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Résumé

La formule de Verlinde est une expression pour la caractéristique d’Euler des fibrés linéaires
sur les espaces de modules des fibrés stables sur une courbe. Cette formule motivée par la
physique quantique est un de plus bean résultat de la géométrie énumérative. Au fil des
années, de nombreuses preuves différentes de cette formule ont été proposées.

Dans le chapitre 2| de cette thése, nous donnons une nouvelle preuve de la variante
parabolique plus difficile de cette formule basée sur une comparaison des croisements de
murs en théorie géométrique des invariants et de certains calculs de résidus itérés. En cours
de route, nous développons une variante tautologique des correspondances de Hecke, calcu-
lons les polyndémes de Hilbert des espaces de modules et présentons une nouvelle approche
transparente du probleme de p-shift de la théorie.

Dans le chapitre 3} nous montrons que les méthodes de résidu/croisement de mur du
chapitre 2| peuvent étre utilisées pour décrire les applications poussées en avant dans la K-
théorie des espaces de modules et présenter de nouvelles formules explicites pour la carac-
téristique d’Euler d'une classe plus large de fibrés vectoriels sur 'espace des modules des
fibrés paraboliques stables.

Notre travail a été motivé par les résultats de Teleman et Woodward sur l'indice des classes
K-théorieque des champ de modules.



Summary

The Verlinde formula, an expression for the Euler characteristic of line bundles on the moduli
spaces of stable bundles on a curve, is a strikingly beautiful statement in enumerative geom-
etry motivated by quantum physics. It has attracted a lot of attention over the years, and has
a number of different proofs.

In Chapter 2|of this thesis, we give a new proof of the more difficult parabolic variant
of this formula based on a comparison of wall-crossings in Geometric Invariant Theory and
certain iterated residues calculus. On the way, we develop a tautological variant of Hecke
correspondences, calculate the Hilbert polynomials of the moduli spaces, and present a new,
transparent approach to the p-shift problem of the theory.

In Chapter [3| we show that the residue/wall-crossing methods of Chapter [2] may be suc-
cessfully employed to describe the pushforward maps in the K-theory of moduli spaces and
present new, explicit formulas for the Euler characteristic of a wider class of vector bundles
on the moduli space of stable parabolic bundles.

Our work was motivated by the results of Teleman and Woodward on the index of K-
theory classes of moduli stacks.
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Chapter 1

Introduction

1.1. The parabolic Verlinde formula

The Verlinde formula is a strikingly beautiful statement in Enumerative Geometry motivated
by quantum physics [29]. Our focus in the first part of this thesis will be the more difficult,
parabolic variant of this formula, which we briefly describe below.

Let C be a smooth, complex projective curve of genus g > 2, and fix a point p € C. Denote
by A the set of vectors ¢ = (¢1 > ¢z > ... > ¢;;) € R" such that > ;¢; =0and ¢; — ¢ < 1. We will
call a vector ¢ € A regular if no nontrivial subset of its coordinates sums to an integer. For such
a c € A, there exists a smooth projective moduli space Py(c) of dimension (1> —1)(g — 1) + (})
(119}13} 4]), whose points are in one-to-one correspondence with equivalence classes of pairs
(W, F,), where W is a vector bundle of rank r on C with trivial determinant, F,. is a full
flag in the fiber W), and the pair satisfies a certain parabolic stability condition depending
on a regular ¢ € A (cf. §2.1.1). This condition roughly states that for a proper subbundle
W' < W, the degree deg(W’) is strictly smaller than the sum of a subset of the coordinates of
¢ depending on the position of W}, with respect to F..

There is a natural way to associate to a positive integer k and an integer vector A € Z"
satisfying A1 +--- + A, = 0 a line bundle £(k;A) on Py(c), in such a way that if ¢ = A/k,
then £(k;A) is ample. The parabolic Verlinde formula is the following expression for the Euler
characteristic of the ample line bundle £(k;A): assume ¢ = A/k is regular; then

(—i)(g) eXp(ZT[i/X -x)

x(Po(c),L(k;A))er,k-ZH (einmixe —xp))
i<j 1T

(1.1)

where Ny i = r(r(k + r)r-he-1 A=A+ %(T —1,vr—3,...,1—71), and the sum is taken over the
finite set of those points in the interior of the parallelopiped

{x=(x1,%2,....% =0)] 0 <x{ —xip1 < 1fori=1,...,7r—1}
which satisfy the conditions (k+1)x e Z"and x; —x; ¢ Zfor1 <i<j <.

Remark 1.1.1. This finite set is a set of lattice points in the interior of (r —1)! identical sim-
plices. (These are the orange-colored points in the rhombus on Figure . By symmetrizing
with respect to the group of permutations of the r coordinates, one obtains the same function

1



CHAPTER 1. INTRODUCTION 2

on each of these simplices. Using the Weyl character formula, this allows one to rewrite
in a more familiar form as

X(Pole) £ = [rll )™ 1o 3 2 m";((:) e (12)
i<j (<8 i X

where X, is the character of the irreducible SU(r)-representation of highest weight A, and the
sum is now taken over the lattice points of the form (k+ r)x € Z" in the interior of a single
simplex {x = (1 >x1 > X > -+ > X1 > xr =0)}.

(2,1,0)

(4,-2,-2)

(2,2,-4)

(1,0,0)

(1,1,0)

(0,0,0) (0,0,0)

Figure 1.1 — The set of As (left), and the finite set from (right) fork = 6,7 = 3.

Remark 1.1.2. Equality remains valid in greater generality, for certain cases when A/k is
non-regular. This slightly more technical statement will be given in Theorems 2.3.7|and 3.2.3}

Equality , the parabolic Verlinde formula, has attracted a lot of attention over the years,
and there is a number of different proofs (cf. e.g. [1,[12}|24]). In Chapter of this thesis, we
give a novel proof of this result, which stands out with its technical simplicity. Below, we give
a quick sketch of the strategy of our proof.

Strategy of the proof

Our proof is based on three ideas. We start with the study of the right-hand side of equation
([1.1). As observed in [20], this finite sum can be written as a piecewise polynomial function
in (k,A). We will briefly explain the idea in the simplest case r = 2.

We fix k and (A, —A) € ZZ; in rank-2 case, the sum on the right-hand side of may be
written in the following simplified form

k-1 . . 1y
4 —i-exp(2mi(A +3)j/(k+2))
22" 2 Gsinty Ot 2)) 7o

Note that this sum is periodic in A + % modulo k + 2. We introduce the notation {q} for the
fractional part of q € IR, and using the residue theorem, we evaluate the sum as

g1 : AA+3)/(k+2)} (k+2) _eu
(=1)977(2k +4)9 Res 172 — 7 A0 (1 = 7] =¢

dz ,
z

el A7)/ (k+2)} (k+2)u

(—=1)971(2k + 4)9 Res

1o (eW/2 — e—w/2)29-1(] — gu(k+2)) du. (1.3)
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A simple calculation shows that we obtained a periodic, piecewise polynomial function in
the pair (A, k), which is polynomial on the cones bounded by the lines (A + %) /(k+2) € Z.
When 1 > 2, one can still present the sums on the right-hand side of as iterated residues
of certain rational differential forms (cf. Theorem . In this case the combinatorics of the
residue formulas is considerably more complicated, and is best treated using the notion of
diagonal bases and of hyperplane arrangements (cf. .

We observe that the simplex A (cf. page 1) of parabolic weights c parametrizing stability
conditions contains a finite number of hyperplanes (walls) on whose complement (the set
of regular elements in A) the stability condition is locally constant. This induces a chamber
structure on A, such that the left-hand side (via the Grothendieck-Riemann-Roch theorem)
and the right-hand side (written as residue formula) of are manifestly polynomial in
the variables (k;A) on each chamber. We introduce the notation 1. (k;A) and r.(k;A) for these
polynomials, where c is any element of the corresponding chamber.

In we derive a simple formula (cf. Theore for the wall-crossing difference in
geometric invariant theory; using this formula, in §2.5|we show that the differences between
the two polynomials associated to neighbouring chambers (specified by c; and c_) for the
left-hand side and the right-hand side coincide:

I’C — 107 == Tc+ — TC,' (1.4)

+

The next step of our proof relies on the Hecke correspondence between moduli spaces of
bundles of different degrees, which was introduced in [17]. In of this thesis we describe a
"tautological" variant of this construction, which identifies the same space with moduli spaces
of parabolic bundles of different degrees and weights. We choose a pair of chambers adjacent
to two special vertices of the simplex A, and consider the corresponding pairs of polynomials

le. (IGA), le_(KA) and  vc_ (k5 A), Te_(k;A) (1.5)

from the left-hand side and the right-hand side of (1.1), respectively. Using the tautological
Hecke correspondence and Serre duality, in §2.7| we derive certain symmetry properties of
lc. (k;A) and lc_ (k; A), and then we prove that r¢_ (k;A) and r¢_(k; A) satisfy the same symme-
tries.

Finally, in §2.7.4| we show that a set of polynomials parametrized by the chambers in A
is uniquely determined by the wall-crossing terms and our symmetry properties for the
polynomials , and thus we obtain that 1. (k;A) and r.(k; A) coincide.

Historical remarks

There is a long list of proofs of the Verlinde formula. Below, we give reference to the works
that are closest in spirit to what we do.

The proofs of the Verlinde formula fall in two categories: proofs of the fusion rules and
proofs that find some interpretation of the "Fourier transformed" discrete sum on the right
hand side of (1.I); as explained above, the present work belongs to this second group. An-
other line of division concerns the model, which one uses for the moduli spaces: via the
Narasimhan-Seshadri correspondence, the moduli spaces of parabolic vector bundles may
equally be presented as symplectic manifolds of certain types of flat connections on punc-
tured Riemann surfaces, and this opens the way of using the methods of symplectic geometry.
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A paper closely related to our work is that of Jeffrey and Kirwan [12], which approaches
the problem from a symplectic/cohomological point of view (cf. [11]), and has a somewhat
different angle form ours. This paper also uses the residue calculus introduced in [20!21], but
not quite as consistently as our work, and the parabolic case was not resolved from this point
of view (cf. [10]).

The idea of proving the Verlinde formula via wall-crossings appeared in the seminal paper
of Michael Thaddeus [25]. He used a geometric approach and managed to prove the Verlinde
formula in rank 2 by crossing walls in the moduli of stable pairs. The master space construction,
which plays a central role in our paper, first appeared in his works as well [26]. In a sense, the
present work may be thought of as the completion of his program.

1.2. Euler characteristics of tautological bundles

In the second part of this thesis, we apply the wall-crossing/residue technique of Chapter 2|to
obtain formulas for the Euler characteristics of a wider class of vector bundles on the moduli
space Py(c): we associate to a dominant weight v of GL, a tautological vector bundle U, on
Po(c) x C and calculate

x(Po(c), L(k;A) @ m(Uy, @ K2)), (1.6)

where 7 : Pg(c) x C — Py(c) is the projection, and X is the canonical bundle on C (cf. Theorem
for the result).

As in the case of Euler characteristics of line bundles (cf. ), the formulas for we
obtain have the form of iterated residues of rational differential forms. For example, in the
simplest rank r = 2 case, the answer may be described as follows.

We fix a dominant weight v = (v1,v2) € Z? of GL,; denote by p- the irreducible represen-
tation of GL, with highest weight v, and by p. its restriction to SU; < GL,. Let U, — Py(c) x C
be the bundle associated to the representation p,. We introduce the notation

_ sinh((vy — v +1)x/2)

¢(x) sinh(x/2)

for the character function of p, on the Lie algebra of the maximal torus of SU,. Let

d d .

b(x) = 2 $(x) and b(x) = 2 ),

then

X(Polc), L(k;A) @ (Uy @ K?)) =
exp(u(A + 3 + Y17°2)) (gds(u) e(K+2)ug(y)

_ g
( (2k+4)) ReS 2k+4 (1 _ eu(k+2))

u=0 (2sinh (%))29-1(1 — eu(k+2))

> du. (1.7)

In Chapter [3|of this thesis we will follow the ideas described in above, where the
case of the line bundles on the moduli spaces was treated. Let us highlight some of the new
phenomena that we encountend in this higher rank case.

The symmetry of Euler characteristics on the moduli spaces Py(c~) and Py(c<) (cf.
(L.5)) is only true after an affine transformation; in fact, they need to be shifted by a linear
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combination of Euler characteristics of line bundles, which then can be calculated using the
results of Chapter |2| (cf. Propositions [3.4.2} [3.4.5/and [3.4.6). The appearance of Hessians
(higher rank variants of the function ¢(u) in the formula (1.7) above) in our framework in
the formulas for Euler characteristics is remarkably simply explained by the relations in the
cohomology ring of the curve (cf. page . The directional derivatives (higher rank variants of
the function ¢(u) above), on the other hand, appear from a comparison of the Chern characters
of the corresponding vector bundles under the Hecke isomorphism (cf. Proposition 3.3.9).

Remarks

The idea of the formulas for push-forwards in the cohomological setting, in particular, the Hes-
sian, first appeared in the seminal paper of Witten [30]. Mathematically sound approaches in
this cohomological/symplectic setting were employed by Jeffrey and Kirwan [12] and Mein-
renken [14]. In particular, the wall-crossing ideas, which play a major role in our work already
appeared in [12].

The results of Chapter [3]of this thesis own a lot to the paper of Teleman and Woodward
[24], where a similar formula is derived for Euler characteristics of vector bundles on stacks.
In the present thesis, we demonstrate, in particular, that the sophisticated tools employed in
[24], at least in this instance, may be replaced by a simple combinatorial device. There are also
subtle differences in the final formulas, which are manifest, in particular, in the appearance of
certain determinantal factors in our formalism.

The formulas we find, even though they are similar to the results of [12] and [24], are new,
and, in fact, are the first explicit formulas for these quantities.



Chapter 2

The parabolic Verlinde formula

This chapter is based on the work [22] and gives a new proof for the parabolic Verlinde
formula in all ranks via a comparison of wall-crossings in Geometric Invariant Theory and
certain iterated residue calculus.

2.1. Parabolic bundles

In this section, we briefly review the definition of parabolic bundles, recall the basic facts
about their moduli spaces and describe the chamber structure on the space of the relevant
parameters, known as parabolic weights.

2.1.1. Definitions

Let C be a smooth complex projective curve of genus g > 2, and fix a point p € C.

e A parabolic bundle on C is a vector bundle W of rank r with a full flag F, in the fiber over
p:
Wep=F22..2F2F =0

and parabolic weights ¢ = (cy, ..., c+) assigned to Fr, F._1, ..., Fy, satisfying the conditions

c1>cCc>..>crandcp —c¢r < 1.

e The parabolic degre and the parabolic slope of W are defined as

B pardeg(W)

pardeg(W) = deg(W) — ) ci; - parslope(W) = “-fa.

i=1

o A morphism f: W — W’ of parabolic bundles is a morphism of vector bundles satisfying

fp(Fi) < F]./ qifer_ipn < ci_j 11+ In particular, an endomorphism of a parabolic bundle W

is a vector bundle endomorphism preserving the flag F..

LFor technical reasons, we have chosen a sign convention opposite to that in the majority of treatments in the
literature.
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e Denote by ParHom (W, W’) the sheaf of parabolic morphisms from W to W’. Then there
is a short exact sequence of sheaves

0 — ParHom(W,W’) - Hom(W,W') - T, — 0, (2.1)

where T, is a torsion sheaf supported at p. The rank of T, is the number of pairs (i,j),
s.t. ¢y < cg (cf. [5]).

If W' < W is a subbundle of W, then both W’ and the quotient W/W’ inherit a parabolic
structure from W in a natural way (cf. [13], definition 1.7).

e A parabolic bundle W is stable of weight c, if any proper subbundle W' < W satisfies
parslope(W') < parslope(W); and W is semistable of weight c, if the inequality is not strict.

Remark 2.1.1. Note that the parabolic stability condition depends on the parabolic weights
only up to adding the same constant to all weights c;.
2.1.2.  Construction of the moduli spaces

We start with a quick review of the construction of Mehta and Seshadri [13] of the moduli
space of stable parabolic bundles. It follows from Remark that, without loss of generality,
we can assume that the parabolic weights of a rank-r degree-d bundle belong to the simplex

Agq = {(cl,cz,...,cr)\q >0 >..>Cr € —Cr < 1,Zci :d}.
i

Definition 2.1.2. We will call a vector ¢ = (cy,...,¢y) € R" such that };; ¢i € Z regular if for
any nontrivial subset ¥ — {1,2,...,7}, we have ) ; .y ¢i ¢ Z.

Now choose an integer d » 0 such that H!(W) = 0 and W is generated by global sections
for any rank-r degree-d semistable parabolic bundle W of parabolic degree 0. Put N = r(1 —
g) + d and consider the

e Groethendieck quot scheme Quot(N,r) ([8]) parametrizing quotients ON — W, where
W is a coherent sheaf of degree d and rank r.

e This space is endowed with a universal bundle UQ, and a generically free action of the
group G = PSL(N), which does not, however, lift to UQ.

e Let LFQuot = Quot(N, r) be the open subscheme consisting of locally free quotients W,
such that the induced map HO(ON) - HO(W) is an isomorphism.

e Denote by XQ the total space of the flag bundle Flag(UQ,,) on LFQuot x p. This space
is endowed with the flag of vector bundles Fl; < --- = Fl,_; < Fl, = UQ,.

e Letke Z and (A, ..., Ar) € Z", such that >};_; A; = kd, and consider the line bundle
L(k;A) = det(UQ,)*""9) @ det(m,UQ) ™ ® (Fl,/Fl,_1 )M ®...® (Fly) ™

on XQ, which does carry a G-linearization (lift of the G-action from XQ).
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e Finally, assume c € Ay is regular (cf. Deﬁnition above) and define Pa(c), the moduli
space of stable parabolic weight-c vector bundles on C as the GIT quotient XQ /¢ G of
XQ with respect to any linearization L(k;A), such that A/k = c.

Theorem 2.1.3 ([19]). Assume that c € Aq is a reqular weight vector. Then the moduli space ﬁd(c)
is a smooth projective variety of dimension v2(g — 1) + (3) + 1, whose points are in one-to-one corre-
spondence with the set of isomorphism classes of stable parabolic bundles of weight c (cf. §2.1.1).

Remark 2.1.4. Via the determinant map, the moduli space lgd(c) fibers over the Jacobian of
degree-d line bundles with isomorphic fibers, and in this thesis, we will focus on the moduli
space

Palc) = {W e P4(c)| detW ~ O(dp)},

which is smooth, projective and has dimension (r2—1)(g—1)+ (;)

Remark 2.1.5. Note that tensoring with the line bundle O(mp) induces an isomorphism:
®O0(mp) : Palc) — Payrmlc), so the moduli spaces Pq4(c), essentially, depend only on d
modulo .

2.1.3. The Picard group of P4(c)

For a regular ¢ € Aq, there exist universal bundles U over P4(c) x C endowed with a flag
F1 < --- c Fr1 © Fr = Up, and satisfying the obvious tautological properties. In general,
such universal bundles U, and hence the flag line bundles Fi;/J; are unique only up to
tensoring by the pull-back of a line bundle from P4(c). Nevertheless, we have the following
statement.

Lemma 2.1.6. For k€ Z and A = (A1, ..., Ay) € Z", such that >,;_; A; = kd, the line bundle
La(kGA) = det(Up) 179 @det(m,U) % @ (F,/Fr_ )N ©...® (F) (22)
on Pq4(c) is independent of the choice of the universal bundle U.

Proof. Note that tensoring U with a pullback 7t*£ of a line bundle £ on Py(c) changes det(l,;)
by £ and det(r,U) by £4-T(9-1), O

Remark 2.1.7. The line bundle L(k; ) defined in §2.1.2| descends to the line bundle £4(k;A)
on the GIT quotient P4(c).

Notation: We will say that U is normalized if the line subbundle F; < U, is trivial. The
parameter k is often called the level.

Let w € H?(C) be the fundamental class of our curve C, and ey, ..., exg a basis of H'(C),
such that ejei g = w for 1 < i < g, and all other intersection numbers e;e; equal 0. For a class
5 € H*(P x C) of a product, we introduce the following notation for its Kiinneth components
(cf. [30]):

2
5=5(0)®1+ ) 8, ®ei+5n®@we @HTHP)@H!(C). (2.3)
i i=0

We will need the following formula.
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Lemma 2.1.8. The equality 2c1(£Lq4(7;d,...,d)) = c2(Endo(Uq))(2) holds, where Endg stands for
traceless endomorphisms.

