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Chern–Simons Invariants of Torus Links

Sébastien Stevan

Abstract. We compute the vacuum expectation values of torus knot
operators in Chern–Simons theory, and we obtain explicit formulae for
all classical gauge groups and for arbitrary representations. We repro-
duce a known formula for the HOMFLY invariants of torus knots and
links, and we obtain an analogous formula for Kauffman invariants. We
also derive a formula for cable knots. We use our results to test a recently
proposed conjecture that relates HOMFLY and Kauffman invariants.

1. Introduction

The idea of using Chern–Simons theory [5] to compute knot invariants goes
back to Witten’s paper [32] in 1989, when he identified the skein relation sat-
isfied by the Jones polynomial [12]. Though the theory is in principle exactly
solvable, the computations are quite challenging in most cases. One convenient
framework to address such problems is the formalism of knot operators [21].
For torus knots, an explicit operator formalism has been constructed by [15],
that successfully reproduces the Jones polynomial for Wilson loops carrying
the fundamental representation of SU(2).

Several further works have generalized the computation to arbitrary rep-
resentations of SU(2) [11], to the fundamental representation of U(N) [16]
and to arbitrary representations of U(N) [17]. There have also been attempts
to compute Kauffman invariants from Chern–Simons theory. With Wilson
loops carrying the fundamental representation of SO(N), Labastida and Pérez
obtained a simple formula for the Kauffman polynomial [20]. For torus knots
of the form (2, 2m + 1), there are formulae for arbitrary representations of
SO(N) [1,29], but they are not completely explicit due to the presence of a
generally unknown group-theoretic sign.

Recently, a simple formula for HOMFLY invariants of torus links
has been obtained by using quantum groups methods [22]. For quantum
Kauffman invariants, L. Chen and Q. Chen [4] had derived a similar formula
but published it only after this paper was submitted. These results encouraged
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us to address the computation of torus link invariants from Chern–Simons
point of view. In this paper, we carefully analyze the matrix elements of knot
operators to produce simpler formulae. Our approach uses only group-theoretic
data and is valid for any gauge group. As an application, we compute the poly-
nomial invariants for all classical Lie groups and for arbitrary representations,
and we reproduce the results of [22].

As explicit formulae are available, torus knots represent an useful ground
to test the conjectured relationship between knot invariants and string the-
ory. The equivalence of 1/N expansion of Chern–Simons theory to topolog-
ical string theory [8] implies that the colored HOMFLY polynomial can be
related to Gromov–Witten invariants and thus enjoys highly nontrivial prop-
erties [19,27]. This conjecture has been extensively checked [17,19,22] and
is now proved [24]. The large-N duality of Chern–Simons theory with gauge
group SO(N) or Sp(N) has also been studied [30]. In [3], partial conjectures on
the structure of Kauffman invariants have been formulated. The complete con-
jecture, that also involves HOMFLY invariants for composite representations,
has been stated by Mariño [25].

The outline of the paper is as follows: in Sect. 2 we recall some important
properties of Wilson loops. Section 3 is devoted to the matrix elements of torus
knot operators. In Sects. 4, 5 and 6, we deduce explicit formulae for HOMFLY
and Kauffman invariants of cable knots, torus knots and torus links. Finally,
in Sect. 7 we provide some tests of Mariño’s conjecture.

2. Chern–Simons Theory and Wilson Loop Operators

Chern–Simons theory is a topological gauge theory on an orientable, boundar-
iless 3-manifold M with a simple, simply connected, compact, nonabelian Lie
group G and the action

S(A) =
k

4π

∫

M

Tr
[
A ∧ dA +

2
3
A ∧ A ∧ A

]
, (2.1)

where Tr is the trace in the fundamental representation and k is a real param-
eter. In this expression A is a g-valued 1-form on M , where g is the Lie algebra
of the gauge group G.

In the context of knot invariants, M is usually taken to be S
3 and the

relevant gauge-invariant observables are Wilson loop operators. Let K ⊂ S
3

be a knot and Vλ an irreducible g-module of highest weight λ. The associated
Wilson loop is

WK
λ (A) = TrVλ

⎡
⎣Pexp

∮

K

A

⎤
⎦ , (2.2)

where Pexp is a path-ordered exponential. In other words, Wλ
K(A) is obtained

by taking the trace on Vλ of the holonomy along K.
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Figure 1. Products of Wilson loops with various orientations

As was realized first by Witten [32], the vacuum expectation value (VEV)

〈WK1
λ1

· · ·WKL

λL
〉 =

∫
D[A]WK1

λ1
(A) · · ·WKL

λL
(A)eiS(A)∫

D[A] eiS(A)
, (2.3)

where the functional integration runs over the gauge orbits of the field, is a
framing-dependent invariant of the link L = K1 ∪ · · · ∪ KL.

Indeed, Wλ(K) = 〈WK
λ 〉 reproduces the quantum invariant obtained

from the category of Uq(g)-modules. In this paper we shall encounter colored
HOMFLY invariants HK

λ (t, v) corresponding to the group U(N) and colored
Kauffman invariants KK

λ (t, v) corresponding to the groups SO(N) and Sp(N).
The VEV (2.3) can be computed perturbatively or by nonperturbative

methods based on surgery of 3-manifolds. In this paper we consider these later
methods, in particular the formalism of knot operators. Before turning to knot
operators, and restricting to torus knots, we review some properties of Wilson
loops.

2.1. Product of Wilson Loops with the Same Orientation

We provisorily take G to be U(N) for definiteness. Representations that label
Wilson loops are usually polynomial representations (those indexed by par-
titions). When we write WK

λ for a Wilson loop or Wλ(K) for an invariant,
we implicitly assume that the representation with highest weight λ ∈ Λ+

W is
polynomial, so that we can symbolize λ by a partition.

The first relation to be mentioned is the well-known fusion rule for
Wilson loops. For an oriented link made of two copies of the same knot, with
the same orientation for both components (as in Fig. 1a for instance), one has

〈WK
λ WK

μ 〉 =
∑
ν∈P

Nν
λμ〈WK

ν 〉, (2.4)

where P is the set of nonempty partitions and Nν
λμ are the coefficients in the

decomposition of the tensor product
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Vλ ⊗ Vμ =
⊕
ν∈P

Nν
λμVν .

