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A B S T R A C T   

This article marks the occasion of Social Science Research’s 50th anniversary by reflecting on the 
progress of sequence analysis (SA) since its introduction into the social sciences four decades ago, 
with focuses on the developments of SA thus far in the social sciences and on its potential future 
directions. 

The application of SA in the social sciences, especially in life course research, has mushroomed 
in the last decade and a half. Using a life course analogy, we examined the birth of SA in the social 
sciences and its childhood (the first wave), its adolescence and young adulthood (the second 
wave), and its future mature adulthood in the paper. 

The paper provides a summary of (1) the important SA research and the historical contexts in 
which SA was developed by Andrew Abbott, (2) a thorough review of the many methodological 
developments in visualization, complexity measures, dissimilarity measures, group analysis of 
dissimilarities, cluster analysis of dissimilarities, multidomain/multichannel SA, dyadic/polyadic 
SA, Markov chain SA, sequence life course analysis, sequence network analysis, SA in other social 
science research, and software for SA, and (3) reflections on some future directions of SA 
including how SA can benefit and inform theory-making in the social sciences, the methods 
currently being developed, and some remaining challenges facing SA for which we do not yet 
have any solutions. It is our hope that the reader will take up the challenges and help us improve 
and grow SA into maturity.   

1. Introduction 

On the occasion of Social Science Research’s 50th anniversary, we reflect in this paper on the progress of sequence analysis (SA) since 
its introduction into the social sciences four decades ago by focusing on (1) the origin and the early growth of SA in the social sciences, 
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(2) the major developments, especially those of the second-wave SA in the twenty-first century, by paying attention to the strengths 
and limitations of the developments, and (3) possible future directions for SA. 

In the last two decades, SA has seen many successful applications in the social sciences, especially in life course research. According 
to Google Scholar, the search terms of “sequence analysis” and “life course” returned the following exponential increase in results 
containing the two terms: 10 for the decade of 1980–1989, 65 for the decade of 1990–1999, 408 for the decade of 2000–2009, 2320 for 
the decade of 2010–2019, and 1080 for the under 18 months’ time from January 2020 to June 30, 2022. Fig. 1 displays a detailed 
yearly growth trend of SA from 1990 to December 2021 based on Web of Science journal article data. Using a life course analogy, we 
examine in this paper the birth of SA in the social sciences and its childhood (the first wave), its adolescence and young adulthood (the 
second wave), and its mature adulthood (the third wave and beyond). 

A typical application of SA in the early days, according to Abbott and Tsay (2000), involves three steps: coding narratives or 
processes as sequences, measuring pairwise dissimilarities between sequences, and some form of data reduction such as cluster 
analysis, although today’s applications of SA involve more, as the reader will find out later in the article. Let us illustrate the first two 
steps of this process using the five toy sequences in Fig. 2, in which we present five hypothetical individuals’ employment statuses 
(employed or unemployed) over 20 intervals (e.g., months). We first code the five individuals’ processes over time as sequences, as 
presented in the figure. Next, we compare them in terms of their dissimilarities. To compare sequences, one should rely on a criterion 
relevant for the social sciences. Based on a review of the life course literature, Studer and Ritschard (2016) identified three kinds of 
regularities for consideration. The sequencing of the states shows the dynamic and the path taken by individuals. For instance, 
observing unemployment before or after employment reveals opposite professional integration dynamics. The timing of the states (i.e., 
when an individual is in each state) or transitions (i.e., when an individual experiences a change of state) is also an important regularity 
in trajectories. Being unemployed at age 20 or 50 has different causes and consequences. Finally, the duration, i.e., the time spent in 
each state, is as well of interest in many applications. For instance, the overall time spent in unemployment is a key determinant for 
later professional outcomes. 

Sequences 1 and 2 are very similar in timing and duration as they are in the same state at the same time for most of the trajectory. 
However, these sequences record opposite sequencing, thus different dynamics. On the contrary, sequences 4 and 5 show similar 
sequencing and duration, but different timing. Depending on the chosen criterion, one may reach different conclusions regarding 
sequence similarity. One therefore needs to make a choice about the criterion to use for comparing sequences, and this choice should be 
grounded in one’s substantive research question. We postpone a detailed discussion of such criteria for comparing sequence simi-
larities to a later section. In the typical SA project described by Abbott and Tsay (2000), dissimilarities are used for data reduction 
through clustering, that is with the objective of classifying similar sequences together into classes or clusters. However, there are 
several other dissimilarity-based analytical tools such as identifying representative sequences, measuring the discrepancy of se-
quences, and ANOVA-like analysis of sequences that have been explored in later developments as will be shown in our review of SA 
methodological developments. 

In Section 2, we begin from a discussion of the birth of SA in the 1980s, with a summary of some important SA research and the 
historical contexts in which SA was developed by Andrew Abbott. Section 3 contains a thorough review of the many methodological 
developments in visualization, complexity measures, dissimilarity measures, group analysis of dissimilarities, cluster analysis of 
dissimilarities, multidomain/multichannel SA, dyadic/polyadic SA, Markov chain SA, sequence life course analysis, sequence network 
analysis, SA in other social science research, and software for SA. In Section 4, we discuss and reflect on future directions of SA 
including how SA can benefit theory-making in the social sciences as well as what theoretical approaches may be necessary for making 
sense of the temporal dynamics uncovered by SA. In this section, we also present the methods currently being developed which are 
going beyond, and solving some major problems posed by the set of SA methods developed in the last two decades. In the same section, 
we finally consider remaining challenges facing SA for which we do not yet have any solutions, before concluding the paper with some 
additional thoughts and calls for additional research. 

Fig. 1. Journal publication and citation trends of SA applications in life course research (1990–2021, web of science).  
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2. Sequence analysis: its birth and childhood 

2.1. Sequence research in the 1980s and 1990s 

The period from 1983 to 2000 witnessed the development of SA for addressing a variety of social scientific questions with proc-
essual or sequential relevance—such as questions about occupational or organizational careers. At the micro level, these questions may 
deal with life course transitions in a certain order; at the macro level, such questions may pertain to organizational developments or 
modernization processes. To answer questions like these, input data for analysis do not take the usual form of individual data points as 
“cases.” Rather, a common property of the type of input data for answering these questions takes the form of data sequences as in-
dividual “cases.” Thus, such a “case” in terms of its outcome measure is no longer represented by a single value but by multiple values 
or categorical states in SA. This sequence “case” in the first phase of SA development was typically unidimensional, and multidi-
mensional SA did not become popular until later stages of development, to be discussed in Section 3. 

During this phase of development, we find two types of SA publications: Those that proposed, expounded, discussed, or reviewed 
the concepts, framework, and principles of SA and those that applied SA in substantive research analyzing empirical data. Chicago 
sociologist Andrew Abbott, who adapted and pioneered SA for the benefits of the discipline of sociology and the broader historical and 
social sciences, published a series of papers adapting and applying SA in sociological and historical research (1983, 1988, 1990a, 
1990b, 1995; Abbott and Forrest, 1986; Forrest and Abbott, 1990). Other disciplines took notice as well. For example, Abbott was 
invited to present a didactic seminar on SA at an annual conference of the Population Association of America in the mid-1990s. 

There were numerous SA applications that emerged during this phase of SA development to shed light on a variety of interesting 
research questions. Good examples abound: Abbott and Hrycak (1990) used Optimal Matching (OM) for analyzing musicians’ careers 
in 18th century Germany; Abbott and DeViney (1992) applied SA via OM to study welfare adoption sequences; Abbott and Barman 
(1997) analyzed decades of articles published in the American Journal of Sociology via optimal alignment enhanced by Gibbs sampling, 
a member of the broad class of Markov Chain Monte Carlo, to establish the emergence of the standard sociological article structure; 
Chan (1995) explored how OM could be applied to career data to identify typical career paths and to investigate whether social 
mobility paths are selective to certain people; Halpin and Chan (1998) applied OM to careers from age 15 to 35 to study work-life 
mobility; Han and Moen (1999) used OM for understanding the temporal patterning of retirement life in the US; in Stovel et al.’s 
(1996) study, OM was also applied to model the transformation of career systems at Lloyds Bank in Britain from 1890 to 1970. Note 
that although a typical SA application in this phase of SA development used OM, other types of distances between sequences were 
proposed, such as the number of moves needed to turn one sequence into another (Dijkstra and Taris, 1995). For a complete review of 
SA in this period of development, the reader is referred to Abbott and Tsay (2000). 

2.2. A departure from the dominant analytic paradigm in social science? 

The earlier section summarized some important social scientific SA publications in the first phase of SA development. It is obvious 
that one author with centrality stands out—Andrew Abbott—because without his contributions, we would not have SA as we know it 
today in the social sciences. Perhaps more relevant for our readers is that without an understanding of the historical context in which 
Abbott became exposed to SA in other disciplines and his own professional interests and trainings, it would not be possible for us to 
understand his contributions to SA developments. We describe below this historical context, which will answer the question of how it 
was possible for him to do what he did in those years, and we rely on Abbott’s narratives for shedding light on the context in which he 
pioneered SA developments in the social sciences. 

According to Abbott (2022), “What was necessary for [SA] to be ‘discovered’ for sociology was a sociologist who had several basic 
qualities:  

1. who was profoundly interested in social sequences,  
2. who had enough mathematical skills to pursue abstract theory directly through formal reasoning and to talk on some semi- 

professional basis with people who were much more skilled in mathematics than he and much more broadly acquainted with 
general developments in formal thinking,  

3. who was not committed to any one of the four or five very exciting quantitative paradigms taking off in sociology under the 
leadership of a remarkable generation of quantitative leading scholars: James Coleman, OD Duncan, Harrison White, Leo 
Goodman, Nancy Tuma, Robert Hauser, etc.,  

4. who had the interdisciplinary connections to encounter people from various other disciplines and hear about new developments in 
them, and  

5. who had the familiarity and experience with programming not to be afraid of dealing with new methods that required direct 
computation and further coding.” 

We now further explain Abbott’s qualifications in these five areas that together define the context for his pioneering SA de-
velopments. The first quality is evidenced by Abbott’s substantive interest in histories and processes, beyond what could be repre-
sented by the so-called “General Linear Reality” (GLR). This GLR is a way of thinking about how society works, typically embodied by 
regression-type of linear models that are regarded as representations of the real social world (Abbott, 1988, 2001). A basic assumption 
of GLR is that the order of things in processes does not affect how things turn out. Abbott has been a strong proponent for going beyond 
GLR. 