Proof. Taking the first Chern class on both sides of (2.2), we obtain
c1(Lalr;d,...,d)) =7(1—g)er1(Ua) ) — rer (s (Ua)) + de1(Ua) oy,

where we can evaluate the middle term using the Groethendieck-Riemann-Roch theorem, and
c1(Ug)p) = d:

c1 (7 (Ug)) = chy(m(Uq)) = mecha(Uq) — (g — 1)c1(Uqg) (o)
=c1(Ug)0)d — c2(Ug)(2) — (g — 1)1 (Ua) (0)-
This leads to the formula
c1(Lalr;d, ..., d)) = —=d(r —1)c1(Ua) (o) +Tc2(Ua) 2y,

which is easily seen to equal %cz(Endo(ud))(z). O

2.1.4. Walls and chambers

The central question we address in this thesis is how the moduli space of stable parabolic
bundles depends on the choice of parabolic weights. Let W be a vector bundle of degree d
with a fixed full flag F, of the fiber W,,, and let us try to determine the structure of the set of
parabolic weights ¢ € A4 for which W is stable. Clearly, for this we need to study the set of
parabolic weights ¢ = (cy, ¢y, ... cy) for which one can find a proper subbundle W/ < W such
that

parslope(W') = parslope(W) = 0. (2.4)

A subbundle W/ ¢ W determines a short exact sequence of parabolic bundles
0->W >W-o>W -0

and the position of W}, with respect to F. gives rise to a nontrivial partition of the set
{1,2,...,7} into two sets, TI" and T1” (cf. [13], definition 1.7); the parabolic weights of W’
and W” are then ¢’ = (ci)ierr and ¢” = (ci)ienv, correspondingly. The slope condition
translates into a pair of equivalent equalities:

d/ = Z Ci, d// = Z Ci, (25)
iell’ ielT”

where d’, d” = d — d’ are the degrees of W/ and W”, respectively. This means that the critical
values of ¢ € Ay for which is possible lie on the union of affine hyperplanes (or walls)
defined by the equations

Z ci =1, wherele Z,and 1T’ < {1,2,..., 7} nontrivial.
iell’

As only finitely many of these walls intersect the simplex A4, their complement is a finite
union of open polyhedral chambers. It is easy to verify that as we vary c inside one of these
chambers, the stability condition, and thus the moduli space P4(c) does not change.
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Example 1. Consider the case of rank-3 degree-0 stable parabolic bundles with parabolic

weights ¢ = (cy, ¢z, ¢3) € Ag. The set Aj is an open triangle with vertices (0,0,0), (%, —%, —%)

and (3,3, —3) (cf. Figure, and there exist only two essentially different stability conditions.
The wall separating the two regimes is given by the condition ¢, = 0. We write Py(>) for the
moduli space Py(cq, co, c3) with c; > 0, and Py(<) for Py(cq,co, c3) with ¢ < 0.

(

) (3/

)

b\’\N
th—l
e
W=
e
WIN

(0,0,0)

Figure 2.1 — The space of admissible parabolic weights for rank r = 3.
2.2. Wall-crossing in the Verlinde formula

A key component of our approach is the notion of diagonal basis and the associated generalized
Bernoulli polynomials introduced for general hyperplane arrangements in [20]. Using this
formalism, we will be able to formulate our main result, Theorem[2.3.§]

2.2.1. Notation

We begin by setting up some extra notation for the space of parabolic weights introduced in

1]

o Let V=R"/R(1,1,...,1) be the r — 1-dimensional vector space, obtained as the quotient
of R". The dual space V* is then naturally represented as

V*={a=(ay,...,a;) e R a; +---+ar =0}.

Let xq,Xp,...,Xr be the coordinates on R"; given a € V*, we will write {(a,x) for the
linear function ) }; aix; on V. We will sometimes identify this linear function with the
vector a itself.

e The vector space V* is endowed with a lattice A of full rank:
A={A=A,..., A ) EZ"| M+ + A =0}
In particular, for 1 < i # j <1, we can define the element o =x; — xj in A.

e Our arrangement is the set of hyperplanes {x; = x;} < V, 1 < i <j < r. It will be
convenient for us to think about this set as the set of roots of the A,_; root system with
the opposite roots identified:

O ={+a|1<i<j<T}

Note that V* carries a natural action of the permutation group X,, permuting the coor-
dinates x5, j = 1,..., 7, and this action restricts to an action on @ as well.
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o The basic object of the theory is an ordered linear basis B of V* consisting of the elements
of @. Let us denote the set of these objects by B:

B — {B - ([5[”,...,[5“*”> € ®1| B - basis of v*}

e For B € B, we will write FI(B) for the full flag

|:V* = <B[1]/ E’ [2]/ sy ﬁ[r_1]>lin/ sy <B[r_1]/ E’ [T_2]>lin/ <[3 [r_1]>lin:| ’

where ()}, stands for linear span.

2.2.2.  Diagonal bases

Definition 2.2.1. e Forte X,_; and B € B, we will write B O 7 for the permuted sequence
(UM plx@)1  glr(r=1,

e For two elements B, C € B we will write B 4 C if for any T € X,_1, we have FI(B O 1) #
FI(C).

e A subset D < B of (r—1)! elements is called a diagonal basis if for any two different
elements B,C € D, we have B - C.

Remark 2.2.2. This definition is motivated by a construction [20], which associates to each
diagonal basis D a pair of dual bases of the middle homology and the cohomology of the
complexified hyperplane arrangement on V ®g C defined by ®. The dimension of these
(co)homology spaces is (r —1)!.

2.2.3.  Combinatorial interpretation
This notion has the following purely combinatorial form.

e We can think of @ as the edges of the complete graph on r vertices.

e Then the set B may be thought of as the set of spanning trees of this graph with edges
enumerated from 1 to r — 1. We will introduce the notation

B — Tree(B)
for this ordered tree.

¢ In this language, the flag FI(B) corresponds to a sequence of r nested partitions of the
vertices (starting with the total partition into 1-element sets and ending with the trivial
partition) associated to Tree(B), the jth partition being the one induced by the first j — 1
edges. For example, the ordered tree [(2,4)(1,3), (1,2)] induces the same sequence of
partitions as [(1,4), (2,3), (1,2)] (see Figure

e A diagonal basis D is then a set of (r —1)! ordered trees such that the (r —1)! partition
sequences obtained by reordering the edges of any one of the ordered trees are different
from (r — 1)! — 1 sequences of partitions obtained from the remaining elements of D.
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4 3 3 @ @

Figure 2.2 -B = (13, al2, o34)
2.2.4. Examples

There are essentially 2 known constructions of diagonal bases [20].
I. The Hamiltonian basis. For each permutation o € Z,, we can define

O'(B) _ (o(cr(rfl),d(r)/ ‘xo(er),G(rfl]l . (xcr(l),c(Z)) cB. (26)

The set H,, = {o(B)| 0 € Z;, 0(1) = m} is then a diagonal basis. In the combinatorial
description, this diagonal basis corresponds to the set of Hamiltonian paths starting at vertex
m, and endowed with the reversed natural ordering of edges.

Example 2. Here are some examples of Hamiltonian bases:
o for r =3: H; = {(o??3, «1?), (o2, ! 3)},
e and for r = 4:
3 = {(034, a2, al2), (02*, 032, 1), (a3, a4, ol?),
(032, a3, o), (042, o34, ol?), (023, ot2, o)),

II. The no-broken-circuit bases. Let v : {1,...,7(r —1)/2} — @ be a total ordering,

which we will represent as an order relation < on @. To this ordering, one can associate the
following, so called noncommutative no-broken-circuit diagonal basis [20]:

D] = {(5[”,...,5“—”) e B( 2 21 and
ol 2 pim) = (¥, pml ... plr=1h linearly independent} .

v v v v v . L.
Example 3. Let o!® < o4 < o23 < o?* < a2 < o>* be the ordering of the positive roots for
rank r = 4. Then

Div] = {(o3, a2, o34), (13, a4, a23), (13, a4, o24),
(013, o4 o12), (1B, a3, o34, (a3, o3, 024}
is the corresponding no-broken-circuit diagonal basis.

Remark 2.2.3. The hyperplane arrangement induced by @ is invariant under the natural action
of X, on the vector space V. It follows easily from the definition that if D is a diagonal basis
and o € X, is a permutation, then o(D) is also a diagonal basis.
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2.3. The residue formula and the main result

In this section, we recall the residue formula from [20]] for Ver(k,A), the discrete Verlinde sum
on the right hand side of (1.1). The key feature of this formula is that it exposes the piecewise
polynomial nature of Ver(k,A), which is key for our wall-crossing analysis. While the objects
are relatively simple, the formalism is heavy with notation, so we begin by describing the
1-dimensional case.

2.3.1. The residue formula in dimension 1

The story begins with the Fourier series

1 Z exp(2mian) 27)

(27ti) neZ\0 nm

for m > 2, which is a periodic, piecewise polynomial function given by the formula
Res PU{a}) dx
x=0 1 —exp(x) x™

where {a} is the fractional part of the real number a. The polynomial functions thus obtained
on the interval [0, 1] are called Bernoulli polynomials. The polynomial on the interval containing
the real number c € R\Z is given by

Res exp((a—[c])x) ﬁ,
x=0 l—exp(x) xm

where [c] is the integer part of c.

Now we pass to a trigonometric version of this formula, calculating finite sums of values
of rational trigonometric functions over rational points with denominators equal to an integer
k.

We replace thus the rational function x™™ by the (hyperbolic) trigonometric function
f(x) = (2sinh(x/2))~2™, and introduce an integer parameter A related to a via ka = A. We
consider the sum of values of the function f over a finite set of rational points in analogy with

2.7):

kz_:l exp(2miAn/k)
(

2sin(mn/k))2m’

n=1
where A, k € Z. This sum is again periodic in A mod k, and for m > 2 we can evaluate it via
the residue theorem as
(_1)™ Re ZK{A/K} kdz z=exp(x/k) (_1)™ Res exp({A/k} - x)

1 (21/2 — z=1/2)2m " (1 — zK) S 1 —exp(x) - f(x/k) dx.

Again, this is a piecewise polynomial function in the pair (k,A), which is polynomial in the
cones bounded by the lines A = qk, q € Z.
Note that in these calculations, a key role is played by the Bernoulli operator:

f(x) exp(ax) dx

f — Ber[f](a) = (2.8)

1 —exp(x)
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which transforms meromorphic functions in the variable x into polynomials in a, and plays
the role of a generalized Fourier operator.

2.3.2.  The multidimensional case

Now we return to the setup of with the vector space V endowed with the hyperplane
arrangement ®. We introduce the notation F¢ for the space of meromorphic functions defined in a
neighborhood of 0 in V ®g C with poles on the union of hyperplanes

) &<, % =0}

1<i<j<r

In particular, the inverse of the function

W = H (2sinh(7t(x; —x5)))
i<j
is an element of F .
To write down our residue formula, we need a multidimensional generalization of the
notions of integer and fractional parts. Given a basis B = (B[”, el [S[r_”) € B of V*, and an
element a € V¥, we define [a]p and {a}p to be the unique elements of V* satisfying

e [alg=a—{a}pe A, and

o {a}pe X 1[0,1)pb".
This notion naturally induces a chamber structure on V*: we will call a € V* regular if a
is a point of continuity for the functions a — [alg,{a}p for all B € B, i.e. when {a}g €

Z]:% 0,1)p (1. Now, for regular a and b we define the equivalence relation
a ~ b when [a]g = [b]g VB € B. (2.9)

The equivalence classes for this relation form a A-periodic system of chambers in V*.
Convention: We will think of a partition IT of {1, 2, ..., r} into two nonempty sets as an ordered
partition TT = (TT,T1”) such that r € TT”, and we will call these objects nontrivial partitions for
short.

The following statement is straightforward.

Lemma 2.3.1. The equivalence classes of the relation ~ are precisely the chambers in V* created by
the walls parameterized by a nontrivial partition T1 = (T, T1”) of the first v positive integers, and an
integer 1:

Smu={ceV* >l ¢ =1 (2.10)

jerr

Remark 2.3.2. Note that the walls given in are precisely the same as the ones given
in for the case d = 0, where they play the role of walls separating the chambers of
parabolic weights c¢ in which the parabolic moduli spaces Py(c) are naturally the same. This
"coincidence” is precisely what we need for our comparative wall-crossing strategy. There
is a small terminological issue here: the "chambers" in §2.1.4| are the intersections of the

equivalence classes of ~ defined above with the open simplex A L A, where the parabolic
weights live (cf. Figures 2.1]and[2.3). We will use the term "chamber" in both cases if this
causes no confusion.
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(1,0,-1)

S((23,0131).0

(1,-1,0) 0,1,-1)

(0,0,0)

Figure 2.3 — Chambers for rank r = 3.

Each element B = (BY,..., p["~1) € B defines an iterated version of the Bernoulli operator
on the space of functions J¢: interpreting the elements a, B! € V* as linear functions
on V, we define

i 1 f(x) exp{a, x) d<[3[”,x> A A d<[3“‘”,x>
Ber [f = , 2.11
iBer [f(x)] (0) = f (1—exp((BI, %)) ... (1— exp((BT—T, %)) @11)
Z(B)
where the naturally oriented cycle Zg is defined by
Zg={ve VRRC: [BYV,x)| =¢,j=...,1—1} c VER C\{wo (x) =0},
with real constants ¢; satisfying 0 < e,_1 « --- « ¢;. Thus again, iBerg is a linear operator

associating to a function in F¢ a polynomial on V*.

Remark 2.3.3. Let us make a small remark about the computational aspects of the operator
iBerg. Denoting the coordinate <[5m,x> by yj,j = 1,...,7—1, and writing f and a in these
coordinates: f(x) = f(y), (a,x) = (@,y), we can rewrite as

4

. B fly)exp{a,y) dys A -+ A dy,_1
Berlftal{a) = Res . RS T explur)) .. (1~ explyr_1))

where iterating the residues here means that we keep the variables with lower indices as
unknown constants, and then use geometric series expansions of the type

1 __ Y1—Wy R S | et AR S W 5
l—explyi—y2) 1-explyr1—y2) yi—y2 L—exp(yr—y2) =yt

2.3.3. Invariance of diagonal bases and the main results

Diagonal bases have the following key invariance property.

Theorem 2.3.4 (|20]). Let f € Fo, and c € V* be reqular; let D be a diagonal basis of ®. Then the

functional (cf. above)
frs ) iBer[f(x)](a — [clp)
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transforming a meromorphic function f € Fg into a polynomial in the variable a € V* is independent
of the choice of the diagonal basis D. In particular, for reqular a € V*, the functional

fro iBer[f(x)]({a}s) (2.12)
BeD

transforms f into a well-defined piecewise polynomial function on V*, which is polynomial in each
chamber.

As this functional is invariantly defined, it is not surprising that it is equivariant with
respect to the symmetries of our hyperplane arrangement. For o € L., we define, as usual

o-f(x) =f(o"1x). (2.13)
This convention is consistent with .

Lemma 2.3.5. Let f € Fg, and o € X, and pick any diagonal basis D. Then

Z 1Ber (0-a—]| Z 1Ber -f(x)](a — [c]p)

BeD BeD

Proof. Indeed, recall that o € L, takes a diagonal basis to another diagonal basis (cf. Remark
2.2.3), and thus we have

B ra—[o-clg) = ) iBerl[f(x)l(o-a—[o-c]oB).
B;Dl er 0' a 0-ClB Bechgr XJ{o-a 0-CloB

Now we perform the linear substitution x = o(y), and obtain

iBer[f(x)](0- a— [0 clop) = ) iBerlo™" - f(y)](a — [cl).
BeD oB BeD

Remark 2.3.6. By picking the Hamiltonian diagonal basis {; = {0 - By| o € Stab(1,%,)}, we
can turn the argument in the proof above around, and obtain the following formula:

Y iBerlf(x)](a—Iclp) = >,  iBerlo-f(x)](0-a—[o-clp) =
Bed oeStab(1,5,) 0
Z o-fly)exp{o-a—[o-clg,yydy; A A dyr_

Res ... Res (1—exp(y1)) ... (1—exp(y,_1))

~0 =0
w1 Yr—17% GeStab(1,5,)

7

where
Bo = (Y1 =Xr—1 —Xr,...,Yr—2 = X2 — X3,Yr_1 = X1 — X2) € B.

Now we are ready to write down the residue formula for the Verlinde sums proved in [21}
Theorem 4.2]. Recall that we denoted by Ver(k,A) the finite sum on the right hand side of

1),
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Theorem 2.3.7. Let g > 1, k € Z>° A € A, and let D be any diagonal basis of ®. Introducing the
notation k =k +r, and A = A+ p, we have

1-2 N
Ver(k, \) TkBeZ® 1Ber[ 9 x/k)} (A/k [g]g>, (2.14)

where Ny = (—1)(£)(9_1)Nr,k (cf. (L.1)) and ¢ € V* is a regular point in a chamber that contains
Ak in its closure.

Now, if we look at our main goal (1.1): proving the equality
Ver(k,A) = x(Po(A/k), Lo(k; A)), (2.15)

then we discover a rather embarrassing mismatch. Both sides are piecewise polynomial func-
tions, however,

e according to the HRR theorem, x(P(A/k), £o(k;A)) is polynomial on the cones over the
the equivalence classes (cf. (2.9)) of A/k, while

e according to (2.14), Ver(k, A) is polynomial on the cones over the equivalence classes of
A/K,

and these conic partitions of {(k,A)| A/k € A} could clearly be different (cf. Figure for a
sketch of this problem).

|

5

+

-
\I >

Figure 2.4 — A/Xk is in the orange chamber, while A/ is in the green chamber.

Thus for to be true, some miracle needs to occur, and these miracles are well-known
in the area of "quantization commutes with reduction" [15] 28} 23]. We will return to this
problem in but for now, we will be satisfied to use to write down a (conjectural for
the moment) formula for x(Py(A/k), Lo(k;A)), which is manifestly polynomial on the cones
where A/k is in a fixed equivalence class.

Let us fix a regular ¢ € A marking a particular chamber in A. The two cones {(k;A)|A/k ~
c} and {(k;A)] Ak ~ c} intersect along an open cone (this cone is shaded in orange on Figure
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, and on this intersection, the expression

> iBer [wi, 2 (x/R)] (MK~ VKl (2.16)

BeD

coincides with the right hand side of (2.14). As (2.16) is manifestly polynomial on each cone
where A/k is in a particular chamber in A, this expression will be then our main candidate for
X(Po(A/Kk), Lo(k; A)).

Our plan is thus to split the proof of into three parts: the first is equality (2.14), and
the other two are given in our main theorem below. We formulated all our statements in a
manner that allows us to treat the cases when A/k or A/k are on a boundary separating two
of our chambers in A.

Theorem 2.3.8. Let A € A and k € Z>° be such that A\/k € A. Let ¢ and ¢ € A be reqular elements,
specifying two chambers in A, which contain A/k and A/X in their closures, correspondingly. Then for
any diagonal basis D, the following two equalities hold:

X(Po(€), £(k;N) = Ny Y iBer [ w9 (x/K)| (A/k = [els), (1)
BeD

d
" Z iBBer [wg29(x/i)] <§\/ﬁ— [QJB) = Z iBBer [wgzg(x/ﬁ)} </7:/E— [E]B> ) (I1)

BeD BeD

Remark 2.3.9. Part of the theorem implies that if A/k € A is not regular, then
X(Po(c™), LG A)) =x(Polc™), L(K ),

for regular c* € A in two neighboring chambers that contain A/k in their closure (cf. Proposi-

tion and Remark [2.9.4).

Before we proceed, we formulate a mild generalization of part || of our theorem. As
observed above, if we fix a generic ¢ € A, and vary (A, k) in such a way that A/k ~ ¢, then
both sides of the equality (I.) are manifestly polynomial, and thus we can extend the validity
of this equality as follows.

Corollary 2.3.10. Let ¢ € A be a reqular element, which thus specifies a chamber in A and a parabolic
moduli space Po(c) as well. Then for a diagonal basis D, an arbitrary weight A € A, and a positive
integer k, we have

x(Po(e), £(A)) = Ny Y iBerlwg * (x/k)I(A/k — [cl). (2.17)
BeD

Example 4. Let us write down these formulas in case of r = 3 explicitly. Let D be the diagonal
basis from Example 2} then using Remark we obtain

e?\1x+()\1+7\2)y+x+y _ e?\1X+ ()\1+7\3)y+x

X(Po(<), £(k;A)) = (=1)971(3(k +3)?)9 523 Res (1= ex(13)) (1 = 9 (K13 g (x, )29

7 dxdy
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and

X(Po(>), £(k;A)) = (=1)97(3(k +3)*)9

eMx+ (A +A2)y+x+y _ pArx+(A1+As)y+x+y(k+3)

SRS (1= e (1 — en 0 g (2T Y

where wo (x,y) = Zsinh(%)Zsinh(%)ZSinh(%).

2.3.4. The walls

Our first step is to identify the wall-crossing terms of the residue formula (2.17), which orig-
inate in the discontinuities of the function ¢ — {c}p. These discontinuities occur on "walls":
the affine hyperplanes (2.10). The following is straightforward:

Lemma 2.3.11. Let Sy, be the wall defined by (2.10), and B = (B™Y),...,BI"=Y) € B an ordered
basis of V*. Then, as a function of c, the fractional part function {c}g has a discontinuity at a generic
point of the wall Sy exactly when Tree(B) (cf. page is a union of a tree on T, a tree on T1” (the
enumeration of the edges is irrelevant here) and a single edge (which we will call the link) connecting
T and T1”.

Notation: We will denote the element of B corresponding to this edge by Bjink; this vector
thus depends on B and the partition TT.

Proof. We fix B, and note that for our purposes, c € Sy will be considered generic if it belongs
to only this one wall in A; this is equivalent to the condition that the only nontrivial subsets
of coordinates of ¢ which sum up to an integer are TT’ and TT”.

Note that an element .
_

c= Z bj[S[j] eEA
j=1

is a point of discontinuity of the fractional part function {-}g if and only if b; € Z for some
1 <j <v—1. Next, we express the coefficient b; via the coordinates of c: we show that for all
1<j<r—1wehave

b; = Z ci for some subset ¥; — {1,..,7}. (2.18)
iE\y]‘

Now we orient the edges of Tree(B) in such way that they are all directed "away" from the
root vertex r, and, without loss of generality (recall that };c; = 0), we can assume that this
orientation agrees with the signs of the elements pUl e B. Ttis easy to verify then that the
subset

Y; = {k e {1,..,7}| the unique directed path in Tree(B)
from T to k contains the edge corresponding to U},

satisfies .