They are called Littlewood–Richardson coefficients for U(N).
Formula (2.4) is extremely useful, since it reduces any product of

Wilson loops that share the same orientation to a sum of Wilson loops. It
only applies to links composed by several copies of the same knot, but this is
not a restriction for torus links.

For other Lie groups the same formula holds with different coefficients.
For SO(N) and Sp(N) they are given by [14,23]

Mν
λμ =

∑
α,β,γ

Nλ
αβNμ

αγNν
βγ . (2.5)

Here the sum runs over P ∪ {∅}.

Remark 1. Formula (2.4) has to be understood as a regularization for the
product of two operators evaluated at the same point. It extends the relation

WK
λ (A)WK

μ (A) =
∑
ν∈P

Nν
λμW

K
ν (A) (2.6)

between the functionals WK
λ (A) to the quantized Wilson loops. We derive

(2.6) by noting that the holonomy UK is an element of G; hence it is conju-
gate to an element of the maximal torus of G [13]. Furthermore, TrVλ

is the
character of Vλ as a function of the eigenvalues, and the product of characters
is decomposed as the tensor product of representation.

2.2. Product of Wilson Loops with Different Orientations

The need to consider all rational representations appears when one deals with
both orientations for K (as in Fig. 1b for example). The product of two
Wilson loops WK

λ and W−K
μ , where −K denotes K with the opposite ori-

entation, cannot be decomposed as above. In the formalism of the HOMFLY
skein of the annulus [9], one would have to use the basis of the full skein,
indexed by two partitions. In Chern–Simons theory the same role is played by
composite representations.

Composite (or mixed tensor) representations

V[λ,μ] =
∑
η,ν,ζ

(−1)|η|Nλ
ηνNμ

ηζVν ⊗ Vζ

are the most general irreducible representations of U(N), where the sum runs
over partitions and η is the partition conjugate to η (the transpose Young
diagram). More details on composite representations can be found in [10].

It is straightforward to derive a fusion rule for WK
λ W−K

μ by decomposing
mixed tensor representations. Let UK be the holonomy along K; then

WK
λ W−K

μ = TrVλ
UK TrVμ

U−1
K

= TrVλ
UK TrVμ

UK

= TrVλ⊗Vμ
UK.
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One has the following decomposition of Vλ ⊗ Vμ in terms of composite repre-
sentations [14]

Vλ ⊗ Vμ =
∑
η,ν,ζ

Nλ
ηνNμ

ζνV[η,ζ].

If we denote by WK
[η,ζ] the Wilson loop in the composite representation V[η,ζ],

we get the fusion rule

〈WK
λ W−K

μ 〉 =
∑
η,ν,ζ

Nλ
ηνNμ

ζν〈WK
[η,ζ]〉. (2.7)

Remark 2. Since V[λ,∅] = Vλ and V[∅,λ] = V ∗
λ , one has

WK
[λ,∅] = WK

λ and WK
[∅,λ] = W−K

λ .

More generally WK
[λ,μ] = W−K

[μ,λ].

We can as well consider product of Wilson loops carrying composite rep-
resentations and write a fusion rule for them. It is given by [14]

〈WK
[λ,μ]W

K
[η,ν]〉 =

∑
α,β,γ,δ

∑
ξ,ζ

(∑
κ

Nλ
καNν

κβ

)(∑
ε

Nμ
εδN

η
εγ

)
N ξ

αγN ζ
βδ〈WK

[ξ,ζ]〉.

2.3. Traces of Powers of the Holomony

As will be illustrated later in this paper, traces of powers of the holonomy
along a given knot play an important in the gauge theory approach to knot
invariants. In fact, such composite observables can be decomposed by a group-
theoretic approach.

Given a knot K, the holonomy UK is conjugate to an element in the
maximal torus of G and we already mentioned that

TrVλ
UK = chλ(z1, . . . , zr), (2.8)

where chλ is the character of g and z1, . . . , zr are the variable eigenvalues of
UK (r is the rank of G).

The trace of the n-th power of the holonomy is then given by

Trλ Un
K = chλ(zn

1 , . . . , zn
r ). (2.9)

Let ΛW be the weight lattice and W the Weyl group of G. Equation (2.9) is
obtained from (2.8) by applying the ring homomorphism

Ψn : Z[ΛW ]W −→ Z[ΛW ]W

eμ �−→ enμ

which is called the Adams operation. Since the characters form a Z-basis of
Z[ΛW ]W , there exist integer coefficients cν

λ,n univocally determined by the
decomposition of Ψn chλ with respect to the basis (chν)ν∈Λ+

W
:

Ψn chλ =
∑

ν∈Λ+
W

cν
λ,n chν . (2.10)
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Figure 2. Knot lying on a surface (torus knot)

Hence we have obtained the following formula:

Trλ Un
K =

∑
ν∈P

cν
λ,n Trν UK. (2.11)

The coefficients cν
λ,n depend on the gauge group, and for clarity we will denote

those by aν
λ,n for U(N) and by bν

λ,n for SO(N).

Remark 3. In the case of U(N), the above formula is an easy generalization
of

TrUn
K =

∑
λ∈Pn

χλ(C(n))TrVλ
UK, (2.12)

where χλ is the character of the symmetric group SN in the representation
indexed by the partition λ and C(n) is the conjugacy class of one n-cycle in SN .
This formula is precisely (2.11) for the fundamental representation of U(N).
As we will see later, the coefficients aν

λ,n can be expressed in terms of the
characters of the symmetric group.

3. Knot Operators Formalism

We move towards the study of Wilson loop operators associated with torus
knots. The main result of this section is a formula for the matrix elements
of torus knot operators that is much simpler than the one of Labastida et al.
[15]. Eventually, we will provide a simple formula for the quantum invariants
of torus knots.

3.1. Construction of the Operator Formalism

If a knot K lies on a surface Σ, the Wilson loop associated with K can be
represented by an operator WK

λ acting on a finite-dimensional Hilbert space
H(Σ). For example, the trefoil knot pictured on Fig. 2 lies on the torus T

2,
and hence can be represented by an operator on H(T2).

