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Key use cases for artificial intelligence to reduce the 
frequency of adverse drug events: a scoping review
Ania Syrowatka, Wenyu Song, Mary G Amato, Dinah Foer, Heba Edrees, Zoe Co, Masha Kuznetsova, Sevan Dulgarian, Diane L Seger, 
Aurélien Simona, Paul A Bain, Gretchen Purcell Jackson, Kyu Rhee, David W Bates

Adverse drug events (ADEs) represent one of the most prevalent types of health-care-related harm, and there is 
substantial room for improvement in the way that they are currently predicted and detected. We conducted a scoping 
review to identify key use cases in which artificial intelligence (AI) could be leveraged to reduce the frequency of 
ADEs. We focused on modern machine learning techniques and natural language processing. 78 articles were 
included in the scoping review. Studies were heterogeneous and applied various AI techniques covering a wide range 
of medications and ADEs. We identified several key use cases in which AI could contribute to reducing the frequency 
and consequences of ADEs, through prediction to prevent ADEs and early detection to mitigate the effects. Most 
studies (73 [94%] of 78) assessed technical algorithm performance, and few studies evaluated the use of AI in clinical 
settings. Most articles (58 [74%] of 78) were published within the past 5 years, highlighting an emerging area of study. 
Availability of new types of data, such as genetic information, and access to unstructured clinical notes might further 
advance the field.

Introduction 
The US National Academy of Medicine has defined an 
adverse drug event (ADE) as “an injury resulting from 
medical intervention related to a drug”.1 These events 
include non-preventable ADEs (also called adverse drug 
reactions), and adverse events resulting from medication 
errors. ADEs represent one of the most important types 
of health-care-related harm, both inside and outside the 
hospital, and there is substantial room for improvement 
in how we predict and detect these events.

The true incidence of ADEs is unknown; these events 
are often not identified and they are systematically 
under-reported.2 An analysis of 28 US state inpatient 
databases showed that ADEs occurred during 2·1% of 
all inpatient stays and were present on admission in 
5·1% of stays, and management of these ADEs has 
been estimated to cost US$28 billion annually.3 
However, this analysis was based on documented 
diagnostic codes, and undoubtedly underestimated true 
rates. A systematic review of potentially preventable 
ADEs showed that rates varied widely across inpatient 
populations, ranging from less than 0·1% to 13·3%, 
and depended on the approach for event detection, with 
more cases identified using prospective reporting 
methods than retrospective or voluntary reporting 
methods.4 The occurrence of ADEs in primary care is 
estimated to be higher than in inpatients. A scoping 
review showed that rates of ADEs in primary care varied 
widely according to the study population, setting, 
medications, and ADEs under study; estimates ranged 
from 6% in community-dwelling patients prescribed 
medications for dementia to 81% in patients treated for 
drug-resistant tuberculosis.5 

These events are costly and morbid; patients with 
ADEs have longer hospital stays with greater associated 
costs and a higher likelihood of mortality than those who 
do not.6 About one in three ADEs are considered 
preventable.7

Algorithms and tools based on artificial intelligence 
(AI)—ie, computer applications that can perform tasks 
that normally require human intelligence8—have the 
potential to inform clinical decision making in real time 
to reduce the frequency, duration, and severity of ADEs. 
Advances in computing power, availability of large-scale 
patient databases, and machine learning algorithms—ie, 
algorithms and models that machines can use to learn 
without explicit instructions8—provide the capacity and 
capability to integrate various data sources and analyse 
complex inter-relationships between risk factors and 
outcomes at the point of care. For example, AI could 
provide timely and accurate predictions of which patients 
are likely to have ADEs before medications are prescribed. 
Identification of patients at risk could allow intervention 
to prevent ADEs; AI could also expand knowledge about 
which ADEs are preventable and identify new types of 
ADEs.

The objective of this scoping review was to identify the 
most promising areas (or key use cases) in which AI 
could be used to reduce the frequency of harm by 
providing patient-specific (ie, personalised) predictions 
to help prevent ADEs or by leading to early detection, 
mitigating the effects of ADEs. This scoping review is 
reported in accordance with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
extension for Scoping Reviews (PRISMA-ScR).9 

Methods 
Search strategy and selection criteria
Two databases (PubMed [National Center for 
Biotechnology Information] and Embase [Elsevier]) were 
searched to identify relevant literature published between 
Jan 1, 1998, and Sept 9, 2020, to correspond with the 
release of the draft National Academy of Medicine report 
To Err is Human: Building a Safer Health System.1 The 
main concepts of AI, prediction, early detection, and 
ADEs were mapped to the most relevant controlled 
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vocabulary using Medical Subject Headings (MeSH) and 
free-text terms. An ADE was defined as “an injury 
resulting from medical intervention related to a drug”1 
and included adverse drug reactions and adverse events 
related to medication errors. Although the search strategy 
identified published literature on all ADEs, additional 
MeSH terms and keywords were added to capture 
important ADEs: medication errors, allergic reactions, 
and adverse effects on the blood (eg, thrombo cytopenia), 
as well as drug-induced cardio toxicity, neurotoxicity, 
hepatotoxicity, and nephrotoxicity. 

