d(t) is not NG-rational. (See Section 7.2 for definitions.)

Theorem 7.B (Theorem 7.5.3). Suppose that Σ̂G,dS(t) is NG-rational, then G admits
a (1 + ε, 0)-quasi-geodesic regular normal formal, for any ε > 0

Both criteria have advantages. The first is purely geometrical, “local”, and robust
to change to roughly isometric metrics. The second still contains elements of formal
language theory, but is robust to change to asymptotically equivalent metrics.
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We start by testing both criteria on the lamplighter group. We prove

Theorem 7.C (Theorem 7.2.8, Proposition 7.5.11). Consider G = L ≀Z with L ̸≃ {e},
and S = SL ⊔ {z±} a standard generating set. Then Σ̂G,dS(t) is not NG-rational.

Whenever L is finite, this follows from the existence of dead ends of arbitrarily large
depths, as proven in [CT03]. (This was the first example of this type, answering another
question of [GH97].) For more general groups L, we need the new notion of saddle
elements. It should be noted that these results can be extended to other base groups
using recent results of Silva [Sil23]. This contrast with results of Bartholdi proving that

Σ̂G,dS(t) is NG-algebraic as soon as Σ̂L,dSL
(t) is NL-algebraic [Bar17, Theorem C.3].

Next, using the machinery of sub-Finsler geometry, we construct almost saddle elements
in any (non virtually abelian) 2-step nilpotent group, and deduce that

Theorem 7.D (Theorem 7.3.6). Let (G, dS) be a virtually 2-step nilpotent group such

that Σ̂G,dS(t) is NG-rational, then G is virtually abelian.

This extends results of Stoll, that (non virtually abelian) 2-step nilpotent groups do not
admit geodesic regular normal form [Sto95]. For G = H3(Z), almost saddle elements
can be replaced by dead ends of arbitrarily large depths, whose existence was proven
by Warshall [War07]. We give an alternate proof of this fact.

Using a more ad-hoc argument which mixes CC-geometry and the characterization of
context-free languages of polynomial growth via Dyck loops, we prove

Theorem 7.E (Theorem 7.4.5). Let (G, dS) be a group containing a finite-index sub-

group isomorphic to H3(Z), then Σ̂G,dS(t) is not NG-algebraic.

This is quite striking as Duchin and Shapiro proved in a tour de force that H3(Z) has
rational (standard) growth series with respect to any generating set [DS19]. This high-
lights that the “robust” mechanisms underlying the rationality in H3(Z) are completely
different from what is going on in virtually abelian and hyperbolic groups.

Finally, using some more CC-geometry

Theorem 7.F (Theorem 7.5.14). Let (G, dS) be a group containing a finite-index 2-

generated nilpotent group. If Σ̂G,dS(t) is NG-rational, then G is virtually abelian.

The geometry “up to rough isometry” of groups of nilpotency class c ⩾ 3 is not well-
understood. However, the metric is asymptotically equivalent to the CC-metric by
Pansu’s theorem, which is the reason the second criterion can still be useful.
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To summarize, we have the following results:

N-rational N-algebraic NG-rat. NG-alg.
Virtually abelian ✓ ✓ ✓ ✓

Hyperbolic ✓ ✓ ✓ ✓

Heisenberg H3(Z) ✓ ✓ ✗ ✗

Virtually H3(Z) depends? depends? ✗ ✗

Virt. nilpotent of step 2 depends depends ✗ never?
Virt. nilpotent of rank 2 depends? depends? ✗ never?
H5(Z) (standard gen.) ✗ ✗ ✗ ✗

C2 ≀ Z (standard gen.) ✓ ✓ ✗ ✓

C2 ≀ F2 (standard gen.) ✗ ✓ ✗ ✓

Table 7.1: Summary of our results (in red) together with some relevant known results (in black).
The first six lines hold for any finite symmetric generating set.

This proves that the lattice of properties forming the front face of Figure 7.1 doesn’t
collapse: knowing that the standard growth series ΣG,dS(t) is N-rational does not imply

that complete growth series Σ̂G,dS(t) is NG-rational or even NG-algebraic.

7.1 Preliminaries

Definition 7.1.1. A metric monoid G is a monoid with a norm ∥ · ∥ satisfying

� ∥g∥ ⩾ 0 with equality if and only if g = e.

� ∥gh∥ ⩽ ∥g∥+ ∥h∥.

If G is a group, we also suppose ∥g−1∥ = ∥g∥. In this case, norms are in one-to-one
correspondence with distances d satisfying

� For all g, x, y ∈ G, we have d(gx, gy) = d(x, y). (Left-invariant)

To go back and forth, we define d(x, y) = ∥x−1y∥ and ∥g∥ = d(e, g). When working
with growth series, we will additionally require that

� For all x, y ∈ G, we have d(x, y) ∈ Z. (Integer-valued)

� For all r ⩾ 0, the ball B(e, r) = {g ∈ G | d(e, g) ⩽ r} is finite. (Proper)

For short, we say that d is a LIP.

Our main interest lies on word metrics dS. However, in order to prove results for that
particular setting, we will often need to consider more general metrics, such as weighted
word metrics, their restriction to subgroups (which may no longer be coarsely geodesic),
or sub-Finsler metrics. Another example is the length ℓ on S⋆.

In this chapter, we will suppose generating sets are symmetric, i.e., S = S−1.
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7.1.1 Rational and algebraic series

In this section, we recall the definition of R-rational and R-algebraic formal series, where
R is a fixed semiring. In what follows, we will mostly consider R = NG, other relevant
cases being R = N,NS⋆,Z and ZG. We then proceed with alternate characterizations.
See [DKV09; Sal+78] for a complete treatment.

Definition 7.1.2. An algebraic system over R[s] is a system of equations

Xi = Pi(X1, X2, . . . , Xn) for i = 1, 2, . . . , n

where Pi ∈ R[t] ⟨X1, X2, . . . , Xn⟩ are polynomials with (a priori) non-commutative co-
efficients and variables, i.e., finite sums of monomials r0Xi1r1Xi2r2 . . . Xidrd · tk with
d, k ⩾ 0 integers, 1 ⩽ ij ⩽ n and rj ∈ R. A system is proper if it contains

� no constant term (i.e., no monomial with d = k = 0);

� no monomial with d = 1 and k = 0.

A system is linear if furthermore all monomials satisfy d = 0, or d = 1 and r1 = 1R.

Definition 7.1.3. A formal series S =
∑∞

n=0 an · tn ∈ R[[t]] is proper (or quasi-regular)
if its constant coefficient is zero, that is a0 = 0.

The main motivation for those two definitions is the following result:

Theorem 7.1.4 (See [Sal+78, Theorem IV.1.1]). Every proper algebraic system admits
a unique solution (S1, S2, . . . , Sn) ∈ R[[t]]n consisting of proper formal series.

Finally, we say a proper series is R-rational (resp. R-algebraic) if it is solution to a
proper linear (resp. algebraic system). More generally

Definition 7.1.5 (R-rational and R-algebraic series). A formal series S ∈ R[[t]] is
R-rational (resp. R-algebraic) if S − a0 is the first component of a proper solution
(S1, S2, . . . , Sn) ∈ R[[t]] to a proper linear (resp. algebraic) system over R[t].

Remark 7.1.6. Any morphism f : R → R′ extends to a morphism f : R[[t]]→ R′[[t]],
and sends R-rational (resp. R-algebraic) series to R′-rational (resp. R′-algebraic) series.
A few important examples are the following:

� The augmentation map ϵ : NG → N, sending
∑
agg 7→

∑
ag. This proves that, if

Σ̂G,d is NG-rational, then ΣG,d is N-rational.

� More generally, given a monoid morphism π : G → H, we deduce a morphism
π : NG → NH. The case H = {e} recovers the augmentation map. Another
example which will be relevant in Section 7.5 is the evaluation map ev : S⋆ → G.

� The inclusion map ι : NG ↪→ ZG.
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Let us give another less technical definition of rational series over non-commutative
semirings. We first need the notion of quasi-inverse:

Definition 7.1.7 (Quasi-inverse and star height).

� Given a proper series S(t) ∈ R[[t]], its quasi-inverse is defined as

S(t)∗ =
∞∑
n=0

S(t)n,

where S(t)n is the multiplication of S(t) with itself n times and S(t)0 = 1.

� We define inductively a sequence of semirings Ratn ⊂ R[[t]]. First Rat0 = R[t],
then Ratn+1 is the semiring generated by Ratn ∪ {S∗ | S ∈ Ratn proper}.

� Given S ∈ R[[t]]rat :=
⋃

n Ratn, its star height is the minimal n such that S ∈ Ratn.

The name quasi-inverse comes from the informal equality (1 − S)S∗ = 1. This linear
equation shows that, if S is rational, then so is S∗. Reciprocally, all rational series can
be obtained from polynomials using addition, multiplication and quasi-inversion:

Theorem 7.1.8 ([Sal+78, II.1.2 and II.1.4]). The set of R-rational series is R[[t]]rat.

7.1.2 Link with formal languages

Rational and algebraic series can be characterized in terms of automata and languages.

Definition 7.1.9. An R[t]-automaton is a finite oriented graph A = (V,E) with an
edge labeling p : E → R[t]. A series S(t) ∈ R[[t]] is recognized by the automaton A if
there exist two initial and terminal vertices I, T ∈ V such that

S(t) =
∑

γ∈P (I,T )

p(γ),

where P (I, T ) is the set of all oriented paths from I to T , and p(e1 . . . eℓ) := p(e1) · · · p(eℓ).

Theorem 7.1.10 (Kleene-Schützenberger [Sch61], see also [DKV09, Theorem 3.2.5]).
A formal series is R-rational if and only if it is recognized by an R[t]-automaton.

Remark 7.1.11. In the case R = NG, we may and will assume that labels are of the
form p(e) = w(e) · tℓ(e) for w(e) ∈ G and ℓ(e) ∈ N.

Remark 7.1.12. The computational advantages of NG-rational series over ZG-rational
series are made clearer through the formalism of R[t]-automata. Given an NG[t]-
automaton for a complete growth series, we can pick a path at random, compute the
associated term g · tℓ, and get a certificate that the element g has length ℓ. If the Word
Problem is efficiently solvable, this proves that computing the length of an element
(given a word) is in NP. In contrast, if the automaton had labels in ZG[t], the term
g · tℓ might cancel out with other terms, so that we need to compute all terms with the
same exponent tℓ before having a certificate g has indeed length ℓ.
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Corollary 7.1.13. Let (G, d) be a group, and H ⩽ G a subgroup.

(a) If Σ̂G,d(t) is NG-rational and [G : H] <∞, then Σ̂H,d|H (s) is NG-rational.

(b) If Σ̂H,d|H (t) is NG-rational, then it is NH-rational.

Proof. The proof is identical to Lemma 2.6.6 and Corollary 2.6.4 respectively.

Theorem 7.1.10 admits a generalization linking R-algebraic series and pushdown au-
tomata [DKV09, §7.5.3]. For complete growth series, this can be reformulated as

Theorem 7.1.14. Let (G, d) be a group. The complete growth series Σ̂G,d(t) is NG-
algebraic if and only if there exists an unambiguous context-free language L ⊂ (G×N)⋆
such that the evaluation map ev : L → G× N is injective and its image is given by

ev(L) =
{
(g, ∥g∥) : g ∈ G

}
.

Corollary 7.1.15. Let (G, d) be a group, and H ⩽ G a finite-index subgroup. If Σ̂G,d(t)

is NG-algebraic, then Σ̂H,d|H (t) is NH-algebraic.

Proof. There are only finite many rules in a context-free grammar, so there exists a
finite set S ⊆ G such that L ⊆ (S×N)⋆. We consider the Schreier graph Sch(H\G,S),
and rational function w 7→ w̃ defined from it, as in Example 2.6.5. Then

L̃ ⊆ (X × N)⋆ ⊆ (H × N)⋆

is unambiguously CF by Proposition 2.5.14(c), and evaluates to {(h, ∥h∥) : h ∈ H}.