In the case of torus knots, an important achievement of [15] is the con-
struction of the operator formalism that was just alluded to. The original
paper treats the case of U(N) and arbitrary gauge groups are addressed in
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Figure 3. Wilson loop W(1,0)
λ around the noncontractible

cycle of T
2

[20]. H(T2) is the physical Hilbert space of Chern–Simons theory on R × T
2,

which is the finite-dimensional complex vector space with orthonormal basis

(
|ρ + λ〉 : λ ∈ Λ+

W

)
(3.1)

indexed by strongly dominant weights. Each of these states is obtained by
inserting a Wilson loop in the representation λ along the noncontractible cycle
of the torus (Fig. 3). The state |ρ〉 associated with the Weyl vector ρ corre-
sponds to the vacuum (no Wilson loop inserted).

To be more rigorous, one should restrict (3.1) to integrable representa-
tions at level k. However, one can show that, provided k is large enough, all
representations that arise from the action of knot operators are integrable.
Hence, we formally work as if k were infinite.

We denote by T
n
m the (n,m)-torus link. T

n
m is a knot if and only if n and

m are coprime. We denote by W(n,m)
λ the corresponding torus knot operator.

The following formula is due to [15] for the group U(N) and to [20] for an
arbitrary gauge group:

W(n,m)
λ |p〉 =

∑
μ∈Mλ

exp
[
iπ

nm

2yk + č
μ2 + 2πi

m

2yk + č
p · μ

]
|p + nμ〉. (3.2)

In this formula, Mλ denotes the set of weights of the irreducible G-module
Vλ, y is the Dynkin index of the fundamental representation and č is the
dual Coxeter number of G. The quantization condition requires that 2yk is an
integer.

Expression (3.2) is actually more complicated than it seems, because not
all weights p + nμ are of the form ρ + ν for some ν ∈ Λ+

W . Hence, it is very
difficult to get tractable formulae for 〈WK

λ 〉 from (3.2). To simplify the com-
putation of the invariants, we shall provide simple expressions for the matrix
elements. This result has been established in our master’s thesis [31] for the
group SU(N).
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3.2. Parallel Cabling of the Unknot

To begin with, we consider an n-parallel cabling1 of the unknot represented
by the operator W(n,0)

λ . It may look a bit awkward to consider such an oper-
ator, but if we manage to cope with the exponential factor we can reduce any
W(n,m)

λ to W(n,0)
λ . From our considerations on powers of the holonomy, it is

clear that

W(n,0)
λ =

∑
ν∈Λ+

W

cν
λ,nW(1,0)

ν

As a result of this operator expansion, and since W(1,0)
λ |ρ〉 = |ρ + λ〉, we

get the formula

W(n,0)
λ |ρ〉 =

∑
ν∈Λ+

W

cν
λ,n|ρ + ν〉. (3.3)

This equality can also be proved from the explicit representation of W(n,m)
λ

on H(T2). More details are given in Appendix A.

3.3. Matrix Elements of Torus Knot Operators

To deal with the generic torus knot operator W(n,m)
λ , we introduce a diagonal

operator

D|ρ + λ〉 = e2πi m
n hρ+λ |ρ + λ〉,

where

hp =
p2 − ρ2

2(2yk + č)

is a conformal weight of the WZW model. The action of W(n,m)
λ and W(n,0)

λ

on |ρ + η〉 differ only by an exponential factor, which is

πi

[
nm

2yk + č
μ2 +

2m

2yk + č
p · μ

]
=

mπi

n(2yk + č)
[
(p + nμ)2 − p2

]
.

It follows immediately that

W(n,m)
λ = DW(n,0)

λ D−1. (3.4)

Using this result and our discussion on W(n,0)
λ , we obtain a simple formula for

the matrix elements of W(n,m)
λ :

W(n,m)
λ |ρ〉 =

∑
ν∈Λ+

W

cν
λ,ne2πi m

n hρ+ν |ρ + ν〉. (3.5)

Remark 4. This formula contains the same ingredients as Lin and Zheng’s
formula [22] for the colored HOMFLY polynomial. One of our goals was to
reproduce this formula in the framework of Chern–Simons theory.

1 Here parallel cabling is not to be understood in the classical sense. Usually the n-parallel
cable of a knot is a n-component link, which should be represented by the product of oper-
ators (TrVλ

U)n. In our case, the n-parallel cable is the quantum quantity TrVλ
(Un).
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3.4. Fractional Twists

Formula (3.5) resembles a result of Morton and Manchón [26] on cable knots,
to which we shall return in Sect. 4. Following their terminology, we shall refer
to D as a fractional twist. In fact, there are intrinsic reasons in Chern–Simons
theory to refer to D as a fractional twist.

We recall that the mapping class group of the torus is SL(2, Z). It
has two generators, T and S; the former represents a Dehn twist and the
later exchanges the homology cycles. There is an unitary representation
R : SL(2, Z) −→ GL

(
H(T2)

)
[6], and T acts by

R(T)|p〉 = e2πi(hp+ c
12 )|p〉

where

c =
2yk dim g

2yk + č
.

If we redefine D to act as

D|p〉 = e2πi m
n (hp+ c

12 )|p〉,
formula (3.4) remains true and we can consider D as the m

n -th power of R(T).
Furthermore, SL(2, Z) acts by conjugation

R(M)W(n,m)
λ R(M)−1 = W(n,m)M

λ , (3.6)

where (n,m)M stands for the natural action by right multiplication.
If we define Tm/n =

(
1 m

n
0 1

)
and extend R to such elements, then D =

R(Tm/n) and formula (3.4) also extends to

R(Tm/n)W(n,0)
λ R(Tm/n)−1 = W(n,0)Tm/n

λ = W(n,m)
λ .

With this identification it is clear why Tm/n (and its representative D) should
be called a fractional twist. It is, however, less obvious that R extends to Tm/n.

Remark 5. Any torus knot can be obtained from the unknot by a complicated
sequence of Dehn twists along both homology cycles. With a fractional twist
we obtain T

n
m in one step from n-copies of the unknot.