The scoping review focused on modern AI techniques, 
such as neural networks, tree-based algorithms, support 
vector machines, and natural language processing. The 
full list of AI models is provided in the appendix (p 1). 
The review did not include traditional AI approaches, 
such as logistic or linear regression, due to the vast 
amount of literature and shift towards using more 
complex modelling approaches that can integrate large 
amounts of data from disparate sources to provide more 
accurate estimations or predictions. Full search strategies 
are provided in the appendix (pp 2–4).

The scoping review included studies that leveraged AI 
techniques to develop, validate, or evaluate prediction 
models to help prevent or manage ADEs, or early 
detection models to help identify existing ADEs and 
mitigate the effects, such as severity and duration. The 
figure depicts the timeline and delineates the difference 
between prediction and early detection models. Baseline 
patient characteristics can be integrated into both 
prediction and early detection models. Use cases for AI to 
reduce the frequency of ADEs are related to both patient 
and provider variables and span the full timeline. At the 
time of treatment decision making, clinical decision 
support can be provided to clinicians, such as predicting 
whether the patient is likely to have an ADE and whether 
there is a preferred treatment given the patient’s risk 

profile. This type of information can help prevent ADEs. 
Detection begins once the medication is prescribed, when 
medication errors can be identified even before 
medications are taken by the patient. The figure then 
shows the window of therapeutic response, which also 
corresponds with the window for occurrence of ADEs. 
These events can happen immediately, or patients can 
have delayed reactions. Early detection can help to reduce 
the severity or duration of ADEs. Both prevention and 
early detection of ADEs are expected to improve patient 
outcomes.

Articles were excluded if they were not published in the 
English language or did not report on original research or 
a structured review of the literature reported in accordance 
with PRISMA guidelines.9,10 Original research was 
excluded if the sample size was less than 200 patients, or 
if the article did not report standard model performance 
metrics (eg, accuracy or area under the receiver operating 
curve [AUC-ROC]) or comparisons with a control group 
for at least one AI model. Studies focused on ADE 
monitoring or post-marketing surveillance, child or youth 
populations (ie, aged <18 years), vaccines, dietary 
supplements, experimental medications not yet approved 
for use, or recreational use of medications were also 
excluded. Recreational use was defined as the use of 
medications that require a prescription but were not 
prescribed for the individual. Detailed inclusion and 
exclusion criteria are provided in the appendix (p 1).

Screening and data abstraction 
Screening was completed in two stages using the 
Covidence systematic review management program. 
Articles were screened for relevance on the basis of 
information provided in the title and abstract and then 
evaluated for inclusion on the basis of the full text. Two 
of five reviewers (ASy, HE, ZC, MK, SD) independently 
screened articles at each stage. Disagreements were 

Figure: Timeline for prediction and early detection of ADEs 
The green boxes represent patient-centred variables, the blue boxes represent provider-centred variables, and the black–grey boxes represent the threshold for ADEs. 
Asterisks indicate a disontinuity in time. ADE=adverse drug event. 
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resolved by discussion and consensus between at least 
two reviewers or by a third independent reviewer. 

The following information was abstracted for studies 
included in the review: citation information; use case 
domain (ie, prediction, early detection); population under 
study (ie, region, population description); sample size; AI 
models and number of variables; medication class; model 
outcome; type of ADE; performance metrics for the best 
performing AI model; model validation approach (eg, 
sample splitting, cross-validation); quality rating; clinical 
research phase equivalency; and data sources. Data were 
abstracted by one reviewer and then validated by a second 
reviewer (ASy, WS, MGA, DF, HE, ZC, MK, SD, DLS, ASi); 
sections were assigned on the basis of areas of expertise.

The accuracy or AUC-ROC was abstracted for the best 
performing AI model, since these metrics are most often 
reported in the medical literature. When this information 
was not available, other performance metrics were 
abstracted including sensitivity, specificity, mean error, 
and area under the precision-recall curve. If modern AI 
techniques were outperformed by traditional approaches, 
such as logistic regression, the information was also 
abstracted for comparison. 

The quality of the studies was evaluated on the basis of 
the study design using a simplified version of the Oxford 
Centre for Evidence-Based Medicine levels of evidence.11 
The clinical research phase equivalency for each study 
was assessed using Park and colleagues’ 2020 framework 
to describe the relatively early stages of this type of work, 
ranging from phase 0 (discovery and invention) to phase 5 
(safety and effectiveness).12 Common data sources were 

Studies (n=78) 

Domain

Prediction 67 (86%)

Early detection 11 (14%)

Publication year

1998–2005 3 (4%)

2006–10 7 (9%)

2011–15 10 (13%)

2016–20 58 (74%)

Regions and countries

North America 33 (42%)

USA 33 (42%)

Europe 16 (21%)

France 3 (4%)

Italy 3 (4%)

Netherlands 2 (3%)

Other 8 (10%)

Asia 21 (27%)

Taiwan 10 (13%)

Japan 4 (5%)

China 3 (4%)

South Korea 2 (3%)

Other 2 (3%)

Middle East 2 (3%)

Israel 1 (1%)

Turkey 1 (1%)

Oceania 1 (1%)

Australia 1 (1%)

Africa 1 (1%)

Nigeria 1 (1%)

Multiple countries 4 (5%)

Sample size

200–500 22 (28%)

501–1000 13 (17%)

1001–10 000 19 (24%)

10 001–100 000 14 (18%)

100 001–1 000 000 7 (9%)

>1 000 000* 3 (4%)

