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Abstract

The current paper models complex trend-seasonal interactions within a Bayesian frame-
work. The contribution divides in two parts. First, it proves, via a set of simulations, that a
semiparametric specification of the interplay between the seasonal cycle and the global time
trend outperforms parametric and nonparametric alternatives when the seasonal behavior is
represented by Fourier series of order bigger than one. Second, the paper uses a Bayesian
framework to forecast Swiss immigration merging the simulations’ outcome with a set of priors
derived from alternative hypothesis about the future number of incomers. The result is an ef-
fective symbiosis between Bayesian probability and semiparametric flexibility able to reconcile

past observations with unprecedented expectations.
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1 Introduction

In a world characterized by low fertility and increasing life expectancy, human mobility has gained
prominence in driving population change. Any forward-looking policy should be designed around
its forecast. However, a common belief around its non-repeatability and non-traceability has left
most migration projections dependent upon deterministic methods until the mid 1990s. Neverthe-
less, being unquestionable that forecasting is not only about modelling, but also about quantifying

uncertainty, these naive approaches were progressively abandoned and substituted by standard

probabilistic techniques like time series analysis (Lee & Tuljapurkar} 1994; De Beer, |1997; Keilman,|
Pham, Hetland, et al., 2002; Wilson & Bell, 2004; Raymer, Abel, & Rogers, 2012) and generalized
linear regressions (Schmidt & Fertig, 2000; |Alvarez-Plata, Briicker, & Siliverstovs| {2003} |Cohen,|
Roig, Reuman, & GoGwilt], |2008; (Cappelen, Skjerpen, & Tgnnessen, |2015)).

Even though this transition represented a significant leap forward in statistical rigor
2004), it was not immune from criticism. In particular, the substitution of a subjective

approach with a set of data-driven methods has created a series of specifications unable to reconcile

the expectations of the researchers with the information contained in the data. This major short-
coming represents a significant threat to the precision of out-of-sample forecasts, especially in the
case of unique episodes. Suppose, for example, that a country signs a treaty which guarantees the
free movement of people from neighbouring nations. Any prediction which ignores such unprece-
dented event would most probably produce large errors.

A possible way to prevent this type of mistakes is to adopt a Bayesian prospective (Bijak &

Widniowskil, [2010; [Bijakl, 2010} Billari, Graziani, & Melilli, [2014; [Azose & Raftery], 2015} [Azose,

Sevéikova, & Raftery, [2016) able to condition the future uncertainty on past information and future

intuitions, conjugating the "correspondence to the observed reality" with "the awareness of multiple

perspectives" (Gelman & Hennig| |2017)). This more convoluted practice is implemented at the ex-

penses of a closed-form solution and the corresponding reliance on numerically intensive algorithms
which require an a priori hypothesis about the prior distribution of the structural parameters and
an a posteriori sampling of their probability distribution. Frequently, such a computationally in-
tense way to manage the data is compensated assuming a linear relation between the dependent

and the independent variables. This simplification fastens the speed of the algorithm’s rate-of-

convergence and delivers easy-to-interpret estimates (Blake & Mumtaz, |2012). Nonetheless, a rigid

linear specification might fail to describe the migration process ignoring the complexity of global
and seasonal trends, as well as, the anomalies related to the interdependency across migration flows.
The present paper explores the possibility of a non-linear interaction between long and short run
migration within a Bayesian framework. Empirically, the global tendency is defined as a time
trend and the seasonality as a sum of Fourier series. Being particularly malleable, the latter can
conveniently model multiple seasonal spikes by simply increasing its order. These two components

become the arguments of an unknown bivariate smooth function, which relaxes the hypothesis that

trend and seasonality evolve independently (Koopman & Lee, [2009; [Hindrayanto, Jacobs, & Os-|
2014). The nonparametric nature of the interaction does not impose a rigid structure to the

trend-seasonal co-movements, returning an Additive Model (AMI). At the same time the Bayesian

prospective reconciles the AMI with the long standing demographic tradition of including experts’
opinions into the predictions through the use of informative priors.

In order to test the statistical properties of the model we run a set of simulations. The AMI out-



performs, in terms of predictive accuracy, the alternatives, especially if the seasonal component has
more than one spike. Given its good performance, we train the AMI on Swiss monthly data to
test its capacity to predict the number of arrivals. Like in the simulation case, the AMI predicts
the left-out data better than all the other specifications, suggesting, both for long and short run
predictions, a non negligible amount of non-linear trend-seasonal interaction. Consequently, we set
up alternative forecast scenarios for Swiss immigration flows until 2023 by making an active use of
informative priors. Finally, we extend the model to a longitudinal analysis, producing age specific
forecasts. This last case reduces the impact of the interaction, while still returning high degrees of

non-linearity.

2 Methodological Framework

2.1 Model Construction

The basic model of the paper decomposes the log-transformation of the number of monthly arrivals,

log Y; = y¢, into a trend and a seasonal component,
y¢ = trend; + seasonality, +e;,, t=1,2,..,T. (1)

The first element of equation is the global direction of the series, defined as ¢/T, while the
second one is the seasonal cycle obtained by averaging the "de-trended" series for each month over
all periods. The random part of the series, e;, is obtained removing the sum (trend; + seasonality,)
from the original time series.

The seasonal part of the regression can be parsimoniously modeled using a harmonic series. Recall-
ing Fourier theorem, a periodic function, with period p = 27 /w, can be rewritten using the cosine
function cos(w(t)). For example, an annual seasonal pattern (p = 12) has a frequency w = 7/6. All
the same, a model which includes only a cosine function would assume by default that the annual
peak is the first period of the season, normally January. In order to generalize this result, and allow
the model to shift the initial spike, it is sufficient to add a phase shifter, such that

seasonality, = a; cos(w(t) + 0), (2)

where 6 is the magnitude of the shift. Given that equation (2)) can be rewritten as the sum of cosine

and sine, it is possible to express the whole seasonality as
seasonality, = a; cos(w(t)) + b, sin(w(t)). (3)

Equation reproduces a cyclic behaviour with a single peak. In order to allow for multiple
spikes it is necessary to add further sine and cosine terms up to the desired order. For example the

N-th seasonality would be
seasonality, = a; cos(w(t)) + by sin(w(t)) + ... + v¢ cos(w(Nt)) + z¢ sin(w(Nt)), (4)

where [a¢, bt, ..., V4, 2] define discretionary amplitudes. Substituting equation into the funda-



mental model, allows us to rewrite (1) as a Linear Model with No Interaction (LMNI),

N
yr = Bo + Bitrend; + Z Bai(cosy +sing) + €, € ~ N(0,02), (5)

i=1

where, we simply sum the trend and the cyclical components using cos;; = cos(w(it)) and sin;; =
sin(w(it)).

Regression allows for multiple peaks of a seasonal component which does not need to be in
January. Furthermore, it accounts for the possibility that the unconditional mean of the weakly
stationary process y; is different from zero and equal to ;. However, it leaves unchanged the
fundamental assumption that y; can be expressed as a combination of short-run waves and of a
long-run component. Nonetheless, this does not always hold since seasonal times series often display
a cycle amplitude which varies for different stages of the trend. Said differently, there might be an
interaction between seasonality and trend, which transforms equation into a Linear Model with
Interaction (LMI),

N N
Y = Bo + Brtrend; + Z Bo; (COSit + sinit) + Z [Bs;trend; (sinit + COSit) + €. (6)

i=1 =1

A frequentist estimation of equation @ presents two major shortcomings. First, in contrast
to a long standing tradition in demographic studies, it does not allow to introduce a judgmental
component to the empirical analysis. Second, the interaction can impact on the number of in-
comers only linearly. This last restriction can be particularly limiting since there is no empirical
evidence supporting the idea that the interaction is linear or of any other specific functional form
like exp(trend; * (sin;; 4+ cos;¢)) (Koopman & Lee) [2009)). The combination of these two limitations
might translates into estimates far away in probability from the true unobserved parameters. In
order to see why, let us consider the following example. A researcher collects monthly migration in-
flows data to a small open economy well integrated in the global division of labour. An explanatory
analysis of the time series suggests that, historically, there is an interaction between the evolution
of the trend and the amplitude of the seasonality. In particular, the interaction changes for different
stages of the global business cycle, which is expected to expand in the upcoming months.