7.2 Dead ends and saddle elements

We recall the notion of dead ends due to [Bog97], and introduce some related notions:

Definition 7.2.1. Consider (G, d) a metric group, and let D > 0 and M ⩾ 0 be real
numbers. An element g ∈ G is

� a dead end of depth at least D if

∀h ∈ G such that ∥h∥ ⩽ D, ∥gh∥ ⩽ ∥g∥ .

� an almost dead end of depth at least D and margin M if

∀h ∈ G such that ∥h∥ ⩽ D, ∥gh∥ ⩽ ∥g∥+M.

� a saddle element of depth at least D if

∀h ∈ G such that ∥h∥ ⩽ D, ∥gh∥ = ∥gh−1∥.
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� an almost saddle element of depth ⩾ D and margin M if

∀h ∈ G such that ∥h∥ ⩽ D,
∣∣∣ ∥gh∥ − ∥gh−1∥

∣∣∣ ⩽M.

We say that (G, d) has deep pockets if it contains dead ends of arbitrarily large depths.

Remark 7.2.2. Finite groups have deep pockets: element of maximal length are dead
ends of infinite depth. The notion of deep pockets gets way more interesting when
looking at non-bounded groups, as all elements have finite depth.

The notions of (almost) saddle element is new. The notion of almost dead ends appears
implicitly in Warshall’s work [War10; War07]. Their main interest is that the existence
of almost dead ends of large depth is preserved by rough isometries:

Lemma 7.2.3 (Compare with [War10, Proposition 7]). Let (G, dG) and (H, dH) be two
roughly isometric groups. Suppose that G contains almost dead ends of arbitrarily large
depth for some fixed margin M ⩾ 0, then the same is true in H.

Proof. Let f : G → H be a rough isometry. Up to translation we may suppose that
f(eG) = eH . Let g ∈ G be an almost dead end of margin M and depth D. We prove
that f(g) is an almost dead end. For any h ∈ H such that ∥h∥ ⩽ D− 2K, there exists
x ∈ G such that d

(
f(x), f(g)h

)
⩽ K hence

d(g, x) ⩽ d
(
f(g), f(x)

)
+K ⩽ d

(
f(g), f(g)h

)
+ d
(
f(g)h, f(x)

)
+K ⩽ D.

By hypothesis g is an almost dead end of depth D so that ∥x∥ ⩽ ∥g∥+M hence

∥f(g)h∥ ⩽ ∥f(x)∥+d
(
f(x), f(g)h

)
⩽
(
∥x∥+K

)
+K ⩽ ∥g∥+M+2K ⩽ ∥f(g)∥+M+3K.

This means that f(g) is an almost dead end of margin M + 3K (which is fixed) and
depth D − 2K (which can be made arbitrarily large for well chosen g ∈ G).

We should think of the situation where the depth D is much larger than the margin
M . In case of integer-valued metric and D ≫M , the following lemma ensures that we
can “promote” almost dead ends into genuine dead ends of comparatively large depth.

Lemma 7.2.4 ([War10, Proposition 6]). Let X be a metric space, f : X → N a function,
and D,M ∈ N. Suppose that there exists x ∈ X such that

∀x′ ∈ B(x,D), f(x′) < f(x) +M.

Then there exists x′ ∈ BD(x) such that f reaches a maximum on B(x′, D
M
) at x′.
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7.2.1 Criterion

Let us now relate dead ends with the rationality of complete growth series

Theorem 7.2.5. Let (G, d) be a group with LIP metric, and M ⩾ 0 a fixed constant.
Suppose that (G, d) contains either

� an infinite set of (almost) dead ends of arbitrarily large depths, or

� an infinite set of almost saddle elements of arbitrarily large depths and margin M .

Then the complete growth series of (G, d) is not NG-rational.

Proof. By contraposition, suppose that the growth series is NG-rational, recognized by
some finite state automaton (V,E). We prove that, for any M > 0, there exist only
finitely many dead ends (resp. almost saddle elements of margin M) and depth

D ⩾ 2M · |V | ·max
e∈E
∥w(e)∥ .

Each element g ∈ G corresponds to a path γg with w(γg) = g and ℓ(γg) = ∥g∥. Except
for finitely many elements, this path has length ⩾ M |V |. By the pigeonhole principle
some vertex v ∈ V appears at least M + 1 times by γg among the last M |V | + 1 last
visited vertices. Therefore, we can decompose

γg = αβ1 . . . βMδ

with βi non-empty paths going from v to v, and |β1 . . . βMδ| ⩽ M |V |. Note that
ℓ(βi) ̸= 0, otherwise all the elements gn = w(αβ1 . . . β

n
i . . . βMδ) would have the same

length. We deduce that ℓ(β1 . . . βM) ⩾M . Finally we consider

h = w(δ)−1w(β1 . . . βM δ).

We have ∥h∥ ⩽ ∥w(δ)∥+ ∥w(β1 . . . βM δ)∥ ⩽ 2M |V | ·maxe∈E ∥w(e)∥ ⩽ D. Moreover

∥gh∥ − ∥g∥ = ℓ(αβ1 . . . βMβ1 . . . βMδ)− ℓ(αβ1 . . . βMδ) = ℓ(β1 . . . βM) ⩾M > 0

proving that is not a dead end of the required depth. Similarly, we have

∥gh∥ − ∥gh−1∥ = ℓ(αβ1 . . . βMβ1 . . . βMδ)− ℓ(αδ) = 2ℓ(β1 . . . βM) ⩾ 2M > M

proving that g is not an almost saddle element of marginM and the required depth.

7.2.2 Application: Lamplighter groups

In this paragraph, we consider (restricted) wreath products

L ≀Q :=
(⊕

q∈Q

L
)
⋊Q,

where Q acts by permuting the entries of
⊕

q∈Q L. The group L is the lamp group,
while Q is the base group. Elements are pairs (Φ, q) with Φ: Q→ L finitely supported
and q ∈ Q. We fix an embedding L ↪→ L ≀Q, mapping g 7→ (Φ, eQ) where Φ is defined
as Φ(p) = g is p = eQ, and Φ(p) = eL if p ̸= eQ.
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Let us start with a classical result for lengths in wreath products.

Proposition 7.2.6. Consider G = L ≀ Q, endowed with the standard generating set
S = SL ∪ SQ. Elements g ∈ L ≀ Q can be identified with pairs (Φ, q) with Φ: Q → L a
finitely supported function, and q ∈ Q. Moreover, the length of g is given by the formula

∥g∥std =
∑
p∈Q

∥Φ(p)∥SL
+ TS(eQ; supp(Φ); q)

where TS(x;S; y) is the length of the shortest path in the Cayley graph Cay(Q,SQ)
starting at x, going through S in some order, and ending at y.

Using this formula, it was shown in [CT03] that many of those groups have deep pockets:

Theorem 7.2.7 ([CT03, Theorem 6.1]). Consider G = L ≀ Z with L non-trivial, with
the standard generating set S = SL ∪ {t±}. Suppose that L has dead ends of arbitrary
depth w.r.t. SL (for instance if L is finite), then so does G with respect to S.

Note that the condition on (L, SL) is indeed important, as wreath products like Z ≀Z do
not have dead ends (w.r.t. the standard generating set). However, the question of NG-
rationality of their complete growth series is still settled by the following proposition:

Theorem 7.2.8. Let G = L≀Z with L non-trivial. Consider the standard generating set
S = SL ∪{z±} with SL symmetric. There exist infinitely many elements (gd) satisfying

∀h ∈ G such that ∥h∥S ⩽ d, ∥gdh∥S = ∥gdh−1∥S.

As a corollary, the associated complete growth series in not NG-rational.

Proof. Let ℓ ∈ L \ {eL} and define

Ψd(q) =

{
ℓ if q = ±d
eL otherwise.

We consider gd = (Ψd, 0) i.e., the element with only lamps in a non-trivial state on site
±d, and the lamplighter guy back at 0. Consider h = (Φ, q) ∈ L ≀Z with ∥h∥S ⩽ d. We
have h−1 = (Φ(−q + · )−1,−q). Note that ∥h−1∥S = ∥h∥S ⩽ d so that

suppΦ ∩ suppΨd = ∅ = suppΦ(−q + · )−1 ∩ suppΨd.

It follows that ∥gdh∥S can be easily computed:

∥gdh∥S =
∑
p∈Z

∥Ψd(p)∥SL
+
∑
p∈Z

∥Φ(p)∥SL
+ TS(0; B(0, d); q)

= 2 ∥ℓ∥SL
+
∑
p∈Z

∥Φ(p)∥SL
+ 2d− |q|
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(We use that any path going through ±d must go through the entire interval.) Similarly∥∥gdh−1
∥∥
S
=
∑
p∈Z

∥Ψd(p)∥SL
+
∑
p∈Z

∥∥Φ(−q + p)−1
∥∥
SL

+ TS(0; B(0, d); −q)

= 2 ∥ℓ∥SL
+
∑
p∈Z

∥∥Φ(p)−1
∥∥
SL

+ 2d− |q|

Recall SL was symmetric and compare both formula: we have ∥gdh∥S = ∥gdh−1∥S.

Remark 7.2.9. Both Theorems 7.2.7 and 7.2.8 can be generalized when (Z, {t±}) is
replaced by (Q,SQ) such that the associated Cayley graph is an infinite tree (implying
Q ≃ Z∗m ∗ C∗n

2 ). The element gd can be taken as gd = (Ψd, eQ) with

Ψd(q) =

{
ℓ if ∥q∥SQ

= d,

eL otherwise.

However, in those cases, standard growth series are already non Z-rational [Par92].

7.3 Almost saddle elements

The goal of this section is to prove that complete growth series of a virtually 2-step
nilpotent group (G, dS) is NG-rational only if G is virtually abelian. To achieve this, we
exhibit almost saddle elements in 2-step nilpotent Lie groups with polytopal sub-Finsler
metrics, then use various transfer results and Criterion 7.2.5 to get the conclusion.

7.3.1 Lipschitz control away from a pathological set

Let Γ be a simply connected 2-step nilpotent Lie group, and X ⊂ Γ a finite Lie generat-
ing set. We consider the metrics dStoll,X and dE (any Euclidean metric) on Γ = V1⊕V2.

We prove a result allowing us to add small areas z ∈ V2 to large elements g ∈ Γ at
a small marginal cost. This result holds for elements g far away from the following
pathological set P : for each subset T ⊆ X, we define PT = V1 ⊕ Vect[T,Γ], and

P =
⋃

T :PT ̸=Γ

PT .

Lemma 7.3.1. There exist two constants C, ε > 0 (depending only on Γ, X ) such that,
for all ∆ > 0 and g ∈ Γ satisfying dE(g, P ) ⩾ ∆2 and dStoll(e, g) ⩽ ε∆2. Then,

∀z ∈ V2, dStoll(e, gz) ⩽ dStoll(e, g) +
C

∆
· dE(0, z).

Proof. Fix a geodesic R-word g = xµ1

1 x
µ2

2 · · ·x
µk

k with k ⩽ K (Corollary 2.4.11).
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▶ We first prove lower bounds for sufficiently many µi, precisely if

Tg :=
{
xi : |µi| ⩾ C1∆

}
(for some constant C1 = C1(X) which will be fixed later) then Vect[Tg,Γ] = V2.

Suppose PTg ̸= Γ, then PTg ⊆ P . It follows that

∆2 ⩽ dE(g, P ) ⩽ dE(g, PTg)

= dE

(
k∑

i=1

µixi +
1

2

∑
i<j

µiµj[xi, xj], PTg

)

= dE

 k∑
i=1

µiA(xi) +
1

2

∑
i<j:xi,xj /∈Tg

µiµj[xi, xj], PTg


⩽ dE

 k∑
i=1

µiA(xi) +
1

2

∑
i<j:xi,xj /∈Tg

µiµj[xi, xj], 0


⩽ dStoll(e, g) ·max

i
∥A(xi)∥E +K2 · (C1∆)2 ·max

i,j
∥[xi, xj]∥E

⩽

(
C2

1 ·K2max
i,j
∥[xi, xj]∥E + ε ·max

i
∥A(xi)∥E

)
·∆2

which is wrong for C1 <
(
K
√

maxi,j ∥[xi, xj]∥E
)−1

and ε > 0 sufficiently small.