Our computations indicate that fractional twists have simple actions on
Chern–Simons observables (at least on torus knot operators). Hopefully, frac-
tional twists apply to more general knots.

4. Invariants of Cable Knots

We extend our analysis to cable knots from the point of view of Chern–Simons
theory. Consider a knot K ⊂ S

3 and its tubular neighborhood TK. Let Q be
a knot in the standard solid torus T and iK : T ↪−→ TK the embedding of T
into TK. The satellite K ∗ Q is the knot iK(Q) obtained by placing Q in the
tubular neighborhood of K. In case the pattern Q is a torus knot, the satellite
is called a cable. Figure 4 illustrates a cabling of the trefoil.
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Figure 4. Cabling of the trefoil knot by the (2, 1)-torus knot
pattern

We follow the procedure described in [32], translated in terms of knot
operators. The path integral over the field configuration with support in M ′ =
S

3\TK gives a state

〈φM ′ | ∈ H(∂TK)∗,

since the boundary of M ′ is ∂TK with the opposite orientation, and the path
integral over T gives a state

W(n,m)
λ |φT 〉 ∈ H(T2)

when the pattern T
n
m is inserted in the solid torus. The homeomorphism

iK|T2 : T
2 −→ ∂TK

is represented by an operator FK : H(T2) −→ H(∂TK). We deduce the formula

Wλ(K ∗ T
n
m) =

〈φM ′ |FKW(n,m)
λ |φT 〉

〈φM ′ |FK|φT 〉 .

In particular, when the trivial pattern T
1
0 is placed in the neighborhood TK,

the resulting satellite is K:

Wλ(K) =
〈φM ′ |FKW(1,0)

λ |φT 〉
〈φM ′ |FK|φT 〉 .

Using our relation between W(n,m)
λ and W(1,0)

λ , we deduce the following
formula for the invariant of cable knots:

Wλ(K ∗ T
n
m) =

∑
ν∈Λ+

W

aν
λ,ne−2πi m

n hρ+ν Wν(K) (4.1)

for U(N) and the same formula with aν
λ,n replaced by bν

λ,n for SO(N). This for-
mula has been proved by Morton and Manchón [26] for HOMFLY invariants.
The analogous for Kauffman invariants seems to be new.



Vol. 11 (2010) Chern–Simons Invariants of Torus Links 1211

Figure 5. Heegaard splitting of S
3 as two solid tori

5. Quantum Invariants of Torus Knots

In the preceding we have not specified the 3-manifold M onto which the
knots are embedded, but the construction of the operator formalism implicitly
requires M to admit a genus-1 Heegaard splitting. The case of interest, which
is M = S

3, admits the decomposition into two solid tori pictured on Fig. 5.
The choice of a homeomorphism to glue both solid tori together

determines Chern–Simons invariants through the following formula [16]:

Wλ(Tn
m) =

〈ρ|FW(n,m)|ρ〉
〈ρ|F|ρ〉 , (5.1)

where F is an operator on H(T2) that represents the homeomorphism. But
this choice also determines a framing w(K) of the knot. We will correct Wλ(K)
by the deframing factor e−2πiw(K)hρ+λ [32] to express the invariants in the
standard framing.

It is common to glue the solid tori along the homeomorphism represented
by S in the mapping class group (the one that exchanges the two homology
cycles of T

2). The framing determined by this choice turns out to be mn for the
(n,m)-torus knot. Its action on H(T2) is given by the Kac–Peterson formula [6]

〈p|S|p′〉 =
i|Δ+|

(2yk + č)1/2

∣∣∣ΛW

ΛR

∣∣∣ ∑
w∈W

(−1)we− 2πi
2yk+č p·w(p′). (5.2)

Depending on the choice of the gauge group, several invariants can be
computed. Our results apply to any semisimple Lie group, but we will restrict
ourselves to classical Lie groups. As it turns out, the group U(N) reproduces
the colored HOMFLY invariants, whereas both groups SO(N) and Sp(N)
reproduce the colored Kauffman invariants.
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5.1. Colored HOMFLY Polynomial

The precise relation between colored HOMFLY invariants and Chern–Simons
invariants with gauge group U(N) is the following:

HK
λ (t, v) = e−2πiw(K)hρ+λWλ(K)

∣∣
e

−πi
k+N =t,tN=v

(5.3)

where t = e
−πi
k+N and v = tN are considered as independent variables. Since

G = U(N) has been fixed, we have replaced č by N and y by 1/2.
We use the notation H

(n,m)
λ for the HOMFLY invariants of the (n,m)-

torus knot. It is easy to see that e2πihρ+λ = t−κλv−|λ|, where κλ =
∑�(λ)

i=1 (λi −
2i + 1)λi. By using the action of knot operators,

H
(n,m)
λ (t, v) = e−2πinmhρ+λWλ(Tn

m)
∣∣
e

− πi
k+N =t,tN=v

= tmnκλvmn|λ|
∑

ν∈Λ+
W

aν
λ,nt−

m
n κν v− m

n |ν|Wν(T1
0).

The invariant of the unknot Wν(T1
0) is called the quantum dimension of Vλ.

Using the Kac–Peterson formula (5.2) and the Weyl character formula, one
obtains

Wλ(T1
0) =

〈ρ|S|ρ + λ〉
〈ρ|S|ρ〉 = chλ

[
− 2πi

k + N
ρ

]
.

This expression is a function of t and v given by the Schur polynomial
sλ(x1, . . . , xN ) evaluated at xi = tN−2i+1. We denote this function by sλ(t, v).

Finally, by showing that all ν ∈ P appearing in the sum satisfy |ν| = n|λ|,
we obtain the following formula:

H
(n,m)
λ (t, v) = tmnκλvm(n−1)|λ|

∑
|ν|=n|λ|

aν
λ,nt−

m
n κν sν(t, v). (5.4)

This formula has already been proved by Lin and Zheng [22] starting from the
rigorous quantum group definition. This formula is much simpler than the one
originally obtained by Labastida and Mariño by using knot operators [17].

For actual calculations the following expression is useful:

aν
λ,n =

∑
μ∈P|λ|

1
zμ

χλ(Cμ)χν(Cnμ).