A short-run forecast based on a frequentist interpretation of equation would ignore the trend-
cycle interaction, while equation @ would only allows for a very specific impact of (trend, cos + sin)
on y. A Bayesian Additive Model with Interaction (AMI),

N N
yr = Po + f1(trend;) + Z f2i(cos; +singt) + Z f3i(trendy, cos;; +sing) + €, (7)

i=1 i=1

generalizes the previous expressions allowing the impact of all the explanatory variables to be
non-linear while including the expected distribution of the model’s parameter 5y and functions
[fi far DX, fai D, fai]. The flexible form of f3;(.) allows to compute complex and potentially
non-linear interactions between trend and seasonality, which might be driven by the business cycle.
Furthermore, a prior about the distribution of the explanatory variables can incorporate experts’
expectations about the increasing variability brought about by an unprecedented event such as the

completion of a commercial agreement or the burst of a war potentially improving the model’s



performance.
In order to see these two properties working in practice it is necessary to introduce the estimation

technique used to fit . Using a first order Fourier series with interaction,
yr = Bo + fi(trend;) + fo1(cosyy +sinyg) + fa1(trendy, cosyz +singg) + €, (8)

we illustrate the estimation process step-by-step. The first one is to choose which nonparametric
technique to implement. Among the different options, thin plate regression splines tend to outper-
form, at least in finite samples, more traditional alternatives, such as kernels, marginal integration
and local polynomial approximation (Wood, 2003). This method requires to choose a base for each

unknown function. For example, the nonparametric terms of equation (33)) can be re-expressed as

K,

f1() = Brxbix(trend,) (9)
k=1
Koy

fa1() ZZﬁzlkbmk(COSu +sing;) (10)
k=1
K3

f31(-) = Bsurbaik(trendy, cosy + sinyy), (11)
k=1

where (B1k, B21k, B31k) are unknown vectors of parameters, (b1x(.), ba1x(.), b31x(.)) are basis functions
and k =[1,2,..,K1], k=1[1,2,...,Ko1] and k = [1, 2, ..., K3;] are, respectively, the number of knots
used to fit f1(.), f21(.) and f31(.). Estimating equation using (9), and usually leads

to an identification problem. A possible wayout is to center each smooth, such that, le(kBk =0,

where
Xp = Xk, : Xy Xey] and By = [Br, : Breay © B,

with Xge, = [b11(.), bi2(), - bire, ()]s Xy = [b211(),b212(), s baaicy, ()]
Xy = [b311(),0312(), oy b31ks, (O Bry = [B11, P12, s Biky )T Bryy = [Bor1, Borz, oo, Barkyy |
and BKM = [Bs11, P312, ..‘,ﬁ31K31]T. To ensure lTXkBk =0, Xkﬁk is reparametrized using a single

Householder matrix Z, such that
X, =XiZ and By = ZBs.
Once the matrices have been centred the expected value of equation ,
E[y:|trend;, cosyy + siny¢] = Xyt 3, (12)

with 87 = [8L, B%1, Bk, Bksy] can be estimated using a standard likelihood function. How-
ever, if the number of knots is large enough, specification @, and would probably overfit
the data. Therefore, thin plate regression splines replace the standard likelihood with a penalized

one,

L(B) = 108) — 5 > Ab"SB, (13)
k



where, A\ is an unknown smoothing parameter and S is a linear modification of a penalty, which
measures the wiggliness of fi(-), fo1(-) and f31(-) as a quadratic form in the coefficients of the
function. Likelihood can be insert into a standard Bayesian procedure, setting the prior dis-
tributions of 8 and A, computing the likelihoods and sampling from the posterior distributions.

Further mathematical details are available in the Additional Material.

2.2 Simulations and Priors’ Selection

Equations , @ and are estimated using the Stan language provided by the brms package of the
statistical software R (Biirkner} [2017). The first step to calculate the regressions is to set the priors.
Given that, we want to test the properties of the different models via a set of statistical simulations,
we opt for weakly informative priors in order to validate the predictive power of the modeﬂ In
particular, for the parametric part, we use a multivariate uniform distribution defined between minus
infinity and plus infinity without correlation among the betas, such that 8 = [Bo, 51, >, B2i, »; B3il,

is distributed as
B ~ U(—o00,+00,0). (14)

The nonparametric part of equation requires a prior on the distribution of the explanatory
variables. This reflects the need to make an assumption about every point in some continuous
input space to which we associate a particular statistical process. The most common choice is to
assume that all the arguments are normally distributed random variables, so that the functions
f1(0), f21(1), f31(.) follow a Standardized Gaussian Process (GP),

() ~GP(0,1) fau () ~GP([0,1)  fai(-) ~ GP([0,1), (15)

and, consequently, the splines’ coefficients are normally distributed

B11 0 1 0

: : 0

Py L'lo o . .. ... ... ... o0

Ba11 0

N 16)
5211(21 0

Ba1 0

0 0

| 831 K51 \o 0 ... ... ... ... 0 |

In the same way the smoothing parameter A follows a Normal distribution, A ~ N(0,03%). The
set of priors is completed by the distributions of error’s variance term and of the variance of A.

Following the suggestion of [Havard| (2016f), we propose two standardized half t-student with three

IThe default priors of the R-package brms are employed



degrees of freedom,
Oe ™~ t3(07 1) ax ~ t3(07 1) (17)

In practice, the sampling is run on four Markov chains and repeated for 4000 iterations, a reasonable
number given the sampling efficacy granted by a Hamiltonian Monte Carlo Sampler, which uses
the No-U-Turn Sampler (NUTS) (Neal et al., 2011)ﬂ

In order to test the model we construct three simulated data generating processes containing a

xt) + €4,

yfimz = 3 + 0.4trend; + 30 cos <7gxt) + 60 sin <gl't> + 0.8trend; <COS (761—1'15) + sin <gl’t>> + €,

yfim?’ = 3 + 0.4trend; + 30 cos (th) + 60 sin <g9:f> + 0.8trend; exp <(cos (76r:1:t> + sin (gxf>) + €.

stmy presents no trend-seasonal interaction, sims a linear interaction and simg an interaction where

first order Fourier seasonality for ¢t = 1, .., 360;

ysim = 3 4 0.4trend; + 30 cos (gxt) +60sin (

o n

seasonality is not linear with respect to y;. Both in sims and simg, the interaction’s coefficient
is kept small to contain the eventual advantages of the AMI. In all three regressions z; are drawn
from a standardized normal distribution z; ~ N(0,1), the trend is the cumulative sum of a linear
sum of those draws, trend; = fiol [Z?iol x1j + ), and €, ~ N(0,0.4).

In order to test the properties of the AMI we compare its performances with the ones of a linear
model without (LMNI) and with interaction (LMI) and an additive model without interaction
(AMNTI),

N
ye = Bo + fi(trendy) + Z fo1(cosi + sing) + €. (18)

i=1

To make the comparison independent form any type of structure we further introduce, as a limit

case, a purely nonparametric model (NPM),

N
v = Bo + f(trendt, Z(cosit + sinit)> + €, (19)

i=1
which is the most flexible option.
Three standard measures have been chosen to compare the ex post average forecast with the

observed values, the root mean squared forecast error (RMSFE)EL the mean absolute percentage
error (MAPE)E| (Hyndman & Koehler, |2006), as well as the coverage of the 95% and 90% prediction

21t is interesting to notice that the NUTS-Sampler, used by the software, does not require any special behaviour
for conjugate priors, which much impact the priors’ choice (Hoffman & Gelman| [2014). For more details see [Stan
Development Team| (2015) and [Hoffman and Gelman| (2014).

3The root-mean-square error (or root-mean-square deviation) is a measure of the differences between the values
predicted by a model or an estimator () and the values observed (). It is computed using the formula: RMSE(f) =

VE(O-0)2).
4The mean absolute percentage error (or mean absolute percentage deviation) is a measure of prediction accuracy
of a forecasting method, which expresses accuracy as a percentage and is defined by the formula: MAPE(0) =

= (%))



intervals (Azose & Raftery, 2015

Table[l|shows that for sim1, which does not include an interaction term, the LMNI does slightly
better than the LMI, but that the AMI delivers more accurate results with respect to the AMNI.
For sims there are clearly two clusters in terms of RMSFE and MAPE. As expected the LMNI and
the AMNI have a poor performance compared to the interaction models. However, the absence of a
significant difference between the LMI, the AMI and the NPM, suggests that, once the interaction is
introduced, the gain in using a nonparametric or a semiparametric strategy in presence of a linear
interaction is trivial. Nomne of the models is particularly accurate in capturing the uncertainty
related to observations far away from the mean since the coverage intervals falls between 45% and
55% for the 95% CI and between 36% and 45% for the 90% CI. simgs reverses this last finding
returning preciser credible intervals, which range from 76% to 92.5% at the 95% CI and from 76%
to 86% for the 90% CI. The non-linear interaction highlights the benefits of a flexible functional
form. Nevertheless, there is no significant difference between the NPM and the AMI. Therefore,
unless the curse of dimensionality implies a sub-optimal choice of knots, it might be better to simply
put all the explanatory variables into a single unspecified function.