▶ The above geodesic R-word contains long segments in each directions of Tg, which
“generates” V2. Using these segments, we prove the inequality.

Consider r > 0 the largest number such that

BE(0, r) ⊆
∑
x∈T

[x,BStoll(e, 1)]

for all T ⊆ X satisfying Vect[T,Γ] = V2. Here BE(0, r) is the ball of radius r in
(V2, dE), and BStoll(e, 1) is the ball of radius 1 in (Γ, dStoll). Note that this (Minkowski)
sum is a full-dimensional, centrally symmetric, convex set of V2 containing 0 for each
T satisfying the condition Vect[T,Γ] = V2, so indeed r > 0.

It follows that

r

dE(0, z)
· z ∈

∑
x∈Tg

[x,BStoll(e, 1)] ⊆
k∑

i=1

µi

C1∆
· [xi, BStoll(e, 1)].

Finally we can pick ti ∈ BStoll

(
e, dE(1,z)

rC1∆

)
such that z =

∑k
i=1 µi[xi, ti] hence

gz = t−1
1 xµ1

1 t1 · t−1
2 xµ2

2 t2 · . . . · t−1
k xµk

k tk

has length dStoll(1, gz) ⩽ dStoll(1, g) + 2K dE(0,z)
rC1∆

. We take C = 2K
rC1

.
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Remark 7.3.2. This lemma was isolated (and the presentation much improved) during
conversations with Enrico Le Donne and Luca Nalon. It should be compared to results
of [LDNG18; LDN24]. The set PTg should be compared with the set Iγ in [BNV22].
Variations on the lemma can be obtained by taking

PT = Vect(T + [T,Γ]) or PT = Vect(Pr(T ) + [T,Γ]).

Some variation might give meaningful information on a set of full asymptotic density.

7.3.2 Almost saddle elements in (H̄, dStoll)

Theorem 7.3.3. Let Γ be a simply connected 2-step nilpotent Lie group with [Γ,Γ]
infinite, X a finite symmetric Lie generating set. Then (Γ, dStoll) has almost saddle
elements g of arbitrarily large depth D and fixed margin M , that is

∀h ∈ Γ such that ∥h∥Stoll ⩽ D,
∣∣∣ ∥gh∥Stoll − ∥gh−1∥Stoll

∣∣∣ ⩽M.

Moreover, if H ⩽ Γ is a lattice, we may suppose g ∈ [H,H].

Proof. Fix g0 ∈ [Γ,Γ] \P , say dE(g0, P ) = δ. If H ⩽ Γ is a lattice, we take g0 ∈ [H,H].
We prove that g = gn0 is an almost saddle element of depth D (and some fixed margin
M to be determined) for n large enough. We are aiming to prove

∀h ∈ G such that ∥h∥Stoll ⩽ D, ∥gh−1∥Stoll ⩽ ∥gh∥Stoll +M.

By Corollary 2.4.11, there exists a geodesic R-word gh = xµ1

1 ·x
µ2

2 · . . . ·x
µk

k with k ⩽ K.
Note that the element

f = x−µ1

1 · x−µ2

2 · . . . · x−µk

k

isn’t too far away from gh−1: we have Pr(f) = −Pr(gh) = Pr(gh−1) as g ∈ [Γ,Γ], and

A(f) = A(gh)− 2
n∑

i=1

µiA(xi) = A(gh−1)−
(
2

n∑
i=1

µiA(xi)− 2A(h)
)
=: A(gh−1)− z

by Proposition 2.4.5. We just have to fix this error z in areas, with a budget of M .
This is done using Lemma 7.3.1. We observe that

∥f∥Stoll ⩽ ∥gh∥Stoll = O(
√
n) +O(D)

dE(f, P ) ⩾ dE(g, P )− ∥A(h)∥E − 2
n∑

i=1

µi ∥A(xi)∥E = nδ −O(
√
n)−O(D2)

∥z∥E ⩽ O(
√
n) +O(D)

(as
∑

i µi = ∥gh∥Stoll) where the hidden constants only depends on Γ, X and g0. Finally,

we can use Lemma 7.3.1 (with ∆ =
√
dE(f, P )) and conclude that

∥gh−1∥Stoll = ∥fz∥Stoll ⩽ ∥f∥Stoll + C
∥z∥E√
dE(f, P )

⩽ ∥gh∥Stoll +On→∞(1).



144 CHAPTER 7. COMPLETE GROWTH SERIES

Remark 7.3.4. For Γ = H3(R), and more generally for Γ ideal (see Definition 2.4.25),
we have P ⊆ V1, so every large enough element g ∈ [Γ,Γ] is an almost saddle element
of large depth and fixed margin M

Remark 7.3.5. The motivation comes from dilations. In nilpotency class 2, we have

Pr(δ−1(x)) = −Pr(x) and A(δ−1x) = A(x).

If g is a large commutator and h a short element, we have Pr(gh−1) = −Pr(gh) and
A(gh−1) ≈ A(g) ≈ A(gh). It follows that gh−1 ≈ δ−1(gh) and ∥gh−1∥ ≈ ∥gh∥.

7.3.3 Conclusion

The main theorem follows easily.

Theorem 7.3.6. Let (G, dS) be a virtually 2-step nilpotent group such that the complete

growth series Σ̂G,dS(t) is NG-rational, then G is virtually abelian.

Proof. We argue by contraposition. Let H ⩽ G be a finite-index, torsionfree, 2-step
nilpotent subgroup, and (X,ω) the weighted generating set of H defined in §4.1.1.

Since G is not virtually abelian, neither is H, hence [H,H] is infinite. Proposition 7.3.3
implies that (H, dStoll,X,ω) has almost saddle elements of arbitrarily large depths and
fixed margin. Propositions 2.4.12 and 4.1.1 combined imply that the isomorphism

id: (H, dS|H) −→ (H, dX,ω) −→ (H, dStoll,X,ω)

is a rough isometry. It follows that (H, dS|H) has almost saddle elements of arbitrarily

large depths and fixed margin. Using Theorem 7.2.5, we conclude that Σ̂H,dS |H (t) is not

NH-rational, and finally Σ̂G,dS(t) is not NG-rational by Corollary 7.1.13.

7.4 Non-algebraicity for H3(Z)
The proof splits into two part. We first refine Warshall result about the existence of
dead ends of arbitrary depths in H3(Z) [War07], proving that large commutators are
almost dead ends. Combining this with the classifications of CF-language of polynomial
growth, we prove that complete growth series of G = H3(Z) are not NG-algebraic.

7.4.1 CC-metrics on H3(R)
Let us recall some known results on the CC-geometry of H3(R). We fix P ⊂ R2 centrally
symmetric convex polygon, recall

∥g∥CC = min
{
ℓP(γ)

∣∣ γ is a path representing g
}
.

Here γ : [0, ℓ] → V1 = R2 represents g if it has the correct endpoint γ(ℓ) = Pr(g)
and the correct area A(γ) = A(g), therefore computing ∥g∥CC reduces to solving the
isoperimetric problem, where the perimeter is computed w.r.t. the norm ∥ · ∥Mink,P.
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CC-geodesics on H3(R) can be described precisely. First a classical result of Busemann
on the isoperimetric problem in the plane with Minkowski metric:

Theorem 7.4.1 ([Bus49]). Fix P ⊂ R2 a centrally symmetric convex polygon. For any
absolutely continuous closed curve γ, we have

ℓP(γ)

A(γ)
⩾
ℓP(I)

A(I)
,

where I is the isoperimetrix, i.e., the boundary of the rotation by ±π
2
of the polar dual

P∗ =
{
x ∈ R2

∣∣ ∀y ∈ P, ⟨x; y⟩ ⩽ 1
}
.

Moreover, the equality is reached uniquely if γ is homothetic to I.

Figure 7.2: Examples of P, P∗ and I.

Note that I is a polygon with sides parallel to vertices of P.

This was generalized for all CC-geodesics in a beautiful paper of Duchin and Mooney:

Theorem 7.4.2 ([DM14, Structure Theorem]). CC-geodesics split into two classes:

� Regular geodesics which follows a portion of a dilate of the isoperimetrix.

� Unstable geodesics for which all tangent directions γ′(t) lie in a common positive
cone spanned by two consecutive vertices of P, i.e., γ is a geodesic in (R2, ∥ · ∥Mink).

Moreover all such paths are CC-geodesics.

Figure 7.3: A few CC-geodesics of both types for the previous choice of P.
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7.4.2 Almost dead ends in H3(R)
We prove the following result:

Proposition 7.4.3. Fix P ⊂ R2 centrally symmetric convex polygon. There exist
constants C,M depending on P such that, for any D ≫ 1 large enough and n ⩾ C ·D4,
the element g = zn = [x, y]n satisfies

∀h ∈ H3(R) s.t. ∥h∥CC ⩽ D, ∥gh∥CC ⩽ ∥g∥CC − ∥ĥ∥P +M.

Proof. Fix g, h ∈ H3(R) as in the statement. There exist
consecutive vertices ŝi, ŝi+1 of P such that ĥ lives in the positive
cone spanned by ŝi, ŝi+1, say ĥ = αŝi+βŝi+1 with 0 ⩽ α, β ⩽ D.
We define B(ĥ) as the area of the triangle with sides ĥ, −αŝi
and −βŝi+1 (in that order).

ĥ
αŝi

βŝi+1

B(ĥ)

Note that the area A(h) + B(ĥ) is enclosed by a curve of length ∥h∥CC + ∥ĥ∥P ⩽ 2D
(specifically h concatenated with the two segments −αŝi and −βŝi+1), so that∣∣∣A(h) +B(ĥ)

∣∣∣ ⩽ ( 2D

∥z∥CC

)2

by Busemann’s isoperimetric inequality.

Consider γz any geodesic representing z and consider the dilation δλγz with

λ =

√
A(g) + A(h) +B(ĥ) ⩾

√
C ·D4 −O(D2) =

√
C ·D2 −O(1).

We consider D ≫ 1 so that all sides of δλγz have Minkowski-length ⩾ D. In particular
we can find two points h0 and h1 on the curve δλγz, more precisely on the sides with
direction −ŝi+1 and −ŝi respectively, differing by a vector ĥ. Up to picking a different
starting point on the geodesic δλγz, we may assume h0 = 0 and h1 = ĥ.

h0

h1
ĥ

δλγz

A(δλγz) = λ2

0

ĥ

B(ĥ)

β

A(β) = λ2 −B(ĥ)

We consider the curve β following δλγz from h0 = 0 to h1 = ĥ. The curve β has endpoint
h1 = ĥ (just as gh) and area λ2 −B(ĥ) = A(g) + A(h) = A(gh), hence represents gh.
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It remains to bound the length of β to estimate ∥gh∥CC. We have

λ =

√
n+ A(h) +B(ĥ) ⩽

√
n+

1

2

A(h) +B(ĥ)√
n

⩽
√
n+

2D2

√
n ∥z∥2CC

and therefore

∥gh∥CC ⩽ ℓP(β) = ℓP(δλγz)− ∥ĥ∥P = λ ∥z∥CC − ∥ĥ∥P

⩽ ∥g∥CC − ∥ĥ∥P +
2D2

√
n ∥z∥CC

⩽ ∥g∥CC − ∥ĥ∥P +
2√

C ∥z∥CC
.

as ∥g∥CC =
√
n ∥z∥CC and n ⩾ CD4. We conclude by setting C = 4/M2 ∥z∥2CC.

7.4.3 CF languages of polynomial growth and Dyck loops

A k-Dyck word is a word over the set of symbols [1, ]1, [2, ]2, . . . , [k, ]k satisfying

� each symbol appears exactly once,

� [i appears before ]i,

� and if [j appears in between [i and ]i, then so does ]j.