It is easily proved using Frobénius formula for the characters of the symmetric
group.

Example 1. Apart from the examples found in [22], we obtained for (3,m)-
torus knots the following results:

H
(3,m) = t18mv6m

[
t−24ms(9) − t−18ms(8,1) + t12ms(7,12)

+ t−10ms(6,3) − t−8ms(6,2,1) − t−8ms(5,4)

+ t−4ms(5,22) + t−4ms(42,1) − t−2ms(4,3,2) + s(33)

]
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H
(3,m) = v6m

[
t−10ms(6,3) − t−8ms(6,2,1) + t−6ms(6,13) − t−8ms(5,4)

+ t−4ms(5,22) − s(5,14) + t−4ms(42,1) − t−2ms(4,3,2)

+ t6ms(4,15) + 2s(33) − t2ms(32,2,1) + t4ms(32,13)

+ t4ms(3,23) − t8ms(3,2,14) − t8ms(24,1) + t10ms(23,13)

]
H

(3,m) = t−18mv6m
[
s(33) − t2ms(32,2,1) + t4ms(32,13)

+ t4ms(3,23) − t8ms(3,2,14) + t12ms(3,16)

−t8ms(24,1) + t10ms(23,13) − t18ms(2,17) + t24ms(19)

]
Remark 6. For the sake of simplicity, we have restricted our analysis to polyno-
mial representations of U(N); analogous formulae, which will not be presented
there, exist for composite representations. For example, Paul et al. [28] com-
pute such invariants for (2, 2m + 1)-torus knots.

5.2. Colored Kauffman Polynomial

Colored Kauffman invariant are obtained from Chern–Simons theory with
gauge group SO(N) by

KK
λ (t, v) = e−2πiw(K)hρ+λWλ(K)

∣∣
e

−πi
2k+N−2 =t,tN−1=v

(5.5)

For the Lie group SO(N), one has č = N − 2 and y = 1, regardless of parity.
Using the fact that e2πihρ+λ = t−κλv−|λ|, the procedure is very similar

to the case of U(N). The quantum dimension of Vλ, which is Wλ(T1
0), is a

function of t and v that we denote dλ(t, v). Thanks to Weyl character formula,
it is given by the character of SO(N); there are explicit expressions in [2].

The final result is the exact analogous of (5.4),

K
(n,m)
λ (t, v) = tmnκλvmn|λ|

∑
|ν|≤n|λ|

bν
λ,nt−

m
n κν v− m

n |ν|dν(t, v). (5.6)

This formula had in fact been derived by L. Chen and Q. Chen [4]; the proof
is similar to [22].

The main difference, as compared with (5.4), is that the coefficients bν
λ,n

are those of SO(N), and they are nonzero also for |ν| 
= n|λ|. To express these
coefficients in terms of the aν

λ,n, we use relations between characters of SO(N)
and U(N) obtained by Littlewood [23]. There are two formulae that give bν

λ,n:

bν
λ,n =

∑
η∈P

∑
μ=μ

(−1)
|μ|−r(μ)

2 Nλ
μη

∑
|τ |=n|η|

aτ
η,n

∑
ξ∈P

∑
ν∈P

(−1)|ξ|Nτ
ξν

=
∑
η∈P

∑
γ∈C

(−1)|γ|/2Nλ
γη

∑
|τ |=n|η|

aτ
η,n

∑
ν∈P

∑
δ∈D

Nτ
δν . (5.7)

More details, including notations, can be found in Appendix C. In principle
the first formula applies to N odd and the second to N even, but they seem
to give the same result. A similar situation occurs for tensor products where
the decomposition does not depend on the parity of N .
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Example 2. For (2,m)-torus knots, the colored Kauffman invariants are given
by

K
(2,m) = v2m

[
t−mv−md(2) − tmv−md(12) + 1

]
K

(2,m) = t4mv4m
[
t−6mv−2md(4) − t−2mv−2md(3,1)

+v−2md(22) + t−mv−md(2) − tmv−md(12) + 1
]

K
(2,m) = t−4mv4m

[
v−2md(22) − t2mv−2md(2,12)

+t6mv−2md(14) + t−mv−md(2) − tmv−md(12) + 1
]

K
(2,m) = t12mv6m

[
1 + t−15mv−3md(6) − t−9mv−3md(5,1)

+t−5mv−3md(4,2) − t−3mv−3md(3,3) + t−6mv−2md(4)

−t−2mv−2md(3,1) + v−2md(22) + t−mv−md(2) − tmv−md(12)

]
K

(2,m) = v6m
[
1 + t−5mv−3md(4,2) − t−3mv−3md(4,12) − t−3mv−3md(32)

+t3mv−3md(3,13) + t3mv−3md(23) − t5mv−3md(22,12)

+t−6mv−2md(4) − t−2mv−2md(3,1) + 2v−2md(22)

−t2mv−2md(2,12) + t6mv−2md(14) + 2t−mv−md(2) − 2tmv−md(12)

]
K

(2,m) = t−12mv6m
[
1 + t3mv−3md(23) − t5mv−3md(22,12)

+t9mv−3md(2,14) − t15mv−3md(16) + t−2md(22)

−t2mv−2md(2,12) + t6mv−2md(14) + t−mv−md(2) − tmv−md(12)

]

Example 3. For (3,m)-torus knots we further obtain

K
(3,m) = v2m

[
t−2md(3) − d(2,1) + t2md(13)

]
K

(3,m) = t6mv6m
[
t−10mv−2md(6) − t−6mv−2md(5,1) + t−2mv−2md(4,12)

+t−2mv−2md(32) − v−2md(3,2,1) + t2mv−2md(23) + 1
]

K
(3,m) = t−6mv6m

[
t−2mv−2md(32) − v−2md(3,2,1) + t2mv−2md(3,13)

+t2mv−2md(23) − t6mv−2md(2,14) + t10mv−2md(16) + 1
]

Remark 7. These results are rather simple as compared with formula (5.7) for
the Adams coefficients. We observed important cancellations of terms; thus it
might be possible to simplify (5.7). In particular, Kauffman invariants present
the following recursive structure: K appears in K , K appears in turn in
K , and so on.

