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Abstract

The aim of this thesis is to contribute to the development of domain decomposition meth-
ods which are techniques to solve efficiently large linear or nonlinear systems arising from
the discretization of PDEs. Throughout the thesis, a special attention is dedicated to het-
erogeneous problems, that is problems where multiphysics phenomena are present. This
thesis is divided in six chapters.

In the first part of Chapter 1, we introduce several one-level domain decomposition meth-
ods namely the parallel Schwarz method, the Dirichlet-Neumann method, the Neumann-
Neumann method and the optimized Schwarz method. In the second part, we address the
concept of scalability, that is how the convergence of a one-level domain decomposition
method is affected when the number of subdomains grows. We present a theoretical anal-
ysis for the scalability of one-level domain decomposition methods for a strip decompo-
sition. We then introduce discrete fracture networks, which are advanced mathematical
models to simulate flows in a fractured medium, and we provide a theoretical analysis of
the scalability of the optimized Schwarz method in some specific geometries.

In Chapter 2 we start our analysis of multiphysics PDEs. We remark that in this context,
the use of a domain decomposition method does not necessarily involve a decomposi-
tion into thousands of subdomains in order to take advantage of a parallel architecture.
On the contrary, the goal is to use a domain decomposition method to design efficient and
robust partitioned strategies which permit to solve the different phenomena separately.
Thus, the number of subdomains usually coincides with the number of different physi-
cal phenomena present in the domain. In this thesis we decided to study the optimized
Schwarz methods, as the presence of transmission conditions to optimize allows one to
tune them according to the physical parameters of the problem, which in turn makes the
method more robust compared to other decoupling strategies. In this chapter we present
a theoretical analysis for the coupling of heterogeneous second order PDEs and for the
coupling of the Helmholtz equation with a Laplace equation. Guided by the theoretical
analysis, we further define a numerical algorithm which permits to find optimized trans-
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ABSTRACT iv

mission conditions even in those situations where the theoretical analysis fails.

One-level domain decomposition methods are rarely used as stand-alone solvers or pre-
conditioners since they are generally not scalable. Scalability and a better convergence
can be achieved introducing a coarse correction. In Chapter 3 we define and study a mul-
tilevel domain decomposition method where an optimized Schwarz method is used as a
smoother on each level. Our analysis is based on Fourier techniques and provides good
estimates for the optimized transmission conditions. This multilevel method is highly
attractive for heterogeneous problems as it inherits robustness and efficiency from the
one-level optimized Schwarz smoother.

Chapter 4 introduces a new computational framework for two-level and multilevel meth-
ods where both the smoother and the coarse correction are defined exclusively on the in-
terfaces between the subdomains. An extensive theoretical analysis is provided for both
spectral and geometric coarse spaces. Numerical results are presented which show the
effectiveness of this approach and, in particular, the case of highly jumping diffusion co-
efficients is investigated.

We then consider the Stokes-Darcy coupling which is a mathematical model to describe
the flow of a Newtonian fluid which interacts with a porous medium. The goal of Chap-
ter 5 is to apply the techniques studied in the previous chapters, namely the one-level
optimized Schwarz methods, the multilevel optimized Schwarz methods and the sub-
structured two-level methods to solve efficiently the Stokes-Darcy system.

Finally Chapter 6 is dedicated to the exciting new field of nonlinear preconditioning.
Starting from a recent nonlinear algorithm, we introduce a substructured version which
relies on the framework discussed in Chapter 4. We study its convergence behaviour and
we analyse extensively the advantages and disadvantages of the substructured algorithm
compared to the volume one.



Résumé

Le but de cette thèse est de contribuer au développement des méthodes de décomposi-
tion de domaine, qui sont des techniques numériques pour résoudre efficacement des
grands systèmes linéaires ou non-linéaires obtenus par la discrétisation des EDPs. Nous
prêtons une attention particulière aux problèmes hétérogènes, c’est-à-dire des problèmes
où des différents phénomènes physiques interagissent entre eux. Cette thèse contient six
chapitres.

Dans la premiere partie du chapitre 1, nous présentons plusieurs méthodes classiques de
décomposition de domaine à un niveau: la méthode de Schwarz, la méthode de Dirichlet-
Neumann, la méthode de Neumann-Neumann et la méthode de Schwarz optimisée. Dans
la deuxième partie, nous étudions la scalabilité, c’est-à-dire comment la convergence des
méthodes est influencée quand le nombre des sous-domaines augmente. Nous présen-
tons une analyse théorique de la scalabilité des différentes méthodes à un niveau pour
une décomposition en bande. Après, nous introduisons les «réseaux des fractures dis-
crétisées», qui sont des modèles mathématiques avancées pour décrire le mouvement
des fluides dans un milieu fracturé, et nous présentons une analyse théorique de la scal-
abilité pour la méthode de Schwarz optimisée.

Dans le chapitre 2, nous commençons notre analyse pour les EDPs hétérogènes. Nous
remarquons que dans ce contexte, nous n’utilisons pas nécessairement une méthode de
décomposition de domaine avec des milliers des sous-domaines. En effet, le but n’est pas
de profiter d’une architecture parallèle, mais d’utiliser une méthode de décomposition de
domaine pour établir des stratégies efficaces et robustes qui permettent de résoudre les
phénomènes différents séparément. Nous avons décidé d’étudier la méthode de Schwarz
optimisée car elle a des conditions de transmission avec des paramètres à optimiser. Un
bon choix de ces paramètres permet d’obtenir une méthode plus robuste par rapport
aux autres. Dans ce chapitre, nous présentons une analyse théorique pour la solution
des EDPs hétérogène elliptiques du second degré et pour le couplage d’une équation de
Helmholtz avec une équation de Laplace. En s’appuyant sur les résultats théoriques, nous
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RÉSUMÉ vi

définissons ainsi un algorithme numérique pour trouver des paramètres optimisés pour
les situations où l’analyse théorique n’est plus valable.

Les méthodes à un niveau sont rarement utilisées seules comme solveurs or précon-
ditionneurs car, en général, elles ne sont pas scalables. Une meilleure convergence et
la scalabilité peuvent être obtenues en ajoutant un deuxième niveau grossier. Dans le
chapitre 3, nous étudions une méthode de décomposition de domaine à plusieurs niveaux
dans laquelle, à chaque niveau, une méthode de Schwarz optimisée est utilisée comme
lisseur. Notre analyse utilise des techniques de Fourier et elle fournit de bonnes ap-
proximations pour les paramètres optimisés sur les plusieurs niveaux. Cette méthode
à plusieurs niveaux est particulièrement intéressante pour les problèmes hétérogènes car
elle hérite la robustesse et l’efficacité de le méthode de Schwarz optimisée à un niveau.

Le chapitre 4 introduit un nouveau cadre computationnel pour des méthodes à deux
ou plusieurs niveaux où le lisseur et la correction grossière sont tous le deux définies
directement sur les interfaces entre les sous-domaines. Une analyses théorique com-
plète est présentée pour un espace grossier soit spectral soit géométrique. Des résultats
numériques sont discutés et ils montrent le bon fonctionnement de cette approche. Une
attention particulière est dédiée au cas où les coefficients de diffusion sont fortement dis-
continus.

