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Résumé

La formule de Verlinde est une expression pour la caractéristique d’Euler des fibrés linéaires
sur les espaces de modules des fibrés stables sur une courbe. Cette formule motivée par la
physique quantique est un de plus bean résultat de la géométrie énumérative. Au fil des
années, de nombreuses preuves différentes de cette formule ont été proposées.

Dans le chapitre 2 de cette thèse, nous donnons une nouvelle preuve de la variante
parabolique plus difficile de cette formule basée sur une comparaison des croisements de
murs en théorie géométrique des invariants et de certains calculs de résidus itérés. En cours
de route, nous développons une variante tautologique des correspondances de Hecke, calcu-
lons les polynômes de Hilbert des espaces de modules et présentons une nouvelle approche
transparente du problème de ⇢-shift de la théorie.

Dans le chapitre 3, nous montrons que les méthodes de résidu/croisement de mur du
chapitre 2 peuvent être utilisées pour décrire les applications poussées en avant dans la K-
théorie des espaces de modules et présenter de nouvelles formules explicites pour la carac-
téristique d’Euler d’une classe plus large de fibrés vectoriels sur l’espace des modules des
fibrés paraboliques stables.

Notre travail a été motivé par les résultats de Teleman et Woodward sur l’indice des classes
K-théorieque des champ de modules.
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Summary

The Verlinde formula, an expression for the Euler characteristic of line bundles on the moduli
spaces of stable bundles on a curve, is a strikingly beautiful statement in enumerative geom-
etry motivated by quantum physics. It has attracted a lot of attention over the years, and has
a number of different proofs.

In Chapter 2 of this thesis, we give a new proof of the more difficult parabolic variant
of this formula based on a comparison of wall-crossings in Geometric Invariant Theory and
certain iterated residues calculus. On the way, we develop a tautological variant of Hecke
correspondences, calculate the Hilbert polynomials of the moduli spaces, and present a new,
transparent approach to the ⇢-shift problem of the theory.

In Chapter 3 we show that the residue/wall-crossing methods of Chapter 2 may be suc-
cessfully employed to describe the pushforward maps in the K-theory of moduli spaces and
present new, explicit formulas for the Euler characteristic of a wider class of vector bundles
on the moduli space of stable parabolic bundles.

Our work was motivated by the results of Teleman and Woodward on the index of K-
theory classes of moduli stacks.
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Chapter 1

Introduction

1.1. The parabolic Verlinde formula

The Verlinde formula is a strikingly beautiful statement in Enumerative Geometry motivated
by quantum physics [29]. Our focus in the first part of this thesis will be the more difficult,
parabolic variant of this formula, which we briefly describe below.

Let C be a smooth, complex projective curve of genus g • 2, and fix a point p P C. Denote
by � the set of vectors c = (c1 ° c2 ° ... ° cr) P Rr such that

∞
ci = 0 and c1 ´ cr † 1. We will

call a vector c P � regular if no nontrivial subset of its coordinates sums to an integer. For such
a c P �, there exists a smooth projective moduli space P0(c) of dimension (r2 ´ 1)(g ´ 1) +

�r
2
�

([19, 13, 4]), whose points are in one-to-one correspondence with equivalence classes of pairs
(W, F˚), where W is a vector bundle of rank r on C with trivial determinant, F˚ is a full
flag in the fiber Wp, and the pair satisfies a certain parabolic stability condition depending
on a regular c P � (cf. §2.1.1). This condition roughly states that for a proper subbundle
W

1 Ä W, the degree deg(W 1) is strictly smaller than the sum of a subset of the coordinates of
c depending on the position of W1

p with respect to F˚.
There is a natural way to associate to a positive integer k and an integer vector � P Zr

satisfying �1 + ¨ ¨ ¨ + �r = 0 a line bundle L(k; �) on P0(c), in such a way that if c = �/k,
then L(k; �) is ample. The parabolic Verlinde formula is the following expression for the Euler
characteristic of the ample line bundle L(k; �): assume c = �/k is regular; then

�(P0(c),L(k; �)) = Nr,k ¨
ÿ (´i)(

r
2) exp(2⇡ip� ¨ x)

±
i†j

�
2 sin⇡(xi ´ xj)

�2g´1 , (1.1)

where Nr,k = r(r(k+ r)r´1)g´1, p� = �+ 1
2(r´ 1, r´ 3, . . . , 1 ´ r), and the sum is taken over the

finite set of those points in the interior of the parallelopiped

tx = (x1, x2, . . . , xr = 0)| 0 † xi ´ xi+1 † 1 for i = 1, . . . , r ´ 1u

which satisfy the conditions (k+ r)x P Zr and xi ´ xj R Z for 1 § i † j † r.

Remark 1.1.1. This finite set is a set of lattice points in the interior of (r ´ 1)! identical sim-
plices. (These are the orange-colored points in the rhombus on Figure 1.1). By symmetrizing
with respect to the group of permutations of the r coordinates, one obtains the same function

1



CHAPTER 1. INTRODUCTION 2

on each of these simplices. Using the Weyl character formula, this allows one to rewrite (1.1)
in a more familiar form as

�(P0(c),L(k; �)) = (r(k+ r)r´1)g´1 ¨
ÿ ��(x)

±
i†j

�
2 sin⇡(xi ´ xj)

�2g´2 , (1.2)

where �� is the character of the irreducible SU(r)-representation of highest weight �, and the
sum is now taken over the lattice points of the form (k+ r)x P Zr in the interior of a single
simplex tx = (1 ° x1 ° x2 ° ¨ ¨ ¨ ° xr´1 ° xr = 0)u.

(0,1,-1)(1,-1,0)

(0,0,0)

(2,2,-4)(4,-2,-2)

(0,0,0)

(1,0,0) (1,1,0)

(2,1,0)

Figure 1.1 – The set of �s (left), and the finite set from (1.1) (right) for k = 6, r = 3.

Remark 1.1.2. Equality (1.1) remains valid in greater generality, for certain cases when �/k is
non-regular. This slightly more technical statement will be given in Theorems 2.3.7 and 3.2.3.

Equality (1.1), the parabolic Verlinde formula, has attracted a lot of attention over the years,
and there is a number of different proofs (cf. e.g. [1, 12, 24]). In Chapter 2 of this thesis, we
give a novel proof of this result, which stands out with its technical simplicity. Below, we give
a quick sketch of the strategy of our proof.

Strategy of the proof

Our proof is based on three ideas. We start with the study of the right-hand side of equation
(1.1). As observed in [20], this finite sum can be written as a piecewise polynomial function
in (k, �). We will briefly explain the idea in the simplest case r = 2.

We fix k and (�, ´�) P Z2; in rank-2 case, the sum on the right-hand side of (1.1) may be
written in the following simplified form

2(2k+ 4)g´1
k´1ÿ

j=1

´i ¨ exp(2⇡i(�+ 1
2) j/(k+ 2))

(2sin(⇡ j/(k+ 2)))2g´1 .

Note that this sum is periodic in �+ 1
2 modulo k+ 2. We introduce the notation tqu for the

fractional part of q P R, and using the residue theorem, we evaluate the sum as

(´1)g´1(2k+ 4)g Res
z=1

z
t(�+ 1

2 )/(k+2)u(k+2)

(z1/2 ´ z´1/2)2g´1(1 ´ zk+2)

d z

z

z=eu

=

(´1)g´1(2k+ 4)g Res
u=0

e
t(�+ 1

2 )/(k+2)u(k+2)u

(eu/2 ´ e´u/2)2g´1(1 ´ eu(k+2))
du. (1.3)
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A simple calculation shows that we obtained a periodic, piecewise polynomial function in
the pair (�,k), which is polynomial on the cones bounded by the lines (�+ 1

2)/(k+ 2) P Z.
When r ° 2, one can still present the sums on the right-hand side of (1.1) as iterated residues
of certain rational differential forms (cf. Theorem 2.3.7). In this case the combinatorics of the
residue formulas is considerably more complicated, and is best treated using the notion of
diagonal bases and of hyperplane arrangements (cf. §2.2).

We observe that the simplex � (cf. page 1) of parabolic weights c parametrizing stability
conditions contains a finite number of hyperplanes (walls) on whose complement (the set
of regular elements in �) the stability condition is locally constant. This induces a chamber
structure on �, such that the left-hand side (via the Grothendieck-Riemann-Roch theorem)
and the right-hand side (written as residue formula) of (1.1) are manifestly polynomial in
the variables (k; �) on each chamber. We introduce the notation lc(k; �) and rc(k; �) for these
polynomials, where c is any element of the corresponding chamber.

In §2.4 we derive a simple formula (cf. Theorem 2.4.7) for the wall-crossing difference in
geometric invariant theory; using this formula, in §2.5 we show that the differences between
the two polynomials associated to neighbouring chambers (specified by c+ and c´) for the
left-hand side and the right-hand side coincide:

lc+ ´ lc´ = rc+ ´ rc´ . (1.4)

The next step of our proof relies on the Hecke correspondence between moduli spaces of
bundles of different degrees, which was introduced in [17]. In §2.6 of this thesis we describe a
"tautological" variant of this construction, which identifies the same space with moduli spaces
of parabolic bundles of different degrees and weights. We choose a pair of chambers adjacent
to two special vertices of the simplex �, and consider the corresponding pairs of polynomials

lc°(k; �), lc†(k; �) and rc°(k; �), rc†(k; �) (1.5)

from the left-hand side and the right-hand side of (1.1), respectively. Using the tautological
Hecke correspondence and Serre duality, in §2.7 we derive certain symmetry properties of
lc°(k; �) and lc†(k; �), and then we prove that rc°(k; �) and rc†(k; �) satisfy the same symme-
tries.

Finally, in §2.7.4 we show that a set of polynomials parametrized by the chambers in �
is uniquely determined by the wall-crossing terms (1.4) and our symmetry properties for the
polynomials (1.5), and thus we obtain that lc(k; �) and rc(k; �) coincide.

Historical remarks

There is a long list of proofs of the Verlinde formula. Below, we give reference to the works
that are closest in spirit to what we do.

The proofs of the Verlinde formula fall in two categories: proofs of the fusion rules and
proofs that find some interpretation of the "Fourier transformed" discrete sum on the right
hand side of (1.1); as explained above, the present work belongs to this second group. An-
other line of division concerns the model, which one uses for the moduli spaces: via the
Narasimhan-Seshadri correspondence, the moduli spaces of parabolic vector bundles may
equally be presented as symplectic manifolds of certain types of flat connections on punc-
tured Riemann surfaces, and this opens the way of using the methods of symplectic geometry.
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A paper closely related to our work is that of Jeffrey and Kirwan [12], which approaches
the problem from a symplectic/cohomological point of view (cf. [11]), and has a somewhat
different angle form ours. This paper also uses the residue calculus introduced in [20, 21], but
not quite as consistently as our work, and the parabolic case was not resolved from this point
of view (cf. [10]).

The idea of proving the Verlinde formula via wall-crossings appeared in the seminal paper
of Michael Thaddeus [25]. He used a geometric approach and managed to prove the Verlinde
formula in rank 2 by crossing walls in the moduli of stable pairs. The master space construction,
which plays a central role in our paper, first appeared in his works as well [26]. In a sense, the
present work may be thought of as the completion of his program.

1.2. Euler characteristics of tautological bundles

In the second part of this thesis, we apply the wall-crossing/residue technique of Chapter 2 to
obtain formulas for the Euler characteristics of a wider class of vector bundles on the moduli
space P0(c): we associate to a dominant weight ⌫ of GLr a tautological vector bundle U⌫ on
P0(c) ˆ C and calculate

�(P0(c),L(k; �) b ⇡!(U⌫ b K
1
2 )), (1.6)

where ⇡ : P0(c)ˆC Ñ P0(c) is the projection, and K is the canonical bundle on C (cf. Theorem
3.2.3 for the result).

As in the case of Euler characteristics of line bundles (cf. (1.3)), the formulas for (1.6) we
obtain have the form of iterated residues of rational differential forms. For example, in the
simplest rank r = 2 case, the answer may be described as follows.

We fix a dominant weight ⌫ = (⌫1,⌫2) P Z2 of GL2; denote by ⇢⌫ the irreducible represen-
tation of GL2 with highest weight ⌫, and by ⇢̄⌫ its restriction to SU2 Ä GL2. Let U⌫ Ñ P0(c)ˆC

be the bundle associated to the representation ⇢⌫. We introduce the notation

�(x) =
sinh((⌫1 ´ ⌫2 + 1)x/2)

sinh(x/2)

for the character function of ⇢̄⌫ on the Lie algebra of the maximal torus of SU2. Let

�̇(x) = 2
d

dx
�(x) and �̈(x) = 2

d

dx
�̇(x),

then

�(P0(c),L(k; �) b ⇡!(U⌫ b K
1
2 )) =

(´(2k+ 4))g Res
u=0

exp(u(�+ 1
2 +

⌫1+⌫2
2 ))

(2sinh
�
u
2
�
)2g´1(1 ´ eu(k+2))

✓
g �̈(u)

2k+ 4
+

e
(k+2)u

�̇(u)

(1 ´ eu(k+2))

◆
du. (1.7)

In Chapter 3 of this thesis we will follow the ideas described in §1.1 above, where the
case of the line bundles on the moduli spaces was treated. Let us highlight some of the new
phenomena that we encountend in this higher rank case.

The symmetry of Euler characteristics (1.6) on the moduli spaces P0(c°) and P0(c†) (cf.
(1.5)) is only true after an affine transformation; in fact, they need to be shifted by a linear
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combination of Euler characteristics of line bundles, which then can be calculated using the
results of Chapter 2 (cf. Propositions 3.4.2, 3.4.5 and 3.4.6). The appearance of Hessians
(higher rank variants of the function �̈(u) in the formula (1.7) above) in our framework in
the formulas for Euler characteristics is remarkably simply explained by the relations in the
cohomology ring of the curve (cf. page 53). The directional derivatives (higher rank variants of
the function �̇(u) above), on the other hand, appear from a comparison of the Chern characters
of the corresponding vector bundles under the Hecke isomorphism (cf. Proposition 3.3.9).

Remarks

The idea of the formulas for push-forwards in the cohomological setting, in particular, the Hes-
sian, first appeared in the seminal paper of Witten [30]. Mathematically sound approaches in
this cohomological/symplectic setting were employed by Jeffrey and Kirwan [12] and Mein-
renken [14]. In particular, the wall-crossing ideas, which play a major role in our work already
appeared in [12].

The results of Chapter 3 of this thesis own a lot to the paper of Teleman and Woodward
[24], where a similar formula is derived for Euler characteristics of vector bundles on stacks.
In the present thesis, we demonstrate, in particular, that the sophisticated tools employed in
[24], at least in this instance, may be replaced by a simple combinatorial device. There are also
subtle differences in the final formulas, which are manifest, in particular, in the appearance of
certain determinantal factors in our formalism.

The formulas we find, even though they are similar to the results of [12] and [24], are new,
and, in fact, are the first explicit formulas for these quantities.



Chapter 2

The parabolic Verlinde formula

This chapter is based on the work [22] and gives a new proof for the parabolic Verlinde
formula in all ranks via a comparison of wall-crossings in Geometric Invariant Theory and
certain iterated residue calculus.

2.1. Parabolic bundles

In this section, we briefly review the definition of parabolic bundles, recall the basic facts
about their moduli spaces and describe the chamber structure on the space of the relevant
parameters, known as parabolic weights.

2.1.1. Definitions

Let C be a smooth complex projective curve of genus g • 2, and fix a point p P C.

• A parabolic bundle on C is a vector bundle W of rank r with a full flag F˚ in the fiber over
p:

Wp = Fr â ... â F1 â F0 = 0

and parabolic weights c = (c1, ..., cr) assigned to Fr, Fr´1, ..., F1, satisfying the conditions

c1 ° c2 ° ... ° cr and c1 ´ cr † 1.

• The parabolic degree1 and the parabolic slope of W are defined as

pardeg(W) = deg(W) ´
rÿ

i=1
ci; parslope(W) =

pardeg(W)

rank(W)
.

• A morphism f : W Ñ W
1 of parabolic bundles is a morphism of vector bundles satisfying

fp(Fi) Ä F
1
j´1 if cr´i+1 † c

1
r´j+1. In particular, an endomorphism of a parabolic bundle W

is a vector bundle endomorphism preserving the flag F˚.

1For technical reasons, we have chosen a sign convention opposite to that in the majority of treatments in the
literature.

6



CHAPTER 2. THE PARABOLIC VERLINDE FORMULA 7

• Denote by ParHom(W,W 1) the sheaf of parabolic morphisms from W to W
1. Then there

is a short exact sequence of sheaves

0 Ñ ParHom(W,W 1) Ñ Hom(W,W 1) Ñ Tp Ñ 0, (2.1)

where Tp is a torsion sheaf supported at p. The rank of Tp is the number of pairs (i, j),
s.t. ci † c

1
j (cf. [5]).

If W
1 Ä W is a subbundle of W, then both W

1 and the quotient W/W
1 inherit a parabolic

structure from W in a natural way (cf. [13], definition 1.7).

• A parabolic bundle W is stable of weight c, if any proper subbundle W
1 Ä W satisfies

parslope(W 1) † parslope(W); and W is semistable of weight c, if the inequality is not strict.

Remark 2.1.1. Note that the parabolic stability condition depends on the parabolic weights
only up to adding the same constant to all weights ci.

2.1.2. Construction of the moduli spaces

We start with a quick review of the construction of Mehta and Seshadri [13] of the moduli
space of stable parabolic bundles. It follows from Remark 2.1.1 that, without loss of generality,
we can assume that the parabolic weights of a rank-r degree-d bundle belong to the simplex

�d =

#

(c1, c2, ..., cr) | c1 ° c2 ° ... ° cr, c1 ´ cr † 1,
ÿ

i

ci = d

+

.

Definition 2.1.2. We will call a vector c = (c1, . . . , cr) P Rr such that
∞

i ci P Z regular if for
any nontrivial subset  Ä t1, 2, . . . , ru, we have

∞
iP ci R Z.

Now choose an integer d " 0 such that H1(W) = 0 and W is generated by global sections
for any rank-r degree-d semistable parabolic bundle W of parabolic degree 0. Put N = r(1 ´
g) + d and consider the

• Groethendieck quot scheme Quot(N, r) ([8]) parametrizing quotients ON ⇣ W, where
W is a coherent sheaf of degree d and rank r.

• This space is endowed with a universal bundle UQ, and a generically free action of the
group G = PSL(N), which does not, however, lift to UQ.

• Let LFQuot Ä Quot(N, r) be the open subscheme consisting of locally free quotients W,
such that the induced map H

0(ON) Ñ H
0(W) is an isomorphism.

• Denote by XQ the total space of the flag bundle Flag(UQp) on LFQuot ˆ p. This space
is endowed with the flag of vector bundles Fl1 Ä ¨ ¨ ¨ Ä Flr´1 Ä Flr = UQp.

• Let k P Z and (�1, ..., �r) P Zr, such that
∞r

i=1 �i = kd, and consider the line bundle

L(k; �) = det(UQp)
k(1´g) b det(⇡˚UQ)´k b (Flr/Flr´1)

�1 b ... b (Fl1)
�r

on XQ, which does carry a G-linearization (lift of the G-action from XQ).
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• Finally, assume c P �d is regular (cf. Definition 2.1.2 above) and define rPd(c), the moduli
space of stable parabolic weight-c vector bundles on C as the GIT quotient XQ�c

G of
XQ with respect to any linearization L(k; �), such that �/k = c.

Theorem 2.1.3 ([19]). Assume that c P �d is a regular weight vector. Then the moduli space rPd(c)
is a smooth projective variety of dimension r

2(g ´ 1) +
�r

2
�
+ 1, whose points are in one-to-one corre-

spondence with the set of isomorphism classes of stable parabolic bundles of weight c (cf. §2.1.1).

Remark 2.1.4. Via the determinant map, the moduli space rPd(c) fibers over the Jacobian of
degree-d line bundles with isomorphic fibers, and in this thesis, we will focus on the moduli
space

Pd(c) = tW P rPd(c)| detW » O(dp)u,

which is smooth, projective and has dimension (r2 ´ 1)(g ´ 1) +
�r

2
�
.

Remark 2.1.5. Note that tensoring with the line bundle O(mp) induces an isomorphism:
bO(mp) : Pd(c) Ñ Pd+rm(c), so the moduli spaces Pd(c), essentially, depend only on d

modulo r.

2.1.3. The Picard group of Pd(c)

For a regular c P �d, there exist universal bundles U over Pd(c) ˆ C endowed with a flag
F1 Ä ¨ ¨ ¨ Ä Fr´1 Ä Fr = Up, and satisfying the obvious tautological properties. In general,
such universal bundles U, and hence the flag line bundles Fi+1/Fi are unique only up to
tensoring by the pull-back of a line bundle from Pd(c). Nevertheless, we have the following
statement.

Lemma 2.1.6. For k P Z and � = (�1, ..., �r) P Zr, such that
∞r

i=1 �i = kd, the line bundle

Ld(k; �) = det(Up)
k(1´g) b det(⇡˚U)´k b (Fr/Fr´1)

�1 b ... b (F1)
�r (2.2)

on Pd(c) is independent of the choice of the universal bundle U.

Proof. Note that tensoring U with a pullback ⇡˚L of a line bundle L on P0(c) changes det(Up)
by Lr and det(⇡˚U) by Ld´r(g´1).

Remark 2.1.7. The line bundle L(k; �) defined in §2.1.2 descends to the line bundle Ld(k; �)
on the GIT quotient Pd(c).

Notation: We will say that U is normalized if the line subbundle F1 Ä Up is trivial. The
parameter k is often called the level.

Let ! P H
2(C) be the fundamental class of our curve C, and e1, ..., e2g a basis of H

1(C),
such that eiei+g = ! for 1 § i § g, and all other intersection numbers eiej equal 0. For a class
� P H

˚(P ˆ C) of a product, we introduce the following notation for its Künneth components
(cf. [30]):

� = �(0) b 1 +
ÿ

i

�(ei) b ei + �(2) b! P
2à

i=0
H

˚´i(P) b H
i(C). (2.3)

We will need the following formula.
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Lemma 2.1.8. The equality 2c1(Ld(r;d, ...,d)) = c2(End0(Ud))(2) holds, where End0 stands for
traceless endomorphisms.

Proof. Taking the first Chern class on both sides of (2.2), we obtain

c1(Ld(r;d, ...,d)) = r(1 ´ g)c1(Ud)(0) ´ rc1(⇡˚(Ud)) + dc1(Ud)(0),

where we can evaluate the middle term using the Groethendieck-Riemann-Roch theorem, and
c1(Ud)(2) = d:

c1(⇡˚(Ud)) = ch1(⇡!(Ud)) = ⇡˚ch2(Ud) ´ (g ´ 1)c1(Ud)(0)

= c1(Ud)(0)d ´ c2(Ud)(2) ´ (g ´ 1)c1(Ud)(0).

This leads to the formula

c1(Ld(r;d, ...,d)) = ´d(r ´ 1)c1(Ud)(0) + rc2(Ud)(2),

which is easily seen to equal 1
2c2(End0(Ud))(2).

2.1.4. Walls and chambers

The central question we address in this thesis is how the moduli space of stable parabolic
bundles depends on the choice of parabolic weights. Let W be a vector bundle of degree d

with a fixed full flag F˚ of the fiber Wp, and let us try to determine the structure of the set of
parabolic weights c P �d for which W is stable. Clearly, for this we need to study the set of
parabolic weights c = (c1, c2, . . . cr) for which one can find a proper subbundle W

1 Ä W such
that

parslope(W 1) = parslope(W) = 0. (2.4)

A subbundle W
1 Ä W determines a short exact sequence of parabolic bundles

0 Ñ W
1 Ñ W Ñ W

2 Ñ 0

and the position of W
1
p with respect to F˚ gives rise to a nontrivial partition of the set

t1, 2, . . . , ru into two sets, ⇧1 and ⇧
2 (cf. [13], definition 1.7); the parabolic weights of W

1

and W
2 are then c

1 = (ci)iP⇧1 and c
2 = (ci)iP⇧2 , correspondingly. The slope condition (2.4)

translates into a pair of equivalent equalities:

d
1 =

ÿ

iP⇧1
ci, d

2 =
ÿ

iP⇧2
ci, (2.5)

where d
1, d2 = d ´ d

1 are the degrees of W1 and W
2, respectively. This means that the critical

values of c P �d for which (2.4) is possible lie on the union of affine hyperplanes (or walls)
defined by the equations

ÿ

iP⇧1
ci = l, where l P Z, and ⇧ 1 Ä t1, 2, . . . , ru nontrivial.

As only finitely many of these walls intersect the simplex �d, their complement is a finite
union of open polyhedral chambers. It is easy to verify that as we vary c inside one of these
chambers, the stability condition, and thus the moduli space Pd(c) does not change.
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Example 1. Consider the case of rank-3 degree-0 stable parabolic bundles with parabolic
weights c = (c1, c2, c3) P �0. The set �0 is an open triangle with vertices (0, 0, 0), (2

3 , ´ 1
3 , ´ 1

3)

and (1
3 , 1

3 , ´ 2
3) (cf. Figure 2.1), and there exist only two essentially different stability conditions.

The wall separating the two regimes is given by the condition c2 = 0. We write P0(°) for the
moduli space P0(c1, c2, c3) with c2 ° 0, and P0(†) for P0(c1, c2, c3) with c2 † 0.

(0, 0, 0)

( 2
3 , ´ 1

3 , ´ 1
3 ) ( 1

3 , 1
3 , ´ 2

3 )

P0(°)P0(†)

Figure 2.1 – The space of admissible parabolic weights for rank r = 3.

2.2. Wall-crossing in the Verlinde formula

A key component of our approach is the notion of diagonal basis and the associated generalized
Bernoulli polynomials introduced for general hyperplane arrangements in [20]. Using this
formalism, we will be able to formulate our main result, Theorem 2.3.8.

2.2.1. Notation

We begin by setting up some extra notation for the space of parabolic weights introduced in
§2.1.1.

• Let V = Rr
/R(1, 1, . . . , 1) be the r´ 1-dimensional vector space, obtained as the quotient

of Rr. The dual space V
˚ is then naturally represented as

V
˚ = ta = (a1, . . . ,ar) P Rr| a1 + ¨ ¨ ¨ + ar = 0u.

Let x1, x2, . . . , xr be the coordinates on Rr; given a P V
˚, we will write xa, xy for the

linear function
∞

i aixi on V . We will sometimes identify this linear function with the
vector a itself.

• The vector space V
˚ is endowed with a lattice ⇤ of full rank:

⇤ = t� = (�1, . . . , �r) P Zr| �1 + ¨ ¨ ¨ + �r = 0u.