T.F. Liao et al.                                                                                                                                                                                                          
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At high school, Abbott was trained in the “New Math” tradition, a response to the Sputnik crisis facing the US at the time, to boost 
students’ science and mathematics education. In addition, when Abbott was in graduate school, canned programs like those of today 
were not yet available, and he did multiple regression with hand calculation in graduate school (Abbott, 2022). 

The third quality is equally important as the other qualities and is closely related to the first. The influential figures at the time when 
Abbott was a junior scholar, James Coleman, Otis Dudley Duncan, Leo Goodman, Robert Hauser, Nancy Tuma, and Harrison White, all 
had their own followings and represented major paradigms of American quantitative sociological research. According to Abbott 
(2022), however, he did not recruit himself into any of the above quantification paradigms, but instead pursued various quantification 
projects of his own, related to intellectual questions that arose in his work such as his early work at a mental hospital, work that 
required an understanding of order and processes and served as another important aspect of the historical context for his role in SA 
developments. 

The fourth quality follows naturally from Abbott’s interest in processes, which took him beyond the confines of sociology at the 
time to venture into other disciplines such as computer science and history. Some of his contributions to SA, in fact, were published in 
history journals. He has also been active in the Social Science History Association. His major source of inspiration, however, came from 
reading the Sankoff and Kruskal (1983) book, a multidisciplinary book on sequence comparison where developments of methods for 
analyzing sequences in diverse disciplines were discussed such as the chapter on genetic sequence by Bruce Erickson and Peter Sellers 
(also see Erickson et al., 1980). Fifth and finally, with the early 1980s came the personal computer, and he did all his own computer 
programming for his OM software in the 1980s and 1990s (Abbott, 2022). 

Abbott, as the sociologist with all the five qualities that define the historical context for SA development, stumbled on the Nee-
dleman-Wunsch (1970) algorithm when he obtained a preprint of the book by Sankoff and Kruskal (1983), the first book length 
publication on work using the Needleman-Wunsch algorithm and its variations and drawing on research on DNA, string editing, 
cryptography, and so on. With the knowledge of the algorithm for optimal alignment, the rest, as we all know, is history, a history of SA 
developments into the next stage to this day. 

3. Sequence analysis: its adolescence and young adulthood 

Many of the key issues and major developments of SA since its childhood have been well dealt with and summarized by various 
special journal issues, symposia, and books, such as Sociological Methods & Research vol. 29, 2000; Sociological Methods & Research vol. 
38, 2010; Sociological Methodology vol. 45, 2015; Blanchard et al. (2014), and Ritschard and Studer (2018a). We cite many of the 
papers in these special collections devoted to SA throughout the current article, in various sections focusing on a range of SA meth-
odology. We begin from the methods of visualization below. 

3.1. Visualization 

In the early stage of SA adolescent development, sequence visualization occupied a prominent position. Within the explorative 
method of SA, visualization is of high importance because it makes use of our brain’s visual capacity to find patterns in seemingly 
chaotic data. The visualization of sequences requires the display of three categorical dimensions: observational units, time points, and 
states. Altogether, they sum up to a huge amount of information that must be displayed, a challenging task. One can distinguish 
sequence graphs according to different levels of aggregation: those graphs with the higher amount of information displayed with little 
aggregation often show a lower level of readability and vice versa. When SA researchers visualize sequences, they typically want to 
highlight the three kinds of regularities we introduced in the introduction, sequencing, timing, and duration of states that may show 
the dynamics and the paths taken by individuals. Different types of visualization may show one or more of these regularities. Showing 
the sequences of many individual observations to find similarities or regularities leads to a graph that is composed of many stacked 
lines, often to be read from the left to the right. By putting observations’ sequences together, we try to arrange sequences in a way that 

Fig. 2. Five example sequences.  
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regularities become apparent. In addition, researchers might be interested in aggregate frequencies or cumulations of given states at a 
given time. 

The classic and probably the most intuitive approach to visualize sequences is the sequence index plot introduced by Scherer 
(2001), where each individual sequence is drawn as a single horizontal line, in which different colors represent different (categorical) 
states in (discrete) time units, that are sorted from left to the right. This type of visualization shows all the three regularities. See Fig. 2 
of the five hypothetical sequences for a simple example of sequence index plots. The set of states used to identify the status of the unit of 
analysis at each time point is referred to as alphabet (of the states). Sequence index plots are for representing all individual sequences, 
while some other sequence graphs aim to summarize sequence information, such as relative frequency sequence plots by Fasang and 
Liao (2014). Since Abbott’s introduction of the SA methods to the social sciences, the capacity of computers has increased tremen-
dously. This leads to the fact that in recent SA, capacities in all three dimensions also increased: more observations, more time points, 
and more states. Consequently, the construction of sequence index plots was modified, with new graph types developed. 

Sequence index plots that display too many observations suffer from so-called “overplotting,” with the number of observations 
exceeding the number of available printed lines of the graph. That is why nowadays, sequence index plots are often only plotted with a 
selected sample of the observations to be shown in the graph. Usually, a random sample of approximately 200 individuals for each 
graph panel is sufficient depending on the overall size of the graph. Another important aspect of sequence index plots is the order of the 
individuals: If a classification already exists, sequences in a single graph panel should be ordered accordingly. Alternatively, sequences 
can be displayed in panels that represent a typology (as shown in the first row of Fig. 3). Another important aspect is the use of color in 
sequence index plots. Researchers should construct these graphs with the following three considerations. First, a colored version that 
may use contrasting colors for emphasizing certain states. The use of different shadings can help show commonalities between states. 
For example, in Fig. 3 the states “full-time work” is indicated in blue while “part-time work,” red. Additionally, the property “working 
in training firm” is shown by the dark version of both colors while “working in another firm” by the light version of the colors. Second, 
sequence index plots should also be constructed in grey scales because printed journals or books may still require graphs without colors 
(or charge authors for color pages). Third, approximately 5–10% of human beings suffer from physical color deficiencies. It can be 
problematic for them to interpret multi-colored graphs because most statistical software packages rely on color palettes by default. 

Fig. 3 is taken from Brzinsky-Fay et al. (2016) and shows the three classical types of sequence graphs, namely sequence index plots 
(first row), state proportion plots (also known as “state distribution plots,” second row) and modal plots (third line), with the aim to 
analyze individual labor market entry processes after vocational education and training (VET) in Germany. For analytical reasons, the 
authors were interested in whether VET graduates stay with their apprenticeship firm or not, whether they exit employment, whether 
they start another apprenticeship, and whether they work part-time or full-time. This interest determined the statuses defined shown in 
the legend at the bottom of Fig. 3. The columns are the trajectory types that resulted from cluster analysis, their labelling is inter-
pretative and aims at giving substantive meaning to the grouped individual sequences. For example, “continuity internal” comprises 
VET graduates that more or less work full-time in the apprenticeship firm. Although the individual sequences show some variation – 
which can be seen in the first row, the clustering summarizes them to a common type because of their computed similarities. Therefore, 

Fig. 3. Example of combination of sequence index plots, state proportion plots and modal plots; taken from Brzinsky-Fay et al. (2016).  
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we assigned cluster labels or names based on the prominent features of state timing, duration, and order of similar sequences in a 
cluster. 

The second classical graph type used when visualizing sequences is the state proportion plot (or chronogram or state distribution 
plot), which for each time point shows the relative frequency of states in a stacked bar chart (second row in Fig. 3). This graph shows 
the aggregate change in the state distribution over time by disregarding individual sequence diversity. In other words, the increase in 
readability comes at the price of information loss (Brzinsky-Fay, 2014). The most simplified classical graph type is the modal plot (third 
row in Fig. 3), which consists of only one single horizontal line showing the most frequent state at each time point. Here, the infor-
mation loss is even higher because all less frequent states are disregarded. However, to allow readers to understand the differences 
between sequence types, showing all three graph types—as shown in Fig. 3—may be the most helpful strategy because such a graph 
represents and summarizes sequences and their characteristics. 

Because the construction of these kinds of graphs can be complicated and time-consuming, researchers applying SA invented a 
couple of additional graphs. Such graphs highlight certain sequence characteristics while keeping as much sequence information as 
possible. Sometimes standard statistical graphs are used and filled with sequence information. However, the trade-off between amount 
of information and readability remains. Among the most often used information, transition rates stand out. Visualizations of transition 
rates are constructed by using weighted scatter plots (labelled as transition plots) for overall transition frequencies (Brzinsky-Fay, 
2014), by a group of line graphs (called transition pattern plots) for transition rates at each time point (Halpin, 2017), or by directed 
graphs with nodes and edges (Helske and Helske, 2019). Both visualization types extract information from the data for display. 
Likewise, the parallel coordinate plot (Brzinsky-Fay, 2014; Bürgin and Ritschard, 2014) focuses on order by focusing on typical se-
quencings of states and events and the variability of the observed orders. 

Gabadinho and colleagues (Gabadinho et al., 2011; Gabadinho and Ritschard, 2013) proposed weighted representative sequence 
index plots, where not every individual sequence is depicted, but only those who are representative of particular properties, such as 
frequency, neighborhood density, or centrality. Similarly, Piccarreta (2012) developed smoothing techniques to avoid overplotting in 
sequence index plots, while Fasang and Liao (2014) invented relative frequency plots for representing while summarizing sequence 
information. All these additionally developed graph types perform very well with respect to summarizing sequence information 
although they come with the additional decisions about tuning parameters and/or new metrics that need to be interpreted by re-
searchers who apply these graphs. 

Finally, the main challenge to visualizing sequence data is the decision regarding which piece of information to show and which 
piece of information to disregard. To some extent, this is characteristic of all empirical research described by Occam’s razor (or the 
principle of parsimony). Visualization as a method for SA, which itself is primarily exploratory, should begin by exploring the data 
using simple tools before moving on to more sophisticated ones. 