Hence we can conclude that if c € Syy,1 is generic and the coefficient bj is an integer, then
necessarily ¥; = TT, and thus T1” = {1,..,7}\¥;, and cutting the edge corresponding to B!
from Tree(B) results in two disjoint trees, on TT" and on TT”, respectively. O
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Now choose two regular elements ¢, ¢~ € V* in two neighboring chambers separated by
the wall Sty 1, in such a way that

[cf]=1 and [cq]l=1-1, (2.19)

where

def
= Z Ci,

iell’

and, as usual, [q] stands for the integer part of the real number q. Now introduce the notation

pallGA) = Nok D7 iBerbw, *9(x/K))(A/k — [c*]p)
BeD

for the two polynomial functions in (k,A) corresponding to ¢t and c~, respectively. We
define the wall-crossing term in our residue formula as the difference between these two
polynomials:

p+(GA) —p-(IGA).

Using Lemma|2.3.1|and (2.19), we obtain the following simple residue formula for this differ-
ence.

Lemma 2.3.12. Let (TT,1), ¢t and ¢~ be as above, and let us fix a diagonal basis D < B. Denote by
DTT the subset of those elements of D, which satisfy the condition described in Lemma|2.3.11} Then

P A) = p-(A) = R Y] iBer | (1 - exp(Bink(x))we, * (x/K)| (MR~ [c¥s), (220)
BeD|TT

where Biink is the “link” element of B (depending on T1 and B) defined after Lemma|2.3.11

Remark 2.3.13. Note that the multiplication by 1 — exp(Biink(x)) in (2.20) has the effect of
canceling one of the factors in the denominator in the definition (2.11) of the operation iBer.

Example 5. Calculating the difference of two polynomials from Example 4} we obtain the
wall-crossing term for rank 3 case:

e)\lir (A1+A3)y+x

~(A) = p4(kA) = (=3(k+3)*)9 ResR
pP-(GA) = py (K A) = (=3(k+3)7) 520 x=0 (1— X3 )wg (x,y)29 -1

dxdy.

2.3.5.  Wall-crossing and diagonal bases

Now we pass to the study of the combinatorial object D|IT defined in Lemma One thing
we will discover is that even though each diagonal basis consists of (r —1)! elements and the
right hand side of does not depend on the choice of D, the number of elements in D|TT
might vary with D.

First we look at the case of the Hamiltonian basis H;. Form now on, we will use the
notation [IT’| = r" and |TT”| = r” for a nontrivial partition TT = (TT’,TT”), (recall the convention
r € T1”). The following statement is easy to verify.
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Lemma 2.3.14. Let TT = (T, T1”) be a nontrivial partition, such that 1 € T (the other case is analo-
gous). Then
Hy | = {o(B)| o(1) =1, and o(TT") e TT'}.

In particular, |F1|TT] = (v — 1)1 - "L

It turns out that for our geometric applications, instead of H(;, we will need to choose a
particular nbc-basis, where the ordering is chosen to be consistent with TT.

To simplify our terminology, we will use the language of graphs and edges introduced in
§2.2.3} and we will think of «¥) € ® as an edge in the complete graph on  vertices. To define
the ordering v, we need to choose an edge between T1’,TT”; the choice is immaterial, but for

simplicity we settle for m def max{i € TT"} and r € TT”, and set B = «™" to be the smallest
element according to v.

The v-ordered list of edges thus starts with Bj,x, and then continues with the remaining
1" —1 edges connecting TT" and TT”. Next we list the r’(r’ — 1)/2 edges connecting vertices
in IT" in any order, and finally, we list the remaining edges, those connecting vertices in TT”.
Notation: We introduce the natural notation @’ and ®” for the A,» and A~ root systems
corresponding to TT" and TT”, and we denote by D[v], D’[v] and D”[v], the diagonal nbc-bases
induced by the ordering v on ®, ®" and ®”, respectively.

The following is easy to verify.

Lemma 2.3.15. Given elements B’ € D'[v] and B” € D”"[v], we can define an element of D[v] as
follows: we start with Bynk, then append B', and then continue with B”. This construction creates a

one-to-one correspondence
D'v] x D" ] — DI|TT; (2.21)

in particular, | D[V]|TT| = (v = 1)1 - (v = 1)L

Finally, putting Lemmas [2.3.12| and |2.3.15 together, we arrive at the following elegant
statement:

Proposition 2.3.16. Let (TT,1), ¢t and ¢~ be as in Lemma |2.3.12| and let D’ and D" be diagonal
bases of ®' and ®” correspondingly. Then

P+GA) —p_(GA) = (k+71)Ny -

Z Z e T e [WED_ZQ(X/ ]2)] (X/ k- [C+]B) dBiink, (2.22)
BieD Brepy Punk=0 B B

where Resp,  —oiBerg: iBergs dPink is simply iBerg (cf (2.11)) with B obtained by appending B’,
and then B” to Byink, and with the factor (1 — exp{Prink, X)) removed from the denominator.

Remark 2.3.17. The expression

Res iBeriBer [wip_zg(x/ﬁ)} (X/ﬁ— [C+]B> dBink
Bink=0 B’ B”

may equally be interpreted as follows. We write

Ak = [c*1B = MyinicBlink + 1 + 1"
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according to the splitting of B, think of w(x/ 1A<) as a function in F ¢~ with some fixed values of
the parameters from B’ and i, and then calculate

i]%gr[wlq;zg (x/K)1(n").
The result will be a rational function Q in the variables from B’ and Bk, and we proceed
to calculate iBerp/[Q](n’) to obtain a function F in the variable Py, and finally the answer is
Resg,; =0 €xP(Miink Blink ) F(Brink ) d Blink-

We observe that since the trees Tree(B') and Tree(B”) are disjoint, the order of the applica-
tion of the operations iBergs and iBerpg~ is immaterial.

2.4. Wall-crossing in master space

Master spaces were introduced by Thaddeus in [26] in order to understand the dependence
of GIT quotients on their linearizations. Following his footsteps, in this section, we describe
a simple but very effective method to control the changes in the Euler characteristics of line
bundles when crossing a wall in the space of linearizations. (Similar results appeared in [7]).

2.4.1.  Wall-crossing and holomorphic Euler characteristics

We begin by recalling the basic notions of Geometric Invariant Theory.

Let X be a smooth projective variety over C, and G a reductive group acting on X. A
linearization of this action is a line bundle L on X with a lifting of the G-action to a linear
action on L. An ample linearization is G-effective, if L™ has a nonzero G-invariant section for
some n > 0; the space of such linearizations Coneg (X) is called the G-effective ample cone.

For L € Coneg(X), we define the invariant-theoretic quotient My = X // L G as the Proj of
the graded ring of invariant sections of the powers of L:

M| = Proj (P H’(X,L™)C.
n

According to Mumford’s Geometric Invariant Theory [16], there is a partition of X (depending
on L)
X = X°[L] u X**[L] u X"°[L] (2.23)

into the set of stable, strictly semistable, and unstable points, such that there is a surjective
map (X5[L] U X5%[L])/G — Mp; when X*%[L] is empty, this map is a bijection, and the quotient
M1 = X5[L]/G is a smooth orbifold.

In [6], Dolgachev and Hu studied the dependence of the GIT quotient M = X /- G on
L. They showed that Coneg(X) is divided by hyperplanes, called walls, into finitely many
convex chambers, such that when L varies within a chamber, the partition (2.23) and thus the
GIT quotient M remains unchanged. Moreover, an ample effective linearization lies on a
wall precisely when it possesses a strictly semistable point.

Now let us consider two neighboring chambers, with smooth GIT quotients M and M_.
We pick an arbitrary linearization £ of the G-action on X, which descends to M and M_.
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This last condition means that if S < G is the stabilizer of a generic point in X, then S acts
trivially on the fibers of £. We will call such linearizations descending.

Thus, given such a descending linearization £ of the G-action on X, we obtained two line
bundles: one on M, and one on M_, which, by abuse of notation, we will denote by the
same letter £. Via taking Chern classes, this construction creates a correspondence between
classes in H?(M,Z) and H*>(M_, Z), which we will assume to be an isomorphism of free
Z-modules. We will thus identify these lattices, and introduce the notation I" for them:

r=H*(My,Z) ~ H3(M_, Z).

The walls mentioned above can be thought of as hyperplanes in g =T ®z R.
Our goal in this section is to compare the holomorphic Euler characteristics x(M, £) and
X(M_, £), which are given by the Hirzebruch-Riemann-Roch theorem:

X(Ms,£) = | exples())Todd (M)

As this expression is manifestly polynomial in c;(£), we obtain thus two polynomials on T,
and our goal is to calculate their difference, the wall-crossing term

x(My, L) —=x(M_, L). (2.24)

2.4.2.  The master space construction

To simplify our setup, we will make some additional assumptions.
Assumptions 2.4.1. 1. The generic stabilizer of X is trivial.

2. Let L} and L_ be two ample linearizations of the G-action on X from the adjacent cham-
bers corresponding to the quotients M, and M_. Without loss of generality, we can
assume that the linearization Ly = L; ® L_ lies on the single wall separating the two
chambers, and that the interval connecting ¢1(L;.) and ¢;(L-) in IR = ' ®z R does not
intersect any other walls.

3. Let X? be the set of those semistable points x € X*3[Ly] which are not stable for L
X0 = XL\ (XS[Ly ] U XS[L_])

We assume that X? is smooth, and that for x € X° the stabilizer subgroup Gx = G is
isomorphic to C*.

4. Assume that there is a linearization L of the G-action on X such that Ly = L_ ® L™ for
some positive integer n, and such that for each x € X0, the stabilizer subgroup Gy acts
freely on L, \0.

Now we introduce the master space construction of Thaddeus [26]. Consider the variety
Y = P(O®L), which is a P!-bundle over X endowed with the additional C*-action (1,t™1).
As Y is a projectivization of a vector bundle on X, it comes equipped with O(1), which is the
standard G x C*-equivariant line bundle. To simplify our notation, we will denote the same
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way the linearizations of the G-action on X and their pull-backs (with tautological G-action)
toY.
The master space Z then is the GIT quotient of Y with respect to the linearization L_(n) =
L_.®0O(n):
Z=Y/)r-Mg,

which inherits a C*-action from Y. Some additional notation:
e We will denote this copy of C* by T,
e the projection Y — X by 7, and the quotient map Y* — Z by .

o Introduce the notation Y(0: -) and Y(: : 0) for the two copies of X in Y, corresponding to
the two poles of the projective line; then Y is partitioned into 3 sets:

Y=Y0:)uY(:0) ul°,

where [° is the line bundle [ with the zero-section removed. We will write 7t, for the
restriction of 7t to L°. We collect our maps on the following diagram.

e syvy=PO®DoYy Y57

®L
\ l“ (2.25)
X

Proposition 2.4.2. 1. There are embeddings
L :M_—>Z and M, —>Z

obtained as the quotients YS n Y(-:0)/G and
YSnY(0:-)/G, correspondingly.

2. The strictly semistable locus of Y with respect to the linearization L_(n) is empty, and the GIT
quotient Z = Y% /G is smooth.

3. There is an embedding \; : X%/G — Z, obtained via (.~ 1(XY)). We denote the image of v by
AR

4. The fixed point locus Z" is the disjoint union of vy (M), ._(M_), and Z°.

Proof. (1)-(3) follow from [26] 4.2, 4.3]. To prove (4), first note that Y(- : 0) and Y(0 : -) are
fixed by T, so we immediately obtain that M+ < Z are fixed components. Also the G-action
on Y commutes with the T-action, so a point P (y) € P (r5 1(X)) is fixed by T if and only if the
T-orbit T-y < 75 1(X) is contained in the G-orbit G -y < 751 (X). Since T -y < 7 !(x) for some
x € X, we need y € 7, }(X?). Moreover, for any y € ni;1(x) = m; 1(X?), T-y = ;1 (x) = Gx -y,
so a point P(y) € W(m; }(X)) is fixed by T if and only if P(y) € W(m;1(X?)) = Z°. O
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Construction: Given a G-equivariant vector bundle E on X, we can construct a T-equivariant
vector bundle ((E) — Z on Z by first pulling E back from X to Y, and endowing the resulting
bundle *E with the trivial action of T, and the action of G pulled back from X. We then
obtain ((E) — Z by descending 7*E to Z.

Before we formulate our wall-crossing formula, we need one more ingredient: the identi-
fication of the normal bundles of the fixed point components of Z.

Lemma 2.4.3. 1. The normal bundle on the component M. of Z"is C and the normal

bundle of M _ is ¢(L

Dl
SlIveE

2. Let x € X, denote by Gy, the stabilizer of x in the group G, and consider the point (x) € Z° (cf.
Proposztzonu(S)) Then the normal vector space of Z° < Z at the point () is canonically
T-equivariantly isomorphic to the T-vector space L2 x g, N X°, where N X is the vector space
normal to X° < X at x, and the T ~ C*-action is induced by left multiplication by t=* on L.

Proof. Part (1) immediately follows from the formula for the tangent space of the projective
line: TP(V) ~ Hom(S,Q), where S — V — Q is the tautological sequence on P(V), the
projectivization of the vector space V.

For part (2), consider dlagram- our goal is to identify the descent to Zy of the normal
bundle N, 1y, to 7 -1X0 in [°. We only need to observe that this bundle may be identified
with the pull-back *NX" of the normal bundle to X’ in X, endowed with the natural G-action
and a T-action, which is trivial on the fibers. O

Remark 2.4.4. Note that restricting the operator ¢ to XY, we can construct a T-equivariant
vector bundle on Z° from a G-equivariant vector bundle on X°. Then the normal bundle N o
of 2z may be also described as C‘ XO(NXO). The T-weights of the action may be computed
by fixing x € X?, identifying the stabilizer subgroup Gx = G with T via its action on the fiber
[, and then considering the action of Gy on N, X’.

Lemma 2.4.5. The restriction of the line bundle {(L) to Z° is trivial with T-weight 1.

Proof. Note that 7*[ admits a G-equivariant tautological non-vanishing section. For calculat-
ing the weight, we observe that while T acts on L, with weight —1, the T-weight of L xg L
is +1. O

Definition 2.4.6. Given a T-vector bundle V on a manifold on which T acts trivially, the T-
equivariant K-theoretical Euler class of V*, which we denote by E((V), may be described as
follows: let xi,...,xn be the Chern roots of V, and 1;,...1l, € Z be the corresponding T-
weights. Then

(V) = 1_[ (1 —t7b exp(—xj)) .
j=1

Now we are ready to write down our wall-crossing formula for (2.24). A key role will be
played by the following notion: given a rational differential 1-form on the Riemann sphere,
let us denote taking the sum of residues at 0 and at infinity by p — Res{—q o 1

Res = Res+ Res .
t=0,0 t=0 t=00
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Theorem 2.4.7. Let £ be a linearization of the G-action on X, and denote, as above, by ((L) the T-
equivariant line bundle on Z obtained by pull-back to Y and descent to Z. If Assumptions hold,

then el
C t
(M4, L) —x(M_, L) = Res f t—‘ZOT dd(ZO)d (2.26)
t=0,00 J 70 Et (N 70 )
where N zo is the T-equivariant bundle on Z° described in Lemma chy is the T-equivariant Chern
character, and Bt (N z0) is the K-theoretical Euler class of N%,

Proof of Theorem The Atiyah-Bott fixed-point formula [2] applied to the line bundle ¢(£)
on our master space Z yields

-y f che (CLL)]E) dd(F), (2.27)

FozT Ee NF

where the sum is taken over the connected components of the fixed point locus Z.

In Propos1t10n we identified these components as M., M_ and VA Lemma -
identifies the equlvarlant normal bundles of M, and M_, and thus the corresponding contri-
butions are

J ch(£)Todd(M ) and J ch(£)Todd(M_)
M, 1—1t1 exp(cl(f)) M_ 1—texp(—cl(f)).
We observe that x(Z, ((£)) is a Laurent polynomial in t since it is the alternating sum of

T-characters of finite dimensional vector spaces. Thus, as a function of t, x+(Z, ((£)) has poles
only at t =0, 0o, and by the Residue Theorem, we have

dt
Res xt(Z,¢(L))— =0.
t=0,00 t
On the other hand, since
A dt A dt
Res ——— R =
t:g,io 1-t1B t —A and tfeio 1—tB t =A
we have
h(£)Todd(M
Res J ch(£)Todd{ t) i —x(M_, L) and
t=000 Jm, 1—t lexp(ci(L)) t

Res

t=0,00

x(M_, £).

f ch(£)Todd(M_) t
M (D) t

Now, applying the functional Resi—_g, to the two sides of (2.27) multiplied by dt/t we
obtain the desired result (2.26). O

_1—texp(—

2.5. Wall-crossings in parabolic moduli spaces

In this section, we apply Theorem to wall-crossings in the moduli space of parabolic
bundles.
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From now on, we assume that d = 0, and we write A for the corresponding set of admis-
sible parabolic weights Ag. Recall from Section [2.1.2] that for regular ¢ € A, the moduli space
of stable parabolic bundles Py(c) is the GIT quotient XQ /€ PSL(x), where XQ is a subspace
of the total space of a flag bundle over the Quot scheme. Let us fix a partition T = (1T, T1”)
and an integer 1, and introduce the notation A{ and A” | for the simplices of parabolic weights

of T and TT”. Let ¢ € L, be the unique permutation which sends {1, ..., 1’} to TI' preserving

the order of first ' and the last v elements. We choose ¢? = (c(l), ) e St1,1 and two regular

elements c¢™,c¢™ € A in two neighboring chambers separated by the wall Syy, such that
ct=c+¢(..,0,1,0,...,0,—1)
for some positive € € Q, where 1 and —1 are on the ¢ (/) and ' places, respectively. Let

¢ = Z xi e Al and ¢’ = Z Ixi e A” .

iell’ iell”
For (k,A) € Z x A, consider the polynomials
q=(k,A) = X(Po(c*), Lo(k; A)).

Our goal is to calculate the difference of these two polynomials.
Notation: To simplify our notation, from now on, we omit the index t from the symbols for
equivariant characteristic classes.

2.5.1.  The master space construction

We construct the master space Z from using the following data:
e a smooth variety X = XQ (cf. §2.1.2);
e linearizations L* = L(k;AT) of the G-action on X (cf. , such that AT /k = c%;
e the linearization [ = L(0;%xg (+) — xr) of the G-action on X.
The following statement is easy to verify.

Lemma 2.5.1. ([5) §3.2]) The subset X° < X is the set of points representing vector bundles W on
C, such that W splits as a direct sum W' @ W", where W' and W" are, respectively, ¢’ and c”-stable
parabolic bundles. Therefore, we have the following description of the locus Z°:

2P =(W=WaW' W eP(); WeP_(c"); det(W) ~ O}.

Remark 2.5.2. Note that Z° is fibered over Jac' with fibre Pi(c’) x P_i(c”) by the determinant
map Py(c’) — Jac! and

H*(Z°,Q) ~ H*(Pi(c) x P_1(c"),Q) @ H*(Jac', Q). (2.28)

Remark 2.5.3. If the rank of the vector bundle W € 131 (c)is1,thenc =1land 131(1) is isomorphic
to Jac!, while Py(1) is a point.
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Now we need to verify the hypotheses of Theorem Note that in our present con-
struction X is not projective, however, it contains all semisimple points of the flag bundle over
the open subscheme of the Quot scheme parametrizing locally free quotients (cf. for
all possible polarizations, and hence the missing points of the Quot scheme have no effect on
any of our constructions (a similar argument appeared in [26]).

Assumptions n (1) (2) are tr1v1ally satisfied, so we study the action of the stabilizer
Gx < PSL(N) of point x € X on the fiber LX\O

e For a general point x € X the stabilizer of x is the center Zn < SL(N), which acts trivially
on the fiber L,\0.

e For x € XY, any element of the stabilizer of x induces an automorphism of the corre-
sponding vector bundle W = W/ @ W”, so the stabilizer of x in GL(N) is isomorphic to
C* x C*  GL(N). An element (t;,t;) € C* x C* is in SL(N) if and only if tN't)" =1,
where N’ = x(W/) and N” = x(W”). Note that (t,t,) acts on Ly, as tltz_l, and we need
t; =ty (hence t]¥ = 1) for this action to be trivial, so the stabilizer of any point in L\0
is the center Zn < SL(N).

Then the action of G = PSL(N) is free on Y\(Y(0:-) u Y(-:0)), and the action of Gx < PSL(N)
on L4\0 induces an isomorphism G, ~ C* ~ T.
Now by Theorem the wall-crossing polynomial q_(k;A) — g4 (k; A) is equal to

ch(Lo(k;A)| o) dt
R 2" Todd(Z° 2.29
t:&iofzo E(N o) (29 = (2.29)

Note that in our case, the T-action on Z is free outside the fixed locus ZT, so as a function
in t € T, the integral in (2.29) may have poles only at t = 0,1,00. Then, using the Residue
Theorem and substituting t = e*, we conclude that (2.29) equals

ch(Lo(k;A)] o) 0
Res LO E(N o) Todd(Z") du, (2.30)
and thus our goal is to calculate this integral.

Our first step is to identify the characteristic classes under the integral sign (cf. Proposition
[2.5.11]for the result).