Le chapitre 5 considère le système de Stokes-Darcy qui est un modèle mathématique pour
décrire un fluide newtonien qui interagit avec un milieu poreux. Le but de ce chapitre est
d’appliquer les différents algorithmes présentés dans les chapitres précédents, à savoir, la
méthode de Schwarz optimisée à un niveau et à plusieurs niveaux ainsi que les méthodes
sous-structurés, pour résoudre le système de Stokes-Darcy.

Pour finir, le chapitre 6 est consacré au nouveau domaine de préconditionnement non-
linéaire. Nous commençons par analyser un algorithme récent et nous définissons en-
suite une version sous-structurée en utilisant les idées présentées dans le chapitre 4. Nous
étudions la convergence de cette nouvelle méthode puis nous analysons les avantages et
les inconvénients de cette dernière par rapport à la méthode en volume.
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CHAPTER1

Introduction to Domain

Decomposition Methods

Divide et impera

— Latin locution.

1.1 Iterative methods and preconditioners

Let us consider a domain Ω⊂ Rd , d ∈ {2,3}, with Lipschitz boundary, the boundary value
problem in the strong form

−∆u = f in Ω, u = 0 on ∂Ω, (1.1.1)

and its corresponding variational formulation

Find u ∈ H 1
0 (Ω) such that a(u, v) = ( f , v)Ω, ∀v ∈ H 1

0 (Ω), (1.1.2)

where

a(u, v) =
∫
Ω
∇u ·∇v and ( f , v)Ω =

∫
Ω

f v. (1.1.3)

A discretization of the strong form (1.1.1) with the finite difference method or finite vol-
ume method, or of the weak formulation (1.1.2) with the finite element methods, leads to
the discrete linear system

Au = f. (1.1.4)

In the applications we will study, the large size of A usually prevents the use of direct
solvers, and thus we are interested in iterative methods. Among the iterative methods,
we can distinguish two major classes: stationary iterative methods and Krylov methods.
Given a matrix A, a stationary iterative method in its correction form starts from an initial
guess u0 and computes for n = 1,2, . . .

un = un−1 +M−1(f− Aun−1), (1.1.5)

1



CHAPTER 1. INTRODUCTION TO DOMAIN DECOMPOSITION METHODS 2

where M is invertible and comes from the splitting A = M −N . The convergence of sta-
tionary iterative methods is well understood. A stationary iterative method converges if
and only ρ(M−1N ) < 1, where ρ(·) denotes the spectral radius [153]. Due to the positive-
definiteness property of A, inherited by the bilinear form a(·, ·), another standard tech-
nique to solve (1.1.4) is the conjugate gradient (CG) method [114], which is a Krylov method
generating a sequence of approximations {un}n≥1 in the affine Krylov space u0+Kn(A,r0),
where Kn(A,r0) = { r0, Ar0, . . . An−1r0} , and r0 := f− Au0 is the residual of the initial guess.
It is known that

‖u−un‖A ≤ 2

(p
κ(A)−1p
κ(A)+1

)n

‖u−u0‖A , with κ(A) := λmax(A)

λmin(A)
,

where ‖u‖A := u>Au and κ(A) is the condition number of A. As κ(A) grows, the estimate
deteriorates and CG may require more and more iterations to achieve an error less than
some specific tolerance ‘Tol’, i.e. ‖u−un‖A ≤ Tol. Moreover for problems such as (1.1.1),
we have κ(A) ∼ h−2, where h is a measure of the mesh size. Thus, the CG method is gen-
erally used in combination with a preconditioner, which means applying the CG method
to the preconditioned system

B Au = Bf, (1.1.6)

where B is the preconditioner. We remark that every stationary method defines a precon-
ditioner. Indeed, taking the limit for n →∞ in (1.1.5), we get

M−1 Au = M−1f, (1.1.7)

that is, M−1 is the preconditioner associated to the iterative method.

The aim of this chapter is to provide an introduction to stationary iterative methods and
preconditioners based on domain decomposition methods. First we present a class of
overlapping domain decomposition methods called Schwarz methods. The origins of
Schwarz methods date back to 1870 and to Schwarz’s proof of the Dirichlet Principle
conjectured by Riemann [80, Section 2.1]. Around the 80s-90s, these methods received a
tremendous attention and they can be cast into the subspace correction framework [159],
for which an extensive theory has been developed. Then, we discuss nonoverlapping do-
main decomposition methods, which are sometimes called “subtructuring methods”, and
they can be traced back to the work of Przemieniecki in the context of structural engineer-
ing [138]. It is curious to remark that, historically, these two classes of methods developed
separately, although they share the same ideas.
The first part of the chapter is standard and can be found in several textbooks, for in-
stance [151, 139, 143, 16]. In the second part we address the concept of scalability of do-
main decomposition methods and we discuss the results presented in [28] as well as new
calculations for domain decomposition methods applied to discrete fracture networks.

1.2 Overlapping Domain Decomposition Methods

To introduce the oldest domain decomposition method, i.e. the alternating Schwarz method
(ASM), we decompose Ω into two nonoverlapping subdomains Ω1 and Ω2, such that
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Ω

Ω1
Ω2

Γ

Ω

Ω′
1

Ω′
2

Γ2

Γ1

Figure 1.1: Example of a decomposition of a domain Ω into nonoverlapping subdomains
(left) and into overlapping subdomains (right).

Ω=Ω1 ∪Ω2,Ω1∩Ω2 =;, and Γ := ∂Ω1∩∂Ω2. These two nonoverlapping subdomains are
enlarged to create overlapping subdomains Ω′

1, Ω′
2, such that Ω = Ω′

1 ∪Ω′
2, Ω′

1 ∩Ω′
2 6= ;

and Γ j = ∂Ω′
j ∩Ω′

3− j , j = 1,2, see Figure 1.1 for a graphical representation. Starting from

an initial guess u0 which vanishes on ∂Ω, the ASM computes

−∆un+1/2 = f in Ω′
1, −∆un+1 = f in Ω′

2,
un+1/2 = un on ∂Ω′

1, un+1 = un+1/2 on ∂Ω′
2,

un+1/2 = un in Ω′
2 \Ω′

1, un+1 = un+1/2 in Ω′
1 \Ω′

2.
(1.2.1)

The first proof of convergence of the ASM has been given by Schwarz in [142] while prov-
ing the Dirichlet principle. To take advantage of the first parallel computers, Lions pro-
posed a parallel versions, called parallel Schwarz method (PSM) [125], which computes
the approximations un

1 and un
2 such that

−∆un
1 = f in Ω′

1, un
1 = un−1

2 on Γ1,

−∆un
2 = f in Ω′

2, un
2 = un−1

1 on Γ2.
(1.2.2)

Both the ASM and the PSM are defined at the continuous level. To introduce equivalent
discrete methods, we partition the unknowns in u into those interior to Ω′

1, u = [u1,×],
and those interior toΩ′

2, u = [×,u2]. We define the restriction matrices R j such that R j u =
u j , j = 1,2. Then it can be shown, [75, Theorem 3.3], that the correct discretization of
(1.2.1) is

un+1/2 =un +R>
1 A−1

1 R1(f− Aun−1),

un+1 =un+1/2 +R>
2 A−1

2 R2(f− Aun+1/2),
(1.2.3)

where A j = R j AR>
j . At the discrete level, a very popular method which is tightly linked

with the PSM is the Additive Schwarz method (AS) whose iteration reads

un = un−1 +
2∑

j=1
R>

j A−1
j R j (f− Au). (1.2.4)