For instance, [1[2]2[3[4]4]3]1[5]5 is a Dyck word while [1[2]1]2 and ]1 are not.

We fix A an alphabet and a k-Dyck word z. A k-Dyck loop with underlying word z
is the set of words obtained by placing fixed words w0, . . . , w2k ∈ A∗ in between the
parenthesis, and replacing parenthesis [i and ]i by powers uni

i and vni
i respectively, with

ui, vi ∈ A∗ fixed, and ni any positive integer. For instance,{
ab(a)n1bc(ac)n2ac(c)n2(da)n3(b)n3abc : n1, n2, n3 ∈ N

}
is a 3-Dyck loop with underlying word [1[2]2]1[3]3 obtained with u1 = a, u2 = ac, v2 = c,
v1 = ε, u3 = da, v3 = b and w0 = ab, w1 = bc, w2 = ac, w3 = w4 = w5 = ε, w6 = abc.

We have the following structural result due to Ilie, Rozenberg and Salomaa:

Theorem 7.4.4 ([IRS00]). A CF language L ⊆ A∗ satisfies

βL(n) := #{w ∈ L : ℓ(w) ⩽ n} = O(nk)

if and only if it is a finite union of k-Dyck loops.
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7.4.4 Main proof

Theorem 7.4.5. Let (G, dS) be a group containing a finite-index subgroup H ≃ H3(Z),
with S a finite symmetric generating set. Then Σ̂G,dS(t) is not NG-algebraic.

Proof. The proof goes by contradiction. We suppose that the complete growth series of
(G,S) is NG-algebraic. We first observe that Σ̂H,dS |H (t) is NH-algebraic by Corollary
7.1.15. In particular Theorem 7.1.14 gives a CF language L ⊂ (H × N)⋆ evaluating to{

(g, ∥g∥S) : g ∈ H
}
.

The growth βL(n) is a lower bound on the volume growth of (H, dS), so grows polyno-
mially. It follows from Theorem 7.4.4 that L is a finite union of Dyck loops.

Consider one of the Dyck loops forming L. When evaluating this language, we get pairs
(g, ℓ) ∈ H × N. Informally, the language “predicts” g has length ∥g∥S = ℓ, and we’d
like to prove this cannot be done coherently. More precisely, we get elements

g(n1, n2, . . . , nk) ∈ H of length α + n1τ1 + n2τ2 + . . .+ nkτk

for some fixed α, τ1, τ2, . . . , τk (depending only on the chosen Dyck loop). Just to make
the notation clear(er), if the word underlying the Dyck loop is [1[2[3]3[4]4]2]1, then

g(n1, n2, n3, n4) = w0 u
n1
1 w1 u

n2
2 w2 u

n3
3 w3 v

n3
3 w4 u

n4
4 w5 v

n4
4 w6 v

n2
2 w7 v

n1
1 w8

for some fixed ui, vi, wi ∈ H. We may always suppose (ui, vi) ̸= (e, e) (otherwise just
forget about those, fuse some wj’s and lower k) hence τi > 0 (otherwise varying ni

gives infinitely many words evaluating in a given sphere in H). We may also suppose
w0 = w1 = . . . = w2k−1 = e (in which case we will also drop the index for w2k). For
instance the previous example can be rewritten

(w0 u1w
−1
0︸ ︷︷ ︸

ũ1

)n1 (w0w1 u2 (w0w1)
−1︸ ︷︷ ︸

ũ2

)n2 . . . (w0 . . . w7 v1 (w0 . . . w7)
−1︸ ︷︷ ︸

ṽ1

)n1 · (w0w1 . . . w8︸ ︷︷ ︸
w̃

).

Note that each element g ∈ H appears as a g(n1, n2, . . . , nk) when evaluating one of the
Dyck loop. Using the pigeonhole principle we know infinitely many elements of [H,H]
appear in a given Dyck loop. From now on we only consider this specific Dyck loop.

The remainder of the proof goes as follows:

(a) We show that 0 ∈ ConvHull{ûi + v̂i} (where ĝ = Pr(g) ∈ V1).

In particular there exist weights λi ⩾ 0 such that

k∑
i=1

λi(ûi + v̂i) = 0.

As ûi + v̂i ∈ Z2, we may even suppose λi ∈ N.
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(b) We treat (i.e., find a contradiction) the case when the underlying word has the
form [1· · · ]1. This is done using central almost dead ends of large depth.

(c) We treat the other case i.e., when the underlying word contains at least two disjoints
pairs of brackets [1· · · ]1[j· · · ]j · · · . This is done using CC-geometry.

(i) First we deduce two elements h1, h2 ∈ H3(R) \ {e} such that ĥ1 + ĥ2 = 0 and

∀m,n ∈ R+, ∥δmh1 · δnh2∥CC = ∥δmh1∥CC + ∥δnh2∥CC .

Here ∥ · ∥CC = ∥ · ∥CC,X,ω, where (X,ω) is as defined in §4.1.1.

(ii) Using Duchin–Mooney’s Structure Theorem (Theorem 7.4.2 above), we prove
that no such elements exist in H3(R).

(a) Suppose on the contrary that 0 /∈ ConvHull{ûi+ v̂i}, then there exists a linear form
h : R2 → R such that h(ûi + v̂i) > 0 for all i. Let m > 0 be the minimum of those k
values. We have

h
(
Pr
(
g(n1, n2, . . . , nk)

))
⩾ (n1 + n2 + . . .+ nk) ·m+ h(ŵ)

so that h(ĝ) > 0 except for finitely many choices of n1, n2, . . . , nk. It follows that ĝ = 0
(i.e., g ∈ [H,H]) for only finitely many values of the parameters, a contradiction.

(b) Consider g0 = g(n1, n2, . . . , nk) any commutator appearing in our Dyck loop. Define

gn = g(n1 + nλ1, n2 + nλ2, . . . , nk + nλk)

Note that all those gn are distinct commutators. As (H, dS|H) and (H, dCC,X,ω) are
roughly isometric (Proposition 4.1.1 and Theorem 2.4.27), hence Theorem 7.4.3 tells
us that the commutator gn is an almost dead end of depth ⩾ D and margin M (in
(H, dS|H)) for all n large enough. Now consider for any n

g̃n = g(n1 + nλ1 +M + 1, n2 + nλ2, . . . , nk + nλk).

Recall that the underlying word starts and ends by [1 and ]1 respectively, and that gn
is a commutator (hence is central in H). It follows that we can rewrite

g̃n = uM+1
1 · gn · w−1 vM+1

1 w = gn · uM+1
1 · w−1 vM+1

1 w

Let us take h = uM+1
1 · w−1 vM+1

1 w, fix a depth D = ∥h∥S and n large enough for that
D. We have gn and a nearby element g̃n = gnh. We compute their lengths in order to
find a contradiction. As both gn and g̃n appears in the Dyck loop, we know

∥gn∥S = α + (n1 + nλ1)τ1 + . . .+ (nk + nλk)τk

∥g̃n∥S = α + (n1 + nλ1 +M + 1)τ1 + . . .+ (nk + nλk)τk = ∥gn∥S + (M + 1)λ1

We have ∥gnh∥S > ∥gn∥S +M which is a contradiction with gn being an almost dead
end of depth D and margin M .



150 CHAPTER 7. COMPLETE GROWTH SERIES

(c-i) Suppose that the underlying word factors into (non-empty) disjoints Dyck words
z = [1. . .]1 · [j. . .]j . . .. Write

g(n1, n2, . . . , nk) = g1(n1, n2, . . . , nj−1) · g2(nj, . . . , nk) · w.

Fix m,n ∈ N. We are going to consider g1(mλ1, . . . ,mλj−1) and g2(nλj, . . . , nλk) and
approximate them by better-behaved δmh1 and δnh2. We take

F = {ui, vi | i = 1, . . . , k},

and consider the map fl: F ⋆ → Pr(F )⋆ defined in Lemma 2.4.24. The elements h1 and
h2 are defined as follows:

h1 = ev
(
fl
(
g1(λ1, λ2, . . . λj−1)

))
and h2 = ev

(
fl
(
g2(λj, . . . , λk)

))
.

For instance, if g1(n1, n2) = un1
1 u

n2
2 v

n2
2 v

n1
1 , then h1 = Pr(u1)

λ1 Pr(u2)
λ2 Pr(v2)

λ2 Pr(v1)
λ1 .

u1 u1 u1

v1

v1

v1

w

Figure 7.4: g1(pλ1)w and δph1. (Underlying word starts with [1]1 and λ1 = 1)

Lemma 2.4.24 gives ∥δmph1∥CC = ∥g1(mpλ1, . . . ,mpλj−1) · w∥CC +O(
√
p). It follows

p ∥δmh1∥CC = ∥δmph1∥CC ∼ ∥g1(mpλ1, . . . ,mpλj−1) · g2(0, . . . , 0)∥CC,X,ω

∼ ∥g1(mpλ1, . . . ,mpλj−1) · g2(0, . . . , 0)∥S
= α +mp(λ1τ1 + . . .+ λj−1τj−1)

(where the second ∼ follows from Theorem 2.4.27 and Proposition 4.1.1). Similarly

∥δnph2∥CC = ∥g2(npλj, . . . , npλk) · w∥CC +O(
√
p)

∥δmph1 · δnph2∥CC = ∥g1(mpλ1, . . . ,mpλj−1) · g2(npλj, . . . , npλk)∥CC +O(
√
p)

so that

p ∥δnh2∥CC ∼ α + np(λjτj + . . .+ λkτk)

p ∥δmh1 · δnh2∥CC ∼ α + p
(
m(λ1τ1 + . . .+ λj−1τj−1) + n(λjτj + . . .+ λkτk)

)
and finally ∥δmh1 · δnh2∥CC = ∥δmh1∥CC + ∥δnh2∥CC for all m,n ∈ N.
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(c-ii) We have two elements h1, h2 ̸= e such that ĥ1 + ĥ2 = 0 and

∥δmh1 · δnh2∥CC = ∥δmh1∥CC + ∥δnh2∥CC

for all m,n ⩾ 0. This means that, for any CC-geodesics γ1, γ2 representing h1 and h2,
the concatenation δmγ1 · δnγ2 is a CC-geodesic for δmh1 · δnh2.

Let us first consider m = n = 1. We know that h1h2 is a commutator, so any geodesic
has to follow a rescaled isoperimetrix. Suppose w.l.o.g. that ∥h1∥CC ⩾ ∥h2∥CC, then any
geodesic γ1 for h1 has to cover at least half the perimeter of the isoperimetrix.

� If either the isoperimetrix has ⩾ 6 sides or ∥h1∥CC > ∥h2∥CC, then γ1 has to cover
two corners of the isoperimetrix, hence the scale of the isoperimetrix followed by any
geodesic continuation of γ1 is fixed, and γ1γ2 is the maximal geodesic continuation.
In particular the longer curve γ1 · δ2γ2 cannot be a geodesic continuation.

γ1

Figure 7.5: All geodesic continuations of γ1 have to follow the dotted path.

� The only remaining case appears when the isoperimetrix has 4 sides, ∥h1∥CC =
∥h2∥CC and the geodesics γ1 and γ2 meet at corners of the isoperimetrix. However
we still have the same contradiction as γ1 · δ2γ2 is not a CC-geodesic.

γ1

γ2 δ2γ2

Figure 7.6: The path γ1 · δ2γ2 is not quite geodesic.

Remark. This extends for higher Heisenberg groups with cubical-like generating sets.

7.5 Quasi-geodesic regular normal forms

Definition 7.5.1. Let (G, dS) be a group with a word metric. A normal form L ⊆ S⋆

(i.e. a language such that ev : L → G is one-to-one) is (λ,C)-quasi-geodesic if

∀w ∈ L, ℓ(w) ⩽ λ ∥w̄∥S + C.