We start with the study of the restriction of the line bundle £y(k;A) to the fixed locus
Z° c Z. First, we describe a parametrization of the factor H*(Jac!, Q) in (2.28). Let J be the
Poincare bundle over Jac x C, such that c1(J) ) = 0; define n € H?(Jac) by (3 c1(d)(ey) ®

ei)? = -2n®w (cf. =| then (cf. [31]) for any m e Z
J e =md9. (2.31)
ac

As Z° is a connected component of the fixed locus of the T- action on Z, its equivariant
cohomology factors: Hi"r(Zo) ~ H*(Z") ® C[u]. In particular, there are canonical embeddings
H*(Z%) — H%(Z°) and Clu] — H%(Z9).

Remark 2.5.4. It follows from Lemmathat ¢y (f)‘ 20) =W
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Recall that for a parabolic weight ¢ = (cy,...,cr) € A, we have set cry = i Ci-
Lemma 2.5.5. Let A = (Ag,...,Ar) € A, k € Z>0 and let TT = (T, T1") be a nontrivial partition with
reTl”. Let
= Z ?\ixi and 7\” = Z )\ixi,

iell’ iell”

and define 6 by (A/k)r =1+ 0. Then

nk nk
ch(Lo(k;N)|,0) = et exp (r’ + r”) :
Ch’(Ll(k;)\]/ o7 T" ké).L ( 17 =0 T‘” +k6))
where [x] denotes the external tensor product of line bundles on Pi(c’) x P_i(c").

Proof. First, note that

ch(Lo(0;A)],0) = e MHOMCh(Ly(0;A], ..., AL — KL — k&) & L_1(0;A], ..., Al + kL + k&),

and thus it will be sufficient to identify the restriction of £(k;0). It follows from Lemma
that

e1(£0(k50)) = 2-calEndo(U)) .

Note that
c2(Endo(U)) (2) = —2rcha(U) () + ¢ (W) (2) = —Tcha(U) (2),

and thus
c1(Lo(k;0)) = —kchy(U)(y).

Denote by U’ and U” the normalized (cf. =' universal bundles over P (c’) x C and
P_1(c”) x C, respectively. Since

cha(U|,0) () = chy(UW' ®¢(L D)|,0)(2) + cho U”\ZO
we have (cf. Remark|2.5.4)

c1(£o(k;0)| o) = —kcha(U') 5y — ke (U) o) — kehy(U”) (o) =

k ~ ~ k ~ kK 5.~
Fcz(ul)( 2) = 5.7 i (U)2) + Wcz(u”)(z) - W%(U”)(z) —klu.
Now, since
(U2 =2lcr (U)o —2n and cZ(U") 5 = —2Leg(U") (o) — 20,
by Lemma we have
k kl k
c1(Lo(k;0)] o) = Fcl(Ll(T/}lz---/l)) - ?Cl(u/)(o) i+

k kl k
Wcl(L 1(1‘/; 1., —1)+ Wcl(u )(0) —l—T]* —klu=

c1(L1(k; (0, ...,0,k1))) +c1(L_1(k; (O, ...,0,—k1))) +n (l( + rk> —klu,

and this completes the proof. O
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Lemma 2.5.6. Denote by U’ and U" the normalized (cf. § unwersal bundles over Py(c’) x C
and P_y(c") x C, and denote by T the projections along C. Then the T-equivariant normal bundle to
the fixed locus Z° = Z is

N0 = Rbm, (ParHom(U/, U")) @ Rym, (ParHom (U”, U)), (2.32)
where the T ~ C*-action has weights —1 and and +1 on the two summands, respectively.

Remark 2.5.7. As we are working with fixed determinant moduli spaces, the push-forwards
in (2.32) are to be taken along the curve C in the part of P(c’) x P_i(c”) x C where det(W’) -
det(W”) ~ O (cf. Lemma|2.5.1).

Proof. According to Lemma [2.4.3| for any point x € X, the normal bundle N o at the point
o(x) € ZY may be identified w1th the T-vector space LO x G, NxX?, where N, X" is the normal
bundle to X° = X at x, with the T-action induced by left multlphcatlon by t~ 1 on Ly.

Denote by UQ the universal bundle over X, which descends to the normalized universal
bundles on Py(c*). Recall that any point x € X° represents a vector bundle which splits as a
direct sum of two subbundles, hence we have UQ, = U} ® Uy, and

N, XY = H}(C, ParHom (U, Uy )) ® HY(C, ParHom (U, U))

(c.f. |18} Proposition 1.13] for the description of the deformation space of parabolic bundles).
A simple calculation (cf. Remark and Lemma [2.4.5) shows we have a a T-module iso-
morphism

I__’o

X

X G, HY(C, ParHom(U;,Uy)) ~ Ly ®H(C, ParHom(U;,Uy))

with T-weight —1 induced by multiplication on L and trivial action on U; and Uy; applying
the projection formula we obtain that

[, @ HY(C, ParHom(U;, Uy)) ~ HY(C, ParHom (U ® L1, Uy)).
Similarly, we have

[ xg, HY(C,ParHom(U, U)) ~ [T'@HY(C, ParHom (UL, U )) ~
HL(C, ParHom (UL, U @ T 1)

with T-action of weight 1.

Finally, we observe that according to our normalizations, the bundles U* ® [~! and U~
descend to the normalized universal bundles U’ and U” over P(c/) x C and P_{(c”) x C,
respectively, and this completes the proof. [

2.5.2.  Calculation of the characteristic classes of N zo

Before we calculate the equivariant K-theoretical Euler class of the conormal bundle N%,, we
need to introduce some notations. Recall that for 1 < 1,j < 7, the differences x; — x; € V* are
linear functions on V, and the function x; — x;j corresponds to the linearization Ly(0;x; — x;)
on X, which descends to the line bundle £((0;x; — x;) on the moduli space Py(c) (cf.
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As in we denote by ((Lo(0;x; —x;)) the line bundle on Z obtained by the pullback and
then descent. This way, we obtain a correspondence between the linear functions x; — x; and
the T-equivariant line bundles on Z.

Recall the definition of the permutation ¢ € L, given at the beginning of this chapter: ¢
takes the first r’ numbers to TT’, preserving the order of the first ' and the last 1 elements.
We introduce the symbols

2y — 25 = c1(C(Lo(0; X (1) — X ()] 20), (1 <L,j <)

j <
0 X (41 —Xq>(r/+j)))}zo), (1<1i,j<1) (2.33)

z{ — 2§ = c1(¢(Lo(
u=(zp —zy) = c1(C(Lo(0; X () — X)) | 10)

for the equivariant cohomology classes in H2%(Z°). The last equalities are consistent with

Lemma
Remark 2.5.8. Note that (cf. Remark2.5.2)

Z’/i_ ) (?/ 1+1/ ®(?/ ]—|—]/ )*)EHz(Pl(C/))/

Z — 2 —cﬂ941+M9%4cu9”J+M9%ﬂﬁ)eH%P;mwn,
where F} and J7 are the flag bundles (cf. §2.1.3) on Py(c’) and Py(c”), correspondingly.

Taking into account these identifications, functions on V give rise to equivariant cohomol-
ogy classes on Z°. To make the splitting H%(Z%) ~ H*(Z%) ® Clul, explicit, however, we will
write these classes in the form fu(z z"), thinking of them as functions of the differences of
the z!s and the differences of the z's, depending on the parameter u. With this convention,
we mtroduce

wy(Z,2") = H 2sinh(z; — zj) H 2sinh(zj — z}),
i i)
b ()<d(v+5) G (r'+i)<d(i)
1 1
il ) =5 ), E-H+y ) -4
i/j .fj
G ()<d(v+)) G(r'+Hi)<d (1)

where according to (2.33),

zi —zf = (zi — 2p) +u— (2§ — z7) = c1(C(Lo(0;x g (4) — X (r4j)))| 0) € H3(Z9).

Now we are ready to write down our formula for the K-theoretical Euler class E(Nzo) (cf.
definition|2.4.6|with t = eY).

Proposition 2.5.9.

_ I (o _ T _
E(N ) L (L)l (9= g—rlug p< 1://) E(Z/,Zﬂ)l ZQQXP(pLXL(Z/,ZU))

ch(Li(r";—1,..., =L, =1+ K L_(v;1,.., L, 1—10)).
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Proof. It follows from the short exact sequence (2.1) for parabolic morphisms that

ch(—m(ParHom(U”, W) = —ch(m(Hom(U”, U))) + Z eZiE
)
G (1) <d(r'+5)

and
ch(—m(ParHom(U, U")) = —ch(m(Hom(W, W)+ > &5,
9]

S (r'+j)<d (i)
so by Lemma

ch(N o) = ch(—m(Hom(U”, U)) ® —m (Hom(U”, U)*))

+ ) eEEH e Y TR (2.34)
¥ 0]
(D)< (r'+) b (r'+i)<b (i)

Let f(x) be a power series in one variable, and W a vector bundle of rank r with (equiv-
ariant) Chern roots y,...,yr. Then we denote by [f(x)]"' the multiplicative (equivariant)
characteristic class of W given by the function f(x) in Chern roots of W:

T

PO = [ | flyy).
j=1

Lemma 2.5.10. Let P be a smooth variety, and let S be a T-vector bundle on P x C with T-weight 1;
pick a point p € C and denote by 7t : P x C — P the projection along the curve. Then

exp(—cha(S)(2))
[(2sinh(x/2))29-2]5v

E(—mS@® —mS*) "1 = (—1)k(=mS)

Proof. Note that

1 —TK!S _tex —7'[18
-1 .
Bl=mS)™ = {1—tlex] B {1—te"}

and

1 —7'[15* 1 (_7—[!5*)*
#\—1 __ —
EomsT) = [1_te] - [1_@} |

Applying Serre duality and the Grothendieck-Riemann-Roch Theorem we obtain

ch(—mS) + ch((—mS*)*) = ch(—mS) + ch(m(S®Kc)) =
ch(—mS) + 4 (ch(S® K¢ )Todd(C)) =
ch(—mS) +ch(mS) + (2g — 2)ch(Sp) = (2g — 2)ch(Sy),

where K¢ is the canonical sheaf on the curve C, hence

[ 1 ]—mS@(—mS*)* { 1 ]Sp_exp(—CMSp)(g—l))
(

1—tex (1—te¥)292] ~ [(2sinh(x/2))29-2]5"
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Since
[—teX] 7S = (~ 1™ exp ey (~mS))

and by the Grothendieck-Riemann-Roch theorem
chy(—=mS) = chi(Sp)(g — 1) — cha(S) (),
we conclude that
(—teX] 77 = (—1) S exp(er(Sp) (g — 1))exp(—cha(S)2)),
which finishes the proof of Lemma[2.5.10} O

Note that the last two terms in (2.34) are the sums of Chern characters of line bundles, so
they contribute the multiplicative factor

exp(pyi(Z,2"))
way (2, 2")

to the equivariant class E(N0)™%; and using Lemma|2.5.10|with $ = Hom(U”, '), we obtain
that the inverse of the K-theoretical Euler class of the first term in (2.34) is

(=))W (2, 2" P exp(—cha(Hom (U, ) ).

Note that

~ o~ 1 ~ ~ 1 ~ 1 ~
— chy(Hom(U"”, U))p) = ECz(Endo(U'@)U"))(z) - Ecz(Endo(U'))(z) - ECz(Endo(U”))(z)
=c1 (£(1;0)] o @ Lo(—7; =L, .., "R L (1, .., 1)

The latter equality follows from Lemma Finally, using Lemma [2.5.5[ to calculate the
Chern character of L(r;O)!Zo, we obtain the formula for the class E(N o)™, and the proof of
the Lemma is complete. O]

2.5.3.  The wall-crossing formula

Putting Lemma and Proposition together, we obtain the following.

Proposition 2.5.11. The wall-crossing term is equal to

KRese®o 0% [ [lwi(2, 2! 2Sexp(pi (2,2"))
u=
Pu(c/)xP_1(c”)

ch(Ly(k+7"M =1, ., AL =LA, — 1= k& + )X
L_]_(k + 1‘/; )\/1, + L, veey A/‘r{”—l + l, A/‘r{” + 1 + kd — T‘l))TOdd(P]_(C/) X P_]'(C”))} du,

where & is a parameter depending on A and the wall Sryy (c¢f. Lemma|2.5.5) and K is the constant

Py k 9
(_1)lr+rr (g 1)(T((r,:r”?))g) '
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Now all that is left to do is to perform the integral, using an induction on the rank based
on Corollary|2.3.10} We will begin with the case | = 0, as it is simpler. For 1 = 0, the integral
from Proposition[2.5.11|has the form

f [w(2,2")129ePu (222 ) Todd (Py(c') ) Todd (Po(c”))
Po(c’)xPo(c”)
Ch(LO(k"‘T”; /1/ ,Y" 17 k&).Lo(k—i‘T Y ;///_1, T//+k6))] (235)

The inductive hypothesis (2.17) maybe cast in the following form

ch(Lo(k;A))Todd(Py(c)) = N, Z 1Ber lexp{A, x/k> wo( x/k)l 29 (p/k [c]lg). (2.36)

Polc) BeD

Now let us fix k, and allow to vary A. We can extend this equality by linearity to arbitrary
linear combinations of Chern characters of line bundles of the form

> ch(Lo(k;AY) = ch(£o(k; 0)) Zch Lo(0;A1)).

Since any polynomial on V, up to a fixed degree may be represented as a linear combination

of exponential functions of the form exp(A, x/k), formula (2.36) may be generalized in the
following way.

Lemma 2.5.12. Let G(x) be a formal power series on 'V, and denote by G(z) the characteristic class in
H*(Py(c)) obtained by the identification of functions on V and cohomology classes of Py(c), described
before the equation . Then we have

| ehlol0) Gl Todd Pafe)) = Nre- 3 iBerlGOv/R) - why ™ (x/R1(p/k ~ cla). 237)
Po(c) Beb

Finally, let D’ and D” be Hamiltonian bases (cf. §2.3.5). Since
war (x/Kwaor (x/kK)w (x/k) = wa (x/k),

o' (x/K)p" (x/k)p (x/k) = p(x/X),

where we/, we» and p’, p” are naturally defined for the root systems @’ and ®” (cf. §2.3.5),
the integral (2.35) is equal to

NT’ k+T‘”NT‘” K41/ Z Z iBer 1Ber WQ) (X/k)l 2g ep(X/k)]

B'eD’ B"eD” B’

(( 17 +0r .,r/ 1s ké)/k +( /1/,..., ;///_1, ./r{//"—k,&)/k B//)

Identifying u (cf. (2.33)) with the "link" element of the diagonal basis D = (x®! ()T D' DY (cf.
'l and moving the factor e*®* from Proposition [2.5. 11 inside the argument of iBer, we
obtain the proof of the following theorem for 1 = 0.
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Theorem 2.5.13. Let c* € A be in the neighbouring chambers; then the wall-crossing term
X(Po(c™), Lo(k;A)) = x(Po(c™), Lo(k; A))
is equal to

(k+7)Npi D7 > Res iBeriBerlwo(x/k)! " 29](A/k — [c1p) da®(™)T,
Ben grepn x*r=0 B B’

where D’ and D" are the diagonal bases of ® and ©" (cf. §2.3.5) correspondingly.

Remark 2.5.14. Note that this wall-crossing term coincides with the one from Proposition
2.3.16

Example 6. It follows from Example[l|that in case of rank 3, the permutation ¢ € Z3 sends
(1,2,3) to (1,3,2). Then u = ¢1(Fy® F[*) and let z = 2| — 2§ = ¢1(F)/F] ® F/*). Then the
inverse of the K-theoretical Euler class of the conormal bundle is (cf. Proposition

1-2g
m oz . u . Z—Uu
ch(L)ezez (ZSmh (E) 2sinh <2>> ,

where £ = £y(2;0,0) is a line bundle on the moduli space Py of rank-2 degree-0 stable
parabolic bundles. The Chern character of the restriction of the line bundle Ly(k; A1, A2, A3)

to X is

3kn
e 2 ch(Lk)eMz A,

Hence the wall-crossing term

X(Po(<), Lo(k,A)) = Xx(Po(>), Lolk,A))

is equal to

9 Agu h(Lo(k+ LA+ 3, —A — 1
B (3(k+3)> e ' JC (Lo(k+1;A1+ 5, —M 2))Todd(Po)du.

R
2 =0 (2sinh(%))291 (2sinh(Z5%))29- 1

0

The integral is the Euler charactersitics of a line bundle on a moduli space of degree-0 rank-2
stable parabolic bundles, so we can calculate it using the induction by rank. It is equal to

(AM+1)z
e
dz,

(—=1)971(2(k 4+ 3))9 Res

z=0 (2sinh(Z5%)2sinh(%))29-1(1 — e(k+3)z)

so the wall-crossing term is

67\1 Z+7\2‘LL+Z

(=3(k +3)?)9 Res Res

dzdu,
u=0z=0 W¢(z,u)29*1(1 — elk+3)z)

where W, (z, 1) = 2sinh(*5%)2sinh (%
)

as in Example[5|after changing (z,u

)2sinh(% ). Note that this is exactly the same polynomial
to (x, —y).
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2.6. Tautological Hecke correspondences

If 1 # 0, then we need one more step in our proof, which uses the Hecke correspondence to
calculate the wall-crossing term (2.30).

2.6.1. The Hecke correspondence

Given a rank-r degree-d vector bundle W with a full flag 0 ¢ F; < ... & F, = W,, at p, one can
obtain a rank-r degree-d — 1 vector bundle W’ with a full flag 0 < G; < ... & Gy = W), using
the tautological Hecke correspondence construction as follows.
The evaluation map W — W,, induces the short exact sequence of the associated sheaves
of sections i
0->W SW—-W,/F_1 >0 (2.38)

on curve C. Since W' is a kernel of &, it is a locally free sheaf, thus gives a rank-r vector
bundle W’ over C with det(W’) ~ det(W)® O(—p). The image of the associated morphism
of vector bundles « at the point p is F,_1 < W,,, so o, - W]’D — W), has a one-dimensional
kernel G W]’D. Moreover, compositions of «;, with the quotient morphisms F,_; — F,_1/F;
induce a full flag of the corresponding kernels G & ... & Gy_1 & G, = W{, in W{,.

Denote this operator between the sets of isomorphism classes of degree-d and d — 1 vector
bundles with a flag at p by

H: (W, Fy) — (W, Gy).

Similarly, for any m > 0, one can define the operator H{™ between the sets of isomorphism
classes of degree-d and d — m vector bundles with a flag at the point p by iterating the above
construction m times. Clearly, these maps are independent of the parabolic weights.

Proposition 2.6.1. Let ¢ € A be a regular (cf. page|7) point. Then the operator 3 induces an
isomorphism between the moduli spaces Pq(cy, ...,cr) and Pg_1(cy,...,cr,c1 —1).

Proof. First, we need to show that if W € P4(cy,...,cy) is a parabolic stable bundle with
parabolic weights (cy,...,cy), then W/, its image under the Hecke operator H, is parabolic
stable with respect to parabolic weights (c»,...,cr,c1 —1). For this, consider the subbundle
V' 'c W' and let x(V') =V c W (cf. ) be its image. Since W is parabolic stable,

parslope(V) < parslope(W) = parslope(W').
We need to prove that parslope(V') < parslope(W'). There are two possible cases:

o If x maps V' to V isomorphically, then deg(V’) = deg(V) and V, < F,_q, hence
parslope(V') = parslope(V) < parslope(W').

e Otherwise, deg(V’) = deg(V) —1, and V,, is not contained in F,_1, so one of the parabolic
weights of V' is ¢; — 1. Then, as in the previous case, parslope(V') = parslope(V), and the
result follows.

To show that the map H is an isomorphism, note that " maps

Pd(Cl, C2, ..ty Cr) — Pd—r(cl — 1, Cy — 1,, veey Cyr — 1) (239)
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It is easy to check that given W and iterating the associated morphism of locally free sheaves
of sections (2.38) r times, we obtain a subsheaf W < ‘W of sections of W which vanishes at the
point p. So the map (2.39) is just tensoring by O(—p), and hence it is an isomorphism. O

Now we can define an operator H™ for any m € Z, taking the inverse map if necessary. We
will need the following statement, which follows from Proposition and the construction
of H™.

Corollary 2.6.2. Let m > 0. Then under the isomorphism H™ the line bundle £4(k; Ay, ..., Ar)
corresponds to the line bundle £ q_m (K; Ar—m41, o Ar, A1 — K, oo, Ay — K.