In particular, for 1 § i ‰ j § r, we can define the element ↵ij = xi ´ xj in ⇤.

• Our arrangement is the set of hyperplanes txi = xju Ä V , 1 § i † j § r. It will be
convenient for us to think about this set as the set of roots of the Ar´1 root system with
the opposite roots identified:

� = t ˘↵ij| 1 § i † j § ru.

Note that V˚ carries a natural action of the permutation group ⌃r, permuting the coor-
dinates xj, j = 1, . . . , r, and this action restricts to an action on � as well.



CHAPTER 2. THE PARABOLIC VERLINDE FORMULA 11

• The basic object of the theory is an ordered linear basis B of V˚ consisting of the elements
of �. Let us denote the set of these objects by B:

B =
!

B =
⇣
�
[1], . . . ,�[r´1]

⌘
P �r´1| B – basis of V˚

)

• For B P B, we will write Fl(B) for the full flag
h
V

˚ = x�[1],�[2], . . . ,�[r´1]ylin, . . . , x�[r´1],�[r´2]ylin, x�[r´1]ylin

i
,

where x¨ylin stands for linear span.

2.2.2. Diagonal bases

Definition 2.2.1. • For ⌧ P ⌃r´1 and B P B, we will write B ö ⌧ for the permuted sequence
(�[⌧(1)],�[⌧(2)], . . . ,�[⌧(r´1)]).

• For two elements B, C P B we will write B % C if for any ⌧ P ⌃r´1, we have Fl(B ö ⌧) ‰
Fl(C).

• A subset D Ä B of (r ´ 1)! elements is called a diagonal basis if for any two different
elements B, C P D, we have B % C.

Remark 2.2.2. This definition is motivated by a construction [20], which associates to each
diagonal basis D a pair of dual bases of the middle homology and the cohomology of the
complexified hyperplane arrangement on V bR C defined by �. The dimension of these
(co)homology spaces is (r ´ 1)!.

2.2.3. Combinatorial interpretation

This notion has the following purely combinatorial form.

• We can think of � as the edges of the complete graph on r vertices.

• Then the set B may be thought of as the set of spanning trees of this graph with edges
enumerated from 1 to r ´ 1. We will introduce the notation

B fiÑ Tree(B)

for this ordered tree.

• In this language, the flag Fl(B) corresponds to a sequence of r nested partitions of the
vertices (starting with the total partition into 1-element sets and ending with the trivial
partition) associated to Tree(B), the jth partition being the one induced by the first j ´ 1
edges. For example, the ordered tree [(2, 4)(1, 3), (1, 2)] induces the same sequence of
partitions as [(1, 4), (2, 3), (1, 2)] (see Figure 2.2)

• A diagonal basis D is then a set of (r ´ 1)! ordered trees such that the (r ´ 1)! partition
sequences obtained by reordering the edges of any one of the ordered trees are different
from (r ´ 1)! ´ 1 sequences of partitions obtained from the remaining elements of D.
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1

2

3

1 2

4 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Figure 2.2 – B = (↵1,3,↵1,2,↵3,4)

2.2.4. Examples

There are essentially 2 known constructions of diagonal bases [20].
I. The Hamiltonian basis. For each permutation � P ⌃r, we can define

�(B) = (↵�(r´1),�(r),↵�(r´2),�(r´1), . . . ,↵�(1),�(2)) P B. (2.6)

The set Hm = t�(B)| � P ⌃r, �(1) = mu is then a diagonal basis. In the combinatorial
description, this diagonal basis corresponds to the set of Hamiltonian paths starting at vertex
m, and endowed with the reversed natural ordering of edges.

Example 2. Here are some examples of Hamiltonian bases:

• for r = 3: H1 = t(↵2,3,↵1,2), (↵3,2,↵1,3)u,

• and for r = 4:

H1 = t(↵3,4,↵2,3,↵1,2), (↵2,4,↵3,2,↵1,3), (↵4,3,↵2,4,↵1,2),

(↵3,2,↵4,3,↵1,4), (↵4,2,↵3,4,↵1,3), (↵2,3,↵4,2,↵1,4)u.

II. The no-broken-circuit bases. Let � : t1, . . . , r(r ´ 1)/2u Ñ � be a total ordering,
which we will represent as an order relation

�† on �. To this ordering, one can associate the
following, so called noncommutative no-broken-circuit diagonal basis [20]:

D[�] =
!⇣
�
[1], . . . ,�[r´1]

⌘
P B

ˇ̌
ˇ �

[1] �† . . .
�† �

[r´1], and

↵
ij �† �

[m] ñ (↵ij,�[m], . . . ,�[r´1]) linearly independent
)

.

Example 3. Let ↵1,3 �† ↵
1,4 �† ↵

2,3 �† ↵
2,4 �† ↵

1,2 �† ↵
3,4 be the ordering of the positive roots for

rank r = 4. Then

D[�] = t(↵1,3,↵1,2,↵3,4), (↵1,3,↵1,4,↵2,3), (↵1,3,↵1,4,↵2,4),

(↵1,3,↵1,4,↵1,2), (↵1,3,↵2,3,↵3,4), (↵1,3,↵2,3,↵2,4)u

is the corresponding no-broken-circuit diagonal basis.

Remark 2.2.3. The hyperplane arrangement induced by� is invariant under the natural action
of ⌃r on the vector space V . It follows easily from the definition that if D is a diagonal basis
and � P ⌃r is a permutation, then �(D) is also a diagonal basis.
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2.3. The residue formula and the main result

In this section, we recall the residue formula from [20] for Ver(k, �), the discrete Verlinde sum
on the right hand side of (1.1). The key feature of this formula is that it exposes the piecewise
polynomial nature of Ver(k, �), which is key for our wall-crossing analysis. While the objects
are relatively simple, the formalism is heavy with notation, so we begin by describing the
1-dimensional case.

2.3.1. The residue formula in dimension 1

The story begins with the Fourier series

1
(2⇡i)m

ÿ

nPZz0

exp(2⇡ian)
nm

(2.7)

for m • 2, which is a periodic, piecewise polynomial function given by the formula

Res
x=0

exp(taux)
1 ´ exp(x)

dx

xm
,

where tau is the fractional part of the real number a. The polynomial functions thus obtained
on the interval [0, 1] are called Bernoulli polynomials. The polynomial on the interval containing
the real number c P RzZ is given by

Res
x=0

exp((a ´ [c])x)

1 ´ exp(x)
dx

xm
,

where [c] is the integer part of c.
Now we pass to a trigonometric version of this formula, calculating finite sums of values

of rational trigonometric functions over rational points with denominators equal to an integer
k.

We replace thus the rational function x
´m by the (hyperbolic) trigonometric function

f(x) = (2 sinh(x/2))´2m, and introduce an integer parameter � related to a via ka = �. We
consider the sum of values of the function f over a finite set of rational points in analogy with
(2.7):

k´1ÿ

n=1

exp(2⇡i�n/k)
(2 sin(⇡n/k))2m ,

where �,k P Z. This sum is again periodic in � mod k, and for m • 2 we can evaluate it via
the residue theorem as

(´1)m Res
z=1

z
kt�/ku

(z1/2 ´ z´1/2)2m ¨ kdz

z(1 ´ zk)

z=exp(x/k)
= (´1)m Res

x=0

exp(t�/ku ¨ x)
1 ´ exp(x)

¨ f(x/k)dx.

Again, this is a piecewise polynomial function in the pair (k, �), which is polynomial in the
cones bounded by the lines � = qk, q P Z.

Note that in these calculations, a key role is played by the Bernoulli operator:

f fiÑ Ber[f](a) =
f(x) exp(ax)dx

1 ´ exp(x)
, (2.8)
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which transforms meromorphic functions in the variable x into polynomials in a, and plays
the role of a generalized Fourier operator.

2.3.2. The multidimensional case

Now we return to the setup of §2.2 with the vector space V endowed with the hyperplane
arrangement �. We introduce the notation F� for the space of meromorphic functions defined in a
neighborhood of 0 in V bR C with poles on the union of hyperplanes

§

1§i†j§r

tx| x↵ij, xy = 0u.

In particular, the inverse of the function

w� =
π

i†j

�
2sinh(⇡(xi ´ xj))

�

is an element of F�.
To write down our residue formula, we need a multidimensional generalization of the

notions of integer and fractional parts. Given a basis B = (�[1], . . . ,�[r´1]) P B of V˚, and an
element a P V

˚, we define [a]B and tauB to be the unique elements of V˚ satisfying

• [a]B = a ´ tauB P ⇤, and

• tauB P ∞r´1
j=1 [0, 1)�[j].

This notion naturally induces a chamber structure on V
˚: we will call a P V

˚ regular if a

is a point of continuity for the functions a fiÑ [a]B, tauB for all B P B, i.e. when tauB P∞r´1
j=1(0, 1)�[j]. Now, for regular a and b we define the equivalence relation

a „ b when [a]B = [b]B @B P B. (2.9)

The equivalence classes for this relation form a ⇤-periodic system of chambers in V
˚.

Convention: We will think of a partition ⇧ of t1, 2, . . . , ru into two nonempty sets as an ordered
partition ⇧ = (⇧1,⇧2) such that r P ⇧2, and we will call these objects nontrivial partitions for
short.

The following statement is straightforward.

Lemma 2.3.1. The equivalence classes of the relation „ are precisely the chambers in V
˚ created by

the walls parameterized by a nontrivial partition ⇧ = (⇧1,⇧2) of the first r positive integers, and an
integer l:

S⇧,l = tc P V
˚|

ÿ

jP⇧1
cj = lu (2.10)

Remark 2.3.2. Note that the walls given in (2.10) are precisely the same as the ones given
in (2.5) for the case d = 0, where they play the role of walls separating the chambers of
parabolic weights c in which the parabolic moduli spaces P0(c) are naturally the same. This
"coincidence" is precisely what we need for our comparative wall-crossing strategy. There
is a small terminological issue here: the "chambers" in §2.1.4 are the intersections of the
equivalence classes of „ defined above with the open simplex �0

def
= �, where the parabolic

weights live (cf. Figures 2.1 and 2.3). We will use the term "chamber" in both cases if this
causes no confusion.
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S
(

t2
u,t

1,
3u

)
,0 S

(t1,2u,t3u),1S(t1u,t2,3u),1

(0,0,0)

(0,1,-1)(1,-1,0)

(1,0,-1)

P0(°)P0(†)

S(t1u,t2,3u),0
S
(t1,2u,t3u),0

Figure 2.3 – Chambers for rank r = 3.

Each element B = (�[1], . . . ,�[r´1]) P B defines an iterated version of the Bernoulli operator
(2.8) on the space of functions F�: interpreting the elements a,�[j] P V

˚ as linear functions
on V , we define

iBer
B

[f(x)] (a) =
1

(2⇡i)r´1

ª

Z(B)

f(x) expxa, xy dx�[1], xy ^ ¨ ¨ ¨ ^ dx�[r´1], xy
(1 ´ exp(x�[1], xy)) . . . (1 ´ exp(x�[r´1], xy)) , (2.11)

where the naturally oriented cycle ZB is defined by

ZB = tv P V bR C : |x�[j], xy| = "j, j = . . . , r ´ 1u Ä V bR Cztw�(x) = 0u,

with real constants "j satisfying 0 § "r´1 ! ¨ ¨ ¨ ! "1. Thus again, iBerB is a linear operator
associating to a function in F� a polynomial on V

˚.

Remark 2.3.3. Let us make a small remark about the computational aspects of the operator
iBerB. Denoting the coordinate x�[j], xy by yj, j = 1, . . . , r ´ 1, and writing f and a in these
coordinates: f(x) = f̂(y), xa, xy = xâ,yy, we can rewrite (2.11) as

iBer
B

[f(x)] (a) = Res
y1=0

. . . Res
yr´1=0

f̂(y) expxâ,yy dy1 ^ ¨ ¨ ¨ ^ dyr´1

(1 ´ exp(y1)) . . . (1 ´ exp(yr´1))
,

where iterating the residues here means that we keep the variables with lower indices as
unknown constants, and then use geometric series expansions of the type

1
1 ´ exp(y1 ´ y2)

=
y1 ´ y2

1 ´ exp(y1 ´ y2)
¨ 1
y1 ´ y2

=
y1 ´ y2

1 ´ exp(y1 ´ y2)
¨

1ÿ

n=0

y
n
2

y
n+1
1

.

2.3.3. Invariance of diagonal bases and the main results

Diagonal bases have the following key invariance property.

Theorem 2.3.4 ([20]). Let f P F�, and c P V
˚ be regular; let D be a diagonal basis of �. Then the

functional (cf. (2.11) above)
f fiÑ

ÿ

BPD
iBer

B
[f(x)](a ´ [c]B)
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transforming a meromorphic function f P F� into a polynomial in the variable a P V
˚ is independent

of the choice of the diagonal basis D. In particular, for regular a P V
˚, the functional

f fiÑ
ÿ

BPD
iBer

B
[f(x)](tauB) (2.12)

transforms f into a well-defined piecewise polynomial function on V
˚, which is polynomial in each

chamber.

As this functional is invariantly defined, it is not surprising that it is equivariant with
respect to the symmetries of our hyperplane arrangement. For � P ⌃r, we define, as usual

� ¨ f(x) = f(�´1
x). (2.13)

This convention is consistent with (2.6).

Lemma 2.3.5. Let f P F�, and � P ⌃r, and pick any diagonal basis D. Then
ÿ

BPD
iBer

B
[f(x)](� ¨ a ´ [� ¨ c]B) =

ÿ

BPD
iBer

B
[�´1 ¨ f(x)](a ´ [c]B)

Proof. Indeed, recall that � P ⌃r takes a diagonal basis to another diagonal basis (cf. Remark
2.2.3), and thus we have

ÿ

BPD
iBer

B
[f(x)](� ¨ a ´ [� ¨ c]B) =

ÿ

BPD
iBer
�B

[f(x)](� ¨ a ´ [� ¨ c]�B).

Now we perform the linear substitution x = �(y), and obtain
ÿ

BPD
iBer
�B

[f(x)](� ¨ a ´ [� ¨ c]�B) =
ÿ

BPD
iBer

B
[�´1 ¨ f(y)](a ´ [c]B).

Remark 2.3.6. By picking the Hamiltonian diagonal basis H1 = t� ¨ B0| � P Stab(1,⌃r)u, we
can turn the argument in the proof above around, and obtain the following formula:

ÿ

BPH1

iBer
B

[f(x)](a ´ [c]B) =
ÿ

�PStab(1,⌃r)

iBer
B0

[� ¨ f(x)](� ¨ a ´ [� ¨ c]B) =

Res
y1=0

. . . Res
yr´1=0

ÿ

�PStab(1,⌃r)

� ¨ f(y) expx� ¨ a ´ [� ¨ c]B,yy dy1 ^ ¨ ¨ ¨ ^ dyr´1

(1 ´ exp(y1)) . . . (1 ´ exp(yr´1))
,

where
B0 = (y1 = xr´1 ´ xr, . . . ,yr´2 = x2 ´ x3,yr´1 = x1 ´ x2) P B.

Now we are ready to write down the residue formula for the Verlinde sums proved in [21,
Theorem 4.2]. Recall that we denoted by Ver(k, �) the finite sum on the right hand side of
(1.1).
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Theorem 2.3.7. Let g • 1, k P Z°0, � P ⇤, and let D be any diagonal basis of �. Introducing the
notation pk = k+ r, and p� = �+ ⇢, we have

Ver(k, �) = Ñr,k
ÿ

BPD
iBer

B

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [pc̨ ]B

⌘
, (2.14)

where Ñr,k = (´1)(
r
2)(g´1)

Nr,k (cf. (1.1)) and pc̨ P V
˚ is a regular point in a chamber that contains

p�/pk in its closure.

Now, if we look at our main goal (1.1): proving the equality

Ver(k, �) = �(P0(�/k),L0(k; �)), (2.15)

then we discover a rather embarrassing mismatch. Both sides are piecewise polynomial func-
tions, however,

• according to the HRR theorem, �(P(�/k),L0(k; �)) is polynomial on the cones over the
the equivalence classes (cf. (2.9)) of �/k, while

• according to (2.14), Ver(k, �) is polynomial on the cones over the equivalence classes of
p�/pk,

and these conic partitions of t(k, �)| �/k P �u could clearly be different (cf. Figure 2.4 for a
sketch of this problem).

�

k

1

´r

´r+ 1

(0, 0)

� p�

�
k

p�
pk

Figure 2.4 – �/k is in the orange chamber, while p�/pk is in the green chamber.

Thus for (1.1) to be true, some miracle needs to occur, and these miracles are well-known
in the area of "quantization commutes with reduction" [15, 28, 23]. We will return to this
problem in §2.9, but for now, we will be satisfied to use (2.14) to write down a (conjectural for
the moment) formula for �(P0(�/k),L0(k; �)), which is manifestly polynomial on the cones
where �/k is in a fixed equivalence class.

Let us fix a regular c P � marking a particular chamber in �. The two cones t(k; �)| �/k „
cu and t(k; �)|p�/pk „ cu intersect along an open cone (this cone is shaded in orange on Figure
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2.4), and on this intersection, the expression
ÿ

BPD
iBer

B

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [�/k]B

⌘
(2.16)

coincides with the right hand side of (2.14). As (2.16) is manifestly polynomial on each cone
where �/k is in a particular chamber in �, this expression will be then our main candidate for
�(P0(�/k),L0(k; �)).

Our plan is thus to split the proof of (2.15) into three parts: the first is equality (2.14), and
the other two are given in our main theorem below. We formulated all our statements in a
manner that allows us to treat the cases when �/k or p�/pk are on a boundary separating two
of our chambers in �.

Theorem 2.3.8. Let � P ⇤ and k P Z°0 be such that �/k P �. Let c̨ and pc̨ P � be regular elements,
specifying two chambers in �, which contain �/k and p�/pk in their closures, correspondingly. Then for
any diagonal basis D, the following two equalities hold:

�(P0(c̨),L(k; �)) = Ñr,k
ÿ

BPD
iBer

B

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [c̨]B

⌘
, (I.)

and ÿ

BPD
iBer

B

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [c̨]B

⌘
=

ÿ

BPD
iBer

B

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [pc̨ ]B

⌘
. (II.)

Remark 2.3.9. Part I. of the theorem implies that if �/k P � is not regular, then

�(P0(c
+),L(k; �)) = �(P0(c

´),L(k; �)),

for regular c˘ P � in two neighboring chambers that contain �/k in their closure (cf. Proposi-
tion 2.9.1 and Remark 2.9.4).

Before we proceed, we formulate a mild generalization of part I. of our theorem. As
observed above, if we fix a generic c P �, and vary (�,k) in such a way that �/k „ c, then
both sides of the equality (I.) are manifestly polynomial, and thus we can extend the validity
of this equality as follows.

Corollary 2.3.10. Let c P � be a regular element, which thus specifies a chamber in � and a parabolic
moduli space P0(c) as well. Then for a diagonal basis D, an arbitrary weight � P ⇤, and a positive
integer k, we have

�(P0(c),L(k; �)) = Ñr,k
ÿ

BPD
iBer

B
[w1´2g
� (x/pk)](p�/pk ´ [c]B). (2.17)

Example 4. Let us write down these formulas in case of r = 3 explicitly. Let D be the diagonal
basis from Example 2; then using Remark 2.3.6, we obtain

�(P0(†),L(k; �)) = (´1)g´1(3(k+3)2)g Res
y=0

Res
x=0

e
�1x+(�1+�2)y+x+y ´ e

�1x+(�1+�3)y+x

(1 ´ ex(k+3))(1 ´ ey(k+3))w�(x,y)2g´1dxdy
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and

�(P0(°),L(k; �)) = (´1)g´1(3(k+ 3)2)g

Res
y=0

Res
x=0

e
�1x+(�1+�2)y+x+y ´ e

�1x+(�1+�3)y+x+y(k+3)

(1 ´ ex(k+3))(1 ´ ey(k+3))w�(x,y)2g´1 dxdy,

where w�(x,y) = 2sinh(x2 )2sinh(y2 )2sinh(x+y
2 ).

2.3.4. The walls

Our first step is to identify the wall-crossing terms of the residue formula (2.17), which orig-
inate in the discontinuities of the function c fiÑ tcuB. These discontinuities occur on "walls":
the affine hyperplanes (2.10). The following is straightforward:

Lemma 2.3.11. Let S⇧,l be the wall defined by (2.10), and B = (�[1], . . . ,�[r´1]) P B an ordered
basis of V˚. Then, as a function of c, the fractional part function tcuB has a discontinuity at a generic
point of the wall S⇧,l exactly when Tree(B) (cf. page 11) is a union of a tree on ⇧1, a tree on ⇧2 (the
enumeration of the edges is irrelevant here) and a single edge (which we will call the link) connecting
⇧

1 and ⇧2.

Notation: We will denote the element of B corresponding to this edge by �link; this vector
thus depends on B and the partition ⇧.

Proof. We fix B, and note that for our purposes, c P S⇧,l will be considered generic if it belongs
to only this one wall in �; this is equivalent to the condition that the only nontrivial subsets
of coordinates of c which sum up to an integer are ⇧ 1 and ⇧2.

Note that an element

c =
r´1ÿ

j=1
bj�

[j] P �

is a point of discontinuity of the fractional part function t¨uB if and only if bj P Z for some
1 § j § r ´ 1. Next, we express the coefficient bj via the coordinates of c: we show that for all
1 § j § r ´ 1 we have

bj =
ÿ

iP j

ci for some subset  j Ä t1, ..., ru. (2.18)

Now we orient the edges of Tree(B) in such way that they are all directed "away" from the
root vertex r, and, without loss of generality (recall that

∞
ci = 0), we can assume that this

orientation agrees with the signs of the elements �[j] P B. It is easy to verify then that the
subset

 j = tk P t1, ..., ru| the unique directed path in Tree(B)

from r to k contains the edge corresponding to �[j]u,

satisfies (2.18).
Hence we can conclude that if c P S⇧,l is generic and the coefficient bj is an integer, then

necessarily  j = ⇧
1, and thus ⇧2 = t1, ..., ruz j, and cutting the edge corresponding to �[j]

from Tree(B) results in two disjoint trees, on ⇧1 and on ⇧2, respectively.
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Now choose two regular elements c
+, c´ P V

˚ in two neighboring chambers separated by
the wall S⇧,l, in such a way that

[c+⇧1 ] = l and [c´
⇧1 ] = l ´ 1, (2.19)

where
c⇧1

def
=

ÿ

iP⇧1
ci,

and, as usual, [q] stands for the integer part of the real number q. Now introduce the notation

p˘(k; �) = Ñr,k
ÿ

BPD
iBer

B
[w1´2g
� (x/pk)](p�/pk ´ [c˘]B)

for the two polynomial functions in (k, �) corresponding to c
+ and c

´, respectively. We
define the wall-crossing term in our residue formula (2.17) as the difference between these two
polynomials:

p+(k; �) ´ p´(k; �).

Using Lemma 2.3.1 and (2.19), we obtain the following simple residue formula for this differ-
ence.

Lemma 2.3.12. Let (⇧, l), c+ and c
´ be as above, and let us fix a diagonal basis D Ä B. Denote by

D|⇧ the subset of those elements of D, which satisfy the condition described in Lemma 2.3.11. Then

p+(k, �) ´ p´(k, �) = Ñr,k
ÿ

BPD|⇧
iBer

B

h
(1 ´ exp(�link(x)))w

1´2g
� (x/pk)

i ⇣
�/pk ´ [c+]B

⌘
, (2.20)

where �link is the "link" element of B (depending on ⇧ and B) defined after Lemma 2.3.11.

Remark 2.3.13. Note that the multiplication by 1 ´ exp(�link(x)) in (2.20) has the effect of
canceling one of the factors in the denominator in the definition (2.11) of the operation iBer.

Example 5. Calculating the difference of two polynomials from Example 4, we obtain the
wall-crossing term for rank 3 case:

p´(k; �) ´ p+(k; �) = (´3(k+ 3)2)g Res
y=0

Res
x=0

e
�1x+(�1+�3)y+x

(1 ´ ex(k+3))w�(x,y)2g´1dxdy.

2.3.5. Wall-crossing and diagonal bases

Now we pass to the study of the combinatorial object D|⇧ defined in Lemma 2.3.12. One thing
we will discover is that even though each diagonal basis consists of (r ´ 1)! elements and the
right hand side of (2.20) does not depend on the choice of D, the number of elements in D|⇧
might vary with D.

First we look at the case of the Hamiltonian basis H1. Form now on, we will use the
notation |⇧ 1| = r

1 and |⇧2| = r
2 for a nontrivial partition ⇧ = (⇧ 1,⇧2), (recall the convention

r P ⇧2). The following statement is easy to verify.
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Lemma 2.3.14. Let ⇧ = (⇧ 1,⇧2) be a nontrivial partition, such that 1 P ⇧1 (the other case is analo-
gous). Then

H1|⇧ = t�(B)| �(1) = 1, and �(⇧ 1) P ⇧ 1u.

In particular, |H1|⇧| = (r 1 ´ 1)! ¨ r2!.

It turns out that for our geometric applications, instead of H1, we will need to choose a
particular nbc-basis, where the ordering is chosen to be consistent with ⇧.

To simplify our terminology, we will use the language of graphs and edges introduced in
§2.2.3, and we will think of ↵ij P � as an edge in the complete graph on r vertices. To define
the ordering �, we need to choose an edge between ⇧ 1,⇧2; the choice is immaterial, but for
simplicity we settle for m

def
= maxti P ⇧1u and r P ⇧2, and set �link = ↵

m,r to be the smallest
element according to �.

The �-ordered list of edges thus starts with �link, and then continues with the remaining
r

1 ¨ r2 ´ 1 edges connecting ⇧1 and ⇧2. Next we list the r
1(r 1 ´ 1)/2 edges connecting vertices

in ⇧1 in any order, and finally, we list the remaining edges, those connecting vertices in ⇧2.
Notation: We introduce the natural notation � 1 and �

2 for the Ar1 and Ar2 root systems
corresponding to ⇧1 and ⇧2, and we denote by D[�], D 1[�] and D2[�], the diagonal nbc-bases
induced by the ordering � on �, � 1 and �2, respectively.

The following is easy to verify.

Lemma 2.3.15. Given elements B 1 P D 1[�] and B2 P D2[�], we can define an element of D[�] as
follows: we start with �link, then append B 1, and then continue with B2. This construction creates a
one-to-one correspondence

D 1[�] ˆ D2[�] Ñ D[�]|⇧; (2.21)

in particular, |D[�]|⇧| = (r1 ´ 1)! ¨ (r2 ´ 1)!.