(Table 1 continues in next column)

Studies (n=78) 

(Continued from previous column)

Outcome†

Adverse drug event 45 (58%)

Cardiovascular 7 (9%)

Renal 7 (9%)

Opioid overdose or opioid use disorder 6 (8%)

Metabolic or endocrine 3 (4%)

Abnormal blood count 3 (4%)

Allergic reaction 2 (3%)

Weight gain 2 (3%)

Nervous system 1 (1%)

Fall with injury 1 (1%)

Genitourinary 1 (1%)

Haemorrhage 1 (1%)

Multiple adverse drug events 3 (4%)

Not specified 8 (10%)

Treatment response 18 (23%)

Optimal dose 14 (18%)

Most appropriate treatment 3 (4%)

AI model†

Neural network 36 (46%)

Random forest 31 (40%)

Support vector machine 24 (31%)

Decision tree 19 (24%)

Bayesian 19 (24%)

K-nearest neighbours 12 (15%)

Gradient boosting machine 11 (14%)

Other‡ 19 (24%)

Medication classification†

Analgesics 13 (17%)

Narcotic 9 (12%)

Non-narcotic 4 (5%)

Antineoplastics 12 (15%)

Antibiotics 9 (12%)

(Table 1 continues in next column)
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identified and abstracted: health record data, genetic 
information, administrative health data, publicly available 
data, and secondary use of research data. 

Data synthesis 
Characteristics of the included studies were summarised. 
Key use cases for AI to reduce the frequency of ADEs 
were narratively synthesised. Use cases were identified 
according to the purpose of the model, either prediction 
or early detection, and the outcome being modelled. 
Commonly used AI techniques, main insights including 

best performing models, and future directions were 
summarised.

Results 
Study characteristics 
From 7218 unique records, 78 articles met the target 
criteria and were included in the scoping review. A 
PRISMA flow diagram is presented in the appendix (p 5), 
and data abstracted from the articles are also provided in 
the appendix (pp 6–20). The scoping review did not 
identify any structured reviews focused on the use of AI to 
reduce the frequency of ADEs. A list of studies excluded at 
full-text screening is provided in the appendix (pp 21–34). 

Characteristics of included studies are summarised in 
tables 1 and 2. Most studies were published within the 
past 5 years of our search (2016–20) and were conducted 
using patient data from North America, Asia, and Europe 
(table 1).

Studies developed and evaluated a wide range of AI 
algorithms. Half the studies focused on four medication 
classes: analgesics, antineoplastics, antibiotics, and 
anticoagulants. Table 3 shows the breakdown of medi-
cation and ADE classes by study sample size. 

Most studies (73 [94%] of 78) reported on the 
development and validation of AI algorithms (equivalent 
to phases 0 or 1 of clinical trials), and five studies assessed 
the efficacy and unintended effects of AI solutions 
(equivalent to phase 2 of clinical trials).12 68 (87%) of 
these studies used case-control or retrospective cohort 
study designs corresponding with level 3 quality of 
evidence (table 1).

Prediction use cases 
Most studies (67 [86%] of 78) developed, validated, or 
tested AI-based prediction models to help reduce the 
frequency of ADEs,13–79 and mapped onto four inter-
related use cases (table 4).

The first use case was prediction of which patients 
were likely to have a future ADE, which should help to 
prevent or effectively manage ADEs.13–46 Most focused on 
prediction of specific types of ADEs associated with a 
class of medications; the most common types of ADEs 
studied were renal (seven [21%] of 34 studies) or 
cardiovascular (seven [21%]) adverse events, and opioid 
overdose or opioid use disorder (six [18%]). Notably, only 
two articles addressed prediction of allergic reactions and 
focused on prediction of β-lactam hypersensitivity.14,15

15 (44%) of 34 studies assessed the performance of a 
single AI model.13,14,16,17,20,26,30–32,34,36,37,41,42,44 The other studies 
compared the performance of multiple models with 
neural networks and tree-based algorithms demon-
strating the best performance based on accuracy and 
AUC-ROC, or other metrics reported in the studies. One 
study showed similar performance between federated 
learning (ie, training algorithms using multiple 
decentralised databases) and centralised approaches for 
development of AI-based ADE prediction models.27 

Studies (n=78) 

(Continued from previous column)

Anticoagulants 7 (9%)

Antivirals 6 (8%)

Cardiovascular 4 (5%)

Antipsychotics 4 (5%)

Anaesthetics 4 (5%)

Glucocorticoids 3 (4%)

Immunomodulators 3 (4%)

Anticonvulsants 2 (3%)

Immunosuppressants 2 (3%)

Antihyperglycaemics 2 (3%)

Multiple medication classes  6 (8%)

Not specified 5 (6%)

Other§ 4 (5%)

Data source†

Health records 46 (59%)

Electronic 23 (29%)

Unclear whether electronic 23 (29%)

Secondary use of research data 17 (22%)

Genetic data 13 (17%)

Publicly available dataset 12 (15%)

Administrative health data 10 (13%)

Biosensor data 1 (1%)

Quality assessment (scale: levels 1 to 5)11

Level 2: well designed controlled trial without 
randomisation or prospective comparative cohort trial

9 (12%)

Level 3: case-control study or retrospective cohort study 68 (87%)

Level 4: case series or cross-sectional study 1 (1%)