Based on the previous simulation exercise we introduce a second order Fourier seasonality,
sim ™ . s s . s
yp 4 =12 4 0.1trend; + 20 cos ga:t + 48 sin Ext + 24 cos ga:t + 8sin gxt + €4,

yfim5 = 12 + 0.1trend; + 20 cos (ga) + 48 sin (gxt) + 24 cos (g%) + 8sin (gxt) +

™ . ™ ™ . ™
+ O.8trendt<cos (696,5) + sin <6xt) + cos (396,5) + sin (3%)) + €,

yime = 12 4 0.1trend,; + 20 cos (gmt> + 48sin <gxt) + 24 cos (g%) + 8sin <73T$t) +

s . T m . m
+ 0.8trend; exp <<cos <6xt> + sin <6xt> + cos <3xt> + sin <3xt>> + €.

As expected in simy, the models without interaction outperform the ones with interaction. The
AMNI improves the LMNI and it substantially increases the coverage capacity shifting it from 80%
to 94% for the 95% CI and from 74% to 86% for the 90% CI. When in sims the interaction is
introduced the behaviour of the different models is comparable to the one presented in Table [T}
In other words, the models with interaction outperform the ones without interaction in terms of
RMSFE, MAPE and coverage intervals, with the NPM being the most accurate among them. To
the contrary, simg reports more remarkable differences between the models. The AMI does not
only outperform all the parametric alternatives and the AMNI, but also the NPM with a final
improvement of the RMSFE of the 14%, see Table |2l This last outcome shows that equation
gives a non negligible advantage, compared to the other specifications, if different parts of the
seasonality interact with the trend, especially in the coverage capacity of the credible intervals. A

detailed visualization of the results is provided in section 2 of the Additional Material.

5The interval coverage is a measure of prediction accuracy, which computes the actual coverage percentage of the
prediction intervals on hold-out samples. Therefore, the larger the coverage, the better the model. For example, a
value of 50 at a 95% level means that 50% of the observations fall into the 95% credible intervals.



Table 1: 1st order Fourier Simulations: Root Mean Square Forecast Error (RMSFE) and Mean
Average Percentage Error (MAPE) and prediction interval coverage for the Bayesian Linear Model
with no Interaction (LMNI), the Additive Model with no Interaction (AMNI), the Linear Model
with Interaction (LMI), the Additive Model with Interactions (AMI) and the Nonparametric Model

(NPM).
Simy Simy Sims3
RMSFE MAPE 9% 90% RMSFE MAPE 9% 90% RMSFE MAPE 9% 90%

LMNI 76 0.06 64 60 6441 3.12 45 36 127144 0.94 92.5 86
AMNI 89 0.06 52.5 50 6461 2.82 49 40 105791 0.90 90 79
LMI 7 0.06 65 60 3139 0.72 55 36 121757 0.88 82.5 76
AMI 61 0.05 66 55 3363 0.77 50 44 91830 0.72 76 76
NPM 93 0.07 49 45 3354 0.75 50 45 92478 0.76 76 76

Table 2: 2nd order Fourier Simulations: Root Mean Square Forecast Error (RMSFE) and Mean
Average Percentage Error (MAPE) and prediction interval coverage for the Bayesian Linear Model
with no Interaction (LMNI), the Additive Model with no Interaction (AMNI), the Linear Model
with Interaction (LMI), the Additive Model with Interactions (AMI) and the Nonparametric Model

(NPM).
S1My sims Stmg
RMSFE MAPE 95% 90% RMSFE MAPE 95% 90% RMSFE MAPE 95% 90%

LMNI 30 0.10 80 74 1462 1.17 59 49 498 0.23 60 51
AMNI 28 0.09 94 86 1426 1.28 57.5 51 412 0.19 92.5 81
LMI 36 0.13 80 75 847 1.46 55 51 345 0.14 69 59
AMI 30 0.19 87.5 76 815 1.39 60 40 212 0.12 90 87
NPM 36 0.13 85 75 250 0.12 60 49 246 0.17 25 21




3 Time Series Analysis of Migration Data

3.1 Swiss Immigration Data 1981-2013

We take advantage of the monthly released Swiss migration data to elaborate an empirical imple-
mentation of the model. In Switzerland the migratory inflows data stem from the Swiss Federal
Statistical Office (SFSO). The sources used for the immigration of the non-Swiss population come
from PETRA (Statistics for the Resident Population of Foreign Nationality), for the period 1981-
2009, and from STATPOP (Population and Households Statistics) for the subsequent years.

The combination of different counts creates a minor discrepancy. PETRA reports the month and
the year of the residence permit emission, while STATPOP records the date of movement of the
migrants. Since people arriving in Switzerland can obtain their Auslinderausweis (Residential Per-
mit) few months after their arrival, profiting of legal arrangements like the tourist allowances, trivial
incongruities could emerge. The present study accounts for the year 2010 people who arrived in
2010, but who obtained their permit in 2011. Due to this choice, inconsistencies can be detected
between the gross immigration data used in this paper and the ones reported by the SFSO. The
magnitude of the disparities amounts to about 9.000-10.000 migrants per year for the period 2011-
2013. This procedure might be imperfect, since from 1981 to 2010 we consider the date in which
the permit was obtained while from 2011 to 2013 the arrival data. However, we think that this
solution is better than the withdrawing of all the observations for which the arrival month was not
available.

The resulting data format is a time series, which has two peculiarities compared to datasets normally
used to produce immigration forecasts. On one side, it uses monthly, rather than annual, data. This
choice is grounded in the idea to capture, otherwise unobservable, short-term fluctuations (Disney,
Wisniowski, Forster, Smith, & Bijak} |2015)), while avoiding the inconsistencies which characterize
the long term forecasts based on annual observations (Hajnal, |1955; [Taeuber, Keyfitz, & Flieger,
1969). On the other side, the forecasts are performed over the aggregate time series rather than
over its single age components. This decision has several upsides. The models set-up costs are
reduced to a minimum, any "sum-back" process is avoided and all the typical problems related to
the forecasting of aggregate values starting from disaggregated ones are avoided (Bermingham &
D’Agostinol, 2014 Hendry & Hubrich) 2006). Furthermore, given the invariance of the age frequen-
cies in our sample, see Figure[I] in order to obtain the age profile of the migrants, it is sufficient to
multiply the aggregate outcome by the age frequencies. A disaggregated age prediction is performed
in section [ in order to show the versatility of our approach and its applicability to longitudinal

datasets.

3.2 Model Validation

The previous sections point out how the construction of a predictive model is performed at two
stages: the analysis of the observed data and the incorporation of new available information. Here-
after we focus on both stages, first by undertaking a descriptive analysis of the immigration time
series and then by elaborating suitable priors. The starting point is to decompose the logarithm of
the number of monthly arrivals into a time and a seasonal trend, as in equation , see Figure

Given that the best trade trade-off between parsimony and accuracy is achieved with a 2nd

10
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Figure 1: Image plot showing migration frequencies, where dark gray indicates low frequency and
light gray high frequency, by age from 01.01.1981 to 01.12.2013 (T=396).
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Figure 2: Swiss Immigrant Flows Decomposition obtained using a locally weighted scatter-plot
smoother (LOESS curve). From the top to the bottom, the plots show: observed data, global
trend, seasonal trend and random noise.

order Fourier seasonality the reference model with interaction becomes,

2 2
Yt = Bo + Brtrend; + Z Bo; (COSit + Sinit) + Z [Bs;trend; (COSit + Sinit) + €. (20)

i=1 =1

11



For the coefficients of equation (20|) we use as prior a multivariate normal distribution,

N (9 (o5 0 o0 0 0]