Finally, putting Lemmas 2.3.12 and 2.3.15 together, we arrive at the following elegant
statement:

Proposition 2.3.16. Let (⇧, l), c+ and c
´ be as in Lemma 2.3.12, and let D 1 and D2 be diagonal

bases of �1 and �2 correspondingly. Then

p+(k; �) ´ p´(k; �) = (k+ r)Ñr,k¨
ÿ

B1PD1

ÿ

B2PD2
Res
�link=0

iBer
B1

iBer
B2

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [c+]B

⌘
d�link, (2.22)

where Res�link=0 iBerB1 iBerB2 d�link is simply iBerB (cf (2.11)) with B obtained by appending B 1,
and then B2 to �link, and with the factor (1 ´ expx�link, xy) removed from the denominator.

Remark 2.3.17. The expression

Res
�link=0

iBer
B1

iBer
B2

h
w

1´2g
� (x/pk)

i ⇣
p�/pk ´ [c+]B

⌘
d�link

may equally be interpreted as follows. We write

p�/pk ´ [c+]B = mlink�link +n
1 +n

2
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according to the splitting of B, think of w(x/pk) as a function in F�2 with some fixed values of
the parameters from B1 and �link, and then calculate

iBer
B2

[w1´2g
� (x/pk)](n2).

The result will be a rational function Q in the variables from B1 and �link, and we proceed
to calculate iBerB1 [Q](n1) to obtain a function F in the variable �link, and finally the answer is
Res�link=0 exp(mlink�link)F(�link)d�link.

We observe that since the trees Tree(B1) and Tree(B2) are disjoint, the order of the applica-
tion of the operations iBerB1 and iBerB2 is immaterial.

2.4. Wall-crossing in master space

Master spaces were introduced by Thaddeus in [26] in order to understand the dependence
of GIT quotients on their linearizations. Following his footsteps, in this section, we describe
a simple but very effective method to control the changes in the Euler characteristics of line
bundles when crossing a wall in the space of linearizations. (Similar results appeared in [7]).

2.4.1. Wall-crossing and holomorphic Euler characteristics

We begin by recalling the basic notions of Geometric Invariant Theory.
Let X be a smooth projective variety over C, and G a reductive group acting on X. A

linearization of this action is a line bundle L on X with a lifting of the G-action to a linear
action on L. An ample linearization is G-effective, if Ln has a nonzero G-invariant section for
some n ° 0; the space of such linearizations ConeG(X) is called the G-effective ample cone.

For L P ConeG(X), we define the invariant-theoretic quotient ML = X �L
G as the Proj of

the graded ring of invariant sections of the powers of L:

ML = Proj
à

n

H
0(X,Ln)G.

According to Mumford’s Geometric Invariant Theory [16], there is a partition of X (depending
on L)

X = X
s[L] Y X

sss[L] Y X
us[L] (2.23)

into the set of stable, strictly semistable, and unstable points, such that there is a surjective
map (Xs[L]YX

sss[L])/G Ñ ML; when X
sss[L] is empty, this map is a bijection, and the quotient

ML = X
s[L]/G is a smooth orbifold.

In [6], Dolgachev and Hu studied the dependence of the GIT quotient ML = X �L
G on

L. They showed that ConeG(X) is divided by hyperplanes, called walls, into finitely many
convex chambers, such that when L varies within a chamber, the partition (2.23) and thus the
GIT quotient ML remains unchanged. Moreover, an ample effective linearization lies on a
wall precisely when it possesses a strictly semistable point.

Now let us consider two neighboring chambers, with smooth GIT quotients M+ and M´.
We pick an arbitrary linearization L of the G-action on X, which descends to M+ and M´.
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This last condition means that if S Ä G is the stabilizer of a generic point in X, then S acts
trivially on the fibers of L. We will call such linearizations descending.

Thus, given such a descending linearization L of the G-action on X, we obtained two line
bundles: one on M+ and one on M´, which, by abuse of notation, we will denote by the
same letter L. Via taking Chern classes, this construction creates a correspondence between
classes in H

2(M+, Z) and H
2(M´, Z), which we will assume to be an isomorphism of free

Z-modules. We will thus identify these lattices, and introduce the notation � for them:

� = H
2(M+, Z) » H

2(M´, Z).

The walls mentioned above can be thought of as hyperplanes in �R = � bZ R.
Our goal in this section is to compare the holomorphic Euler characteristics �(M+,L) and

�(M´,L), which are given by the Hirzebruch-Riemann-Roch theorem:

�(M˘,L) =
ª

M˘
exp(c1(L))Todd(M˘).

As this expression is manifestly polynomial in c1(L), we obtain thus two polynomials on � ,
and our goal is to calculate their difference, the wall-crossing term

�(M+,L) ´ �(M´,L). (2.24)

2.4.2. The master space construction

To simplify our setup, we will make some additional assumptions.

Assumptions 2.4.1. 1. The generic stabilizer of X is trivial.

2. Let L+ and L´ be two ample linearizations of the G-action on X from the adjacent cham-
bers corresponding to the quotients M+ and M´. Without loss of generality, we can
assume that the linearization L0 = L+ b L´ lies on the single wall separating the two
chambers, and that the interval connecting c1(L+) and c1(L´) in �R = � bZ R does not
intersect any other walls.

3. Let X0 be the set of those semistable points x P X
ss[L0] which are not stable for L˘:

X
0 := X

ss[L0]z(Xs[L+] Y X
s[L´])

We assume that X
0 is smooth, and that for x P X

0 the stabilizer subgroup Gx Ä G is
isomorphic to C˚.

4. Assume that there is a linearization ~L of the G-action on X such that L+ = L´ b ~Ln for
some positive integer n, and such that for each x P X

0, the stabilizer subgroup Gx acts
freely on ~Lxz0.

Now we introduce the master space construction of Thaddeus [26]. Consider the variety
Y = P(O ‘ ~L), which is a P1-bundle over X endowed with the additional C˚-action (1, t´1).
As Y is a projectivization of a vector bundle on X, it comes equipped with O(1), which is the
standard G ˆ C˚-equivariant line bundle. To simplify our notation, we will denote the same
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way the linearizations of the G-action on X and their pull-backs (with tautological G-action)
to Y.

The master space Z then is the GIT quotient of Y with respect to the linearization L´(n) =
L´ b O(n):

Z = Y �L´(n)
G,

which inherits a C˚-action from Y. Some additional notation:

• We will denote this copy of C˚ by T ,

• the projection Y Ñ X by ⇡, and the quotient map Y
s Ñ Z by  .

• Introduce the notation Y(0 : ¨) and Y(¨ : 0) for the two copies of X in Y, corresponding to
the two poles of the projective line; then Y is partitioned into 3 sets:

Y = Y(0 : ¨) \ Y(¨ : 0) \~L˝,

where ~L˝ is the line bundle ~L with the zero-section removed. We will write ⇡˝ for the
restriction of ⇡ to ~L˝. We collect our maps on the following diagram.

~L˝
Y = P(O ‘~L) Å Y

s
Z

X

⇡˝
⇡

 

(2.25)

Proposition 2.4.2. 1. There are embeddings

◆´ : M´ Ñ Z and ◆+ : M+ Ñ Z

obtained as the quotients Ys X Y(¨ : 0)/G and
Y
s X Y(0 : ¨)/G, correspondingly.

2. The strictly semistable locus of Y with respect to the linearization L´(n) is empty, and the GIT
quotient Z = Y

s
/G is smooth.

3. There is an embedding ◆0 : X0
/G Ñ Z, obtained via  (⇡˝´1(X0)). We denote the image of ◆0 by

Z
0.

4. The fixed point locus ZT is the disjoint union of ◆+(M+), ◆´(M´), and Z
0.

Proof. (1)-(3) follow from [26, 4.2, 4.3]. To prove (4), first note that Y(¨ : 0) and Y(0 : ¨) are
fixed by T , so we immediately obtain that M˘ Ä Z are fixed components. Also the G-action
on Y commutes with the T -action, so a point  (y) P  (⇡´1

˝ (X)) is fixed by T if and only if the
T -orbit T ¨ y Ä ⇡

´1˝ (X) is contained in the G-orbit G ¨ y Ä ⇡
´1˝ (X). Since T ¨ y Ä ⇡

´1˝ (x) for some
x P X, we need y P ⇡´1˝ (X0). Moreover, for any y P ⇡´1˝ (x) Ä ⇡

´1˝ (X0), T ¨ y = ⇡´1˝ (x) = Gx ¨ y,
so a point  (y) P  (⇡´1˝ (X)) is fixed by T if and only if  (y) P  (⇡´1˝ (X0)) = Z

0.
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Construction: Given a G-equivariant vector bundle E on X, we can construct a T -equivariant
vector bundle ⇣(E) Ñ Z on Z by first pulling E back from X to Y, and endowing the resulting
bundle ⇡˚

E with the trivial action of T , and the action of G pulled back from X. We then
obtain ⇣(E) Ñ Z by descending ⇡˚

E to Z.
Before we formulate our wall-crossing formula, we need one more ingredient: the identi-

fication of the normal bundles of the fixed point components of Z.

Lemma 2.4.3. 1. The normal bundle on the component M+ of ZT is ⇣(~L´1)
ˇ̌
M+

, and the normal
bundle of M´ is ⇣(~L)

ˇ̌
M´

.

2. Let x P X
0, denote by Gx the stabilizer of x in the group G, and consider the point ◆0(x) P Z

0 (cf.
Proposition 2.4.2 (3)). Then the normal vector space of Z0 Ä Z at the point ◆0(x) is canonically
T -equivariantly isomorphic to the T -vector space ~L˝

x ˆGx NxX
0, where NxX

0 is the vector space
normal to X

0 Ä X at x, and the T » C˚-action is induced by left multiplication by t
´1 on ~Lx.

Proof. Part (1) immediately follows from the formula for the tangent space of the projective
line: TP(V) » Hom(S,Q), where S Ñ V Ñ Q is the tautological sequence on P(V), the
projectivization of the vector space V .

For part (2), consider diagram 2.25; our goal is to identify the descent to Z0 of the normal
bundle N⇡´1˝ X0 to ⇡´1˝ X

0 in ~L˝. We only need to observe that this bundle may be identified
with the pull-back ⇡˚̋

NX
0 of the normal bundle to X

0 in X, endowed with the natural G-action
and a T -action, which is trivial on the fibers.

Remark 2.4.4. Note that restricting the operator ⇣ to X
0, we can construct a T -equivariant

vector bundle on Z
0 from a G-equivariant vector bundle on X

0. Then the normal bundle NZ0

of Z0 Ä Z may be also described as ⇣
ˇ̌
X0(NX

0). The T -weights of the action may be computed
by fixing x P X

0, identifying the stabilizer subgroup Gx Ä G with T via its action on the fiber
~Lx, and then considering the action of Gx on NxX

0.

Lemma 2.4.5. The restriction of the line bundle ⇣(~L) to Z
0 is trivial with T -weight 1.

Proof. Note that ⇡˚
˝~L admits a G-equivariant tautological non-vanishing section. For calculat-

ing the weight, we observe that while T acts on ~Lx with weight ´1, the T -weight of ~Lx̋ ˆGx
~L

is +1.

Definition 2.4.6. Given a T -vector bundle V on a manifold on which T acts trivially, the T -
equivariant K-theoretical Euler class of V

˚, which we denote by Et(V), may be described as
follows: let x1, . . . , xn be the Chern roots of V , and l1, . . . ln P Z be the corresponding T -
weights. Then

Et(V) =
nπ

j=1

�
1 ´ t

´lj exp(´xj)
�

.

Now we are ready to write down our wall-crossing formula for (2.24). A key role will be
played by the following notion: given a rational differential 1-form on the Riemann sphere,
let us denote taking the sum of residues at 0 and at infinity by µ fiÑ Rest=0,1 µ:

Res
t=0,1

def
= Res

t=0
+ Res

t=1
.
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Theorem 2.4.7. Let L be a linearization of the G-action on X, and denote, as above, by ⇣(L) the T -
equivariant line bundle on Z obtained by pull-back to Y and descent to Z. If Assumptions 2.4.1 hold,
then

�(M+,L) ´ �(M´,L) = Res
t=0,1

ª

Z0

cht(⇣(L)
ˇ̌
Z0)

Et(NZ0)
Todd(Z0)

dt

t
, (2.26)

where NZ0 is the T -equivariant bundle on Z
0 described in Lemma 2.4.3, cht is the T -equivariant Chern

character, and Et(NZ0) is the K-theoretical Euler class of N˚
Z0 .

Proof of Theorem 2.4.7. The Atiyah-Bott fixed-point formula [2] applied to the line bundle ⇣(L)
on our master space Z yields

�t(Z, ⇣(L)) =
ÿ

FÄZT

ª

F

cht(⇣(L)
ˇ̌
F
)

Et(NF)
Todd(F), (2.27)

where the sum is taken over the connected components of the fixed point locus Z
T .

In Proposition 2.4.2, we identified these components as M+,M´ and Z
0. Lemma 2.4.3

identifies the equivariant normal bundles of M+ and M´, and thus the corresponding contri-
butions are ª

M+

ch(L)Todd(M+)

1 ´ t´1 exp(c1(~L))
and

ª

M´

ch(L)Todd(M´)
1 ´ t exp(´c1(~L))

.

We observe that �t(Z, ⇣(L)) is a Laurent polynomial in t since it is the alternating sum of
T -characters of finite dimensional vector spaces. Thus, as a function of t, �t(Z, ⇣(L)) has poles
only at t = 0,1, and by the Residue Theorem, we have

Res
t=0,1

�t(Z, ⇣(L))
dt

t
= 0.

On the other hand, since

Res
t=0,1

A

1 ´ t´1B

dt

t
= ´A and Res

t=0,1

A

1 ´ tB

dt

t
= A,

we have

Res
t=0,1

ª

M+

ch(L)Todd(M+)

1 ´ t´1 exp(c1(~L))

dt

t
= ´�(M+,L) and

Res
t=0,1

ª

M´

ch(L)Todd(M´)
1 ´ t exp(´c1(~L))

dt

t
= �(M´,L).

Now, applying the functional Rest=0,1 to the two sides of (2.27) multiplied by dt/t we
obtain the desired result (2.26).

2.5. Wall-crossings in parabolic moduli spaces

In this section, we apply Theorem 2.4.7 to wall-crossings in the moduli space of parabolic
bundles.
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From now on, we assume that d = 0, and we write � for the corresponding set of admis-
sible parabolic weights �0. Recall from Section 2.1.2 that for regular c P �, the moduli space
of stable parabolic bundles P0(c) is the GIT quotient XQ �c

PSL(�), where XQ is a subspace
of the total space of a flag bundle over the Quot scheme. Let us fix a partition ⇧ = (⇧1,⇧2)
and an integer l, and introduce the notation � 1

l and �2
´l for the simplices of parabolic weights

of ⇧1 and ⇧2. Let � P ⌃r be the unique permutation which sends t1, ..., r1u to ⇧1 preserving
the order of first r1 and the last r2 elements. We choose c

0 = (c0
1, ..., c0

r) P S⇧,l and two regular
elements c

+, c´ P � in two neighboring chambers separated by the wall S⇧,l, such that

c
˘ = c

0 ˘ ✏(..., 0, 1, 0, ..., 0, ´1)

for some positive ✏ P Q, where 1 and ´1 are on the �(r 1)th and r
th places, respectively. Let

c
1 =

ÿ

iP⇧1
c

0
ixi P �1

l and c
2 =

ÿ

iP⇧2
c

0
ixi P �2

´l.

For (k, �) P Z ˆ⇤, consider the polynomials

q˘(k, �) = �(P0(c
˘),L0(k; �)).

Our goal is to calculate the difference of these two polynomials.
Notation: To simplify our notation, from now on, we omit the index t from the symbols for
equivariant characteristic classes.

2.5.1. The master space construction

We construct the master space Z from §2.4.2 using the following data:

• a smooth variety X = XQ (cf. §2.1.2);

• linearizations L
˘ = L(k; �˘) of the G-action on X (cf. §2.1.2), such that �˘

/k = c
˘;

• the linearization ~L = L(0; x�(r1) ´ xr) of the G-action on X.

The following statement is easy to verify.

Lemma 2.5.1. ([5, §3.2]) The subset X
0 Ä X is the set of points representing vector bundles W on

C, such that W splits as a direct sum W
1 ‘ W

2, where W
1 and W

2 are, respectively, c1 and c
2-stable

parabolic bundles. Therefore, we have the following description of the locus Z0:

Z
0 = tW = W

1 ‘ W
2 |W1 P rPl(c1); W2 P rP´l(c

2); det(W) » Ou.

Remark 2.5.2. Note that Z0 is fibered over Jacl with fibre Pl(c1) ˆ P´l(c2) by the determinant
map rPl(c1) Ñ Jac

l and

H
˚(Z0, Q) » H

˚(Pl(c1) ˆ P´l(c
2), Q) b H

˚(Jacl, Q). (2.28)

Remark 2.5.3. If the rank of the vector bundle W P rPl(c) is 1, then c = l and rPl(l) is isomorphic
to Jac

l, while Pl(l) is a point.
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Now we need to verify the hypotheses of Theorem 2.4.7. Note that in our present con-
struction X is not projective, however, it contains all semisimple points of the flag bundle over
the open subscheme of the Quot scheme parametrizing locally free quotients (cf. §2.1.2) for
all possible polarizations, and hence the missing points of the Quot scheme have no effect on
any of our constructions (a similar argument appeared in [26]).

Assumptions 2.4.1 (1)-(2) are trivially satisfied, so we study the action of the stabilizer
Gx Ä PSL(N) of point x P X on the fiber ~Lxz0.

• For a general point x P X the stabilizer of x is the center ZN Ä SL(N), which acts trivially
on the fiber ~Lxz0.

• For x P X
0, any element of the stabilizer of x induces an automorphism of the corre-

sponding vector bundle W = W
1 ‘ W

2, so the stabilizer of x in GL(N) is isomorphic to
C˚ ˆ C˚ Ä GL(N). An element (t1, t2) P C˚ ˆ C˚ is in SL(N) if and only if tN1

1 t
N2
2 = 1,

where N
1 = �(W1) and N

2 = �(W2). Note that (t1, t2) acts on ~Lx as t1t
´1
2 , and we need

t1 = t2 (hence t
N
1 = 1) for this action to be trivial, so the stabilizer of any point in ~Lxz0

is the center ZN Ä SL(N).

Then the action of G = PSL(N) is free on Yz(Y(0 : ¨) Y Y(¨ : 0)), and the action of Gx Ä PSL(N)
on ~Lxz0 induces an isomorphism Gx » C˚ » T .

Now by Theorem 2.4.7, the wall-crossing polynomial q´(k; �) ´ q+(k; �) is equal to

Res
t=0,1

ª

Z0

ch(L0(k; �)
ˇ̌
Z0)

E(NZ0)
Todd(Z0)

dt

t
. (2.29)

Note that in our case, the T -action on Z is free outside the fixed locus Z
T , so as a function

in t P T , the integral in (2.29) may have poles only at t = 0, 1,1. Then, using the Residue
Theorem and substituting t = e

u, we conclude that (2.29) equals

´ Res
u=0

ª

Z0

ch(L0(k; �)
ˇ̌
Z0)

E(NZ0)
Todd(Z0)du, (2.30)

and thus our goal is to calculate this integral.
Our first step is to identify the characteristic classes under the integral sign (cf. Proposition

2.5.11 for the result).
We start with the study of the restriction of the line bundle L0(k; �) to the fixed locus

Z
0 Ä Z. First, we describe a parametrization of the factor H

˚(Jacl, Q) in (2.28). Let J be the
Poincare bundle over Jac ˆ C, such that c1(J)(0) = 0; define ⌘ P H

2(Jac) by (
∞

i c1(J)(ei) b
ei)2 = ´2⌘b! (cf. §2.1.3), then (cf. [31]) for any m P Z

ª

Jac
e
⌘m = m

g. (2.31)

As Z
0 is a connected component of the fixed locus of the T - action on Z, its equivariant

cohomology factors: H
˚
T (Z

0) » H
˚(Z0) b C[u]. In particular, there are canonical embeddings

H
˚(Z0) ãÑ H

˚
T (Z

0) and C[u] ãÑ H
˚
T (Z

0).

Remark 2.5.4. It follows from Lemma 2.4.5 that c1(⇣(~L)
ˇ̌
Z0) = u.
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Recall that for a parabolic weight c = (c1, ..., cr) P �, we have set c⇧1 =
∞

iP⇧1 ci.

Lemma 2.5.5. Let � = (�1, ..., �r) P ⇤, k P Z°0 and let ⇧ = (⇧1,⇧2) be a nontrivial partition with
r P ⇧2. Let

�
1 =

ÿ

iP⇧1
�ixi and �

2 =
ÿ

iP⇧2
�ixi,

and define � by (�/k)⇧1 = l+ �. Then

ch(L0(k; �)
ˇ̌
Z0) = e

k�u
exp

✓
⌘k

r 1 +
⌘k

r2

◆
¨

ch(Ll(k; � 1
1, ..., � 1

r 1 ´ k�) b L´l(k; �2
1, ..., �2

r2 + k�)),

where b denotes the external tensor product of line bundles on Pl(c1) ˆ P´l(c2).

Proof. First, note that

ch(L0(0; �)
ˇ̌
Z0) = e

k(l+�)u
ch(Ll(0; � 1

1, ..., � 1
r 1 ´ kl ´ k�) b L´l(0; �2

1, ..., �2
r2 + kl + k�)),

and thus it will be sufficient to identify the restriction of L(k; 0). It follows from Lemma 2.1.8,
that

c1(L0(k; 0)) =
k

2r
c2(End0(U))(2).

Note that
c2(End0(U))(2) = ´2r ch2(U)(2) + c

2
1(U)(2) = ´r ch2(U)(2),

and thus
c1(L0(k; 0)) = ´k ch2(U)(2).

Denote by rU 1 and rU2 the normalized (cf. §2.1.3) universal bundles over rPl(c 1) ˆ C and
rP´l(c2) ˆ C, respectively. Since

ch2(U
ˇ̌
Z0)(2) = ch2(rU 1 b ⇣(~L)

ˇ̌
Z0)(2) + ch2(rU2 ˇ̌

Z0)(2),

we have (cf. Remark 2.5.4)

c1(L0(k; 0)
ˇ̌
Z0) = ´k ch2(rU 1)(2) ´ ku c1(rU 1)(2) ´ k ch2(rU2)(2) =

k

2r 1 c2(rU 1)(2) ´ k

2r 1 c
2
1(rU 1)(2) +

k

2r2 c2(rU2)(2) ´ k

2r2 c
2
1(rU2)(2) ´ kl u.

Now, since

c
2
1(rU 1)(2) = 2l c1(U

1)(0) ´ 2⌘ and c
2
1(rU2)(2) = ´2l c1(U

2)(0) ´ 2⌘,

by Lemma 2.1.8, we have

c1(L0(k; 0)
ˇ̌
Z0) =

k

r 1 c1(Ll(r
1; l, ..., l)) ´ kl

r 1 c1(U
1)(0) + ⌘

k

r 1+

k

r2 c1(L´l(r
1; ´l, ..., ´l)) +

kl

r2 c1(U
2)(0) + ⌘

k

r2 ´ kl u =

c1(Ll(k; (0, ..., 0, kl))) + c1(L´l(k; (0, ..., 0, ´kl))) + ⌘

✓
k

r 1 +
k

r2

◆
´ kl u,

and this completes the proof.
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Lemma 2.5.6. Denote by rU 1 and rU2 the normalized (cf. §2.1.3) universal bundles over rPl(c 1) ˆ C

and rP´l(c2) ˆ C, and denote by ⇡ the projections along C. Then the T -equivariant normal bundle to
the fixed locus Z0 Ä Z is

NZ0 = R
1
T⇡˚(ParHom(rU 1, rU2)) ‘ R

1
T⇡˚(ParHom(rU2, rU 1)), (2.32)

where the T » C˚-action has weights ´1 and and +1 on the two summands, respectively.

Remark 2.5.7. As we are working with fixed determinant moduli spaces, the push-forwards
in (2.32) are to be taken along the curve C in the part of rPl(c 1) ˆ rP´l(c2) ˆ C where det(W 1) ¨
det(W 2) » O (cf. Lemma 2.5.1).

Proof. According to Lemma 2.4.3, for any point x P X
0, the normal bundle NZ0 at the point

◆0(x) P Z
0 may be identified with the T -vector space ~Lx̋ ˆGx NxX

0, where NxX
0 is the normal

bundle to X
0 Ä X at x, with the T -action induced by left multiplication by t

´1 on ~Lx.
Denote by UQ the universal bundle over X, which descends to the normalized universal

bundles on P0(c˘). Recall that any point x P X
0 represents a vector bundle which splits as a

direct sum of two subbundles, hence we have UQx = U
+
x ‘ Ux́ , and

NxX
0 = H

1(C,ParHom(U+
x ,U´

x )) ‘ H
1(C,ParHom(U´

x ,U+
x ))

(c.f. [18, Proposition 1.13] for the description of the deformation space of parabolic bundles).
A simple calculation (cf. Remark 2.4.4 and Lemma 2.4.5) shows we have a a T -module iso-
morphism

~L˝
x ˆGx H

1(C,ParHom(U+
x ,U´

x )) » ~Lx b H
1(C,ParHom(U+

x ,U´
x ))

with T -weight ´1 induced by multiplication on ~Lx and trivial action on U
+
x and Ux́ ; applying

the projection formula we obtain that

~Lx b H
1(C,ParHom(U+

x ,U´
x )) » H

1
T (C,ParHom(U+

x b~L´1
x ,U´

x )).

Similarly, we have

~L˝
x ˆGx H

1(C,ParHom(U´
x ,U+

x )) » ~L´1
x b H

1(C,ParHom(U´
x ,U+

x )) »
H

1
T (C,ParHom(U´

x ,U+
x b~L´1

x ))

with T -action of weight 1.
Finally, we observe that according to our normalizations, the bundles U

+ b ~L´1 and U
´

descend to the normalized universal bundles rU 1 and rU2 over rPl(c 1) ˆ C and rP´l(c2) ˆ C,
respectively, and this completes the proof.

2.5.2. Calculation of the characteristic classes of NZ0

Before we calculate the equivariant K-theoretical Euler class of the conormal bundle N
˚
Z0 , we

need to introduce some notations. Recall that for 1 § i, j § r, the differences xi ´ xj P V
˚ are

linear functions on V , and the function xi ´ xj corresponds to the linearization L0(0; xi ´ xj)
on X, which descends to the line bundle L0(0; xi ´ xj) on the moduli space P0(c) (cf. §2.1.2).
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As in §2.4.2, we denote by ⇣(L0(0; xi ´ xj)) the line bundle on Z obtained by the pullback and
then descent. This way, we obtain a correspondence between the linear functions xi ´ xj and
the T -equivariant line bundles on Z.

