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We investigate the ground-state properties of a newly discovered phase of one-dimensional lattice bosons
with extended interactions �E. G. Dalla Torre et al., Phys. Rev. Lett. 97, 260401 �2006��. The new phase,
termed the Haldane insulator in analogy with the gapped phase of spin-1 chains, is characterized by a nonlocal
order parameter, which can only be written as an infinite string in terms of the bosonic densities. We show that
the string order can nevertheless be probed with physical fields that couple locally, via the effect those fields
have on the quantum phase transitions separating the exotic phase from the conventional Mott and density
wave phases. Using a field theoretical analysis, we show that a perturbation that breaks lattice inversion
symmetry gaps the critical point separating the Mott and Haldane phases and eliminates the sharp distinction
between them. This is remarkable given that neither of these phases involves broken inversion symmetry. We
also investigate the evolution of the phase diagram with the tunable coupling between parallel chains in an
optical lattice setup. We find that interchain tunneling destroys the direct phase transition between the Mott and
Haldane insulators by establishing an intermediate superfluid phase. On the other hand, coupling the chains
only by weak repulsive interactions does not modify the structure of the phase diagram. The theoretical
predictions are confirmed with numerical calculations using the density matrix renormalization group.

DOI: 10.1103/PhysRevB.77.245119 PACS number�s�: 75.10.Pq, 37.10.Jk

I. INTRODUCTION

Systems of ultracold bosons in optical lattices offer
unique opportunities for studying strongly correlated quan-
tum matter in a highly controllable environment.1 In a suffi-
ciently deep lattice potential, the interactions dominate over
the kinetic energy and, at commensurate filling, can drive a
quantum phase transition from the superfluid to the Mott
insulating state. This transition has been observed
experimentally,2 and it requires only local �on-site� interac-
tions between the bosons. Longer range interactions, effec-
tive for example in systems of ultracold polar molecules3 or
atoms with large magnetic-dipole moment,4,5 can give rise to
even richer behavior. In particular, we have recently pre-
dicted that bosons with sufficiently strong nearest neighbor
or further range repulsion on a one-dimensional lattice form
a new insulating ground-state characterized by hidden topo-
logical order.6

We termed the new phase a Haldane insulator �HI� be-
cause of the close analogy with Haldane’s gapped phase of
integer spin chains.7 Both states support a highly nonlocal
string order parameter.8–10 Moreover, the phase transitions
from the Haldane insulating phase to the conventional Mott
and density wave �DW� insulators, also have their analogies
in anisotropic spin chains.8,12,13 This phase can potentially be
realized in a system of cold dipolar atoms or molecules in a
one-dimensional optical lattice where the dipole moment is
polarized perpendicular to the chain direction.

There are, however, essential differences between the spin
chains and the lattice bosons. First, the anisotropic spin
chains enjoy a global Z2 symmetry associated with flipping
the Sz component of all spins. This would translate to a

particle-hole symmetry about the mean lattice filling, which
is clearly absent in the microscopic bosonic models. Further-
more, the optical lattice systems are in practice not strictly
one dimensional. Some amount of residual coupling between
chains due to tunneling and, in our case, also dipolar inter-
actions are inevitable. More generally, we shall see that ad-
ditional external fields, which can be applied to the ultracold
Bose systems, couple in a nontrivial way to the string order
parameter. The effects of these perturbations on the phase
diagram raise new fundamental questions on the nature of
the nonlocal order.

In this paper, we investigate how different perturbations,
natural to bosonic systems, affect the transitions from the
Haldane insulator to the conventional Mott and density wave
phases. We argue that these directly probe the nature of the
nonlocal order parameter, which characterizes the Haldane
insulator phase. Using a bosonization analysis, we demon-
strate that the transitions between the HI and the conven-
tional phases are not sensitive to the broken particle-hole
symmetry in the microscopic Hamiltonian. Such perturba-
tions also leave the string order parameter intact. On the
other hand, we predict that perturbations that break the lat-
tice inversion symmetry in addition to the particle-hole sym-
metry, would eliminate the distinction between the MI and
HI phases and gap out the critical point separating them.
Next, we investigate the effect of coupling between two par-
allel chains �“ladder” geometry�. The predictions of the field
theoretical analysis are confirmed with numerical simula-
tions using the density-matrix renormalization group
�DMRG� method.

Our starting point for theoretical analysis is the extended
Bose-Hubbard model �EBHM� on one or two chains at
single-site occupation �n̄=1�:
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H� = − t�
j

�b�j
† b�j+1 + H.c.� +

U

2 �
j

n�j�n�j − 1�

+ V�
j

n�jn�j+1, �1�

where j is the site index and �=1,2 is the chain index, in the
case of two chains. The interchain coupling in that case in-
cludes a transverse tunneling matrix element and interaction
term:

H� = − t��
j

�b1j
† b2j + H.c.� + V��

j

n1jn2j . �2�

In practice, the interchain tunneling t� may be tuned by
varying the depth of the optical lattice potential in the direc-
tion perpendicular to the chains. The interchain dipolar inter-
action can be controlled by changing the direction of the
external polarizing field relative to the plane of the chains,
while keeping it perpendicular to the chain axis. A schematic
setup of this type involving many coupled chains is illus-
trated in Fig. 1. The two chain model

H = �
�=1,2

H� + H� �3�

serves as a bridge between one- and two-dimensional geom-
etries, while still amenable to powerful techniques for treat-
ing one-dimensional systems, such as bosonization and the
density-matrix renormalization group. Similar quasi-one-
dimensional systems were studied previously in different pa-
rameter regimes: with only on-site interactions14,15 and with
longer-range interactions at half-integer filling.16 However,
the Haldane insulator phase, which is the focus of this paper
is not obtained in these regimes.

Recently, Anfuso and Rosch noted that the string order
characterizing the Haldane gapped phase of spin-1 chains is
unstable against interchain antiferromagnetic exchange.18

The string order in the HI phase is similarly sensitive to
interchain tunnel coupling �see Appendix A�, and the distinc-
tion between the HI and MI phases is lost. What is then the
fate of the direct second-order transition found between these
two phases when interchain tunneling is turned on? Interest-
ingly, we find that direct transition between these two phases
is avoided in the double chain system by the appearance of
an intermediate superfluid phase for arbitrarily small inter-
chain tunneling.

Our analysis consists of the following parts: In Sec. II A,
we present a low energy effective-field theory for the single
chain, which correctly captures all three insulating phases

MI, HI, and DW. This is done with help of a special
bosonization procedure borrowed from work on integer spin
chains.12 The bosonized forms for the nonlocal correlations
that characterize the HI and MI phases are given in Sec. II B.
This framework is used in Sec. II C to study the coupling of
the nonlocal order parameters to inversion symmetry break-
ing perturbations. Then in Sec. II D, we extend the bosoniza-
tion approach to describe a pair of weakly coupled chains.
We carry out a renormalization-group �RG� analysis to ob-
tain analytic predictions for the phases arising at weak inter-
chain coupling in the vicinity of the quantum critical points.
The most interesting result of the coupling is the effect of
interchain tunneling on the transition between the MI and HI
states. This perturbation is highly relevant at the critical
point. As a result, we find that for any finite t�, the HI and
MI insulating phases are separated by a superfluid region,
whose domain grows rapidly with increasing t�. Finally in
Sec. III, we confirm the analytic predictions and extend them
to stronger interchain coupling using numerical DMRG cal-
culations.

The paper is followed by three appendixes. In Appendix
A, we investigate the effect of weak interchain coupling deep
in the HI phase within perturbation theory. Although the ther-
modynamic HI phase is protected by a gap �, we show that
the single chain string order is destroyed even by infinitesi-
mal coupling. In Appendix B, we provide an alternative deri-
vation of the effective-field theory using direct bosonization
of the particles rather than resorting to an effective spin-1
model as done in Sec. II. In Appendix C, we construct ex-
plicit expressions for the string order parameter within the
effective-field theory.