B 0 0 05 0 0 0

Ba1 N 0 ’ 0 0 0.5 0 0 ) (21)
Ba2 0 0O 0 0 05 0 O

Ba1 0 0 0 0 05 0

B3z \0 0 0 0 0 0 05)]

where the mean of the intercept has been set to 9, which is the average value of the logarithm of the
immigration for the observed periods, while the standard deviation is 0.5 since we are confident that
the mean can be neither lower than 7.4 nor higher than 10.6. The mean of the other coefficients
is centered on 0 with a standard deviation of 0.5. This choice imposes the means of the s of
global trend, sine, cosine and trend-(sin+cos) interaction to be between -2 and 2. Note that the
absence of covariance between the different coefficients allows to vectorize the prior and speed up the
convergence rate of the algorithm. The same prior is used for the only coefficient of the equivalent

additive model,
2 2
ye = Bo + f1(trend;) + Z fai(cosy + sing) + Z f3i(trendy, cos;; + sing) + €, (22)
i=1 i=1

such that By ~ N(9,0.5). The coeflicients which identify the splines are assumed to be normally
distributed with variances equal to 1, while the priors of the standard deviation of the error and of
A are set to half Cauchy, see Havard| (2016)),

o~ HC(0,2) oy~ HC(0,2). (23)

Therefore, the coefficients’ priors should be considered as empirical informative, while the vari-

ances’ ones weakly informative, see Figure
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Figure 3: Representation of the priors for the coefficients and the variances.

Given the aim of our analysis, we need to check which of the specifications presented in section
[2] produces the best forecasts. The first step in this direction requires to split the data into two
subsets. The training data (from January 1981 till December 2003) are used to fit the model, and
the test data (from January 2004 till December 2013), are used to predict the immigration flows.

Once this first comparison has been done, it is possible to check the forecast’s accuracy. Table [3]
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Table 3: 2nd order Fourier models on Swiss Immigration Aggregated Data for Short and Long Run
Predictions.

Short Run Predictions Long Run Predictions

RMSFE MAPE  95% 90% RMSFE MAPE  95% 90%

LMNI 0.324 0.029 94 88 0.293 0.025 98 94
AMNI 0.281 0.023 98 94 0.281 0.024 98 94
LMI 0.324 0.029 94 88 0.287 0.025 99 96
AMI 0.260 0.022 89 94 0.270 0.023 99 95.5
NPM 0.586 0.060 50 39 1.572 0.183 21 17

reports three standard measures to compare the ex post average forecast with the observed values.

According to the RMSFE and the MAPE the AMI emerges as the most accurate model followed
by the AMNI, the two linear models, LMNI and LMI, and far behind the NPM. Also in terms of
Credible Intervals (CI) the AMI and the AMNI achieve the best coverage with a 98% for the 95% CI
and a 94% for the 90% CI. The poor performance of the NPM seems driven by the usual overfitting
of non-additive models. Such specification returns a decreasing trend, while the observed one is
increasing. The results’ comparison between AMNI and NPM suggests that, in the Swiss data, the
necessity of modelling the trend is stronger than the one of the interaction. Nevertheless, a certain
degree of non-linear trend-seasonal interplay is still present making the AMI the best predictive
model. Figure [4] visually portrays the gains quantitatively evaluated in Table More detailed

results are given in the Additional Material
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Figure 4: Aggregated forecasts 2004-2013 with 95% prediction credible interval from the posterior
predictive distribution.

Nonetheless, the short time horizon chosen to implement the forecasts might influence the per-
formance results’ in favor of the semiparametric models. In fact, the smooth trend term is computed
using a piece-wise regression where the optimal number of knots is obtained from the training, not
the testing data. Therefore, in presence of a highly non-linear trend, the number of knots might
be quite high. While this could be of no particular problem in the short run, when the probability
of maintaining a trend close to the one of the last periods is realistic, in the long run this might
be more problematic. Hence, a safer choice is either to use a low number of knots or to substitute
f1(-) with a parametric component in order to stabilize the semiparametric tendency to overfit

out-of-sample forecasts, such that the AMNI becomes,

2

yr = Bo + PBitrend; + Z fai(cosit +sing) + €, (24)
i=1

while the AMI is,
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2 2

yr = Bo + Bitrend; + Z fai(cosit +sing ) + Z fai(trendy, cos; + sing) + €4, (25)
i=1 i=1
and the NPM
2
ys = Bo + Pitrend; + f (trendt, Z(cosit + sinit)> + €. (26)
i=1

The results show that the long term predictions highly benefit from a linear trend reducing
the RMSFE by 600% and the MAPE by 900%. Note that the addition of the parametric term (;
is strictly related to the proposed estimation technique, i.e. the thin plate regression splines. If,
for example, f1(.) would have been estimated using a local polynomial approximation the required
stabilization would have been embodied in the estimation methodology. The results for the forecast
period 1998-2013 mainly reflect the ones of the shorter term, with a slight improvement of the LMI
over the LMNI. In general, both time horizons show a premium for the AMI specification. It is
also interesting to notice how the NPM still overfits the data regardless the additional linear trend

term.
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Figure 5: Forecasts 1998-2013 with 95% prediction credible interval from the posterior predictive
distribution.

A closer look to the reminders plotted at the bottom of Figure [2 may suggest the presence of
autocorrelation among the residuals. Potentially, such autocorrelation might persist also in the
residuals of the LMNI, AMNI, LMI, AMI and NPM models. Hence, we try to re-estimate all the
models, both for the short and the long run, by allowing their residuals to be autocorrelated of
order 1 (AR(1)):

e=ag_1+&, —1<a<l, &~N(0,03). (27)

Table [4] confirms an improvement in prediction accuracy with a reduction of the RMSFE of 11%,
of the MAPE of 33% and an extra coverage of the 95% and 90% credible intervals of respectively
of 1.3% and 15%. The amelioration can also be traced in Figures |§| and In general models’
performances are in line with the one of Table [3] However, the comparative advantage of the AMI
with respect to the LMI, while being improved in the long run, is reduced for the short run. A
possible explanation can be found in the origin of the autocorrelation among errors. For example,
if there are logarithmic or exponential terms in the data generatin process, the LMs would most

probably generate autocorrelated errors. Therefore, equation [20] benefits from the introduction
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Table 4: 2nd order Fourier models on Swiss Immigration Aggregated Data for Short and Long Run
Predictions with AR(1) errors.

Short Run Predictions Long Run Predictions

RMSFE MAPE 95% 90% RMSFE MAPE 95% 90%

LMNI 0.255 0.022 96 94 0.251 0.022 95 94
AMNI 0.264 0.021 97.5 94 0.247 0.020 97 93
LMI 0.248 0.021 96 93 0.252 0.021 97 94
AMI 0.247 0.021 98 95 0.232 0.020 100 99
NPM 0.271 0.026 94 88 0.550 0.053 70 53

of . To the contrary, the AMs, by construction, tend to solve autocorrelation generated by
functional form misspecifications, gaining less from the inclusion of an AR(1) component. Figure

shows how the LMI reports stronger evidence of residuals dependence than the AM]ﬁ
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Figure 6: Aggregated forecasts 2004-2013 with 95% prediction credible interval from the posterior
predictive distribution for models with autocorrelated residuals of order one (AR(1)).

6 A Box-Pierce test statistic for examining the null hypothesis of independence of the residuals is rejected with a
p-value < 2.2e-16 for the LMI and a p-value = 0.0022 for the AMI.
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Figure 7: Forecasts 1998-2013 with 95% prediction credible interval from the posterior predictive
distribution for models with autocorrelated residuals of order one (AR(1)).
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Figure 8: Estimates of the autocovariance or autocorrelation function for the linear model with
interaction (left plot) and for the additive model with interaction (right plot).

While the previous sections have shown how the semiparametric models tend to outperform
the other alternatives both with simulated and historical data, we now illustrate how robust these
results are with respect to the setting of different priors.

The first alternative is an uninformative prior defined over R for 5 combined again with two stan-
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dardized half t-student with three degrees of freedom for o, and o) (Birkner, [2017). A second
possibility is to use the horseshoe hierarchical shrinkage prior with parameter 1 for S combined
again with two standardized half t-student for the variances of € and A\. The outcomes confirm that

the AMI is robust to these alternative specifications, see Figure [9]
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Figure 9: Priors’ robustness comparison for the predictions over the period 2004-2014. The black
line denotes the forecasts obtained with the original prior distributions used in the analysis. The
red lines are the forecasts obtained with comparative priors, the horseshoe in the top and the
uninformative in the bottom plot. The difference is the blue area.