Recall the definition of the permutation � P ⌃r given at the beginning of this chapter: �
takes the first r 1 numbers to ⇧ 1, preserving the order of the first r1 and the last r2 elements.
We introduce the symbols

z
1
i ´ z

1
j = c1(⇣(L0(0; x�(i) ´ x�(j)))

ˇ̌
Z0), (1 § i, j § r

1)

z
2
i ´ z

2
j = c1(⇣(L0(0; x�(r1+i) ´ x�(r1+j)))

ˇ̌
Z0), (1 § i, j § r

2)

u = (z1
r1 ´ z

2
r) = c1(⇣(L0(0; x�(r1) ´ xr))

ˇ̌
Z0)

(2.33)

for the equivariant cohomology classes in H
2
T (Z

0). The last equalities are consistent with
Lemma 2.4.5.

Remark 2.5.8. Note that (cf. Remark 2.5.2)

z
1
i ´ z

1
j = c1(F

1
r´i+1/F

1
r´i b (F1

r´j+1/F
1
r´j)

˚) P H
2(Pl(c

1)),

z
2
i ´ z

2
j = c1(F

2
r´i+1/F

2
r´i b (F2

r´j+1/F
2
r´j)

˚) P H
2(P´l(c

2)),

where F1
i and F2

i are the flag bundles (cf. §2.1.3) on P0(c1) and P0(c2), correspondingly.

Taking into account these identifications, functions on V give rise to equivariant cohomol-
ogy classes on Z

0. To make the splitting H
˚
T (Z

0) » H
˚(Z0) b C[u], explicit, however, we will

write these classes in the form fu(z 1, z2), thinking of them as functions of the differences of
the z

1
is and the differences of the z

2
is, depending on the parameter u. With this convention,

we introduce

w
ˆ
u(z

1, z2) =
π

i,j
�(i)†�(r1+j)

2 sinh(z1
i ´ z

2
j )

π

i,j
�(r1+j)†�(i)

2 sinh(z2
j ´ z

1
i),

⇢
ˆ
u(z

1, z2) =
1
2

ÿ

i,j
�(i)†�(r1+j)

(z1
i ´ z

2
j ) +

1
2

ÿ

i,j
�(r1+j)†�(i)

(z2
j ´ z

1
i),

where according to (2.33),

z
1
i ´ z

2
j = (z1

i ´ z
1
r1) + u ´ (z2

j ´ z
2
r) = c1(⇣(L0(0; x�(i) ´ x�(r1+j)))

ˇ̌
Z0) P H

2
T (Z

0).

Now we are ready to write down our formula for the K-theoretical Euler class E(NZ0) (cf.
definition 2.4.6 with t = e

u).

Proposition 2.5.9.

E(NZ0)´1 =(´1)lr+r1r2(g´1)
e

´rlu
exp

⇣
⌘r

r1 +
⌘r

r2
⌘
w

ˆ
u(z

1, z2)1´2g
exp(⇢ˆ

u(z
1, z2))

ch(Ll(r
2; ´l, ..., ´l, ´l+ rl) b L´l(r

1; l, ..., l, l ´ rl)).
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Proof. It follows from the short exact sequence (2.1) for parabolic morphisms that

ch(´⇡!(ParHom(rU2, rU1)) = ´ch(⇡!(Hom(rU2, rU1))) +
ÿ

i,j
�(i)†�(r1+j)

e
z1
i´z2

j

and
ch(´⇡!(ParHom(rU1, rU2)) = ´ch(⇡!(Hom(rU1, rU2)) +

ÿ

i,j
�(r1+j)†�(i)

e
z2
j ´z1

i ,

so by Lemma 2.5.6

ch(NZ0) = ch(´⇡!(Hom(rU2, rU1)) ‘ ´⇡!(Hom(rU2, rU1)˚))

+
ÿ

i,j
�(i)†�(r1+j)

e
z1
i´z2

j +
ÿ

i,j
�(r1+j)†�(i)

e
z2
j ´z1

i . (2.34)

Let f(x) be a power series in one variable, and W a vector bundle of rank r with (equiv-
ariant) Chern roots y1, . . . ,yr. Then we denote by [f(x)]W the multiplicative (equivariant)
characteristic class of W given by the function f(x) in Chern roots of W:

[f(x)]W =
rπ

j=1
f(yj).

Lemma 2.5.10. Let P be a smooth variety, and let S be a T -vector bundle on P ˆ C with T -weight 1;
pick a point p P C and denote by ⇡ : P ˆ C Ñ P the projection along the curve. Then

E(´⇡!S ‘ ´⇡!S
˚)´1 = (´1)rk(´⇡!S)

exp(´ch2(S)(2))

[(2sinh(x/2))2g´2]Sp
.

Proof. Note that

E(´⇡!S)
´1 =


1

1 ´ t´1e´x

�´⇡!S

=

 ´te
x

1 ´ tex

�´⇡!S

and

E(´⇡!S
˚)´1 =


1

1 ´ te´x

�´⇡!S
˚

=


1

1 ´ tex

�(´⇡!S
˚)˚

.

Applying Serre duality and the Grothendieck-Riemann-Roch Theorem we obtain

ch(´⇡!S) + ch((´⇡!S
˚)˚) = ch(´⇡!S) + ch(⇡!(S b KC)) =

ch(´⇡!S) + ⇡˚(ch(S b KC)Todd(C)) =
ch(´⇡!S) + ch(⇡!S) + (2g ´ 2)ch(Sp) = (2g ´ 2)ch(Sp),

where KC is the canonical sheaf on the curve C, hence


1
1 ´ tex

�´⇡!S‘(´⇡!S
˚)˚

=


1

(1 ´ tex)2g´2

�Sp

=
exp(´c1(Sp)(g ´ 1))
[(2sinh(x/2))2g´2]Sp

.
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Since
[´te

x]´⇡!S = (´1)rk(´⇡!S)exp(c1(´⇡!S))

and by the Grothendieck-Riemann-Roch theorem

ch1(´⇡!S) = ch1(Sp)(g ´ 1) ´ ch2(S)(2),

we conclude that

[´te
x]´⇡!S = (´1)rk(´⇡!S)exp(c1(Sp)(g ´ 1))exp(´ch2(S)(2)),

which finishes the proof of Lemma 2.5.10.

Note that the last two terms in (2.34) are the sums of Chern characters of line bundles, so
they contribute the multiplicative factor

exp(⇢û(z
1, z2))

wû(z1, z2)

to the equivariant class E(NZ0)´1; and using Lemma 2.5.10 with S = Hom(rU2, rU1), we obtain
that the inverse of the K-theoretical Euler class of the first term in (2.34) is

(´1)lr+r1r2(g´1)
w

ˆ
u(z

1, z2)2´2g
exp(´ch2(Hom(rU2, rU1))(2)).

Note that

´ ch2(Hom(rU2, rU1))(2) =
1
2
c2(End0(rU1 ‘ rU2))(2) ´ 1

2
c2(End0(rU1))(2) ´ 1

2
c2(End0(rU2))(2)

= c1
�
L(r; 0)

ˇ̌
Z0 b Ll(´r

1; ´l, ..., ´l) b L´l(´r
2; l, ..., l)

�
.

The latter equality follows from Lemma 2.1.8. Finally, using Lemma 2.5.5 to calculate the
Chern character of L(r; 0)

ˇ̌
Z0 , we obtain the formula for the class E(NZ0)´1, and the proof of

the Lemma is complete.

2.5.3. The wall-crossing formula

Putting Lemma 2.5.5 and Proposition 2.5.9 together, we obtain the following.

Proposition 2.5.11. The wall-crossing term (2.30) is equal to

KRes
u=0

e
(k�´rl)u

ª

Pl(c1)ˆP´l(c2)

⇥
(wˆ

u(z
1, z2))1´2g

exp(⇢ˆ
u(z

1, z2))¨

ch(Ll(k+ r
2; �1

1 ´ l, ..., �1
r1´1 ´ l, �1

r1 ´ l ´ k�+ rl)b
L´l(k+ r

1; �2
1 + l, ..., �2

r2´1 + l, �2
r2 + l+ k�´ rl))Todd(Pl(c1) ˆ P´l(c

2))
⇤
du,

where � is a parameter depending on � and the wall S⇧,l (cf. Lemma 2.5.5) and K is the constant
(´1)lr+r1r2(g´1) (r(k+r))g

(r1r2)g .
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Now all that is left to do is to perform the integral, using an induction on the rank based
on Corollary 2.3.10. We will begin with the case l = 0, as it is simpler. For l = 0, the integral
from Proposition 2.5.11 has the form

ª

P0(c1)ˆP0(c2)

⇥
w

ˆ
u(z

1, z2)1´2g
e
⇢û (z1,z2)Todd(P0(c

1))Todd(P0(c
2))

ch(L0(k+ r
2; �1

1, ..., �1
r1´1, �1

r1 ´ k�) b L0(k+ r
1; �2

1, ..., �2
r2´1, �2

r2 + k�))
⇤
. (2.35)

The inductive hypothesis (2.17) maybe cast in the following form
ª

P0(c)

ch(L0(k; �))Todd(P0(c)) = Ñr,k
ÿ

BPD
iBer

B
[expx�, x/pky ¨w�(x/pk)1´2g](⇢/pk´ [c]B). (2.36)

Now let us fix k, and allow to vary �. We can extend this equality by linearity to arbitrary
linear combinations of Chern characters of line bundles of the form

ÿ

i

ch(L0(k; �i)) = ch(L0(k; 0)) ¨
ÿ

i

ch(L0(0; �i)).

Since any polynomial on V , up to a fixed degree may be represented as a linear combination
of exponential functions of the form expx�, x/pky, formula (2.36) may be generalized in the
following way.

Lemma 2.5.12. Let G(x) be a formal power series on V , and denote by G(z) the characteristic class in
H

˚(P0(c)) obtained by the identification of functions on V and cohomology classes of P0(c), described
before the equation (2.33). Then we have

ª

P0(c)

ch(L0(k; 0))G(z)Todd(P0(c)) = Ñr,k ¨
ÿ

BPD
iBer

B
[G(x/pk) ¨ w1´2g

� (x/pk)](⇢/pk ´ [c]B). (2.37)

Finally, let D1 and D2 be Hamiltonian bases (cf. §2.3.5). Since

w�1(x/pk)w�2(x/pk)wˆ
u(x/pk) = w�(x/pk),

⇢
1(x/pk)⇢2(x/pk)⇢ˆ

u(x/pk) = ⇢(x/pk),

where w�1 ,w�2 and ⇢1, ⇢2 are naturally defined for the root systems �1 and �2 (cf. §2.3.5),
the integral (2.35) is equal to

Ñr1,k+r2Ñr2,k+r1
ÿ

B1PD1

ÿ

B2PD2
iBer

B1
iBer

B2
[w�(x/pk)1´2g

e
⇢(x/pk)]

((�1
1, ..., �1

r1´1, �1
r1 ´ k�)/pk ´ [c1]B1 + (�2

1, ..., �2
r2´1, �2

r2 + k�)/pk ´ [c2]B2).

Identifying u (cf. (2.33)) with the "link" element of the diagonal basis D = (↵�(r1),rD1 D2) (cf.
§2.3.5), and moving the factor e

k�u from Proposition 2.5.11 inside the argument of iBer, we
obtain the proof of the following theorem for l = 0.
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Theorem 2.5.13. Let c˘ P � be in the neighbouring chambers; then the wall-crossing term

�(P0(c
+),L0(k; �)) ´ �(P0(c

´),L0(k; �))

is equal to

(k+ r)Ñr,k
ÿ

B1PD1

ÿ

B2PD2
Res

↵�(r1),r=0
iBer

B1
iBer

B2
[w�(x/pk)1´2g](p�/pk ´ [c+]B)d↵

�(r1),r,

where D1 and D2 are the diagonal bases of �1 and �2 (cf. §2.3.5) correspondingly.

Remark 2.5.14. Note that this wall-crossing term coincides with the one from Proposition
2.3.16.

Example 6. It follows from Example 1 that in case of rank 3, the permutation � P ⌃3 sends
(1, 2, 3) to (1, 3, 2). Then u = c1(F1

1 b F2
1

˚) and let z = z
2
1 ´ z

2
2 = c1(F2

2/F
2
1 b F2

1
˚). Then the

inverse of the K-theoretical Euler class of the conormal bundle is (cf. Proposition 2.5.9)

ch(L)e
9⌘
2 e

z
2

✓
2sinh

⇣
u

2

⌘
2sinh

✓
z ´ u

2

◆◆1´2g
,

where L = L0(2; 0, 0) is a line bundle on the moduli space P0 of rank-2 degree-0 stable
parabolic bundles. The Chern character of the restriction of the line bundle L0(k; �1, �2, �3)
to ⌃ is

e
3k⌘

2 ch(Lk
0 )e

�1z+�2u.

Hence the wall-crossing term

�(P0(†),L0(k, �)) ´ �(P0(°),L0(k, �))

is equal to

´
✓

3(k+ 3)
2

◆g

Res
u=0

e
�2u

(2sinh(u2 ))2g´1 ¨
ª

P0

ch(L0(k+ 1; �1 +
1
2 , ´�1 ´ 1

2))

(2sinh(z´u
2 ))2g´1 Todd(P0)du.

The integral is the Euler charactersitics of a line bundle on a moduli space of degree-0 rank-2
stable parabolic bundles, so we can calculate it using the induction by rank. It is equal to

(´1)g´1(2(k+ 3))g Res
z=0

e
(�1+1)z

(2sinh(z´u
2 )2sinh(z2 ))2g´1(1 ´ e(k+3)z)

dz,

so the wall-crossing term is

(´3(k+ 3)2)g Res
u=0

Res
z=0

e
�1z+�2u+z

w̃�(z,u)2g´1(1 ´ e(k+3)z)
dzdu,

where w̃�(z,u) = 2sinh(z´u
2 )2sinh(u2 )2sinh(z2 ). Note that this is exactly the same polynomial

as in Example 5 after changing (z,u) to (x, ´y).
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2.6. Tautological Hecke correspondences

If l ‰ 0, then we need one more step in our proof, which uses the Hecke correspondence to
calculate the wall-crossing term (2.30).

2.6.1. The Hecke correspondence

Given a rank-r degree-d vector bundle W with a full flag 0 à F1 à ... à Fr = Wp at p, one can
obtain a rank-r degree-d ´ 1 vector bundle W

1 with a full flag 0 à G1 à ... à Gr = W
1
p using

the tautological Hecke correspondence construction as follows.
The evaluation map W Ñ Wp induces the short exact sequence of the associated sheaves

of sections
0 Ñ W 1 ↵̃Ñ W Ñ Wp/Fr´1 Ñ 0 (2.38)

on curve C. Since W1 is a kernel of ↵̃, it is a locally free sheaf, thus gives a rank-r vector
bundle W

1 over C with det(W 1) » det(W) b O(´p). The image of the associated morphism
of vector bundles ↵ at the point p is Fr´1 Ä Wp, so ↵p : W1

p Ñ Wp has a one-dimensional
kernel G1 Ä W

1
p. Moreover, compositions of ↵p with the quotient morphisms Fr´1 Ñ Fr´1/Fi

induce a full flag of the corresponding kernels G1 à ... à Gr´1 à Gr = W
1
p in W

1
p.

Denote this operator between the sets of isomorphism classes of degree-d and d´ 1 vector
bundles with a flag at p by

H : (W, F˚) fiÑ (W 1,G˚).

Similarly, for any m • 0, one can define the operator Hm between the sets of isomorphism
classes of degree-d and d ´ m vector bundles with a flag at the point p by iterating the above
construction m times. Clearly, these maps are independent of the parabolic weights.

Proposition 2.6.1. Let c P � be a regular (cf. page 7) point. Then the operator H induces an
isomorphism between the moduli spaces Pd(c1, ..., cr) and Pd´1(c2, ..., cr, c1 ´ 1).

Proof. First, we need to show that if W P Pd(c1, ..., cr) is a parabolic stable bundle with
parabolic weights (c1, ..., cr), then W

1, its image under the Hecke operator H, is parabolic
stable with respect to parabolic weights (c2, ..., cr, c1 ´ 1). For this, consider the subbundle
V

1 Ä W
1 and let ↵(V 1) = V Ä W (cf. (2.38)) be its image. Since W is parabolic stable,

parslope(V) † parslope(W) = parslope(W1).

We need to prove that parslope(V 1) † parslope(W 1). There are two possible cases:

• If ↵ maps V
1 to V isomorphically, then deg(V 1) = deg(V) and Vp Ä Fr´1, hence

parslope(V 1) = parslope(V) † parslope(W1).

• Otherwise, deg(V 1) = deg(V)´ 1, and Vp is not contained in Fr´1, so one of the parabolic
weights of V 1 is c1 ´ 1. Then, as in the previous case, parslope(V 1) = parslope(V), and the
result follows.

To show that the map H is an isomorphism, note that Hr maps

Pd(c1, c2, ..., cr) Ñ Pd´r(c1 ´ 1, c2 ´ 1, , ..., cr ´ 1). (2.39)
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It is easy to check that given W and iterating the associated morphism of locally free sheaves
of sections (2.38) r times, we obtain a subsheaf W1 Ä W of sections of W which vanishes at the
point p. So the map (2.39) is just tensoring by O(´p), and hence it is an isomorphism.

Now we can define an operator Hm for any m P Z, taking the inverse map if necessary. We
will need the following statement, which follows from Proposition 2.6.1 and the construction
of Hm.

Corollary 2.6.2. Let m • 0. Then under the isomorphism Hm the line bundle Ld(k; �1, ..., �r)
corresponds to the line bundle Ld´m(k; �r´m+1, ..., �r, �1 ´ k, ..., �r´m ´ k).

2.6.2. The effect of the Hecke correspondence on the integral

Recall that our goal is to calculate the wall-crossing term from Proposition 2.5.11. For simplic-
ity, we assume that l is positive (the other case is analogous). We apply the Hecke operators
Hl and H´l to the moduli spaces Pl(c 1) and P´l(c2) to obtain

P
1
0 = P0(c

1
l+1, ..., c 1

r 1 , c 1
1 ´ 1, ..., c 1

l ´ 1) » Pl(c
1) and

P
2
0 = P0(c

2
r2´l+1 + 1, ..., c2

r2 + 1, c2
1, ..., c2

r2´l) » P´l(c
2).

Recall (cf. page 10) that there is a natural action of the group ⌃r on V
˚, and hence (cf. page

31) on H
2(Pl(c 1) ˆ P´l(c2)). Let ⌧1 P ⌃r1 and ⌧2 P ⌃r2 be the cyclic permutations defined by

⌧
1 ¨ (c1

1 ´ 1, ..., c1
l ´ 1, c1

l+1, ..., c1
r1) = (c 1

l+1, ..., c 1
r 1 , c 1

1 ´ 1, ..., c 1
l ´ 1)

and
⌧

2 ¨ (c2
1, ..., c2

r2´l, c
2
r2´l+1 + 1, ..., c2

r + 1) = (c2
r2´l+1 + 1, ..., c2

r2 + 1, c2
1, ..., c2

r2´l).

And set ⌧ = (⌧1, ⌧2) P ⌃r1 ˆ⌃r2 Ä ⌃r. Note that

⌧
1 ¨ (´l+ r

1, ..., ´l+ r
1, ´l, ..., ´l) = ⌧1 ¨ ⇢1 ´ ⇢1

and
⌧

2 ¨ (l, ..., l, l ´ r
2, ..., l ´ r

2) = ⌧2 ¨ ⇢2 ´ ⇢2,

so applying the Hecke operator Hl ˆ H´l to the wall-crossing term from Proposition 2.5.11
and using Corollary 2.6.2, we obtain that the wall-crossing term (2.30) is equal to

KRes
u=0

e
(k�´rl)u

ª

P1
0ˆP2

0

�
⌧ ¨ wˆ

u(z
1, z2)1´2g

e
⌧¨⇢û (z1,z2)

ch(L0(k+ r
2; ⌧1 ¨ (�1

1 ´ pk, ..., �1
l ´ pk, �1

l+1, ..., �1
r1´1, �1

r1 ´ k�+ rl))

ch(L0(k+ r
1; ⌧2 ¨ (�2

1, ..., �2
r1´l, �

2
r2´l+1 + pk, ..., �2

r2 + pk+ k�´ rl))

e
⌧2¨⇢2(z1,z2)´⇢2(z1,z2)

e
⌧1¨⇢1(z1,z2)´⇢1(z1,z2)Todd(P1

0)Todd(P2
0)
�
du. (2.40)

As in §2.5.3, according to Lemma 2.5.12, we can calculate this integral using the induction on
rank. Let D1 and D2 be two Hamiltonian diagonal bases. Then ⌧1(D1) and ⌧2(D2) are also
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Hamiltonian diagonal bases (cf. Remark 2.2.3) and the integral in (2.40) is equal to

(´1)lrÑr1,k+r2Ñr2,k+r1
ÿ

B1P⌧1(D1)

ÿ

B2P⌧2(D2)

iBer
B1

iBer
B2

[⌧ ¨ wˆ
u(x/pk)1´2g(w�1(x/pk)w�2(x/pk))1´2g

e
⌧¨⇢(x/pk)]

(⌧1 ¨ (�1
1 ´ pk, ..., �1

l ´ pk, �1
l+1, ..., �1

r1´1, �1
r1 ´ k�+ rl)/pk ´ [⌧1 ¨ (c1

1 ´ 1, ..., c1
l ´ 1, c1

l+1, ..., c 1
r 1)]B1+

⌧
2 ¨ (�2

1, ..., �2
r1´l, �

2
r2´l+1 + pk, ..., �2

r2´1 + pk, �2
r2 + pk+ k�´ rl)/pk´

[⌧2 ¨ (c2
1, ..., c2

r1´l, c
2
r2´l+1 + 1, ..., c2

r2 + 1)]B2). (2.41)

To arrive at Theorem 2.5.13, we need to make additional transformations of formula (2.41):
first, we shift �1 and �2, and then we apply Lemma 2.3.5 to eliminate the cyclic permutation ⌧.

Note that given an ordered basis B P B and an element v P V
˚ such that tvuB = 0, for any

weight � P ⇤ and positive integer k one have

(�+ pkv)/pk ´ [c+ v]B = �/pk ´ [c]B. (2.42)

In particular, to perform the shift of �1 in (2.41), we use the following equality for any B1 P D1:

(�1
1 ´ pk, ..., �1

l ´ pk, �1
l+1, ..., �1

r1´1, �1
r1 ´k�+ rl)/pk´ [(c1

1, ..., c1
r1´1, c1

r1 ´ l)´ (1, ..., 1, 0, ...0, ´l)]B1 =

(�1
1, ..., �1

r1´1, �1
r1 ´ k�+ rl ´ lpk)/pk ´ [(c1

1, ..., c1
r1´1, c1

r1 ´ l)]B1 , (2.43)

which clearly remains true after changing D1 to ⌧1(D1) and applying ⌧1 to both sides of the
equation. Similarly, shifting the last terms of (2.41) by ⌧2(0, ..., 0, ´1, ... ´ 1, ´1 + l), we can
rewrite (2.41) as

(´1)lrÑr 1,k+r2Ñr2,k+r1
ÿ

B1P⌧1(D1)

ÿ

B2P⌧2(D2)

iBer
B1

iBer
B2

[⌧ ¨ wˆ
u(x/pk)1´2g(w�1(x/pk)w�2(x/pk))1´2g

e
⌧¨⇢(x/pk)]

(⌧1 ¨ (�1
1, ..., �1

r1´1, �1
r1 ´ k�+ rl ´ lpk)/pk ´ [⌧1 ¨ (c1

1, ..., c 1
r 1´1, c 1

r 1 ´ l)]B1+

⌧
2 ¨ (�2

1, ..., �2
r2´1, �2

r2 + k�´ rl+ lpk)/pk ´ [⌧2 ¨ (c2
1, ..., c2

r2´1, c2
r" + l)]B2).

Finally, identifying u (cf. (2.33)) with the "link" element of the diagonal basis ⌧(D) =
(↵⌧�(r1),⌧(r)

⌧
1(D1) ⌧2(D2)) (cf. §2.3.5) and

• moving the factor e
(k�´rl)u from (2.40) inside the argument of iBerB, where

B = (↵⌧�(r1),⌧(r) B1 B2),

• applying (2.42) with B = (↵⌧�(r1),⌧(r) B1 B2) and v = l↵
⌧�(r1),⌧(r),

• applying Lemma 2.3.5,

• and using the fact that

⌧
´1 ¨ (w�1(x/pk)w�2(x/pk)) = (´1)lrw�1(x/pk)w�2(x/pk),

we obtain the formula of Theorem 2.5.13 for arbitrary l P Z.
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2.7. Affine Weyl symmetry and the proof of part I of Theorem 2.3.8

In this section, we prove certain symmetry properties of our Hilbert polynomials on the left
hand side of (1.1), and we finish the proof of part I of Theorem 2.3.8. We start with the basic
instance of symmetry of Hilbert polynomials: relative Serre duality.

2.7.1. Serre duality

Proposition 2.7.1. Let E Ñ X be a rank 2 vector bundle over a smooth variety X, ⇡ : Y = P(E) Ñ X

its projectivization and !X/Y the relative cotangent line bundle. Then

�(Y,⇡˚L b!m
X/Y) = ´�(Y,⇡˚L b!´m+1

X/Y )

for any line bundle L P Pic(X).

Proof. By Serre duality for families of curves [9, Ch III, §7-8] for any integer n

�(Y,⇡˚L b O(n)) = ´�(Y,⇡˚(L b (^2E)n+1) b O(´n ´ 2)). (2.44)

Denote by⌦X/Y the sheaf of relative differentials on Y; it follows from the short exact sequence

0 Ñ ⌦X/Y b OX Ñ ⇡
˚E(´1) Ñ OX Ñ 0,

that
!X/Y = ^2(⇡˚E(´1)) = ⇡˚(^2E) b O(´2).

Then the statement follows from (2.44) by substituting n = ´2m.

Now we can generalize this statement to the case of flag bundles.

Proposition 2.7.2. Let ⇡ : Y = Flag(E) Ñ X be a rank-r flag bundle over X. Let L be a line bundle on
X, and F1, F2/F1, ...,Fr/Fr´1 the standard flag line bundles on Y. For k P Z and � = (�1, ..., �r) P ⇤
denote by

L(k; �) = (⇡˚L)k b (Fr/Fr´1)
�1 b (Fr´1/Fr´2)

�2 b ... b F�r1 .