6. Quantum Invariants of Torus Links

The formulae for HOMFLY and Kauffman invariants generalizes to links by
using the fusion rule (2.4) and taking into account the framing correction. One
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obtains

H
(Ln,Lm)
λ1,...,λL

= tmn
∑L

α=1 κλα

∑
μ∈P

Nμ
λ1,...,λL

t−mnκμH(n,m)
μ (6.1)

K
(Ln,Lm)
λ1,...,λL

= tmn
∑L

α=1 κλα v
∑L

α=1 mn|λα|
∑
μ∈P

Mμ
λ1,...,λL

t−mnκμv−mn|μ|K(n,m)
μ

for the (Ln,Lm)-torus link. The first formula is equivalent to the formula of
[22] for torus links.

Example 4. For (4, 2m)-torus links, the colored Kauffman invariants are

K
(4,2m)
, = v4m

[
3 + t−6mv−2md(4) − t−2mv−2md(3,1) + 2v−2md(22)

−t2mv−2md(2,12) + t6mv−2md(14) + 2t−mv−md(2) − 2tmv−md(12)

]
K

(4,2m)
, = t4mv6m

[
t−15mv−3md(6) − t−9mv−3md(5,1) + 2t−5mv−3md(4,2)

−t−3mv−3md(4,12) − 2t−3mv−3md(32) + t3mv−3md(3,13)

+t3mv−3md(23) − t5mv−3md(22,12) + 2t−6mv−2md(4)

−2t−2mv−2md(3,1) + 3v−2md(22) − t2mv−2md(2,12)

+t6mv−2md(14) + 4t−mv−md(2) − 4tmv−md(12) + 3
]

K
(4,2m)

,
= t−4mv6m

[
t−5mv−3md(4,2) − t−3mv−3md(4,12) + t−3mv−3md(32)

+t3mv−3md(3,13) + 2t3mv−3md(23) − 2t5mv−3md(22,12)

+t9mv−3md(2,14) − t15mv−3md(16) + t−6mv−2md(4)

−t−2mv−2md(3,1) + 3v−2md(22) − 2t2mv−2md(2,12)

+t6mv−2md(14) + 4t−mv−md(2) − 4tmv−md(12) + 3
]

7. Mariño Conjecture for the Kauffman Invariants

Many highly nontrivial properties of the Kauffman invariants as well as their
relation to the HOMFLY invariants might be explained by a conjecture of
Mariño [25] that completes the prior partial conjecture of Bouchard et al. [3].
This new conjecture is similar to the Labastida–Mariño–Ooguri–Vafa conjec-
ture [19,27] for HOMFLY invariants, but it applies to Kauffman invariants
and HOMFLY invariants with composite representations.

7.1. Statement of the Conjecture

The conjecture contains two distinct statements, one for HOMFLY invariants
including composite representations and one for both Kauffman and HOMFLY
invariants. We first construct the generating functions

ZH(L) =
∑

λ1, . . . , λL
μ1, . . . , μL

HL
[λ1,μ1],...,[λL,μL](t, v)sλ1(x1)sμ1(x1) · · · sλL

(xL)sμL
(xL)

ZK(L) =
∑

λ1,...,λL

KL
λ1,...,λL

(t, v)sλ1(x1) · · · sλL
(xL),
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where all sums run over partitions including the empty one. The reformulated
invariants hλ1,...,λL

(t, v) and gλ1,...,λL
(t, v) are defined by

log ZH =
∞∑

d=1

∑
λ1,...,λL

hλ1,...,λL
(td, vd)sλ1(x

d
1) · · · sλL

(xd
L)

log ZK − 1
2

log ZH =
∑

d odd

∑
λ1,...,λL

gλ1,...,λL
(td, vd)sλ1(x

d
1) · · · sλL

(xd
L).

(7.1)

All reformulated invariants can be expressed in terms of the original invari-
ants through computing connected vacuum expectation values, following the
procedure of [18]. We suggest an alternative procedure in Appendix B. For a
knot, the lowest-order invariants are

g (t, v) = K (t, v) − H (t, v)

g (t, v) = K (t, v) − 1
2
K (t, v)2 − H (t, v) + H (t, v)2 − 1

2
H[ , ](t, v)

g (t, v) = K (t, v) − 1
2
K (t, v)2 − H (t, v) + H (t, v)2 − 1

2
H[ , ](t, v).

More examples can be found in [25]. We now introduce the block-diagonal
matrix Mλμ, which is

Mλμ(t) =
∑

ν∈Pn

χλ(Cν)χμ(Cν)
n∏

i=1

(tν
i − t−νi

)

for |λ| = |μ| = n and zero otherwise. We finally define

ĥλ1,...,λL
(t, v) =

∑
μ1,...,μL

M−1
λ1μ1

(t) · · · M−1
λLμL

(t)hμ1,...,μL
(t, v)

ĝλ1,...,λL
(t, v) =

∑
μ1,...,μL

M−1
λ1μ1

(t) · · · M−1
λLμL

(t)gμ1,...,μL
(t, v).

(7.2)

The conjecture states that

ĥλ1,...,λL
∈ zL−2

Z[z2, v±1] and ĝλ1,...,λL
∈ zL−1

Z[z, v±1],

with z = t − t−1. In other words, there exist integer invariants N c
λ1,...,λL;g,Q

(c = 0, 1, 2) such that

ĥλ1,...,λL
(z, v) = zL−2

∑
g≥0

∑
Q∈Z

N 0
λ1,...,λL;g,Qz2g−1vQ (7.3)

and

ĝλ1,...,λL
(z, v) = zL−1

∑
g≥0

∑
Q∈Z

[
N 1

λ1,...,λL;g,Qz2gvQ + N 2
λ1,...,λL;g,Qz2g+1vQ

]
.
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Table 1. Integer invariants for the (3, 4)-torus knot

7.2. Direct Computations

We now proceed to various tests of the conjecture for torus knots and links
using formulae (5.4) and (5.6). Unfortunately, we cannot test the conjecture
for all torus knots at once, and since the complexity increases rapidly, only the
cases (2,m) and (3,m) are tractable.