Equivalent clinical study phase (scale: phases 1 to 5)12

Phase 0: discovery and invention 40 (51%)

Phase 1: technical performance and safety 33 (42%)

Phase 2: efficacy and side-effects 5 (6%)

Data are n (%), with all 78 studies included in the denominator in every case. 
AI=artificial intelligence. *Includes sample sizes of 1 247 722, 1 540 732, and 
1 807 159 patients. †Percentages add to more than 100; some studies cover 
multiple categories. ‡Includes principal component analysis (n=3), k-means 
clustering (n=3), adaptive boosting (n=3), ensemble techniques (n=2), natural 
language processing (n=2), reinforcement learning (n=2), extremely randomised 
trees (n=1), simulated treatment learning (n=1), kernel machine learning (n=1), 
and bagging (n=1). §Includes urinary antispasmodic smooth muscle relaxants 
(n=1), contrast agents (n=1), thyroid hormones (n=1), and colony stimulating 
factors (n=1). 

Table 1: Characteristics of studies included in the scoping review
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The second use case was prediction of therapeutic 
response to medications. The scoping review identified 
many studies that developed or validated models to 
predict therapeutic response for which prevention of 
ADEs in patients not expected to benefit from treatment 
was stated as a motivation for model development. 
18 (27%) of 67 studies addressed this use case45–62 and 
focused on antineoplastics to treat patients with cancer 
(four [22%] of 18 studies), or antivirals with or without 
immuno modulators to treat patients with HIV or 
hepatitis C (five [28%]). Eight (44%) of 18 studies 

evaluated a single AI model.47,49,51,56–58,60,61 The remaining 
studies compared multiple models; use of support vector 
machines or tree-based algorithms generally resulted in 
the most favourable performance.

The third use case was prediction of optimal medication 
dosing to balance therapeutic benefit with ADE risk 
related to a specific medication. Several studies (14 [21%] 
of 67) covered this use case63–76 with a focus on anti-
coagulants (five [36%] of 14 studies), cardiovascular 
medications (two [14%]), and antineoplastics (two [14%]). 
Eight studies assessed the performance of a single AI 

Medication class (name)* Studies (n=45)

Cardiovascular

Venous thromboembolism Antineoplastics (platinum compounds, fluoropyrimidines, anthracyclines, taxanes, paclitaxel, bevacizumab, 
gemcitabine, irinotecan, pemetrexed, herceptin, anti-tyrosine kinase, aromatase inhibitors) 

2 (4%)

Hypotension Anaesthetics and analgesics (sevoflurane, propofol, fentanyl, remifentanil, midazolam, etomidate, bupivacaine) 3 (7%)

Cardiovascular diseases Analgesics: non-narcotic (osteoarthritis medications including NSAIDs) 1 (2%)

Arrythmia or dysrhythmia, heart failure Antineoplastics (methotrexate, cyclophosphamide, carboplatin, others not specified) 1 (2%)

Renal

Acute kidney injury Antibiotics (vancomycin; n=4), antineoplastics (cisplatin; n=1), and multiple classes or not specified (n=1) 6 (13%)

Acute tubular necrosis Contrast agents (medications not specified) 1 (2%)

Metabolic or endocrine  

Hepatotoxicity (jaundice, elevated liver function test) Analgesics: non-narcotic (acetaminophen [paracetamol]) 1 (2%)

Hypoglycaemia Antihyperglycaemics (acarbose, acetohexamide, alogliptin, canagliflozin, chlorpropamide, colesevelam, 
dapagliflozin, glibenclamide, glimepiride, glipizide, linagliptin, miglitol, metformin, nateglinide, pioglitazone, 
repaglinide, rosiglitazone, saxagliptin, sitagliptin, tolazamide, voglibose) 

1 (2%)

Metabolic syndrome Antipsychotics (risperidone, olanzapine, clozapine) 1 (2%)

Opioid overdose or opioid use disorder

Opioid abuse, overdose, poisoning, or dependence Analgesics: narcotic (opioids) 6 (13%)

Abnormal blood count

Low white blood count, neutropenia Antineoplastics (platinum + taxanes, platinum + irinotecan; n=1) and antivirals (ganciclovir; n=1) 2 (4%)

Low platelets, heparin-induced thrombocytopenia Anticoagulants (heparin) 1 (2%)

Allergic reaction

Angioedema or anaphylaxis, urticaria, syncope, 
exanthema, unspecified

Antibiotics: penicillins, cephalosporins, other unspecified β-lactams (n=1), and benzylpenicillin, aminopenicillins, 
cephalosporins, other unspecified β-lactams (n=1)

2 (4%)

Nervous system

Myopathy Multiple classes or not specified 1 (2%)

Weight gain Antipsychotics (amisulpride, aripiprazole, clozapine, medroxyprogesterone, flupentixol, fluphenazine decanoate, 
haloperidol, olanzapine, paliperidone, prochlorperazine, promazine, quetiapine, risperidone, trifluoperazine, 
sulpiride, zuclopenthixol; n=1) and medications not specified (n=1)

2 (4%)

Fall with injury

Bone fracture Glucocorticoids (inhaled corticosteroids) 1 (2%)

Genitourinary

Post-operative urinary retention Anaesthesia 1 (2%)