3.2. Measuring trajectory complexity 

Akin to visualization, complexity measures also portray trajectories, albeit numerically. Life course trajectories can be complex 
depending on the sequence length, the number of state changes (or equivalently the number of spells), and the number of distinct states 
visited. It is of interest to quantitatively characterize this complexity to distinguish, for example, smooth occupational or family 
pathways from more chaotic trajectories, or to identify deteriorating trajectories, i.e., trajectories that tend towards less favorable 
states. Number of state changes, number of distinct states visited, entropy of the within-sequence-state distribution, and variance of 
spell duration can all serve as rough indicators of sequence complexity or diversity within sequences. In Fig. 2 for example, sequences 4 
and 5 appear more complex than the other three sequences because of the greater number of state changes and also because of the high 
entropy of the state distribution in those two sequences. 

More elaborated propositions to characterize the complexity of individual sequences were first made by Brzinsky-Fay (2007) and 
by Elzinga and Liefbroer (2007). Brzinsky-Fay (2007) introduced two indicators—volatility and integrative capability—for analyzing 
school-to-work transition, and Elzinga and Liefbroer (2007) constructed a turbulence index for studying the de-standardization of 
family life courses. Volatility and integration capability are based on a state dichotomization into “good” and “bad” states. In 
school-to-work transition the objective is to find a job and the positive or “good” state is in that case “being employed.” Volatility is the 
proportion of spells in “good” states and reflects flexibility. Integrative capability measures the tendency to integrate a positive state. 
The turbulence of Elzinga and Liefbroer (2007) is a composite index based on the variance of spell duration and the number of 
subsequences that can be extracted from the sequence of distinct successive states (DSS), the latter being an indicator of the diversity of 
the spells. A simpler complexity index that combines proportion of state changes and entropy was proposed by Gabadinho et al. (2010), 
and Brzinsky-Fay (2018) introduced an objective—not based on dichotomization—volatility, which combines proportion of state 
changes with proportion of visited states. Ritschard (2021) showed that Elzinga’s turbulence may produce counter-intuitive results, 
because it ignores zero time spent in non-visited states and proposed a revised turbulence to remedy this flaw. 

Complexity of a sequence as measured by the turbulence and complexity indexes is typically used as an indicator of the trajectory 
stability (e.g., Elzinga and Liefbroer, 2007; Christensen, 2021; Van Winkle, 2020). However, it is generally unclear whether complexity 
(instability) should be considered as something positive or negative unless there is a clear trend. For example, a complex sequence with 
multiple successively improving changes may reflect a favorable evolution while multiple successively deteriorating changes can 
represent an unfavorable evolution. Likewise, a full sequence in employment is typically a favorable stable trajectory, and a full 
sequence in unemployment is an undesired trajectory. 

To distinguish between favorable and unfavorable sequences, it is necessary to take account of the nature of the states being 
analyzed. This is what (normative) volatility and integrative capability do by requiring a dichotomization into good and bad states. 

T.F. Liao et al.                                                                                                                                                                                                          
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These two indicators are, therefore, able to distinguish more favorable from less favorable evolution. A few other indicators have been 
proposed to exploit unexplored information such as a preference order (or at least a partial preference order) or desirability degrees of 
the states. These include precarity (Ritschard et al., 2018), deterioration, badness, and insecurity (Ritschard, 2021) indexes. Formal 
definitions of all the above-mentioned complexity indicators together with a thorough comparative study can be found in Ritschard 
(2021). 

3.3. Dissimilarity measures 

A dissimilarity (or distance) measure between sequences aims to quantify the extent to which two individuals followed dissimilar 
trajectories. This information is of interest for comparing the trajectories of two individuals or for comparing an observed sequence 
with an ideal-type sequence to determine, for example, by how much a family formation sequence departs from a traditional model. In 
addition, and more importantly, computed pairwise dissimilarities between observed sequences allows one to measure the diversity of 
a set of sequences, to group similar sequences for building a typology of trajectories, to compare groups of trajectories, to compute 
principal coordinates of sequences, to define neighborhoods, and to identify representative sequences such as medoids. As such, the 
computed dissimilarities are a key step for subsequent analysis. 

Following the seminal work of Abbott and Forrest (1986), OM has been the most used method to assess dissimilarities of sequences. 
Technically, OM measures dissimilarity between sequences by computing the minimum cost required to transform one of the se-
quences into an exact copy of the other, by considering two kinds of edit operations: substitutions and insertion-deletion (indel) of 
states. While such edit operations can be interpreted as mutations in biology and signal changes in information science, they have no 
straightforward interpretations in social sciences. However, it can be shown that, according to OM, two sequences are considered as 
similar if they share a long common subsequence, which can be interpreted as a “common backbone” of two trajectories (Elzinga and 
Studer, 2015). 

OM has been highly criticized for the limitations such as the difficulty to sociologically interpret substitution and indel operations, 
its low sensitivity to the sequencing of the states, and the high number of parameters that can be set by the user (Levine, 2000; Wu, 
2000). To deal with these limitations, new distance measures have been proposed (Aisenbrey and Fasang, 2010). These developments 
were based on sequence properties such as order of spells (Dijkstra and Taris, 1995), within-state distribution (Deville and Saporta, 
1983; Robette and Thibault, 2008), expected future (Rousset et al., 2012), set of subsequences (Elzinga and Studer, 2015), or as 
generalizations of the Hamming distance (Lesnard 2010), and variations of the original OM distance (e.g., Gauthier et al., 2009; 
Hollister, 2009; Halpin, 2010, 2014; Biemann, 2011; Studer and Ritschard, 2016). 

Studer and Ritschard (2016) conducted an extensive review of these distance measures, based on the idea that a distance measure 
aims to compare sequences. As presented in the introduction, Studer and Ritschard (2016) identified three kinds of regularities for 
consideration for this comparison: The sequencing of the states, the timing of the states or transitions, and the duration, i.e., the time 
spent in each state. 

As we discussed earlier in the introduction, sequences 1 and 2 in Fig. 2 are very similar in timing and duration as they are in the 
same state at the same time for most of the trajectory length but have different sequencing. Sequence 1 has improving dynamics while 
the dynamics is negative in sequence 2. On the contrary, Sequences 2 and 3 have the same sequencing but strongly differ in timing and 
state durations. Sequences 4 and 5 show similar sequencing and duration, but different timing. Depending on the chosen criterion, one 
may reach different conclusions regarding sequence similarity. One therefore needs to make a choice about the criterion to use for 
comparing sequences, and this choice should be grounded in one’s substantive research question. 

Studer and Ritschard (2016) provided guidelines based on the relative sensitivities of each distance measure to the three 
above-mentioned criteria. Summarizing their conclusions, OM is mostly sensitive to the duration aspect and somewhat to sequencing. 
The Hamming distance should be preferred when the focus is given to timing. Finally, OM of transitions (Biemann, 2011), SVRspell 
(Elzinga and Studer, 2015) and OM of the spells (Studer and Ritschard, 2016) are the most sensitive to sequencing, with SVRspell being 
the most sensitive to small perturbations in the ordering of states. The latter three distance measures can also be parameterized to hold 
an intermediary position between these three life course aspects. 

During the second-wave SA, the social scientific interpretation of distances has been improved, and new distance measures have 
been proposed. SA users now have a large number of distance measure choices, and the review conducted by Studer and Ritschard 
(2016) provides useful guidelines for making choices. In this respect, the distance measure chapter of SA has been concluded. This was 
a key achievement for SA to be recognized as a mature longitudinal method. 

A direct application of dissimilarity measures is for finding representative sequences such as medoids. The medoid as a popular 
representative is the most centrally located observed sequence, which has the smallest sum of distances to the sequences it represents 
(Abbott and Hrycak, 1990, p. 165). Another representative of interest is the sequence with the densest neighborhood, that is, for a 
given radius r, the sequence that has the greatest number of other sequences within a distance r from it. Whatever the representative, a 
single representative is most often insufficient to render the diversity inside the group it is supposed to characterize. Therefore, 
Gabadinho and Ritschard (2013) suggested using multiple representatives for each group and proposed a heuristic for identifying the 
smallest set of representatives of a user-defined percentage of all sequences in the group such that at least the given percentage of 
sequences lie within a distance r from one of the representatives. Such small sets of representatives are particularly powerful for 
synthetically characterizing a group of sequences by highlighting typical sequences and, at the same time, the diversity inside the 
group. 
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3.4. Group analysis of dissimilarities 

Instead of assessing similarities between individual sequences, oftentimes a researcher’s interest is in the differences between some 
fixed or otherwise observed groups, such as gender, race/ethnicity, national origin, social class, and so on, taking advantage of the 
dissimilarity measures presented above. Luckily, the SA toolkit provides tools for studying the association between sequences and 
other variables such as fixed groups more directly with two approaches: (1) the discrepancy framework proposed by Studer et al. 
(2011) that generalizes the principle of analysis of variance (ANOVA) and (2) the approach by Liao and Fasang (2021) that utilizes an 
adjusted version of the Bayesian information criterion (BIC) and the likelihood ratio test (LRT). 

The ANOVA-based discrepancy analysis introduced by Studer et al. (2011) analyzes whether sequences differ across observed 
groups (e.g., by gender or socioeconomic status groups) by translating the dissimilarity matrix into a measure of discrepancy, which 
can be conceived of as a measure of variability among a set of sequences. The discrepancy represents the average distance to a group’s 
gravity center, which is defined as the (hypothetical) sequence that minimizes the sum of distances to all sequences belonging to the 
respective group. It is utilized to quantify how much of the variation in the sequence data can be explained by another variable, but it is 
also informative by itself as it grasps the degree of variation between the sequences in a group. In the context of life course research, 
discrepancy can be considered an indicator measuring de-standardization (Brückner and Mayer, 2005) with higher discrepancy scores 
indicating higher unpredictability of sequences. The techniques proposed by Studer et al. (2011) allow one to test whether discrep-
ancies differ significantly across groups. Thus, one could test, for instance, if male employment trajectories are significantly more 
standardized—i.e., having a lower discrepancy score than that of their female counterparts. Note, however, that such an analysis 
would not tell us anything about whether male trajectories are less complex—or less differentiated in life course terminology (Brückner 
and Mayer, 2005)—or more successful. This can only be assessed by examining the measures discussed in Section 3.2, which focus on 
within-sequence instead of between-sequence variability. 