Consider the polynomial

q(k; �1, �2, ..., �r) = �(Y,L(k; �1, �2, ..., �r))

in (k, �) P Z ˆ⇤ and extend this definition to R ˆ V
˚. Then q(k; �´ ⇢) is anti-invariant under the

permutations of �1, �2, ..., �r.

Proof. For 1 § k † r, let Flagk̂(E) Ñ X be the flag bundle over X obtained from Y by forget-
ting the k-dimensional subspace. Then Y » P(Fk+1/Fk´1) Ñ Flagk̂(E) is a P1-bundle over
Flagk̂(E), and thus applying Proposition 2.7.1 we obtain

�(Y,L(k; �1, ..., �r´k, �r´k+1, ..., �r)) = ´�(Y,L(k; �1, ..., �r´k+1 ´ 1, �r´k + 1, ..., �r)),

and the result follows.
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2.7.2. The Weyl anti-symmetry of the functions q1 and q´1

Armed with this statement, we are ready to take on the symmetries of the Hilbert polynomial
of our parabolic moduli spaces. We note that the two sets �˘1 of weights for degree-˘1
stable parabolic bundles are simplices with one of their vertices at ( 1

r , ..., 1
r) and (´1

r , ..., ´1
r ),

correspondingly (cf. §2.1.2).
Denote by N˘1 the moduli spaces of rank-r degree-˘1 stable vector bundles and by UN

any universal bundle over N˘1 ˆ C (cf. e.g [3]).

Lemma 2.7.3. Let c = (c1, ..., cr) be a parabolic weight from the chamber in �1, which has as one of its
vertices the (regular) point ( 1

r , ..., 1
r). Then the moduli space P1(c) of rank-r degree-1 stable parabolic

bundles is isomorphic to the flag bundle Flag(UNp) over N1. An analogous statement holds in the
case of degree ´1 and the point (´1

r , ..., ´1
r ) P �´1.

Proof. A simple calculation shows that the point (c1, ..., cr) P �1, such that all ci ° 0, lies inside
the chamber in �1 with the vertex ( 1

r , ..., 1
r). Hence it is enough to prove the first statement for

the moduli space P1(c1, ..., cr) with positive parabolic weights.
Moreover, it is sufficient to show that if (W, F˚) is a parabolic stable vector bundle which

represents a point in P1(c1, ..., cr), then W is stable as an ordinary bundle. Assume that W

admits a proper subbundle W
1 with slope(W1) • slope(W) = 1

r , then deg(W1) • 1. Since all
parabolic weights of W are positive, this implies that parslope(W1) ° 0 = parslope(W), and
therefore W is parabolic unstable. The proof for degree-(´1) bundles is analogous.

Denote the moduli spaces described above by P1(°) and P´1(†), correspondingly, and
their images under the Hecke isomorphisms H and H´1 by P0(°) and P0(†).

The following statement is straightforward (cf. Lemma 2.1.8).

Lemma 2.7.4. The line bundles L1(r; 1, ..., 1) and L´1(r; ´1, ..., ´1) on P1(°) and P´1(†) defined in
Lemma 2.1.6 may be obtained as pullbacks of the ample generators of the Picard groups Pic(N˘1).

Example 7. In case of rank-3 parabolic bundles the moduli space P1(c1, c2, c3) with 2c3 °
c1 + c2 ´ 1 is a flag bundle over N1 and it is isomorphic to the moduli space P0(°) from
Example 1, while the moduli space P´1(c1, c2, c3) with 2c1 † c2 + c3 + 1 is a flag bundle over
N´1 and it is isomorphic to P0(†).

Now we establish the Weyl anti-symmetry of the polynomials

q´1(k; �1, ..., �r) = �(P0(†),L0(k; �1, ..., �r))

and
q1(k; �1, ..., �r) = �(P0(°),L0(k; �1, ..., �r))

defined on R ˆ⇤, as in Proposition 2.7.2. Let ⌧ P ⌃r be the cyclic permutation, such that
⌧ ¨ (c1, ..., cr) = (c2, ..., cr, c1), and consider two points in V

˚:

✓1[k] =
k+ r

r
¨ (1, 1, . . . , 1) ´ (k+ r)xr ´ ⇢ = ⌧ ¨ (k

r
´ k,

k

r
, ...,

k

r
) ´ ⌧ ¨ (⇢) =

✓
k

r
´ r ´ 1

2
+ 1,

k

r
´ r ´ 1

2
+ 2, ....,

k

r
´ r ´ 1

2
+ r ´ 1, ´k+

k

r
´ r ´ 1

2

◆
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and

✓´1[k] = ´k+ r

r
¨ (1, 1, . . . , 1) + (k+ r)x1 ´ ⇢ = ⌧´1 ¨ (´k

r
, ..., ´k

r
, ´k

r
+ k) ´ ⌧´1 ¨ (⇢) =

✓
k ´ k

r
+

r ´ 1
2

, ´k

r
´ r ´ 1

2
, ´k

r
´ r ´ 1

2
+ 1, ..., ´k

r
´ r ´ 1

2
+ r ´ 2

◆
.

Proposition 2.7.5. The polynomials q1(k; �+ ✓1[k]) and q´1(k; �+ ✓´1[k]) are anti-invariant under
the action of the Weyl group by permutations of �1, ..., �r.

Proof. Recall that the moduli space P0(°) is isomorphic to the flag bundle P1(°) over N1 under
the Hecke isomorphism H´1. Then using Corollary 2.6.2, Proposition 2.7.2 and Lemma 2.7.4,
for any permutation � P ⌃r we obtain

q1(k;� ¨ �+ ✓1[k])
def
= �(P0(°),L0(k;� ¨ �+ ✓1[k]))

2.6.2
=

�(P1(°),L1(k; ⌧´1 ¨ � ¨ �+ (
k

r
, ...,

k

r
) ´ ⇢)) 2.7.2,2.7.4

=

(´1)��(P1(°),L1(k; ⌧´1 ¨ �+ (
k

r
, ...,

k

r
) ´ ⇢)) 2.6.2

=

(´1)��(P0(°),L0(k; �+ ✓1[k]))
def
= (´1)�q1(k; �+ ✓1[k]).

The proof for q´1 is similar.

The two group actions in Proposition 2.7.5 may be combined in the following manner. For
k • 0, we define an action of the affine Weyl group ⌃¸⇤ on ⇤ˆ Z, which acts trivially on the
second factor, the level, and the action at level k is given by setting

�.� = � ¨ (�+ ⇢) ´ ⇢ and �.� = �+ (k+ r)� for � P ⌃, � P ⇤.

We denote the resulting group of affine-linear transformations of V˚ by r⌃[k], and note that the
action is defined in such a way that

�.�+ ⇢ = � ¨ (�+ ⇢) and (�.�+ ⇢)/pk = �+ (�+ ⇢)/pk. (2.45)

It is easy to verify that the stabilizer subgroup

⌃
+
r

def
= Stab(✓1[k], r⌃[k]) Ä r⌃[k]

is generated by the transpositions si,i+1, 1 § i § r ´ 2 and the reflection ↵r´1,r ˝ sr´1,r;
similarly,

⌃
´
r

def
= Stab(✓´1[k], r⌃[k]) Ä r⌃[k]

is generated by si,i+1, 2 § i § r ´ 1 and the reflection ↵1,2 ˝ s1,2.
Then Proposition 2.7.5 maybe recast in the following form: the polynomial q1(k; �) is

anti-invariant with respect to the copy ⌃+
r of the symmetric group ⌃r, while q´1(k; �) is anti-

invariant with respect to the copy ⌃ŕ of the symmetric group ⌃r.
The following statement is straightforward:

Lemma 2.7.6. Both subgroups ⌃r̆ are isomorphic to ⌃r and for r ° 2, the two subgroups generate the
affine Weyl group r⌃[k].
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2.7.3. The Weyl anti-symmetry of the polynomials p1 and p´1

Following (2.17), we define the two polynomials

p˘1(k; �) =
ÿ

BPD
iBer

B
[w1´2g
� (x/pk)](p�/pk ´ [✓˘1]B),

where ✓1 = 1
r ¨ (1, 1, . . . , 1) ´ xr, and ✓´1 = ´ 1

r ¨ (1, 1, . . . , 1) + x1.

Proposition 2.7.7. The polynomial p1(k; �) is anti-invariant with respect to ⌃+
r , and p´1(k; �) is

anti-invariant with respect to ⌃ŕ .

Proof. We recall that the points ✓˘1[k] are the fixed points of the actions of ⌃˘, and clearly
limkÑ1 ✓˘1[k]/k = ✓˘1. This means, that we can fix a small open ball D Ä V

˚ centered at ✓1
such that

�/k P D =ñ @� P ⌃+ : (�.�+ ⇢)/pk „ ✓1. (2.46)

Then for �/k P D we have

p1(k; �) =
ÿ

BPD
iBer

B
[w1´2g
� (x/pk)](tp�/pkuB).

Now, let us consider a generator of ⌃+ of the type � = si,i+1, 1 § i § r ´ 2. Using (2.45), and
Lemma 2.3.5, and the fact that � ¨ w� = ´w� we obtain

p1(k;�.�) =
ÿ

BPD
iBer

B
[w1´2g
� (x/pk)](� ¨ tp�/pkuB) =

ÿ

BPD
iBer

B
[(´w�)

1´2g(x/pk)](tp�/pkuB) = ´p1(k; �)

The case of the last generator ↵r´1,r ˝ sr´1,r is similar, but after the substitution, we need to
use the equality t↵r´1,r +p�/pkuB = tp�/pkuB to obtain p1(k; pk↵r´1,r + sr´1,r.�) = ´p1(k; �).

2.7.4. Proof of part I. of Theorem 2.3.8

Recall that in Lemma 2.3.1, we introduced a chamber structure on � Ä V
˚ created by the walls

S⇧,l, where ⇧ = (⇧1,⇧2) is a nontrivial partition, and l P Z. Before we proceed, we introduce
some extra notation. Denote by

q� = t(k;a)|a/k P �u Ä R°0 ˆ V
˚

the cone over � Ä V
˚, and let

q�reg = t(k;a)|a/k P � is regularu Ä q�

be the set of its regular points. Denote by qS⇧,l Ä q� the cone over the wall S⇧,l Ä �; then q�reg

is the complement of the union of walls qS⇧,l in q�. Finally, denote by q�reg
⇤ the intersection of

the lattice Z°0 ˆ⇤ with q�reg.
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By substituting c̨ = �/k, we can consider the left-hand side and the right-hand side of
formula I. of Theorem 2.3.8 as functions in (k, �) P q�reg

⇤ . We denote by q(k; �) and p(k; �) the
left-hand side and the right-hand side, correspondingly.

We showed that q(k; �) and p(k; �) are polynomials on the cone over each chamber in � (cf.
Theorem 2.3.4, §2.1.4). We proved that the wall-crossing terms, i.e. the differences between
polynomials on neighbouring chambers, for q(k; �) (cf. Theorem 2.5.13) and for p(k; �) (cf.
Proposition 2.3.16) coincide, hence there exists a polynomial ⇥(k; �) on Z°0 ˆ⇤, such that the
restriction of ⇥(k; �) to q�reg

⇤ is equal to the difference p(k; �) ´ q(k; �).
Now for r ° 2, we can conclude that

⇥(k; �) = p1(k; �) ´ q1(k; �) = p´1(k; �) ´ q´1(k; �),

where p˘1(k; �) and q˘1(k; �) are the restrictions of p(k; �) and q(k; �) to two specific chambers
defined in §2.7.3 and §2.7.2. Then, according to Propositions 2.7.5 and 2.7.7, the polynomial
⇥(k; �) is anti-invariant with respect to the action of the subgroups ⌃r̆ , and hence by Lemma
2.7.6, it is anti-invariant under the action of the entire affine Weyl group r⌃[k]. It is easy to see
that any such polynomial function has to vanish, and thus p(k; �) = q(k; �), and this completes
the proof of part I. of Theorem 2.3.8 for the case when �/k P � is regular.

As in Corollary 2.3.10, we can extend p(k; �) from the interior of each chamber to its
boundary by polynomiality. Clearly, to prove part I. of Theorem 2.3.8 for the cases when �/k
is not regular, it is sufficient to show, that these extensions from the chambers containing �/k
in their closure give the same value on (k; �). It follows from Remark 2.9.4, that this is the
case, and this completes the proof of part I. of Theorem 2.3.8 (cf. Remark 2.3.9).

2.8. Rank 2, two points

Unfortunately, the argument above does not work for r = 2, because, in this case, ✓1[k] =
✓´1[k], the groups ⌃ŕ and ⌃+

r coincide, and thus they do not generate the entire affine Weyl
group. The way out is to pass to the 2-punctured case.

2.8.1. Wall-crossing

We will thus fix two points: p, s P C, and study the moduli space of rank-2, stable parabolic
bundles W with fixed determinant isomorphic to O(pd), with parabolic structure given by a
line F1 Ä Wp with weight (c, ´c), and a line G1 Ä Ws with weight (a, ´a).

Now we need to repeat the analysis of our work so far in this somewhat simpler case;
some details thus will be omitted.

Set d = 0; then the space of admissible weights (cf. Figure 2.5) is a square

l = t(c,a) | 1 ° 2c ° 0, 1 ° 2a ° 0, u,

which has two adjacent chambers defined by the conditions

c ° a and c † a.

Denote the corresponding moduli spaces by P0(c ° a) and P0(c † a).
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P0(c † a)

P0(c ° a)

(0, 0) ( 1
2 , 0)

(0, 1
2 ) ( 1

2 , 1
2 )

Figure 2.5 – The space of admissible weights in the case of rank r = 2, two points.

Again, we have universal bundles over P0(c ° a) ˆ C and P0(c † a) ˆ C, which we will
denote by the same symbol U; this bundle is endowed with two flags, F1 Ä F2 = Up and
G1 Ä G2 = Us. For µ, � P Z, we introduce the line bundle

L(k; �,µ) = det(Up)
k(1´g) b det(⇡˚(U))´k b (F2/F1)

� b (F1)
´� b (G2/G1)

µ b (G1)
´µ.

We repeat the construction of the master space from Section 5.1, choosing a point (c0, c0)
on the wall and two points

(c,a)˘ = (c0, c0) ˘ ✏(1, 0) P l, ✏ P Q°0

from the adjacent chambers. We can identify the fixed point set Z0 as follows.

Lemma 2.8.1. The locus Z0 defined in Proposition 2.4.2 is

Z
0 » Jac

0 » tV = L ‘ L
´1 |Ls = F1,L´1

p = G1u.

As in §2.5.1, denote by J the universal bundle over Jac0 ˆC normalized in such a way that
c1(J)(0) = 0 (cf. (2.3)). Define

⌘ P H
2(Jac) by

 
ÿ

i

c1(J)(ei) b ei

!2

= ´2⌘b!;

we have then
≥
Jac e

⌘m = m
g for m P Z.

Let ⇡ : Jac0 ˆC Ñ Jac
0 be the projection and NZ0 be the equivariant normal bundle to Z

0 in
Z. Then, as in Lemma 2.5.6, Proposition 2.5.9 and Lemma 2.5.5, we obtain the identifications:

• NZ0 = R
1
T⇡˚(ParHom(J, J´1)) ‘ R

1
T⇡˚(ParHom(J´1, J)), where T » C˚-action has

weights (-1,1);

• E(NZ0)´1 = (´1)g(2sinh
�
u
2
�
)´2g

exp(4⌘);

• chT (L(k; �,µ)
ˇ̌
Z0) = exp(2k⌘)exp(u(�´ µ)).

Now we define the polynomials:

h°(k; �,µ) def
= �(P0(c ° a),L(k; �,µ)), h†(k; �,µ) def

= �(P0(c † a),L(k; �,µ)).

and, applying Theorem 2.4.7, we obtain the following expression for their difference.

Lemma 2.8.2. The wall-crossing term equals

h°(k; �,µ) ´ h†(k; �,µ) = (´1)g(2k+ 4)g Res
u=0

exp(u(�´ µ))

(2sinh
�
u
2
�
)2g du.
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2.8.2. Symmetry

Denote by P´1(c ° a) the image of the moduli space P0(c ° a) under the Hecke isomorphism
H (cf. §2.6) at the point p and by P´1(c † a) the image of the moduli space P0(c † a) under
the Hecke isomorphism H at the point s.

We have the following analogue of Lemma 2.7.3.

Lemma 2.8.3. Denote by N´1 the moduli space of rank-2 degree-(´1) stable bundles on C and by
UN any universal bundle over N´1 ˆ C. Then the moduli spaces P´1(c ° a) and P´1(c † a) are
isomorphic to the bundle P(UNp) ˆ P(UNs) over N´1.

Denote by T[p] and T[s] the vertical tangent lines of P(UNp) and P(UNs), respectively, and
by L´1 the pullback of the ample generator of the Picard group of N´1 to P(UNp) ˆ P(UNs)
(cf. Lemma 2.7.4). Then a simple calculation shows the following.

Lemma 2.8.4. Under the Hecke isomorphism H at p, the line bundle L(2k; �,µ) on P0(c ° a)
corresponds to the line bundle Lk

´1 b T[p]´�+k b T[s]µ on P´1(c ° a).
Under the Hecke isomorphism H at the point s, L(2k; �,µ) on P0(c † a) corresponds to the line bundle
Lk

´1 b T[p]� b T[s]´µ+k on P´1(c † a).

As in §2.7.2, applying Serre duality for families of curves (cf. Proposition 2.7.2) to the line
bundles on the two P1 ˆ P1 bundles over N´1, we obtain that the polynomials h°(k; �,µ) and
h†(k; �,µ) are anti-invariant under the action of the Weyl group ⌃2 ˆ ⌃2 with the center at
✓1[k] = (k+1

2 , ´1
2 ) and ✓2[k] = (´1

2 , k+1
2 ), correspondingly (cf. Figure 2.6). In other words, we

obtain the following 4 identities.

Lemma 2.8.5.
h°(k; �,µ) = ´h°(k; �, ´µ ´ 1) = ´h°(k; ´�+ k+ 1,µ);

h†(k; �,µ) = ´h†(k; ´�´ 1,µ) = ´h†(k; �, ´µ+ k+ 1).

P0(c † a)

P0(c ° a)

(0, 0) (2, 0)

(0, 2) (2, 2)

✓2[4]

✓1[4]

Figure 2.6 – k = 4, r = 2, two points.

Now, define the polynomials

rh°(k; �,µ) = (´1)g´1(2k+ 4)g Res
u=0

exp(u(�+ µ+ 1)) ´ exp(u(�´ µ))

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2))

du;

rh†(k; �,µ) = (´1)g´1(2k+ 4)g Res
u=0

exp(u(�+ µ+ 1)) ´ exp(u(�´ µ+ k+ 2))
(2sinh

�
u
2
�
)2g(1 ´ eu(k+2))

du,

and from here we can follow the logic of the proof of part I of Theorem 2.3.8.
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Proposition 2.8.6. The polynomials introduced above, in fact, coincide:

h°(k; �,µ) = rh°(k; �,µ) and h†(k; �,µ) = rh†(k; �,µ).

Proof. It is a simple exercise to show that rh°(k; �,µ) and rh†(k; �,µ) satisfy the identities ap-
pearing in Lemmas 2.8.2 and 2.8.5, and hence the polynomial

⇥(k; �,µ) = h°(k; �,µ) ´ rh°(k; �,µ) = h†(k; �,µ) ´ rh†(k; �,µ)

satisfies all four ⌃2-symmetries listed in Lemma 2.8.5. These groups together generate a dou-
ble action of the affine Weyl group r⌃ in � and µ separately, and this implies the vanishing of
⇥.

As P0(c ° a) is a P1-bundle over the moduli space of rank-2 degree-0 stable parabolic
bundles P0(c, ´c), substituting µ = 0 in rh°, we obtain the Verlinde formula for rank 2.

Corollary 2.8.7.

�(P0(c, ´c),L0(k; �)) = (´1)g´1(2k+ 4)g Res
u=0

exp(u(�+ 1
2))

(2sinh
�
u
2
�
)2g´1(1 ´ eu(k+2))

du.

2.9. The combinatorics of the [Q,R] = 0

In this section, we give a proof of the second part of Theorem 2.3.8. Let �/k P �, and fix a
regular element c̨ P � in a chamber containing �/k in its closure, and another regular element
pc̨ P � containing p�/pk in its closure. Our goal is to prove the the equality pc̨(k; �) = ppc̨(k; �),
where we define

pc(k; �) = Ñr,k
ÿ

BPD
iBer

B
[w1´2g
� (x/pk)](p�/pk ´ [c]B) (2.47)

for a regular c P � and diagonal basis D. This is a subtle statement, which is a combinatorial-
geometric projection of the idea of quantization commutes with reduction (or [Q,R] = 0 for
short, cf. [15, 23]).

If �/k „ p�/pk, i.e. when �/k and p�/pk are regular elements in the same chamber in �, then
pc̨(k; �) = ppc̨(k; �) is a tautology. We assume thus that this is not the case, and denote by S(k, �)
the set of walls separating c̨ and pc̨, or containing either �/k or p�/pk or both. Equivalently, the
wall S⇧,l belongs to S(k, �) if

(�/k)⇧ 1 • l • (p�/pk)⇧ 1 or (�/k)⇧ 1 § l § (p�/pk)⇧ 1 ,

where c⇧1 =
∞

iP⇧1 ci for an element c = (c1, ..., cr) P V
˚. Clearly, there is a path in �

connecting c̨ and pc̨, which intersects only walls from S(k, �) in a generic points. Then to prove
the equality pc̨(k; �) = ppc̨(k; �), it is enough to show the following, at first sight somewhat
surprising fact.

Proposition 2.9.1. Assume g • 1, �/k P �, S⇧,l P S(k, �) and let c
˘ P � be two points in two

neighboring chambers separated by the wall S⇧,l. Then

pc+(k; �) = pc´(k; �). (2.48)
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Proof. The difference of the two sides of (2.48) is expressed as a residue in (2.29). The integral
in (2.29) is a rational expression in the variable t, and our plan is to show by degree count
in t and t

´1 that its residues at zero and at 1 vanish. We define the degree of the quotient
of two polynomials R = P/Q of the variable t as degt(R) = degt(P) ´ degt(Q), and we set
degt´1(R) = degt(R(t

´1)). Then, clearly,

degt(R) † 0 =ñ Res
t=1

R
dt

t
= 0 and degt´1(R) † 0 =ñ Res

t=0
R
dt

t
= 0.

A convenient expression for (2.29) will be (2.40), where we change variables via t = e
u. In

what follows, we will always tacitly assume this substitution, and we will write, for example,
degt˘1(1/(eu ´ e

´u)) = ´1. We thus obtain a formula of the form Rest=0,1 f(t)dt/t, and to
show that this is zero, it is sufficient to show that degt(f) † 0 and degt´1(f) † 0.

Now we observe that the variable u occurs only in the first line of (2.40), and thus, calcu-
lating the degrees in t and t

´1 separately, we obtain the following formula:

degt˘1(f) = ˘(k�´ rl) + (1 ´ 2g)degt˘1(⌧ ¨ wˆ
u) + degt˘1(exp(⌧ ¨ ⇢ˆ

u)). (2.49)

Recall that here � represents the distance of �/k from the wall S⇧,l, while wû and ⇢û, represent
the parts of the Weyl denominator and the ⇢-shift corresponding to roots connecting ⇧ 1 and
⇧

2, respectively.
We begin the study of this expression with some simple remarks. We recall that the

permutation ⌧ preserves the partition ⇧ = (⇧ 1,⇧2), and thus we have

degt˘1(⌧ ¨ wˆ
u) = degt˘1(wˆ

u) =
r

1
r

2

2
.

Using, in addition, that ⇢û is linear in u, we obtain

degt(exp(⌧ ¨ ⇢ˆ
u)) = ´degt´1(exp(⌧ ¨ ⇢ˆ

u)) = degt(exp(⇢ˆ
u)).

Combining these equalities, and assuming g • 1, we arrive at the following conclusion.

Lemma 2.9.2. The inequality

ˇ̌
(k�´ rl) + degt(exp(⇢ˆ

u))
ˇ̌

† r
1
r

2

2
(2.50)

implies the vanishing of the wall-crossing term: equality (2.48).

Before we proceed, we introduce some notation. Denote by

Inv(⇧) = t(i, j)|⇧1 Q i ° j P ⇧2u

the set of "inverted" pairs of elements of the partition ⇧. The number of these pairs |Inv(⇧)|
coincides with the standard notion of length of the shuffle permutation � P ⌃r introduced in
§2.5.

Each pair (i, j) which is not inverted contributes +u/2 to ⇢û, while each inverted pair
contributes ´u/2, and thus we have

degt(exp(⇢ˆ
u)) =

r
1
r

2

2
´ |Inv(⇧)|. (2.51)
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Also, recall the notation c⇧1 =
∞

iP⇧1 ci for an element c = (c1, ..., cr) P V
˚; in particular,

we have (�/k)⇧ 1 = l+ � and

⇢⇧ 1 =
ÿ

iP⇧ 1

r+ 1
2

´ i.

The following is a simple exercise, whose proof will be omitted:

degt(exp(⇢ˆ
u)) = ⇢⇧1 . (2.52)

Now we come to a key point of our argument.

Lemma 2.9.3. If the intersection of the wall S⇧,l with � is non-empty, then

´ r
1
r

2

2
† lr ´ ⇢⇧1 † r

1
r

2

2
. (2.53)

Proof. Pick a point c = (c1, ..., cr) in the intersection S⇧,l X�, and recall that for any 1 § i †
j § r, we have 0 † ci ´ cj † 1, and

ÿ

iP⇧ 1
ci = ´

ÿ

iP⇧2
ci = l.

Then
´|Inv(⇧)| †

ÿ

(i,j)PInv(⇧)

(ci ´ cj) §
ÿ

iP⇧ 1

ÿ

jP⇧2
(ci ´ cj),

and, similarly, ÿ

iP⇧ 1

ÿ

jP⇧2
(ci ´ cj) † r

1
r

2 ´ |Inv(⇧)|.

Now, since ÿ

iP⇧ 1

ÿ

jP⇧2
(ci ´ cj) = r

2 ÿ

iP⇧1
ci ´ r

1 ÿ

jP⇧2
cj = lr,

we can conclude
´|Inv(⇧)| † lr † r

1
r

2 ´ |Inv(⇧)|.
In view of (2.51) and (2.52), these inequalities are equivalent to (2.53), and this completes the
proof.

Now we are ready to prove (2.48). The condition S⇧,l P S(k, �), i.e. that S⇧,l separates �/k
and p�/pk or contains �/k or p�/pk, may occur in two ways.