So far we have shown how the Bayesian Additive Model with Interaction outperforms the al-
ternatives in predicting the behaviour of the test data starting from the fit of the training data.
However, our argument in favour of Bayesian statistics was rooted in its capacity to introduce in-
formative believes through the choice of the prior distributions. Therefore, we propose, in the next
Subsection, an illustrative example which directly shows the advantages of adopting different priors

in the predictions.

3.3 Forecast Exercise

In this subsection we fit the AMI on the Swiss data for all the available years (1981-2013) and
we try to forecast immigration flows until 2023. Since the priors are used, at the same time, to
estimate the model and, indirectly, to implement the forecasts, their distributions link historical
knowledge with future expectations. Therefore, if migration is foreseen to look like the past, flat
priors with relatively high variances should be chosen. To the contrary, if migration is anticipated
to change, informative priors, with smaller variances around the expected means should be selected.
The latter case, however, may give room to divergent transitions within the sampling.

For this study we set up three scenarios. The first pictures the sentiment of a future migration in
line with its historical average. Therefore, it relies on weakly informative priors. For example, the
intercept’s prior takes the same values as in the model validation exercise with a mean of 9 and
a standard deviation of 0.5. In the same way, the trend’s prior is centered around the posterior

obtained from section [3:2] but with a wider variance to convey a minimal impact on its posterior
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distribution. The second scenario is a middle story line, which reflects the possibility of a small
shock. In this case, the trend’s prior is centered around 1.5, rather than 0, with a variance of 0.2,
which suggests an increased return of the trend. The third is a scene, which mirrors the expectation
of a more evident structural break on the trend’s historical impact on y;. This last case is achieved
by increasing the expected mean up to 2, while shrinking its variance to 0.1.

In order to make sure that the difference between the three scenarios is only about the researcher’s
expectations about structural changes we do not modify the priors for the standard deviation
of the error term (o¢) and of the smoothing parameter (o) assuming that in every case they
are distributed as Half-Cauchy with a scale parameter of 2, like in section [3:2] Instead, we play
mostly with the priors of the error’s autocorrelation term (<) assuming increasing path dependency
coherently following the discussion on the trend’s priors. All the distributions are described in
Table [5] and portrayed in Figure [I0]
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Figure 10: The plots compare the posterior distributions obtained from the AMI with autoregressive
errors of order one for the period 1981-2013 (solid line) with the priors chosen to set the different
forecast scenarios (dashed and dotted lines). From top to bottom and left to right the graphs show
the distributions for the intercept, the linear trend’s coefficient, the error autoregressive coefficient
(AR1), the error’s standard deviation and the standard deviation of the smoothing parameter.

Table 5: Prior Distributions for the Scenario Analysis

Historical Scenario ~ Middle Scenario ~ High Scenario

5o N(9:0.5) N(9:0.5) N(9:0.5)
8, N(0;1) N(1.5:0.2) N(2:0.1)
a N(0:1) N(0.5:0.25) N(0.8:0.1)
o¢ HC(0;2) HC(0;2) HC(0;2)
o HC(0;2) HC(0;2) HC(0;2)

For each scenario we model the global trend in three different ways. The choice stems from
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the reasoning already presented in the previous sections, where we outlined the potential problems
raising from a smooth trend with a considerable number of knots for long term forecasts. Thus, the
three models include as alternatives a linear trend (B;trend;) and two smooth trends with respec-
tively four, f;(trend;,k = 4), and six knots, f;(trend;,k = 6). The difference in the results is more
visible for the trend fitted on six knots, especially in the case of historical and middle scenarios,
where the global trend is down-warding. In general when the trend is nonparametrically computed
with k=6, the average future immigration is approximately 40% lower than in the linear case for
the historical and the middle scenario.

In the historical scenario, the median number of immigrants rises from its historic value of 99,070
people per year to 147,646 for the linear trend, to 206,151 for the smooth trend with k=4 and
shrinks to 82,701 for the smooth trend with k=6, showing respectively an increase of 49% and 68%
and a decrease of 17%. In the middle scenario the median number of immigrants becomes 148,313
for the linear trend, 185,752 for the smoothing trend with k=4 and 109,584 for k=6 corresponding
respectively to a 50%, 87% and 11% increase. Finally, the high scenario finds a growth rate of 53%
for the linear trend, of 168% for the smoothing trend with k=4 and of 136% for k=6. Figure
visualizes the results. Note that all the growth rates would be down-sized if we would look at the

median immigration of the last 10 and 5 years rather than the one from 1981 till 2013.
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Figure 11: Forecasts 2013-2021 with 95% prediction credible interval from the posterior predictive
distribution for three different priors.

As a general remark from our forecast exercise, practitioners should be careful in treating the
global trend either parametrically or nonparametrically, as well as, in the degree of volatility con-
veyed by the priors. In general a large number of knots requires more coefficients (one for each knots
interval) and, consequently, a loss in degrees of freedom. Said differently, including an excessive
number of knots reduces the degrees of freedom available to estimate the parameters’ variability,
potentially having a negative impact on the forecast’s quality. Furthermore, since the paper stresses
the benefits of modelling semiparametrically the trend-seasonal interaction, estimating the trend
in parsimonious ways allows to devote a larger number of degrees of freedom to fit the interaction

without worsening the prediction accuracy.

4 Longitudinal Analysis of Age Categorized Data

4.1 Model Validation

To illustrate the adaptability of our model to a disaggregated problem we employ longitudinal data
categorizing the monthly number of arrivals by age. Further distinctions by gender or nationality

can, at any rate, be implemented, but they are not considered here.
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Table 6: 2nd order Fourier models on Swiss Immigration Disaggregated Data: Root Mean Square
Forecast Error (RMSFE) and Mean Average Percentage Error (MAPE) and prediction interval
coverage

RMSFE MAPE  95%  90%

LMNI 1.165 0.314 95 81
AMNI 0.662 0.245 89 79.5
LMI 1.165 0.314 95 81
AMI 0.662 0.246 90 79
NPM 0.547 0.330 91 83

Splitting our data into different ages allows us to check the persistence of non-linearity and trend-
cycle interactions. We add Age as an explanatory variable to the models estimated for the time
series. The latter is introduced as a parametric term, S4Ageqge,t, in LMNI and LMI, as a smooth
function f4(Ageqge,r) in AMNI and AMI (Dodd, Forster, Bijak, & Smith| [2018), while for the the
nonparametric model (NPM), we add it to the main smoothing function f. To estimate the Bayesian
models we adopt the same priors as in the aggregate exercise, with in addition 84 ~ N(0,0.5).
The results in Table [6] show an increase in uncertainty produced by the disaggregation. On
average the RMSFE increases by 130% and the MAPE by 770%. The improvements given by the
use of semiparametric and nonparametric models are reinforced, dropping the RMSFE from 1.16
(LMNI, LMI) to 0.66 (AMNI, AMI) and to 0.54 (NPM). However, the relative forecast accuracy
measure, the mean absolute percentage error, portrays a different picture. The AMNI and the AMI
achieve the most precise predictions with a MAPE of 0.24, followed by the LMNI and the LMI with
a MAPE of 0.31 and lastly by the NPM with a MAPE of 0.33. The difference reflects the specific
peculiarities of the absolute (RMSFE) vs the relative (MAPE) accuracy measures. In our case the
NPM is doing better than the alternatives in minimizing the big error generated by the predictions
of outlier observations, i.e. low RMSFE, but it produces a poorer performance, on average, when
predicting smaller values, i.e. high MAPE. On the other hand, AMNI and AMI minimize the
errors between, let say 0.11 and 0.12 rater than the ones between 0.81 and 0.82. In light of such
considerations, the semiparametric models seem a more cautious choice over the nonparametric
one.
In general, the disaggregation, while it does not generate any significant linearization, confirming
the better performance of the semiparametric models, it minimizes the importance of the trend-
seasonal interaction, which is reflected in the absence of a significant difference between the models
with and without it.