Although the comparison of group-specific discrepancies can be very insightful, the key benefit of the discrepancy analysis 
framework is that it allows for examining the relationship between sequences and covariates by means of an ANOVA-like variance 
decomposition. Drawing on a pseudo-R2, this approach quantifies the share of sequence discrepancy that can be explained by one or 
multiple covariates. The pseudo-R2 can also be utilized as a splitting criterion in a so-called tree-structured analysis of sequences (Studer 
et al., 2011). In this procedure the sample is partitioned into separate groups (nodes) by binary splits until a predefined stopping 
criterion is met. At each step, the nodes are split by the variable that maximizes the pseudo-R2. This exploratory stepwise strategy is well 
suited to uncovering differences in the relative importance of covariates across groups. Educational attainment, for instance, might 
explain much more of the sequence discrepancy in the employment trajectories among men than among women. 

While the discrepancy framework’s adaptation of the pseudo-R2 makes it attractive for many applicants that are accustomed to R2- 
based measures from other contexts, its practicality for SA also spurred some critique that led to the proposition of an alternative 
approach for studying group differences in sequence data. While the proposition by Liao and Fasang (2021) is also a gravity 
center-based approach, it utilizes LRTs with bootstrapped samples instead of computationally more intense permutation tests to assess 
the significance of group differences. The strength of those differences is evaluated by drawing on the BIC rather than pseudo-R2. Liao 
and Fasang (2021) showed that the BIC difference is preferable to the pseudo-R2 from the discrepancy analysis because the latter often 
tends to be relatively low. The main clear benchmarks for evaluating the strength of groupwise differences of the BIC are those “levels 
of evidence” provided by Kass and Raftery (2005). 

Although a simulation study by Liao and Fasang (2021) comparing the BIC/LRT approach and the discrepancy framework indi-
cated performance differences in some specific scenarios (e.g., of varying sample sizes), the two strategies could possibly produce 
similar results as they both rely on the distances to the group-specific centers of gravity. Resting on fewer assumptions than group 
comparisons based on the results of a cluster analysis (see the next section), both approaches present viable alternatives that warrant 
any sequence analysts’ consideration. 

3.5. Cluster analysis of trajectories 

As another method of assessing sequence groups, cluster analysis aims to describe a set of sequences by identifying groups of similar 
trajectories that possibly differ by (various degrees of) misalignments of experienced characteristics such as the differences in the 
timing, duration, and ordering of processual events. In the previous section, we discussed group differences for groups defined by 
observed variables such as gender or level of education. The aim of cluster analysis is to partition the sequences into latent groups or 
clusters that are as homogenous themselves and as different from each other as possible. With cluster analysis, sequence analysts 
estimate the membership of the groups (clusters) using pairwise dissimilarities between the sequences instead of drawing on other 
observed variables. 

Specifically, hierarchical algorithms (for example, Ward’s algorithm) can be applied to cluster cases based on the dissimilarities 
between sequences evaluated on a given criterion (see Section 3.3). A potential problem of hierarchical clustering algorithms, pro-
ceeding with subsequently joining cases and clusters, is the lack of flexibility. Clusters formed at each step are never split, and this 
might lead to possible distortions or not fully satisfactory results when there are outlying sequences. An alternative, more flexible 
approach is offered by the partitioning around medoids algorithm (PAM, Kaufman and Rousseeuw, 2005), an extension to the K-means 
partition algorithm when only dissimilarities (rather than measurements on variables) are available. Such an algorithm starts with a 
random partition of cases; each cluster is represented by its medoid, the trajectory most similar to all the others in the cluster. Sequences 
are iteratively assigned to clusters based on their dissimilarities to the clusters’ medoids, until a convergence criterion is satisfied. 

The typology obtained via cluster analysis allows the identification of the most relevant and distinguished temporal patterns in data. 
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Sequences deviating from the cluster they have been assigned to are usually ignored when interpreting the data-driven types or 
clusters. Indeed, deviations of trajectories from types are often attributed to sample variation, i.e., to the possible differences in the 
observed realizations of the same underlying temporal process (Abbott, 1995). Nonetheless, this assumption is valid only when a given 
partition is reliable. However, cluster analysis is an unsupervised method, which always produces a typology, even when the data are 
not supposed to be clustered into groups (see Levine, 2000). The quality of the obtained clusters must therefore be carefully evaluated. 

Several cluster quality indices can be used for this purpose (see Studer, 2013 for a review). Quality is generally measured according 
to within-cluster homogeneity and “separation” (or difference) between clusters. In other words, a good typology should be composed 
of types that are highly homogeneous within types and very different between types. However, these indices lack thresholds values 
indicating whether the typology is good enough. Parametric bootstrap procedures were developed for SA to provide these threshold 
values (Studer, 2021). Aside from these indices, a careful evaluation of the typology regarding its within-cluster homogeneity and its 
between-cluster separation is recommended. It is also important to detect the presence of extreme or peculiar sequences that are 
weakly related to—therefore not well represented by—their cluster(s) as well as of sequences lying between different clusters. Such 
analysis is fundamental to identify, for example, rare types underrepresented in the data, and to ensure the quality of subsequent 
analysis making use of the typology (Piccarreta and Studer, 2019). Outlying sequences can be identified by evaluating the dissimi-
larities between sequences in a cluster and the cluster’s representative sequences, such as medoids. 

Aside from cluster quality, other aspects are important for validating a typology. According to Han et al. (2017), a good typology 
should reproduce known associations with key covariates. They proposed a procedure based on the minimization of the BIC to assess it. 
Hennig (2007) developed a method for measuring the stability of clustering across bootstraps to capture the idea that a typology 
should not be sample-dependent. Finally, the interpretability and theoretical soundness of the results is also of key importance for 
assessing the relevance of a typology (Piccarreta and Studer, 2019). 

Cluster analysis is receiving increasing attention within the SA community in the third-wave SA. Aside from typology validation 
(see Section 4.2), fuzzy clustering has also been used (Dunn, 1973; Bezdek, 1981). This iterative algorithm allows cases to belong to 
different degrees to more than one cluster. Even if seldom applied to the study of sequences (see Studer, 2018 for application in SA), 
such algorithm is explicitly based upon the idea of distinguishing among core cases (those having a high degree of coherence within a 
specific cluster), border cases (those lying between different clusters), and peripheral cases (those having a flat degree of membership 
in all clusters and therefore not particularly related to any cluster). 

3.6. Multidomain/multichannel analysis 

In its original formulation (as we have so far reviewed in this paper), SA focuses on processes defined in a single domain. None-
theless, often social scientists are interested in studying trajectories defined in more than one domain. Specifically, joint (or multi-
channel) SA focuses on the case when multiple trajectories are observed for each individual. The goal now becomes to study how such 
trajectories—describing, for example, work, family, and housing careers—unfold jointly. Methodologically, multichannel analysis is 
related to the study of dyadic or polyadic sequences (see Section 3.7), that is the study of the same domain observed for paired tra-
jectories, for example, the work or the family formation histories of parents and of their children. 

Broadly speaking, the study of multiple sequences of the same individual requires defining a dissimilarity measure that suitably 
summarizes the information arising from the set of considered trajectories. Different proposals have been introduced in the literature. 
A first approach (see, e.g., Aassve et al., 2007; Piccarreta and Billari, 2007; Lesnard, 2008) consists in building a combined domain, 
describing the combination of states experienced in each period. It is true that in the context of life course analysis the number of 
domains analyzed jointly will generally be limited. Even so, the combined sequences can easily be noisy and unstable. Therefore, this 
approach is convenient only when few, very well-connected domains are considered so that the number of state combinations in terms 
of the extended alphabet is not too large. 

The most popular proposal consists in an extension of the OM algorithm, based on the combination of costs defined for the specific 
involved domains. This idea (Stovel et al., 1996; Blair-Loy, 1999), formalized and systematized by Pollock (2007) and Gauthier et al. 
(2010), consists in calculating the dissimilarity between two cases by averaging the substitutions (and insertion and deletion) costs 
needed to align the sequences in each domain. This approach, named Multichannel SA by their authors, nicely extends the rationale 
underlying OM to the case of multiple domains. Also, it preserves the information from each domain, as measured by the specific 
transformation costs. The approach can be easily extended to any measure of edit distance. 

Dissimilarities based on multiple trajectories can be used—as in standard SA—to obtain a joint typology via cluster analysis or to 
apply the dissimilarity-based analyses of group differences described in Section 3.4. It is important to emphasize that a joint analysis of 
domains—even if reasonable and well-motivated from a substantive point of view—is effective only when the considered domains are 
associated. 

Also, even in the presence of association, joint dissimilarities do not necessarily describe all the domains adequately. This aspect 
was first considered in a systematic way by Piccarreta and Elzinga (2013), who introduced several measures to quantify the extent of 
association between two domains. Subsequently, Piccarreta (2017) proposed an integrated approach to extend such measures to the 
case of multiple domains. In addition, Piccarreta (2017) considered the problem of the possible asymmetric performance of a joint 
analysis across different domains. When applying procedures based on dissimilarities for multiple domains, it is important to consider 
that some domains might prevail over the others, driving the analysis and influencing results to an excessive extent. This is particularly 
true when domains are characterized by a different degree of turbulence (or complexity): In these situations, the more stable and less 
turbulent domains will typically prevail over the others. It is therefore important to evaluate the quality of results both at a joint level 
and at a domain-specific level. In her work, Piccarreta (2017) described some criteria for assessing whether the results of the 
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procedures employed to analyze sequences—e.g., cluster analysis, multidimensional scaling, ANOVA, or regression trees—that are 
based on joint dissimilarities are satisfactory for all the considered domains. Piccarreta (2017) focused on cluster analysis, which is 
often employed to simplify the inspection of the most typical patterns in data and can therefore be particularly useful for describing the 
joint patterns in data and gaining insights about the relations among domains. 

Building on measures introduced by Piccarreta and Elzinga (2013) and Piccarreta (2017), Fasang and Aisenbrey (2021) recently 
showed how the strength of the association between the two life domains of work and family is a promising indicator for addressing 
research questions on the extent to which domains such as work and family life courses that unfold over longer periods of time 
condition and constrain each other. Mantel coefficients that measure the correlation between two distance matrices from two domains 
show the highest correlation for Black women’s work and family lives, and the lowest for White men’s, indicating that events in one 
domain strongly condition or constrain events in the other. The quantitative measure of the strength of the association between two 
sequence domains can then be complemented by multichannel SA and clustering to illuminate the substantive patterns of cooccurrence 
behind weaker and lower domain association (Fasang and Aisenbrey, 2021). 