II. BOSONIZATION

A. Continuum limit of a single unperturbed chain

A single chain of interacting bosons �1� at filling n̄=1 was
studied in Ref. 6 using DMRG and the existence of the new
Haldane insulator �HI� phase was predicted. The phase dia-
gram in the two-dimensional space of U / t versus V / t is re-
produced here in Fig. 4�a�.

The insulating phases and the correct quantum phase tran-
sitions separating them can also be obtained from a field
theoretical analysis,19 which builds on a direct analogy with
the bosonization procedure developed for integer spin
chains.11,12,20 Let us briefly review the derivation of the
effective-field theory of a single chain. The first step is an
approximate mapping of the EBHM �Eq. �1�� to an aniso-
tropic spin-1 model. This is done by truncation of the Hilbert
space of each site to the three lowest occupation states n
=0,1 ,2.21,22 Such a truncation is justified at large U when
fluctuations in the site occupations are strongly suppressed.
The effective spin-1 model is

H = − t�
j

�Sj
+Sj+1

− + H.c.� +
U

2 �
j

�Sj
z�2 + V�

j

Sj
zSj+1

z �4�

Here, Sz=n− n̄. In general, there are other terms in this
Hamiltonian that break the Sz→−Sz, S+↔S− �“particle-
hole”� symmetry. However, in the effective long-wavelength

θ

E

FIG. 1. �Color online� Array of one-dimensional chains formed
by a two-dimensional optical lattice. The polarizing field E is di-
rected perpendicular to the chains and at an angle � which can be
used to tune the interchain interaction V� in �2�.
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Hamiltonian we will now derive, these terms are irrelevant
so we will drop them for now. The effect of these terms will
be considered in Sec. II C.

One then proceeds by writing each spin-1 variable as a
sum of two spin-1

2 variables,11,12 Sj
z=s1,j

z +s2,j
z . Each spin-1

2
chain can now be mapped to a spinless fermion chain by a
Jordan-Wigner transformation. The fermions are then
bosonized in the standard way,17 according to ��,R/L
� 1

�2�a
ei�������, where a is the lattice spacing, �=1,2 corre-

sponds to the two fictitious spin-1/2 chains �not to be con-
fused with the two physical chains that will be considered in
Sec. II D� and R /L corresponds to right and left moving
fermions, respectively. The bosonic fields satisfy the canoni-
cal commutation relations ����x� ,���x���=−i�	�,�
�x�−x�,
where 
�x� is a Heaviside step function. With these
conventions,23 the spin-1/2 operators have the following
bosonized form:

s�
z =

a

�
�x�� +

�− 1�x/a

�
sin�2��� . �5�

The bosonized Hamiltonian is conveniently written in
terms of symmetric �+� and antisymmetric �−� combinations
of the fields �� and ��:

H = H+ + H− + H+−. �6�

The three terms are given explicitly by:

H+ =
u+

2�
� dx	K+��x�+�2 +

1

K+
��x�+�2


+� dx
g1

��a�2cos�2�+� �7�

H− =
u−

2�
� dx	K−��x�−�2 +

1

K−
��x�−�2


+� dx	 g2

��a�2cos�2�−� +
g3

��a�2cos�2�−�
 �8�

and

H+− =� dx
g4

��a�2cos�2�+�cos�2�−� , �9�

where ��=�1��2 and ��= ��1��2� /2. �Note that the
fields �+ and �− correspond to �2�1 and �2�2 in Ref. 12,
respectively.� The naive continuum limit gives the following
estimates for bare values of the coupling constants:

u+ = ta�1 +
U + 6V

�t
, K+ =

2

�1 + U+6V
�t

u− = ta�1 −
U − 2V

�t
, K− =

2

�1 − U−2V
�t

g1 = − g2 =
�2V − U�a

2
, g3 = − t�a, g4 = Va . �10�

To study the physical correlation functions, we need to
express the second-quantized Bose operators on the lattice
and the local site occupation in terms of the continuum
fields. These relations are of the form

b�x�
�a

=
A

�2�a
ei�+�cos��−� + . . .�

n�x�
a

=
1

�
�x�+

+ B
�− 1�x/a

�a
sin��+�cos��−� + . . . , �11�

where A and B are nonuniversal constants and only the most
relevant terms are shown. In general, the expansion of these
operators also contains less relevant �subleading� terms.

The Hamiltonian H+ of the symmetric degrees of freedom
is similar to the usual low energy description of lattice
bosons. The Umklapp term parameterized by g1 is relevant
for K+�2. Here we consider the insulating phases, for which
K+ is indeed below this critical value.36 The main difference
from the standard bosonization of lattice bosons is that the
parameter g1 changes sign at 2V=U. This change of sign
marks a quantum phase transition from the MI, for which �+
is localized around zero, to another gapped phase in which it
is localized near �

�
2 . As we shall see below, the latter turns

out to be the HI phase and is characterized by string order.
On the critical line, the system is described by a Luttinger
liquid with power-law correlations that depend on the non-
universal parameter 1

2 �K+�2. If K+ is driven below 1
2 , the

critical line becomes unstable, since the subleading term
cos�4�+� �which was omitted in Eq. �7�� becomes relevant.
This possibility will be discussed further in Sec. II C. Note
that the odd sector described by H− is not critical. The term
g3 in Eq. �8� is relevant on both sides of the transition, so that
the field �− is localized and remains massive at the critical
point.

On the other hand, the transition from the HI to the DW
phase is controlled by the odd sector. It occurs when the term
cos�2�−� becomes more relevant than the dual term
cos�2�−�, that is when K−�1. According to the naive con-
tinuum limit, the critical line is given by V−2U=3�t. This
transition is of the Ising universality class.12,24 This can also
be seen by refermionization of the Hamiltonian H− at the
critical point K−=1 and g2=g3, which yields precisely the
massless Majorana fermions of the 1+1 dimensional Ising
model at criticality.

We remark that the precise values of the coupling con-
stants as a function of the microscopic parameters are not
simple to derive. The field theory �Eq. �6�� should be used to
obtain the universal behavior of the system near the critical
points, which describe the quantum phase transitions, not to
find the precise location of phase boundaries.

B. The string and parity order parameters

What is the physical distinction between the different in-
sulating phases? It was shown in Ref. 6 that the HI phase of
bosons is characterized by a non decaying string correlation
function
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OS
2 � lim

�i−j�→�
	ni exp�i� �

ik�j

	nk�	nj� . �12�

Here, 	ni�ni− n̄ is the deviation from the average �integer�
filling n̄. In Sec. III, we show that the MI phase is character-
ized by a different nonlocal correlation function, which will
be termed the “parity” correlation function

OP
2 � lim

�i−j�→�
�exp�i� �

ik�j

	nk�� . �13�

For the sake of convenience, we define the parity and string
operators

Ôp�j� = exp�i��
k�j

	nk� �14�

ÔS�j� = ÔP�j�	nj , �15�

such that OP
2 =lim�i−j�→�ÔP�i�ÔP�j�� and OS

2

=lim�i−j�→�ÔS�i�ÔS�j��.
A simple interpretation of these correlations is illustrated

in Fig. 2. In both phases, the ground state consists of con-
figurations with most sites having precisely the average oc-
cupation, but also some particle and hole fluctuations. The
parity OP order in the MI phase implies that the fluctuations
in this ground state are bound particle-hole pairs. On the
other hand, the string order in the HI phase implies that a
“renormalized” chain with all nonfluctuating 	ni=0 sites
taken away would have density wave order �particle and hole
fluctuations alternating along the chain�. Physically, this can
be understood as a compromise between the kinetic-energy
term in Eq. �1�, which prefers maximum delocalization of
particles and holes, and the nearest-neighbor interaction
term, which is minimized when particles and holes are
neighbors. Indeed, the HI phase is realized at intermediate
values of V / t.