2.6.2. The effect of the Hecke correspondence on the integral

Recall that our goal is to calculate the wall-crossing term from Proposition[2.5.11} For simplic-
ity, we assume that 1 is positive (the other case is analogous). We apply the Hecke operators
3! and H~! to the moduli spaces Py(c’) and P_{(c”) to obtain

Pé = Po(C{+1,...,C1/4/, C{ — 1,..., C{ — 1) =~ Pl(cl) and

Pg = P()(Cg{//_]_+1 + 1, ey CIT{// + 1, Clll, ceey C;///_l) o~ P_[(C”).
Recall (cf. page that there is a natural action of the group X, on V*, and hence (cf. page
i on H2(Py(c/) x P_1(c")). Let T € £,» and 1" € L.~ be the cyclic permutations defined by
vo(e)—1,..,¢0—1,¢ 0, C) = (Clyq, e Crr e — 1, e — 1)
and
T// . (Cfll, ceny Cz”fll C;{//71+1 + ]., veey Cg{ + 1) = (Cz//ilJrl + ]., ceey C/T{” + 1, Clll, veey C;,//il).
And set T = (7/,7") € L x Z,» < L. Note that
v (=14+7,.,—-1+7,-1,.., ) =7 -0 =0
and
7., L=, =) =" " =,

so applying the Hecke operator ' x H~! to the wall-crossing term from Proposition [2.5.11
and using Corollary we obtain that the wall-crossing term (2.30) is equal to

_ _ X () M
Kggge(ké rl)ujl ) (T'WE(Z/,Z”)l ZQeT pX(2,2")
= PyxP{

Ch(Lo(k+ 1757 - (N =Ky ooy AL = K, ALy g, ooy N1, A — K 4 71))
Ch(LO(k + T/,' T// * ( {1/, ceey }\:/./71, ?\:{//714»1 ‘I‘ E, ceey }\/.'{// ‘I‘ E + k6 - Tl))

/) Y/

e™ 0l (A el 2N ot 0 (202 0 (22 ) Tod d (P Todd (Pf)) du.  (2.40)

As in §2.5.3} according to Lemma|2.5.12} we can calculate this integral using the induction on
rank. Let D’ and D” be two Hamiltonian diagonal bases. Then t/(D’) and t”(D”) are also
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Hamiltonian diagonal bases (cf. Remark|2.2.3) and the integral in (2.40) is equal to

(_1)1TNT’,k+T”NT”,k+T’ Z Z 1B(/3r lBgr

Bler (D) B'er’ (D7) B B
[T w2 (/)29 (W (x/K) W (x/fc))l*ge*p(*/ﬁ)]
(7 (N — K, ..., AL — E?\’Hl, SN N —KS +11)/k — vo(c) =1, e =1, ¢, e Cr)p+
T” . ( /11, cery {r//_l, )\/15”—1—0—1 + k, veey A/T{// 1 + k }\/T{// + ﬁ + kd — rl)/i—
[T” . (Clll, o CT’ v 1.// 1+1 + 1 ,C/;// + 1)]]3//). (241)

To arrive at Theorem [2.5.13] we need to make additional transformations of formula (2.41):
first, we shift A’ and A", and then we apply Lemma to eliminate the cyclic permutation T.

Note that given an ordered basis B € B and an element v € V* such that {v}g = 0, for any
weight A € A and positive integer k one have

(A+kv)/k —[c +V]g = A/k — [c]g. (2.42)

In particular, to perform the shift of A" in (2.41)), we use the following equality for any B’ € D’:

(AL =Ky ey A = K N gy oo AL, AL — k5+rl)/k [(ch, ol =1)—(1,...,1,0,..0, —1)]p =
(AL o N N — KB+ 11— k) /k — (¢}, g, Ch — Vg, (2.43)
which clearly remains true after changing D’ to v/(D’) and applying T to both sides of the

equation. Similarly, shifting the last terms of ll by (0, ...,0,—1,..—1,—-1+1), we can
rewrite (2.41) as

(_1)]‘TNT’,k+T‘”NT‘”,k+T" Z ) Z 1]?3?1' 1]]3391'
B'et/ (D) B"et” (D")
[T-wu(x/kﬂ*g(qu(x/fc)w@//(x/E))ngT-p(X/ﬁ)J
(T (N}, o N, A = kS + 11— 1K) /K — [T - (), .. ,cil Ler —Vlg+
T/’ ( /11, T'” 1,A/T{// + kb —Tl+lk)/k (Clll,... C/T{// l'C” +l)]B//)

Fmally, 1dentifying u (cf. (2.33)) with the "link" element of the diagonal basis T(D) =
(a™® )T () /(D) (D)) (cf. §2.3.5) and
kd—rl)

e moving the factor el
B= ( Td(r'),t(r) BI B”)

“ from (2.40) inside the argument of iBerg, where

o applying with B = (a*®(")T(") B'B”) and v = laT® (7)),

e applying Lemma[2.3.5)
e and using the fact that

T (W (x/KIwar (x/K)) = (=1) T way (x/k)wer (x/k),

we obtain the formula of Theorem [2.5.13|for arbitrary 1 € Z.
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2.7. Affine Weyl symmetry and the proof of part I of Theoremm

In this section, we prove certain symmetry properties of our Hilbert polynomials on the left
hand side of (I.1), and we finish the proof of part I of Theorem We start with the basic
instance of symmetry of Hilbert polynomials: relative Serre duality.

2.7.1. Serre duality

Proposition 2.7.1. Let & — X be a rank 2 vector bundle over a smooth variety X, m: Y =P(£) — X
its projectivization and wy sy the relative cotangent line bundle. Then

X(Y, L@ wyy) = —x(Y, 7L ® w;%“)
for any line bundle £ € Pic(X).
Proof. By Serre duality for families of curves [9) Ch III, §7-8] for any integer n
X(Y, L @0(n)) = —x(Y, 7" (£ ® (A2€)" ) ® O(— - 2)). (2.44)
Denote by Qx /v the sheaf of relative differentials on Y; it follows from the short exact sequence

0 —>Qx/y®OX —>7T*8(—1) i OX —>0,

that
wy y = AN(MHE(-1)) = ¥ (A2E) @ O(-2).
Then the statement follows from (2.44) by substituting n = —2m. O

Now we can generalize this statement to the case of flag bundles.

Proposition 2.7.2. Let t: Y = Flag(€) — X be a rank-r flag bundle over X. Let £ be a line bundle on
X, and F1, Fp/F1, ..., Fr /T the standard flag line bundles on Y. For k€ Z and A = (A, ..., A\r) € A
denote by

L(k,)\) = (W*L)k ® (?r/?rfl)?\l & (?rfl/?er)?\z ®..® gji\r

Consider the polynomial
qG AL, Az, Ar) = X(Y, £(K5 AL A2, ooy Ar))

in (k,A) € Z x A and extend this definition to R x V*. Then q(k; A — p) is anti-invariant under the
permutations of A1, Ay, ..., Ar.

Proof. For 1 < k < 1, let Flag;(€) — X be the flag bundle over X obtained from Y by forget-
ting the k-dimensional subspace. Then Y ~ IP(JFy1/Jx_1) — Flag; (&) is a P'-bundle over
Flag; (&), and thus applying Proposition we obtain

X(Y/ L(k/ )\l/ (Y A‘r’—k/ )\T—k+1/ eey )\T‘)) = _X(Y/L(k/ }\]/ (Y }\T‘—k+l - 1/ )\T—k =+ 1/ (Y )\T‘))/

and the result follows. O
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2.7.2.  The Weyl anti-symmetry of the functions q; and q_q

Armed with this statement, we are ready to take on the symmetries of the Hilbert polynomial
of our parabolic moduli spaces. We note that the two sets A of weights for degree-+1
stable parabolic bundles are simplices with one of their vertices at (%, ey %) and (’71, vy %1),
correspondingly (cf. §2.1.2).

Denote by N.; the moduli spaces of rank-r degree-+1 stable vector bundles and by UN
any universal bundle over N1 x C (cf. e.g |3]).

Lemma 2.7.3. Let ¢ = (cy, ..., ¢+) be a parabolic weight from the chamber in Ay, which has as one of its
vertices the (regular) point (1, ..., 1). Then the moduli space Py(c) of rank-v degree-1 stable parabolic
bundles is isomorphic to the flag bundle Flag(UNy) over Ny. An analogous statement holds in the
case of degree —1 and the point (=, ..., =1) e A_;.

Proof. A simple calculation shows that the point (cy, ..., ¢;) € Ay, such that all ¢; > 0, lies inside
the chamber in A; with the vertex (%, .y %). Hence it is enough to prove the first statement for
the moduli space P;(cy, ..., ¢;) with positive parabolic weights.

Moreover, it is sufficient to show that if (W, F,.) is a parabolic stable vector bundle which
represents a point in Pi(cy,...,cy), then W is stable as an ordinary bundle. Assume that W
admits a proper subbundle W’ with slope(W’) > slope(W) = %, then deg(W’) > 1. Since all
parabolic weights of W are positive, this implies that parslope(W') > 0 = parslope(W), and
therefore W is parabolic unstable. The proof for degree-(—1) bundles is analogous. O

Denote the moduli spaces described above by P;(>) and P_;(<), correspondingly, and
their images under the Hecke isomorphisms } and K1 by Po(>) and Py(<).
The following statement is straightforward (cf. Lemma|2.1.8).

Lemma 2.7.4. The line bundles £1(1;1,...,1) and L_1(r; -1, ..., —1) on P1(>) and P_1(<) defined in
Lemma may be obtained as pullbacks of the ample generators of the Picard groups Pic(N41).

Example 7. In case of rank-3 parabolic bundles the moduli space P;(cy,co,c3) with 2c3 >
c1 +c2 —1 is a flag bundle over Ny and it is isomorphic to the moduli space Py(>) from
Example |1} while the moduli space P_;(c1,c2,c3) with 2¢; < ¢ 4+ ¢c3 + 1 is a flag bundle over
N_; and it is isomorphic to Py(<).

Now we establish the Weyl anti-symmetry of the polynomials
q—l (k/ )\l/ ceey }\T) = X(PO(<)/ LO (k/ }\l/ Ty )\T))

and
q1(k; A1, e, Ar) = X(Po(>), Lo(k; Ar, ...y Ar))

defined on R x A, as in Proposition Let T € L, be the cyclic permutation, such that
T-(c1,...,¢r) = (c2,...,cr, c1), and consider two points in V*:

k+r k k k
0,1k] = (L1, )= (k+1)x%y —p=71-(——k,—,..., =) —7T-(p) =
T T T T
k r—-1 k r-—-1 r—1 k r—-1
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and
k+r k k k
0l =—=— (L1, D+(ktrhag—p=1" (-~ =4k =T - (p) =
k r-1 kX r—-1 k r-1 k r—-1
<k_T+ 5 ,—;— > ,—;— 5 —|—1,...,—;— ) +T—2).

Proposition 2.7.5. The polynomials q1(k; A+ 01[k]) and q_1(k; A+ 0_1[Kk]) are anti-invariant under
the action of the Weyl group by permutations of Ay, ..., Ar.

Proof. Recall that the moduli space Py(>) is isomorphic to the flag bundle P;(>) over N; under
the Hecke isomorphism 3 ~!. Then using Corollary Proposition and Lemma

for any permutation o € X, we obtain

1(k; 0 A+ 01[K]) L x(Po(>), Lo(k; 0+ A+ 04 [k])) B2
X(P1(>),L](k;qj*1 oA+ (];" ,]i') —9)) 2.7.212.7.4
K LK)
T T

(=D)°X(Po(>), Lol A+ 011k])) = (=1)7q1 (kG A 4 01 [k]).
The proof for q_; is similar. O

The two group actions in Proposition may be combined in the following manner. For
k > 0, we define an action of the affine Weyl group X x A on A x Z, which acts trivially on the
second factor, the level, and the action at level k is given by setting

oA=0-A+p)—p and YyA=A+(k+71)yforoe X, yeA.

We denote the resulting group of affine-linear transformations of V* by %[k], and note that the
action is defined in such a way that

oA+p=0-(A+p)and (yA+p)/k=y+(A+p)/k. (2.45)
It is easy to verify that the stabilizer subgroup

s+ 2 stab( K], Z[K]) < Z[K]

is generated by the transpositions s; i1, 1 <i <1 —2 and the reflection o~ 1"

similarly,

O Sr—1,rs

5= % Stab(0_4[K], £[k]) < Z[K]

is generated by s; ;1,2 <1< 1 —1and the reflection o' o 51 5.

Then Proposition maybe recast in the following form: the polynomial qi(k;A) is
anti-invariant with respect to the copy I} of the symmetric group Z,, while q_1(k;A) is anti-
invariant with respect to the copy I, of the symmetric group Z,.

The following statement is straightforward:

Lemma 2.7.6. Both subgroups £ are isomorphic to £, and for v > 2, the two subgroups generate the
affine Weyl group Z[K].
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2.7.3.  The Weyl anti-symmetry of the polynomials py and p_4
Following (2.17), we define the two polynomials

par(kiA) = 3 Berbw, 2 (x/k))(A/k — [8.11]8),
BeD

where 04 :%‘(1,1,...,1)—xr, and 0_1 = —%~(1,1,...,1)+x1.

Proposition 2.7.7. The polynomial p1(k; ) is anti-invariant with respect to L}, and p_q1(k;A) is
anti-invariant with respect to L.

Proof. We recall that the points 041[k] are the fixed points of the actions of £+, and clearly
limy_,o 041[kl/k = 04;. This means, that we can fix a small open ball D < V* centered at 9,
such that

AkeD=VYoest: (c.A+p)/k~ 0. (2.46)

Then for A/k € D we have
pillA) = ) iBBer[wg;Zg(X/E)]({X/E}B).
BeD
Now, let us consider a generator of X" of the type 0 = sii+1, 1 <1 <1 —2. Using (2.45), and
Lemma and the fact that 0- wgp = —wg we obtain

pi(k; 0A) = B;> iBBer[wngJ(x/i)](g. \/kKlg) =

D iBerl(—wg)! 79 (x/k)] ({A/k}B) = —p1 (kM)
BeD

The case of the last generator oo Sr—1r is similar, but after the substitution, we need to

use the equality {o" 17 —1—?\/@3 = {?\/12}3 to obtain pq (k; ko LT 4 sr—1+-A) = —p1(k;A). O

2.7.4.  Proof of part 1. of Theorem m

Recall that in Lemma we introduced a chamber structure on A = V* created by the walls
S, where TT = (TT,T1”) is a nontrivial partition, and 1 € Z. Before we proceed, we introduce
some extra notation. Denote by

A={ka)a/keA} c R7O x V*
the cone over A < V*, and let
A™8 = {(k; a)| a/k € Ais regular} c A

be the set of its regular points. Denote by §m — A the cone over the wall Stip € A; then Ares
is the complement of the union of walls Srj1 in A. Finally, denote by A’® the intersection of
the lattice Z>° x A with A8,
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By substituting ¢ = A/k, we can consider the left-hand side and the right-hand side of
formula I. of Theorem as functions in (k,A) € Er/ig. We denote by q(k;A) and p(k; A) the
left-hand side and the right-hand side, correspondingly.

We showed that q(k;A) and p(k;A) are polynomials on the cone over each chamber in A (cf.
Theorem 2.3.4] §2.1.4). We proved that the wall-crossing terms, i.e. the differences between
polynomials on neighbouring chambers, for q(k;A) (cf. Theorem and for p(k;A) (cf.
Proposition coincide, hence there exists a polynomial ©(k; A) on 79 x A, such that the
restriction of ©(k; A) to Ei‘g is equal to the difference p(k;A) — q(k; A).

Now for r > 2, we can conclude that

O(kA) =p1(lkA) — qi(kA) = p_1(k;A) — q-1(k;A),

where p11(k;A) and q+1(k; A) are the restrictions of p(k; A) and q(k; A) to two specific chambers
defined in §2.7.3|and §2.7.2| Then, according to Propositions [2.7.5|and |2.7.7} the polynomial
O(k; A) is anti-invariant with respect to the action of the subgroups £, and hence by Lemma

it is anti-invariant under the action of the entire affine Weyl group )E[k]. It is easy to see
that any such polynomial function has to vanish, and thus p(k; A) = q(k; A), and this completes
the proof of part I. of Theorem [2.3.8|for the case when A/k € A is regular.

As in Corollary we can extend p(k;A) from the interior of each chamber to its
boundary by polynomiality. Clearly, to prove part I. of Theorem 2.3.8]for the cases when A/k
is not regular, it is sufficient to show, that these extensions from the chambers containing A/k
in their closure give the same value on (k;A). It follows from Remark that this is the
case, and this completes the proof of part I. of Theorem[2.3.8|(cf. Remark

2.8. Rank 2, two points

Unfortunately, the argument above does not work for v = 2, because, in this case, 01[k] =
0_1[kl], the groups L and I coincide, and thus they do not generate the entire affine Weyl
group. The way out is to pass to the 2-punctured case.

2.8.1. Wall-crossing

We will thus fix two points: p,s € C, and study the moduli space of rank-2, stable parabolic
bundles W with fixed determinant isomorphic to O(pd), with parabolic structure given by a
line F; ¢ W, with weight (c, —c), and a line G; ¢ W, with weight (a, —a).

Now we need to repeat the analysis of our work so far in this somewhat simpler case;
some details thus will be omitted.

Set d = 0; then the space of admissible weights (cf. Figure[2.5) is a square

0={(c,a)|1>2¢>0,1>2a>0,},
which has two adjacent chambers defined by the conditions
c>a and c<a.

Denote the corresponding moduli spaces by Py(c > a) and Py(c < a).
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(0,0) (3,0

Figure 2.5 — The space of admissible weights in the case of rank v = 2, two points.

Again, we have universal bundles over Po(c > a) x C and Py(c < a) x C, which we will
denote by the same symbol U; this bundle is endowed with two flags, 33 < J, = U, and
G1 < 9o = Ug. For y, A € Z, we introduce the line bundle

L(kGA, ) = det(Up) ™9 @ det(mr, (U)) @ (F2/F1)* @ (F1) * ®(G2/51)" @ (51) ™.

We repeat the construction of the master space from Section 5.1, choosing a point (c?, c?)
on the wall and two points

(c,a)* =(cc”) +e(1,00e ], e Qs
from the adjacent chambers. We can identify the fixed point set Z° as follows.
Lemma 2.8.1. The locus Z° defined in Proposition is
2’ ~Jac’ ~{V=LoL 'L =F, L =G}

As in §2.5.1] denote by J the universal bundle over Jac? x C normalized in such a way that

01(3)(0) =0 (Cf. ) Define

2
ne Hz(]ac) by (Z Cl(g)(ei) ®€i> =-2NQ w;

we have then {; . e"™ =m9 for m € Z.

Let 7t : Jac® x C — Jac? be the projection and N 7o be the equivariant normal bundle to Z° in
Z. Then, as in Lemma Proposition and Lemma we obtain the identifications:

e Nz = Rlm,(ParHom(d,d7')) ® Rim,(ParHom(J71,3)), where T ~ C*-action has
weights (-1,1);

e E(N,o)™! = (-1)9(2sinh (%))_dexp(&]);
o chr(£(A, )| 50) = exp(2kn)exp(u(h — ).
Now we define the polynomials:
h (k2 1) E x(Pole > a), LA, ), he(kih, w) Ex(Pole < a), LA, ).
and, applying Theorem we obtain the following expression for their difference.

Lemma 2.8.2. The wall-crossing term equals

ho (IGA, 1) —ho(IGA, u) = (—1)9(2k +4)9 Res exp(u(A — )

u=0 (2sinh (4))?9 du.
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2.8.2. Symmetry

Denote by P_;(c > a) the image of the moduli space Py(c > a) under the Hecke isomorphism
H (cf. at the point p and by P_;(c < a) the image of the moduli space Py(c < a) under
the Hecke isomorphism H at the point s.

We have the following analogue of Lemma

Lemma 2.8.3. Denote by N_1 the moduli space of rank-2 degree-(—1) stable bundles on C and by
UN any universal bundle over N_1 x C. Then the moduli spaces P_1(c > a) and P_1(c < a) are
isomorphic to the bundle P(UNy) x IP(UNy) over N_.

Denote by T[p] and T[s] the vertical tangent lines of IP(UN,,) and IP(UNj), respectively, and
by £_; the pullback of the ample generator of the Picard group of N_; to IP(UN, ) x IP(UNy)
(cf. Lemma|2.7.4). Then a simple calculation shows the following.

Lemma 2.8.4. Under the Hecke isomorphism I at p, the line bundle L(2k;A, u) on Po(c > a)
corresponds to the line bundle L*; @ Tlp] A * @ T[s]* on P_1(c > a).

Under the Hecke isomorphism J( at the point s, £L(2k; A, i) on Po(c < a) corresponds to the line bundle
LR @TpI*@T[s]# % on P_1(c < a).

As in applying Serre duality for families of curves (cf. Proposition[2.7.2) to the line
bundles on the two P! x P! bundles over N_;, we obtain that the polynomials h- (k; A, ) and
ho(k;A, 1) are anti-invariant under the action of the Weyl group Z, x ¥, with the center at
01k] = (%, %1) and 0,(k] = (*71, %), correspondingly (cf. Figure . In other words, we
obtain the following 4 identities.

Lemma 2.8.5.
ho (kKA ) = —ho(lGA, —u—1) = —ho (K, A+ k+1, n);

ho (kA uw) = —ho(k;—A—1,u) = —h (KA, —u+k+1).

Figure 2.6 — k =4, r = 2, two points.

Now, define the polynomials

R (A, ) = (—1)97(2k + 4)9 Res SPWA TR ED)) Zexpluld = u))

du;
u=0 (2sinh (%))29(1 — eu(k+2)) U

du,

> _(1yg9-1 exp(uWA+p+1)) —exp(wA — p+k+2))
(A, 1) = (=1)971(2k + 4)° Res (2sinh (%))29(1 — eu(k+2))

and from here we can follow the logic of the proof of part I of Theorem[2.3.8]
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Proposition 2.8.6. The polynomials introduced above, in fact, coincide:
he (A W =ha (A w) and  he(lGA, 1) = he(lGA, p).

Proof. 1t is a simple exercise to show that ﬁ>(k,' A u) and ﬂ< (k; A, n) satisfy the identities ap-
pearing in Lemmas [2.8.2(and [2.8.5} and hence the polynomial

O(k;A 1) = ho(IGA, 1) —ha (IGA, 1) = he (KA, 1) — he (A, 1)

satisfies all four Z-symmetries listed in Lemma([2.8.5] These groups together generate a dou-

ble action of the affine Weyl group ZinAand p separately, and this implies the vanishing of
O. O

As Py(c > a) is a P-bundle over the moduli space of rank-2 degree-0 stable parabolic
bundles Py(c, —c), substituting u = 0 in h-, we obtain the Verlinde formula for rank 2.