The AS method does not convergence as iterative method since it counts twice the con-
tributions in the overlap. However, if used as preconditioner, it permits to preserve the
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symmetry of the matrix A, thus allowing one to use the conjugate gradient algorithm. It
is curious to note that the correct discretization of the PSM corresponds to the Restricted
Additive Schwarz (RAS) method, which has been found while trying to reduce the com-
munication time in an implementation of the AS method on a computer [21], for a proof
of equivalence see [69]. The RAS method reads

un = un−1 +
2∑

j=1
R̃>

j A−1
j R j (f− Au), (1.2.5)

where the matrices R̃ j are associated to a nonoverlapping decomposition of the unknowns,
u = [ũ1, ũ2], with R̃ j u = ũ j . The only difference between RAS and AS methods lies in the
use of the extension operators R̃ j in the RAS method. The RAS method, being the cor-
rect discretization of the PSM, converges as an iterative method but does not preserve
the symmetry of A if used as preconditioner. However, if used in combination with GM-
RES it usually outperforms conjugate gradient preconditioned by the AS method [21]. To
both stationary iterative methods we can assign their preconditioner. Considering now a
decomposition into N overlapping subdomains, the AS and RAS preconditioners are

M−1
AS =

N∑
j=1

R>
j A−1

j R j , M−1
R AS =

N∑
j=1

R̃>
j A−1

j R j . (1.2.6)

There is no general theory for the convergence of a Krylov method preconditioned by the
RAS method. Meanwhile there is a very extensive theory for the AS method and we discuss
it further in the next section.

1.2.1 Abstract Schwarz framework

In this section we compress in a nutshell, the extensive literature on the so called Ad-
ditive Schwarz preconditioners. For more details, we refer the interested reader to the
monographs [151, Chapters 2,3], [16, Chapter 7], [143, Chapter 5], [61, Chapter 5] and the
survey article [159].

Let V be a finite dimensional vector space, V ′ its dual, and A : V → V ′ a symmetric
positive definite operator. We can think of A as the operator which satisfies 〈Au, v〉 =
a(u, v),∀u, v ∈ V , where 〈·, ·〉 denotes the duality between V and V ′ and a(·, ·) is the sym-
metric and coercive bilinear form defined in (1.1.2). We introduce a set of auxiliary spaces
V j , 0 ≤ j ≤ N , the operators B j : V j → V ′

j and the interpolation operators R>
j : V j → V .

We suppose that V =∑N
j=0 R>

j V j , i.e. every element v ∈ V can be written as sum of terms
v j ∈ V j , and this decomposition does not need to be unique. We should think of B j as
approximations of A on the smaller space V j . Then, an abstract additive Schwarz precon-
ditioner for A can be defined as

B =
N∑

j=0
R>

j B−1
j R j , B : V ′ →V. (1.2.7)
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It can be proven that B is a symmetric positive definite operator, see [16, Theorem 7.1.11],
and B A is symmetric positive definite with respect the scalar product 〈B−1·, ·〉. There is
a great freedom in the choice of the auxiliary spaces V j and of the operators B j . For in-
stance, the auxiliary spaces can be defined through a domain decomposition, or from
several discretizations of Ω with different mesh sizes. The operators B j can be defined
as the restriction of A onto the subspaces V j , or they can be constructed through differ-
ent scalar products. Such freedom results in a wide variety of different preconditioners.
We briefly introduce three of them and we focus more on the two-level additive Schwarz
preconditioner.

1.2.1.1 Hierarchical Basis preconditioner

In the Hierarchical basis preconditioner [161] one considers a set of mesh T1,T2, ...,TN ,
such that T j is obtained by regular subdivision of T j−1, with h j = 2N− j hN , where hk :=
maxT∈Tk diamT for k = 1, ..., N is the maximum diameter of a triangle on the mesh Tk .
The unknowns on each mesh T j form a space W j . The auxiliary spaces V j are then de-
fined as subspaces of W j ,

V j := { v ∈W j : v(p) = 0 for all vertices p of T j−1} .

If we assume W1 =V1, then it holds W j =W j−1 +V j , and thus WN =V1 ⊕·· ·⊕VN . On each
auxiliary space V j , the operators B HB

j are defined as

〈B HB
j v1, v2〉 =

∑
p∈V j \V j−1

v1(p)v2(p), ∀v1, v2 ∈V j ,

where VJ denotes the set of vertices of T j . The extension operators R>
j are straightforward

injections operators between V j and VN . The Hierarchical basis preconditioner is then

equal to B HB :=∑N
j=0 R>

j

(
B HB

j

)−1
R j .

1.2.1.2 BPX preconditioner

The BPX preconditioner has been introduced by Bramble, Pasciak and Xu in [14]. The
auxiliary spaces V j , 0 ≤ j ≤ N , are defined as the finite element spaces on the meshes T j

and the operators B BPX
j are defined as

〈B BPX
j v1, v2〉 =

∑
p∈V j

v1(p)v2(p), ∀v1, v2 ∈V j .

The extension operators R>
j are straightforward injections operators between V j and VN .

The global BPX preconditioner is then B BPX :=∑N
j=0 R>

j

(
B BPX

j

)−1
R j .

1.2.1.3 Two-Level additive Schwarz preconditioner

In the two-level additive Schwarz preconditioner, we consider a domain Ω discretized
with a mesh Th and a corresponding finite element space V . We divideΩ into a collection
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of open subsets Ω′
1,Ω′

2, ...,Ω′
N , whose diameters have order H . The boundaries of Ω′

j are
aligned with the fine mesh Th for every j . We assume there exist nonnegative C∞(Ω)
functions θ j , j = 1, ..., N (their existence can be proven under suitable assumptions on
the subdomains Ω′

j , see [151, Lemma 3.4]) which satisfy

θ j = 0 on Ω\Ω′
j ,

N∑
j=1

θ j = 1 on Ω,

There exists a positive constant δ such that ‖∇θ j‖L∞(Ω) ≤C /δ.

(1.2.8)

These hypotheses imply that
{
Ω′

j

}
j

form an overlapping decomposition of Ω, and δ is

a measure of the overlap. On each subdomain, we introduce the space V j = { v ∈ V :
v = 0 onΩ \Ω′

j } and an operator B AD
j : V j → V ′

j such that 〈B AD
j u j , v j 〉 = b j (u j , v j ), where

b j : V j ×V j → R is a coercive and symmetric bilinear form which approximates a(·, ·) on
the subspace V j . One can choose the bilinear forms b j (·, ·) to be ‘exact local solvers’, which
means defining them through the ‘exact’ bilinear form a(·, ·)

b j (u j , v j ) = a(R>
j u j ,R>

j v j ), ∀u j , v j ∈V j . (1.2.9)

In this case we would have B AD
j = R j AR>

j .
Besides the subdomain spaces V j , we further consider a coarse discretization of Ω, re-
sulting in the coarse mesh T0 and the coarse finite element space V0. Then the two-level
additive Schwarz preconditioner is

Pad = B AD A, where B AD :=
N∑

j=0
R>

j

(
B AD

j

)−1
R j . (1.2.10)

We remark that B AD corresponds exactly to the AS preconditioner M−1
AS defined in (1.2.6),

if one uses exact solvers on each subspace V j and neglects the coarse solver indexed by
j = 0.