Within the effective-field theory, the HI and MI seem to
differ only in the expectation value of the field �+, which is
pinned in each of these phases. It is interesting to relate this
distinction to the string and parity correlations that charac-
terize the two phases. Since both order parameters contain
the factor exp�i��i�k�j	nk�, we may naively expect their
bosonized forms to contain exp�i�+�x��, since �i�k�j	nk

→ 1
��xi

xjdx�x�+= 1
� ��+�xj�−�+�xi��. However, the exponential

should be symmetrized carefully to obtain a hermitian opera-

tor. In Appendix C, we argue for the following forms of ÔS

and ÔP in the bosonized theory:

ÔS�x� � sin��+�x�� �16�

ÔP�x� � cos��+�x�� �17�

Here the form of �16� was postulated on the basis of sym-
metry. For a more microscopic derivation see Refs. 26 and
29.

The above expressions for the string and parity correla-
tions are consistent with the respective phases derived from
Eqs. �7� and �8�. The MI phase corresponds to g1�0, which
implies a nonvanishing expectation value of the parity opera-
tor cos��+�x����0. The fact that �+ is locked to 0, or � in
this phase is consistent with the particle density being con-
centrated on the lattice sites, as in the cartoon product state
��MI��� jbj

†�0�. In the HI phase on the other hand g1�0, so
that sin��+�x����0 and therefore nonvanishing string order.
Here �+ is locked to � /2 or 3� /2, which implies a shift of
the particles by half a lattice constant compared with the MI,
that is, the density is centered on the links rather than the
lattice sites. This is captured by the cartoon wave function
��HI��� j�bj

†+bj+1
† ��0�, which is closely analogous to the

AKLT state that describes a valence bond solid in spin-1
chains.

C. Coupling to symmetry-breaking perturbations

A realization of the phases described above with ultracold
atoms would open up new ways to probe the nature of string
and parity orders by how they react to different perturba-
tions. Interestingly, we shall see that in spite of being highly
nonlocal, the string and parity operators nevertheless couple
in interesting ways to local symmetry-breaking fields.

As compared to the spin chain model �Eq. �4��, an inher-
ent broken symmetry in the microscopic Hamiltonian �1� is
the absence of particle-hole symmetry 	ni→−	ni. The spin
model does enjoy the analogous symmetry associated with
rotation by � around the y axis, which takes Sz→−Sz and
Sx→−Sx. Nevertheless both systems are described by the
same low energy field theory �Eq. �6��. Terms that break just
the particle-hole symmetry, such as �x���x��2, are irrelevant
at the HI-MI critical point and do not change either the par-
ity cos��+�� or string sin��+�� order parameters in the in-
sulating phases. What are the minimal perturbations that
eliminate the sharp distinction between these two phases and
gap out the critical point separating them?

Consider the following perturbation of the Hamiltonian
�7�:

H+ + �P̂ = H+ + �� dx

��a�2sin�2�+�

= HLL + g̃� dx

��a�2cos�2�+ + �� . �18�

Here, HLL is the critical Luttinger liquid theory at the transi-

FIG. 2. Typical configurations in the �a� HI and �b� MI ground
states. The numbers represent 	n �the deviation of the local occu-
pation from the average density�. The HI can be described as a
charge ordered +,− , + , . . . state with an undetermined number of 0
sites between each + and −. The MI is a dilute gas of particle-hole
pairs �indicated by the dotted line�.
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tion and �=arctan�� /g1� and g̃=�g1
2+�2. Clearly P̂ is a rel-

evant perturbation at the critical point, leading to a gapped
state even when the parameter g1 crosses zero, where the
critical point would have been.

Note that the operator P̂ breaks both the particle-hole and
lattice inversion symmetries. This is seen for example in the
representation of the single chain as two coupled fermionic
chains �as in Ref. 12�. Written in terms of the fermions the
perturbation is

sin�2�+� � i�R,1
† �R,2

† �L,1�L,2 + H.c., �19�

where �R,� and �L,� for �=1,2 are the right and left moving
fermions in the two fermionic chains, respectively. �Note that
the two chains labeled by � are the two fictitious spin-1/2
chains discussed in the paragraph preceding Eq. �5�.� This
term is clearly odd under inversion �which changes
�R,�↔�L,�� and particle-hole ��R/L,�

† ↔�R/L,�� transforma-
tions, and even under time reversal.

The perturbation P̂ can be viewed as a local polarizing
field that induces a small “dipole” moment on every lattice
site. �By “dipole” we mean �xn�x�dx, i.e., the electric-dipole
moment that we would get if the particles where charged. It
is not related to the real moment of the dipolar atoms.� It is
clear from the second line of Eq. �18� that the term
−g̃ cos�2�++�� acts to lock the field �+ to the values �+�
−� /2 or �+��−� /2. The density concentration is shifted
accordingly by ��� /2��a away from the lattice points, re-
sulting in a local dipole moment at these points. The shift of

−� /2 also implies that both parity ÔP� and string ÔS� order
parameters gain a finite expectation value in the presence of
this perturbation. Hence, the sharp distinction between the
Mott and Haldane insulating phases is lost. It is interesting to
note in this regard the similar effect of a symmetry-breaking
field on a conventional quantum phase transitions involving
spontaneous breaking of that symmetry. The field gaps out
the critical point while inducing a nonvanishing order param-
eter in the disordered phase. It is remarkable that breaking
inversion symmetry has this effect in the HI-MI transition
despite the fact that neither phase has broken lattice inver-
sion symmetry �at least in an infinite system or in a finite
system with periodic boundary conditions�.35

We note that the converse is also true: a finite expectation
value of both parity and string orders immediately entails
broken inversion symmetry in the ground state. This is seen
by writing the local symmetry-breaking field as a product of
the two nonlocal order parameters sin�2�+�
=2 sin��+�cos��+�.

The connection between the string and parity correlations
and the breaking of inversion symmetry can also be under-
stood from the microscopic viewpoint sketched in Fig. 2. A

nonzero expectation value of the parity operator ÔP� is as-
sociated with pairing of particle and hole fluctuations in the

ground state, while ÔS��0 corresponds to alternate order-
ing of the particle and hole fluctuations. Having both implies
organization of the particle-hole pairs in the form of ordered
dipoles. A cartoon wave function capturing this mixed phase
is given by

��d� = �
i

��1 + d�bi
† + �1 − d�bi+1

† ��0� . �20�

Changing d between 0 and 1 facilitates a continuous connec-
tion between the MI and HI phases.

In an optical lattice system, it is relatively easy to apply a
perturbation that breaks lattice inversion symmetry. A second
laser with double the wavelength can be used to produce a
lattice of asymmetric double wells.33,34 Terms such as
sin�2�+� are then allowed by symmetry and will therefore be
imminently generated in the effective-field theory.

An intriguing question that naturally arises is whether a
phase described by a wave function such as Eq. �20� can
occur by spontaneous breaking of inversion symmetry. In
fact, there is a natural route by which such symmetry break-
ing can take place. As discussed in Sec. II A, the critical line
between the MI and HI phases is stable when K+�

1
2 . For

K+�
1
2 subleading terms, such as cos�4�+�, become relevant

and open a gap that would stabilize a new phase. In particu-
lar, if the coefficient of the cos�4�+� term is positive, the �+
field is locked to �� /4, which implies spontaneously broken
inversion symmetry. In this case, the particles �or density
maxima� are effectively pinned to a point that is either 1/4
lattice spacing to the left or to the right of lattice sites. What
microscopic interactions are required to stabilize such a
phase is an open question. It can only occur if the value of
the Luttinger parameter K+ goes below 1

2 before the transi-
tion to the DW terminates the critical line separating the MI
and HI phases. This point will be investigated in a later
study.