3.7. Analyzing dyadic/polyadic sequences 

This approach is based on the direct comparison between each sequence with one or more sequences linked by a specific (social) 
relation. In life course research, the analysis of dyadic sequences (a special case of polyadic sequences) has been prevalent, often used 
to compare trajectories of family members, such as siblings (Karhula et al., 2019; Raab et al., 2014), a parent and his/her child (Fasang 
and Raab, 2014; Liefbroer and Elzinga, 2012), or partners (Nutz and Gritti, 2022). For example, one can examine family-life trajec-
tories of parent–child dyads, whose similarities in intergenerational transmission should be larger than similarities between trajec-
tories of unrelated dyads. 

Liao (2021) identified three approaches to analyzing dyadic sequences and contributes with a fourth. First, multichannel SA can be 
used (Gauthier et al., 2010; Pollock, 2007), where each member of the dyad is one of the channels. Second, the so-called grid-sequence 
analysis can be used (Brinberg et al., 2018), where sequence data are reshaped into grid-sequences. Third, average dyads similarities 
based on OM or on features-based approaches (Liefbroer and Elzinga, 2012) are compared to the average similarity of unrelated dyads. 
Finally, the method proposed by Liao (2021) provides an individual measure of linked lives by distinguishing between dyadic distance 
and degree of dyadic linkage compared with randomly constructed dyads. Further, compared to the other strategies, this method can 
be more easily extended to polyads, and it enables the identification of the separate effect of timing, duration, and order in the 
similarity between the members of a dyad or a polyad. 

The dissimilarities between linked trajectories can be used in a regression framework as dependent or independent variables: For 
example, one could examine family-life trajectories of parent and child dyads, whose similarities in intergenerational transmission 
should be larger than similarities between trajectories of unrelated dyads. Alternatively, such dissimilarities can be the input of a 
cluster analysis to identify ideal-typical patterns of a certain process. 

There are certain data requirements for this kind of analysis. First, the length of the dyadic sequences to be compared as well as the 
alphabet of the states for both members of the dyads must be the same. Second, the dyads under study must be unequivocally identified 
as such in the data. In the domain of life course research, these two conditions are satisfied by a relatively small number of data sources. 
However, in the case of survey data a multigenerational design is required ex ante (e.g., Longitudinal Study of Generations data used by 
Liao, 2021 and Fasang and Raab, 2014) while in the case of register data the identification of family members and the link between the 
records can be ex post (e.g., Finnish register data used by Karhula et al., 2019). 

Finally, researchers must make an additional decision when analyzing polyadic sequence trajectories, that is, whether the pairwise 
relations between the members of a polyad should be treated as equally important when computing dissimilarities. For friendship 
network members, pairwise relations may be considered as equal. However, for a family triad, the resemblance between the parents 
may not be the same as the father–child or mother–child resemblance and if not, differential weighting should be applied (Liao, 2021). 

3.8. Markovian analysis of sequences and alternatives 

Abbott (1995) distinguished between the approaches considering the entire sequence as the whole unit of analysis versus a 
step-by-step process. In the latter case, the aim is to “fit sequences of categories by estimating transition probabilities step by step” 
(Abbott, 1995, p. 104). Markovian models (MM) belong to this class of methods alongside the more general class of multistate models 
(e.g., Meira-Machado et al., 2009). MM are stochastic models for the analysis of the transitions between successive states in sequences, 
with the aim to describe how the current distribution of the possible values of a variable of interest depends on the previously observed 
values. As such, MM are in particular of interest for analyzing the dynamics driving the unfolding of the sequences. Fitting a MM on 
each of the sequences in Fig. 2, we would find a high probability to stay in the previously observed state for the first three sequences 
while we would estimate this probability as zero for sequences 4 and 5. 

The Markov chain (MC) is the simplest Markovian model possible. In its conventional formulation, the next modality of the variable 
depends only on the current state that is assumed to summarize the relevant history of the individual (the Markov property) and the 
probability of switching from a given state to another is assumed to remain unchanged over time (time homogeneity). The homogeneity 
assumption and having a memoryless process make the basic MC easy to compute but it can be unrealistic in many social scientific 
applications. 

The simple first-order homogeneous MC can be extended in several ways: such as increasing the order of the process (accounting for 
two or more of the previous states), allowing variable-order (e.g., Begleiter et al., 2011; Gabadinho and Ritschard, 2016), and 
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including both time-varying and time-invariant covariates. Moreover, while traditionally MMs are in discrete time, it is possible to 
formulate a Markov process in continuous time. Similarly, it is possible to extend them from a categorical outcome to a continuous one. 

One of the most interesting MM extensions for the analysis of sequential data in social sciences is to include a hidden or latent 
variable that can be time-constant or time-varying (e.g., Vermunt et al., 2008; Helske and Helske, 2019). Adding a time-constant latent 
variable leads to the mixture Markov model (MMM), where we assume that the data consists of latent subpopulations with varying 
patterns. The MMM is typically used for clustering sequences (Barban and Billari, 2012; Han et al., 2017) and can also simultaneously 
link covariates to clusters—with the covariates used to predict cluster memberships or transition probabilities, either time-constant or 
(in the case of transition probabilities) time-varying. Unlike the typical distance-based clustering methods used in SA, where each 
individual is deterministically assigned to one cluster, in an MMM, we have a probability distribution of state membership. The group 
membership is derived from the stochastic process that links the observed outcome to the latent variable. 

An MM with a time-varying latent variable is called the hidden or latent Markov model (LMM, see e.g., Zucchini and MacDonald, 
2009). With an LMM, we can analyze how the time dependence between observable states is governed by a latent process (e.g., Bolano 
and Berchtold, 2016). This is particularly useful in life course studies where many non- or hardly observable aspects such as moti-
vations, beliefs, or levels of frailty may influence or explain the observed behavior (Bolano et al. 2019; Piccarreta and Studer, 2019; 
Han et al., 2020). Combining the properties of the MMM and the LMM leads to the mixture latent (or hidden) Markov model (MLMM), 
which has a time-constant latent variable (related to estimated latent subpopulations) and a time-varying latent variable (related to 
modelled time dynamics). Another extension is the double chain MM, which allows for dependencies between both the observed and 
the latent states (Berchtold, 1999). 

While MMs are well-established approaches, some practical aspects still need to be further developed to be fully applicable to the 
analysis of sequence data in the social sciences. First, from a computational point of view, MM typically requires the estimation of 
multiple parameters. The EM algorithm is a common approach to estimating Latent MMs, an approach that, despite its advantages, 
heavily depends on the starting values and is quite unstable in high-dimensional settings, requiring the researcher to estimate the 
model numerous times from different starting values. Alternatives exist but unfortunately no universally best optimization method is 
available (Taushanov and Berchtold, 2017; Helske and Helske, 2019). Also, estimation time can be long for complex models, making 
the use of MMs less appealing to scholars. Second, in terms of representation of the results, in the presence of multiple states (either 
observed or latent) or with a high-order Markov process, the results are not easily readable. In the literature, some attempts have been 
made for providing a graphical representation of the transition probabilities with visualization tools such as the suffix trees (Gabadinho 
and Ritschard, 2016) or directed graphs and stacked sequence plots (Helske and Helske, 2019). However, comprehensive graphical 
tools for representing the empirical results need to be further developed. Finally, multivariate (multichannel) data allow the researcher 
the opportunity to study joint evolutions of multiple outcomes over time. In their traditional formulation, Markovian processes are 
used to describe the behavior of a single univariate time series. Although some extensions to analyze multivariate data with multi-
channel sequences have been proposed in the literature (Helske and Helske, 2019), a unique framework for such models is still missing. 

To summarize, the difference between an MM and a SA approach in the analysis of sequence data lies not only in having a 
probabilistic model-based approach versus a deterministic data mining one but also in the way of examining the sequence of states. SA 
takes an overall approach with trajectories as a unique holistic unit of interest, what we may call a broad approach. MM applies instead 
a narrow, transition-specific, approach focusing on the different transitions happening during the life of an individual and the factors 
(i.e., covariates) that may explain the probability of experiencing the transitions (Bolano and Berchtold, 2021), what we may call a 
step-by-step approach. The two approaches should not be considered as direct “competitors” but instead different ways to understand 
different aspects of the phenomenon under investigation. Integrations of SA and Markov based approaches have also been proposed in 
the literature. For example, a two-step analysis combining SA and MM has been proposed as a workaround solution for the issue of 
complex models with an unknown model structure (Helske et al., 2018; Helske et al., 2021) and the Sequence Analysis Multistate 
Model has been used for modelling the relationship between time-varying covariates and trajectories of categorical states (Studer et al., 
2018b). 

3.9. Sequence analysis and life course research: theory and applications 

Despite its early applications being in cultural and historical sociology (Abbott and Forrest, 1986; Bearman and Stovel, 2000), it is 
no surprise that SA has proliferated and matured most in the broader life course field, including expanded labor market research and 
family demography. As early as 1992, Abbott stated that “There are also literatures where process is of obvious conceptual importance, 
but where empirically no one has moved beyond the recipes of regression, the life course literature being the best example.” (Abbott, 
1992, p. 184). Three decades later, the life course literature can be viewed as the central driver of theoretical, conceptual, and 
methodological advances of SA in the social sciences. 

The success of SA in life course research originates in the core theoretical ambitions of life course research and its tradition as a 
multidisciplinary hub for methodological development. First, trajectories of categorical states, not just metric outcomes, are of central 
theoretical importance when studying the life course (Billari, 2001; Fasang and Mayer, 2020). Theoretically, life courses exemplify 
process outcomes as defined by Abbott (2001, p. 176) as “… long run stabilities established by myriads of individual events… it is the 
whole walk that is the outcome.” Second, the life course field has a strong tradition as a hub for multidisciplinary methods devel-
opment for longitudinal data analysis, both qualitative and quantitative. The life course field has been characterized by a nondogmatic 
approach of innovatively combining different methodologies to capitalize on their potential to complement one another to inform 
substantive questions, rather than fighting over their relative merits and flaws (Mayer, 2009). 

SA has been fruitful to both address core principles of the life course paradigm (life-long development, timing, time and place, 
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linked lives, agency, Elder et al., 2003) and to refine more specific theoretical arguments within each broader principle. 
Considering human development as a long-term process over varying life stages, studies using SA techniques have shown for 

instance long-term effects of family life trajectories on income (Bolano and Studer, 2020; Muller et al., 2020) and health in midlife 
(Barban, 2013; O’Flaherty et al., 2016). In a similar fashion, SA has been instrumental in understanding the process of accumulation of 
(dis)advantage over the life course. The timing of life events and their temporal order differentiate one life trajectory from another. 
Looking at the (sub)sequence of states in a SA perspective allows studying their correlates and consequences (Furstenberg, 2005; 
Jalovaara and Fasang, 2020). Similarly, SA can be applied to the study of social norms and the “appropriate” time and order of life 
events. 