Corollary 2.8.7.

1
X(Po(c, —¢), Lo(k;A)) = (—1)97(2k +4)9 Res exp(u(A+ 7))

du.
uoo (2sinh (1))29-1(1 — eu(k+2)) u

2.9. The combinatorics of the [Q,R] =0

In this section, we give a proof of the second part of Theorem Let A/k € A, and fix a
regular element ¢ € A in a chamber containing A/k in its closure, and another regular element
¢ € A containing A/K in its closure. Our goal is to prove the the equality p(k;A) = pz(k;A),
where we define R
Pe(kiA) =Ny D iBerlwg, 2 (x/K)I(A/k — [cl) (2.47)
BeD
for a regular c € A and diagonal basis D. This is a subtle statement, which is a combinatorial-
geometric projection of the idea of quantization commutes with reduction (or [Q,R] = 0 for
short, cf. [15 23])
IfA/k ~ ?\/ k i.e. when A/k and ?\/ k are regular elements in the same chamber in A, then
Pe(k;A) = pa(k; A) is a tautology. We assume thus that this is not the case, and denote by S(k, A)

the set of walls separating ¢ and ¢, or containing either A/k or A/k or both. Equivalently, the
wall Sy belongs to 8(k, A) if

AKX =1z AK)n or AWK <1< A/Kn

where ¢ = Y i/ ¢i for an element ¢ = (cq,...,¢r) € V*. Clearly, there is a path in A
connecting ¢ and ¢, which intersects only walls from 8(k,A) in a generic points. Then to prove
the equality p.(k;A) = pz(k;A), it is enough to show the following, at first sight somewhat
surprising fact.

Proposition 2.9.1. Assume g > 1, \/k € A, Sp1 € 8(k,A) and let ¢t € A be two points in two
neighboring chambers separated by the wall Syi 1. Then

Per (KA) =pe-(KA). (2.48)



CHAPTER 2. THE PARABOLIC VERLINDE FORMULA 47

Proof. The difference of the two sides of is expressed as a residue in (2.29). The integral
in is a rational expression in the variable t, and our plan is to show by degree count
in t and t~! that its residues at zero and at co vanish. We define the degree of the quotient
of two polynomials R = P/Q of the variable t as deg,(R) = deg,(P) — deg,(Q), and we set
deg,-1(R) = deg, (R(t™1)). Then, clearly,

deg,(R) <0 = B—eo%R C}: =0 and deg, :(R)<0= lt{_egR it =0.

A convenient expression for will be (2.40), where we change variables via t = e*. In
what follows, we will always tacitly assume this substitution, and we will write, for example,
deg,.1(1/(e* —e ™)) = —1. We thus obtain a formula of the form Res;—q f(t) dt/t, and to
show that this is zero, it is sufficient to show that deg, (f) < 0 and deg,_.(f) < 0.

Now we observe that the variable u occurs only in the first line of , and thus, calcu-
lating the degrees in t and t~! separately, we obtain the following formula:

deg, 41 (f) = £(kd — 1) + (1 — 2g)deg,+1(T- W) +deg, .1 (exp(T- py)). (2.49)

Recall that here b represents the distance of A/k from the wall Sy 1, while w;; and p;;, represent
the parts of the Weyl denominator and the p-shift corresponding to roots connecting TT" and
T1”, respectively.

We begin the study of this expression with some simple remarks. We recall that the
permutation T preserves the partition IT = (TT/,T1”), and thus we have

T/ T.//

>

degtil(T'Wﬁ) = deg,+ (wyy) =
Using, in addition, that p;; is linear in u, we obtain

deg, (exp(t-py)) = —deg 1 (exp(t-py)) = deg (exp(py)).
Combining these equalities, and assuming g > 1, we arrive at the following conclusion.

Lemma 2.9.2. The inequality

I/

> (2.50)

(k& — 1) + deg, (exp(p))| <

implies the vanishing of the wall-crossing term: equality (2.48).

Before we proceed, we introduce some notation. Denote by
Inv(IT) = {(i,j)| T 21> jeTl"}

the set of "inverted" pairs of elements of the partition IT. The number of these pairs |Inv(TT)]
coincides with the standard notion of length of the shuffle permutation ¢ € Z; introduced in
25

Each pair (i,j) which is not inverted contributes +u/2 to p;;, while each inverted pair
contributes —u/2, and thus we have

/I

deg, (exp(py)) = r2 — [Inv(TT)|. (2.51)
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Also, recall the notation crp = > ;. ¢i for an element ¢ = (cy,...,¢+) € V*; in particular,
we have (A/k)r =1+ 6 and
r+1
P = Z 5

iell’

The following is a simple exercise, whose proof will be omitted:

deg, (exp(py)) = prv- (2.52)
Now we come to a key point of our argument.
Lemma 2.9.3. If the intersection of the wall Sy1 with A is non-empty, then
v v

Proof. Pick a point ¢ = (cy, ...,c,) in the intersection Srj1 N A, and recall that for any 1 < i <
j<r,wehave 0 <ci—cj <1, and

Zci:—Zci:L

iell’ iell”
Then
i< Y o< Y Yie—cp),
(i,j)elnv(]_l) ieTl’ jell”
and, similarly,
Z Z ) < v'r" — |Inv(IT)|.
iell’ jell”
Now, since
2 lei—g)=r"Yei—r Y =l
iell’ jell” iell’ jert”

we can conclude
—|Inv(TD] < Ir < 7'7" — |Inv(TT)].

In view of (2.51) and (2.52), these inequalities are equivalent to (2.53), and this completes the
proof. ]

Now we are ready to prove (2.48). The condition Syy,1 € 8(k, A), i.e. that Sy, separates A/k
and A / k or contains A/k or 7\/ k may occur in two ways.

e A/K)q =12 (?\/k)n/ which is equivalent to the two inequalities: > 0 and 1k + lr >
Arr + pryv. After canceling lk and reordering the terms, we can rewrite these as

0=>kd—-1r+ P = Prv — 1r. (254)

Using Lemma mthen we can conclude that

T./T//

0=kd—lr+pr > —

which, in view of the equality (2.52), implies the necessary estimate (2.50).
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e The second case is similar: (A/k) < 1 < (X/i)n, is equivalent to 8 < 0 and lk + Ir <
Arpr + pr.. This leads to
O0<kd—-1lr+ Prr < P — lr, (255)
which, in turn, implies
T/TJ/

0<kd—lr+pm < 5

and hence .

This completes the proof of Proposition indeed, a simple calculation shows that if
A/k € A then A / ke A, so the conditions of Lemma lﬁl hold. We have just shown that this
implies (2.50), and according to Lemma 2.9.2) we can conclude the vanishing of the wall-
crossing term (2.48). O

Remark 2.9.4. Note that if A/k € A is non-regular, then it belongs to some wall from the set
8(k,A). Hence proposition implies that the right-hand side of formula (I.) of Theorem
is a well-defined function on the cone over A:

{(k,A) € Z7% x A|N/k e A}.



Chapter 3

Euler characteristics of tautological
bundles

In this chapter we show that the residue/wall-crossing method of Chaptermay be success-
fully employed to describe the pushforward maps in the K-theory of moduli spaces of stable
parabolic bundles on smooth curves. This chapter is based on the work [27] and presents
formulas for the Euler characteristic of associated bundles over the moduli spaces.

3.1. Rank 2 case

We start with presenting our arguments for the case of moduli spaces of rank-2 parabolic
bundles, when the formula for the Euler characteristic has a simple form (cf. ).

3.1.1. The residue formula for rank 2

As in in this case we need to consider the moduli space of vector bundles with parabolic
structures at two points to calculate our wall-crossing terms.

Recall (cf. that there are two such moduli spaces of rank-2 degree-0 parabolic
bundles, which we denoted by Py(c > a) and Py(c < a); recall that for A, u € Z, we introduced
the line bundle

Lk, 1) =det(U,)*179) @ det(m, (W) % ® (F2/F1)* @ (F1) * ® (2/51)* ® (G1) *

on moduli spaces Po(c > a) x C and Py(c < a) x C.

Let v = (vi = V) € Z? be a dominant weight of GL,, denote by p, the irreducible
representation of GL, with highest weight v, and by p, its restriction to SU, < GL,. We
denote by U, — Py(c,a) x C the bundle associated to the representation p,, and by X the
canonical sheaf on C.

Our goal is to calculate Euler characteristics

(A, 1) ¥ x(Pole > a), LA, 1) @m(Uy ®K2)) and

1 (3.1)
(A, 1) Ex(Pole < a), LA, 1) @m(Uy @ K2)).

50
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Let Exp : Lie(SUy) — SUj, be the exponential map and let

nh _ 1)x/2
$(x) = trace(py o Exp(x/2)) = = ((Zilnh(vf/;) e

be the character function on the Lie algebra of a maximal torus of SU.
We introduce the notation

0 =25 00 and §x) =2+ ()

(where the factors of 2 are introduced for convenience) and define two polynomials in k, A, p
which as we will show, equal to (3.1):

(eu(7\+u+1) _ eu(?\*u))eu(vl+vz)/2(2k+4+ 6(1)(11))9
(2sinh (%))29(1 — eut(k+2)+8d(u))

S ¥ (el L
RI(K;A 1) = (-1) 08 15=0 (27t1)

[ul=e¢

du

and

def 0
RY (kA u) = (=1)9—
20GAu) = (1) 25|50
1 J (eu(?\+u+l) _ eu()\—u+k+2)+6¢(u))eu(vﬁ—vz)/Z(zk_|_4_|_ 5&)(11))9
(27i) (2sinh (%))29(1 — eu(k+2)+0b (w)

lul=¢

du,

where ¢ is a real constant and & « ¢. We note two facts about this pair of polynomials:
Fact 1. The difference of these polynomials has the form:

qu\_H) eu(vl‘F‘VZ)/z&)(u)
S du.

RY (A, 1) — RY. (KA, 1) = g(—(2k +4))97 IR
LA u) —RI(KGA 1) = g(—(2k +4)) Res (2sinh (4))29

Fact 2. An easy calculation via substitutions shows the following:
RI(GA W) = =RI(GA, —u—1) = =RI(k; =A +k+1— (vi +va), p)—

(eu()\+u+1) _ eu()\—p.) )eu(v1+v2)/2d')(u)
du

(—(2k +4))° Egg (2sinh (%))29(1 _ eu(k+2))

and

RY(GA, 1) = —RY(k, A —1— (vi+ Vo), 1) =

RY(k: A k-1 AN9IR (eu(?\Jrqul) _ eu(?\fu+k+2))eu(v1+vz)/2cb(u)
e i du.
<( u+k+ ) ( ( + )) ug?) (2Slnh (%))29(1 _ eu(k+2)) u
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3.1.2.  Hecke correspondences, Serre duality and the symmetry arqument

In this section, we prove that the polynomials xY (k; A, 1) and xY (k; A, u) (cf. (3.1)) satisfy the
same antisymmetries as the polynomials RY and RY (cf. Fact 2).

In §2.6.T|(c.f. also we describe the tautological variant of the Hecke correspondence
which identifies the moduli spaces of parabolic bundles with different degrees and weights.
Applying the Hecke correspondence at the point p and q to Py(c > a) and Py(c < a) respec-
tively, we can identify these spaces as P! x P!-bundles over the moduli space N_; of stable
bundles of degree —1 (cf. Lemma [2.8.3):

P! x P! - Py(c > a) » N_j < Py(c < a) — P! x PL.

For each copy of P!, the moduli space Py(c > a) can be considered as a IP!-bundle; applying
Serre duality for families of curves as in §3.4.1} we obtain the following two equalities:

X2 (A 1) = —xX(GA, —u—1)
and
X2 (A 1) = —x2(k —A+k+1— (vi +v2), u)+
V1—YV2

D (vi—va—2)x(Polc > a), LGN +vi — 1, 1)),
i=0

Similarly, for Po(c < a) we obtain that

Xe(GA n) = —x2(k—A—(vi+v2) =1, 1) =

Vi—V2

—XLOGA, A k+ 1)+ Y (vi—va—2Ux(Polc > a), LG A +vi — i, 1)).
i=0
We showed in Propositionmthat
Vi—V2
D1 (vi=va=20)x(Polc > @), L(GA + v — 1)) =
i=0
3 (eu(7\+u+1) _ eu(?\—u))eu(v1+v2)/2d)(u)
~1)971(2k +4)9R d
(F1)57 2k +4)7 Res (2sinh (1))29(1 — en(<+2)) "
and
V11—V
> (vi—=va —20)x(Polc < a), LKA +v1 — 1, 1) =
i=0

(eu(AJrqul) - eu(?\fu+k+2))eu(v1+vz)/zd‘)(u)
(2sinh (%))29(1 — ex(k+2))

(—=1)971(2k + 4)9 Res du,
u=0

hence the polynomials x¥ and xY satisfy the same antisymmetries as RY and RY (cf. Fact 2 on

page|[51).
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3.1.3.  Wall-crossing in moduli spaces

Our next step is to compare the difference x¥ — xY with the difference RY — RY from Fact 1
on page

In §2.4|we presented a simple formula for the wall-crossing difference in Geometric In-
variant Theory. The formula has the form of a residue of an equivariant integral, taken with
respect to an equivariant parameter. In the rank-2 case (cf. Lemma , the space Z° over
which we integrate is isomorphic to the Jacobian of degree-0 line bundles on C:

2 ~{v=LoL'|LeJac’, L, =F,L;" =Gi}.

We thus obtain the following expression for the wall-crossing difference:

A 1) — XY (KA 1) = (—1)9 Res SR — W)

n(2k-+4) 1
we0 (2sinh(1/2))29 Jac e ch(m(Uy ® Kz)}]ac) du,

(3.2)

where u plays the role of the equivariant parameter, the generator of H¢. (pt); let (cf. page

d be the Poincare bundle over Jac x C, satisfying c1(Jp) = 0, then the class 1 € H2(Jac) is

defined through the Kiinneth decomposition of c1(J)>.

It follows from the Groethendieck-Riemann-Roch theorem that
ch(m(Uy ®K?)) = much(Uy).
A simple calculation shows that the restriction U] 20 =307 1 has C*-weight 1, hence we have
ch(u\,‘zo) = Vlé—gz ch(gvi—Y2—2h exp((vi —i)u).
i=0
Note that that 7, (ch(J™)) = —n?1, and thus

Vi—V2

me(ch(Uy|50)) = -1 Y] (v1—v2—21)*exp((v1 — u) = —nexp((vi +v2)u/2)d(w).
i=0
Using (2.31), we obtain that the wall-crossing difference is equal to

exp(u(A — ))e"(V+Hv2)/26 ()

— 9-1
g(—(2k +4)) ES?) (2sinh(11/2))29 du, (3.3)
and thus we have (cf. Fact 1 on page[51)
RY—RI =x2 —x& (34)

Now we are ready for the final argument: we can rearrange equation (3.4) to describe the
equality of wall-crossings as

RY (KA, 1) —xX (A, 1) = RY(GA, 1) —xZ (KA, 1); (3.5)
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we introduce the notation O(k; A, ) for this polynomial. Then ©(k; A, 1) satisfies 4 antisym-
metries:

O(kA u) = -0k, —pu—1) = -0O(k; - A+ k+1—(vi+vy),u) =
—OkK-A—1—(vi+Vv),u) = -0O(KA —u+k+1),

hence it is anti-invariant with respect to the affine Weyl group action on A and p separately,
and this implies © = 0.

As Py(c > a) is a Pl-bundle over the moduli space of rank-2 degree-0 stable parabolic
bundles Py(c), substituting p = 0 in RY and taking the derivative with respect to 5, we obtain
the formula for rank 2:

x(Po(c), £(1GA) @ (U, @:K%)) =

xp(
—(2k +4))9 R
(=(2k+4)) uoo (2sinh (4 ))29- 1 (1 — eulk+2))

u(A + 3 + ) <9<b( ), elF2ug(u)

it e (M)))du. (3.6)

3.2. Main result and wall-crossing in residue formulas

In this section we describe tautological vector bundles on parabolic moduli spaces we are
considering and present the main result of this chapter, generalised variant of formula (3.6)
above for all ranks (cf. Theorem |3.2.3).

3.2.1.  Vector bundles on the moduli space of parabolic bundles

Let v = (vy,...., v+) be a dominant weight of GL,, consider the irreducible representation p.,
with highest weight v, and denote by p. its restriction to the subgroup SU, c GL,. We denote
by ¢V the character ¢ = trace(p o Exp) on the Lie algebra V of a maximal torus T < SU,.
We collect our maps on the following diagram.

GL, —™ 5 GL(V,)

. =

V— Tc Su,

Given a representation p, of GL,, we denote by U, the vector bundle over Py(c) x C associated
to the principal GL.-bundle.
The vector bundle U, has the following explicit construction. Let U be the normalized

universal bundle on Py(c) x C (cf. §2.1.3), and consider the full flag bundle Flag(U) LR Po(c) x
C. Denote by Ly, ..., L, the standard quotient line bundles on Flag(U). Then

U, = (L"L*®..0 LY. (3.7)

Remark 3.2.1. Note that the vector bundles F;, ... 3’”1 (cf. on the moduli space Py(c)
define a section of the flag bundle Flag(U,) — Py(c) x {p}
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3.2.2. Main result

Before we formulate the main result of this chapter, Theorem we introduce a generalized
version of the iterated Bernoulli operator defined in In this section, we will use the

notation of §§2.2.1}

Recall the notation F¢ for the space of meromorphic functions defined in a neighborhood
of 0 in V®R C with poles on the union of hyperplanes

U I, =0},
1<i<j<r

then the inverse of
Wo def H (ZSinh(xi — xj))
i<j
is a function in F¢. Any ordered linear basis B € B of V* (cf. induces an isomorphism
V* ~ V, and we will write &g for the image of o € V* under this isomorphism. We will
sometimes omit the index B to simplify the notation. For a function Q on V and « € V*, we
introduce the directional derivative Qg,. Then, given Q and B € B, we fix a homomorphism

o= exp(QééB)

from the additive group V* to the multiplicative group of non-vanishing holomorphic func-
tions on V®p C.

Let K = L > 5 oc%]. be the normalized Killing form of SU, and let € R be a small
parameter; given a basis B = (B!/,..., B[7=1) € B of V*, a function f € Fp and a holomorphic
function Q = const - K — 8¢, defined in a neighborhood of 0 in V®r C, we define

def 1 Jf(x)eXP(Qd)dQBuJ/\"'/\ng[r_u
(

wa T @) ) T exp(Qpnl] - (1 - exp(Quia))

(3.8)

where the naturally oriented cycle Zp is given by

Zp={xe VR C: [(BV,x)| = g,j=1,...,r—1} c VRr C\{wa (x) = 0}

with sufficiently small fixed real constants ¢; satisfying 0 < e,_1 « --- « ¢1. Thus iBerg g is a
linear operator associating to a meromorphic function f € ¢ a polynomial on V*.

We introduce the notation H® for the space of holomorphic functions of the form Q =
const - K — 8¢, defined in a neighborhood of 0 in V®r C. We will always assume that our
parameter  is small enough, so that the cycle given by {x € VOr C : [Qpin(x)| = ¢, =
1,...,r—1} c VR C\{wao (x) = 0} is homotopic to the cycle Zp.

Notation: We will write iBerg for iBerg x to simplify the notation. Note that this agrees with
(2.11).
We will need the following property of the operator iBerg .

Lemma 3.2.2. Let Q = (k+ 1)K — 8¢ € H®, then for any vector w € A and a function f € Fo,
which depends on 6, we have

;‘5‘5_0 iBB/eQr [f(x)] (a+w) =

illggr [f(x)exp((k+1)W)] (a) — iBer [f(x)|5:0 exp((k+1)w)dw (x)] (a). (3.9)

-
0519=0 B, (k+1)K
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Proof. Note that

iggr[f(X)](aJrW) = ig(egr[f(X)eXp(Qw)](a) = i]g%r[f(X)eXp((kJrr)W—de)w(X))](a);

then taking the derivative with respect to § at zero, we obtain the result. O]

We are now ready to present the formula for the Euler characteristic of associated vector
bundles on the moduli spaces.
Theorem 3.2.3. Let X be the canonical class of the curve C,Ae A, k€ Z~p, v = (V1 = Va... = Vy) €
Z', A = A+p, Vaet = (1,...,1,1 — T‘)eri, Q = (k+1)K—5¢" € H® and let c € A be a regqular
element (cf. page|7). Then for any diagonal basis D € B, the following equality holds:

X(Po(c), £(GA) @m(Uy, @ K2)) =

No+ 55la-o ) iBer [det(Hess(Q))9 ! (x)why 2 x) exp(A+ vae )] (~Icla], (:10)
BeD

where N, = (—1) (2)(9-D19 gpd by Hess(Q) we denote the Hessian matrix of Q

Taking the derivative with respect to §, we obtain the following explicit formulas.
Corollary 3.2.4. Let A, k, v, Q, ¢ be as above, and N, = (—1)( )(g-1) r(r(k+1)""1H971 then
x(Po(c), £(15A) @ (Uy ©K2)) =

Nk 2 1Ber{ 129 (x/k) exp(A 4 Ve, X/K)) (
BeD

+9 tr(Hess(@")(x/k))—

o (x/K) eXP(<f5
2 e

Example 8. Denote by U the normalized universal bundle on the moduli spaces of rank-3
parabolic bundles Py(>) and Py(<) defined in Example We have U ~ U, for v = (1,0,0)
and

Z< B 030 )| 1=l

2 ]2+ 23 23_ 12 _ 1272 23 2 ]2+ 23 23_ 12
dlod?, o) =e" 3 +e 3 +e 3 Cl)(xlz((x o) =e" 3 —e 3
o212 o120 2
de(al?,aP)=e 3 —e 3 ; tr(Hess(p(a'?, o)) = 34)(0612, o).