A completely different type of perturbation that is difficult
to realize in cold atom systems, but is nevertheless worth
mentioning, is one that breaks the U�1� symmetry associated
with number conservation. Such a perturbation can be added
to the continuum theory �Eq. �7�� as a term of the form
��dx cos��+�. In the spin chain case �Eq. �4��, this term cor-
responds to a transverse magnetic field. Clearly, this pertur-
bation is relevant and would gap out the critical point. Inside
the HI and MI this term produces a finite density of kinks in
the field �+ and therefore leads to vanishing of both expec-
tation values cos��+�� and sin��+��. Again, the sharp dis-
tinction between the HI and MI phases is lost.

D. Continuum limit of weakly coupled chains

We move on to discuss a system of two coupled EBHM
chains described by the microscopic Hamiltonian �3�. The
starting point for a low energy description at weak interchain
coupling are the decoupled single chain field theories �Eq.
�6�� that involve four bosonic fields, ��,� �with �=1,2 a
chain index� and their canonical conjugate fields ��,�.

The continuum limit of the interchain Hamiltonian �2� is
now conveniently written in terms of symmetric and anti-
symmetric combinations of the even fields of each chain:
��= ��1,+��2,+� /�2, and 
�= ��1,+��2,+� /�2:

HV�
=� dx� g5

2�2 ���x�+�2 − ��x�−�2� +
g6

��a�2 �cos��2�−�

− cos��2�+��cos��1,−�cos��2,−� + . . .� �21�
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Ht�
=� dx

g7

��a�2cos��2
−��cos��1,−�cos��2,−� + . . .� ,

�22�

where the bare values of the parameters are g5=V�a, g6
=V�aB2, and g7=−t��aA2. �Here, A and B are the nonuni-
versal constants that appear in Eq. �11�.� We shall analyze
how these terms affect the low energy physics of the decou-
pled chains �Eq. �6�� in the limit of weak t� and V�.

1. HI phase

The simplest case to consider is the case where the decou-
pled chains are in the HI phase. Because of the finite gap in
each chain’s spectrum, any interchain coupling term is irrel-
evant in this case, which implies that the chains remain es-
sentially decoupled at weak coupling. Nevertheless, since the
string order parameter is a nonlocal object in terms of either
the density or the phase field it is destroyed by infinitesimal
interchain tunneling. In Appendix A, we show that the string
correlations decay exponentially with a correlation length
that scales as �� / t��2, where � is the gap �see also Ref. 18�.
It is easy to understand this effect by considering the low
energy theory �Eq. �6�� with the perturbation �Eq. �22��. In
the HI phase of a single chain, the field �+ is localized near
�� /2, so that the string order parameter sin��+�� is fixed
around �1. However, the perturbation t� cos��2
−�, which
hops a particle from one chain to the other, induces a kink in
the string order parameter of each chain. Therefore at any
finite coupling strength, this perturbation destroys the string
order by creating a finite density ��t� /��2 of kinks in the Z2
order parameter.

We note that the product of the string operators on the two
chains remains invariant to the interchain tunneling because
this perturbation always creates a kink on one chain and an
antikink on the other. It is therefore tempting to define the
product OSL=sin��+,1�sin��+,2� as a generalized string order
parameter for the ladder. Such an operator still has a nonzero
expectation value in the HI phase when interchain hopping is
introduced. However, it gains a finite expectation value also
in the MI phase in the presence of a finite t� and therefore
cannot serve to distinguish these two phases. To see this we
consider the decoupled chains in the MI phase �+,��0. The
action of the interchain tunneling operator at point x pro-
duces a kink-antikink pair corresponding to a change of �+,1
from 0 to � at x and of �+,2 from 0 to −�. At the point x, the
values of the fields are �+,1�� /2 and �+,1�−� /2; there-
fore, such a point contributes −1 to the product string opera-
tor. We therefore expect that in the presence of finite cou-
pling t�, the product string operator would gain an
expectation value even in the MI phase, which is of the order
of the kink density �t� /��2.

It is natural to ask what is the fate of the quantum phase
transition from the MI to HI phase in the two chain system
where we cannot define a clear cut distinction between the
two phases.

2. HI to MI transition

The critical theory for this transition is a Luttinger liquid
described by H+ �Eq. �7�� with g1=0. In this region, H− is

gapped, with the cos�2��,−� term more relevant than the
cos�2��,−� term. We may therefore assume that the ��,−
fields are pinned at the minimum of the cosine potential. The
effective low energy Hamiltonian in the �� sector is written
as follows:

HMI→HI = �
�
� dx

ũ�

2 	K̃���x
��2 +
1

K̃�

��x���2

+� dx

g1

��a�2cos��2�+�cos��2�−�

+ g7� dx
1

��a�2cos��2
−� , �23�

where the bare values are ũ�=u�
�1�

2g5K+

�u+
, K̃�

=K+ /�1�
2g5K+

�u+
, and g7� t�. Here we have replaced

cos���,−� by its nonzero expectation value. Note also that
since the fields ��,− are pinned, the gv�

�2� term in Eq. �21�
�which contains cos���,−�� is strongly irrelevant at this criti-
cal point, and therefore it was omitted in Eq. �23�. We will,
however, consider its effect on the phase diagram in what
follows.

The Hamiltonian �23� is identical to the effective Hamil-
tonian derived in Ref. 14 for a system of two Bose-Hubbard
chains coupled by an interchain hopping term. The only dif-
ference is that here, due to the extended interaction terms, a
wider regime of parameters is accessible in Eq. �23�. Of par-
ticular interest is the transition point from the HI to the MI
phase, where g1=0 �which was only possible in the nonin-
teracting limit in Ref. 14�.

For completeness, we will now review briefly the RG
analysis of HMI→HI in Eq. �23�, following Ref 14. The
leading-order RG flow equations are:

dg1

d�
= �2 −

K̃+

2
−

K̃−

2
�g1

dg7

d�
= �2 −

1

2K̃−
�g7

dK̃+

d�
= −

K+
2g1

2

16�2

dK̃−

d�
= −

K+
2g1

2

16�2 +
g7

2

8�2 �24�

The fate of the system is determined by the competition be-
tween the g7 and g1 terms, which contain the dual cosine
terms cos��2
−� and cos��2�−�, respectively. If g1 domi-
nates, then the system will be in a HI-like phase �for g1�0�
or an MI-like phase �for g1�0�. If g7 dominates, then a new
phase is stabilized. Note that at the g1=0 critical point, the g7

term is relevant for K̃−�
1
8 .

We can use the flow �Eq. �24�� to determine the form of
the phase boundaries that separate the new g̃t�

dominated
phase from the HI and MI phases. Imagine that we start from
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a point on the critical line between the MI or HI and the large
g̃t�

phases, �g̃t�,c ,g1,c�, where both g̃t�,c and g1,c are small.
Integrating the leading-order flow equations, we find
that this point is mapped to the point