Life course agency rests on a belief in one’s capacity to achieve life course goals, and the “ability to formulate and pursue life plans” 
(Shanahan and Elder, 2002, p. 147) while facing internal and external constraints and opportunities. Recent theoretical advances in 
life course research have centered on how the predictability and stability of life courses impacts on time horizons for individual de-
cision making, where SA can take a double role in assessing the instability and predictability of life plans and patterns of time use that 
can reflect individual agency on a small scale (Lesnard, 2008). SA of time use data as well as the structure of individual life courses 
therefore is promising to further inform theoretical ideas about agency across the life course and its manifestation in everyday life or to 
directly assess timing or duration in the sequential model of action phases (selecting, engaging, or disengaging) proposed by Heck-
hausen and Buchmann (2019) with appropriately fine-grained micro-level data on decision making processes. Macro-structural 
contexts and social policies set constraining or enabling opportunity structures for individual agency that jointly shape life courses. 
Multi-country studies have shown how and to what extent macro factors influence life trajectories both in developed (Fasang, 2012; 
Madero-Cabib et al., 2021) and in developing countries (Pesando et al., 2022). 

Other aspects that play a role in shaping life courses and that can be successfully analyzed using SA are: (1) the interdependence 
among individuals (the concept of linked lives) with dyadic SA (see Section 3.7) as an appropriate way to address such in-
terrelationships (Kalucza et al., 2021; Fasang and Raab, 2014); and (2) the intertwinement across life course dimensions (Bernardi 
et al., 2018; Elder et al., 2003; Huinink, 2005), such as work and family, or health and migration, that mutually condition and constrain 
each other (Fasang and Aisenbrey, 2021). Multichannel SA (see Section 3.6) is a way to study such relationships. 

To summarize, within life course research, SA has been used to address theoretical questions about: (1) within life course variability 
in terms of the temporal structure of individual life courses, first explicitly conceptualized as life course differentiation (Brückner and 
Mayer, 2005); and (2) between life course variability looking at (dis)similarity across individuals to assess the degree of 
de-standardization and pluralization of life courses and to identify typologies of ideal typical life courses that can be compared across 
cohorts and countries (Van Winkle and Fasang, 2021; Van Winkle, 2018). The latter approach to assessing similarity between life 
courses also has so far untapped potential for identifying “outlier” life courses. 

The need for new analytic approaches to better understanding these two sources of heterogeneity have also pushed the devel-
opment of new SA tools in the young adulthood of SA, and it is expected to influence the methodological development in the field even 
further. Concerning within life course variability, initial metrics only assessed the temporal structure related to the number of transitions 
and the duration in different states, mostly with the sequence complexity index (Elzinga and Liefbroer, 2007; Gabadinho et al., 2010). 
Not attaching any values or weights to socially positive (employment) or negative states (unemployment) plagues the interpretation of 
these indices. Recent developments that allow attaching positive or negative weights, for example in badness or precarity indices 
(Ritschard, 2021) greatly improved the ability of SA to inform theoretical questions on zigzagging processes with back-and-forth 
movements, instability, volatility and precarity, or upward/downward mobility. Bolano and Studer (2020) proposed to identify 
which specific aspects of the trajectory (timing, order, and sequencing of events) are relevant for explaining an outcome later in life by 
combining SA with data mining techniques. These developments offer new possibilities to address path dependence and the 
contentious concept of “turning points” in the life course literature (Abbott, 2001 p. 251). Concerning between life course variability, 
pairwise sequence distances can directly assess the degree of de-standardization of life courses, identify ideal types, and evaluate, for 
example, divergence and convergence of life courses across cohorts (Liao and Fasang, 2021). Concepts at the core of 
structural-institutional life course research developed in Europe to study social change through cohort replacement and to link theories 
of modernization and grand societal transformations to life course pluralization and de-standardization. Recent proposals of 
combining SA with event history analysis (Studer et al., 2018b) and adapting the Bayesian Information Criterion and the Likelihood 
Ratio Test for sequence comparisons (Liao and Fasang, 2021) to study time-varying period effects on life course patterns and the 
convergence and divergence of life courses under different state systems across cohorts are good examples for methodological de-
velopments for life course research. 

3.10. Sequence network analysis: theory and applications 

Although a lot of SA analysts do life course research, some sequence researchers take advantage of a social network framework to 
analyze sequences (e.g., Bison, 2014; Cornwell 2015, 2018; Cornwell and Watkins, 2015; Hamberger, 2018), offering an alternative to 
classic SA methods (Courgeau, 2018; Ritschard and Studer, 2018b). With this “sequence-network” approach, analysts view sequence 
elements (i.e., events, activities, and actors) as nodes that are connected to one another in a network according to their sequenced (e.g., 
temporarily ordered) nature. Social network techniques (Wasserman and Faust, 1994) can therefore be employed to analyze sequence 
data to yield new insights into the interconnected structure of sequence elements. This is akin to the “narrative network” (Bearman and 
Stovel, 2000), “event structure” (Dixon, 2008), and “practice network” (Higginson et al., 2015) approaches, which map links among 
different individuals’ accounts of which events, activities, or practices follow which, over a given period of time. 

Recent applications use the network approach to make sense of complex time-stamped data. Given a daily time diary provided by a 
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person, for example, their activities throughout the day can be linked by “ties” or “arcs” (e.g., that person reports “eating” at 6 p.m., 
followed by “watching TV” at 6:30). As additional actors are included, there emerge more links across activity chains (e.g., the next 
person reports “eating” at 6 p.m., followed by “cleaning” at 6:30), thus revealing alternative pathways between elements. A larger 
network of sequence chains thereby emerges, revealing linkages not just among elements in contiguous sequence time periods but also 
among elements in noncontiguous time periods that share indirect connections. This approach allows scholars to model sequenced 
phenomena in a nonlinear fashion, such that events, activities, and subjects can be linked regardless of when they occur in a sequence. 

Using this approach, analysts can focus not only on questions like “How similar to each other are people’s everyday lives?” but also 
questions like “Which activities at what times serve as the points around which the similarity in people’s everyday lives derive?” In 
network terms, this is a question of which sequence element or positions are most “central” or most connected to each other in the 
overall sequence network. Finally, network programs allow users to map and thus visualize otherwise hidden connections across 
sequences and actors (e.g., Higginson et al., 2015). 

The network approach has been used to understand sequence structure in a variety of phenomena that are embedded within se-
quences, including eating practices (Castelo et al., 2021), travel patterns (Zhang and Thill, 2017), gendered career mobility patterns 
(Hamberger, 2018), organizational work practices and routines (Goh and Pentland, 2019; Mahringer, 2022; Mahringer and Pentland, 
2021), and other social phenomena (for an overview, see Pentland et al., 2017). A particularly important application has been to 
residential electrical energy consumption (see Lőrincz et al., 2021; McKenna et al., 2020). 

Due to growing environmental and energy concerns, researchers have begun to focus on approaches to reducing energy demand 
spikes related to people’s activities at certain times and to shifting individuals’ activities to different times or days to reduce aggregate 
energy costs. Researchers have argued that it is not enough to look only at which activities occur at which times, but also how people 
sequence their activities. This work relies on individual-based time use data to examine the implications of different activity schedules, 
or “activity sequences,” for aggregate energy demand. McKenna et al. (2020) showed that people’s activity sequence networks during 
the weekend are denser and are less centralized than are weekday activity networks. The more varied and less organized sequences of 
weekends signal more flexible, or less rigid, activity routines, thus providing more opportunities for household-level interventions to 
alleviate electricity load problems. This work also shows that how activities are sequenced within the household are heavily patterned 
by work-related schedules. Studies of energy consumption patterns have begun to focus on work scheduling as a potential point of 
intervention. The network approach is especially capable of recognizing heterogeneity in activity sequences, thus allowing for in-
terventions that are tailored to different “cohesive subsets” of people who have varying degrees of flexibility in their schedules (see 
Lőrincz et al., 2021). 

The emergence of the sequence-network approach has also led to the infusion of sequence concepts into the area of social network 
analysis (e.g., Liao, 2021). This can be seen in the growth of the “relational event framework” (e.g., Butts and Marcum, 2017; Schecter 
et al., 2018)—a statistical approach to modelling dependencies among temporally sequenced activities within socially networked 
settings. It is also evident in recent calls to use sequence approaches to understand complex over-time dynamics in the structure of 
networks (e.g., Kim et al., 2019; Nee et al., 2017). Future work will need to focus on making the sequence-network approach more 
relatable to scholars who are unfamiliar with complicated social network techniques and tightening the link between respective bodies 
of research on sequences and networks. 

3.11. Sequence analysis and other social science research: theory and applications 

A systematic complete review of the theoretical approaches and research published in the broader social sciences where SA has 
demonstrated to have heuristic power is beyond the scope of the current paper. The interest in the SA toolbox arises from the need to 
account for how processes of different kinds unfold over time and why different patterns emerge. Classical sociological theories 
interpret the existence, persistence, and predictability of certain patterns and routines of social action (Giddens, 1986) and roles 
(Parsons, 1951) as indicators of the link between individual experience in the different domains of the social worlds (Simmel, 1955) 
and social institutions. These considerations can be extended to other disciplines to the extent that they are concerned with the 
variation in temporal patterns of a given process although substantively they draw from other theoretical traditions and explanations. 

In political sciences, SA sequences analysis has been applied to different units of analysis: individuals, organizations, movements, or 
institutional processes. Three main types of sequences are analyzed (Blanchard, 2019). First, individual careers within institutional 
environments (e.g., Claessen et al., 2021); second, trajectories of political participation via elections, social mobilization, or conflict 
(Buton et al., 2012); finally, processes involving unconventional units of analysis, such as interactions between institutional actors (e. 
g., Casper and Wilson, 2015) or the legislative steps for the parliamentary approval of a certain law in different countries (e.g., 
Borghetto, 2014). 