4.2 Forecast Exercise

The previous section validates the additive models as the preferable options to predict future im-
migration flows by age. This section presents a forecast exercise on the Swiss data for the period
2014-2021, which replicates the one in section [3.3] for the longitudinal case. Even though the dif-
ference between the AMNI and the AMI is not particularly relevant, we use the AMI, not only to
keep a certain degree of consistency with section but also because the AMI has a faster rate

of convergence. Using the same priors as in the time series analysis, see Table [5], we check the
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Figure 12: Effect of a different trend specification on the predictions of age-specific immigration
forecast with on the y-axis the average yearly number of immigrants for the predicted period (2014-
2021) and on the x-axis the age. The blue line denotes the results obtained with a linear trend,
the red one with a smooth trend with 3 knots (k=4) and the green one with a smooth trend with
6 knots (k=6).

performances of different trends: linear, smooth with three (k=4) and six (k=6) knots. Figure
reports the results under the low volatility scenario averaged over all the forecast periods. While
the linear and the smooth trend with three knots have a very similar behaviour, the smoothest
trend suffers from the same down-ward trend as in the aggregate case portrayed in Figure[d Due
to the non significant difference between the blue (linear) and the red (k=4) line, we use the former
to produce the disaggregated forecast scenario analysis.

The results are depicted in Figure[I3] In all the three cases, the expected amount of immigration
by age resembles a normal distribution centered around 33, with a third moment bigger than zero.
All the scenarios roughly maintain the same immigrant population age structure as the historical
data. Nevertheless, as volatility increases, the degree of smoothness decreases. The same is true as
the forecast horizon augments.

A final remark that needs to be made when considering disaggregated forecasts is how to manage
the "pooling-back" when the final interest is to know the future of Swiss migration as a whole.
In fact, stacking the average forecasts by age implies also stacking the credibility intervals which
might be difficult to handle and risk to degenerate in an uninformative explosion of uncertainty.
In light of the results, while disaggregation is always a possibility, the age pooling seems a safer

choice, which guarantees forecast accuracy, as well as stability.

5 Conclusion

Migration gained the reputation of being an unpredictable component of population change (Pijpers,
2008; [Bijak & Wisniowski, [2010)). The current paper tries to show how merging Bayesian statistics
with semiparametric methods can help to handle the uncertainty surrounding the number of future
incomers.

The core of the research lies in the choice to consider migration as a seasonal, rather than an

annual, phenomenon and to exploit the monthly frequency of the output to deal with eventual
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(pink) for three different scenarios from the posterior predictive distribution.
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trend-seasonal interactions. Even if such focus limits the methodology’s application to countries
which dispose of high frequency data, it also potentially opens new perspectives for analyzing new
migration trends, which show high seasonality, like the ones of the recent refugee crisis (European
Union Publications Office, [2017).

The message our results deliver is mainly twofold. On one side, the semiparametric models can
represent an appealing alternative in presence of non-linear trend-cycle interactions. On the other,
a Bayesian prospective can be proactively embraced through the choice of informative prior dis-
tributions to build forecast scenarios accounting for unprecedented events. The latter adds the
possibility to condition the forecast on a set of macroeconomic projections (Bijak, 2010).

Despite the model’s choice belongs to the researcher discretionality, we have a few recommenda-
tions for future users in light of our investigation. Semiparametric models can be preferable in case
of foreseen growing volatility since their flexibility can be fully exploited. However, they tend to
exhibit increasing instability when dealing with long forecast horizons due to the usual overfitting
of nonparametric models in out-of-sample performances. In such cases, a Bayesian perspective can

help by setting boundaries on the prior distribution of the structural coefficients.
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6 Additional Material

6.1 Bayesian Analysis

In this section we provide an overview of the Bayesian method on which our forecasts are based on.
We illustrate how Bayesian techniques are implemented starting by rewriting equation (6) of the

1st order Fourier in matrix form
Yt = pX¢ + € GtNN(ONTeQ)’ (28)

where ¢ = [Bo, 81, B21, B31]7 and x; = [1, trendy, cosy; + siny, trend; * (cosyy + singy)].

STEP I Assume a prior probability distribution for ¢ ~ P(p|a), where « are the parameters,
which identify the prior distribution, i.e. the hyperparameter. The prior is the probability of

¢ which reflects the researcher’s expectations.

STEP II Use the collected data x; to compute the likelihood of the sample,

T

P(x¢|p) = Hg(xt|<P)7 (29)

t=1
where ¢(+) is the probability density function of the data.

STEP III According to the Bayes’ rule, update the prior beliefs using the information contained

in the likelihood obtaining the posterior distribution

P(x¢|p) P(p|a)

P(xelo) (30)

P(@|Xt7 O[) =
that is, the probability of observing the hypothesis a given the observed data x;. Given

the difficulty to accurately compute the marginal likelihood P(xt|«), the posterior is often

approximated by P(p|x¢, a) o< P(xt|¢)P(p|a).

The formalization of the Bayesian method shows how this methodology embodies the forecast
principles combining probabilistic statements about the model’s parameters ¢ and the available
data (y:,x¢) (Geweke & Whiteman, 2006|). The resulting predictive probability is obtained by

integrating over the posterior distribution,
Gl3tlxe,0) = [ Plrel)Plolxe.a)de, (31)
o]

To compute such integrations, analytical solutions are generally hard to find and therefore numerical
approximations are used. The procedure just described is able to produce accurate forecasts for
parametric models. However, it cannot be implemented for the semiparametric specifications. The
next section illustrates how to adapt these three steps to equations where at least one of the

arguments is a nonparametric function.
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6.1.1 Nonparametric Bayesian Techniques

Unlike equation , the semiparametric specifications require a prior distribution on a function.
This reflects the need to make an assumption about every point in some continuous input space to
which associate a certain statistical process. One of the most common choices is to assume that all
the arguments are normally distributed random variables, so that the functions fi(+), fa1(+), f31(*)

follow a Gaussian Process (GP),
Fi() ~GP(0,07)  far(-) ~ GP(0,0%,)  fs1() ~ GP([0,0%,)). (32)

The practical application of this relatively straightforward generalization of STEP I is rather
convoluted and depends crucially upon the way the f(-)s are computed. Therefore, before seeing
how allows to replicate the procedure illustrated in the previous section, it is necessary to decide
how to estimate fi(-), fo1(-), f31(-). Among the different options available to fit unknown functions,
thin plate regression splines deliver the most efficient smoothers (Wood, [2003). Therefore, we use
them to construct composite curves for which the last point of the first curve coincides with the
first point of the second curve such that these two points have the same tangent (first derivative)
and curvature (second derivative). Given the aim to re-adapt STEP I to the "prior assumption"
, we re-write equation

yr = Bo + fi(trend;) + fo1(cosyy +sinyg) + fa1(trendy, cosyy +singg) + €, (33)
in matrix form,
yt = h(ps) + €. (34)
Thin-plate regression splines can be estimated minimizing for h
ly = h|* + AJpma(h), (35)

where y is a vector containing the data points [y1,y2, ..., y7], b = [f1(P1), f21(P2), f31(P3)], with
p1 = [trend;], p2 = [cosy; +siny¢] and ps = [trend;, cosy; + siny], A is a smoothing parameter and
Jma(h) is a penalty function which measures the wiggliness of h. The particular form taken by
Jma(h) is

m! ™h 2
Joa= | . dpy...dpa, 36
¢ / /§Rd Z myll...yd!(ﬁp?..ﬁp”d) P1.--GPd (36)

vit...vg= d

where T' 4 1 is a sequence of non-decreasing real numbers which define the domain of each basis
function (Duchon, |1977)). Minimization includes the smoothing parameter A € [0, 00) which
controls for the trade-off between model fit and smoothness. If A — oo, his a straight line estimate
converging to the linear least squares estimate. If A — 0, h is an un-penalized regression spline
estimate suffering from an over-fitting issue (De Boor}, [1978]). Solving , for a fixed A, allows to
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write the estimate of h as a thin plate regression splne,

R M T
ha(p) =3 0;65(p) + D denma(llp — pel)) (37)

where §; and 6; are coefficients to be estimated and ¢;(p) is the vector of M = (mt?*l) unpenalized

polynomials of p with degrees up to m —1. Beside ¢;(p), 7m,4, which is a function of the Euclidean
distance r between any p and the observed p; values, models the additional non-linearity:
(_l)m,+1+d/2

_ 2m—17d/2(m—1)(m—d/2
nm,d(r) =<7
L(d/2—m) _,.2m—d if d odd.