If λ = 1 and C = 0, we say the normal form is geodesic.
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Remark 7.5.2. In the literature, (λ,C)-quasi-geodesics usually satisfy

ℓ(v) ⩽ λ ∥v̄∥S + C

for all subwords v of w (i.e. w = avb). If the normal form is recognized by an ergodic
finite state automaton, both conditions are equivalent up to a change of constants.

The starting point is the observation that having a geodesic regular normal form implies
that Σ̂G,dS(t) is NG-rational, and a partial converse due to Laurent Bartholdi:

Proposition ([Bar17, Exercice B.3]). Suppose that Σ̂G,dS(t) is NG-rational, then (G, dS)
admits a (λ, 0)-quasi-geodesic normal form L ⊆ S⋆ for some λ ⩾ 1.

We give the following strengthening

Theorem 7.5.3. Suppose that Σ̂G,dS(t) is NG-rational, then (G, dS) admits a (1+ε, 0)-
quasi-geodesic normal form L ⊆ S⋆ for any ε > 0.

7.5.1 Distortion of series

For the proof, we consider more general series.

Definition 7.5.4. Let (M, ∥ · ∥) be a metric monoid, and Γ ∈ NM [[t]] (with Γ ̸= 0).

� A monomial m · tα (with m ∈M) appears in Γ(t) if Γ(t)−m · tα ∈ NM [[t]].

� The distortion of Γ is

dist(Γ) = sup

{
∥m∥
α

∣∣∣∣ mtα appears in Γ

}
.

� The asymptotic distortion of Γ is

adist(Γ) = lim sup
α→∞

{
∥m∥
α

∣∣∣∣ mtα appears in Γ

}
.

We prove the following Proposition, which implies Theorem 7.5.3.

Proposition 7.5.5. Consider a NG-rational series Γ ∈ NG[[t]] and ε > 0. There exists
a NS⋆-rational series Λ ∈ NS⋆[[t]] such that ev(Λ) = Γ and dist(Λ) ⩽ dist(Γ) + ε.

Take Γ = Σ̂G,dS . The support of Λ - the set of words w ∈ S⋆ such that wtα appears in
Λ for some α - is rational (using Theorem 7.1.10). Take L the support, we have

∀w ∈ L, ℓ(w) ⩽ dist(Λ) · α ⩽ (dist(Σ̂G,dS) + ε) · α = (1 + ε) · ∥w̄∥S ,

hence Theorem 7.5.3.
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Lemma 7.5.6. Let Γ1,Γ2 ∈ NM [[t]] (with Γ1,Γ2 ̸= 0).

(a) dist(Γ1 + Γ2) = max{dist(Γ1), dist(Γ2)} (idem for adist).

(b) dist(Γ1 · Γ2) ⩽ max{dist(Γ1), dist(Γ2)} (idem for adist).

(c) If Γ is proper, then dist(Γ∗) = dist(Γ).

(d) If Γ is proper, then lim supn→∞ dist(Γn) ⩽ adist(Γ∗).

(e) adist(Γ1) ⩽ adist(Γ1Γ2), with equality if Γ2 is polynomial.

Proof. Nothing more than ∥mn∥ ⩽ ∥m∥+ ∥n∥.

Lemma 7.5.7. If Γ(t) ∈ NM [[t]] is NM-rational, and the monomial mtα appears in
Γ(t), then Γ(t)−mtα is also NM-rational and has the same star height as Γ(t).

Proof. The proof is by induction on the star height. First, the statement is trivial if
Γ(t) ∈ Rat0 is a polynomial. Suppose the statement is true for Γ ∈ Rath.

� Suppose that mtα appears in Λ = Γ∗ with Γ ∈ Rath, then it appears in Γn for some
n, which has star height h. We can rewrite

Λ−mtα = 1 + Γ + . . .+ Γn−1 +
(
Γn −mtα

)
+ Γn+1 · Γ∗ ∈ Rath+1.

� Suppose that mtα appears in Λ = n0t
β0 · Γ∗

1 · n1t
β1 · . . . · Γ∗

k · nkt
βk with Γi ∈ Rath.

There exists monomials mit
α
i appearing in Γi such that

mtα = n0m1n1 . . .mknk · tβ0+α1+β1+...+αk+βk .

We write and expend

Λ = n0t
β0 ·
(
(Γ∗

1 −m1t
α1) +m1t

α1
)
· n1t

β1 · . . . ·
(
(Γ∗

k −mkt
αk) +mkt

αk
)
· nkt

βk ,

After removing the term mtα which appears in the RHS, we get an expression for
Λ−mtα proving that Λ−mtα ∈ Rath+1.

� In full generality, elements Λ ∈ Rath+1 are finite sums of products of the previous
type, and mtα appears in one of the products.

Corollary 7.5.8. Given a NS⋆-rational series Λ ∈ NS⋆[[t]] and ε > 0, there exists a
rational series Λ′ ∈ NS⋆[[t]] with the same star height s.t. ev(Λ) = ev(Λ′) ∈ NG[[t]] and

dist(Λ′) ⩽ max{adist(Λ) + ε, dist(ev(Λ))}.

Proof. In the series Λ, there are finitely many monomials w1s
α1 , . . . , wns

αn with

ℓ(wi)

αi

> adist(Λ) + ε.
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For each of them, pick word w′
i ∈ S⋆ such that ev(w′

i) = ev(wi) and ℓ(w
′
i) = ∥ev(wi)∥S.

In particular
ℓ(w′

i)

αi
=

∥ev(wi)∥S
αi

⩽ dist(ev(Λ)). We consider

Λ′ = Λ−
n∑

i=1

wis
αi +

n∑
i=1

w′
is

αi .

By Lemma 7.5.7, this series is NS⋆-rational of the same star height, and

dist(Λ′) ⩽ max{adist(Λ) + ε, dist(ev(Λ))}.

Proof of Proposition 7.5.5. We prove by induction on the star height of Γ that, for any
ε > 0, we can find NS⋆-rational series Γ̃, Γ̂ ∈ NS⋆[[t]] evaluating to Γ such that

adist(Γ̃) ⩽ adist(Γ) + ε

dist(Γ̂) ⩽ dist(Γ) + ε

Base case. If Γ ∈ Rat0 is a polynomial, this is trivial : replace each g by a geodesic
word over S. We get dist(Λ) = dist(Γ) (and asymptotic distortions are equal to −∞).

Induction. Let Γ ∈ Rath+1. It can be written as a finite sum of terms of the form

h0(S1)
∗h1(S2)

∗ · · · (Sk)
∗ · hktβ

= (h0S1h
−1
0 )∗

(
(h0h1)S2(h0h1)

−1
)
· · ·
(
(h0h1 . . . hk−1)S1(h0h1 . . . hk−1)

−1
)∗
h0h1 . . . hkt

β

=: (T1)
∗ · · · (Tk)∗ · htβ,

where Si, Ti ∈ Rath. Using Lemma 7.5.6(d,e,a), we get exponents ni such that

dist(T ni
i ) ⩽ adist(T ∗

i ) ⩽ adist(Γ) + ε

so we can rewrite this term as

(1 + T1 + . . .+ T n1−1
1︸ ︷︷ ︸

Σ1

)(T n1
1︸︷︷︸
Π1

)∗ · · · (1 + Tm + . . .+ T nm−1
m︸ ︷︷ ︸

Σm

)(T nm
m︸︷︷︸
Πm

)∗ htβ

As 1 + Ti + . . .+ T ni−1
i ∈ Rath, our induction hypothesis gives Σ̃i ∈ NS⋆[[t]]rat s.t.

adist(Σ̃i) ⩽ adist(1 + Ti + . . .+ T ni−1
i ) + ε ⩽ adist(Γ) + ε

where the second inequality comes from Lemma 7.5.6(e,a). Similarly as T ni
i ∈ Rath we

get a series Π̂i ∈ NS⋆[[t]]rat evaluating to T ni
i such that

dist(Π̂i) ⩽ dist(T ni
i ) + ε ⩽ adist(Γ) + 2ε.

Finally we pick a word wh ∈ S⋆ evaluating to h. Putting everything together we get

adist
(
Σ̃1(Π̂1)

∗ · · · Σ̃m(Π̂m)
∗ · whs

β
)
= adist

(
Σ̃1(Π̂1)

∗ · · · Σ̃m(Π̂m)
∗) ⩽ adist(Γ) + 2ε

Summing finitely many terms, we get Γ̃ ∈ NS⋆[[t]]rat such that adist(Γ̃) ⩽ adist(Γ)+2ε
and ev(Γ̃) = Γ. Corollary 7.5.8 gives Γ̂ ∈ NS⋆[[t]]rat with dist(Γ̂) ⩽ dist(Γ) + 3ε.
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7.5.2 Optimality of Theorem 7.5.3

One may hope that NG-rationality of complete growth series of a pair (G, dS) implies
the existence of geodesic regular normal form. Such hopes are washed away by the
results of Liardet, combined with an example due to Neumann and Shapiro:

Theorem ([NS97]). There exists a virtually abelian group G generated by a finite set
S such that no regular language L ⊆ S⋆ that surjects onto G is geodesic. Specifically

GNS =

〈
x, y, a, b

∣∣∣∣ xα, xβ, yα, yβ commutes for all α, β ∈ ⟨a, b⟩
a2 = b4 = [a, b] = e, x · xa = y · yb2

〉
generated by SNS = {x±, y±, a, b±} is an example (using the notation gh := hgh−1 ).

This group is virtually abelian, hence has NG-rational complete growth series [Lia96],
but admits no geodesic regular normal form. The next best thing to hope for is the
existence of a (1, C)-quasi-geodesic normal form, that is, to replace the multiplicative
error with an additive error. This holds for virtually abelian groups:

Theorem 7.5.9. Let G be virtually abelian group, and S a finite generating set. Then
G admits a regular normal form L ⊂ S⋆ which is (1, C)-quasi-geodesic, for some C ⩾ 0.

Proof. Consider a finite-index normal abelian group (H, dX,ω) as defined in §4.1.1. The
language of ShortLex representative is regular (eg. [Eps+92, Theorem 4.3.1]): if

X =
{
t1a1t

−1
1 , t2a2t

−1
2 , . . . , tkakt

−1
k

}
in increasing order, then the ShortLex language consist of all words

w = (t1a1t
−1
1 )n1(t2a2t

−1
2 )n2 . . . (tkakt

−1
k )nk

with n = (n1, n2, . . . , nk) ∈ U ⊆ Nk, with Uc an ideal of (Nk,+) (i.e., something that a
finite-state automaton can deal with: check for finitely many vectors v ∈ Nk if n ⩾ v
component-wise). The language we are looking for is

L =
{
t1a

n1
1 u1 · t2an2

2 u2 · · · tka
nk
k uk

∣∣ (n1, n2, . . . , nk) ∈ U
}
,

where ui ∈ S⋆ are fixed words such that ūi = t−1
i . Proposition 4.1.1 concludes.

v1
v2

v3

Uc

U

Figure 7.7: An ideal Uc in (N2,+), its complement U,
and finitely many generators of Uc.
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However, this improvement does not hold for more general pairs (G, dS).

Proposition 7.5.10. There exists a group G generated by a finite set S such that

(a) The complete growth series of (G, dS) is NG-rational, and

(b) For any regular language L ⊆ S⋆ that surjects onto G, there exists ε > 0 and
infinitely many words w ∈ L such that ℓ(w) > (1 + ε) · ∥w̄∥S.

Specifically, an example is given by G = GNS ∗ Z, generated by S = SNS ⊔ {z±}.

Proof. (a) Σ̂G,dS(t) is NG-rational. Indeed, [All+11, Corollary 3.5] gives

Σ̂G,dS(t) = Σ̂NS(t)
(
(Σ̂Z(t)− 1)(Σ̂NS(t)− 1)

)∗
Σ̂Z(t)

(Note that removing a term “1” preserves NG-rationality by Lemma 7.5.7.)