Let D be the diagonal basis from Example |2} writing the operator iBerg for B € D in the
variables (x,y) as explained in Remark and using Remark we obtain

X(Po(<), LA @ m(URK?) =

(eA1x+(7\1+7\2)y+x+y+%H _ e7\1x+(7\1+7\3)y+x+x—?i)
N - ResRes

Yy=0 x=0 (1 —ex(k+3))(1 — ey (k+3))wq, (x,y)29-1
2g ey (x,y) | e Py (x,y)
(3(k+3)d’(’"”) ey T i eway) | Y
TPor B= (B, ..., BIr—1)), we set Hess(Q)ij = aﬁam Qp -
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and

X(Po(>), L(k;\) @ m(URXK?) =

MXF A A Y+x+y+3 A (A + Ay +x+ (k+3)y + 252 )

NS (1= X e (1 = ey g (x, y) 201
5 (k+3)x g, . (K+3)Y o (x,
9 d)( , )+e CbX(X/y) e (by(x U) dxdy—
3(k+3) (1 — elk+3)x) (1 — elk+3)y)

A A1+A k+3 Xy
eMx+(A1+Az)y+x+(k+3)y+73 d)g(x,y)

N SRS = e o) (1 — v g (x, )2

dxdy,

where wo (x,y) = 2sinh(%)2sinh(¥)2sinh(*3¥) and N = (—1)9(3(k + 3)?)9. One can compare
these formulas with the ones from Example

3.2.3. Wall-crossing in residue formulas

We start the proof of Theorem following the strategy of Chapter [2| Our first step is to
calculate the wall-crossing terms of the residue expressions from Theorem We choose
two regular elements ¢*, ¢~ € A in two neighbouring chambers separated by the wall Sy (cf.

(2.10)) such that

[cfl=1land [cl=1-1,
where we use the notation crr = Y ;1 ¢i for ¢ € A. We denote by
v 4 - -1 1-2 3 +
RY (k,A) = Ny - %\520 B; 1E%r [det(Hess(Q))g (x)wg 2 (x) exp((A + Vdet, x>)] (—[c*]B)

the two polynomials in (k,A) € Z-o x A. Then the wall-crossing term in the residue formula
is the difference
RY (k,A) —RY(k,A).

Using Lemma we obtain the following expression for this difference.

Lemma 3.2.5. Let (TT,1) and ¢, ¢~ be as above, and fix a diagonal basis D < B. Denote by D|TT the
subset of those elements B of D for which Tree(B) (cf. §2.1.3) is a union of a tree on T, a tree on T1”
and a single edge Bynk (which we will call the link) connecting TI" and T1”. Then

RY (k,A) — RY(k,A) :Nr.;\ézo
>, iBer (1 - exp(Qp,, (x)))det(Hess(Q))%'wi, 29 (x) exp((A + Vaer, )| (~[c™Ip)
BeD|TT

Remark 3.2.6. Note that the multiplication by (1 — exp(QB“nk(X))) in Lemma [3.2.5| has the
effect of canceling one of the factors in the denominator in the definition of the operation
iBer.
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As observed in Chapter 2} even though this difference does not depend on the choice of
D, it is convenient to choose a particular diagonal basis (cf. page . Recall the notation @’
and @” for the A,/ and A~ root systems corresponding to TT" and TT”; using Lemma
and taking the derivative with respect to 6 at 6 = 0, we arrive at the following statement.

Corollary 3.2.7. Let D’ and D" be diagonal bases of ®' and ®" correspondingly. Then

RY (k,A) —RY(k,A) = (k+71)N Res iBeriBer
Y (k,\) ) = (k+7) kB%B% Res_iBeriBe

[wlp‘Zg (x/K) exp(A + Vi, x/k)) (k‘frtr(Hess(wn (x/k) + 1o (x/k)—
@} (x/K) exp((BY, x)) MU )} _ .
i;h;k 1 —exp((Bl,%)) " i;n;lk<[c+]’ BOeFn /K ) | (=lc7Is) dBiink, (311)

where Resg,  —oiBerp: iBergs dByink is simply iBerg (cf (3.8)) with B obtained by appending B’, and
then B” to Bnk, and the factor (1 — exp({Bunk, X)) removed from the denominator.

Example 9. Calculating the difference of the two polynomials from Example[8] we obtain the
wall-crossing term:

— N - ResR
ygg ng (1 —ex(k+3))we (x,14)29-1

e7\1x+(7\1+?\3)y+x+%5 29 e(k+3)x¢ x y)
, . dxdy.
(srerzot ) s

3.3. Wall-crossing in Euler characteristics

In this section, we calculate the changes in Euler characteristics of vector bundles when vary-
ing the moduli spaces of parabolic bundles. The main result is Proposition where we
present explicit formulas for the wall-crossing terms for the left-hand side of (3.10).

3.3.1. Wall-crossing in master space

Fix the wall Sty given by an ordered partition T = (IT/,TT”) of the first v integers and an
integer 1, and two regular elements c¢*,c~ € A in two neighbouring chambers separated by

the wall Sr71. Let
¢ = Z xi and ¢’ = Z Xi.
iell’ iert”
In we constructed the "master space" Z whose quotients, under different linearizations,
by a fixed C*-action, are the moduli spaces of c*-stable parabolic bundles. We showed that
the elements c* may be chosen within their chambers so that Z is a smooth, projective variety
with a C*-action, and identified the connected components of the fixed locus:

7€ ~ Po(ct) L Py(c) L Z°,

where Z° is the set of points representing rank-r vector bundles W on C, such that W splits as
a direct sum W @ W”, where W' and W” are, respectively, ¢’ and c¢”-stable parabolic bundles
of degree 1 and —1, rank v’ = |IT’| and " = |TT”| (cf. Lemma|2.5.1):

"= {(W=WaoW|W eP(); W eP_(c"); det(W) ~ O}.
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Recall that we also have (cf. Remark[2.5.2)
H*(Z°,Q) ~ H*(Pi(c), Q) @ H*(P_1(c"), Q) ® H*(Jac', Q). (3.12)

Consider the polynomials

XL (GA) = x(Pole®), L(kA) @7 (Uy @ K2)).

Our goal is to calculate the difference xY (k; A) — xY (k; A).

Applying the Atiyah-Bott fixed-point formula to the master space Z with the C*-action,
we showed (cf. Theorem|2.4.7) that the wall-crossing polynomial xY (k;A) — xY (k; A) is equal
to

Res N|z0) Todd(Z°) du, (3.13)

u=0

f ch((L(kA) @m(Uy, @ K2
70 E(Nzo)

where E(Ngzo) is the K-theoretical Euler class (cf. definition [2.4.6) of the conormal bundle of
Z°in Z and u is an equivariant parameter.
Before we calculate this integral, we need to introduce some extra notations.

3.3.2.  Restriction. Representations

For any weight v = (vy, ..., v+) of GL;, we define
def
MR
i

the irreducible representation p of GL, ~ (SL, x C*)/Z, with highest weight v can be de-
composed by restriction as a product of the irreducible representation p, of SU, and the
one-dimensional representation p[|v|] : t — tIVl of the center Z(GL,) ~ C*.

Let GL,/ x GL,» be the subgroup of GL, induced by an ordered partition (TT’,TT”) of the
first v positive integers. The restriction of the irreducible representation p. of GL, decomposes
as a direct sum of irreducible representations of GL,/ x GL»:

Pv = Z Pv/ @ Pyr.

(v/v")

Similarly, the restriction of the representation p to SU, n (GL,s x GL;») = GL, can be decom-
posed as a direct sum
Pv= D, Pv®pys ®plrs]
(V,,V”)
of products of irreducible representations of SU,., SU,» and the one-dimensional torus C* ~
(Z(GL,/) x Z(GLy#)) n SU,, where s = > i .11/ (v{ — |v|/7). Let

def S S %
:F Xi—WZXiEV,

ieTT’/ ielT”
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then the corresponding decomposition of character functions (cf. end of §3.2.1) has the form
DY Y exp(w). (3.14)
(VI,V /l)

Recall (cf. Lemma that the a key role in our wall-crossing terms is played by the bases
B of V*, obtained by appending B’, and then B” to By,k. Using expression (3.14), we arrive at
the following equalities for the directional derivatives of ¢".

Lemma 3.3.1. Let B = Bynk B’ B” be a basis of V* described above. Then:

1. Forany « € B and any 3 € B” we have
Y d¥ Y expw) and o} = > ¢} ¢ exp(w);
(VI,V//) (—VIIV//)

//

T/
2. Brink = = Yier Xi — & Dienv xi, and thus

exp(w);

B link

Oh = D) e explw) + (6'0Y)

(v/v")

3. tr(Hess(¢Y)) =

Y. (tr(Hess(¢)¢™" + tr(Hess(¢™ )Y+ (-

(v/v")

) &Y' &) explw).

T”

3.3.3. Restriction. Bundles

Recall that our goal is to calculate the integral (3.13); our first step is to identify the character-
istic classes under this integral. We showed in Theorem [2.5.13} that

ch(£(k;A)] )
Resf —ZT dd(Z% du = (k+7)N
u=0Jzo E(NZO) T‘kB€2®/]_?.//Z']D//

BResolBerlBer w(p(x/k)l 29 exp <)\ x/k> 18) dBink, (3.15)
link B’

where ¢ € L, is the unique permutation which sends {1,...,v'} to TT" preserving the order of
the first " and the last r” elements. Now we study the restriction of the class ch(m (U, ® X > ))
to Z0.

Recall that in we denoted by w € H2(C) the fundamental class of our curve C, and
by ey, ..., e24 a basis of H!(C), such that eiei g = w for 1 < i < g, and all other intersection
numbers eie; equal 0. For a class y € H*(P x C) of a product, we recall the following notation
for its Kiinneth components:

y = ®1—|—Zy J®ei+ Y @we@H*l ) ®H(C). (3.16)
i=0
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It follows from the Groethendieck-Riemann-Roch theorem that
ch(m(Uy, ®%K2)) = ch(Uy) 2). (3.17)

Recall our notation J for the Poincare bundle over Jac x C, such that c1(J)p) = 0 and an
element 1 € H2(Jac) defined by (3; c1(d)(e;) ® ei)? = —2n® w. The following statement is
straightforward.

Lemma 3.3.2. Denote by U[l]" and by U[—1]" the normalized universal bundles on the moduli spaces
Pi(c’) x Cand P_i(c") x C, correspondingly (cf. beginning of §3.2.1). Let U[l]y, and U[—1],» e the
the associated vector bundles on P(c’) x C and P_y(c”) x C (cf. ). Then

ch(U) )| 0= ) exp(u )] vi)(ch(Uly) B eh(Ul-Uy B

(v v")
1+ (1 ST ( ST )2 ® w >
' ' n (2)'

Applying the Kiinneth decomposition (cf. (3.12)), one can write any class y € H17¥(Z,)
as a sum

Y= ¥i®Yi®vk
(L3.)

where y; € HY(Py(c")), Yj € HI (Py(c”)) and yx € H*(Jac). We will say that the summand
Yi ®Yj ® Yk is of odd type, if at least one number from {i,j,k} is odd. Note that the integral
over Z° of any class of odd type is zero.

Now putting Lemma3.3.2and equation together, we obtain the following statement.

Lemma 3.3.3. In the notation of Lemma|[3.3.2

ch(m(Uy @K2)|,0) = . exp(qu{)(ch(U[l]V/)(z)ch(U[—l]Vu)(O)—f—
) i

('V/,V//

2
ch(Ully) () B eh(Ul=lyn) ) + ch(Ullly ) o) B eh(Ul=Uyn) o) (1;:,, ~(=25) n) )

+ classes of odd type.

Example 10. It follows from Example [1fthat in rank 3 case 11" = {2}, TT” = {1,3} and the
fixed locus Z° is the set of vector bundles that split as a direct sum of rank-2 degree-0 stable
parabolic bundle and a line bundle of degree 0. We denote by U” the normalized universal
bundle on the moduli space Py of rank-2 stable parabolic bundles with trivial determinant.
Then for the universal bundle U from Example the Chern character ch(U)y) ’ZO has two
summands:

e for v/ =(0),v” = (1,0) we have ch(U") ;) — }Inch(u”)(o);

e for v/ = (1),v” = (0,0) we have e*n.
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Remark 3.3.4. Recall that in §2.5.2|we identified the functions on V with cohomology classes
on Py(c) and an equivariant Cohomology classes on Z°. Under these identifications, ch(U., ) (0)

corresponds to the function dY' (x) exp (Ve X)) and ch(Uy ) (o) corresponds to the function
eV (x) exp (Vi X))
Now our goal is to calculate the wall-crossing integral (3.13) applying induction by rank

based on Theorem Using (3.17), we can write the inductive hypothesis in the following
form:

J Ch(L(k))\))Ch(uy)(ZJTOdd(PO(C)) =
Po(c)
N, - ;5|5_o B;D iBer [det(HesS(Q))g—l(x)w}D*m (x) exp (A + Vaer, x>)] (—lclg). (3.18)

Fixing k and varying A, we can extend this hypothesis by linearity to the following linear
combinations of Chern characters of line bundles

Zch L(k;AY) =ch(L Zch L(0;AY)

Since any polynomial on V, up to a fixed degree may be represented as a linear combination
of exponential functions of the form exp({A,x)), formula may be generalized in the
following way.

Lemma 3.3.5. Let G(x) be a formal power series on V, and denote by G(z) the characteristic class in
H*(Po(c)) obtained by the identification of functions on V and cohomology classes on Py(c) (cf. Remark

. Then

| enteoliconGizicn(uy) o Todd(Po(e) =N,

Po(c)

0
%‘5:0

3 iBer [det(Hess(Q))g—l(x)G(x)wiD—ZQ(x) exp((h +vdet,x>)} (—[clg). (3.19)
BeD

Armed with this statement and equality (3.15), we are ready to calculate the integral (3.13).
We start with the case 1 = 0.

e Note that for L =0, [c] = [¢] + [c"].

e Then using the induction hypothesis (3.19) and Remark we conclude that the first
summand in Lemma|3.3.3|contributes

. . 1-2¢g o
(k+71)Nyx Z Resexpqu Z Z 1]%§r1]]339r[w® (x/k)
(-v V”) BIGDI B//ED//
—tr(Hess(@) (x/k))@*" (x/k) = >} @ (x/k)
plileB

exp <7\ + vdet + vdet, x/k> <

o (/K) exp(< B
1 —exp((B
to the wall-crossing integral (3.13).

i IC B0y (/R0 1%/ )] (~1eT) du G20

plieB’
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e Note that
Vet + Ve )+ (X (v1) = X0) ), Vi = Vaet + W, (3.21)

hence after the identification of u with [Shnk = Xg(r/) — Xr justified in (3.3.7) (see also
Remark3.3.4), we can replace the factors

exp (Ve + Viers x/1A<>) exp(uZ vi) = exp((Vget + W, X/E>)
in (3.20).

e The second summand in Lemma has the same form as (3.20) with exchanged v’
and v”, B’ and B”.

J ( ST )2 y (k+71)r\\ _ —g s*r [(k+7)r)?

ac ! n-exp{n ! o (k 4 .r) ! i

where the second factor comes from the restriction of £(k;A)/E(N o) to Z° (cf. Lemma
and Proposition 2.5.9), the third summand in Lemma for 1 = 0 contributes

2
s°r
—gN;xk—— Res E g iBer iB
I ke Blink=0 B B

(v/,v") B/eD’ B"eD”
exp((et + W, x/k)) 0" (x/k) @ (x/K)] (=lc*18) dBrin-

to the wall-crossing integral (3.13).

e Since

erfwg, 29 (x/k) exp((A, x/k))

e Finally, using Lemma3.3.1| we arrive at the following statement for 1 = 0.
Proposition 3.3.6. Let D’ and D" be diagonal bases of ®' and ©" and let Py be the link edge (cf.
page. Then

X (6A) =X A) = (k4 1INk Res iBeriBer
" ,
B/eD’ B"eD” Blink=0 B’ B

[ 129 (x /k) ) exp <7\ +vdet,x/k> ( —I—g tr(Hess(¢ ))(x/i)+l(p"éhnk(x/i)—

2

i#link

(Pﬁ[l (X/k) exp < W R
T exp((BT l ;ﬁ LBy /)| (<1eTh) b (22

Remark 3.3.7. Note that this wall-crossing term coincides with the one from Corollary
and hence with the one from Lemma

Example 11. Let z = ¢1(F5/F) ® F|*) € H2(Py), where F are flag bundles on Py (cf. Example
. In particular, we have ch(U") ) = e* + 1.

We saw in Example [6] that in rank-3 case the Chern character of the restriction of the
line bundle £(k; A) multiplied by the inverse of the K-theoretical Euler class of the conormal
bundle of Z° is equal to

exp (W) eMlUch (L7(k+1;M))e 7 (2sinh(u/2)2sinh((z — u)/2))%97 ¢,
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where £”(k;A) is a line bundle £(k, (A, —A)) on Py. Using Example and Theorem we
conclude (cf. (3.13)) the the wall-crossing term

X(Po(<), Lok, A) @ m(U@K2)) — x(Po(>), Lok, A) @ m(U@K?)) (3.23)

is equal to

) (3(k+3)>gRese7\zuf Ch(L"(k+ ;M) @ (U @K))ed

Todd(P
2 (sinh(2)2sinh(255))pe1  rodd(Po)du

u=0
Py
z
e)\lz+)\2u+z(eu 1—0—46 )

2
9 N - Res Res

dzdu,
3(k+3)  u=02=0 W (z,u)2971(1 — e(k+3)z) zau

where W¢ (z,u) = 2sinh(*%*)2sinh(5)2sinh(5) and N = (=1)9(3(k + 3)2)9. This integral
is the Euler charactersitic of a vector bundle on the moduli space of degree-0 rank-2 stable
parabolic bundles, so we can calculate it using the induction by rank (cf. formula (3.6)). A
simple calculation shows that the wall-crossing term is equal to

2 A1x+Au+z 1 u z
9 __N.ResRes - (1+e"+e)

dzd
3(k+3) u=02=0 (1 — ez(k+3))v~\)¢(z,u)29—l zau

Ax+Au+z+(k+3)z(1 _ o2z
e 1—e
( 1 dzdu.

~N-ResR
1w 20 (1 — e2(+3) 127 (z, )29~

Note that this is exactly the same polynomial as in Example@after changing (z,u) to (x, —y).
If 1 # 0, we will need one more step to calculate the wall-crossing term (3.13), which uses

the tautological Hecke correspondences.

3.3.4. Hecke correspondence

In we defined the tautological Hecke operators between the moduli spaces of parabolic
bundles with different degrees and parabolic weights as follows: given a vector bundle W on
C with a full flag F, in the fibre W;, at p € C, we considered the associated sheaf of sections
W and defined the subsheaf

WI[-1] = {y e HY(C, W) |y(p) = Fr_1} = W.

Then W[—1] is locally free, and thus defines a vector bundle, which we denote by W[-1].
Considering the associated morphism of vector bundles W[—1] — W, we defined the full flag
Gy in the fibre W[—-1],, and denoted this operator by H : (W, F,) — (W[-1],G). We proved
that 3 induces an isomorphism of the moduli spaces

H:Palcr, ¢, cr) > Pa_ilca, . cr,c1 — 1).

Applying H to the normalized universal bundle U on the moduli space Py(c) x C we obtain
a short exact sequence for the corresponding sheaves of sections:

0—-U[-1] ->U—>F./Fr1 —0.
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Considering the associated vector bundles, we arrive at the following equality
ch(U) = ch(U[-1]) + w - ch(£(0; (1,0,..,0,-1))), (3.24)
where w € H?(C) is the fundamental class of the curve (cf. the beginning of §3.3.3).

Remark 3.3.8. Note that under the Hecke isomorphism X, the normalized (cf. §3.2.1) universal
bundle U on the moduli space Py(cy, ¢y, ...,cr) x C corresponds to the universal bundle U[—1]
on the moduli space P_q(cy,...,cr,c1 — 1) x C such that the line bundle F,/J is trivial.

Similarly, applying the Hecke operator 3! to the normalized universal bundle U, we obtain
the universal bundle U[—1] on P_{(cy41,...,¢r,c1 —1,...,c1 — 1) x C.
Notation: Given an irreducible representation p, : GL, — GL(V,) of highest weight v, we
consider its weight decomposition

Vy = @ V[H]/

neZr
where V[u] is the weight space of the weight p, and we denote by m, = dim(V[p]).
Proposition 3.3.9. Let U[—1]y be the vector bundle on P_y(c) x C associated to the irreducible rep-

resentation p~ of GL, with highest weight v and the normalized universal bundle U[-1] (cf. §3.2.1).
Then

ch(Uy) = ch(U[-1y) + @ > my(w + ..+ w)eh(£(0; (w1, oy tr—1, e — [V]))),
w

where |v| = Y; vi and the sum runs over the weights w of n p~, with highest weight v.