22mgd/2(m—1)!

r2m=dloe(r) if d even
57 g(r) (38)

By defining the penalty matrix E such that each entry e;; = . a(||Pt — Pjl|), the function estimate
hy is then obtained by minimizing equation with respect to § and 6 :

min |ly — C0 — Eé||?> + \0'Es, C'§ =0, (39)

where, y is the responses’ vector, C is the matrix whose rows are ¢;(p), 6 and ¢ are vectors of
coefficients §; and ¢, (Wood\, 2006). Besides the great flexibility qualities of the thin plate regression
spline as a smoother, the estimate of h engages as many parameters as the number of data points,
generating important computational costs. Therefore, solving (6, ) with an optimum A* becomes
difficult for large problems. Being E a symmetric and non-negative definite matrix, the eigen-
decomposition can be written as E = UDU’, where D is the diagonal matrix of d; eigenvalues of
E and U is the corresponding eigenvectors matrix. The truncated eigen-decomposition produces

Ej,, which is an approximation to E such that
E, = U,D, U,

where Dy, is a diagonal matrix that contains the & most extreme eigenvalues in descending order of
absolute values (i.e. the top right k x k sub-matrix of D): |dy| > --- > |di|. Uy is the eigenvectors
matrix corresponding to the eigenvalues in Dg. The approximation E; brings some advantages.
First it reduces the dimension from 7' x T of E to T' X k. Second, E;, minimizes the spectral norm
|E — Fyi||2 between E and all rank k matrices Fj. Third, E; minimizes the worst possible change

in the shape of the spline introduced by the eigen-space truncation measured by

§'(E — Gy)é
max ————
|2

b

where Gy is formed by any k eigenvalues and corresponding eigenvectors (Wood, 2003). Given

E~E; and E, = U;D,Uj), and letting ¢, = U}.0, the minimization problem becomes

min ||y — CO — UpDy6|*> + A3, Drdy,  subject to C'Ugdy = 0.
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The constrained optimization problem can be converted into an unconstrained one by using any

orthogonal column basis Z. One way to form Z is via the QR decomposition of U} C:

U,C = [Qu1 Q2] lf(j .

Letting Z = Qa, it is verified that
T'UxZ = R'Q;Q2 = 0.

Therefore, it is true that & = 75 for 0 such that C'Uid; = 0. Now the problem becomes the

unconstrained optimization,
min |ly — C6 — U,D,Z4||> + A\6'Z' D, ZJ.

By defining

0 0 0
k=], p=[C:UD}Z], and S=
) 0 Z'D.Z

the optimization can be simplified as min ||y — px||? + Ax’Sk with respect to x. This last refor-
mulation of the minimization problem allows to rethink in terms of assumptions about the

distribution of A and of k. In particular, if
fi() ~GP([0,1)  far() ~ GP(:[0,1)  fa1(-) ~ GP(:[0,1), (40)

then it is possible to assume as priors £ ~ N(0,1) and A ~ N(0,0%) and start the estimation

process.

6.2 Simulations Results

This section provides the simulations’ codes as well as the results’ visualization of the fitting and
forecasts of the linear, the semi- and the non- parametric models with and without interaction (see

section 2.2 of the paper).

freq <- 12
years <- 30
N <- freqg*years
x <- (1:N)/freq

set.seed(1)
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trend_11 <- cumsum(cumsum(rnorm(N))+rnorm(N))

# Seasonality

sea_11 <- .3 + 3*cos(2*pi*x) + 6*sin(2*pi*x)

# Time Series data

sim_11 <- as.data.frame(abs(0.4*trend_11 + 10*sea_11 + .2*rnorm(N)))

HERAHBRRARBRAHRRRAHRRRAHRRARRRRAHRRABRRRGHRRARRRRAHRRARRRAAHRRRARRRAAHRR A HHS
# SIMULATION 2.1: 2nd order Fourier trend, seasonality no interaction
RERAARRAARBRAARRAARRRARRRAARRAGRRRARRRARRBRARRRAARRRRRRRAARBRAARRR A RRR A HHS
set.seed(1)

# Trend

trend_21 <- cumsum(cumsum(rnorm(N))+rnorm(N))

# Seasonality
sea_21 <- .3 + .bkcos(2xpi*x) + 1.2*sin(2%pi*x) +

.6%cos (242%pi*x) + .2%sin(2%2*pi*x)

# Time Series data

sim_21 <- as.data.frame(abs(0.1*trend_21 + 40*sea_21 + .2*rnorm(N)))

HURBRRRRAAERRHRBRRRRRRGBRRRRRRRRR LG RHRRRRRRRRREEHRRRRRRRRRL A HRRBRRRRR AL
# SIMULATION 1.2: 1st order Fourier trend, seasonality with interaction
HURBRBRRAAAHHHBBRRRRRAAAARRRRRRRRAAA AR BB RRRRRRAAAHHRRRRRRRRA SRR BB RRRR R AL
set.seed(1)

# Trend

trend_12 <- cumsum(cumsum(rnorm(N))+rnorm(N))

# Seasonality

sea_12 <- .3 + 3xcos(2*pi*x) + 6*sin(2*pi*x)

# Time Series data

sim_12 <- as.data.frame(0.4*trend_12 + 24*sea_12 + 0.8*trend_12*sea_12 + .2*rnorm(N))

BUBRBBRBRRBRRBR LR B LR BR B LR DR BR B LR BRRBRBRR B R RR B LR BR B LR B LR BRBBR PR BR LR
# SIMULATION 2.2: 2nd order Fourier trend, seasonality with interaction
BUBRBBRBRRBRBBRERRBRRBR B LR IR BRI LR IR BRBRRBRB LR G RRBRB LR B RRBR B LR IR BR BRI

set.seed(1)
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# Trend

trend_22 <- cumsum(cumsum(rnorm(N))+rnorm(N))

# Seasonality

sea_22 <- .3 + .bxcos(2*pixx) + 1.2xsin(2*pix*x) +

.6%cos (242%pi*x) + .2%sin(242*pi*x)

# Time Series data

sim_22 <- as.data.frame(0.4*trend_22 + 24*sea_22 + 0.8*trend_22*sea_22 + .2*rnorm(N))

HERBHARRBRARRRBHRARRRBARBRRARBRRRARRRHRARRBRARRRBRRRRBHRARRRRARBRRAARRRHRARBRHRARBRRAARE
# SIMULATION 1.3: 1st order Fourier trend, seasonality with complex interaction
HARBRARRRRAARRBRARRRRARBRRARRRRARRRRHRARRRRARRRIRARRIRARRRRARBRRAARRRRARRRHRARRRRA AR
set.seed(1)

# Trend

trend_13 <- sqrt(cumsum(cumsum(rnorm(N)))+rnorm(N))

# Seasonality

sea_13 <- .3 + 3xcos(2%pi*x) + 6*sin(2*pi*x)

# Time Series data

sim_13 <- as.data.frame(3 + 156xtrend_13 + 10*exp(sea_13)*trend_13 + .4*rnorm(N))

HERBHARRRIHARRBHARRRHARARRRAARRRAARBRHARRRHRAARRIHARRIHARRRIAAGRBHARRRHARRRHAARRHAARS
# SIMULATION 2.3: 2nd order Fourier trend, seasonality with complex interaction
AERBAARRRBHRARRIAARRRHRARBRRARRRRHRARRRHRARRRRARRRBHRARRBHRARBRIARBRBAARRRHAARBRHRARRRHRAARS
set.seed (1)

# Trend

trend_23 <- sqrt(cumsum(cumsum(rnorm(N)))+rnorm(N))
# Seasonality
sea_23 <- .3 + .bxcos(2xpixx) + 1.2xsin(2*pix*x) +

.6%cos (242*pi*x) + .2%sin(2%2*pi*x)

# Time Series data

sim_23 <- as.data.frame(3 + 15*%trend_23 + 10*exp(sea_23)*trend_23 + .4*rnorm(N))
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Figure 14: 1st order Fourier series with no interaction: fitting and forecasts results for different
models.
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Linear Model No Interaction (LMNI) Additive Model No Interaction (AMNI)
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Figure 15: 2nd order Fourier series with no interaction: fitting and forecasts results for different
models.
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Figure 16: 1st order Fourier series with interaction: fitting and forecasts results for different models.
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Figure 17: 2nd order Fourier series with interaction: fitting and forecasts results for different models.
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Figure 18: 1st order Fourier series with non-linear interaction: fitting and forecasts results for
different models.
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Figure 19: 2nd order Fourier series with non-linear interaction: fitting and forecasts results for
different models.
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6.3 Regression Results

This section reports the results of the Bayesian regressions fitted for the period 1981-2003 both
for the time series case (Tables [9] [10] and [L1)), as well as for the longitudinal case (Tables
and . For the time series case the models include autoregressive errors of order one
(AR(1)). The estimates are obtained using 4 Markov chains, each with 4000 iterations, 2000 for
warm-up and 2000 for validation, resulting in a total post warm-up sample of 8000 data points.
The tables display, from the left to the right column, the potential scale reduction factor (R), the
mean (mean), the standard deviation (sd), the lower 2.5% quantile, the 50% quantile and the upper
97.5% quantile for all the models. A value of R equal to 1 indicates that each chain has stabilized
and they are likely to have reached the target distributionﬂ

In order to fully characterize the two semiparametric models, we add to the parametric values

of the splines’ coefficients a portray of the smooth terms, see Figure .