Haemorrhage

Gastrointestinal haemorrhage Anticoagulants and antiplatelets (warfarin, dabigatran, apixaban, rivaroxaban, clopidogrel, ticlopidine, aspirin, 
dipyridamole, cilostazol, ticagrelor)

1 (2%)

Multiple adverse drug events

Adrenocortical insufficiency, aplastic anaemia, 
polyneuropathy, hypotension, generalised or localised 
skin eruption, osteoporosis, fetal damage, anaphylactic 
shock, allergy, vascular complications, infusion 
complications, cardiovascular related, other

Not specified (n=1), antineoplastics (platinum + gemcitabine, pemetrexed, paclitaxel, vinorelbine, or etoposide; 
n=1), and cardiovascular (benazepril, captopril, enalapril, lisinopril, labetalol, doxazosin, atenolol, metoprolol, 
pindolol, propranolol, clonidine, methyldopa, minoxidil, bumetanide, furosemide, reserpine, spironolactone, 
triamterene, hydrochlorothiazide, metolazone; n=1)

3 (7%)

Not specified Multiple classes or not specified 8 (18%)

NSAID=non-steroidal anti-inflammatory drug. *The number of studies is presented in parentheses following the medication class, unless the medication class applies to all studies in that row. 

Table 2: Information about studies that focused on prediction or early detection of adverse drug events
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model, with six of these studies using Bayesian 
estimation.63,66,67,71,73,75 Six studies tested multiple AI-based 
models, with random forests and ensemble models 
demonstrating the best performance.

The fourth prediction use case was prediction of the 
most appropriate treatment option to help guide selection 
of safe and effective pharmacological therapies. Only a 
small number of studies reported on this use case77–79 

(three [4%] of 67 studies).
Overall, about a quarter of the prediction studies 

(16 [24%] of 67) developed algorithms using routinely 
collected, structured electronic health record (EHR) data 
including laboratory results, and an additional 21 studies 
(31%) developed algorithms using medical records, 
although it was not clear if the data were electronic. 
Eight studies (12%) used administrative health data and 
17 studies (25%) relied on secondary use of research 
data; only one study integrated information from 
biosensors.18

Genetic information emerged as a potentially valuable 
data source. 13 (19%) of 67 studies included genetic 
variables to develop prediction models.41–45,47–50,74–77 Most 
studies including genetic information (nine [69%] of 13) 
were conducted using secondary research data and 
compared the performance of multiple AI algorithms. 
Genetic information was extracted from genetic variant 
genotyping data and expression profiles. 

Integration of genetic and clinical data was one of the 
most important topics, in which one or several machine 
learning algorithms were applied to combine clinical 
and genetic risk factors to improve the performance of 
ADE prediction models.41,76 In eight studies, both 
genetic and clinical factors were combined as model 
input variables.42–45,47,74–76 In most cases, genetic factors 
were found to be associated with outcomes and 

contributed to the model performance. In two studies, 
the value of adding genetic variables was evaluated.42,43 
In a study predicting nephrotoxicity, adding genetic 
variables increased the AUC-ROC from 0·64 to 0·73.42 
Although genetic features often improved model 
performance, non-significant results were also 
reported.43 

Multiple studies used machine learning methods to 
identify genetic factors associated with ADEs, including 
single nucleotide polymorphisms (SNPs) and related 
genes.41,47,50 Among them, a 12-gene signature was 
developed using mRNA expression data and a hybrid 
model to predict tumour recurrence in patients with 
lung adenocarcinoma.49 In another lung cancer study, the 
association between both SNPs and genes with drug 
response and toxicity was estimated by logistic regression 
and neural network models.45 

One study developed a cancer (multiple myeloma) 
treatment learning system to predict patients’ response 
to treatment using genetic similarities.48 Better outcomes 
(ie, progression-free survival) for bortezomib and 
lenalidomide were shown, based on patients’ gene 
expression signatures.

Early detection use cases 
11 (14%) of 78 studies used AI-based models to identify 
ADEs (ten [91%] of 11)80–89 or medication errors (four 
[36%] of 11);87–90 three studies detected both. Data were 
obtained from health records for nine studies (noted as 
EHR data in seven studies) and pharmacy dispensing 
data for two studies.85,90 Two studies tested models in 
patient care settings and measured prescriber response 
after receiving clinical decision support alerts identifying 
potential ADEs.81,88 Most studies evaluated models that 
were designed to identify ADEs or errors in general, with 

Medication classes (78 studies) ADE classes (45 studies)

200–500 participants Analgesics (n=1); anaesthetics and analgesics (n=1); antibiotics (n=3); 
anticoagulants (n=2); antineoplastics (n=6); antipsychotics (n=3); antivirals (n=1); 
cardiovascular (n=2); immunomodulators and antivirals (n=1); thyroid hormones 
(n=1); multiple classes or not specified (n=1)

Abnormal blood count (n=2); cardiovascular (n=1); metabolic or 
endocrine (n=1); renal (n=3); weight gain (n=2); not specified (n=1)

501–1000 participants Analgesics (n=1); antibiotics (n=2); anticoagulants (n=1); antineoplastics (n=3); 
antivirals (n=1); glucocorticoids (n=1); immunomodulators and antivirals (n=2); 
immunosuppressants (n=1); urinary antispasmodic smooth muscle relaxants (n=1)

Cardiovascular (n=1); renal (n=1); multiple ADEs (n=1)