It is interesting to observe that the preconditioned operator Pad can be written as a sum
of projection operators. To see this, for j = 0, ..., N , we introduce the operators P j : V →
R>

j V j ⊂V , P j := R>
j P̃ j , where P̃ j : V →V j are defined by

b j (P̃ j u, vi ) = a(u,R>
j v j ), ∀v j ∈V j . (1.2.11)

If we use exact solvers, it follows immediately that

a(P j u,R>
j v j ) = a(R>

j P̃ j u,R>
j v j ) = b j (P̃ j u,R>

j v j ) = a(u,R>
j v j ), ∀v j ∈V j .

The following Lemma holds.
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Lemma 1.2.1 (Lemma 2.1 in [151]). The operators P j are self adjoint with respect to the
scalar product defined by a(·, ·) and positive semi-definite. Moreover it holds

P j = R>
j (B AD

j )−1R j A, 0 ≤ j ≤ N ,

and if b j (·, ·) satisfy (1.2.9), then P j is a projection and thus P 2
j = P j .

Proof. We first show the equality P j = R>
j (B AD

j )−1R j A. To do so, we consider the matrix
form of (1.2.11),

v>
i B AD

j P̃ j u j = v>
j R j Au j , ∀u j , v j ∈V j .

Since it holds for every u j , v j ∈ V j we can write B AD
j P̃ j = R j A. We assume that b j (·, ·) is

coercive, thus B AD
j is invertible and using the definition of P j the result follows. To prove

that P j is self adjoint, it is sufficient to show that

a(P j u, v) = v>AP j u = v>A(R>
j (B AD

j )−1R j Au) = (R>
j (B AD

j )−1R j Av)>Au = a(u,P j v).

The positive definiteness of Pi follows from the positive definiteness of B AD
j , indeed,

a(P j u,u) = u>AP j u = u>AR>
j (B AD

j )−1R j Au = w>
j (B AD

j )−1w j ≥ 0,

where w j := R j Au. Finally, in case we are using exact solvers, we have B AD
j = R j AR>

j , and
thus

P 2
j = R>

j (R j AR>
j )−1R j AR>

j (R j AR>
j )−1 A = R>

j (R j AR>
j )−1 A = P j .

We close this subsection observing that the preconditioned operator Pad can be written
as

Pad = B AD A =
N∑

j=0
R>

j (R j AR>
j )−1R j A =

N∑
j=0

P j .

1.2.1.4 Convergence theory

As discussed in the introduction, the convergence of the conjugate gradient method de-
pends on the condition number of the matrix A. As the preconditioned system B A is
self-adjoint with respect to the scalar product defined by a(·, ·), see Lemma (1.2.1), the
largest and smallest eigenvalue of B A are given by the Rayleigh quotient formula as

λmax(B A) := sup
u∈V

a(B Au,u)

a(u,u)
, λmin(B A) := inf

u∈V

a(B Au,u)

a(u,u)
.

There is a well-developed theory to find estimates for the maximum and minimum eigen-
value for additive Schwarz preconditioners and it is called abstract Schwarz framework.
This theory relies on three assumptions. For every new preconditioner, if one verifies
these three assumptions, then a general result permits to find estimates for the extreme
eigenvalues and thus for the condition number of the preconditioned system. These three
assumptions are:
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Assumption 1.2.2 (Stable decomposition). There exists a constant C0 such that every u ∈V
admits a decomposition u =∑N

j=0 R>
j u j , for some u j ∈V j , such that

N∑
j=0

〈B j u j ,u j 〉 ≤C 2
0〈Au,u〉. (1.2.12)

Assumption 1.2.2 permits to find a lower bound for λmin(B A). To have a robust precondi-
tioner, it is essential that the constant C0 does not depend strongly on some parameters
of the problem such as the mesh size on the finest grid or the size/number of the subdo-
mains. In this perspective, the choice of the coarse space V0 plays the key role.

Assumption 1.2.3 (Strengthened Cauchy-Schwarz Inequality). There exist constants 0 ≤
εi j ≤ 1, 1 ≤ i , j ≤ N , such that

|a(R>
i ui ,R>

j u j )| ≤ εi j a(R>
i ui ,R>

i ui )
1
2 a(R>

j u j ,R>
j u j )

1
2 , (1.2.13)

for ui ∈Vi and u j ∈V j . We will denote the spectral radius of E = {
εi j

}
by ρ(E ).

The quantity ρ(E ) will be involved in the upper bound of λmax(B A).

Assumption 1.2.4 (Local stability). There exists a constant ω> 0, such that,

a(R>
i ui ,R>

i ui ) ≤ω〈Bi ui ,ui 〉, ui ∈Vi , 0 ≤ i ≤ N . (1.2.14)

Assumption 1.2.4 guarantees that the bilinear forms induced by Bi are coercive. If all these
assumptions are verified it is possible to prove the following theorem.

Theorem 1.2.5 (Theorem 2.7 in [151]). Let Assumptions (1.2.2)-(1.2.3)-(1.2.4) be satisfied.
Then the condition number of the additive Schwarz operator satisfies

κ(B A) ≤C 2
0ω(ρ(E )+1). (1.2.15)

Of course, different methods will lead to different values of these parameters. We con-
clude this section reporting some classical bounds for the condition numbers of the HB,
BPX and two-level AS preconditioners,

κ(B HB A) ≤C1(1+| lnhN |2), κ(B BPX A) ≤C2, κ(B AD A) ≤C3

(
1+ H

δ

)
,

where hN is the finest mesh size. For more details, we refer the reader to [16, Chapter 7]
and [159] for BPX and HB preconditioners, and Chapter 2 and 3 in the dedicated mono-
graph [151] for the two-level AS preconditioner.
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1.3 Nonoverlapping Domain Decomposition Methods

Let us suppose that Ω is decomposed into two nonoverlapping subdomains Ω=Ω1 ∪Ω2,
withΩ1∩Ω=; andΓ := ∂Ω1∩∂Ω2. Problem (1.1.1) can be reformulated into the following
system

−∆u1 = f in Ω1, u1 = 0 on ∂Ω1 \Γ,

−∆u2 = f in Ω2, u2 = 0 on ∂Ω2 \Γ,

u1 = u2 on Γ,

∂u1

∂n1
=−∂u2

∂n2
on Γ.