�t�,c��0 /��2−1/�2K̃−� ,g1,c��0 /��2−K̃+/2−K̃−/2�, where �0 /��1
is the RG scaling factor. Clearly, this point must also be on
the critical line. Therefore the critical line must be of the

form14 t�,c� �g1,c�� where �=
2−1/�2K̃+�

2−K̃+/2−K̃−/2
. For weak to inter-

mediate interactions, this gives ��1.
To elucidate the nature of the new phase that forms be-

tween the Mott and Haldane insulators for nonvanishing t�,
we consider the possible subleading interactions that may
become relevant in this phase. The single chain even sector
Hamiltonian H+ �Eq. �7�� can contain higher harmonics of
the form cos�2n��,+� with n�1. However, when expanded
in terms of ��= ��1,+��2,+� /�2, these terms are seen to be
irrelevant since they always contain the odd field �−, whose
conjugate 
− is pinned. The term cos��8�+� can also be
generated to higher orders in the bare couplings. �For ex-
ample, such a term is generated during the RG flow to sec-

ond order in g1.� This term has a scaling dimension of 2K̃+,

therefore it is relevant for K̃+�1. This represents a strong
interaction, therefore one may still expect that for small to
moderate U, V, and interchain coupling, this term would be
irrelevant. In that case, the intermediate finite t� phase is
gapless, and characterized by power-law correlations. Using
the bosonized expression for the boson creation operator �Eq.
�11��, the off-diagonal correlation function in this phase is

b��x�†b��0�� � ei
+�x�/�2e−i
+�0�/�2� �
1

�x�1/4K+
, �25�

where we have replaced cos��1,2−� and cos��2
−� by their

nonzero expectation values. Therefore, K̃+ can be estimated
numerically in the gapless phase by measuring the power-
law decay of this correlation function. We conclude that the
phase penetrating between the HI and MI at finite t� is a SF
phase that remains stable as long as the above correlation
function decays with a power smaller than 1

4 .
In Ref. 14, it was found that turning on interchain tunnel-

ing between two chains that are in the MI phase can drive a
transition to a superfluid at a critical value of t�. Here, we
showed how this transition drops to t�=0 as one approaches
the MI-HI critical point.

The actual value of the Luttinger parameter K̃+ can be
calculated reliably only in the weak-coupling regime. To es-
timate it for strong coupling, we use numerical DMRG simu-
lations �Sec. III�. If either the intrachain U, V, or the inter-

chain V� are increased sufficiently, K̃+ can be driven below
the critical value of 1. Then the system would undergo a
Kosterlitz-Thouless �KT�-type transition to an insulating
phase.

We finally note that in the limit of vanishing interchain
tunneling t�=0, but finite interaction V��0, no intermediate
SF phase is formed near the MI to HI phase boundary. The
interchain coupling is in this case marginally irrelevant at the

critical point, affecting only a renormalization of the Lut-
tinger parameter.

3. HI to DW transition

This transition is of the Ising universality class.12,24 It is
controlled by the odd sector single chain Hamiltonian H−
�Eq. �8��, which describes a competition between the terms
cos�2�−� and cos�2�−�. The transition to the DW phase oc-
curs when the latter term becomes more relevant, which for
small g2 and g3 happens at K−=1. For this value of K−, the
theory �Eq. �8�� can be refermionized and written as a qua-
dratic Hamiltonian of Dirac fermions with a mass term pro-
portional to g2 and a pairing term proportional to g3. The
model is diagonalized when formulated in terms of two Ma-
jorana fields.25 At the critical point g2=g3 �and K−=1�, one
of these Majorana fields becomes massless. A massless Ma-
jorana theory is equivalent to an Ising critical point.

Ht�
is clearly irrelevant at the critical point, since it con-

tains cos��2
−� while the dual field �− is pinned. The only
effect this term could have is a slight bending of the HI to
DW phase boundary.

On the other hand, we show below that HV�
is a relevant

perturbation at the Ising critical point. First, we can replace
the operator cos��2�−�−cos��2�+� appearing in HV�

by its
nonzero expectation value. �Note that these operators involve
only the even modes ��,+ of each chain, and the even sector
Hamiltonian is not close to its critical point.� Now in order to
determine the scaling dimension of HV�

, we need the scaling
dimension of the operators cos��1/2,−� at the critical point. As
mentioned above, there is a correspondence, via the mapping
to a the Majorana theory, between these operators and the
two Ising models that describe the odd sector Hamiltonain
close to the critical point. The cos��1/2,−� operators corre-
spond to products of the spin operators of the two Ising
models.23,27 However since only one of these Ising models
becomes critical at the transition from HI to DW the operator
cos��1/2,−� has the scaling dimension of Ising spins in 1+1
dimensions at criticality, which is 1/8. HV�

is thus strongly
relevant. This can also be understood simply by the fact that
at the transition to the DW phase, the density wave suscep-
tibility of each chain diverges, and therefore the density-
density coupling between the two chains is strongly relevant.
HV�

then drives a transition to a density ordered phase with
the order parameters of the two chains locked to each other.
The high V� phase is thus not distinct from the V�=0 DW
phase.

The HI-DW phase boundary at finite V� can be obtained
using the same scaling argument as we used before for the
phase boundary between the HI or MI and the large t�

phases. This gives that near the V�=0 critical point, the criti-
cal line is of the form V�,c� �Vc−V�7/4, where Vc is the criti-
cal value for the transition of the single chain from the HI to
the DW phase �which is Vc= �U+3�t� /2 in the weak-
coupling limit�.

In this section, we studied weak coupling between two
chains. The main results are summarized in the phase dia-
gram plotted in Fig. 3. The case of an infinite array of chains
is not expected to yield qualitatively different results in the
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weak interchain coupling limit. The main difference would
be that the intermediate superfluid state would in this case
support true long-range order instead of power-law correla-
tions.

III. DMRG RESULTS

In this section, we present numerical results to support the
predictions of the field theoretical analysis from the previous
sections. To this end we compute the ground state and lowest
excitations of the extended Bose-Hubbard models �1� and
�2�, using the density matrix renormalization group.31 The
section is organized as follows. We first treat the case of a
single unperturbed chain �Sec. III A� at filling of n̄=1 boson
per site. Expanding on the results of Ref. 6, we focus on the
interplay of the nonlocal string and parity correlations near
the transition between the MI and HI phases. In Sec. III B,
we investigate how a perturbation that breaks the lattice in-

version symmetry affects the MI-HI phase transition. We find
that such a perturbation gaps out the critical point and thus
eliminates the phase transition, in agreement with the field
theoretical prediction. In Sec. III C, we move on to address a
two-leg ladder with only interaction coupling between the
two chains. Finally in Sec. III D, we analyze the two-leg
ladder with tunnel coupling. As expected, we find that this
coupling leads to an intermediate superfluid phase between
the Mott and Haldane insulators.

Before proceeding, let us give the essential technical de-
tails of the numerical calculations. To expand the domain of
the HI phase we add to Eq. �1� the next-nearest-neighbor
interaction �V /8��i	ni	ni+2. The DMRG calculations are
performed with open boundary conditions, while keeping
m=250 states per block. As usual in bosonic problems, we
also need to truncate the Fock space of site occupations. For
calculations presented in this section, we allow the four oc-
cupation states n=0,1 ,2 ,3. Including one more occupation
state per site had a negligible effect on the results in a sample
of representative calculations. The maximum number of sites
in the calculations was 256, including chains of length L
=256 and two-leg ladders of L=128.

A. Unperturbed single chain

To map the phase diagram of a single chain �Fig. 4�a��, we
compute the parity, string, and density wave correlations in
the ground state. The long-distance behavior of these corre-
lations as a function of V for a particular value of the on-site
interaction U is plotted in Fig. 4�c�. As expected, the MI is
characterized by nonvanishing parity “order,” the HI by
string order, and the DW phase by nondecaying density cor-
relations. The finite value of the string and parity correlations
seen in the figure at the MI-HI critical point is due to the
finite system size �L=256�. The field theoretical analysis pre-
dicts power-law decay of these correlation functions with a
nonuniversal power �, which is directly related to the decay
exponent � of the single-particle density matrix via the rela-
tion �=1 / �4��. Along the line of critical points separating
the HI and MI phases, the exponents are predicted to run in

V

V

(U+3πt)/2U/2

MI SF HI DW

DWMI HI

(U+3πt)/2U/2

t⊥

V⊥

FIG. 3. Evolution of the phase diagram with interchain coupling
predicted from bosonization. �a� Plane of the nearest-neighbor in-
teraction V versus t� �interchain tunneling� at fixed on-site interac-
tion U and no interchain repulsion. �b� In the plane of V versus V�

�interchain repulsion� at t�=0 and fixed U.
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ÔDW

V/t

∆c/t ∆n/t

FIG. 4. �Color online� �a� Phase diagram of a single unperturbed chain in the space of �U / t ,V / t�, obtained from the numerical
calculations. �b� The charge ��� and neutral ��� gaps along the same cut through the three insulating phases. The charge gap vanishes at
the MI-HI transition, whereas only the neutral gap vanishes at the transition to the DW phase. �c� The parity ���, string ��� and Density
wave ��� order parameters as a function of V / t along a line of constant U / t=6. The string and parity orders are defined as the square roots
of Eqs. �12� and �13�, respectively.
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the range 1 /4���1. These predictions are consistent with
the power-law fits of the relevant correlation functions at the
critical point, as presented in Fig. 5 �See explanation below
on how the critical point is located in the calculations�.