• (�/k)⇧ 1 • l • (p�/pk)⇧ 1 , which is equivalent to the two inequalities: � • 0 and lk+ lr •
�⇧ 1 + ⇢⇧ 1 . After canceling lk and reordering the terms, we can rewrite these as

0 • k�´ lr+ ⇢⇧1 • ⇢⇧1 ´ lr. (2.54)

Using Lemma 2.9.3 then we can conclude that

0 • k�´ lr+ ⇢⇧1 ° ´r
1
r

2

2
,

which, in view of the equality (2.52), implies the necessary estimate (2.50).
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• The second case is similar: (�/k)⇧ 1 § l § (p�/pk)⇧ 1 is equivalent to � § 0 and lk+ lr §
�⇧ 1 + ⇢⇧ 1 . This leads to

0 § k�´ lr+ ⇢⇧1 § ⇢⇧1 ´ lr, (2.55)

which, in turn, implies

0 § k�´ lr+ ⇢⇧1 † r
1
r

2

2
,

and hence (2.50).

This completes the proof of Proposition 2.9.1: indeed, a simple calculation shows that if
�/k P � then p�/pk P �, so the conditions of Lemma 2.9.3 hold. We have just shown that this
implies (2.50), and according to Lemma 2.9.2, we can conclude the vanishing of the wall-
crossing term (2.48).

Remark 2.9.4. Note that if �/k P � is non-regular, then it belongs to some wall from the set
S(k, �). Hence proposition 2.9.1 implies that the right-hand side of formula (I.) of Theorem
2.3.8 is a well-defined function on the cone over �:

t(k, �) P Z°0 ˆ⇤| �/k P �u.



Chapter 3

Euler characteristics of tautological
bundles

In this chapter we show that the residue/wall-crossing method of Chapter 2 may be success-
fully employed to describe the pushforward maps in the K-theory of moduli spaces of stable
parabolic bundles on smooth curves. This chapter is based on the work [27] and presents
formulas for the Euler characteristic of associated bundles over the moduli spaces.

3.1. Rank 2 case

We start with presenting our arguments for the case of moduli spaces of rank-2 parabolic
bundles, when the formula for the Euler characteristic has a simple form (cf. (3.6)).

3.1.1. The residue formula for rank 2

As in §2.8, in this case we need to consider the moduli space of vector bundles with parabolic
structures at two points to calculate our wall-crossing terms.

Recall (cf. §2.8.1) that there are two such moduli spaces of rank-2 degree-0 parabolic
bundles, which we denoted by P0(c ° a) and P0(c † a); recall that for �,µ P Z, we introduced
the line bundle

L(k; �,µ) =det(Up)
k(1´g) b det(⇡˚(U))´k b (F2/F1)

� b (F1)
´� b (G2/G1)

µ b (G1)
´µ

on moduli spaces P0(c ° a) ˆ C and P0(c † a) ˆ C.
Let ⌫ = (⌫1 • ⌫2) P Z2 be a dominant weight of GL2, denote by ⇢⌫ the irreducible

representation of GL2 with highest weight ⌫, and by ⇢̄⌫ its restriction to SU2 Ä GL2. We
denote by U⌫ Ñ P0(c,a) ˆ C the bundle associated to the representation ⇢⌫, and by K the
canonical sheaf on C.

Our goal is to calculate Euler characteristics

�
⌫
°(k; �,µ) def

= �(P0(c ° a),L(k; �,µ) b ⇡!(U⌫ b K
1
2 )) and

�
⌫
†(k; �,µ) def

= �(P0(c † a),L(k; �,µ) b ⇡!(U⌫ b K
1
2 )).

(3.1)

50
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Let Exp : Lie(SU2) Ñ SU2 be the exponential map and let

�(x) = trace(⇢̄⌫ ˝ Exp(x/2)) =
sinh((⌫1 ´ ⌫2 + 1)x/2)

sinh(x/2)

be the character function on the Lie algebra of a maximal torus of SU2.
We introduce the notation

�̇(x) = 2
d

dx
�(x) and �̈(x) = 2

d

dx
�̇(x),

(where the factors of 2 are introduced for convenience) and define two polynomials in k, �,µ
which as we will show, equal to (3.1):

R
⌫
°(k; �,µ) def

= (´1)g
B

B�
ˇ̌
ˇ
�=0

1
(2⇡i)

ª

|u|="

(eu(�+µ+1) ´ e
u(�´µ))eu(⌫1+⌫2)/2(2k+ 4 + ��̈(u))g

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2)+��̇(u))

du

and

R
⌫
†(k; �,µ) def

= (´1)g
B

B�
ˇ̌
ˇ
�=0

1
(2⇡i)

ª

|u|="

(eu(�+µ+1) ´ e
u(�´µ+k+2)+��̇(u))eu(⌫1+⌫2)/2(2k+ 4 + ��̈(u))g

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2)+��̇(u))

du,

where " is a real constant and � ! ". We note two facts about this pair of polynomials:

Fact 1. The difference of these polynomials has the form:

R
⌫
°(k; �,µ) ´ R

⌫
†(k; �,µ) = g(´(2k+ 4))g´1 Res

u=0

e
u(�´µ)

e
u(⌫1+⌫2)/2

�̈(u)

(2sinh
�
u
2
�
)2g du.

Fact 2. An easy calculation via substitutions shows the following:

R
⌫
°(k; �,µ) = ´R

⌫
°(k; �, ´µ ´ 1) = ´R

⌫
°(k; ´�+ k+ 1 ´ (⌫1 + ⌫2),µ)´

(´(2k+ 4))g Res
u=0

(eu(�+µ+1) ´ e
u(�´µ))eu(⌫1+⌫2)/2

�̇(u)

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2))

du

and

R
⌫
†(k; �,µ) = ´R

⌫
†(k; ´�´ 1 ´ (⌫1 + ⌫2),µ) =

´R
⌫
†(k; �, ´µ+k+1)´ (´(2k+4))g Res

u=0

(eu(�+µ+1) ´ e
u(�´µ+k+2))eu(⌫1+⌫2)/2

�̇(u)

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2))

du.



CHAPTER 3. EULER CHARACTERISTICS OF TAUTOLOGICAL BUNDLES 52

3.1.2. Hecke correspondences, Serre duality and the symmetry argument

In this section, we prove that the polynomials �⌫°(k; �,µ) and �⌫†(k; �,µ) (cf. (3.1)) satisfy the
same antisymmetries as the polynomials R

⌫° and R
⌫† (cf. Fact 2).

In §2.6.1 (c.f. also §3.3.4) we describe the tautological variant of the Hecke correspondence
which identifies the moduli spaces of parabolic bundles with different degrees and weights.
Applying the Hecke correspondence at the point p and q to P0(c ° a) and P0(c † a) respec-
tively, we can identify these spaces as P1 ˆ P1-bundles over the moduli space N´1 of stable
bundles of degree ´1 (cf. Lemma 2.8.3):

P1 ˆ P1 Ñ P0(c ° a) Ñ N´1 – P0(c † a) – P1 ˆ P1.

For each copy of P1, the moduli space P0(c ° a) can be considered as a P1-bundle; applying
Serre duality for families of curves as in §3.4.1, we obtain the following two equalities:

�
⌫
°(k; �,µ) = ´�⌫°(k; �, ´µ ´ 1)

and

�
⌫
°(k; �,µ) = ´�⌫°(k; ´�+ k+ 1 ´ (⌫1 + ⌫2),µ)+

⌫1´⌫2ÿ

i=0
(⌫1 ´ ⌫2 ´ 2i)�(P0(c ° a),L(k; �+ ⌫1 ´ i,µ)).

Similarly, for P0(c † a) we obtain that

�
⌫
†(k; �,µ) = ´�⌫†(k; ´�´ (⌫1 + ⌫2) ´ 1,µ) =

´ �⌫†(k; �, ´µ+ k+ 1) +
⌫1´⌫2ÿ

i=0
(⌫1 ´ ⌫2 ´ 2i)�(P0(c ° a),L(k; �+ ⌫1 ´ i,µ)).

We showed in Proposition 2.8.6 that

⌫1´⌫2ÿ

i=0
(⌫1 ´ ⌫2 ´ 2i)�(P0(c ° a),L(k; �+ ⌫1 ´ i,µ)) =

(´1)g´1(2k+ 4)g Res
u=0

(eu(�+µ+1) ´ e
u(�´µ))eu(⌫1+⌫2)/2

�̇(u)

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2))

du

and

⌫1´⌫2ÿ

i=0
(⌫1 ´ ⌫2 ´ 2i)�(P0(c † a),L(k; �+ ⌫1 ´ i,µ)) =

(´1)g´1(2k+ 4)g Res
u=0

(eu(�+µ+1) ´ e
u(�´µ+k+2))eu(⌫1+⌫2)/2

�̇(u)

(2sinh
�
u
2
�
)2g(1 ´ eu(k+2))

du,

hence the polynomials �⌫° and �⌫† satisfy the same antisymmetries as R
⌫° and R

⌫† (cf. Fact 2 on
page 51).
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3.1.3. Wall-crossing in moduli spaces

Our next step is to compare the difference �⌫° ´ �⌫† with the difference R
⌫° ´ R

⌫† from Fact 1
on page 51.

In §2.4 we presented a simple formula for the wall-crossing difference in Geometric In-
variant Theory. The formula has the form of a residue of an equivariant integral, taken with
respect to an equivariant parameter. In the rank-2 case (cf. Lemma 2.8.1), the space Z

0 over
which we integrate is isomorphic to the Jacobian of degree-0 line bundles on C:

Z
0 » tV = L ‘ L

´1 |L P Jac
0, Lp = F1,L´1

q = G1u.

We thus obtain the following expression for the wall-crossing difference:

�
⌫
°(k; �,µ) ´ �⌫†(k; �,µ) = (´1)g Res

u=0

exp(u(�´ µ))

(2sinh(u/2))2g

ª

Jac
e
⌘(2k+4)

ch(⇡!(U⌫ b K
1
2 )

ˇ̌
Jac

)du,

(3.2)

where u plays the role of the equivariant parameter, the generator of H
˚
C˚(pt); let (cf. page

28) J be the Poincare bundle over Jac ˆ C, satisfying c1(Jp) = 0, then the class ⌘ P H
2(Jac) is

defined through the Künneth decomposition of c1(J)2.
It follows from the Groethendieck-Riemann-Roch theorem that

ch(⇡!(U⌫ b K
1
2 )) = ⇡˚ch(U⌫).

A simple calculation shows that the restriction U
ˇ̌
Z0 = J‘ J´1 has C˚-weight 1, hence we have

ch(U⌫
ˇ̌
Z0) =

⌫1´⌫2à

i=0
ch(J⌫1´⌫2´2i) exp((⌫1 ´ i)u).

Note that that ⇡˚(ch(Jn)) = ´n
2
⌘, and thus

⇡˚(ch(U⌫
ˇ̌
Z0)) = ´⌘

⌫1´⌫2ÿ

i=0
(⌫1 ´ ⌫2 ´ 2i)2 exp((⌫1 ´ i)u) = ´⌘ exp((⌫1 + ⌫2)u/2)�̈(u).

Using (2.31), we obtain that the wall-crossing difference (3.2) is equal to

g(´(2k+ 4))g´1 Res
u=0

exp(u(�´ µ))eu(⌫1+⌫2)/2
�̈(u)

(2sinh(u/2))2g du, (3.3)

and thus we have (cf. Fact 1 on page 51)

R
⌫
° ´ R

⌫
† = �⌫° ´ �⌫†. (3.4)

Now we are ready for the final argument: we can rearrange equation (3.4) to describe the
equality of wall-crossings as

R
⌫
°(k; �,µ) ´ �⌫°(k; �,µ) = R

⌫
†(k; �,µ) ´ �⌫†(k; �,µ); (3.5)
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we introduce the notation ⇥(k; �,µ) for this polynomial. Then ⇥(k; �,µ) satisfies 4 antisym-
metries:

⇥(k; �,µ) = ´⇥(k; �, ´µ ´ 1) = ´⇥(k; ´�+ k+ 1 ´ (⌫1 + ⌫2),µ) =
´⇥(k; ´�´ 1 ´ (⌫1 + ⌫2),µ) = ´⇥(k; �, ´µ+ k+ 1),

hence it is anti-invariant with respect to the affine Weyl group action on � and µ separately,
and this implies ⇥ = 0.

As P0(c ° a) is a P1-bundle over the moduli space of rank-2 degree-0 stable parabolic
bundles P0(c), substituting µ = 0 in R

⌫° and taking the derivative with respect to �, we obtain
the formula for rank 2:

�(P0(c),L(k; �) b ⇡!(U⌫ b K
1
2 )) =

(´(2k+ 4))g Res
u=0

exp(u(�+ 1
2 +

⌫1+⌫2
2 ))

(2sinh
�
u
2
�
)2g´1(1 ´ eu(k+2))

✓
g �̈(u)

2k+ 4
+

e
(k+2)u

�̇(u)

(1 ´ eu(k+2))

◆
du. (3.6)

3.2. Main result and wall-crossing in residue formulas

In this section we describe tautological vector bundles on parabolic moduli spaces we are
considering and present the main result of this chapter, generalised variant of formula (3.6)
above for all ranks (cf. Theorem 3.2.3).

3.2.1. Vector bundles on the moduli space of parabolic bundles

Let ⌫ = (⌫1, ....,⌫r) be a dominant weight of GLr, consider the irreducible representation ⇢⌫
with highest weight ⌫, and denote by ⇢̄⌫ its restriction to the subgroup SUr Ä GLr. We denote
by �⌫ the character �⌫ = trace(⇢̄⌫ ˝ Exp) on the Lie algebra V of a maximal torus T Ä SUr.
We collect our maps on the following diagram.

GLr GL(V⌫)

V T Ä SUr

⇢⌫

Exp

⇢̄⌫

Given a representation ⇢⌫ of GLr, we denote by U⌫ the vector bundle over P0(c)ˆC associated
to the principal GLr-bundle.

The vector bundle U⌫ has the following explicit construction. Let U be the normalized
universal bundle on P0(c)ˆC (cf. §2.1.3), and consider the full flag bundle Flag(U)

fÑ P0(c)ˆ
C. Denote by L1, ...,Lr the standard quotient line bundles on Flag(U). Then

U⌫ = f˚(L
⌫1
1 b L

⌫2
2 b ... b L

⌫r
r ). (3.7)

Remark 3.2.1. Note that the vector bundles Fr, ...,F1 (cf. §2.1.3) on the moduli space P0(c)
define a section of the flag bundle Flag(Up) Ñ P0(c) ˆ tpu.
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3.2.2. Main result

Before we formulate the main result of this chapter, Theorem 3.2.3, we introduce a generalized
version of the iterated Bernoulli operator defined in §2.3. In this section, we will use the
notation of §§2.2.1-2.3.

Recall the notation F� for the space of meromorphic functions defined in a neighborhood
of 0 in V bR C with poles on the union of hyperplanes

§

1§i†j§r

tx| x↵ij, xy = 0u;

then the inverse of
w�

def
=

π

i†j

�
2sinh(xi ´ xj)

�

is a function in F�. Any ordered linear basis B P B of V˚ (cf. §2.2.1) induces an isomorphism
V

˚ » V , and we will write ↵̌B for the image of ↵ P V
˚ under this isomorphism. We will

sometimes omit the index B to simplify the notation. For a function Q on V and ↵ P V
˚, we

introduce the directional derivative Q↵̌B . Then, given Q and B P B, we fix a homomorphism

↵ fiÑ exp(Q↵̌B)

from the additive group V
˚ to the multiplicative group of non-vanishing holomorphic func-

tions on V bR C.
Let K = 1

2r
∞

i†j ↵
2
ij be the normalized Killing form of SUr and let � P R be a small

parameter; given a basis B =
�
�
[1], . . . ,�[r´1]� P B of V˚, a function f P F� and a holomorphic

function Q = const ¨ K ´ ��, defined in a neighborhood of 0 in V bR C, we define

iBer
B,Q

[f(x)] (a)
def
=

1
(2⇡i)r´1

ª

ZB

f(x) exp(Qǎ) dQ�̌[1] ^ ¨ ¨ ¨ ^ dQ�̌[r´1]

(1 ´ exp(Q�̌[1])) . . . (1 ´ exp(Q�̌[r´1]))
, (3.8)

where the naturally oriented cycle ZB is given by

ZB = tx P V bR C : |x�[j], xy| = "j, j = 1, . . . , r ´ 1u Ä V bR Cztw�(x) = 0u
with sufficiently small fixed real constants "j satisfying 0 § "r´1 ! ¨ ¨ ¨ ! "1. Thus iBerB,Q is a
linear operator associating to a meromorphic function f P F� a polynomial on V

˚.
We introduce the notation H� for the space of holomorphic functions of the form Q =

const ¨ K ´ ��, defined in a neighborhood of 0 in V bR C. We will always assume that our
parameter � is small enough, so that the cycle given by tx P V bR C : |Q�̌[j](x)| = "j, j =
1, . . . , r ´ 1u Ä V bR Cztw�(x) = 0u is homotopic to the cycle ZB.
Notation: We will write iBerB for iBerB,K to simplify the notation. Note that this agrees with
(2.11).

We will need the following property of the operator iBerB,Q.

Lemma 3.2.2. Let Q = (k+ r)K ´ �' P H�, then for any vector w P ⇤ and a function f P F�,
which depends on �, we have

B
B�

ˇ̌
�=0 iBer

B,Q
[f(x)] (a+w) =

B
B�

ˇ̌
�=0 iBer

B,Q
[f(x) exp((k+ r)w)] (a) ´ iBer

B,(k+r)K

⇥
f(x)

ˇ̌
�=0 exp((k+ r)w)�w̌(x)

⇤
(a). (3.9)
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Proof. Note that

iBer
B,Q

[f(x)] (a + w) = iBer
B,Q

[f(x) exp(Qw̌)] (a) = iBer
B,Q

[f(x) exp((k+ r)w ´ ��w̌(x))] (a);

then taking the derivative with respect to � at zero, we obtain the result.

We are now ready to present the formula for the Euler characteristic of associated vector
bundles on the moduli spaces.

Theorem 3.2.3. Let K be the canonical class of the curve C, � P ⇤, k P Z°0, ⌫ = (⌫1 • ⌫2... • ⌫r) P
Zr, p� = �+ ⇢, vdet = (1, ..., 1, 1 ´ r)

∞
⌫i

r , Q = (k+ r)K ´ �'⌫ P H� and let c P � be a regular
element (cf. page 7). Then for any diagonal basis D P B, the following equality holds:

�(P0(c),L(k; �) b ⇡!(U⌫ b K
1
2 )) =

Nr ¨ B
B�

ˇ̌
�=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i
(´[c]B) , (3.10)

where Nr = (´1)(
r
2)(g´1)

r
g and by Hess(Q) we denote the Hessian matrix of Q.1

Taking the derivative with respect to �, we obtain the following explicit formulas.

Corollary 3.2.4. Let �,k,⌫,Q, c be as above, and Nr,k = (´1)(
r
2)(g´1)

r(r(k+ r)r´1)g´1, then

�(P0(c),L(k; �) b ⇡!(U⌫ b K
1
2 )) =

Nr,k
ÿ

BPD
iBer

B


w

1´2g
� (x/pk) exp(xp�+ vdet, x/pky)

✓ ´g

k+ r
tr(Hess('⌫)(x/pk))´

ÿ

i

'
⌫
�̌[i](x/pk) exp(x�[i], xy)

1 ´ exp(x�[i], xy) +
ÿ

i

x[c], �̌[i]y'⌫
�̌[i](x/pk)

◆�
(´[c]B) .

Example 8. Denote by U the normalized universal bundle on the moduli spaces of rank-3
parabolic bundles P0(°) and P0(†) defined in Example 1. We have U » U⌫ for ⌫ = (1, 0, 0)
and

�(↵12,↵23) = e
2↵12+↵23

3 + e
↵23´↵12

3 + e
´↵12´2↵23

3 ; �↵̌12(↵12,↵23) = e
2↵12+↵23

3 ´ e
↵23´↵12

3 ;

�↵̌23(↵12,↵23) = e
↵23´↵12

3 ´ e
´↵12´2↵23

3 ; tr(Hess(�(↵12,↵23)) =
2
3
�(↵12,↵23).

Let D be the diagonal basis from Example 2; writing the operator iBerB for B P D in the
variables (x,y) as explained in Remark 2.3.3 and using Remark 2.3.6, we obtain

�(P0(†),L(k; �) b ⇡!(U b K
1
2 ) =

N ¨ Res
y=0

Res
x=0

(e�1x+(�1+�2)y+x+y+ x+2y
3 ´ e

�1x+(�1+�3)y+x+ x´y
3 )

(1 ´ ex(k+3))(1 ´ ey(k+3))w�(x,y)2g´1 ¨
 

2g
3(k+ 3)

�(x,y) +
e
(k+3)x

�x̌(x,y)
(1 ´ e(k+3)x)

+
e
(k+3)y

�y̌(x,y)
(1 ´ e(k+3)y)

!

dxdy

1For B = (�[1], . . . ,�[r´1]), we set Hess(Q)ij =
B

B�[j]Q�̌[i] .
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and

�(P0(°),L(k; �) b ⇡!(U b K
1
2 ) =

N ¨ Res
y=0

Res
x=0

(e�1x+(�1+�2)y+x+y+ x+2y
3 ´ e

�1x+(�1+�3)y+x+(k+3)y+ x´y
3 )

(1 ´ ex(k+3))(1 ´ ey(k+3))w�(x,y)2g´1 ¨
 

2g
3(k+ 3)

�(x,y) +
e
(k+3)x

�x̌(x,y)
(1 ´ e(k+3)x)

+
e
(k+3)y

�y̌(x,y)
(1 ´ e(k+3)y)

!

dxdy´

N ¨ Res
y=0

Res
x=0

e
�1x+(�1+�3)y+x+(k+3)y+ x´y

3 �y̌(x,y)
(1 ´ ex(k+3))(1 ´ ey(k+3))w�(x,y)2g´1dxdy,

where w�(x,y) = 2sinh(x2 )2sinh(y2 )2sinh(x+y
2 ) and N = (´1)g(3(k+ 3)2)g. One can compare

these formulas with the ones from Example 4.

3.2.3. Wall-crossing in residue formulas

We start the proof of Theorem 3.2.3 following the strategy of Chapter 2. Our first step is to
calculate the wall-crossing terms of the residue expressions from Theorem 3.2.3. We choose
two regular elements c

+, c´ P � in two neighbouring chambers separated by the wall S⇧,l (cf.
(2.10)) such that

[c+⇧ 1 ] = l and [c´
⇧ 1 ] = l ´ 1,

where we use the notation c⇧ 1 =
∞

iP⇧ 1 ci for c P �. We denote by

R
⌫
˘(k, �) = Nr ¨ B

B�
ˇ̌
�=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i �

´[c˘]B
�

the two polynomials in (k, �) P Z°0 ˆ⇤. Then the wall-crossing term in the residue formula
is the difference

R
⌫
+(k, �) ´ R

⌫
´(k, �).

Using Lemma 3.2.5, we obtain the following expression for this difference.

Lemma 3.2.5. Let (⇧, l) and c
+, c´ be as above, and fix a diagonal basis D Ä B. Denote by D|⇧ the

subset of those elements B of D for which Tree(B) (cf. §2.1.3) is a union of a tree on ⇧ 1, a tree on ⇧2

and a single edge �link (which we will call the link) connecting ⇧ 1 and ⇧2. Then

R
⌫
+(k, �) ´ R

⌫
´(k, �) = Nr ¨ B

B�
ˇ̌
�=0

ÿ

BPD|⇧
iBer
B,Q

h
(1 ´ exp(Q�̌link

(x)))det(Hess(Q))g´1
w

1´2g
� (x) exp(xp�+ vdet, xy)

i �
´[c+]B

�

Remark 3.2.6. Note that the multiplication by (1 ´ exp(Q�̌link
(x))) in Lemma 3.2.5 has the

effect of canceling one of the factors in the denominator in the definition (3.8) of the operation
iBer.
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As observed in Chapter 2, even though this difference does not depend on the choice of
D, it is convenient to choose a particular diagonal basis (cf. page 19). Recall the notation � 1

and �2 for the Ar 1 and Ar2 root systems corresponding to ⇧ 1 and ⇧2; using Lemma 2.3.16
and taking the derivative with respect to � at � = 0, we arrive at the following statement.

Corollary 3.2.7. Let D 1 and D2 be diagonal bases of �1 and �2 correspondingly. Then

R
⌫
+(k, �) ´ R

⌫
´(k, �) = (k+ r)Nr,k

ÿ

B1PD1

ÿ

B2PD2
Res
�link=0

iBer
B1

iBer
B2


w

1´2g
� (x/pk) exp(xp�+ vdet, x/pky)

✓ ´g

k+ r
tr(Hess('⌫))(x/pk) + l'

⌫
�̌link

(x/pk)´

ÿ

i‰link

'
⌫
�̌[i](x/pk) exp(x�[i], xy)

1 ´ exp(x�[i], xy) +
ÿ

i‰link

x[c+], �̌[i]y'⌫
�̌[i](x/pk)

◆� �
´[c+]B

�
d�link, (3.11)

where Res�link=0 iBerB1 iBerB2 d�link is simply iBerB (cf (3.8)) with B obtained by appending B 1, and
then B2 to �link, and the factor (1 ´ exp(x�link, xy)) removed from the denominator.

Example 9. Calculating the difference of the two polynomials from Example 8, we obtain the
wall-crossing term:

´ N ¨ Res
y=0

Res
x=0

e
�1x+(�1+�3)y+x+ x´y

3

(1 ´ ex(k+3))w�(x,y)2g´1

✓
2g

3(k+ 3)
�(x,y) +

e
(k+3)x

�x̌(x,y)
(1 ´ e(k+3)x)

◆
dxdy.

3.3. Wall-crossing in Euler characteristics

In this section, we calculate the changes in Euler characteristics of vector bundles when vary-
ing the moduli spaces of parabolic bundles. The main result is Proposition 3.3.6, where we
present explicit formulas for the wall-crossing terms for the left-hand side of (3.10).

3.3.1. Wall-crossing in master space

Fix the wall S⇧,l given by an ordered partition ⇧ = (⇧ 1,⇧2) of the first r integers and an
integer l, and two regular elements c

+, c´ P � in two neighbouring chambers separated by
the wall S⇧,l. Let

c
1 =

ÿ

iP⇧ 1
xi and c

2 =
ÿ

iP⇧2
xi.