In principle the integer invariants can be computed as functions of m
(though they are in infinite number if m is not fixed). In practice, however,
we had to fix m to obtain results in a reasonable amount of time. We have
obtained generic results in a few cases, to which we shall return later on.

For (2,m)-torus knots, we have checked the conjecture for various values
of m and for several low-dimensional representations. Most of these tests had
already been made by [25], using the formulae of [1] for Kauffman invariants.
Recently, analogous tests have also been made for this class of knots with
nontrivial framing [28].

For (3,m)-torus knots, we were able to verify parts of the conjecture. As
an illustration, we have compiled the integer invariants N 1

,g,Q of the (3, 4)-
torus knot in Table 1.

We further have proceeded to nontrivial checks of the conjecture for
(2, 2m)- and (4, 2m)-torus links. For definiteness, we consider here the two-
component trefoil link T

4
6. We have obtained

ĝ , = (36v9 − 180v7 + 288v5 − 144v3)z + (57v9 − 453v7 + 912v5 − 516v3)z3

+(36v9−494v7+1286v5−828v3)z5+(10v9 − 286v7 + 1001v5 − 725v3)z7

+(v9 − 91v7 + 455v5 − 365v3)z9 − (15v7 − 120v5 + 105v3)z11

−(v7 − 17v5 + 16v3)z13 + (v5 − v3)z15,

from which the integer invariants can be read. We have also compiled the
invariants N 2

, ;g,Q of the same link in Table 2.
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Table 2. Integer invariants for the (4, 6)-torus link

It is interesting to remark that in the above formula all N 2
, ;g,Q vanish.

For torus knots it is the case that N 2
,g,Q = 0, because of Labastida–Pérez

relation [20]

1
2

[
K

(n,m)(z, v) − K
(n,m)(−z, v)

]
= H

(n,m)(z, v)

between the HOMFLY and the Kauffman polynomials. But this relation does
not hold in for torus links, and we suggest that an appropriate generalization
is

1
2

[
K

(2n,2m)
, + K

(2n,2m)

,

]
− K

(n,m)
K

(n,m)
= H

(2n,2m)
[ ,∅],[ ,∅] + H

(2n,2m)
[ ,∅],[∅, ] (7.4)

for two-components torus links, where the bar stands for the substitution
z → − z. More generally, we are led to conjecture that N 2

,..., ;g,Q = 0 for
any torus link.

We return to the computation of the integer invariants as functions of m.
Formally N c

λ,g,Q is a polynomial in m with rational coefficients, enjoying the
following properties: for each m such that gcd(n,m) = 1,

(i) N c
λ,g,Q is an integer;

(ii) N c
λ,g,Q vanishes for large g and large |Q|.

For the (2,m)-torus knot we were able to perform the computation for the
representation and for g = 0, 1, 2. The results are compiled in Table 3. The
fact that these complicated expressions are indeed integers is not completely
trivial: let us show for instance that

N 1
,2,3m =

m2(m2 − 1)(2m + 1)(339m2 + 296m − 259)
5760

∈ Z.

Let p(m) = 339m2 + 296m − 259. We test the divisibility of the numerator by
5760 = 27 · 32 · 5 for m odd.
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Table 3. Integer invariants for the (2,m)-torus knot

(i) Divisibility by 5: since p(m) ≡ 4m2 + m + 1 (mod 5), we see that
{m,m − 1, 2m + 1, p(m),m + 1} always contains a multiple of 5.

(ii) Divisibility by 32: we observe that p(m) ≡ 2m + 2 (mod 3), hence both
sets {m, 2m + 1, p(m)} and {m,m − 1,m + 1} contain a multiple of 3.

(iii) Divisibility by 27: one has to consider classes modulo 16, in particular
p(m) ≡ 3m2 + 8m + 13 (mod 16). For m ≡ 1 (mod 8), we have two
multiples of 8 (m − 1 and p(m)). Similarly for m ≡ 7 (mod 8). In both
cases there is an additional even factor (m+1 resp. m−1). If now m ≡ 3
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(mod 8), then p(m) is a multiple of 16. Also m+1 is a multiple of 4 and
m − 1 is even. Similarly for m ≡ 5 (mod 8).
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Appendix A. Action of the Knot Operators on H(T2)

This appendix is devoted to the proof of formula (3.3) for the action of W(n,0)
λ

on |ρ〉. Though it can be deduced from generic considerations on Wilson loops,
we provide an alternative derivation starting from the action of torus knot
operators on H(T2).

Our considerations are based on the following remark: the basis elements
of H(T2) are anti-symmetrized sums over the Weyl group

|p〉 =
∑

w∈W
(−1)wfw(p), (A.1)

where fp is some complex function that admits a Fourier series expansion [15].
Hence we can work with the formal anti-symmetric elements

Ap =
∑

w∈W
(−1)wew(p)

in Z[ΛW ] and translate the results to H(T2).
We derive the required formula∑

μ∈Mλ

|ρ + nμ〉 =
∑

ν∈ΛW

cν
λ,n|ν〉 (A.2)

from simple properties of the Weyl group and of the weight lattice.

Lemma 1. The following equality holds in Z[ΛW ]:∑
μ∈Mλ

Aρ+nμ =
∑

ν∈ΛW

cν
λ,nAρ+ν ,

where cν
λ,n are the coefficients of the Adams operation (2.10).

Proof. Using the fact that the set of weights is just permuted by the Weyl
group, we immediately obtain∑

μ∈Mλ

Aρ+nμ =
∑

μ∈Mλ

∑
w∈W

(−1)wew(ρ+nμ) =
∑

μ∈Mλ

enμ
∑

w∈W
(−1)wew(ρ)

= (Ψn chλ)Aρ =
∑

ν∈ΛW

cν
λ,n chν Aρ

and the conclusion follows from Weyl character formula. �
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Some further properties of Wilson loops can be checked explicitly for
torus knot operators using similar arguments [31].