Also shown in Fig. 4�a� is the superfluid �SF� phase at low
U ,V, which is identified by measuring the decay exponent of
the single-particle density matrix �. The SF phase is stable
when ��1 /4.

In addition to ground-state correlations, we compute the
gap to “charged” and “neutral” excitations. The neutral exci-
tation gap �n is obtained by targeting the lowest excitation in
the sector with exactly n̄=1 particles per site. The charge gap
is defined by �c=E0�+1�+E0�−1�−2E0�0�, where E0��1�
are the ground-state energies of the system with one more/
less particle. There is an interesting complication in extract-
ing the bulk gap in the HI phase. For open boundary condi-
tions this phase supports low energy edge excitations. We
can identify these states by inspecting the density profile of
the wave functions. The appearance of the edge states coin-
cides with the transition to the HI phase and facilitates the
most precise determination of the transition point in a finite
system. In most cases, however, we are interested in the bulk
properties. To extract the bulk charge and neutral gaps, we
lift the edge excitations to high energy by applying a suffi-
ciently strong field at the edges: Vedge�	n1−	nL�. The gaps
are plotted in Fig. 4�b� for a cut of the phase diagram at
constant U / t=6. It is seen that both the charge and neutral
gaps vanish at the transition from the MI to the HI phase. On
the other hand, only the neutral gap vanishes at the transition
from the HI to the DW phase.

B. Breaking of lattice inversion symmetry

Following the predictions of Sec. II C we add the term

	H = ��
i

�	nibi
†bi+1 + H.c.� �26�

to the Hamiltonian �1�. This is one of the simplest terms that
break the lattice inversion symmetry. Based on the predic-

tions of Sec. II C, we expect that the quantum critical point
separating the HI and MI phases would be eliminated in the
presence of this term and an adiabatic connection between
the HI and MI would be facilitated. This is indeed what is
seen from the calculated charge gap in the presence of the
perturbation. In Fig. 6, we plot the charge gap along a cut
through the phase diagram with U / t=6, as a function of V / t.
We see that for a nonvanishing value of �, the gap does not
vanish and the phase transition is eliminated.

C. Two leg ladder with interchain repulsive interaction

We move on to treat two-leg ladders. The simplest cou-
pling between two chains is via the density-density interac-
tion V��in1,in2,i. The field theoretical analysis predicted that
this interaction is marginal at the transition between the MI
and HI phases. In other words, it leaves the transition in tact,
affecting only a renormalization of the Luttinger parameter
that controls the decay of the single-particle density matrix at
the critical point.

At the transition from HI to DW the interaction coupling
V� is expected to shift the critical point to lower values of V.
The change in both phase boundaries with increasing V� are
plotted in Fig. 7. The transition points are inferred from the
vanishing of the charge gap at the MI-HI transition and the
emergence of DW order.

D. Two leg ladder with interchain tunnel coupling

Finally, we include the interchain tunneling −t��bA,i
† bB,i

+H.c.�. According to the field theoretical analysis of Sec. II,
this is a relevant coupling at the MI-HI critical point. An
intermediate phase is predicted to occur between these two
insulators. In fact the intermediate phase is expected to be a
superfluid if the parameter K+�1. It would seem that rather
strong interactions are required to violate this criterion. How-
ever, we note that K+ may be highly renormalized and not
easily estimated from the microscopic parameters. Therefore
only the numerical calculations presented in this section can
confirm the nature of the intermediate phase.

10
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1

�b†0br� + H.c.

ν = −0.61

�ÔS(0)ÔS(r)�

α = −0.48

α = −0.43

r

�ÔP (0)ÔP (r)�

FIG. 5. �Color online� Decay of the parity and string correla-
tions and of the single-particle density matrix at the HI-MI transi-
tion. The power-law fits are consistent with the field theoretical
predictions for the relations between the different decay exponents
�see text�.
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FIG. 6. �Color online� Charge gap as a function of V / t at con-
stant U / t=6 for different values of the inversion-symmetry-
breaking perturbation. � is defined in Eq. �26�.
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The results of the calculations are summarized in Fig. 8.
The charge gap is shown as a function of V / t in a cut through
the phase diagram at constant U / t. For increasing t�, we see
a that a gapless phase opens up between the MI and HI
phases. Up to numerical accuracy and finite-size effects the
results are consistent with the prediction that the gapless
phase is established for any nonvanishing value of t�. The
exponent � with which we fit the decay of the single-particle
correlation function is shown as a function of V / t. The fact
that ��1 /4 in the domain of vanishing gap is consistent
with a superfluid phase, which is destabilized in a KT tran-
sition on crossing to either the HI or MI phases. We note that
we find similar result also for different values of U / t for
which the HI phase can be realized.

IV. SUMMARY AND DISCUSSION

The purpose of this work was to investigate fundamental
problems concerning the nature of nonlocal string order pa-
rameters, which were brought into focus by the possible re-
alization in systems of ultracold atoms.6 In particular, we

addressed the question of how static perturbations, which
couple to local physical operators can nonetheless influence
quantum phases and phase transitions that involve the highly
nonlocal order parameter.

A key result of this analysis is the discovery of a surpris-
ing connection between the string order and breaking of the
lattice inversion symmetry �Note that breaking of particle-
hole symmetry is also needed, but this is anyway broken at
the outset in the Bose system�. In the context of this work,
the two phases that are characterized by a nonlocal order
parameter are the Haldane insulator, which sustains string
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FIG. 7. �Color online� Effect of interchain interaction coupling
on the phase diagram. �a� Calculated DW order parameter as a
function of V / t at constant U / t=6 for different values of the inter-
chain interaction V�. �b� Calculated charge gap on the same cut
through the phase diagram and the same values of V�. �c� Evolution
of the phase boundaries with V� inferred from the calculations.
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FIG. 8. �Color online� Effect of interchain tunnel coupling on
the phase diagram. �a� Calculated charge gap as a function of V / t at
constant U / t=6 for different values of the interchain tunneling t�.
The gaps were obtained by extrapolation to an infinite chain
through finite-size scaling analysis. The fact that the estimate for the
gap are sometimes slightly negative is due to errors in the extrapo-
lation. Note the gapless phase that appears between the two insu-
lating phases. �b� Power-law fit for the spatial decay of the single-
particle density matrix for the same cuts through the phase diagram.
The fact that ��1 /4 in the gapless phase confirms that it is indeed
a superfluid. The transition to the gapped phase seems to occur at
the universal exponent �=1 /4 consistent with a Kosterlitz-Thouless
transition. �c� Evolution of the phase boundaries with t� inferred
from the calculations.
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order, and the Mott insulator, that supports nonzero expecta-
tion of the parity operator. We find that a perturbation that
breaks the lattice inversion symmetry gaps out the critical
point between the two phases. Correspondingly, the sharp
distinction between them is eliminated, in the sense that non-
vanishing string order is induced in the Mott phase and par-
ity expectation value in the Haldane phase. This is similar to
the effect of a symmetry-breaking perturbation on a conven-
tional phase transition involving spontaneous breaking of the
same symmetry. But curiously, neither the Mott or Haldane
phase involves spontaneous breaking of the lattice inversion
symmetry.