(1.3.1)

We define the standard Sobolev spaces V j := H 1(Ω j ), V 0
j := {

v ∈V j : v = 0 on ∂Ω j \Γ
}
,

Λ := H
1
2

00(Γ) as the space of traces of functions which lie in V 0
j [139] and the bilinear forms

a j (u j , v j ) := ∫
Ω j

∇u j∇v j ,∀u j , v j ∈ V 0
j , j = 1,2. The weak formulation of (1.3.1) corre-

sponds to
a1(u1, v1) = ( f , v1)Ω1 ∀v1 ∈V 0

1 ,

a2(u2, v2) = ( f , v2)Ω2 ∀v2 ∈V 0
2 ,

u1 = u2 on Γ,

a1(u1,E1η)− ( f ,E1η)Ω1 = ( f ,E2η)Ω2 −a2(u2,E2η),∀η ∈Λ,

(1.3.2)

where E j are continuous extension operators from Λ to V j . Equation (1.3.2)4 is the cor-
rect variational discretization of (1.3.1)4. Indeed, at the weak level we have to impose the
continuity of the normal derivatives not strongly, but weakly in the functional sense, that
is ∂u1

∂n1
=−∂u2

∂n2
in Λ′. Therefore we ask that〈

∂u1

∂n1
,η

〉
=−

〈
∂u2

∂n2
,η

〉
, ∀η ∈Λ.

Using integration by parts we obtain immediately〈
∂ui

∂ni
,η

〉
= ai (ui ,Eiη)− ( f ,Eiη)Ωi , i = 1,2, (1.3.3)

and therefore we recover (1.3.2)4. For a complete proof of the equivalence between (1.1.2)
and (1.3.2) we refer to Lemma 1.2.1 in [139].

It is interesting that we can derive an equation involving only a variable defined on the in-
terface Γ. To see this, we consider a finite element discretization of the weak formulation
1.1.2 which leads to the linear systemA1

I I 0 A1
IΓ

0 A2
I I A2

IΓ
A1
ΓI A2

ΓI AΓΓ

u1

u2

uΓ

=
f1

f2

fΓ

 , (1.3.4)

where we divided the degrees of freedom into those internal to the subdomains ‘I’, and
those on the interface ‘Γ’, so that ui contains the degrees of freedom inside Ωi and uΓ
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contains those on Γ. We remark that AΓΓ can be split into two contributions, AΓΓ = A1
ΓΓ+

A2
ΓΓ by partitioning the contribution of the bilinear form over Ω1 and Ω2. Similarly, fΓ =

f1
Γ + f2

Γ. Expressing ui in terms of uΓ from the first two equations, i.e. ui = (Ai
I I )−1(fi −

Ai
IΓuΓ) and substituting into the third one, we obtain the Schur complement linear system

ΣuΓ =µ, (1.3.5)

where Σ := Σ1 +Σ2 is called Schur complement, the local Schur complements Σi are de-
fined asΣi := Ai

ΓΓ−Ai
ΓI (Ai

I I )−1 Ai
IΓ and µ=µ1+µ2, withµi := fi

Γ−Ai
ΓI (Ai

I I )−1fi , i = 1,2. It is
very useful to interpret the action of the local Schur complements on a given vector. Given
a vector uΓ, u0

i :=−(Ai
I I )−1 Ai

IΓuΓ represents the harmonic extension on Ωi of the Dirich-

let data uΓ ( see first equation in (1.3.4) assuming that f = 0). The term u f
i := (Ai

I I )−1fi

corresponds instead to the solution of a homogeneous Dirichlet problem posed in Ωi

with force term equal to fi . We conclude that Σi uΓ = Ai
ΓΓuΓ+ Ai

ΓI u0
i corresponds to the

discretization of ai (u0
i ,h ,EiφΓ), where u0

i ,h is the finite element function corresponding

to the degrees of freedom stored in u0
i and φΓ is a finite element function in the finite

element space Λh ⊂ Λ. Similarly, Ai
ΓΓuΓ + Ai

ΓI (u0
i + u f

i ) is exactly the discretization of
a1(u1,h ,Eiφi ,Γ).

1.3.1 The Steklov-Poincaré operator

We derived equation (1.3.5) at the algebraic level, working exclusively with the matrices
in (1.3.4). However it is possible to obtain an analogue of (1.3.5) at the continuous level.
To see this, we need to introduce some operators. We define the extension operators H i :
Λ→Vi through the relations

ai (H iη, vi ) = 0, ∀vi ∈V 0
i ,

H iη= η on Γ.
(1.3.6)

In other words, H i takes a function defined on the interface and it returns its harmonic
extension. We remark that the operator is well defined since for any η ∈Λ, equation (1.3.6)
has a unique solution thanks to the properties of ai (·, ·). We now set λ := u|Γ. Due to
linearity, each ui can be written as ui =H iλ+Gi fi , where Gi fi is the solution of

ai (Gi fi , vi ) = f , ∀vi ∈ H 1
0 (Ωi ),

Gi fi = 0, on ∂Ωi .
(1.3.7)

In order for ui to be solutions of (1.3.1) we need to impose ∂u1
∂n1

= −∂u2
∂n2

. Inserting the
decomposition of ui , we obtain

S λ=µ, (1.3.8)

where µ := −∑2
i=1

∂
∂ni

Gi fi and S λ := S1 +S2 = ∑2
i=1

∂
∂ni

H iλ. The operator S is called
Steklov-Poincaré operator. We invite the reader to compare (1.3.5) and (1.3.8). It is pos-
sible to prove that (1.3.5) is exactly the finite element approximation of (1.3.8), see [139,
Chapter 2.3]. We now provide a formal definition of the Steklov-Poincaré operator.
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Definition 1.3.1. Consider a domain Ωi with Lipschitz boundary, a connected subset Γ
of ∂Ωi and a sufficiently regular Sobolev space Λ(Γ) such that H i is well defined. The
Steklov-Poincaré operator S : Λ(Γ) → Λ′(Γ) is linear and has the following variational
representation

Λ′〈S η,µ〉Λ := ai (H iη,Eiµ).

We stress that the extension operator Ei can be chosen arbitrarly. The Steklov-Poincaré
operator plays a key role in the convergence of nonoverlapping domain decomposition
methods. We will show this in details in the next subsections and chapters. In some con-
text, the Steklov-Poincaré operator is also called Dirichlet to Neumann operator, since it
takes a function defined on the interface, it extends it harmonically inside Ωi and then
it computes the normal derivative. The operators Si enjoy some nice properties derived
from the bilinear form ai (·, ·).

Lemma 1.3.2. Si is a continous, symmetric and positive definite operator.

Proof. Since Ei can be chosen arbitrarly, we set Eiµ=H iµ. Then we have using the sym-
metry of ai (·, ·),

Λ′〈Siη,µ〉Λ = ai (H iη,H iµ) = ai (H iµ,H iη) =Λ′ 〈η,Siµ〉Λ.

Moreover using the continuity of ai (·, ·) and the continuous dependence of H i on the
boundary data,

Λ′〈Siη,µ〉Λ = ai (H iη,H iµ) ≤C |Hiη|1|Hiµ|1 ≤C‖η‖Λ‖µ‖Λ.

Using the coercivity of ai (·, ·) and the trace inequality between Λ and V 0
i ,

Λ′〈Siη,η〉Λ = ai (H iη,H iη) >α|Hiη|21 >αC‖η‖2
Λ.