(b) Let L ⊂ S∗ be a regular that surjects onto G. Consider a trim deterministic
automaton M = (V, S, δ, v0, accept) accepting L, with |V | = m states. Let g = (zh)m

for some h ∈ GNS. Consider w ∈ L a representative for g. Using a loop-erasing
algorithm, one can decompose w as the union of a simple path of length ⩽ m− 1, and
at most m cycles (possibly empty or non-simple)

w s1s2 . . . sℓw1

w2 w3

Figure 7.8: Start at the base point of w, then skip all the way to the last visit of this
vertex, effectively skipping over a cycle w1. Then go to the next vertex and repeat.

On the other hand, using cut vertices in Cay(G,S), we can decompose w as w =
v0 sv1 sv2 · · · svm such that ev(v0 zv1 · · · zvi) = (zh)i for all i = 1, 2, . . . ,m. It follows
that at least one of the v1, v2, . . . , vm (which all evaluates to h) lie completely inside
one of the cycles. Therefore

L′ = {v ∈ S⋆ | v is a subword of (a word labeling) a cycle in A and v̄ ∈ GNS}

surjects onto GNS.

� Either some word v ∈ L′ contains a letter z±, hence is not geodesic.

� Or L′ ⊆ S⋆
NS. In particular, we can rewrite

L′ = {v ∈ S⋆
NS | v is a subword of a cycle in A}.

It follows that L′ is regular. (Recognized by the automaton A, where we consider
all states as initial and terminal, and we remove all edges labeled z±, and all edges
going from a strongly connected component to another.)
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In both cases, it follows that L′ contains some word v which is not geodesic. Consider β
a cycle in A (say from p ∈ V to itself) containing v as a subword, and α, γ two paths in A
going from a starting vertex to p, and from p to an accept vertex respectively. Observe
that the word labeling β is not geodesic, pick ε > 0 such that ℓ(β) > (1+ ε)

∥∥β̄∥∥
S
. The

words wn labeling αβnγ satisfy

ℓ(wn) = ℓ(α) + nℓ(β) + ℓ(γ) > (1 + ε)
(
∥ᾱ∥+ n

∥∥β̄∥∥+ ∥γ̄∥ ) ⩾ (1 + ε) ∥w̄n∥

for all n large enough, as wanted.

7.5.3 Application: Lamplighter groups

In this section, we apply the previous criterion to lamplighter groups. In some sense,
this completes the proof suggested in [Bar17, Exercice C.1].

Proposition 7.5.11. Consider G = F ≀ Z with F finite and non-trivial, and with the
standard generating set S = SF ⊔ {z±}. Let D = diam(F, dSF

). Then

(a) G admits a 3-quasi-geodesic regular normal form L ⊂ S⋆

(b) G admits no λ-quasi-geodesic regular normal form, for 1 ⩽ λ < D+3
D+1

.

In particular, Σ̂G,dS(t) is not NG-rational.

Proof. (a) Let F ⊂ S⋆
F be a set of geodesic representatives for F \ {eF}, and let

Z = {z}+ ⊔ {ε} ⊔ {z−1}+. We consider the “left-first” normal form [CT03]

L = Z ⊔ ZF(z+F)∗Z.

We denote q : G↠ Z the “endpoint map”. Consider g = (Φ, q) ∈ F ≀ Z.

� If supp(Φ) = ∅, the element g is represented by a word in Z, which is geodesic.

� If supp(Φ) ̸= ∅, let m = min supp(Φ) and M = max supp(Φ). The word w ∈ L
representing g first goes m, then switch all the lamps needed from left to right until
M , and finally goes to its endpoint q. In particular,

ℓ(w) = d(0,m) + d(m,M) + d(M, q) +
∑
i∈Z

∥Φ(i)∥SF

⩽ 3 · TS(0; {m,M}; q}) +
∑
i∈Z

∥Φ(i)∥SF

< 3 ∥g∥S

Indeed, every edge of Z we use (each at most three times) has to be used at least
once in the optimal solution for the traveling salesman problem.
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(b) Informally, we prove that regular normal form cannot avoid “going left-first at large
scale” for “right-first elements”, or the opposite. Pictorially,

0−nh

trajectory of the lamplighter

0 nh

Figure 7.9: Regular normal forms of L ≀ Z do at least one of these mistakes.

Let L ⊆ S⋆ be a regular language such that ev(L) = G. Consider f ∈ F \ {e}, and let

g = z−NfzN · zNfz−N ,

an element with lamps at position ±N in a non-trivial state and the lamplighter back
at the origin, with N larger than the size of the automaton recognizing L. Fix w =
s1s2 . . . sℓ ∈ L such that ev(w) = g. There exist i, j (w.l.o.g. 0 < i < j < ℓ) such that

q(ev(s1 . . . si)) = −N and q(ev(s1 . . . sj)) = N.

As N is large, we can decompose w = u0v1u1v2u2v3u3 such that

∀n1, n2, n3 ⩾ 0, w(n1, n2, n3) := u0 v
n1
1 u1 v

n2
2 u2 v

n3
3 v3 ∈ L

and q(v̄1) < 0, q(v̄2) > 0 and q(v̄3) < 0. (In particular, we have a control on the number
of instances of z± in v1, v2, v3.) There exist µ1, µ2, µ3 > 0 such that

−µ1q(v̄1) = µ2q(v̄2) = −µ3q(v̄3) =: h

Let wn := w(µ1n, µ2n, µ3n) and (Φn, qn) = w̄n. On the one side, we have

supp(Φn) ⊆ [−nh+On→∞(1), On→∞(1)]

qn = −nh+On→∞(1)

so that geodesic for w̄n should be “right-first”. By Proposition 7.2.6

∥w̄n∥S = nh+
∑
i∈Z

∥Φn(i)∥SF
+On→∞(1),

with
∑

i∈Z ∥Φn(i)∥SF
⩽ D · nh+On→∞(1). On the other side, we have

ℓ(wn) ⩾ 3nh+
∑
i∈Z

∥Φn(i)∥SF
.

(The trajectory wn is “left-first”.) It follows that ℓ(wn)
∥w̄n∥S

⩾ D+3
D+1

+On→∞
(
1
n

)
.
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7.5.4 Application: Nilpotent groups of rank 2

We give a second application using CC-geometry and Pansu’s theorem.

Lemma 7.5.12. Let Γ be a simply connected stratified nilpotent Lie group with V1 ≃ R2.
Consider P ⊂ V1 a centrally symmetric convex polygon, and ∥ · ∥CC,P the associated
Carnot-Caratheodory metric on Γ. There exists λ > 1 such that

ℓP(γ) ⩾ λ ∥γ̄∥CC,P

for every triangular γ : [0, ℓ]→ V1. (Recall that γ̄ is the endpoint of the horizontal lift.)

Proof. We prove that no triangle is CC-geodesic, by contraposition. Let γ : [0, ℓ]→ R2

be a piecewise-C1 geodesic. In this setting, [HLD23, Corollary 1.4] tells us that, for all
t, the directions γ′(t−) and γ′(t+) belong to a common cone R+F, with F a facet of P.

Let s1, s2 . . . , s2N be the vertices of P in order. As P is centrally symmetric, we have
N ⩾ 2 and sN+i = −si. If we moreover suppose γ is made of three segments, this
implies the three directions v1,v2,v3 belong two at most two consecutive cones, say

v1,v2,v3 ∈ R+s1 + R+s2 + R+s3 ⊆ Rs1 + R+s2.

Everything lives in a half-plane, the only way that the curve is closed is that γ is reduced
to a point. (Unless we “truly use” s2, we cannot use both s1, s3.)

v1

v2

v3

s1

s2

s3

γ

This proves that, for any triangle γ, we have ∥γ̄∥CC,P < ℓP (γ). We get the stronger
conclusion by compactness: the set of triangles γ with ℓP(γ) = 1 is compact, and the
function γ 7→ ∥γ̄∥CC,P is continuous, so it reaches its maximum M < 1. Finally

ℓP(γ) ⩾
1

M
∥γ̄∥CC,P

for all triangles γ (using dilations to extend the result when ℓP(γ) ̸= 1).

Remark 7.5.13. This argument does not extend to (r+1)-gons in higher rank r ⩾ 3.
For instance, if we endow Γ = H3(R) × R with the cubical-like Lie generating set
S = {(x±,±1), (y±,±1)} (hence P = ConvHull Pr(S) is a cube), the path

γ = (x, 1)µ · (y,−1)µ · (x−1, 1)µ · (y−1,−1)µ
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is a geodesic representative for zµ
2
. This corresponds to the equality

(1, 1, 1) + (1,−1,−1) + (−1, 1,−1) + (−1,−1, 1) = 0,

where each pair of terms lie on common facet of P (i.e., an entry stays unchanged).
However, we still get some partial results in higher rank when the “minimal combina-
torial distance between orthogonal points on the surface of P” is large enough.

Theorem 7.5.14. Consider (G, dS) such that G contains a finite-index, 2-generated,

nilpotent subgroup H. If Σ̂G,dS(t) is NG-rational, then G is virtually abelian.

Proof. We argue by contraposition, and suppose that G is not virtually abelian.

We consider H a finite-index, 2-generated, c-step nilpotent subgroup. In particular, we
have an epimorphism π : N2,c ↠ H. We consider (X,ω) the weighted generating set
defined in §4.1.1. We define a morphism evN : X⋆ → N2,c s.t. π(evN(w)) = evH(w).
Observe that evN(X) is generating set of N2,c, indeed we have

⟨evN(X)⟩ [N2,c, N2,c] = N2,c =⇒ ⟨evN(X)⟩ = N2,c

[Khu93, Theorem 2.2.3(d)]. Let L ⊆ S⋆ be a regular surjecting onto G. We consider

L̃ =
{
w̃
∣∣ w ∈ L and ev(w) ∈ H

}
⊆ X⋆

where w̃ is the decomposition map defined in §2.6.5. Observe that L̃ is also regular
and satisfies evH(L̃) = H. As H is not virtually abelian, its abelianization is Z2 and
it derived subgroup [H,H] is infinite. It particular, there exists infinitely many w̃ ∈ L̃
such that Pr(evH(w̃)) = 0.

(S⋆, ℓ) (X⋆, ℓω) (N2,c, dN,X,ω) (N̄2,c, dCC,P)

(G, dS) (H, dH,X,ω)

(Z2, dX,ω) (R2, dMink,P)

dec

ev

evN

evH
π

Pr

Pr

Pick w̃ ∈ L̃ a sufficiently long word such that Pr(evH(w̃)) = 0. We can write it
as a product w̃ = u0v1u1v2u2v3u3 where v1, v2, v3 ̸= ε, such that w̃(n1, n2, n3) =
u0v

n1
1 u1v

n2
2 u2v

n3
3 u3 belong to L̃ for all n1, n2, n3 ⩾ 0, and crucially

0 ∈ ConvHull{v1,v2,v3}, where vi := Pr(evH(vi)).

In particular, there exist µ1, µ2, µ3 ∈ Z>0 such that w̃n := w̃(nµ1, nµ2, nµ3) satisfies
Pr(evH(w̃n)) = 0 for all n. We prove that these words are at best λ-quasi-geodesic.
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If v1 = v2 = v3 = 0, this is trivial as [H,H] is quadratically distorted, hence

∥ev(wn)∥S ∼ ∥ev(wn)∥X,ω ⪯
√
n,

by Proposition 4.1.1, while ℓ(wn) = ℓω(w̃n) ≍ n (as vi ̸= ε). Let us suppose at least
one of the vectors v1,v2,v3 is non-zero. On the one side, we have

ℓ(wn) = ℓω(w̃n) ⩾ nµ1 · ℓω(v1) + nµ2 · ℓω(v2) + nµ3 · ℓω(v3)
⩾ nµ1 ∥v1∥Mink,P + nµ2 ∥v2∥Mink,P + nµ3 ∥v3∥Mink,P

= ℓP(γn) ⩾ λ · ∥γ̄n∥CC,P

where γn is the triangular path with sides nλ1v1, nλ2v2 and nλ3v3, and λ is the constant
given in Lemma 7.5.12. (Note that N̄2,c is stratified.) On the other side,

∥ev(wn)∥S ∼ ∥evH(w̃n)∥H,X,ω (1)

⩽ ∥evN(w̃n)∥N,X,ω (2)

=
∥∥(evN(u0) evN(v1) evN(u0)−1)nλ1(evN(u0u1) evN(v2) evN(u0u1)

−1)nλ2 . . .