AR significantly bigger than 1 indicates that the between-chain variance is substantially greater than the within-
chain variance, warning for the need of a longer simulation.

Table 7: Linear Model without Interaction (LMNI) with AR(1) errors.

Parameter R mean sd 2.5% 50% 97.5%

Intercept 1.0 8.7 0.1 8.6 8.7 8.9
trend 1.0 0.4 0.2 0.0 0.4 0.7
siny +cos; 1.0 0.0 0.0 -0.0 0.0 0.1
sing 4+ cosy 1.0 -0.0 0.0 -0.1  -0.0 0.0
« 1.0 0.5 0.1 0.4 0.5 0.6

Oe¢ 1.0 0.3 0.0 0.2 03 0.3

Table 8: Additive Model without Interaction (AMNTI) with AR(1) errors.

Parameter R mean sd 25% 50% 97.5%
Intercept 1.0 8.8 0.0 8.8 8.8 8.9

o 10 02 01 01 02 0.4
Trrons 1.0 27 08 15 25 4.7
Trimy oo, 1O 14 07 05 1.2 3.2
Timg ey 1.0 10 07 03 08 2.8
o 1.0 02 00 02 02 0.2
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Figure 20: Visualization of the non-linear functions of the additive model without interaction
(AMNI). The left plot shows the monthly trend, the center plot (sin; + cos;) and the right plot
(sing +cosy). The central blue lines are the mean values of the dependent variable immigration
(xlog) as a function of the x axis (trend, first sum=(siny + cosy ), second sum=(sing + cosz). The
dark grey bands depict the standard errors of the estimates and represent the credible intervals.

Table 9: Linear Model with Interaction (LMI) with AR(1) errors.

Parameter R mean sd 25% 50% 97.5%
Intercept 1.0 8.7 0.1 8.6 8.7 8.8
trend 1.0 0.4 0.2 0.1 0.4 0.7
sing + cosy 1.0 0.1 0.0 -0.0 0.1 0.2
sing 4 coso 1.0 -0.0 0.0 -0.1 -0.0 0.1
(sing +cosy)*trend 1.0 -02 0.1 -05 -0.2 0.0
(sing 4 cosg)*trend 1.0 -0.1 0.1 -0.2 -0.1 0.1
o 1.0 0.5 0.1 0.4 0.5 0.6
e 1.0 0.3 0.0 0.2 0.3 0.3

Table 10: Additive Model with Interaction (AMI) with AR(1) errors.

Parameter R mean sd 25% 50% 97.5%

Intercept 1.0 8.8 0.0 8.8 8.8 8.9

« 1.0 0.2 0.1 0.1 0.2 0.4

T 1.0 27 08 15 25 46

T 1.0 09 08 00 08 28

T 4o 10 08 07 00 06 25

Crm 10 02 01 00 02 05
rond sing -+ cosy

g e 10 01 01 0.0 01 04
rend sing + cosg

O 1.0 0.2 0.0 0.2 0.2 0.2
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Table 11: Nonparametric Model (NPM) with AR(1) errors.

Parameter R mean sd 25% 50% 97.5%
Intercept 1.0 89 0.0 8.8 8.9 8.9
a 1.0 0.6 0.0 0.5 0.6 0.7
O-)\trend,sinl + cosj,sing 4 cosg 10 01 OO 01 01 02
Oc 1.0 0.2 0.0 0.2 0.2 0.2

Table 12: Linear Model without Interaction (LMNI) by Age.

Parameter R mean sd 2.5% 50% 97.5%
Intercept 1.0 5.8 0.0 5.7 5.8 5.8
trend 1.0 0.3 0.0 0.3 0.3 0.4
siny +cos; 1.0 0.0 0.0 -0.0 0.0 0.0
sing 4+ cosy 1.0 -0.0 0.0 -0.0 -0.0 0.0
Age 1.0 -0.1 00 -0.1 -0.1 -0.1
O 1.0 09 0.0 0.9 0.9 0.9

Table 13: Additive Model without Interaction (AMNI) by Age.

Parameter R mean sd 2.5% 50% 97.5%
Intercept 1.0 34 0.0 3.4 3.4 3.4
Trons 10 32 09 20 30 55
Ormm v, 10 01 01 00 00 02
Orimyros, 10 01 01 00 00 02
O 1.0 0.5 0.0 0.5 0.5 0.5
Trnye 1.0 44 20 22 39 95

Table 14: Linear Model with Interaction (LMI) by Age.

Parameter R mean sd 25% 50% 97.5%
Intercept 1.0 5.8 0.0 5.7 5.8 5.8
trend 1.0 0.3 0.0 0.3 0.3 0.4
sinj 4 cosy 1.0 -0.0 0.0 -0.0 -0.0 0.0
sing + coss 1.0 -0.0 0.0 -0.0 -0.0 0.0
(sing + cosy)*trend 1.0 0.0 0.0 -0.0 0.0 0.1
(sing + cosg)*trend 1.0 0.0 0.0 -0.0 0.0 0.1
Age 1.0 -0.1 0.0 -0.1  -0.1 -0.1
Oc 1.0 09 0.0 0.9 0.9 0.9
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Table 15: Additive Model with Interaction (AMI) by Age.

Parameter R mean sd 25% 50% 97.5%
Intercept 1.0 3.4 0.0 3.4 3.4 3.4
T 10 35 10 21 33 58
et + eon, 10 01 01 00 01 03
Tty + o, 11 01 01 00 00 05

1.0 00 00 00 00 0.0
Threndeing 100y 1.0 0.0 0.0 00 00 0.0
Trige 1.0 53 13 35 50 8.5
o 1.0 05 00 05 05 0.5

O-Atrend sinj + cosy

Table 16: Nonparametric Model (NPM) by Age.

Parameter R mean sd 25% 50% 97.5%
Intercept 1.0 3.4 0.0 3.4 3.4 3.4
O rerontioms + ooy oo npe 1O 10207 89 102 117

Oc 1.0 0.5 0.0 0.4 0.5 0.5

6.4 Diagnostics

The validation of a model is centered around the analysis of its residuals, i.e. the distance between
observed and the fitted values. For each regression, we show four diagnostic plots. The first is
a comparison between the standardized residuals and the fitted values (top-left). The second is
a histogram of the standardized residuals (top-right). The third is a probability-probability plot
(PP) which checks how close are the cumulative distribution functions obtained using the data set
of the model (bottom-left). The last graph is a comparison of the fitted and the observed values
(bottom-right).

All the models show standardized residuals which are rather random and do not form particular
clusters. This regular behaviour is replicated by the histograms of the residuals which are all
centered around zero and rather regular in their decline to extreme values. The PP plots show a
cumulative distribution function of the model very close to the one of the data generating process
(i.e. the fitted values are on the 45 degree line). The same is true for response versus fitted values,
which are almost on the bissectrice of the first quadrant.

The results obtained using the disaggregate models are similar to the ones achieved using the

aggregate specifications.
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Figure 21: Diagnostic Plot Linear Model without Interaction (LMNTI).
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Figure 22: Diagnostic Plot Additive Model without Interaction (AMNTI).
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Figure 23: Diagnostic Plot Linear Model with Interaction (LMI).
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Figure 24: Diagnostic Plot Additive Model with Interaction (AMI).
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Figure 25: Diagnostic Plot Nonparametric Model with Interaction (NPM).
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Figure 26: Diagnostic Plot Linear Model without Interaction (LMNI) by Age.
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Figure 27: Diagnostic Plot Additive Model without Interaction (AMNI) by Age.
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Figure 28: Diagnostic Plot Linear Model with Interaction (LMI) by Age.
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