1.3.2 Dirichlet-Neumann method

The system formulation (1.3.1) paves the way to the definition of several domain decom-
position methods. These methods are based on a relaxation of the transmission con-
ditions (1.3.1)3,4, generating a sequence of steps where only one of the two transmission
conditions, or a combination of them is satisfied. The Dirichlet-Neumann method (DNM)
is made of two sequential steps: given an interface data un

Γ , first we solve a Dirichlet prob-
lem inΩ1, then we compute the normal derivative along Γ and we impose it as Neumann
boundary condition for the problem set in Ω2. Finally we update with a weighted combi-
nation the new Dirichlet trace un+1

Γ . Given an initial guess u0
Γ, this procedure corresponds
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mathematically for n ≥ 0 to

−∆un+1
1 = f in Ω1, un+1

1 = 0 on ∂Ω1 \Γ,

un+1
1 = un

Γ on Γ,

−∆un+1
2 = f in Ω2, un+1

2 = 0 on ∂Ω2 \Γ,

∂un+1
2

∂n2
=−∂un+1

1

∂n1
, on Γ,

un+1
Γ = θun+1

2 + (1−θ)un
Γ on Γ.

(1.3.9)

The choice of the parameter θ, 0 < θ < 1, influences the convergence properties of the
method. We can give an algebraic formulation of (1.3.9). System (1.3.9) can be rewritten
as

A1
I I un+1

1 + A1
IΓun

Γ = f1, Dirichlet problem inΩ1,(
A2

I I A2
IΓ

A2
ΓI A2

ΓΓ

)(
un+1

2
un+1

2,Γ

)
=

(
f2

f2
Γ+ f1

Γ− A1
IΓun+1

1 − A1
ΓΓun

Γ

)
, Neumann problem in Ω2,

un+1
Γ = θun+1

2,Γ + (1−θ)un
Γ , Update step.

(1.3.10)
The DNM described by algorithm (1.3.10) can be reformulated as a Richardson iteration
to solve the Schur complement equation (1.3.5). To show this, we eliminate un+1

1 from the
right hand side of the Neumann problem,

f2
Γ+f1

Γ−A1
IΓun+1

1 −A1
ΓΓun

Γ = f2
Γ+f1

Γ−(A1
ΓΓun

Γ−A1
IΓ(A1

ΓΓ)−1 A1
ΓI un

Γ)−A1
IΓ(A1

ΓΓ)−1f1 = f2
Γ+µ1−Σ1un

Γ .

Eliminating now un+1
2 , we obtain

A2
ΓI un+1

2 + A2
ΓΓun+1

2,Γ = (A2
ΓΓ− A2

ΓI (A2
I I )−1 A2

IΓ)un+1
2,Γ + A2

ΓI (A2
I I )−1f2 =Σ2un+1

2,Γ + A2
ΓI (A2

I I )−1f2.

Combining these two results we obtain the iteration

Σ2un+1
2,Γ =µ−Σ1un

Γ ,

which, plugged into the update rule, leads to

Σ2(un+1 −un) = θ(µ−Σun), (1.3.11)

which is a Richardson method to solve (1.3.5) with preconditioner Σ2. It has been proven
that for the two subdomain case, Σ2 is an optimal preconditioner for the Schur comple-
ment system, i.e. κ(Σ−1

2 Σ) ≤ C , where C is independent on h, see [151, Chapter 4] and
[139, Chapter 2]. This implies that the condition number of the preconditioned Schur
complement does not grow when the size of the finite element spaces grows. Concerning
the choice of the relaxation parameter θ, for two symmetric subdomains, θ = 0.5 leads to
a direct method which converges in two iterations. For more than two subdomains, there
are still some choices which lead to nilpotent iterations. We refer the interested reader
to [32]. There are several versions of the DNM when the decomposition involves several
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subdomains, since there is a certain freedom in deciding where to impose Dirichlet or
Neumann boundary conditions. In Section 1.4, we analyse one of these versions for a par-
ticular geometry. We conclude this section by observing that the method we introduced is
inherently a sequential method. A parallel version is easily obtained by replacing (1.3.9)4

with
∂un+1

2
∂n2

= −∂un
1

∂n1
. For two subdomains there is no advantage since the parallel version

generates a sequences of approximations
{
un

i

}
n≥1

i = 1,2, which have as subsequences
the sequential approximations. For general decompositions in many subdomains, par-
allel and sequential versions do not preserve this relation, and indeed parallelization is
needed in order to take advantage of modern high performance clusters.

1.3.3 Neumann-Neumann method

For a decomposition into two subdomains, the Neumann-Neumann method (NNM) is
made of two sequential steps. Given an interface data un

Γ , we solve Dirichlet problems
both in Ω1 and Ω2 imposing un

Γ along the interface. The two local solutions will now be
continous, satisfying (1.3.1)3, but their normal derivatives will not be continous in gen-
eral. Thus, we compute the jump of the two normal derivatives along Γ and we solve two
Neumann problems to compute local corrections. Eventually we update the new inter-
face data un+1

Γ . In terms of differential operators, the algorithm is

−∆un+1
i = f , inΩi , un+1

i = 0 on ∂Ωi \Γ, i = 1,2,

un+1
i = un

Γ , on Γ, i = 1,2,

−∆ψn+1
i = 0, in Ωi , ψn+1

i = 0 on ∂Ωi \Γ, i = 1,2,

∂ψn+1
i

∂ni
= ∂un+1

1

∂n1
+ ∂un+1

2

∂n2
, on Γ, i = 1,2,

un+1
Γ = un

Γ −θ(ψn+1
1 +ψn+1

2 ), on Γ.

(1.3.12)

The algebraic formulation of (1.3.12) corresponds to

Ai
I I un+1

i + Ai
IΓun

Γ = fi , i = 1,2, Dirichlet problem inΩi ,(
Ai

I I Ai
IΓ

Ai
ΓI Ai

ΓΓ

)(
ψn+1

i
ψn+1

i ,Γ

)
=

(
0

gn
Γ

)
, Neumann problem in Ωi ,

un+1
Γ = un −θ(ψn+1

1,Γ +ψn+1
2,Γ ) Update step,

(1.3.13)

where gn
Γ = ∑2

i=1 Ai
ΓI un+1

i + Ai
ΓΓun

Γ − fi
Γ. Eliminating un+1

i , i = 1,2 from the expression of
gn
Γ , we obtain gn

Γ = Σun
Γ −µ. We consider now the Neumann problems and we eliminate

the interior unknowns ψn+1
i to obtain ψn+1

i ,Γ = (Σi )−1gn
Γ = (Σi )−1(Σun

Γ −µ). Inserting these
expressions into the update step, we obtain

un+1
Γ −un

Γ = θ(Σ−1
1 +Σ−1

2 )(µ−Σun
Γ),

which shows that the NNM is a Richardson method with preconditioner Σ−1
1 +Σ−1

2 . It can
be shown that the NNM is an optimal preconditioner for the two subdomain case, i.e.
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κ((Σ−1
1 +Σ−1

2 )Σ) ≤ C see [151, Chapter 4] and [139, Chapter 2]. For several subdomains,
this method is very sensitive to the choice of the relaxation parameter θ. There are several
cases in which the NNM diverges. We refer to the PhD thesis [26]. The method can be

parallelized by replacing (1.3.12)5 with
∂ψn+1

i
∂ni

= ∂un
1

∂n1
+ ∂un

2
∂n2

. For the definition of the NN
method for many subdomain decompositions, we refer to Section 1.4