In §2.5.1 we constructed the "master space" Z whose quotients, under different linearizations,
by a fixed C˚-action, are the moduli spaces of c˘-stable parabolic bundles. We showed that
the elements c

˘ may be chosen within their chambers so that Z is a smooth, projective variety
with a C˚-action, and identified the connected components of the fixed locus:

Z
C˚ » P0(c

+) \ P0(c
´) \ Z

0,

where Z
0 is the set of points representing rank-r vector bundles W on C, such that W splits as

a direct sum W
1 ‘ W

2, where W
1 and W

2 are, respectively, c1 and c
2-stable parabolic bundles

of degree l and ´l, rank r
1 = |⇧ 1| and r

2 = |⇧2| (cf. Lemma 2.5.1):

Z
0 = tW = W

1 ‘ W
2 |W1 P rPl(c1); W2 P rP´l(c

2); det(W) » Ou.
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Recall that we also have (cf. Remark 2.5.2)

H
˚(Z0, Q) » H

˚(Pl(c1), Q) b H
˚(P´l(c

2), Q) b H
˚(Jacl, Q). (3.12)

Consider the polynomials

�
⌫
˘(k; �) = �(P0(c

˘),L(k; �) b ⇡!(U⌫ b K
1
2 )).

Our goal is to calculate the difference �⌫+(k; �) ´ �⌫´(k; �).
Applying the Atiyah-Bott fixed-point formula to the master space Z with the C˚-action,

we showed (cf. Theorem 2.4.7) that the wall-crossing polynomial �⌫+(k; �) ´ �⌫´(k; �) is equal
to

Res
u=0

ª

Z0

ch((L(k; �) b ⇡!(U⌫ b K
1
2 ))

ˇ̌
Z0)

E(NZ0)
Todd(Z0)du, (3.13)

where E(NZ0) is the K-theoretical Euler class (cf. definition 2.4.6) of the conormal bundle of
Z

0 in Z and u is an equivariant parameter.
Before we calculate this integral, we need to introduce some extra notations.

3.3.2. Restriction. Representations

For any weight ⌫ = (⌫1, ...,⌫r) of GLr, we define

|⌫| def
=

ÿ

i

⌫i;

the irreducible representation ⇢⌫ of GLr » (SLr ˆ C˚)/Zr with highest weight ⌫ can be de-
composed by restriction as a product of the irreducible representation ⇢̄⌫ of SUr and the
one-dimensional representation ⇢[|⌫|] : t fiÑ t

|⌫| of the center Z(GLr) » C˚.
Let GLr 1 ˆ GLr2 be the subgroup of GLr induced by an ordered partition (⇧ 1,⇧2) of the

first r positive integers. The restriction of the irreducible representation ⇢⌫ of GLr decomposes
as a direct sum of irreducible representations of GLr 1 ˆ GLr2 :

⇢⌫ =
ÿ

(⌫ 1,⌫2)

⇢⌫ 1 b ⇢⌫2 .

Similarly, the restriction of the representation ⇢̄⌫ to SUr X (GLr 1 ˆGLr2) Ä GLr can be decom-
posed as a direct sum

⇢̄⌫ =
ÿ

(⌫ 1,⌫2)

⇢̄⌫ 1 b ⇢̄⌫2 b ⇢[rs]

of products of irreducible representations of SUr 1 , SUr2 and the one-dimensional torus C˚ »
(Z(GLr 1) ˆ Z(GLr2)) X SUr, where s =

∞
iP⇧ 1(⌫ 1

i ´ |⌫|/r). Let

w
def
=

s

r 1
ÿ

iP⇧ 1
xi ´ s

r2
ÿ

iP⇧2
xi P V

˚,
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then the corresponding decomposition of character functions (cf. end of §3.2.1) has the form

�
⌫ =

ÿ

(⌫ 1,⌫2)

�
⌫ 1
�
⌫2

exp(w). (3.14)

Recall (cf. Lemma 3.2.5) that the a key role in our wall-crossing terms is played by the bases
B of V˚, obtained by appending B 1, and then B2 to �link. Using expression (3.14), we arrive at
the following equalities for the directional derivatives of �⌫.

Lemma 3.3.1. Let B = �link B 1 B2 be a basis of V˚ described above. Then:

1. For any ↵ P B 1 and any � P B2 we have

�
⌫
↵̌ =

ÿ

(⌫ 1,⌫2)

�
⌫ 1
↵̌ �

⌫2
exp(w) and �

⌫
�̌
=

ÿ

(⌫ 1,⌫2)

�
⌫2
�̌
�
⌫ 1

exp(w);

2. �̌link = r2
r

∞
iP⇧ 1 xi ´ r 1

r

∞
iP⇧2 xi, and thus

�
⌫
�̌link

=
ÿ

(⌫ 1,⌫2)

sr

r 1r2�
⌫ 1
�
⌫2

exp(w) + (�⌫
1
�
⌫2

)�̌link
exp(w);

3. tr(Hess(�⌫)) =
ÿ

(⌫ 1,⌫2)

(tr(Hess(�⌫
1
))�⌫

2
+ tr(Hess(�⌫

2
))�⌫

1
+ s

2
⇣

r

r 1r2
⌘
�
⌫ 1
�
⌫2

) exp(w).

3.3.3. Restriction. Bundles

Recall that our goal is to calculate the integral (3.13); our first step is to identify the character-
istic classes under this integral. We showed in Theorem 2.5.13, that

Res
u=0

ª

Z0

ch(L(k; �)
ˇ̌
Z0)

E(NZ0)
Todd(Z0)du = (k+ r)Nr,k

ÿ

B1PD 1

ÿ

B2PD2

Res
�link=0

iBer
B1

iBer
B2

[w�(x/pk)1´2g exp(xp�, x/pky)](´[c+]B)d�link, (3.15)

where � P ⌃r is the unique permutation which sends t1, ..., r 1u to ⇧ 1 preserving the order of
the first r 1 and the last r2 elements. Now we study the restriction of the class ch(⇡!(U⌫bK

1
2 ))

to Z
0.

Recall that in §2.5.1 we denoted by ! P H
2(C) the fundamental class of our curve C, and

by e1, ..., e2g a basis of H1(C), such that eiei+g = ! for 1 § i § g, and all other intersection
numbers eiej equal 0. For a class � P H

˚(P ˆC) of a product, we recall the following notation
for its Künneth components:

� = �(0) b 1 +
ÿ

i

�(ei) b ei + �(2) b! P
2à

i=0
H

˚´i(P) b H
i(C). (3.16)
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It follows from the Groethendieck-Riemann-Roch theorem that

ch(⇡!(U⌫ b K
1
2 )) = ch(U⌫)(2). (3.17)

Recall our notation J for the Poincare bundle over Jac ˆ C, such that c1(J)(0) = 0 and an
element ⌘ P H

2(Jac) defined by (
∞

i c1(J)(ei) b ei)2 = ´2⌘b!. The following statement is
straightforward.

Lemma 3.3.2. Denote by U[l] 1 and by U[´l]2 the normalized universal bundles on the moduli spaces
Pl(c 1)ˆC and P´l(c2)ˆC, correspondingly (cf. beginning of §3.2.1). Let U[l]⌫ 1 and U[´l]⌫2 be the
the associated vector bundles on Pl(c 1) ˆ C and P´l(c2) ˆ C (cf. (3.7)). Then

ch(U⌫)(2)
ˇ̌
Z0 =

ÿ

(⌫ 1,⌫2)

exp(u
ÿ

i

⌫
1
i)
⇣
ch(U[l]⌫ 1) b ch(U[´l]⌫2)b

✓
1 +

✓
l
sr

r 1r2 ´
⇣

sr

r 1r2
⌘2
⌘

◆
b!

◆⌘

(2)
.

Applying the Künneth decomposition (cf. (3.12)), one can write any class � P H
i+j+k(Z0)

as a sum
� =

ÿ

(i,j,k)

�i b �j b �k,

where �i P H
i(P0(c 1)), �j P H

j(P0(c2)) and �k P H
k(Jac). We will say that the summand

�i b �j b �k is of odd type, if at least one number from ti, j,ku is odd. Note that the integral
over Z0 of any class of odd type is zero.

Now putting Lemma 3.3.2 and equation (3.17) together, we obtain the following statement.

Lemma 3.3.3. In the notation of Lemma 3.3.2,

ch(⇡!(U⌫ b K
1
2 )

ˇ̌
Z0) =

ÿ

(⌫ 1,⌫2)

exp(u
ÿ

i

⌫
1
i)
⇣
ch(U[l]⌫ 1)(2) b ch(U[´l]⌫2)(0)+

ch(U[l]⌫ 1)(0) b ch(U[´l]⌫2)(2) + ch(U[l]⌫ 1)(0) b ch(U[´l]⌫2)(0) b
✓
l
sr

r 1r2 ´
⇣

sr

r 1r2
⌘2
⌘

◆⌘

+ classes of odd type.

Example 10. It follows from Example 1 that in rank 3 case ⇧ 1 = t2u, ⇧2 = t1, 3u and the
fixed locus Z

0 is the set of vector bundles that split as a direct sum of rank-2 degree-0 stable
parabolic bundle and a line bundle of degree 0. We denote by U

2 the normalized universal
bundle on the moduli space P0 of rank-2 stable parabolic bundles with trivial determinant.
Then for the universal bundle U from Example 8, the Chern character ch(U)(2)

ˇ̌
Z0 has two

summands:

• for ⌫ 1 = (0),⌫2 = (1, 0) we have ch(U2)(2) ´ 1
4 ⌘ ch(U

2)(0);

• for ⌫ 1 = (1),⌫2 = (0, 0) we have e
u
⌘.
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Remark 3.3.4. Recall that in §2.5.2 we identified the functions on V with cohomology classes
on P0(c) and an equivariant cohomology classes on Z

0. Under these identifications, ch(U⌫ 1)(0)

corresponds to the function �⌫ 1
(x) exp(xv 1

det, xy) and ch(U⌫2)(0) corresponds to the function
�
⌫2

(x) exp(xv2
det, xy).

Now our goal is to calculate the wall-crossing integral (3.13) applying induction by rank
based on Theorem 2.3.8. Using (3.17), we can write the inductive hypothesis in the following
form:

ª

P0(c)

ch(L(k; �))ch(U⌫)(2)Todd(P0(c)) =

Nr ¨ B
B�

ˇ̌
�=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i
(´[c]B) . (3.18)

Fixing k and varying �, we can extend this hypothesis by linearity to the following linear
combinations of Chern characters of line bundles

ÿ

i

ch(L(k; �i)) = ch(L(k; 0)) ¨
ÿ

i

ch(L(0; �i)).

Since any polynomial on V , up to a fixed degree may be represented as a linear combination
of exponential functions of the form exp(x�, xy), formula (3.18) may be generalized in the
following way.

Lemma 3.3.5. Let G(x) be a formal power series on V , and denote by G(z) the characteristic class in
H

˚(P0(c)) obtained by the identification of functions on V and cohomology classes on P0(c) (cf. Remark
3.3.4). Then

ª

P0(c)

ch(L0(k; 0))G(z)ch(U⌫)(2)Todd(P0(c)) = Nr ¨ B
B�

ˇ̌
�=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)G(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i
(´[c]B) . (3.19)

Armed with this statement and equality (3.15), we are ready to calculate the integral (3.13).
We start with the case l = 0.

• Note that for l = 0, [c+] = [c 1] + [c2].

• Then using the induction hypothesis (3.19) and Remark 3.3.4, we conclude that the first
summand in Lemma 3.3.3 contributes

(k+ r)Nr,k
ÿ

(⌫ 1,⌫2)

Res
u=0

exp(u
ÿ
⌫

1
i)

ÿ

B 1PD 1

ÿ

B2PD2
iBer

B1
iBer

B2

h
w

1´2g
� (x/pk)

exp(xp�+ v
1
det + v

2
det, x/pky)

✓ ´g

k+ r
tr(Hess('⌫

1
)(x/pk))'⌫2

(x/pk) ´
ÿ

�[i]PB 1
'
⌫2

(x/pk)¨

'
⌫ 1
�̌[i](x/pk) exp(x�[i], xy)

1 ´ exp(x�[i], xy) +
ÿ

�[i]PB 1
x[c̨], �̌[i]y'⌫ 1

�̌[i](x/pk)'⌫2
(x/pk)

◆i �
´[c+]B

�
du (3.20)

to the wall-crossing integral (3.13).
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• Note that
xv 1

det + v
2
det, xy + (x�(r 1) ´ xr)

ÿ
⌫i = vdet +w, (3.21)

hence after the identification of u with �link = x�(r 1) ´ xr justified in (3.3.7) (see also
Remark 3.3.4), we can replace the factors

exp(xv 1
det + v

2
det, x/pky) exp(u

ÿ
⌫

1
i) = exp(xvdet +w, x/pky)

in (3.20).

• The second summand in Lemma 3.3.3 has the same form as (3.20) with exchanged ⌫ 1

and ⌫2, B 1 and B2.

• Since ª

Jac

✓
´
⇣

sr

r 1r2
⌘2
⌘ ¨ exp

✓
⌘
(k+ r)r

r 1r2

◆◆
=

´g

(k+ r)

s
2
r

r 1r2

✓
(k+ r)r

r 1r2

◆g

,

where the second factor comes from the restriction of L(k; �)/E(NZ0) to Z
0 (cf. Lemma

2.5.5 and Proposition 2.5.9), the third summand in Lemma 3.3.3 for l = 0 contributes

´ gNr,k
s

2
r

r 1r2
ÿ

(⌫ 1,⌫2)

Res
�link=0

ÿ

B 1PD 1

ÿ

B2PD2
iBer

B1
iBer

B2
[w1´2g
� (x/pk) exp(xp�, x/pky)

exp(xvdet +w, x/pky)'⌫ 1
(x/pk)'⌫2

(x/pk)]
�
´[c+]B

�
d�link.

to the wall-crossing integral (3.13).

• Finally, using Lemma3.3.1, we arrive at the following statement for l = 0.

Proposition 3.3.6. Let D 1 and D2 be diagonal bases of �1 and �2 and let �link be the link edge (cf.
page 58). Then

�
⌫
+(k; �) ´ �⌫´(k; �) = (k+ r)Nr,k

ÿ

B1PD1

ÿ

B2PD2
Res
�link=0

iBer
B1

iBer
B2


w

1´2g
� (x/pk) exp(xp�+ vdet, x/pky)

✓ ´g

k+ r
tr(Hess('⌫))(x/pk) + l'

⌫
�̌link

(x/pk)´

ÿ

i‰link

'
⌫
�̌[i](x/pk) exp(x�[i], xy)

1 ´ exp(x�[i], xy) +
ÿ

i‰link

x[c+], �̌[i]y'⌫
�̌[i](x/pk)

◆� �
´[c+]B

�
d�link. (3.22)

Remark 3.3.7. Note that this wall-crossing term coincides with the one from Corollary 3.2.7,
and hence with the one from Lemma 3.2.5.

Example 11. Let z = c1(F2
2/F

2
1 b F2

1
˚) P H

2(P0), where F2
i are flag bundles on P0 (cf. Example

10). In particular, we have ch(U2)(0) = e
z + 1.

We saw in Example 6 that in rank-3 case the Chern character of the restriction of the
line bundle L(k; �) multiplied by the inverse of the K-theoretical Euler class of the conormal
bundle of Z0 is equal to

exp
✓

3(k+ 3)⌘
2

◆
e
�2uch

�
L2(k+ 1; �1)

�
e

z
2 (2sinh(u/2)2sinh((z ´ u)/2))2g´1 ,
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where L2(k; �) is a line bundle L(k, (�, ´�)) on P0. Using Example 10 and Theorem 2.3.8, we
conclude (cf. (3.13)) the the wall-crossing term

�(P0(†),L0(k, �) b ⇡!(U b K
1
2 )) ´ �(P0(°),L0(k, �) b ⇡!(U b K

1
2 )) (3.23)

is equal to

´
✓

3(k+ 3)
2

◆g

Res
u=0

e
�2u

ª

P0

ch(L2(k+ 1; �1) b ⇡!(U2 b K
1
2 ))e

z
2

(2sinh(u2 )2sinh(z´u
2 ))2g´1 Todd(P0)du

´ 2g
3(k+ 3)

N ¨ Res
u=0

Res
z=0

e
�1z+�2u+z(eu + 1+ez

4 )

w̃�(z,u)2g´1(1 ´ e(k+3)z)
dzdu,

where w̃�(z,u) = 2sinh(z´u
2 )2sinh(u2 )2sinh(z2 ) and N = (´1)g(3(k + 3)2)g. This integral

is the Euler charactersitic of a vector bundle on the moduli space of degree-0 rank-2 stable
parabolic bundles, so we can calculate it using the induction by rank (cf. formula (3.6)). A
simple calculation shows that the wall-crossing term (3.23) is equal to

´ 2g
3(k+ 3)

N ¨ Res
u=0

Res
z=0

e
�1x+�2u+z(1 + e

u + e
z)

(1 ´ ez(k+3))w̃�(z,u)2g´1dzdu

´ N ¨ Res
u=0

Res
z=0

e
�1x+�2u+z+(k+3)z(1 ´ e

z)

(1 ´ ez(k+3))2w̃�(z,u)2g´1dzdu.

Note that this is exactly the same polynomial as in Example 9 after changing (z,u) to (x, ´y).

If l ‰ 0, we will need one more step to calculate the wall-crossing term (3.13), which uses
the tautological Hecke correspondences.

3.3.4. Hecke correspondence

In §2.6.1 we defined the tautological Hecke operators between the moduli spaces of parabolic
bundles with different degrees and parabolic weights as follows: given a vector bundle W on
C with a full flag F˚ in the fibre Wp at p P C, we considered the associated sheaf of sections
W and defined the subsheaf

W[´1] = t� P H
0(C,W) |�(p) Ä Fr´1u Ä W.

Then W[´1] is locally free, and thus defines a vector bundle, which we denote by W[´1].
Considering the associated morphism of vector bundles W[´1] Ñ W, we defined the full flag
G˚ in the fibre W[´1]p and denoted this operator by H : (W, F˚) fiÑ (W[´1],G˚). We proved
that H induces an isomorphism of the moduli spaces

H : Pd(c1, c2, ..., cr) » Pd´1(c2, ..., cr, c1 ´ 1).

Applying H to the normalized universal bundle U on the moduli space P0(c)ˆC we obtain
a short exact sequence for the corresponding sheaves of sections:

0 Ñ U[´1] Ñ U Ñ Fr/Fr´1 Ñ 0.
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Considering the associated vector bundles, we arrive at the following equality

ch(U) = ch(U[´1]) +! ¨ ch(L(0; (1, 0, .., 0, ´1))), (3.24)

where ! P H
2(C) is the fundamental class of the curve (cf. the beginning of §3.3.3).

Remark 3.3.8. Note that under the Hecke isomorphism H, the normalized (cf. §3.2.1) universal
bundle U on the moduli space P0(c1, c2, ..., cr) ˆ C corresponds to the universal bundle U[´1]
on the moduli space P´1(c2, ..., cr, c1 ´ 1) ˆ C such that the line bundle F2/F1 is trivial.

Similarly, applying the Hecke operator Hl to the normalized universal bundle U, we obtain
the universal bundle U[´l] on P´l(cl+1, ..., cr, c1 ´ 1, ..., cl ´ 1) ˆ C.
Notation: Given an irreducible representation ⇢⌫ : GLr Ñ GL(V⌫) of highest weight ⌫, we
consider its weight decomposition

V⌫ =
à

µPZr

V[µ],

where V[µ] is the weight space of the weight µ, and we denote by mµ = dim(V[µ]).

Proposition 3.3.9. Let U[´l]⌫ be the vector bundle on P´l(c) ˆ C associated to the irreducible rep-
resentation ⇢⌫ of GLr with highest weight ⌫ and the normalized universal bundle U[´l] (cf. §3.2.1).
Then

ch(U⌫) = ch(U[´l]⌫) +!
ÿ

µ

mµ(µ1 + ... + µl)ch(L(0; (µ1, ...,µr´1,µr ´ |⌫|))),

where |⌫| = ∞
i ⌫i and the sum runs over the weights µ of n ⇢⌫ with highest weight ⌫.

Proof. Given a rank-r vector bundle V on P0(c) ˆ C and a symmetric polynomial
f P C[y1, ...,yr]⌃r , denote by f(V) P H

˚(P0(c) ˆ C) the cohomology class obtained by
evaluating f at the Chern roots of V . The flag F1 Ä F2 Ä ... Ä Fr = Up defines the
cohomology classes

⇠i = c1(Fr´i+1/Fr´i b F˚
1 ) P H

2(P0(c)),

and thus we have
ch(Up) = e

⇠1 + ... + e
⇠r´1 + 1;

it follows from Remark 3.2.1 that the Chern character of an associated bundle U⌫ is given by

ch((U⌫)p) =
ÿ

µ

mµ exp(µ1⇠1 + ... + µr´1⇠r´1).

We note that the cohomology class f(Up) in H
˚(P0(c) ˆ C) is well-defined for any (not neces-

sarily symmetric) polynomial f P C[y1, ...,yr].
We introduce the notation fi(y1, ...,yr) = 1

i! (y
i
1 + ... + y

i
r); in particular, for any vector

bundle V on P0(c) ˆ C, we have fi(V) = chi(V). It follows from (3.24) that

fi(U) = fi(U[´1]) +! By1fi(Up),

and thus

fi(U)fj(U) = fi(U[´1])fj(U[´1]) +! (By1fi(Up)fj(U[´1]) + By1fj(U[´1]p)fi(U)) =

fi(U[´1])fj(U[´1]) +! By1(fifj)(Up). (3.25)
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For the last equality, we used the facts that ! ch(U) = ! ch(Up) and that according to (3.24),
ch(Up) = ch(U[´1]p).

Since any symmetric polynomial f P C[y1, ...,yr]⌃r may be written as a polynomial in fi’s,
(3.25) implies that for any symmetric polynomial f we have:

f(U) = f(U[´1]) +! By1f(Up).

Let
g⌫(y1, ...,yr) =

ÿ

µ

mµ exp(µ1y1 + ... + µryr);

since g⌫(U) = ch(U⌫), we have

ch(U⌫) = ch(U[´1]⌫) +! By1g⌫(Up),

and thus
ch(U⌫) = ch(U[´1]⌫) +!

ÿ

µ

mµµ1 exp(µ1⇠1 + ... + µr´1⇠r´1).

Finally, note that

exp(µ1⇠1 + ... + µr´1⇠r´1) = ch(L(0; (µ1, ...,µr´1,µr ´ |⌫|))),

hence we obtain the proof for l = 1. Iterating this argument, we obtain the proof for the
general case.

3.3.5. Wall-crossing for l ‰ 0

Recall that our goal is to calculate the wall-crossing integral (3.13) for non-zero l, or, more
precisely, to prove Proposition 3.3.6 for the case when l ‰ 0. The treatment of this case follows
the logic of §2.6.2 (cf. page 38), hence, in this section, we will only highlight the differences
which arise in our, more general, situation. For simplicity, we assume that l is positive (the
other case is analogous).

• We first apply the Hecke operators Hl and H´l to the moduli spaces Pl(c 1) and P´l(c2)
to obtain

P
1
0 = P0(c

1
l+1, ..., c 1

r 1 , c 1
1 ´ 1, ..., c 1

l ´ 1) » Pl(c
1) and

P
2
0 = P0(c

2
r2´l+1 + 1, ..., c2

r2 + 1, c2
1, ..., c2

r2´l) » P´l(c
2).

• Next, applying the Hecke operator Hl ˆ H´l to the wall-crossing term (3.13), we recast
it as an integral over the moduli spaces of degree-0 parabolic bundles P

1
0 ˆ P

2
0 , and thus

we can calculate this integral using the induction by rank as in §3.3.3.

• As in Chapter 2, to arrive at Proposition 3.3.6 we will need to make additional trans-
formations of the formulas we obtained. We perform this transformation by applying
Lemma 3.2.2 with B = (↵⌧�(r1),⌧(r) B1 B2) and

w =
lÿ

i=1
(x�(r 1´l+i) ´ x�(r 1+i)) P ⇤,
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where � P ⌃r is the permutation which sends t1, ..., r 1u to ⇧ 1 preserving the order of the
first r 1 and the last r2 elements.

The first summand on the right-hand side of (3.9) coincides with the shift of �we treated
in §2.6.2 (cf. equation (2.43)). An easy calculation shows that the second summand on
the right-hand side of (3.9) eliminates the changes (cf. Proposition 3.3.9 and equation
(3.17)) of the Chern character of ⇡!(U⌫ b K

1
2 )

ˇ̌
Z0 under the Hecke transformations Hl

and H´l.

• Finally, applying Lemma 3.2.2 with B = (↵⌧�(r1),⌧(r) B1 B2) and v = l↵
⌧�(r1),⌧(r), we

perform the shift of � we treated on page 38 and obtain l times the second summand in
�
⌫
�̌link

(cf. Lemma 3.3.1). The first summand in �⌫
�̌link

is obtained from Lemma 3.3.2.

This completes the proof of Proposition 3.3.6 for arbitrary l P Z.

3.4. Symmetry

The main result of this section is Proposition 3.4.2, where we prove certain symmetry for the
Euler characteristics of our vector bundles on the moduli spaces of parabolic bundles.

3.4.1. Symmetries through Serre duality

Recall that in §2.7.2 we denoted by N˘1 the moduli spaces of rank-r degree-˘1 stable vector
bundles and by UN

˘ the universal bundle over N˘1 ˆ C, normalized in such a way that
det(UNṕ ) » L´1(´r; (1, ..., 1)) and det(UN

+
p ) » L1(r; (1, ..., 1)).

In Lemma 2.7.3 we identified the moduli spaces P1(°) and P´1(†), which are isomorphic
to the flag bundles

P1(°) » Flag(UN
+
p )

pÑ N1 and P´1(†) » Flag(UN
´
p )

pÑ N´1.

The following is easy to verify.

Lemma 3.4.1. Under the normalization described above, the line bundles F1 Ä p
˚(UNp̆ ) are isomor-

phic to L´1(´1; (0, ..., 0, 1)) and L1(1; (0, ..., 0, 1)), respectively (cf. §3.2.1).

Applying the Hecke operators H´1 and H (cf. §3.3.4) to the moduli spaces P´1(†) and
P1(°) we obtain

P0(†) » P´1(†) and P0(°) » P1(°).