1001–10 000 participants Analgesics (n=2); anaesthetics (n=1); antibiotics (n=4); anticoagulants (n=3); 
anticonvulsants (n=2); antineoplastics (n=2); antivirals (n=1); cardiovascular (n=1); 
colony stimulating factors (n=1); contrast agents (n=1); multiple classes or not 
specified (n=1)

Abnormal blood count (n=1); allergic reaction (n=2); cardiovascular 
(n=3); metabolic or endocrine (n=1); renal (n=2); multiple ADEs (n=1); 
not specified (n=1)

10 001–100 000 participants Analgesics (n=2); anaesthetics and analgesics (n=2); anticoagulants (n=1); 
antihyperglycaemics (n=2); antineoplastics (n=1); cardiovascular (n=1); 
glucocorticoids (n=1); glucocorticoids and immunosuppressants (n=1); multiple 
classes or not specified (n=3)

Cardiovascular (n=2); fall with injury (n=1); genitourinary (n=1); 
haemorrhage (n=1); metabolic or endocrine (n=1); opioid overdose or 
opioid use disorder (n=2); renal (n=1); multiple ADEs (n=1); not specified 
(n=1)

100 001–1 000 000 participants Analgesics (n=3); multiple classes or not specified (n=4) Opioid overdose or opioid use disorder (n=3); not specified (n=4)

>1 000 000 participants Analgesics and antipsychotics (n=1); multiple classes or not specified (n=2) Nervous system (n=1); opioid overdose or opioid use disorder (n=1); not 
specified (n=1)

ADE=adverse drug event.

Table 3: Medication and ADE classes by study sample size
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only three studies focused on identifying ADEs for 
specific medications.81–83 Most studies tested a single AI 
model, with only four studies evaluating multiple 
models.80,84,85,90 

Three studies used a software system (MedAware) that 
identified potential medication errors or ADEs in EHRs 
using several machine learning methods including 
neural networks.87–89 This software was designed to alert 
prescribers about clinical or medication dosage outliers, 
time-dependent irregularities occurring between medi-
cation use and patients’ data, and potential drug 
duplication. It was found to more accurately identify 
potential ADEs (85% of alerts were considered clinically 
relevant vs 16% with a rule-based legacy system) and 
reduce alert burden (alerted on 0·4% vs 37·1% of 
orders).88 Another study used natural language 
processing to analyse admission history and physical 
notes, along with medication lists and laboratory results, 
to alert providers about potential ADEs.81 Use of the 
algorithm also resulted in ordering of fewer potential 
adverse drug reaction-causing medications at any time 
during the hospital admission compared with a control 
group (47% vs 58%, p<0·001). Fewer adverse drug 
reaction-causing medications were also ordered within 
the first 24 h after admission in the intervention group 
(28% vs 39%, p<0·001). Other studies also reported 
successful detection of ADEs with the various models 
tested, but variability in study populations and perfor-
mance of models between studies limited the ability to 
determine which type of AI model performed best for 
detecting ADEs.

Discussion 
We performed this scoping review to summarise the 
published literature on the development, validation, and 
testing of AI-based algorithms and tools that provide 
patient-specific predictions to prevent ADEs and early 
detection to mitigate the harmful effects. The included 
studies were heterogeneous with regard to the types of 

AI models used and medications and ADEs studied. 
Most articles only evaluated the technical performance of 
AI-based algorithms; there were only a few examples of 
studies describing the clinical evaluation of algorithms 
or tools. We identified key use cases to guide work in two 
areas: prediction and early detection.

Prediction use cases 
The prediction literature identified various mechanisms 
to reduce the frequency of harm beyond simply 
predicting which patients are likely to have an ADE; there 
were four inter-related use cases (table 4). AI-based 
predictions could play an important role in reducing the 
overall frequency of ADEs. Identifying patients at higher 
risk of ADEs could inform dosing adjustments or 
additional interventions necessary to manage ADEs.91

Tree-based methods were widely used and performed 
well across the prediction use cases. These approaches 
are particularly well suited for clinical settings, given the 
relative interpretability compared with deep learning 
algorithms (a subset of machine learning that generally 
uses neural networks8).92 Most studies developed 
predictive models based on structured data routinely 
documented in health records or administrative health 
databases. Therefore, most of the necessary information, 
if not all, would be accessible through EHRs if these 
algorithms were implemented at the point of care. 
However, these findings also suggest that important 
information captured in clinical notes would be missed.

Natural language processing and newer deep learning 
approaches including transformer neural networks could 
be leveraged to access data contained in unstructured 
fields to improve the performance of predictive models.93 
Although considerably more complex than current 
methods, these types of extraction technologies are being 
developed by industry and academia, and these solutions 
are likely to become available to advance research and 
development of clinical decision support over the next 
few years. In addition, integration of additional 

Description Studies, n Common AI approaches* 

Prediction 67†

Predict which patients are likely to have an 
ADE

To prevent or manage ADEs 34 Neural network (n=17), random forest (n=17), decision tree (n=11), support 
vector machine (n=11), gradient boosting machine (n=7), k-nearest 
neighbours (n=6), Bayesian (n=5)

Predict therapeutic response (or non-
response) to medications

To limit ADEs caused by medications that will not 
provide therapeutic benefit to the patient

18 Neural network (n=10), random forest (n=9), support vector machine (n=9), 
Bayesian (n=5)

Predict optimal medication dose or adaptive 
dosing

To balance therapeutic benefit with ADE risk 14 Bayesian (n=6), decision tree (n=5), k-nearest neighbours (n=5), neural 
network (n=5), random forest (n=4), support vector machine (n=4)

Predict most appropriate treatment options To guide selection of safe and effective 
pharmacological therapies

3 No common models

Early detection 11†

Detect ADEs To reduce the duration or severity of harm 10 Neural network (n=6), random forest (n=3)

Detect medication prescribing errors To prevent ADEs 4 Neural network (n=3)

ADE=adverse drug event. AI=artificial intelligence. *Applied in three or more studies. †Some studies addressed multiple use cases.