Proof. Given a rank-r vector bundle V on Py(c) x C and a symmetric polynomial
f € Clyy,...,yr)=", denote by f(V) € H*(Py(c) x C) the cohomology class obtained by
evaluating f at the Chern roots of V. The flag 51 < J, < ... ¢ J; = U, defines the
cohomology classes

& = c1(Fr_iv1/Frmi ®FF) € HA(Py(c)),

and thus we have
ch(Uy) = e5 + .. +eb-141;

it follows from Remark that the Chern character of an associated bundle U, is given by

ch((Uy)p) = Z myexp( &y + .+ tro1&r21).
w

We note that the cohomology class f(U,,) in H*(Pg(c) x C) is well-defined for any (not neces-
sarily symmetric) polynomial f € Clyy, ..., y-].

We introduce the notation fi(yi,...,yr) = %(y} + ... +yl); in particular, for any vector
bundle V on Py(c) x C, we have f;(V) = ch;(V). It follows from that

fi(U) = fi(U[-1]) + w (9ylfi(up),

and thus



CHAPTER 3. EULER CHARACTERISTICS OF TAUTOLOGICAL BUNDLES 66

For the last equality, we used the facts that w ch(U) = w ch(U,) and that according to (3.24),
ch(Up) = ch(U[-1]}).

Since any symmetric polynomial f € Clyy, ..., y,]*" may be written as a polynomial in f;’s,
(3.25) implies that for any symmetric polynomial f we have:

]Z

f(U) = F(UI-1]) + w dy, F(U).

Let
9y (Y1, Yr) = Y muexp(ays + . + ey );
w

since g (U) = ch(Uy ), we have

and thus
ch(Uy) = ch(U[-1]y) + @ Y myp exp(pr&y + ... + tr—1&r—1).
n

Finally, note that

exp(uié&y + ... + mr—1&r—1) = ch(L(0; (1, ooy r—1, e — [V]))),

hence we obtain the proof for | = 1. Iterating this argument, we obtain the proof for the
general case. O

3.3.5.  Wall-crossing for 1 # 0

Recall that our goal is to calculate the wall-crossing integral for non-zero 1, or, more
precisely, to prove Proposition for the case when 1 # 0. The treatment of this case follows
the logic of (cf. page nce, in this section, we will only highlight the differences
which arise in our, more general, situation. For simplicity, we assume that 1 is positive (the
other case is analogous).

e We first apply the Hecke operators ' and ™! to the moduli spaces Pi(c’) and P_;(c")
to obtain
Po=Polc{y1,-Crrcy —1,..,¢c0 —1) ~ Pi(c’) and

I " " " " "
PO = PO(Crn_H—l + 1/ veey Cpr + 1/ Clreeer CT”—I) = P*l(c )

e Next, applying the Hecke operator H' x H ™! to the wall-crossing term (3.13), we recast
it as an integral over the moduli spaces of degree-0 parabolic bundles P} x P, and thus
we can calculate this integral using the induction by rank as in §3.3.3|

e As in Chapter |2} to arrive at Proposition we will need to make additional trans-
formations of the formulas we obtained. We perform this transformation by applying
Lemma with B = («*® (") 7(*) B’ B”) and

1

W = Z (X(D(T'—H—i) - X¢(r’+i)) EN,
i=1
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where ¢ € Z, is the permutation which sends {1, ..., 1’} to TT" preserving the order of the
first v’ and the last r” elements.

The first summand on the right-hand side of coincides with the shift of A we treated
in (cf. equation (2.43)). An easy calculation shows that the second summand on
the right-hand side of eliminates the changes (cf. Proposition and equation
) of the Chern character of (U, ®9C%)‘ZO under the Hecke transformations '
and K.

e Finally, applying Lemma with B = («*®") T B'B") and v = la™® (") 7" we
perform the shift of A we treated on page[38|and obtain 1 times the second summand in
(I)E (cf. Lemma . The first summand in ¢ is obtained from Lemma|3.3.2

link

B1ink

This completes the proof of Proposition for arbitrary 1 € Z.

3.4. Symmetry

The main result of this section is Proposition where we prove certain symmetry for the
Euler characteristics of our vector bundles on the moduli spaces of parabolic bundles.

3.4.1. Symmetries through Serre duality

Recall that in §2.7.2|we denoted by N the moduli spaces of rank-r degree-+1 stable vector
bundles and by UN® the universal bundle over Ni; x C, normalized in such a way that
det(UN;) ~ £_4(-7;(1,...,1)) and det(UN;) ~ Lq(1;(1,...,1)).

In Lemma we identified the moduli spaces P1(>) and P_;(<), which are isomorphic
to the flag bundles

P1(>) ~ Flag(UN}) B Ny and P_j(<) ~ Flag(UN,) 5 N_;.

The following is easy to verify.

+

= ) are isomor-

Lemma 3.4.1. Under the normalization described above, the line bundles F1 < p*(UN
phic to £L_1(—1;(0,...,0,1)) and £1(1; (0, ...,0,1)), respectively (cf. §3.2.1).

Applying the Hecke operators H~! and  (cf. §3.3.4) to the moduli spaces P_;(<) and
P1(>) we obtain
Po(<) ~P_1(<) and Po(>) =~ P1(>).
Let T € X, be the cyclic permutation t- (¢cy,...,¢+) = (c2,...,¢r,€1), and consider two points in
V*:

_k+r
or

k k k
el[k] (1/1;-~-/1)_(k+T)XT_p:T' (T_k//"'/) —T-p

k+r
T

k k k
(1,1,..., 1)+ (k+m)xq—p=1"- <—,...,—,— +k> —ttp.
Now we define two polynomials

X2 A) =x(Po(<), £k A) @ (Uy @ K2)),
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XL (k:A) = x(Po(>), £(; ) @7 (Uy ©2))
and establish the Weyl antisymmetry for the modified polynomials
FLGA) = X20GA) = Y my X (Po(<), S0GA+ (11, ooy tr1, e — [V])))
W

and

2 A) = X2 (GA) + ) my wex(Po(>), LO0GA + (1, oy 1, e — [V])),
n

where we sum over all weights p of the irreducible representation p, and |v| = >3; vi (cf.
notation on page .
Example 12. In case of rank-3 parabolic bundles and v = (1,0,0) (cf. Example , we have

Y (k,A) =x(Po(<), LA @m(U®K?)) —x(Po(<), £(k; (A + 1, A0, A — 1));

Y (k,A) = x(Po(>), L(k;A) @MU K2)) +x(Po(>), £(K; (A1, A, As)).

Proposition 3.4.2. Let vge; = LYi(1,. 1,1 —1); then the polynomials

T

LA+ 0_1[k] —vget) and LA+ 01[k] — vget))

are anti-invariant under the action of the group of permutations of Ay, ..., Ar.

Proof. First, we will show the anti-invariance of the Euler characteristics of vector bundles on
the moduli spaces of degree +1 parabolic bundles P;(>) and P_;(<), as it is simpler. Let
U[1] and U[-1] be the universal bundles on P;(>) x C and P_;(<) x C that correspond to the
normalized (cf. universal bundles on Py(>) and Py(<), respectively, and let

A -1
6_1 = =T Vdet — P and 91 = —T *Vdet — P-

Applying Serre duality for family of curves to the associated vector bundles U[+1]y (cf. (3.7))
on the moduli spaces P_;(<) and P;(>), we obtain the following.

Lemma 3.4.3. The Euler characteristics x(P_1(<), £L_1();A+0_1) @ m(U[-1]+ ®ﬂ<% )) and x(P1(>
), L_1(kA+01)@m(Ul]ly ® %2 )) are anti-invariant under the permutations of Ay, ..., Ar.

Proof. Note that U[—1] ~ p*(UN") ® (F,/91)* (cf. Remark [3.3.8), hence
U[-1]y ~ p*(UNJ) ® (F2/F1) "2,

where UNj is a vector bundle on N_; x C obtained by from the universal bundle UN™.
Then X :
m(U-1ly ®K2) ~ m(p*(UN;) ®K2) © £-1(1;(0, ..., 0, =1,0) ™

by Lemma and thus

X(P_1(<), L1 (A +0_1) @ m(U[-1]y, ® K?) =

X(P—1(<)/L—1(k+2vi;7\ —

Since the line bundle £_;(r; (-1, ..., —1)) is a pullback of the ample generator of Pic(N_1) (cf.
Lemma [2.7.4), the statement follows from Serre duality for families of curves (cf. Proposition
2.7.1). The proof for the Euler characteristic on the moduli space P;(>) is similar. O

eri (1,..,1) — p) ®@m(p* (UNF) ®K2)).
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Recall that our goal is to show certain antisymmetries for the polynomials ¥ (k; A), which
are the linear combinations of the Euler characteristics of vector bundles on the moduli spaces
Po(s). We will follow the argument for the polynomial fY (the proof for f¥ is analogous).

Under the isomorphism H : Py(<) — P_1(<), vector bundles on Py(<) correspond to
vector bundles on P_;(<). Below, we will write this correspondence explicitly and then will
apply Lemma m to the vector bundles on P_;(<) to obtain antisymmetries for the Euler
characteristics.

Note that trivially

~Vdet (1, s Mot e = D Vi) = == (L, D) o, (3.26)
and thus it follows from Proposition that

X(Po(<), £ A+ 0_1[k] — vaer) @ T (U, ®K?2)) =

X(P_1(<), L_1(k;T- A — E(l, LD+ ) @mU-1], ®K2))+

D mywx(Po(>), £ (kA + 0_1[k] — Zr“ (1., 1) +w). (3.27)
jv8

Using Lemma and equations (3.26) and (3.27), for any permutation o € L, we obtain

3.26)(3.27
Y (k0 A+ 0_1[k] — vger) ot

X(P-1(<), L1(k;t-0-A— %(1,‘.., D+0 ) emU-1,®%K2))+

2 ax(Po(<), £( 0 A+ 04K — ZT“ (1,0 1) + 1)) —
"
3 (ol <), £l 0 A+ 030 — 2V (1,..,1) 4 0))

i

= (—1)°X(P_1(<), £_1(,;T- A — ‘j(l,...,l)+é_1)®m(u[—m®ﬂ<%n s

(—1)°x(Po(<), Lo(k; A+ 0_1[k] — Vger) @ 0 (U[—1]y ® K2))—

o Vi def
(17 mya i (Po(>), £06A + 010K — 21, 1) 4 )
i
(=1)°FLGA+ 01kl —ver), (3.28)
which completes the proof of Proposition for f¥. The proof for Y is similar. O

3.4.2.  The Affine Weyl group

We define an action of the affine Weyl group £ x A on A x Z~, which acts trivially on the
second factor, the level, and the action at level k > 0 is given by

OA=0"(A+pP+Vdet) — P — Vdet
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and
YA=A+(k+1)y for GeZ,ye/\

We denote the resulting group of affine-linear transformations of V* by Z[k]. It is easy to
verify that the stabilizer subgroup

£, % Stab(61 k] — vaer, £IK) < E[K]

is generated by the transpositions sii41, 1 < i < v —2 and the reflection «™ " 05, 1,;

similarly,

def

£,y < Stab(8_1[k] — vger, 2[K]) = Z[K]

is generated by si i1, 2 <1 <1 —1 and the reflection al?o $1.2.

Then Proposition maybe recast in the following form: the polynomial fY(k;A) is
anti-invariant with respect to the copy Z",, of the symmetric group X, while f¥ (k;A) is anti-
invariant with respect to the copy X, of the symmetric group %,.

The following statement is straightforward:

Lemma 3.4.4. Both subgroups LT, are isomorphic to L, and for v > 2 the two subgroups generate
the affine Weyl group ¥[x.

3.4.3. Symmetries in residue formulas

The main result of this section is Proposition|3.4.5| where we show the antisymmetries for the
residues formulas on the right-hand side of

Recall that in 3 4.1)we defined a pair of polynomials x¥ corresponding to the Euler char-
acteristics from the eft-hand side of (3.10) and proved the Weyl antisymmetry for the modified
polynomials . Now we define the two polynomials corresponding to the residue expressions
from the rlght -hand side of (3.10):

RY (k;A) = Ny ‘5 0 Z iBer [det(Hess(Q))g_l(x)wgzg(x) exp((?\ +vdet,x>)} (—[61]B)
05 = BQ

and

RY(kA) = N, - ;6|5 » BZ@ iBer [det(Hess(Q))g—l(x)WgZQ (x) exp((A +Vaet, x>)] (—[6_1]8),

where 0; = % (1,1,...,1) =%y, and 67 = =1 .(1,1,...,1) + x4, and establish the Weyl anti-

symmetry for the modified pair of polynomiais:

FY(kA) = RY(K;A) + Ny -

1-2 N
Zmuur];) (IEEE)K{ o 2(x)exp(A+ (11, ooy 1, By — [V]) X>} —[61]8)

2Note that this action differs from the one defined in : by a shift by vget.
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and
FY(k;A) = RY(k;A) — N,

me 2 iBer [ o 9 (<) exp(A + (11, .o iy, e — [V]), ) | (—[0_1]8),
BGD

where, as usual, the sum runs over all weights p of the irreducible representation p- and
|v| = 33; i (cf. notation on page|65 .

Proposition 3.4.5. The polynomial FY (k;\) is anti-invariant with respect to L7, and FY(k;A) is
anti-invariant with respect to X1 ,,.

Proof. We first consider a generator of £, of the type 0 = s; ;11,2 <1 <1 — 1. Note that
OA+ P+ Vgt = 0(A+p+Vger) and oA+p+pu—|v[xr =0c(A+p—|V[x:) + 1.
Using Lemma|2.3.5and the facts that
o - det(Hess(Q))(x) = det(Hess(Q))(x) and o-wp 29(x) = —wy, 29(x),
we obtain
FY(k; 0.A) =

Nr;&]z—)_o Z illggr[—det(Hess(Q))g—l(x)wld)—Zg(x) exp (N + p 4 Ve, X))] (—0_1 .[0_1]8) —

rkEmumZ s Ber w20 exp((ot o) — v | (—o7! - [0-1s) =
e B/(k+T)

—FY(k;A).

For the last equality we used the Weyl-invariance of the multiplicities of weights u of the
irreducible representation p.,.
The case of the last generator 0 = «

Proposition we obtain

meE s Ber w200 exp((oA+p -+ %) — [V | (~101]s) =
e B (k+7)

12 6 515 requires some extra observations. Applying

—meZ s Ber Wi 290 exp(t 10 = [vlxr) | (~[0-1lp) . (3.29)
Be@ r)

Since
OA+p+ 1 — Y Vixe =512 (A4 p) + 1 — [Vxe + (k+7)(x1 — x2)

and
s12-[0-1] = [0_1] — (x1 —x2), (3.30)

we note that
OA+ P +Vget = 512 (A +p) +Vget + (K +T1)(x1 —%2),
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hence, using (3.29), we obtain

v 0 . -1 1-2
FY(k; G.}\):Nraé‘6:0B%lggr[—det(Hess(Q))g (XIwg 29(x)

exp(A+p 4+ Vget, X) — (k+1)(x1 —x2))] (=512 - [0_1]B) +
New Dimure 35 iBer Wiy 2900 exp(t 1,50 = [vlxr) | (—[0-alp). (3.31)
8 BeD T

Now using (3.30) and applying Lemma with w = x1 — x; to (3.31), we calculate that
v 0 . — - o\
FY(k; 0.A) = Nr$\620 > 1]?8r[—det(Hess(Q))9 Lx)wi 29(x) exp (A +Vaer, X)) (—[0_1]8) —
BeD

Ny - B;J B,EEEE)K[‘WE_ZQ (X) by (X) eXP (A + Vet X)) (—[0_1]B) +

Nig-> m iBer {wl_zg
r’kg ”uzzs(kﬂ)K @

BeD

(x) exp(A+ 1, x> — [v]xr)| (—=[0_1]8) .

Finally, applying the following trivial equality

P (X) XP (Vo)) = e (11 — p2) exp(u(x))
w

to the last two summands in our expression for polynomial FY(k;0.A), we conclude that
FY(k; 0.A) = —FY(k; A). This finishes the proof of the anti-invariance of the polynomial FY (k; A);
the proof for FY (k;A) is similar. O

Note that the two differences x¥ — f¥ and x¥ — f¥ (cf. page have the form of a linear
combination of the Euler characteristics of line bundles on the moduli spaces of parabolic
bundles; while the differences RY — FY and RY — FY (cf. page may be written as an
iterated residue of a meromorphic functions. Then using the residue formula for the Euler
characteristic of line bundles, Theorern we arrive at the following statement.

Proposition 3.4.6. For polynomials RY,RY, x¥,xY, FY, FY and {Y,fY defined on pages [70|and 68
we have:

X2 (K A) = X (kA) = RI(k;A) — FX (I A);
XZ(kA) = FZ(kA) = RZ(k;A) —FZ(IGA).
3.5. Proof of Theorem and some generelizations of our result
In this section, we finish the proof of our main result and present some of its generalizations.

3.5.1.  Proof of Theorem

The proof of Theorem follows the logic of Chapter In this section, we repeat the
argument from §2.7.4|with only minor changes.
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Recall that in §2.1.2| we introduced a chamber structure on A ¢ V* created by the walls
Sti1, where TT = (T, TT”) is a nontrivial partition, and 1 € Z. Denote by

A={(ka)a/keA} cRogx V*
the cone over A < V*, and let
A™8 = {(k;a)| a/k € Ais regular} c A

be the set of its regular points. Denote by §n,1 — A the cone over the wall Sr1 < A; then Ares
is the complement of the union of walls §n,1 in A. Finally, denote by Er/ig the intersection of
the lattice Z-y x A with Ares,

By substituting ¢ = A/k, we can consider the left-hand side and the right-hand side of the
equation in Theoremas functions in (k,A) € Zr/ig. We denote by x(k;A) and R(k;A) the
left-hand side and the right-hand side, correspondingly.

We showed that x(k;A) and R(k;A) are polynomials on the cone over each chamber in A
(cf. §3.2.2). We proved that the wall-crossing terms, ie. the differences between
polynomials on neighbouring chambers, for x(k;A) (cf. Proposition [3.3.6) and for R(k;A) (cf.
Corollary coincide, hence there exists a polynomial ©(k;A) on Z-y x A, such that the
restriction of ©(k; A) to E;ﬁg is equal to the difference x(k;A) — R(k; A).

Now for r > 2, we can conclude that

O(GA) =xIL(GA) —RY(KA) =xZ(k;A) —RL(k;A),

where X‘z’ (k;A) and RY (k; A) are the restrictions of x(k; A) and R(k;A) to two specific chambers
defined in Lemma Then, according to Proposition [3.4.6}

Ok A) =fY(kA) —FL(IA) = fX(kA) — FY (K A).

It follows from Propositions [3.4.2 and [3.4.5|that the polynomial @(k;A) is anti-invariant with
respect to the action of the subgroups ., (cf. the end of §3.4.2), and hence by Lemma|[3.4.4}

it is anti-invariant under the action of the entire affine Weyl group Z[k]. Ttis easy to see that
any such polynomial function has to vanish, and thus x(k;A) = R(k; A).

As marked above, the argument does not work for r = 2, since in this case the groups Z,
and X1, (cf. coincide, and thus they do not generate the entire affine Weyl group. A
solution is to consider the 2-punctured case, treated in this finishes the proof of
Theorem

3.5.2. Generalization

Now we formulate a mild generalization of our result, Theorem and explain, following
an idea of Teleman and Woodward [24], how our formulas can be used to calculate the Euler
characteristic of a more general class of vector bundles on the moduli spaces of parabolic
vector bundles.
Let v[1],..., v[m] be dominant weights of GL,. Replacing Q and vget in Theorem by
the multi-parameter version
m .
Q=(k+1)K=>86"", vge=>1(1,..,1,1- r)M,
j

T
j=1
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we can deduce the following Theorem.

Theorem 3.5.1. Let Q and vge; be as above, let X be the canonical class of the curve C, A € A,
keZ-.o v=_(vi=Vva.=vVy)eZ ,AN=AN+p,and let c € A be a regular element (cf. page .
Then for any diagonal basis D € B, the following equality holds:

X(Po(c), £(6A) @ (Uy 1) ® K2) @ (Uy o) @ K2) @ ... @711 (Uy ) @ K2)) =

o Z i]]33er [det(Hess(Q))g_l( w 11329 X) exp <?\+vdet, X)) } [clg).

N..——
T 081...06m =

§1=.=6m=0

The proof of this theorem is analogous to our proof of Theorem
Using Theorem one can also obtain formulas for the Euler characteristics of vector

bundles, which involve the exterior powers A! (U, ® K 2)). Let us briefly explain the case

X (Po(C),L(k;M@)/\2 m(uv@)ﬂc%)). (3.32)

Recall that the n-th Adams operator ™ is defined by {p™L = L™ for a line bundle L and
extends to K-theory additively by the splitting principle. It follows from the Groethendieck-
Riemann-Roch theorem and equation (3.17) that

ch(™(m(Uy ®K2))) = ) nt- chi(m(Uy @%K?2)) =
i=0
LYt ehi(Uy)) = Lch(@(Uy) = ehim(0" (Uy) @), (339
i=1 n

Since for any vector bundle V

(N - B,

the Euler characteristic (3.32) equals

1 1
SX(Po(e), £(kA) ® (m(Uy ©5C3))%) = 2x(Po(e), £(k:A) @7 (92 (Uy) ©K2)).
Finally, note that the character function (cf. page for Pp™(U,) is ¥ (x™), hence using

Theorem we obtain the formula for the Euler characteristic .
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