Let ⌧ P ⌃r be the cyclic permutation ⌧ ¨ (c1, ..., cr) = (c2, ..., cr, c1), and consider two points in
V

˚:

✓1[k] =
k+ r

r
¨ (1, 1, . . . , 1) ´ (k+ r)xr ´ ⇢ = ⌧ ¨

✓
k

r
´ k,

k

r
, ...,

k

r

◆
´ ⌧ ¨ ⇢,

´ k+ r

r
¨ (1, 1, . . . , 1) + (k+ r)x1 ´ ⇢ = ⌧´1 ¨

✓
´k

r
, ..., ´k

r
, ´k

r
+ k

◆
´ ⌧´1 ¨ ⇢.

Now we define two polynomials

�
⌫
†(k; �) = �(P0(†),L(k; �) b ⇡!(U⌫ b K

1
2 )),
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�
⌫
°(k; �) = �(P0(°),L(k; �) b ⇡!(U⌫ b K

1
2 ))

and establish the Weyl antisymmetry for the modified polynomials

f
⌫
†(k; �) = �⌫†(k; �) ´

ÿ

µ

mµ µ1�(P0(†),L(k; �+ (µ1, ...,µr´1,µr ´ |⌫|)))

and
f
⌫
°(k; �) = �⌫°(k; �) +

ÿ

µ

mµ µr�(P0(°),L(k; �+ (µ1, ...,µr´1,µr ´ |⌫|))),

where we sum over all weights µ of the irreducible representation ⇢⌫ and |⌫| =
∞

i ⌫i (cf.
notation on page 65).

Example 12. In case of rank-3 parabolic bundles and ⌫ = (1, 0, 0) (cf. Example 8), we have

f
⌫
†(k, �) = �(P0(†),L(k; �) b ⇡!(U b K

1
2 )) ´ �(P0(†),L(k; (�1 + 1, �2, �3 ´ 1));

f
⌫
°(k, �) = �(P0(°),L(k; �) b ⇡!(U b K

1
2 )) + �(P0(°),L(k; (�1, �2, �3)).

Proposition 3.4.2. Let vdet =
∞
⌫i

r (1, ..., 1, 1 ´ r); then the polynomials

f
⌫
†(k; �+ ✓´1[k] ´ vdet) and f

⌫
°(k; �+ ✓1[k] ´ vdet))

are anti-invariant under the action of the group of permutations of �1, ..., �r.

Proof. First, we will show the anti-invariance of the Euler characteristics of vector bundles on
the moduli spaces of degree ˘1 parabolic bundles P1(°) and P´1(†), as it is simpler. Let
U[1] and U[´1] be the universal bundles on P1(°) ˆ C and P´1(†) ˆ C that correspond to the
normalized (cf. §3.2.1) universal bundles on P0(°) and P0(†), respectively, and let

✓̃´1 = ´⌧ ¨ vdet ´ ⇢ and ✓̃1 = ´⌧´1 ¨ vdet ´ ⇢.

Applying Serre duality for family of curves to the associated vector bundles U[˘1]⌫ (cf. (3.7))
on the moduli spaces P´1(†) and P1(°), we obtain the following.

Lemma 3.4.3. The Euler characteristics �(P´1(†),L´1(k; �+ ✓̃´1)b⇡!(U[´1]⌫bK
1
2 )) and �(P1(°

),L´1(k; �+ ✓̃1) b ⇡!(U[1]⌫ b K
1
2 )) are anti-invariant under the permutations of �1, ..., �r.

Proof. Note that U[´1] » p
˚(UN

´) b (F2/F1)˚ (cf. Remark 3.3.8), hence

U[´1]⌫ » p
˚(UN

´
⌫) b (F2/F1)

´ ∞
⌫i ,

where UN⌫́ is a vector bundle on N´1 ˆ C obtained by (3.7) from the universal bundle UN
´.

Then
⇡!(U[´1]⌫ b K

1
2 ) » ⇡!(p

˚(UN
´
⌫) b K

1
2 ) b L´1(1; (0, ..., 0, ´1, 0))

∞
⌫i

by Lemma 3.4.1, and thus

�(P´1(†),L´1(k; �+ ✓̃´1) b ⇡!(U[´1]⌫ b K
1
2 ) =

�(P´1(†),L´1(k+
ÿ
⌫i; �´

∞
⌫i

r
(1, ..., 1) ´ ⇢) b ⇡!(p

˚(UN
´
⌫) b K

1
2 )).

Since the line bundle L´1(r; (´1, ..., ´1)) is a pullback of the ample generator of Pic(N´1) (cf.
Lemma 2.7.4), the statement follows from Serre duality for families of curves (cf. Proposition
2.7.1). The proof for the Euler characteristic on the moduli space P1(°) is similar.
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Recall that our goal is to show certain antisymmetries for the polynomials f
⌫
∫(k; �), which

are the linear combinations of the Euler characteristics of vector bundles on the moduli spaces
P0(∫). We will follow the argument for the polynomial f⌫† (the proof for f⌫° is analogous).

Under the isomorphism H : P0(†)
„�Ñ P´1(†), vector bundles on P0(†) correspond to

vector bundles on P´1(†). Below, we will write this correspondence explicitly and then will
apply Lemma 3.4.3 to the vector bundles on P´1(†) to obtain antisymmetries for the Euler
characteristics.

Note that trivially

´ vdet + (µ1, ...,µr´1,µr ´
ÿ
⌫i) = ´

∞
⌫i

r
(1, ..., 1) + µ, (3.26)

and thus it follows from Proposition 3.3.9, that

�(P0(†),L(k; �+ ✓´1[k] ´ vdet) b ⇡!(U⌫ b K
1
2 )) =

�(P´1(†),L´1(k; ⌧ ¨ �´ k

r
(1, ..., 1) + ✓̃´1) b ⇡!(U[´1]⌫ b K

1
2 ))+

ÿ

µ

mµ µ1�(P0(°),L(k; �+ ✓´1[k] ´
∞
⌫i

r
(1, ..., 1) + µ)). (3.27)

Using Lemma 3.4.3 and equations (3.26) and (3.27), for any permutation � P ⌃r we obtain

f
⌫
†(k;� ¨ �+ ✓´1[k] ´ vdet)

(3.26)(3.27)
=

�(P´1(†),L´1(k; ⌧ ¨ � ¨ �´ k

r
(1, ..., 1) + ✓̃´1) b ⇡!(U[´1]⌫ b K

1
2 ))+

ÿ

µ

mµ µ1�(P0(†),L(k;� ¨ �+ ✓´1[k] ´
∞
⌫i

r
(1, ..., 1) + µ))´

ÿ

µ

mµ µ1�(P0(†),L(k;� ¨ �+ ✓´1[k] ´
∞
⌫i

r
(1, ..., 1) + µ))

3.4.3
=

= (´1)��(P´1(†),L´1(k; ⌧ ¨ �´ k

r
(1, ..., 1) + ✓̃´1) b ⇡!(U[´1]⌫ b K

1
2 ))

(3.27)
=

(´1)��(P0(†),L0(k; �+ ✓´1[k] ´ vdet) b ⇡!(U[´1]⌫ b K
1
2 ))´

(´1)�
ÿ

µ

mµ µ1�(P0(°),L(k; �+ ✓´1[k] ´
∞
⌫i

r
(1, ..., 1) + µ))

def
=

(´1)�f⌫†(k; �+ ✓´1[k] ´ vdet), (3.28)

which completes the proof of Proposition 3.4.2 for f⌫†. The proof for f⌫° is similar.

3.4.2. The Affine Weyl group

We define an action of the affine Weyl group ⌃⌫ ¸⇤ on ⇤ˆ Z°0, which acts trivially on the
second factor, the level, and the action at level k ° 0 is given by

�.� = � ¨ (�+ ⇢+ vdet) ´ ⇢´ vdet
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and
�.� = �+ (k+ r)� for � P ⌃, � P ⇤.2

We denote the resulting group of affine-linear transformations of V
˚ by r⌃[k]. It is easy to

verify that the stabilizer subgroup

⌃
+
r,⌫

def
= Stab(✓1[k] ´ vdet, r⌃[k]) Ä r⌃[k]

is generated by the transpositions si,i+1, 1 § i § r ´ 2 and the reflection ↵
r´1,r ˝ sr´1,r;

similarly,
⌃

´
r,⌫

def
= Stab(✓´1[k] ´ vdet, r⌃[k]) Ä r⌃[k]

is generated by si,i+1, 2 § i § r ´ 1 and the reflection ↵1,2 ˝ s1,2.
Then Proposition 3.4.2 maybe recast in the following form: the polynomial f

⌫°(k; �) is
anti-invariant with respect to the copy ⌃+

r,⌫ of the symmetric group ⌃r, while f
⌫´(k; �) is anti-

invariant with respect to the copy ⌃ŕ,⌫ of the symmetric group ⌃r.
The following statement is straightforward:

Lemma 3.4.4. Both subgroups ⌃r̆,⌫ are isomorphic to ⌃r and for r ° 2 the two subgroups generate
the affine Weyl group r⌃[k].

3.4.3. Symmetries in residue formulas

The main result of this section is Proposition 3.4.5, where we show the antisymmetries for the
residues formulas on the right-hand side of (3.10).

Recall that in §3.4.1 we defined a pair of polynomials �⌫∫ corresponding to the Euler char-
acteristics from the left-hand side of (3.10) and proved the Weyl antisymmetry for the modified
polynomials f⌫∫. Now we define the two polynomials corresponding to the residue expressions
from the right-hand side of (3.10):

R
⌫
°(k; �) = Nr ¨ B

B�
ˇ̌
�=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i
(´[✓1]B)

and

R
⌫
†(k; �) = Nr ¨ B

B�
ˇ̌
�=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i
(´[✓´1]B) ,

where ✓1 = 1
r ¨ (1, 1, . . . , 1) ´ xr, and ✓´1 = ´ 1

r ¨ (1, 1, . . . , 1) + x1, and establish the Weyl anti-
symmetry for the modified pair of polynomials:

F
⌫
°(k; �) = R

⌫
°(k; �) +Nr,k¨

ÿ

µ

mµ µr

ÿ

BPD
iBer

B,(k+r)K

h
w

1´2g
� (x) exp(xp�+ (µ1, ...,µr´1,µr ´ |⌫|), xy)

i
(´[✓1]B)

2Note that this action differs from the one defined in §2.7.2 by a shift by vdet.
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and

F
⌫
†(k; �) = R

⌫
†(k; �) ´ Nr,k¨
ÿ

µ

mµ µ1
ÿ

BPD
iBer

B,(k+r)K

h
w

1´2g
� (x) exp(xp�+ (µ1, ...,µr´1,µr ´ |⌫|), xy)

i
(´[✓´1]B) ,

where, as usual, the sum runs over all weights µ of the irreducible representation ⇢⌫ and
|⌫| = ∞

i ⌫i (cf. notation on page 65).

Proposition 3.4.5. The polynomial F⌫°(k; �) is anti-invariant with respect to ⌃+
r,⌫, and F

⌫†(k; �) is
anti-invariant with respect to ⌃ŕ,⌫.

Proof. We first consider a generator of ⌃ŕ,⌫ of the type � = si,i+1, 2 § i § r ´ 1. Note that

�.�+ ⇢+ vdet = �(�+ ⇢+ vdet) and �.�+ ⇢+ µ ´ |⌫|xr = �(�+ ⇢´ |⌫|xr) + µ.

Using Lemma 2.3.5 and the facts that

� ¨ det(Hess(Q))(x) = det(Hess(Q))(x) and � ¨ w1´2g
� (x) = ´w

1´2g
� (x),

we obtain

F
⌫
†(k;�.�) =

Nr
B

B�
ˇ̌
�=0

ÿ

BPD
iBer
B,Q

[´det(Hess(Q))g´1(x)w1´2g
� (x) exp(x�+ ⇢+ vdet, xy)]

�
´�´1 ¨ [✓´1]B

�
´

Nr,k
ÿ

µ

mµ µ1
ÿ

BPD
iBer

B,(k+r)K

h
´w

1´2g
� (x) exp(xp�+ �´1 ¨ µ, xy ´ |⌫|xr)

i �
´�´1 ¨ [✓´1]B

�
=

´ F
⌫
†(k; �).

For the last equality we used the Weyl-invariance of the multiplicities of weights µ of the
irreducible representation ⇢⌫.

The case of the last generator � = ↵
1,2 ˝ s1,2 requires some extra observations. Applying

Proposition 2.7.5, we obtain

ÿ

µ

mµ µ1
ÿ

BPD
iBer

B,(k+r)K

h
w

1´2g
� (x) exp(x�.�+ ⇢+ µ, xy ´ |⌫|xr)

i
(´[✓´1]B) =

´
ÿ

µ

mµ µ2
ÿ

BPD
iBer

B,(k+r)K

h
w

1´2g
� (x) exp(xp�+ µ, xy ´ |⌫|xr)

i
(´[✓´1]B) . (3.29)

Since
�.�+ ⇢+ µ ´

ÿ
⌫ixr = s1,2 ¨ (�+ ⇢) + µ ´ |⌫|xr + (k+ r)(x1 ´ x2)

and
s1,2 ¨ [✓´1] = [✓´1] ´ (x1 ´ x2), (3.30)

we note that
�.�+ ⇢+ vdet = s1,2 ¨ (�+ ⇢) + vdet + (k+ r)(x1 ´ x2),
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hence, using (3.29), we obtain

F
⌫
†(k;�.�) = Nr

B
B�

ˇ̌
�=0

ÿ

BPD
iBer
B,Q

[´det(Hess(Q))g´1(x)w1´2g
� (x)

exp(x�+ ⇢+ vdet, xy ´ (k+ r)(x1 ´ x2))] (´s1,2 ¨ [✓´1]B)+

Nr,k
ÿ

µ

mµ µ2
ÿ

BPD
iBer

B,(k+r)K

h
w

1´2g
� (x) exp(xp�+ µ, xy ´ |⌫|xr)

i
(´[✓´1]B) . (3.31)

Now using (3.30) and applying Lemma 3.2.2 with w = x1 ´ x2 to (3.31), we calculate that

F
⌫
†(k;�.�) = Nr

B
B�

ˇ̌
�=0

ÿ

BPD
iBer
B,Q

[´det(Hess(Q))g´1(x)w1´2g
� (x) exp(xp�+ vdet, xy)] (´[✓´1]B)´

Nr,k ¨
ÿ

BPD
iBer

B,(k+r)K
[´w

1´2g
� (x)�x̌12(x) exp(xp�+ vdet, xy)] (´[✓´1]B)+

Nr,k ¨
ÿ

µ

mµ µ2
ÿ

BPD
iBer

B,(k+r)K

h
w

1´2g
� (x) exp(xp�+ µ, xy ´ |⌫|xr)

i
(´[✓´1]B) .

Finally, applying the following trivial equality

�x̌12(x) exp(xvdet, xy) =
ÿ

µ

mµ (µ1 ´ µ2) exp(µ(x))

to the last two summands in our expression for polynomial F
⌫†(k;�.�), we conclude that

F
⌫†(k;�.�) = ´F

⌫†(k; �). This finishes the proof of the anti-invariance of the polynomial F⌫†(k; �);
the proof for F⌫°(k; �) is similar.

Note that the two differences �⌫† ´ f
⌫† and �⌫° ´ f

⌫° (cf. page 68) have the form of a linear
combination of the Euler characteristics of line bundles on the moduli spaces of parabolic
bundles; while the differences R

⌫† ´ F
⌫† and R

⌫° ´ F
⌫° (cf. page 70) may be written as an

iterated residue of a meromorphic functions. Then using the residue formula for the Euler
characteristic of line bundles, Theorem 2.3.8, we arrive at the following statement.

Proposition 3.4.6. For polynomials R
⌫°,R⌫†, �⌫°,�⌫†, F⌫°, F⌫† and f

⌫°, f⌫† defined on pages 70 and 68,
we have:

�
⌫
°(k; �) ´ f

⌫
°(k; �) = R

⌫
°(k; �) ´ F

⌫
°(k; �);

�
⌫
†(k; �) ´ f

⌫
†(k; �) = R

⌫
†(k; �) ´ F

⌫
†(k; �).

3.5. Proof of Theorem 3.2.3 and some generelizations of our result

In this section, we finish the proof of our main result and present some of its generalizations.

3.5.1. Proof of Theorem 3.2.3

The proof of Theorem 3.2.3 follows the logic of Chapter 2. In this section, we repeat the
argument from §2.7.4 with only minor changes.
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Recall that in §2.1.2 we introduced a chamber structure on � Ä V
˚ created by the walls

S⇧,l, where ⇧ = (⇧1,⇧2) is a nontrivial partition, and l P Z. Denote by

q� = t(k;a)|a/k P �u Ä R°0 ˆ V
˚

the cone over � Ä V
˚, and let

q�reg = t(k;a)|a/k P � is regularu Ä q�

be the set of its regular points. Denote by qS⇧,l Ä q� the cone over the wall S⇧,l Ä �; then q�reg

is the complement of the union of walls qS⇧,l in q�. Finally, denote by q�reg
⇤ the intersection of

the lattice Z°0 ˆ⇤ with q�reg.
By substituting c = �/k, we can consider the left-hand side and the right-hand side of the

equation in Theorem 3.2.3 as functions in (k, �) P q�reg
⇤ . We denote by �(k; �) and R(k; �) the

left-hand side and the right-hand side, correspondingly.
We showed that �(k; �) and R(k; �) are polynomials on the cone over each chamber in �

(cf. §2.1.2, §3.2.2). We proved that the wall-crossing terms, i.e. the differences between
polynomials on neighbouring chambers, for �(k; �) (cf. Proposition 3.3.6) and for R(k; �) (cf.
Corollary 3.2.7) coincide, hence there exists a polynomial ⇥(k; �) on Z°0 ˆ⇤, such that the
restriction of ⇥(k; �) to q�reg

⇤ is equal to the difference �(k; �) ´ R(k; �).
Now for r ° 2, we can conclude that

⇥(k; �) = �⌫°(k; �) ´ R
⌫
°(k; �) = �⌫†(k; �) ´ R

⌫
†(k; �),

where �⌫ª(k; �) and R
⌫
ª(k; �) are the restrictions of �(k; �) and R(k; �) to two specific chambers

defined in Lemma 2.7.3. Then, according to Proposition 3.4.6,

⇥(k; �) = f
⌫
°(k; �) ´ F

⌫
°(k; �) = f

⌫
†(k; �) ´ F

⌫
†(k; �).

It follows from Propositions 3.4.2 and 3.4.5 that the polynomial ⇥(k; �) is anti-invariant with
respect to the action of the subgroups ⌃r̆,⌫ (cf. the end of §3.4.2), and hence by Lemma 3.4.4,
it is anti-invariant under the action of the entire affine Weyl group r⌃[k]. It is easy to see that
any such polynomial function has to vanish, and thus �(k; �) = R(k; �).

As marked above, the argument does not work for r = 2, since in this case the groups ⌃+
r,⌫

and ⌃´
r,⌫ (cf. §3.4.2) coincide, and thus they do not generate the entire affine Weyl group. A

solution is to consider the 2-punctured case, treated in §3.1.1-§3.1.3; this finishes the proof of
Theorem 3.2.3.

3.5.2. Generalization

Now we formulate a mild generalization of our result, Theorem 3.5.1, and explain, following
an idea of Teleman and Woodward [24], how our formulas can be used to calculate the Euler
characteristic of a more general class of vector bundles on the moduli spaces of parabolic
vector bundles.

Let ⌫[1], ...,⌫[m] be dominant weights of GLr. Replacing Q and vdet in Theorem 3.2.3 by
the multi-parameter version

Q = (k+ r)K ´
ÿ

j

�j�
⌫[j], vdet =

mÿ

j=1
(1, ..., 1, 1 ´ r)

∞
i ⌫[j]i
r

,
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we can deduce the following Theorem.

Theorem 3.5.1. Let Q and vdet be as above, let K be the canonical class of the curve C, � P ⇤,
k P Z°0, ⌫ = (⌫1 • ⌫2... • ⌫r) P Zr, p� = �+ ⇢, and let c P � be a regular element (cf. page 7).
Then for any diagonal basis D P B, the following equality holds:

�(P0(c),L(k; �) b ⇡!(U⌫[1] b K
1
2 ) b ⇡!(U⌫[2] b K

1
2 ) b ... b ⇡!(U⌫[m] b K

1
2 )) =

Nr ¨ Bm

B�1...B�m
ˇ̌
ˇ
�1=...=�m=0

ÿ

BPD
iBer
B,Q

h
det(Hess(Q))g´1(x)w1´2g

� (x) exp(xp�+ vdet, xy)
i
(´[c]B) .

The proof of this theorem is analogous to our proof of Theorem 3.2.3.
Using Theorem 3.5.1 one can also obtain formulas for the Euler characteristics of vector

bundles, which involve the exterior powers
ô

l ⇡!(U⌫ b K
1
2 )). Let us briefly explain the case

�

⇣
P0(c),L(k; �) b

©2
⇡!(U⌫ b K

1
2 )
⌘

. (3.32)

Recall that the n-th Adams operator  n is defined by  n
L = L

n for a line bundle L and
extends to K-theory additively by the splitting principle. It follows from the Groethendieck-
Riemann-Roch theorem and equation (3.17) that

ch( n(⇡!(U⌫ b K
1
2 ))) =

ÿ

i•0
n
i ¨ chi(⇡!(U⌫ b K

1
2 )) =

1
n

ÿ

i•1
n
i ¨ ⇡˚(chi(U⌫)) =

1
n
⇡˚ch( n(U⌫)) =

1
n
ch(⇡!( 

n(U⌫) b K
1
2 )). (3.33)

Since for any vector bundle V

ch

⇣©2
V

⌘
=

ch(Vb2) ´ ch( 2
V)

2
,

the Euler characteristic (3.32) equals

1
2
�(P0(c),L(k; �) b (⇡!(U⌫ b K

1
2 ))2) ´ 1

4
�(P0(c),L(k; �) b ⇡!( 

2(U⌫) b K
1
2 )).

Finally, note that the character function (cf. page 54) for  n(U⌫) is �⌫(xn), hence using
Theorem 3.5.1, we obtain the formula for the Euler characteristic (3.32).



Bibliography

[1] Alekseev, A., Meinrenken, E., and Woodward, C. The Verlinde formulas as fixed point
formulas. Journal of Symplectic Geometry 1 (2001), 1–46.

[2] Atiyah, M., and Bott, R. The Lefschetz fixed point formula for elliptic complexes: II.
applications. Ann. of Math. 38 (1968), 451–491.

[3] Atiyah, M. F., and Bott, R. The Yang-Mills equations over Riemann surfaces. Philosoph-
ical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
308, 1505 (1983), 523–615.

[4] Bhosle, U. Parabolic vector bundles on curves. Arkiv för Matematik 27, 1-2 (1989), 15 – 22.

[5] Boden, H. U., and Hu, Y. Variations of moduli of parabolic bundles. Mathematische
Annalen 301 (1995), 539–559.

[6] Dolgachev, I., and Hu, Y. Variation of geometric invariant theory quotients. Publications
Mathématiques de l’Institut des Hautes Études Scientifiques 87 (1994), 5–51.

[7] Gonzalez, E., and Woodward, C. Quantum Kirwan for quantum K-theory.
arXiv:1911.03520 (2019).

[8] Grothendieck, A. Technique de descente et théorèmes d’existence en géométrie al-
gébrique. VI. les schémas de Picard: propriétés générales. In Séminaire Bourbaki (1962),
pp. 221–243.

[9] Hartshorne, R. Algebraic geometry. In Graduate texts in mathematics (1977).

[10] Jeffrey, L. C. The Verlinde formula for parabolic bundles. Journal of the London Mathe-
matical Society 63 (2000), 754–768.

[11] Jeffrey, L. C., and Kirwan, F. Localization for nonabelian group actions. Topology 34
(1993), 291–327.

[12] Jeffrey, L. C., and Kirwan, F. Intersection theory on moduli spaces of holomorphic
bundles of arbitrary rank on a Riemann surface. Annals of Mathematics 148 (1996), 109–
196.

[13] Mehta, V. B., and Seshadri, C. S. Moduli of vector bundles on curves with parabolic
structures. Mathematische Annalen 248 (1980), 205–239.

75



BIBLIOGRAPHY 76

[14] Meinrenken, E. Witten’s formulas for intersection pairings on moduli spaces of flat
G-bundles. Advances in Mathematics 197, 1 (2005), 140–197.

[15] Meinrenken, E., and Sjamaar, R. Singular reduction and quantization. Topology 38
(1997), 699–762.

[16] Mumford, D., Fogarty, J., and Kirwan, F. Geometric invariant theory, third edition. In
Ergebnisse der Mathematik und ihrer Grenzgebiete (1994).

[17] Narasimhan, M., and Ramanan, S. Geometry of Hecke Cycles- I. Tata Institute of Funda-
mental Research, 1977.

[18] Nitsure, N. Cohomology of the moduli of parabolic vector bundles. Proceedings of the
Indian Academy of Sciences - Mathematical Sciences 95 (1986), 61–77.

[19] Seshadri, S. Moduli of vector bundles on curves with parabolic structures. Bull. Math.
Soc. 83, 1 (1977), 124–126.

[20] Szenes, A. Iterated residues and multiple Bernoulli polynomials. International Mathemat-
ics Research Notices 1998, 18 (1998), 937–956.

[21] Szenes, A. Residue theorem for rational trigonometric sums and Verlinde’s formula.
Duke Mathematical Journal 118 (2001), 189–227.

[22] Szenes, A., and Trapeznikova, O. The parabolic Verlinde formula: iterated residues and
wall-crossings. arXiv.2112.15149 (2021).

[23] Szenes, A., and Vergne, M. [q, r] = 0 and Kostant partition functions. L’Enseignement
Mathématique (2010), 471–516.

[24] Teleman, C., and Woodward, C. The index formula for the moduli of G-bundles on a
curve. Annals of Mathematics 170 (2009), 495–527.

[25] Thaddeus, M. Stable pairs, linear systems and the Verlinde formula. Inventiones mathe-
maticae 117 (1992), 317–353.

[26] Thaddeus, M. Geometric invariant theory and flips. Journal of the American Mathematical
Society 9 (1994), 691–723.

[27] Trapeznikova, O. Tautological bundles on parabolic moduli spaces: Euler characteristics
and Hecke correspondences. arXiv2209.15600 (2022).

[28] Vergne, M. Multiplicities formula for geometric quantization, part II. Duke Mathematical
Journal 82 (1996), 181–194.

[29] Verlinde, E. P. Fusion rules and modular transformations in 2D conformal field theory.
Nuclear Physics 300 (1988), 360–376.

[30] Witten, E. Two-dimensional gauge theories revisited. Journal of Geometry and Physics 9
(1992), 303–368.

[31] Zagier, D. On the cohomology of moduli spaces of rank two vector bundles over curves.
In The Moduli Space of Curves. Progress in Mathematics, Birkhäuser Boston (1995), vol. 129.