The seemingly mysterious connection between lattice in-
version symmetry and the string operators is elucidated by
the effective long-wavelength description of the problem.
The symmetry-breaking field sin�2�+� has the symmetries of
a local dipole field: it is odd under both lattice inversion and
particle-hole transformations. Incidentally, this operator can
also be decomposed as a product of the long-wavelength
expressions for the string sin��+� and parity cos��+� opera-
tors. Thus, in each phase, only one �nonlocal� factor of the
local “dipole” field gains an expectation value and so inver-
sion symmetry remains intact. But this also implies that in
each of these phases the external perturbation becomes in
effect a direct coupling to the nonlocal order parameter of the
other phase. For example, in the MI phase where ÔP�
= cos �+��0, we have that � sin 2�+��ÔP�ÔS, which is
essentially an ordering field for the string order.

It is relatively easy to apply such a symmetry-breaking
field in an optical lattice realization of the transition from
Mott to Haldane insulator. The principle has already been
demonstrated successfully in experiments that created a lat-
tice of asymmetric double wells using a secondary laser with
half the wavelength of the main laser.33,34 A straight forward
extension would be to oscillate the secondary laser in time.
This can be used to measure the dynamical response of this
system to the local dipole field, an interesting theoretical
problem, which we leave for future work.

The second part of our analysis addressed the effect of
coupling between parallel one-dimensional chains, which is
inherent to realization with an optical lattice. As a simple
model for the coupled chains we analyzed the case of two
coupled chains, using a bosonization approach in Sec. II D
and numerical simulations with DMRG in Secs. III C and
III D. The natural couplings to consider are interchain repul-
sion due to the dipolar moment of the atoms or molecules
and the interchain tunneling. The interaction coupling turns
out to be essentially trivial and does not change the structure
of the phase diagram. The interchain tunnel coupling, on the
other hand, has a dramatic effect. Like the inversion-
symmetry-breaking perturbation discussed above, this pertur-
bation eliminates the distinction between the MI and HI
phases. However, instead of gapping out the critical point, it
expands it into a phase. More precisely, a weak interchain
tunneling gives rise to an intermediate superfluid phase,
whose domain grows quickly with the coupling strength. The
transition from the superfluid to either the Haldane or Mott
insulator is Kosterlitz-Thouless like and occurs at the univer-
sal value of the decay exponent of the single-particle density
matrix.

The evolution of the phase diagram with increasing inter-
chain coupling for the case of many coupled chains and more
general interactions deserves further theoretical study. This
may provide a controlled route for investigating the cross-
over from one to two dimensions. Of particular interest is the
question of possible generalizations of the string orders to
the case of two- �or at least quasi-one-� dimensional systems.
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APPENDIX A: STRING CORRELATIONS AT WEAK
INTERCHAIN COUPLING

In this appendix, we derive the effect of weak interchain
coupling terms on the long-range string correlations in the HI
phase. For simplicity, we will study this within the effective
spin-1 model that results from restriction to three occupation
states n=0,1 ,2 on each site:21,22

Heff = −
tn̄

2 �
ij

�Si
+Sj

− + H.c.� +
U

2 �
i

�Si
z�2

+ V�
ij�

Si
zSj

z − ��
i

Si
z − tn̄��

ij�
�Si

−�Si
z + Sj

z�Sj
+ + H.c.�

−
tn̄�2

2
�Si

zSi
+Sj

−Sj
z + Si

+Si
zSj

zSj
−� �A1�

where �=�2−1 for a system single average occupation.
Here, we shall set �=0, essentially neglecting terms that
break the particle-hole symmetry. Possible effects of these
terms, which deserve further study, will be briefly discussed
at the end of this section.

Next, we follow Kennedy and Tasaki and define a nonlo-
cal unitary transformation of the spins on all lattice sites

U = �
�jk�j�k

ei�Sj
zSk

x
�A2�

The Hamiltonian gains an unusual, but nonetheless local
form, in terms of the transformed spin variables:

H̃ = − J�
j

S̃j
xS̃j+1

x − S̃j
y exp�i�S̃j

z + i�S̃j+1
x �S̃j+1

y

− V�
j

S̃j
zS̃j+1

z +
U

2 �
j

�S̃j
z�2. �A3�

H̃ has an explicit Z2�Z2 symmetry, generated by � rotations
of the transformed spins around the main axes. Furthermore
the nonlocal string correlations of the original spins map to
standard two point correlations of the transformed spins. In
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the Haldane phase, the Z2�Z2 symmetry is broken, and the
transformed spin operators gain a finite expectation value.

We can therefore treat the Haldane phase of H̃ with a
mean-field approximation,13 in which the four degenerate
broken-symmetry ground states are given by the product
wave functions:

���,�� = �
i

�cos ��0�i + � sin ���1�i� . �A4�

The labels � ,�= �1 correspond to the signs of the two Z2

order parameters S̃i
x�, and S̃i

z�. The elementary excitations in
this phase are domain walls separating any two of the degen-
erate ground states. Interestingly, such domain walls are gen-
erated by acting on a ground state with the original spin
operators:

Si
x = S̃i

x exp�i��
j�i

S̃j
x�

Si
y = exp�i��

j�i

S̃j
z�S̃i

y exp�i��
j�i

S̃j
x�

Si
z = exp�i��

j�i

S̃j
z�S̃i

z �A5�

Thus, Si
x creates a kink in � �S̃i

z��, Si
z creates a kink in �

�S̃i
x��, and Si

y creates kinks in both order parameters. As in
any Ising system, proliferation of a finite density of domain
walls leads to destruction of the order. This is the mechanism
by which interchain coupling destroys the long-range string
correlations.

Consider first the perturbative effect of the interchain in-
teraction HV�

=V��iS1i
z S2i

z . The correction to the ground state
to first order in V� /� consists of a single domain wall in the

S̃i
x� order parameter in each chain. If we consider higher

order terms, the weight of a configuration with n domain
walls per chain scales as �V� /��n and the density of domain

walls of S̃i
x� in the ground state is �V� /�. Therefore, we

expect the Sx string correlations to decay exponentially over
a correlation length �x�� /V�. On the other hand the Sz

string order is left unmodified by this perturbation.
We can apply a similar argument to the interchain tunnel-

ing term Ht�
=−t��i�Si

xSj
x+Si

ySj
y�.

APPENDIX B: ALTERNATIVE BOSONIZATION SCHEME

In Sec. II, we derived the continuum field theory in a
rather indirect way. In the first step, the EBHM �Eq. �1�� was
mapped to the effective spin-1 model �A1�. We then followed
the procedure developed in Refs. 11 and 12 for such spin
systems, which involves: �i� splitting a spin-1 chain into two
effective spin-1/2 chains; �ii� fermionizing the parallel spin-
1/2 chains with a Jordan-Wigner transformation; �iii�
Bosonizing the fermions.

There is a standard procedure to “bosonize” a bosonic
Hamiltonian,17,32 and it is tempting to ask why not to use this
more direct approach to derive the field theory that describes

the transitions between the MI, HI, and DW phases. This
turns out to be not so trivial.