1.3.4 Optimized Schwarz methods

In this paragraph we introduce optimized Schwarz methods (OSMs) which are the do-
main decomposition methods we will discuss the most throughout the thesis. The ori-
gins of OSMs trace back to [126] where Lions defined a first version of the algorithm and
he also proposed a convergence analysis based on energy estimates, see [75, Section 5] for
an historical review of other contributions. The method can be viewed as a generalization
of the parallel Schwarz method in case of nonoverlapping subdomains, where instead of
exchanging Dirichlet data, Robin or more general boundary conditions are imposed along
the nonoverlapping interfaces. Given two initial guesses u0

i , i = 1,2, the method defined
in [126] computes for n ≥ 1

−∆un+1
1 = f in Ω1, un+1

1 = 0 on ∂Ω1 \Γ,

∂un+1
1

∂n1
+ s1un+1

1 = ∂un
2

∂n1
+ s1un

2 , on Γ,

−∆un+1
2 = f in Ω2, un+1

2 = 0 on ∂Ω2 \Γ,

∂un+1
2

∂n2
+ s2un+1

2 = ∂un+1
1

∂n2
+ s2un+1

1 , on Γ,

(1.3.14)

The variational formulation of (1.3.14) is

a1(un+1
1 ,E1η)+

∫
Γ

s1un+1
1 η=

∫
Ω1

f E1η−a2(un
2 ,E2η)+

∫
Γ

s1un
2 η+

∫
Ω2

f E2η, ∀η ∈Λ,

a2(un+1
2 ,E2η)+

∫
Γ

s2un+1
2 η=

∫
Ω2

f E2η−a1(un+1
1 ,E1η)+

∫
Γ

s2un+1
1 η+

∫
Ω1

f E1η, ∀η ∈Λ.

(1.3.15)
Already in the original paper [126], Lions stressed the importance of the acceleration
parameters s1, s2 ∈ R+ on the rate of convergence of the algorithm. He even suggested
to replace the parameters with local or nonlocal operators. These observations pushed
researchers to study which are the best possible parameters/operators that lead to the
fastest convergence possible. In [136], the authors showed that setting s1 := S1 and s2 :=
S2, hence using the Steklov-Poincaré operators, leads to a nilpotent method, that is the
method converges in just two iterations. They actually showed that this result holds for a
decomposition into many subdomains in a strip. In this case the convergence is attained
in N iterations where N is the number of subdomains. A generalization of this work for
arbitrary decompositions is available in [88]. However the Steklov-Poincaré operator is
dense, nonlocal and expensive to compute. Given a discretization of Γ with Ns degree
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of freedoms, we need to solve Ns Dirichlet problems in order to assemble the Steklov-
Poincaré operator. Therefore researchers started to look for sparse and cheap approxima-
tions of these optimal operators. Some earlier work in this direction are the PhD thesis of
Japhet [115] and [116]. The terminology “optimized Schwarz method” was adopted later,
thanks to [74], where Gander established a solid procedure to derive optimized transmis-
sion conditions for many different problems. We provide a more comprehensive review of
OSMs in Chapter 2, where we analyse this algorithm for several heterogeneous problems.
In [146], it has been shown that, under some conditions, the preconditioner associated to
OSMs is

M−1
OR AS =

N∑
j=1

R̃>
j Ã−1

j R j ,

where Ã j are the finite element discretizations of the bilinear terms a j (u j , v j )+∫
Γ s j u j v j .

A symmetrized and additive variant has been analyzed in [110].

We conclude the first part of the introduction by showing that OSMs can be seen as an
alternating direction iteration (ADI) to solve the Steklov-Poincaré equation. To the best
of our knownledge, this interesting point of view was first discussed in [52, Chapter 5.4].
Given the equation S λ= µ, we can decompose the operator S as S = S1 +S2. One can
choose S1 and S2 arbitrarily, but we will set Si := Si , i = 1,2, equal to the local Steklov-
Poincare operators. Then, given an initial guess λ0, the ADI method with accelerating
parameters s1, s2 to solve S λ=µ is

(s1I +S1)λn+ 1
2 = (s1I −S2)λn +µ,

(s2I +S2)λn+1 = (s2I −S1)λn+ 1
2 +µ,

(1.3.16)

where I is the identity operator. This algorithm is also called Peaceman-Rachford iter-
ation method. We refer the interested reader to [2, Chapter 7.7.3] and [153, Chapter 7].
In Section 2.5, we will discuss more about this iteration in the context of probing. In the
present framework, the ADI to solve (1.3.8) is〈

(s1I +S1)λn+1
1 ,η

〉= 〈
µ,η

〉+〈
(s1I −S2)λn

2 ,η
〉

,〈
(s2I +S2)λn+1

2 ,η
〉= 〈

µ,η
〉+〈

(s2I −S1)λn+1
1 ,η

〉
.

(1.3.17)

Interpreting λi as the Dirichlet traces of ui , i.e. λi = ui |Γ, and assuming for simplicity
that µi = 0, i = 1,2, the equivalence between (1.3.16) and (1.3.15) can be understood as
follows. Given an approximation λk

2 , we compute

〈
(s1I −S2)λn

2 ,η
〉= ∫

Γ
s1λ

n
2η−a2(H2λ

n
2 ,H2η), ∀η ∈Λ. (1.3.18)

We then find λn+1
1 solving (1.3.17)1, where substituting (1.3.18) and the definition of S1

leads to

a1(H1λ
n+1
1 ,H1η)+

∫
Γ

s1λ
n+1
1 η=

∫
Γ

s1λ
n
2η−a2(H2λ

n
2 ,H2η), ∀η ∈Λ,
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which corresponds to (1.3.15)1 for f = 0. Thank the uniqueness of the solution of (1.3.15)
we conclude that H1λ

n+1
1 = un+1

1 and that λn+1
1 = un+1

1 |Γ. A similar calculation concern-
ing (1.3.17)2 shows that we have λn+1

2 = un+1
2 |Γ and H2λ

n+1
2 = un+1

2 .

1.4 Scalability of domain decomposition methods

In the previous sections we introduced classical one-level domain decomposition meth-
ods for two subdomain decompositions. To exploit at best the large number of available
cores in modern computers, decompositions into two subdomains are not attractive. Ide-
ally, one would prefer to decompose the original domain Ω into several (hundreds, thou-
sands, millions) of subdomains and to assign one subdomain to each core. In this way,
each core would solve a small subdomain problem and hence there would be an optimal
parallelization of the solution process. Thus, in view of high performance computing,
an important property of a solution algorithm is the so called scalability. In the litera-
ture there are two definitions of scalability [61]. An algorithm is “strongly scalable” if the
solution time of a fixed size problem is inversely proportional to the number of cores.
Strong scalability is extremely hard to obtain since if one considers millions of subdo-
mains, so that each subdomain problem becomes extremely cheap to solve, there would
a bottleneck due to the communication lag to transfer data among the large number of
subdomains. To mitigate the communication cost, asynchronous methods have recently
gained a lot of attention [132, 27]. Thus, a more practical concept is the weak scalability.
An algorithm is “weakly scalable" if the solution time is constant for a fixed ratio between
the size of the problem and the number of cores. In other words, if a weakly scalable al-
gorithm solves a problem with 100’000 unknowns in 10 seconds using 10 processors, it
should be able to solve a problem with 1’000’000 unknowns in the same 10 seconds using
100 processors. In the specific context of domain decomposition methods, a domain-
decomposition method is said to be weakly scalable, if its rate of convergence does not
deteriorate when the number of subdomains grows (definition 1.3 in [151]). Unfortu-
nately, one-level domain decomposition methods are in general not weakly scalable, and
a coarse correction is needed to achieve scalability. To see this, we consider the model
problem (1.1.1) and we divide Ω into an increasing number of subdomains using the au-
tomated partitioning tool Metis. Figure 1.2 shows an automated decomposition into 16
subdomains and the convergence of the RAS method for an increasing number of subdo-
mains. The study of coarse corrections in two-level and multilevel paradigms will be the
aim of Chapters 3 and 4.