Table 4: Summary of prediction and early detection use cases with commonly used AI approaches

For more on MedAware see 
https://www.medaware.com/

https://www.medaware.com/
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information (eg, clinical guidelines and comprehensive 
drug knowledge bases) as inputs into AI algorithms to 
complement data captured within the EHR could further 
serve to provide more appropriate recommendations at 
the point of care.

Genetics can play a pivotal role in patients’ adverse and 
therapeutic responses to medications.94 Many genome-
wide association studies have been conducted to identify 
loci and genes associated with ADEs. For example, the 
P450 genes, a gene family with important implications 
for drug metabolism, have been assessed in multiple 
ADE studies.95,96 

In our scoping review, multiple studies showed the 
value of genetic data for ADE prediction. When machine 
learning-based algorithms were used, they were able to 
incorporate high-dimensional features to reflect complex 
patterns in large-scale datasets. Despite the promising 
potential of integrating genetic information with clinical 
information, substantial limitations were also noted. 
Few studies were purely based on genetic variables, 
suggesting a relatively small degree of variation 
explained by genetic factors compared with clinical 
factors.43 Also, due to the shortage of patient-level 
genotyping data sources, only a small percentage of ADE 
studies included genetics.

Literature in the allergy domain was remarkably scarce 
and is an attractive target for future work. Our scoping 
review identified just two allergy studies,14,15  and both 
were published in the past 3 years, indicating that the 
allergy domain might be a developing area of focus for 
AI application. Antibiotics are the most common 
allergen in drug hypersensitivity, including in fatal 
anaphylaxis,97 and the focus on β-lactam allergy aligns 
with a high volume of publications in the allergy 
literature focused on risk stratification of β-lactam 
allergy.98 Machine learning applications in allergy remain 
an unmet need with the potential for substantial impact 
on patient outcomes. Drug allergy is an area with high 
patient morbidity motivating further work; it can be 
conceptualised as the severity of the drug allergy reaction 
itself—eg, death, anaphylaxis, or severe cutaneous 
ADEs. Alternatively, it could be viewed through the lens 
of far more common mild allergic reactions (eg, rashes, 
hives) for which avoidance of the associated medication 
(or drug class) can lead to selection of suboptimal or 
second-line drug choices, resulting in a high risk of 
morbidity—eg, the increased incidence of Clostridium 
difficile colitis with use of overly broad antibiotics when 
avoiding β-lactams.

Early detection use cases
Several types of AI models have been successful in 
detecting ADEs when tested using data from health 
records or pharmacy dispensing data. However, only a 
few of these systems have been tested in patient care 
settings. The models show promise in identifying ADEs 
that providers might otherwise miss and in reducing 

alert burden seen with rule-based clinical decision 
support systems that provide alerts for all patients fitting 
a rule, but that might not be clinically useful in all 
patients (eg, a drug–drug interaction alert in all patients 
taking a combination of two medications, even for those 
that are often recommended to be used together, are 
being tolerated well by the patient, or are being monitored 
appropriately). Further testing of these models should be 
conducted to determine their performance in affecting 
providers’ decision making when caring for patients. 

There is a shortage of studies focused on identifying 
the best patient contact method, time and frequency, 
treatment setting, or patient population to screen for 
potential ADEs. It would be important to know, for 
example, whether using AI to identify patients to contact 
via patient portal, telephone call, or text when they are at 
home identifies ADEs sooner than limiting screening to 
visits or admissions in health-care settings. AI could also 
be used to identify the best time intervals to screen for 
ADEs after starting new medications or when continuing 
medications, or whether screening at some patient care 
locations (eg, inpatient, outpatient, or long-term care) is 
more successful for identification of ADEs than at other 
locations. More studies are needed to evaluate the added 
value of using natural language processing to access and 
integrate data from unstructured clinical notes.

Challenges of using AI to reduce the frequency of ADEs
Leveraging AI to reduce the frequency of ADEs is an 
emerging area of study, and further work is required to 
ensure that accurate, equitable, and meaningful tools are 
available at the point of care to inform clinical decision 
making. Most challenges relating to the implementation 
of AI solutions in health care apply here as well. High-
performing models developed and validated at one or a 
small number of health-care sites might not translate 
well to different contexts and will require re-calibration 
to ensure efficacy and safety. Similarly, models need to be 
tested and calibrated for population subgroups to ensure 
that models perform well across all patient groups. To 
develop these equitable models, developers need access 
to data with high coverage of the underlying patient 
population. Prediction and detection of rare ADEs (eg, 
aplastic anaemia) poses additional challenges requiring 
careful consideration around the metrics used to evaluate 
model performance, applying sampling strategies to 
balance the data, and generating sufficiently large 
datasets to ensure enough cases for model development.