. . . (evN(u0u1u2) evN(v3) evN(u0u1u2)
−1)nλ3 evN(u0u1u2u3)

∥∥
N,X,ω

=
∥∥(evN(u0) evN(v1) evN(u0)−1)nλ1(evN(u0u1) evN(v2) evN(u0u1)

−1)nλ2 . . .

. . . (evN(u0u1u2) evN(v3) evN(u0u1u2)
−1)nλ3

∥∥
N,X,ω

+O(1)

∼
∥∥(evN(u0) evN(v1) evN(u0)−1)nλ1(evN(u0u1) evN(v2) evN(u0u1)

−1)nλ2 . . .

. . . (evN(u0u1u2) evN(v3) evN(u0u1u2)
−1)nλ3

∥∥
CC,P

(3)

∼ ∥γ̄n∥CC,P (4)

which concludes. Here we use (1) Proposition 4.1.1, (2) π is a submetry, (3) Pansu’s
Theorem 2.4.23 and (4) Lemma 2.4.24 with

F =
{
evN(u0) evN(v1) evN(u0)

−1, evN(u0u1) evN(v2) evN(u0u1)
−1,

evN(u0u1u2) evN(v3) evN(u0u1u2)
−1
}
.

Remark 7.5.15. We could prove Lemma 7.5.12 without the “stratified” assumption,
using the same trick of lifting to a stratified cover. This would lighten the notations for
the second part of the proof. Anyway, at least we have a fun little diagram.
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Chapter 8

Non-D-finite Green series

We consider the (re-scaled1) Green series of groups. Given a group G and a finite
generating (multi)set S, we associate a series ΓG,S(z) defined as

ΓG,S(z) =
∞∑
ℓ=0

cℓ · zℓ ∈ Z[[z]]

where cℓ = #{(s1, . . . , sℓ) ∈ Sℓ | s1 . . . sℓ = eG} is the number of closed paths eG → eG
of length ℓ in Cay(G,S). In the spirit of the study of other combinatorial sequences,
we would like to pin down these series inside the following algebraic hierarchy:

rational⇒ algebraic⇒ diagonal of rational⇒ D-finite⇒ D-algebraic.

Lots of work has been done in this direction. For instance,

� Kouskov proved that this series is rational if and only if G is finite [Kou98].

� ΓG,S(z) is algebraic as soon as G is virtually free. This follows from the Muller–
Schupp theorem [MS83], as the Word Problem is unambiguously context-free in
this case. It is an open problem whether the converse holds.

� Bishop recently proved that ΓG,S(z) is the diagonal of a rational series as soon as
G is virtually Fm × Zn [Bis24]. This improves upon previous results of [Eld+14].

We also have a few results in the negative direction:

� Most proofs use the asymptotics. For instance, if
∑

n⩾0 an · zn is D-finite and has

positive radius of convergence, then there exist αi ∈ Q, βi ∈ N, λi ∈ Q such that

an ∼
m∑
i=1

Ai · λni · nαi · (log n)βi .

1The Green series is usually defined as G(z) =
∑

n⩾0 P[Xn = e] · zn, where (Xn)n⩾0 is the simple
random walk on Cay(G,S), starting at X0 = e. Therefore ΓG,S(z) = G(|S| · z).

163
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This is the approach used by Kouskov for the result quoted earlier. Perhaps the
most notable result in this direction is the proof by Bell and Mishna that ΓG,S(z)
is not D-finite for amenable groups of super-polynomial growth [BM20].

� Garrabrant and Pak proved that F2×F2 had a specific generating multiset for which
ΓG,S(t) is not D-finite [GP17]. Their approach is quite different as the asymptotics
for this group are not too wild (combining [Cha17, Theorem 1.3] and [CHR13]).
Instead, they manufacture a generating set so that the sequence (cℓ mod 4) has
large subword complexity, and prove this cannot happen for D-finite series.

For virtually nilpotent groups, the consensus was not clear2. The known asymptotics
[Ale02, Corollary 1.17] perfectly match what is possible among D-finite series. For
instance, for G = H3(Z) with generating set S = {x±, y±, e}, Diaconis and Hough
proved that cℓ =

(
25
16
ℓ−2 +O(ℓ−5/2)

)
5ℓ [DH21]. The first conclusive evidence was given

by Pak and Soukup. They proved the undecidability of some decision problem related
to Green series. As a corollary, they obtain the following result:

Theorem ([PS22]). There exists a nilpotent group G such that

� Either there exists a finite generating multiset S such that the Green series ΓG,S(z)
is not the diagonal of rational series,

� Or at least, there is no algorithm which, given a generating set S, computes a
representation of the Green series as the diagonal of rational series.

Specifically, they consider the group of m × m unitriangular matrices G = UTm(Z),
with m = 9.6 · 1085. We improve on this result, proving that the first conclusion holds,
at the cost of allowing for virtually nilpotent groups. The group in consideration is

vH = H3(Z)⋊ C2 =
〈
x, t

∣∣ [x, [x, xt]] = [xt, [x, xt]] = t2 = 1
〉
.

This group presentation was introduced in [BE22] as the first example of group with
polynomial geodesic growth which is not virtually abelian.

Theorem 8.A. The Green series of the virtually nilpotent group vH with respect to
the generating multiset S = {x, x−1, t, t, t, t, t, t, t, t} is not D-finite.

Our proof is most similar to Pak–Garrabrant argument. We also consider the values of
some derived sequence modulo a large power of 2, and compute its subword complexity.

Remark. We can promote this result to generating sets using G′ = vH × D8 and
S ′ = {(x±, 0)} ∪ {(t, g) | g ∈ D8}. This follows from the previous result as

ΓvH,S(z) = 8 · ΓG′,S′(z)− 7 · Γ⟨x⟩,{x±}(z),

and Γ⟨x⟩,{x±}(t) is an algebraic series.

2The reader can compare the different versions of [GP17, §6]
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8.1 Preliminaries

8.1.1 D-finite series

Definition 8.1.1. A series
∑

n⩾0 an · zn is D-finite (or holonomic) if its coefficients are
P -recursive, i.e., if there exist polynomials p0, . . . , pk ∈ Z[X] with p0 ̸= 0 such that

p0(n) · an + p1(n) · an−1 + . . .+ pk(n) · an−k = 0 for all n ⩾ k.

D-finite series are closed under many operations, as shown by Stanley:

Proposition 8.1.2 ([Sta80, Theorems 2.1, 2.3, 2.7]). Let A,Γ, Γ̃ ∈ Z[[z]] be series.

(a) If A(z) is an algebraic series, then A(z) is D-finite.

(b) If Γ(z), Γ̃(z) are D-finite, then c · Γ(z) + c̃ · Γ̃(z) and Γ(z) · Γ̃(z) are D-finite.

(c) If Γ(z) is D-finite and A(z) is algebraic with A(0) = 0, then Γ(A(z)) is D-finite.

We add another operation to the list:

Proposition 8.1.3. If
∑

n⩾0 an · zn is D-finite, then the extracted series

∞∑
n=0

a2n · zn and
∞∑
n=0

a2n+1 · zn

are D-finite.

Proof. Let Γ(z) =
∑

n⩾0 an · zn. Using Proposition 8.1.2, the series∑
n⩾0

a2n · z2n =
1

2

(
Γ(z) + Γ(−z)

)
is D-finite. Therefore, there exist polynomials p0, . . . , p2k ∈ Z[X] such that

p0(2n) · a2n + p2(2n) · a2n−2 + . . .+ p2k(2n) · a2n−2k = 0 for all 2n ⩾ 2k.

Taking qi(n) = p2i(2n) concludes. The proof for the other series is analogous.

8.1.2 Subword complexity

Definition 8.1.4. Given a sequence (an)n⩾0 ∈ AZ⩾0 , its subword complexity (or block
complexity) is the function pa : Z>0 → Z>0.

pa(n) = #
{
(u1, . . . , un) ∈ An | ∃x ⩾ 0, ax+i = ui for i = 1, . . . , n

}
.
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Many “algebraically nice” sequences have low complexity. For instance,

� Eventually periodic sequences (eg. coefficients of rational series in Fq[[X]]) are
characterized by the property pa(n) = O(1). Otherwise pa(n) ⩾ n+ 1.

� Automatic sequences (eg. coefficients of algebraic series in Fq[[X]], or equivalently
diagonal of rational series in Fq[[X]]) satisfy pa(n) = O(n).

We recall another result in that direction, which will be key in our argument:

Theorem 8.1.5 (Garrabrant-Pak, [GP17, Lemma 4]). Let
∑

n⩾0 an · zn ∈ Z[[X]] be a
D-finite series. Then the sequence (an mod 2)n⩾0 has subword complexity pa(n) = o(2n).

8.2 Complexity of multiplicative sequences

In contrast with coefficients of D-finite series, we prove that many multiplicative func-
tions have maximal subword complexity. Some proof ideas appear in [Li20, §4].

Definition 8.2.1. A function f : Z>0 → C is multiplicative if

∀m,n ∈ Z>0 such that gcd(m,n) = 1, f(mn) = f(m)f(n).

Theorem 8.2.2. Let f : Z>0 → {±1} be a multiplicative function. Suppose that

� the set Pf = {p prime | ∃q = pm, f(q) = −1} is infinite, and

� the set Qf = {q prime power | f(q) = −1} is sparse in the sense
∑

q∈Q
1
q
<∞.

Then the subword complexity of
(
f(n)

)
n>0

is maximal, that is, pf (n) = 2n.

Remark. Neither assumption can be fully dropped. For instance, if Qf (hence Pf )
is finite, then the function is periodic and pf (n) = O(1). If we drop the “sparseness”
condition, some automatic sequences enter the picture, such as

f(n) =
n

2ν2(n)
(mod 4).

The Liouville function λ(n) satisfies the first condition, and pλ(n) ⩾ (1 + ε)n is a
long-standing open problem related to Sarnak’s conjecture on Möbius disjointness.

Proof. Fix (u1, . . . , un) ∈ {±1}n, we find x such that f(x+ i) = ui for all 1 ⩽ i ⩽ n.

Let I = {i ∈ [[1, n]] | f(i) ̸= ui} (the “failure set” for x = 0). For each i ∈ I, we pick
a prime power pmi

i such that f(pmi
i ) = −1. The first hypothesis ensures we can take

all primes pi > n and distincts. If i /∈ I, we take as convention pi = 1. The Chinese
remainder theorem gives infinitely many x satisfying the conditions

� For each prime p ⩽ n, we take x ≡ 0 (mod pm+1), where m = ⌊logp(n)⌋.
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� For each index i ∈ I, we take x ≡ pmi
i − i (mod pmi+1

i ).

They are all of the form x = kM +R where

M =
∏
p⩽n

pm+1 ·
∏
i∈I

pmi+1
i

and 0 ⩽ R < M . By construction, we have x+ i = i · pmi
i · (kMi +Ri) where kMi +Ri

doesn’t contain any extra factor p ⩽ n or pj (with 1 ⩽ j ⩽ n). In particular,

f(x+ i) = f(i) · f(pmi
i ) · f(kMi +Ri) = ui · f(kMi +Ri).

We prove that a positive proportion of all k satisfy q ∤ kMi + Ri for all q ∈ Qf and
1 ⩽ i ⩽ n. The only prime factors that still matter come from

P̃f =
{
p ∈ Pf

∣∣ p > n and p ̸= pi
}
.