The standard scheme is based on expansion of the fluc-
tuations of the discrete particle density to slow modes de-
scribing small deviations from the fundamental period set by
the average density and its harmonics kn=2�n�0:

��x� → 	�0 −
1

�
�x��x�
�

n�Z
ei�knxi−2n��xi��. �B1�

Thus, slow variations around the Fourier component k=nk0
of the density are given by the field cos�2n��x��. A finite
expectation value for this field implies a static density wave,
with the periodicity �n=2� /kn=1 / �n�0� in the ground state.
Clearly the period 2a density generated at unity filling by a
strong nearest-neighbor interaction V is not captured in this
expansion �here, �0=1 /a, with a the lattice spacing�. It is
therefore not surprising that the Haldane insulator, which in-
volves fluctuations at the same length scale and is in some
sense a precursor of the DW phase, cannot be described in
this approach either.

We now propose a modified bosonization procedure that
will enable us to derive the low energy field theory �Eq. �6��.
The key idea is to split a bosonic chain into two auxiliary
chains without changing the total number of bosons. In other
words, a single chain with one boson per site maps to a
ladder with one boson per rung, or one boson in every two
sites in each of the auxiliary chains. Next, each of the half
filled chains is bosonized separately in the standard way

b�i = ei���xi�	 1

2a
−

1

�
�x���xi�
1/2

�
m�Z

ei�m�/axi−2m���xi��

	���xi� = 	 1

2a
−

1

�
�x���xi�
 �

m�Z
ei�m�/axi−2m���xi�� �B2�

where �=1,2 is the auxiliary chain index. Note that the cor-
rect wave vector to describe the DW has emerged from the
inverse density of each of the split chains. We anticipate that
the density wave of the physical chain will appear as in-
phase locking of density waves in the two auxiliary half
filled chains.

We now map the EBHM �Eq. �1�� to a closely related
model on the auxiliary ladder by taking bi→ �b1i+b2i� /�2
and ni→n1i+n2i. Choosing a slightly different extension of
the BHM to the auxiliary ladder system should not change
the essential structure of the phase diagram. The naive con-
tinuum limit of this model can now be taken by using the
identities �B2�. For the on-site interaction term we obtain:

U

2 �
i

�n1,i + n2,i − 1�2 �
Ua

2
� dx� 1

�2 ���+�2

−
1

a2cos�2�+�cos�2�+�

+
1

a2 �cos�2�+� + cos�2�−��� ,

�B3�
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where ����1��2, and we have kept only the most rel-
evant terms. Similarly, the nearest-neighbor interaction term
leads to

V

2 �
i

�n1,i + n2,i − 1��n1,i + n2,i − 1�

� Va� dx	 1

�2 ���+�2

−
1

a2cos�2�+�cos�2�−� −
1

a2 �cos�2�+� + cos�2�−��
 .

�B4�

Finally, the hopping term translates to

t

2�
i

�
�,�=1

2

b�i
† b�i+1 + H.c.

�
t

2
� dx	�a���+�2 + a���−�2��1 + cos�2�−��

−
4

a
cos�2�+�cos�2�−��1 + 2cos�2�−��

+ �−
a

4�2 ���−�2 +
4

a
cos�2�+�

+
4

a
cos�2�−� −

2

a
�cos�2�−�
 . �B5�

Here, �����1��2� /2. Note that we have essentially the
same degrees of freedom here as in Sec. II A. In the MI and
HI phases, the operator cos�2�−� is relevant and we can
safely replace it with its expectation value C−, which is of
order 1. In this case, the above expressions simplify and give
precisely the field theory �Eq. �6�� with the parameters:

K+ = �� t
2 �1 + C−�

U
2 + V

, K− = 2��1 + C−

C−

g1 = g2 = �2a�U

2
− V − 2tC−�, g3 = − �at

g4 = − �2a	U

2
+ V + 2t�1 + 2C−�
 �B6�

Note that the bare value of the Luttinger parameter K− of the
antisymmetric fields is large �K−�2��, consistent with tak-
ing C− of order 1.

Before closing this appendix, let us make a few remarks
concerning the new scheme. First, note that the bare value of
the Luttinger parameter K+ implies a reasonable estimate for
the phase boundary between the superfluid and insulating
phases. The system should be superfluid when the renormal-

ized Luttinger parameter K̃+ exceeds 2. Estimating this crite-
rion with the bare value given above, we get the approximate
criterion �U+2V� / t��2 /4. By contrast, the spin-1 mapping
predicted that there is no superfluid phase in the region U
�0 and V�0. Indeed we do not expect the spin-1 mapping,

which involves truncation to three occupation states, to hold
when the on-site repulsion is not sufficiently strong. Thus,
the new scheme improves on the spin one mapping in that it
gives reasonable predictions for the phase diagram already at
the level of the naive continuum limit.

Another notable difference between the field theory of
Sec. II A and the new scheme is a � shift in the definition of
the field �+. Hence in the bosonic scheme �+�� corre-
sponds to the MI phase whereas �+�0 to the HI. This is
consistent with the physical interpretation of the variable �+
in the new scheme. Consider first the DW phase, which cor-
responds to a phase-locked density wave on the two auxiliary
chains. For this we need �1=�2�0. Since �+ is not critical
at the transition from DW to HI we expect �+�0 also in the
HI phase.

APPENDIX C: THE STRING AND PARITY ORDER
PARAMETERS

The HI and MI phases do not support long-range order in
any local order parameter. Instead, they are characterized by
the nonlocal string and parity order parameters �Eqs. �15�
and �14�, respectively�. In order to obtain the bosonized ex-
pressions for these order parameters in the effective-field
theory, we need to find their continuum limit. Here we pro-
pose a continuum form of these operators using general con-
siderations based on the asymptotic “particle-hole” symme-
try of the model at low energy. More microscopic derivations
can be found in Refs. 26 and 29.

In the following argument, we will assume that it is le-
gitimate to truncate the Hilbert space to the three lowest
occupation numbers �	nj =0, �1�. 	n can then be repre-
sented by a pseudospin-1 degree of freedom, defined by Sj

z

=	nj. The model �1� is then replaced by the effective spin-1
model of Eq. �4�, which leads to the same low energy effec-
tive theory �Eqs. �7� and �8��. We have neglected terms that
break the symmetry between Sj

z=−1 and Sj
z=1 �“particle-

hole” symmetry�. These terms appear in Eq. �A1�. They are
irrelevant at low energies, so neglecting them should not
change the long-distance behavior.

Next, we need to find the continuum limit of the operators

ÔP�j� and ÔS�j�. Taking the naive continuum limit of ÔP�j�,
we get ÔP�ei�+ �since � j�iSj

z→�xdx�Sz�x��= 1
��+�x�, as-

suming that �+�−��=0�.28–30 To get a hermitian operator,
ei�+ has to be symmetrized. To find the correct symmetriza-

tion, we note that ÔP�j� should be symmetric under a
particle-hole transformation �which correspond under

bosonization to �+→−�+�. Therefore, ÔP should have the
form

ÔP � AP cos��+� + . . . �C1�

where AP is a nonuniversal constant, and we have truncated

additional subleading operators of this sum. ÔS�j� also con-
tains the same ei�+ factor, but it should be antisymmetric
under a particle-hole transformation, which suggests the gen-
eral form

ÔS = AS sin��+� + BS�x�+ cos��+� + . . . �C2�
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The second contribution in Eq. �C2� is expected from na-
ively bosonizing Eq. �15� and taking Eq. �C1� into account.
However, a more careful treatment of the operator product
expansion for this expression �26� shows that the first term is
also present. The sin��+� term is the most relevant one. From
Eqs. �C1� and �C2� we see that in the MI phase, where �+ is

pinned around 0, we expect that ÔP��0, ÔS�=0, while in

the HI �+ is pinned around �� /2, therefore ÔP�=0, ÔS�
�0. In order to test the validity of these results for the
EBHM �Eq. �1��, where particle-hole breaking terms exist,
we evaluate the string and parity correlation functions in
Eqs. �12� and �13� numerically across the MI→HI transition.
The results, summarized in Figs. 4 and 5, are consistent with
Eqs. �C1� and �C2�.
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