Spatial disciplines have explored patterns in residential mobility (Stovel and Bolan, 2004), commuting patterns (Mattioli et al., 
2016; Brum-Bastos et al. 2018), tourist trips (Shoval and Isaacson, 2007), changes in the social composition of neighborhood (Le Goix 
et al., 2019), and land use (Mas et al., 2019). In these applications, SA helped make visible the link between spatial mobility (broadly 
understood) and time. 

In survey methodology, SA was used for different purposes with important implications for survey management and survey 
monitoring. For example, Durrant et al. (2019) employed SA to identify unusual interviewer calling behaviors, and Wahrendorf et al. 
(2019) used SA to compare the performance of record linkage of administrative data and retrospective interview data on employment 
trajectories. Finally, Lazar et al. (2019) studied the impact of different types of missing survey data in joint SA (see also Kreuter and 
Kohler, 2009). 
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3.12. Software for sequence analysis 

At the early stages of SA, Andrew Abbott provided a self-contained program named “Optimize” for computing OM distances. The 
outcome of the program was then inputted in statistical systems such SPSS or SAS for running cluster analysis. OM was also imple-
mented in the TDA (Transition data analysis) software of Rohwer and Pötter, 2002. The program “Sequence” by Dijkstra (1994) 
proposed several tools for dealing with sequences and computing the similarity measure described in Dijkstra and Taris (1995). In the 
early 2000, Cees Elzinga wrote CHESA, a program that computed OM and several alternative distance methods as well as the tur-
bulence index. SA with these programs remained somewhat cumbersome because the user had to export the computed distances to 
another statistical environment for running further analyses. 

It appeared that developing packages for statistical environments such as Stata and R has a couple of major advantages: It allows 
running complete analysis in the same environment, and it gives access to the plotting capabilities of the environments for visualizing 
sequences data, therefore much facilitating automatization of complete analyses. The main SA toolkits available today are thus the SQ 
(Brzinsky-Fay et al., 2006) and SADI (Halpin, 2017) modules for Stata and the TraMineR (Gabadinho et al., 2010) R package. All these 
packages offer a variety of sequence visualization tools, compute OM and other distances between sequences as well as individual 
sequence summary variables. TraMineR is the most versatile package with, for example, tools for ANOVA-like analysis of sequences, 
growing regression trees of sequences, and identifying representative sequences. In addition, TraMineR has two useful companion 
packages: TraMineRextras (Ritschard et al., 2022) that provides a few additional plots (e.g., survival plot and relative frequency plot) 
and a series of ancillary functions such as polyadic analysis and the computation of BIC values for comparing groups of sequences, and 
WeightedClusters (Studer, 2013) that provides, among others, tools for clustering and evaluating cluster quality of sequence data and 
for rendering clustering trees of sequence data. Other useful packages are MICT (Halpin, 2016), a Stata module dedicated to the 
imputation of missing elements in sequences, seqHMM (Helske and Helske, 2019), an R package for fitting mixtures of hidden Markov 
models with plots for rendering multidomain sequences and transitions within sequences, PST (Gabadinho and Ritschard, 2016), an R 
package that fits and renders probabilistic suffix trees of sequences, and ggseqplot (Raab, 2022), an R package for visualizing sequence 
data using ggplot2 (Wickham 2016). The modules and packages listed are all maintained by scholars or teams of scholars who 
continuously contribute to SA. TraMineR, in particular, is regularly updated two or three times a year. Therefore, we can confidently 
expect that these packages will continue to be supported. 

4. The future of sequence analysis 

4.1. Potentials of sequence analysis for theory development 

As an initially exploratory technique in the tradition of data mining, SA was often seen as a rather theoryless method. Yet, to date it 
has proven vital in assessing research hypotheses and theoretical arguments, particularly in life course research and family demog-
raphy concerned with outcomes that unfold over longer periods of time. To name just a few examples, SA studies have substantiated 
critiques of the second demographic transition thesis arguing that the highly educated are the vanguards of family change with 
increasing family complexity, a decline of marriage and delay of fertility. In fact, family complexity over longer periods of family life 
courses has increased most among the lower educated in most countries (Van Winkle, 2018). 

Recent studies started to spell out more precise theoretical mechanisms of how country contexts shape the interplay between work 
and family lives (Aisenbrey and Fasang, 2017; Fasang and Aisenbrey, 2021) and how life course patterns captured in sequence ty-
pologies are associated with a fanning out of economic rewards as within cohort differentiation with age or cumulative (dis)advantage 
(Gruijters et al., 2022; Buyukkececi et al., 2022). In developing cumulative disadvantage and the Matthew effect in scientific careers, 
Merton (1988) noted early on, that any such studies require a process perspective moving beyond single time point analyses. Many 
outcomes of theoretical interest in life course and stratification research are not only metric (income) but categorical (employment, 
benefit receipt) in nature (Fasang and Mayer, 2020). SA therefore is promising for more comprehensively assessing cumulative 
disadvantage as a fanning out of socially valued goods and the structural conditions that shape cumulative (dis)advantage processes 
across countries and birth cohorts. 

More generally, SA is particularly useful for testing and developing theoretical arguments about the speed, order, and timing of 
processes. These include questions on whether the same processes experienced at different speeds have different correlates and 
consequences, how different structural contexts shape longer term processes, why specific processes in multiple domains tend to 
cooccur or preclude each other, and for whom and under which conditions processes are particularly volatile involving back-and-forth 
movements. 

Most SA applications have focused on individuals as units of analysis. Individuals do not change over time in ways that households 
or organizations do through splitting up or acquiring new members. Abbott (2016) referred to this as the “historicality of individuals” 
given by their bodily integrity. But there is untapped potential of SA for informing theoretical ideas that put other units of analysis at 
the center, which only a few studies have to date explored. A handful studies focused on couple trajectories (e.g., Visser and Fasang 
2018; Lesnard 2008; Möhring and Weiland, 2022). In an earlier application, Lesnard (2008) used SA to capture off-scheduling of 
couples, when partners take turns being at home and working and have very little overlap in time use, to show how the lack of joint 
family time is associated with negative outcomes for families. Concerning the temporal order of macro-structural processes, such as the 
introduction of certain types of government, social policies, and economic restructuring, Abbott (1992) presented a pioneering study 
on the order in which countries introduced different social policies. Recently, Gjerløw et al. (2021) used SA to inform theoretical 
arguments about democratization and economic development via an analysis of institutional histories (see also Wilson 2014). 
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A core question is whether SA can inform causal mechanisms. Most SA applications quickly put forward disclaimers that their 
results are merely descriptive and cannot be interpreted causally. However, strictly this is the case for all nonexperimental methods 
using survey or administrative data. Recent innovations as the Sequence Analysis Multistate Model (Studer et al., 2018a, 2018b) for 
modelling the impact of time-varying covariates on the likelihood of transitioning into specific processes with frailty terms that comes 
as close to causal assessments as fixed effects models. Moreover, SA has been fruitfully applied to augment matching methods for 
causal inference, with survey data matching not only on time invariant covariates but on entire pre-treatment trajectories (Barban 
et al., 2017). Moreover, methods for causal inference, such as difference-in-difference models, often rely on untestable assumptions 
and deliver a “causal” effect of certain magnitude without being able to clearly adjudicate between different mechanisms that generate 
this causal effect. 

Another way of linking empirical evidence to theoretical arguments about causal mechanisms is to reconstruct the order and 
sequencing of events that happen along a causal chain with a detailed description of processes. This may not yield a causal effect of an 
exact size but can be qualitatively informative about the actual mechanisms at play. Such a logic resembles process-tracking methods 
in small-N case studies in historical sociology or political science. SA enables taking the logic of quantitative micro-level processes by 
providing sophisticated descriptive evidence on processes that can either be in line with certain theoretical arguments or contradict 
them. As noted above, family life course studies using SA have offered a way for assessing several core tenets of the second de-
mographic transition thesis. 

4.2. Sequence analysis: methods currently being developed 

Besides the advances highlighted in the previous sections regarding new algorithms for measuring dissimilarities or refined ver-
sions of synthetic complexity measures, we focus here on the advances that aim to go beyond the second-wave SA (Aisenbrey and 
Fasang, 2010). What can be considered as the “third-wave” SA (Raab and Struffolino, 2022) has focused so far on attempts to bring 
together the stochastic and the algorithmic modelling cultures and to introduce heuristics for validating cluster typologies. 

4.2.1. Combining sequence analysis with other methods 
Although SA has benefitted from several other methodological traditions—cluster analysis, principal coordinate analysis, network 

analysis (Cornwell, 2015, 2018), Markov models (Helske et al., 2018; Helske and Helske, 2019; Piccarreta and Bonetti, 2019), analysis 
of variance (Studer et al., 2011), and the combination of traditions (such as cluster with qualitative comparative analysis (Borgna and 
Struffolino 2018)—three major problems have remained unaddressed. First, in most applications it is advisable to use sequences of 
equal length, as a result, censored observations (e.g., individuals followed for a different number of years or otherwise with different 
record lengths) must be excluded, thus having several methodological and substantive implications for sample selection. Second, in the 
standard SA cluster analysis workflow where the cluster typology is used as independent variable in a regression analysis, it is not 
possible to include time-varying covariates: Typically, the researcher can estimate the effect of those variables measured prior or at the 
onset of the sequences only. Finally, the relatively limited ability to establish causal relationships (however, see the previous section for 
a detailed discussion). 

A few recent contributions have addressed some of these limitations by combining SA and event history analysis (Studer et al., 
2018a, 2018b; Rossignon et al., 2018). The analytical strategies described in Studer et al. (2018a, 2018b) share a key feature: They 
enable the inclusion of time-varying covariates, although by moving away from the holistic perspective of the standard SA approach. 
Instead of looking at entire sequences, these methods analyze transitions into subsequences of shorter (but still equal) lengths of the 
initial sequence, which can be of different length as only part of them will be used in the cluster analysis for identifying a typology of 
the process of interest (e.g., pathways of six-year-long after exiting unemployment or after finishing education). The time-span 
antecedent to the subsequence is accounted for in a competing risk model, where time-varying and time-invariant variables can be 
included in this time span. In Rossignon et al. (2018), cluster membership of sequences preceding an upcoming event of interest is used 
as a covariate in an event history analysis. 