Overarching themes and recommendations 
We present main insights and future directions for each 
domain (panel) and have identified several overarching 
themes. First, the application of AI to reduce the 
frequency of ADEs is an emerging area of study with 
most of the literature published within the past 5 years. 
Second, despite many AI-based algorithms showing 
promising performance, most studies were in early 
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phases of development with few evaluations beyond 
technical performance. As most AI algorithms that 
support or advise clinicians are not regulated, evaluations 
are often rudimentary, which is an ongoing limitation in 
other areas of health care.99 It is crucial for high-
performing algorithms to be systematically and compre-
hensively evaluated in prospective trials in clinical 
settings to show real-world impact and generate the 
evidence necessary for transparent, safe, and effective 
implementation. This research requires close collab-
oration between clinicians and informaticians to make 
the evaluation process efficient and successful. Third, 
genetic information was identified as a key data source 
that has the potential to substantially improve the 
performance of AI algorithms. With genotyping 
becoming more commonplace, this type of data should 
become more accessible over time for both model 
development and use at the point of care.

Limitations
This study had limitations. The search focused on the 
concepts of AI, prediction, early detection, and ADEs to 
identify key use cases for AI to reduce the frequency of 
ADEs. As such, the review summarised the literature in 
which ADEs were the focus of the study or in which 
reduction of ADEs was identified as a key motivation for 
model development. Related literature not included in 
this review might be available for some of the use cases.

Due to the large heterogeneity between studies with 
regard to the types of AI models used as well as the 
medications and ADEs studied, we were not able to do a 
formal assessment of the predictive validity of the 
different AI models. However, our work could inform 
systematic reviews aimed to answer more focused 
research questions about the use of AI for specific 
medications or ADEs and further delineate which AI 
techniques are most appropriate given different contexts 
and care settings.

In our study, AI model performance was generally 
evaluated using accuracy or AUC-ROC, which are most 
often reported in the medical literature. These metrics 
might not be the most informative, as they can overestimate 
performance of algorithms predicting rare ADEs and 
could account for the similar performances of AI models 
in studies that evaluated multiple techniques. Other 
metrics from the computer science literature are better 
able to account for unbalanced datasets than are accuracy 
or AUC-ROC, such as the area under the precision-recall 
curve (reported in a few studies included in this scoping 
review), and we expect that these metrics will become 
more widely reported in the medical literature over time.

Conclusion
We performed a scoping review, summarised the main 
insights, and identified several use cases in which AI 
could contribute to reducing the frequency and 
consequences of ADEs. Most studies only evaluated 

technical algorithm performance, and very few studies 
evaluated the use of AI in clinical settings. Research on 
predicting allergic reactions was scarce and only a small 
number of studies incorporated genetic data. Most 
studies were published in the past 5 years, highlighting 
an emerging area of study, and we expect many more 
studies in the next few years. Availability of new types of 
data and access to unstructured EHR notes might further 
advance the field.
Contributors
ASy, WS, MGA, DF, DLS, GPJ, KR, and DWB were responsible for study 
conception and design. ASy and PAB developed the literature searches. 
ASy, HE, ZC, MK, and SD reviewed the literature. ASy, WS, MGA, DF, 

Panel: Main insights and future directions for AI to reduce the frequency of ADEs

Prediction 
Insights
Most studies developed predictive algorithms and applied a wide range of AI approaches, 
and focused on specific medication or ADE classes. Tree-based methods performed well 
across the prediction use cases. A limitation was that algorithms were generally developed 
using structured data. In many of the studies, genetic factors were applied to improve 
ADE clinical prediction models; both positive and negative results were reported. One of 
the remaining challenges is how to identify and select the most relevant genetic variables 
among large amounts of genetic profile information. Machine learning approaches 
showed promising progress to address this problem, but are still in the early stages of 
development.

Opportunities
• Integration of unstructured clinical notes and data from external sources as additional 

variables to complement structured EHR data to improve the performance of AI-based 
algorithms 

• Inclusion of genetic components in ADE clinical predictions, given the rapid 
development of causal genetic variant models, such as fine mapping; large-scale 
clinical biobanks and machine learning algorithms will facilitate this process and make 
patient genetic information more applicable for clinical decisions to prevent ADEs than 
is currently possible

• More studies are needed in the fields of EHR-derived ADE genetic association models 
and machine learning-based clinical and genetic integration systems

Early detection
Insights
Several different AI approaches using data (mostly structured, some unstructured) from 
EHRs and pharmacy dispensing data showed success in identifying ADEs and prescribing 
errors. These models have the potential to detect ADEs earlier and more accurately than 
current methods, and could reduce alert fatigue resulting from too many alerts presented 
to prescribers using current rule-based alert systems. 

Opportunities
• Additional studies of specific models to identify the best AI methods to detect ADEs 

and errors
• Prospective studies using AI models in patient care settings
• Attempts to identify the best patient population, treatment setting, patient contact 

method, and time and frequency to screen for ADEs
• Comparisons of benefits of safety outcomes between systems focused on detecting 

ADEs for high-risk medications, specific ADEs, or general ADE detection

ADE=adverse drug event. AI=artificial intelligence. EHR=electronic health record.
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