For each rank N , we partition P̃f = P̃f,⩽N ⊔ P̃f,>N . For each p ∈ Pf , let m be the
smallest integer such that f(pm) = −1

1

X
#

{
k ⩽ X

∣∣∣∣ ∀p ∈ P̃f,⩽N ,
∀i ∈ [[1, n]],

pm ∤ kMi +Ri

}
=

∏
p∈P̃f,⩽N

(
1− n

pm

)
+ON

(
1

X

)

(Indeed, the count is exact each time X is a common multiple of the pm for p ∈ P̃f,⩽N .
The variation in between is accounted by ON(

1
X
).)

1

X
·#
{
k ⩽ X

∣∣∣ ∃p ∈ P̃f,>N ,∃i ∈ [[1, n]], pm | kMi +Ri

}
⩽

n

X
·#
{
k ⩽ (M + 1)X

∣∣∣ ∃p ∈ P̃f,>N , pm | k
}

⩽ (M + 1)n ·
∑

p∈P̃f,>N

1

pm

Using the hypothesis
∑

p∈Pf

1
pm

<∞, we have

PN :=
∏

p∈P̃f,⩽N

(
1− n

pm

)
− (M + 1)n ·

∑
p∈P̃f,>N

1

pm
−→

∏
p∈P̃f

(
1− n

pm

)
> 0.

Fixing N large enough and letting X →∞, we get

lim inf
X→∞

1

X

{
k ⩽ X

∣∣∣ ∀p ∈ P̃f , ∀i ∈ [[1, n]], pm ∤ kMi +Ri

}
⩾ PN > 0

which concludes.
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8.3 Main argument

Reduction to paths without backtracking.

Let us consider the following language (the “reduced Word Problem”).

R =
{
w ∈ S∗ ∣∣ w̄ = e, no subword xx−1 or x−1x

}
,

and R(z) =
∑

ℓ⩾0 r(ℓ) · zℓ the associated growth series. Adapting the proof of the
Bartholdi–Grigorchuk cogrowth formula [Bar99, Corollary 2.6], we get

R(z)

1− z2
=

Γ
(

z
1+z2

)
1 + z2

.

(As we only remove “bumps” xx−1 and x−1x, we should take d = 2 in the formula.) It
follows from Proposition 8.1.2(c) that R(z) is D-finite if and only if ΓvH,S(z) is D-finite.

Counting paths with few t’s. We decompose R into three disjoint sets:

R1 =
{
w ∈ R

∣∣ at most four t, or six t including two consecutive
}
,

R2 =
{
w ∈ R

∣∣ exactly six t and no subword tt
}
,

R3 =
{
w ∈ R

∣∣ at least eight t} .
(1) Observe that R1 = WP

(
F2 ⋊C2, {x, x−1, 8 · t}

)
∩C where C is a rational language

encoding the fact that our words are reduced and the condition on the t’s. Indeed, if

xn0 t xn1 t xn2 t xn3 t xn4 = xn0yn1xn2yn3xn4

is trivial in vH, then it is also trivial in F2 ⋊ C2. Using the easy direction of Müller–
Schupp’s theorem 2.5.11, we conclude that R1 is unambiguously context-free.

(2) Paths of length 2ℓ+ 6 in R2 come in two types and four orientations:

a

b

c

d

↗

a

b

c

d

↖

a

b

c

d

↙

a

b

c

d

↘

Figure 8.1: Two paths of each type, and all four orientations. For the first type, the perimeter
should be 2ℓ. For the second type, the perimeter of the “main shape” (i.e., without the “tail”)
should be 2k < 2ℓ. The first picture corresponds to the word w = x5tx−6tx−2tx9tx−4tx−3tx.
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Shapes of perimeter 2n are parametrized by solutions (a, b, c, d) ∈ Z4
>0 to the system{

a+ b+ c+ d = n,

ab = cd.

We denote the set of solutions by Sn.

For paths of the first type, we have 2(a + c) + 3 starting points (anywhere along an
horizontal segment). For the second type, we have exactly 6 starting points (the “tail”
can be attached at any corner, its length ℓ− k is fixed). This leads to

r2(2ℓ+ 6) = 86 ·

 ∑
(a,b,c,d)∈Sℓ

4 ·
(
2(a+ c) + 3

)
+
∑
k<ℓ

4 · 6 · |Sk|


(3) Finally 88 | r3(ℓ) as we can choose any of the 8 copies for each instance of t.

Counting solutions to a Diophantine equation. We compute |Sn| (mod 8). A
key observation is that, in addition to the four orientations used earlier, there is an
extra symmetry. Specifically D8 ↷ Sn generated by the involutions

σ(a, b, c, d) = (a, b, d, c) and τ(a, b, c, d) = (c, d, a, b).

Using the Orbit-Stabilizer formula, we get

|Sn| = 1 ·#{(a, a, a, a)} + 4 ·#{(a, b, a, b) : a < b}
+ 4 ·#{(a, b, c, c) : a < b} + 8 ·#{(a, b, c, d) : a < c < d < b}

= 1{4|n} + 4 · 1{2|n} ·
⌊
n−1
4

⌋
+ 4 ·#{(a, b, c, c) : a < b} + 8 · an integer

For each n ∈ Z>0, let’s compute the number of solutions 0 < a < c < b to the system{
a+ b+ 2c = n,

ab = c2.

Let d = gcd(a, b). We can write a = dX and b = dY with X < Y coprime integers. As
d2XY = ab = c2, we conclude that both X and Y are perfect squares, more precisely
a = dx2, b = dy2 and c = dxy. Now the first equation becomes

d(x+ y)2 = n.

Reciprocally, for each integer z ⩾ 3 such that z2 | n, we have 1
2
φ(z) choices for x < y

such that x + y = z and gcd(x, y) = 1, where φ is the Euler’s totient function. Using
Gauss formula

∑
d|m φ(d) = m, we conclude that

#{(a, b, c, c) ∈ Sn : a < b} = 1

2

∑
z2|n
z⩾3

φ(z) =
1

2

∑
z|m
z⩾3

φ(z) =
m(n)− 1− 1{4|n}

2
,

where m(n) =
∏

p p
⌊vp(n)/2⌋ is the largest integer such that m2 | n.



170 CHAPTER 8. NON-D-FINITE GREEN SERIES

End game. Let us put everything together for ℓ = 2j + 1 odd:

r(4j + 8) ≡ r1(4j + 8) + 86 · 4 ·

(
4 · m(2j + 1)− 1

2
+
∑

k<2j+1

6 · 1{4|k}

)
(mod 86 · 4 · 8)

≡ r1(2ℓ+ 6) + 221 ·
(
m(2j + 1)− 1 + 3 ·

⌊
j

2

⌋)
hence

1

222

(
r(4j + 8)− r1(4j + 8)− 221 · 3 ·

⌊
j

2

⌋)
≡ m(2j + 1)− 1

2
(mod 2).

Let

S(z) :=
∞∑
j=0

1

222

(
r(4j + 8)− r1(4j + 8)− 221 · 3 ·

⌊
j

2

⌋)
· zj.

Observe that

m(2j + 1)− 1

2
≡ 0 (mod 2) ⇐⇒ f(2j + 1) ≡ 1 (mod 4),

m(2j + 1)− 1

2
≡ 1 (mod 2) ⇐⇒ f(2j + 1) ≡ −1 (mod 4),

where f : Z>0 → {±1} is the multiplicative function defined as

f(n) = m
( n

2ν2(n)

)
(mod 4),

which satisfies the hypothesis of Theorem 8.2.2. We conclude that the subword com-
plexity of the coefficients of S(z) modulo 2 is p(n) = 2n, hence S(z) cannot be D-finite
by Theorem 8.1.5. As the generating series of r1(4j+8) and

⌊
j
2

⌋
are algebraic, it follows

that R(z) and ΓvH,S(z) are not D-finite (using Propositions 8.1.2 and 8.1.3).

Remark 8.3.1. It is possible to bypass Section 8.2 and get the weaker conclusion that
the Green series cannot be written as a diagonal of rational series.

We first repeat the argument of Section 8.3: if Γ(z) is the diagonal of rational series,
then S(z) is too. Using [DL87, Theorem 5.2] and [Chr+80, Théorème 1], we get that
the sequence

(
m(n) mod 4

)
n⩾1

is 2-automatic, and therefore its multiplicative cousin

f(n) = m
( n

2ν2(n)

)
(mod 4)

(with values in {±1}) is 2-automatic too. However, sequences that are both automatic
and multiplicative are classified [KLM22], and f does not appear on the list.
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Another tempting argument was to use asymptotic frequencies. Unfortunately, this
reduces to a well-known open problem. Recall that squarefree numbers have asymptotic
density 6

π2 . It follows that naturals such that m(n) = k have density 1
k2
· 6
π2 , hence

lim
X→∞

#{n ⩽ X | m(n) ≡ 1 mod 4}
X

=
6

π2

∑
k⩾0

1

(4k + 1)2
=

3

π2

(
π2

8
+G

)
=

3

8
+

3G

π2

where π2

8
=
∑

ℓ⩾0
1

(2ℓ+1)2
and G = L(2, χ−4) =

∑
ℓ⩾0

(−1)ℓ

(2ℓ+1)2
is the Catalan constant. It is

widely believed that π2 and G are Q-linearly independent ([CDT24] for recent progress),
hence the sequence (m(n) mod 4)n⩾1 cannot be 2-automatic [Cob72, Theorem 6].

8.4 Further questions and remarks

The most tempting question is to extend the result to the discrete Heisenberg group.

Problem 8.A. Consider H3(Z) = ⟨x, y | [x, [x, y]] = [y, [x, y]] = e⟩. Prove that the
Green series ΓH3(Z),S(z) is not D-finite for some generating (multi)set S.

Part of the motivation is that any proof looking at the coefficients (mod pm) would
then pass to any group containing H3(Z), for instance any virtually nilpotent group
which is not virtually abelian (for a well-chosen generating multiset).

However, the small trick of adding multiple copies of a generator doesn’t seem to work.
For instance, if we take S = {x, y, y, z}± as our generating set, and look modulo 22K , we
have to count closed paths that stay within K-neighborhood of the abelian subgroup
⟨x, z⟩, hence the associated series should be the diagonal of rational series.

This means that we need to find extra symmetries on the entire set of closed paths (and
not just R2 in our argument), for instance find some 2-group action. Hopefully, once
filtering by increasing orbit size, the first terms would be provably good (i.e. D-finite),
and we can find a provably bad term before getting stuck on unprovably bad ones.

Another interesting group is the lattice G = ⟨a, b, c⟩ in H3(R), with a, b, c given by

0

Figure 8.2: A triangular lattice and the generators a, b and c in red, orange and blue respectively.

The point is that D12 ↷ G by isometries, giving a few symmetries to start with. This
group is isomorphic to ⟨x2, xyx, y⟩ ⩽ H3(Z).
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Carnot-Carathéodory Spaces, and Regularity of Their Isometries”. In:
Analysis and Geometry in Metric Spaces 5.1 (2017), pp. 116–137.

[LDN24] Enrico Le Donne and Luca Nalon. Euclidean rectifiability of sub-Finsler
spheres in free-Carnot groups of step 2. Preprint available at https://

arxiv.org/abs/2403.10196. (2024).
[LDNG18] Enrico Le Donne and Sebastiano Nicolussi Golo. “Regularity properties

of spheres in homogeneous groups”. In: Transactions of the American
Mathematical Society 370.3 (2018), pp. 2057–2084.

[LDT22] Enrico Le Donne and Francesca Tripaldi. “A Cornucopia of Carnot Groups
in Low Dimensions”. In: Analysis and Geometry in Metric Spaces 10.1
(2022), pp. 155–289.

[LR04] John C. Lennox and Derek J. S. Robinson. The Theory of Infinite Soluble
Groups. Oxford University Press, Aug. 2004.

[Li20] Shuo Li. “On completely multiplicative automatic sequences”. In: Journal
of Number Theory 213 (2020), pp. 388–399.

[Lia96] Fabrice Liardet. “Croissance dans les groupes virtuellement abéliens”.
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