The combination of SA with matching procedures has the objective to approach causal designs, therefore enabling the estimation of 
causal relationships. Different types of matching procedures were used to balance characteristics between treatment and control 
groups. For example, Raab et al. (2014) and Karhula et al. (2019) applied exact matching to compare unrelated and sibling dyads who 
were identical in the covariates. Drawing directly on the SA results to implement propensity score matching, Fauser (2020) identified a 
typology of employment trajectories and then estimated propensity scores for selecting into different career patterns while Barban 
et al. (2017) used standard variable-based propensity score matching, dissimilarities of pre-treatment trajectories obtained by OM, and 
a combination of these two strategies to study the consequences of age at retirement on subsequent health outcomes. 

4.2.2. Validating cluster typologies 
A main criticism of the first-wave SA concerned the validation of cluster typologies. The reliability of a specific clustering algorithm 

in recovering the number of latent groups of trajectories in the data cannot be assessed in a statistical sense (see, e.g., Warren et al., 
2015). This applies to every application of cluster analysis, but it is even more relevant for SA because the typically high number of 
observed trajectories—usually analyzed only graphically—additionally complicates the detection of peculiar or isolated cases devi-
ating from their cluster. Cluster quality criteria (Studer, 2013) combine indicators for within-cluster homogeneity and between-cluster 
separation and are generally used to guide the researcher in the choice of the number of clusters to be extracted. One attempt to use 
these criteria for further cluster validation is to exclude cases with negative average silhouette width values to avoid sequences having 
a weak similarity to the others in the cluster to affect subsequent analysis (Jalovaara and Fasang, 2020). However, as noted by Studer 
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(2021), these criteria do not test the no-clustering solution (i.e., the lack of a null model), and the values are difficult to interpret in 
absolute terms when it comes to evaluate the strength of the structure identified. To address these limitations, Studer (2021) adopted 
the framework proposed by Hennig and Lin (2015) for parametric bootstrapping for comparing the quality of a given clustering with 
the quality of having no-cluster. This approach allows testing different typologies against the “null case” of non-clustered data by using 
bootstrapping and provides a baseline value for the interpretation of the thresholds of the cluster quality criteria. 

4.3. Sequence analysis: methods to be developed 

Although SA has now reached young adulthood with a solid core of well-established methods, there remain a series of open issues 
deserving further investigation. 

4.3.1. Missing data and sequences of different lengths 
First, there is the important question of missing data in sequences. It is important in SA to distinguish between data that could not 

be collected, because of nonresponse for example, from data that do not exist. Missing data of certain experienced states lead to holes in 
sequences that can possibly be filled through imputation. Nonexistent states correspond to intervals of observation after the period of 
data collection and typically lead to sequences of different lengths. For example, ages over 22 years in 2022 cannot be observed for 
cohorts born in 2000 and later. 

Basic approaches often adopted for missing data consist of either dropping incomplete sequences or allowing for sequences with a 
limited percentage of missing states by treating the missing state as another state in the alphabet. These approaches are known to bias 
SA outcome, especially for states that are not missing at random. 

Imputation techniques specifically designed for filling holes in sequences have been proposed in the literature. For example, Halpin 
(2016) proposed to infer the imputed value (or its distribution for multiple imputation) from the surrounding valid states in the 
sequence, and Gabadinho and Ritschard (2016) used the prediction of the probabilistic tree (variable-length Markov model) fitted on 
the subsequence preceding the missing state. Although such techniques have proven useful, there is a need for easily useable impu-
tation methods that, in addition to the information on valid states in the sequences, would also take into account contextual infor-
mation such as values of constant or time-varying covariates as well as the non-response mechanism. 

Several SA tools are technically applicable to sequences of different lengths. For example, dissimilarity measures that allow for time 
warp such as OM and many of its variants can compare sequences with different lengths. Normalization of dissimilarities is another 
attempt. Likewise, normalized complexity indicators are comparable among sequences of different lengths. Nevertheless, comparison 
only makes sense when the difference in length remains limited. For example, it would not make sense to compare the complexity of a 
sequence of length 2 or 3 with a sequence of length 20, and the distance between a sequence of length 2 with one of length 20 would 
essentially reflect their difference in length rather than their difference in content. Here, there is a need for criteria to guide decisions 
about the maximum length difference that can be afforded given the size of the alphabet and the kind of analysis envisaged. 

4.3.2. Big data sequences 
SA applies without major difficulties to sets of several thousand sequences. However, some methods, the computation of pairwise 

dissimilarities in particular, may become impossible because of memory and computation time limitations when the number of unique 
sequences exceeds, say, around 20,000. This becomes an issue, for example, when the researcher wants to analyze sequences derived 
from census data that may involve millions of cases. A workaround is to resort to sampling approaches to analyze one or multiple 
randomly chosen samples. Currently, with the exception of clustering algorithms such as CLARA (Kaufman and Rousseeuw, 2005) 
there is a lack of tools for SA using this approach to deal with large samples. Another possible direction lies in parallel processing 
computation, which remains underexplored by most SA researchers and is currently being considered by a few sequence analysts. We 
can expect promising developments in both directions. 

4.3.3. Sequence generating models and synthetic life courses 
SA is essentially exploratory. According to Ritschard and Studer (2018b, p. 4), “One advantage of SA often discussed is its holistic 

perspective (see, e.g., Billari, 2005), meaning that SA sheds light on the entire trajectory rather than specific transitions in the tra-
jectory. With this holistic perspective, sequences are considered as static objects, which is not suited for studying the process that 
generates the sequences.” Probabilistic models (e.g., multistate and Markovian models such as MM, HMM, PST, etc.) are required to 
model this process. While such models are useful for understanding how state changes depend on history (previously visited states), 
they are complex and often hardly interpretable. Moreover, their ability to take account of constant and time-varying covariates re-
mains limited. Piccarreta and Studer (2019) stressed that there is a need for criteria for evaluating the ability of MMs to reproduce 
sequencing. This is also true for timing and duration. Development of generating models specifically designed for reproducing 
observed sequencing, timing, and spell durations would be particularly welcoming for modelling event occurrences with timing 
constraints and constraints based on timing and occurrence of previous events. 

Panel data generally cover only a portion (a few years) of the life course and building synthetic complete trajectories from such data 
could help draw conclusions on complete life trajectories. In his treatment of synthetic life histories, Willekens (2014, pp. 46–50) 
suggested building entire life trajectories by simulating successive portions of the trajectories by means of (microsimulation) models 
fitted on age groups. Full life courses would be generated by using the model of the youngest age group for generating the first years, 
and successively the models of the next age groups for later ages. Here, we need a detailed investigation of the applicability of such an 
approach, especially the underlying assumption regarding the validity of the model for the younger age group for the periods when 
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older cohorts also lived those ages. Automatizing the approach in a user-friendly tool would also contribute to enlarging the scope of 
SA. 

4.3.4. State and time granularity 
Granularity of time and of state definition must be considered. One such an issue is, when analyzing occupational trajectories, how 

results change when we use the second-level ISCO code (International standard classification of occupations) instead of the first-level 
code. Likewise, how much do results differ when using monthly rather than yearly data is also an open question. Both distances 
between sequences and sequence indicators are sensitive to the chosen granularity. Another issue of granularity is about optimally 
reducing the size of the alphabet. There is a need for methods and guidelines for helping the user to make the best choices. 

5. Conclusion 

We began the substantive portion of this paper with a discussion of Abbott’s substantive interest in histories and his role in the 
development of SA as an alternative to the so-called “General Linear Reality” represented by regression analysis dominant at the time. 
Some readers may have seen that, in many SA applications, regression analysis is actually employed, a feature we duly recognized in 
the paper. Such applications of SA and regression seem to contradict Abbott’s original intention. Or do they? It is our view that 
combining SA with the more typical regression analysis, be it linear or nonlinear, will certainly enrich a research project relying on 
only one of the two methods. SA facilitates an examination and understanding of historical or life course processes in the data; 
regression type of analysis allows a researcher to gain certain understanding of some of the relevant mechanisms related to such 
processes. Therefore, combining the two methods permits researchers to take advantage of the strengths of both methodological 
approaches. 

In this paper, we have reviewed the developments of SA from its birth to its young adulthood in Sections 2 and 3. Our review, albeit 
comprehensive, is far from being complete. In our view, it is neither possible nor necessary to give a complete review of all the de-
velopments in a scholarly field. Our objective has been to provide the reader a comprehensive review of the major and useful SA 
methods as well as the life course that SA has travelled to this day. Therefore, readers new to SA will be able to see its major available 
methods and tools and are referred to the many additional references where the methods are introduced and explained in greater 
detail. Social science researchers who already have some SA knowledge can also benefit from the paper with additionally under-
standing the connections between existing SA methods and the advantages and limitations of the many SA methods currently 
available. 

It is also our sincere hope that, through Section 4, sequence analysts will be able to help us further develop SA in major direc-
tions—its further engagement with and enrichment of life course and other social scientific theories, its refinement of the current 
methodological toolbox, and even new directions that we have not identified in this article. SA’s growth from infancy to young 
adulthood involved the transition from the scholarly attention and efforts of primarily just a sole scholar to the collective efforts of a 
contingent of devoted SA researchers, as evidenced by the authorship of the current article. Therefore, we are optimistic that future 
cohorts of scholars will be able to nurture SA into a strong adult in the not-too-distant future. 
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Brum-Bastos, V.S., Long, J.A., Demšar, U., 2018. Weather effects on human mobility: a study using multi-channel sequence analysis. Comput. Environ. Urban Syst. 71, 
131–152. 

Brzinsky-Fay, C., 2007. Lost in transition? Labour market entry sequences of school leavers in Europe. Eur. Sociol. Rev. 23 (4), 409–422. https://doi.org/10.1093/esr/ 
jcm011. 

Brzinsky-Fay, C., 2014. Graphical representation of transitions and sequences. In: Blanchard, P., Bühlmann, F., Gauthier, J.-A. (Eds.), Advances in Sequence Analysis: 
Theory, Method, Applications. Cham/Heidelberg/New York/Dordrecht/London: Springer, pp. 265–284. 

Brzinsky-Fay, C., 2018. Unused resources: sequence and trajectory indicators. In: International Symposium on Sequence Analysis and Related Methods, Monte Verita, 
TI. Switzerland, October 10–12, 2018.  

Brzinsky-Fay, C., Ebner, C., Seibert, H., 2016. Veränderte Kontinuität. Berufseinstiegsverläufe von Ausbildungsabsolventen in Westdeutschland seit den 1980er 
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