Appendix B. Computation of the Reformulated Invariants

In this appendix we give explicit formulae for the reformulated invariants
hλ(t, v) and gλ(t, v). Since we shall be dealing with finite collections of all differ-
ent partitions, it is convenient to introduce the set N[P] of finitely-supported
functions P −→ N. If we use elementary functions

eλ : P −→ N

μ �−→ δλμ
,

each Λ ∈ N[P] can be written as

Λ =
∑
λ∈P

nΛ(λ)eλ,

where nΛ = (nΛ(λ))λ∈Λ is a sequence with finite support. Let also |n| =∑
λ∈P nΛ(λ) and

‖Λ‖ =
∑
λ∈P

nΛ(λ)|λ|.

We introduce the following combinatoric object: Nη
Λ is defined as

∏
λ∈P

chnΛ(λ)
λ =

∑
η∈P

Nη
Λ chη .

Clearly, the above sum is finite and only runs on elements such that |η| = ‖Λ‖.
Because of composite representations, we also need two-variables poly-

nomials N[P,P]. Introducing the elementary functions

eλ,μ : P × P −→ N

(α, β) �−→ δλαδμβ
,

we can write Λ ∈ N[P,P] as

Λ =
∑

λ,μ∈P

nΛ(λ, μ)eλ,μ.

We define as before

‖Λ‖ =
∑

λ,μ∈P

(nΛ(λ, μ) + nΛ(μ, λ)) |λ|

and Nη
Λ by

∏
λ,μ∈P

(chλ chμ)nΛ(λ,μ) =
∑
η∈P

Nη
Λ chη .

We write d|λ if d divides |λ|, and we let μ(d) be the Möbius function.
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By expanding the logarithm in series, we obtained the following formulae:

hλ =
∑
d|λ

µ(d)

d

∑
η∈P|λ|/d

aλ
η,d

∑
κ1,κ2∈P

Nη
κ1κ2

∑
Λ∈N[P]

‖Λ‖=|κ1|

∑
Γ∈N[P,P]
‖Γ‖=|κ2|

2|nΛ| (−1)|nΛ|+|nΓ|+1

|nΛ| + |nΓ|

×
(

|nΛ| + |nΓ|
nΛ nΓ

)
Nκ1

Λ Nκ2
Γ

∏
α∈P

Hα(td, vd)nΛ(α)
∏

β,γ∈P

H[β,γ](t
d, vd)nΓ(β,γ)

and

gλ =
∑

odd d|λ

µ(d)

d

∑
η∈P|λ|/d

aλ
η,d

∑
‖Λ‖=|η|

(−1)|nΛ|−1

|nΛ|

(
|nΛ|
nΛ

)
Nη

Λ

∏
α∈P

Kα(td, vd)nΛ(α)

−
∑

odd d|λ

µ(d)

d

∑
η∈P|λ|/d

aλ
η,d

∑
κ1,κ2∈P

Nη
κ1κ2

∑
Λ∈N[P]

‖Λ‖=|κ1|

∑
Γ∈N[P,P]
‖Γ‖=|κ2|

(−1)|nΛ|+|nΓ|+1

|nΛ| + |nΓ|

×2|nΛ|−1

(
|nΛ| + |nΓ|
nΛ nΓ

)
Nκ1

Λ Nκ2
Γ

∏
α∈P

Hα(td, vd)nΛ(α)
∏

β,γ∈P

H[β,γ](t
d, vd)nΓ(β,γ)

Appendix C. Characters of SO(N)

The characters of SO(2r + 1) and SO(2r) can be represented by symmetric
polynomials in Z[x1, . . . , xr, x

−1
1 , . . . , x−1

r ], whose explicit expression are given
in [7]. They can be expressed as linear combination of Schur functions in 2r
variables. The relations are [23]

chso(2r+1)
λ =

∑
η∈P

∑
μ=μ

(−1)
|μ|−r(μ)

2 Nλ
μηsη

chso(2r)
λ =

∑
η∈P

∑
γ∈C

(−1)|γ|/2Nλ
γηsη

(C.1)

and the reciprocals

sλ =
∑
η∈P

∑
ξ∈P∪{∅}

(−1)|ξ|/2Nλ
ξη chso(2r+1)

η

sλ =
∑
η∈P

∑
δ∈D

Nλ
δη chso(2r)

η .
(C.2)

In these formulae, μ is the partition conjugate to μ, r(μ) is the rank of μ, C
is the set of partitions of the form (b1 + 1, b2 + 1, . . . |b1, b2, . . . ) in Frobénius
notation and D is the set of partitions into even parts only. Both sets include
the empty partition, and so does the sum over self-conjugate partitions.
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[21] Labastida, J.M.F., Ramallo, A.V.: Operator formalism for Chern-Simons theo-
ries. Phys. Lett. B 227, 92 (1989)

[22] Lin, X.-S., Zheng, H.: On the Hecke algebras and the colored HOMFLY polyno-
mial (2006). arXiv:math/0601267

[23] Littlewood, D.E.: The Theory of Group Characters. Oxford University Press
(1940)

[24] Liu, K., Peng, P.: Proof of the Labastida-Mariño-Ooguri-Vafa Conjecture (2007).
arXiv:0704.1526 [math.QA]

[25] Mariño, M.: String theory and the Kauffman polynomial (2009). arXiv:0904.1088
[hep-th]

[26] Morton, H.R., Manchón, P.M.G.: Geometrical relations and plethysms in
the Homfly skein of the annulus. J. Lond. Math. Soc. 78, 305–328 (2008).
arXiv:0707.2851 [math.GT]

[27] Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577,
419–438 (2000). arXiv:hep-th/9912123

[28] Paul, C., Borhade, P., Ramadevi, P.: Composite invariants and unoriented topo-
logical string amplitudes (2010). arXiv:1003.5282 [hep-th]

[29] Ramadevi, P., Govindarajan, T., Kaul, R.: Three dimensional Chern-Simons
theory as a theory of knots and links III: compact semi-simple group. Nucl.
Phys. B 402, 548–566 (1993). arXiv:hep-th/9212110

[30] Sinha, S., Vafa, C.: SO and Sp Chern-Simons at large N (2000). arXiv:hep-th/
0012136

[31] Stevan, S.: Knot operators in Chern-Simons gauge theory. Master’s thesis,
University of Geneva (2009)

[32] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math.
Phys. 121, 351–399 (1989). euclid.cmp/1104178138
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