However it has recently been observed in applications in computational chemistry that
the classical one-level parallel Schwarz method is surprisingly scalable for the solution of
two-dimensional chains of fixed-sized subdomains [22, 127]. Mathematically, this prop-
erty has been studied rigorously for the parallel Schwarz methods in a series of papers
[36, 37, 38]. In the next subsections, we study this property for other classical one-level
domain decomposition methods, such as the Dirichlet-Neumann, Neumann-Neumann
and optimized Schwarz methods. The content of these sections is based on [28].
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Figure 1.2: On the left, convergence of the RAS method for different decompositions with
overlap equal to four times the mesh size. On the right, example of decomposition into
4x4 subdomains using Metis.

x
b0

a1 a2

b1 · · ·
· · · a j

b j−1

a j+1

b j · · ·
· · · aN

bN−1 bN

aN+1

L̂ Ω1

2δ 2δL−2δ

· · · · · · Ω j

2δ 2δL−2δ

· · · · · · ΩN

2δ2δ L−2δ

Figure 1.3: Two-dimensional chain of N rectangular fixed-sized subdomains.

1.4.1 Scalability analysis for two dimensional chains of fixed size subdomains

1.4.1.1 Scalability analysis for the optimized Schwarz method

In this subsection we study the scalability properties of OSMs for a two dimensional chain
of fixed size subdomains. For the one dimensional chain analysis, we refer the interested
reader to [28, Section 4.1]. Let us consider L > 0 andδ, 0 < δ< L

2 , and define the grid points
a j for j = 1, . . . , N +1 and b j for j = 0, . . . , N as shown in Figure 1.3. The j -th subdomain
of the chain is a rectangle of dimension Ω j := (a j ,b j )× (0, L̂), and Ω := ∪N

j=1Ω j . We are
interested in the solution to

−∆u = f in Ω, u = g on ∂Ω. (1.4.1)

We consider directly the error equation and we define the errors en
j := u−un

j , where un
j are

the iterates of the OSM. In the error form, the overlapping OSM with Robin transmission
conditions with parameter p is given by

−∆en
j = 0 inΩ j ,

en
j (·,0) = 0, en

j (·, L̂) = 0,

∂x en
j (a j , ·)−pen

j (a j , ·) = ∂x en−1
j−1 (a j , ·)−pen−1

j−1 (a j , ·),

∂x en
j (b j , ·)+pen

j (b j , ·) = ∂x en−1
j+1 (b j , ·)+pen−1

j+1 (b j , ·),

(1.4.2)

for j = 2, . . . , N −1, and
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−∆en
1 = 0 inΩ1,

en
1 (·,0) = 0, en

1 (·, L̂) = 0,

en
1 (a1, ·) = 0,

(∂x +p)en
1 (b1, ·) = (∂x +p)en−1

2 (b1, ·),

−∆en
N = 0 inΩN ,

en
N (·,0) = 0, en

N (·, L̂) = 0,

(∂x −p)en
N (aN , ·) = (∂x −p)en−1

N−1(aN , ·),

en
N (bN , ·) = 0.

(1.4.3)

To study the iteration, we use the Fourier expansion en
j (x, y) =∑

k∈K vn
j (x,k)sin(k y) with

K :=
{
π
L̂

, 2π
L̂

, . . .
}

. Inserting this expansion into (1.4.2) and (1.4.3), the Fourier coefficients

vn
j satisfy

∂xx vn
j = k2vn

j in (a j ,b j ),

∂x vn
j (a j )−pvn

j (a j ) = ∂x vn−1
j−1 (a j )−pvn−1

j−1 (a j ),

∂x vn
j (b j )+pvn

j (b j ) = ∂x vn−1
j+1 (b j )+pvn−1

j+1 (b j ).

(1.4.4)

Defining Rn−1− (a j ) := ∂x vn−1
j−1 (a j )−pvn−1

j−1 (a j ) and Rn−1+ (b j ) := ∂x vn−1
j+1 (b j )+pvn−1

j+1 (b j ), the
solution to (1.4.4) is given by

vn
j (x,k) =Rn−1

− (a j )

[
−1

γ
(k −p)ek(x−b j ) − 1

γ
(k +p)ek(b j−x)

]
+Rn−1

+ (b j )

[
1

γ
(k +p)ek(x−a j ) + 1

γ
(k −p)ek(a j−x)

]
,

(1.4.5)

where γ := (k + p)2ek(L+2δ) − (k − p)2e−k(L+2δ). Inserting (1.4.5) into the definitions of
Rn−(a j ) and Rn+(b j ) we obtain[

Rn−(a j )
Rn+(b j )

]
= T1

[
Rn−1− (a j−1)
Rn−1+ (b j−1)

]
+T2

[
Rn−1− (a j+1)
Rn−1+ (b j+1)

]
, (1.4.6)

where

T1 :=
[

g3 −pg1 g4 −pg2

0 0

]
, T2 :=

[
0 0

g4 −pg2 g3 −pg1

]
,

with

g1 :=−1

γ
(k −p)e−2δk − 1

γ
(k +p)e2δk , g2 := 1

γ
(k +p)ekL + 1

γ
(k −p)e−kL ,

g3 := −k

γ
(k −p)e−2δk + k

γ
(k +p)e2δk , g4 := k

γ
(k +p)ekL − k

γ
(k −p)e−kL .

(1.4.7)

Similar arguments allow us to obtain for the subdomains Ω1, Ω2, ΩN−1, and ΩN the rela-
tions[

0
Rn+(b1)

]
= T2

[
Rn−1− (a2)
Rn−1+ (b2)

]
,

[
Rn−(a2)
Rn+(b2)

]
= T̃1

[
0

Rn−1+ (b1)

]
+T2

[
Rn−1− (a3)
Rn−1+ (b3)

]
,[

Rn−(aN )
0

]
= T1

[
Rn−1− (aN−1)
Rn−1+ (bN−1)

]
,

[
Rn−(aN−1)
Rn+(bN−1)

]
= T1

[
Rn−1− (aN−2)
Rn−1+ (bN−2)

]
+ T̃2

[
Rn−1− (an)

0

]
,

(1.4.8)
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where

T̃1 :=
[

0 (k+p)e−kL+(k−p)ekL

(k+p)ek(L+2δ)+(k−p)e−k(L+2δ)

0 0

]
, T̃2 :=

[
0 0

(k+p)e−kL+(k−p)ekL

(k+p)ek(L+2δ)+(k−p)e−k(L+2δ) 0

]
.

Now we define rn := [0,Rn+(b1),Rn−(a2),Rn+(b2), . . . ,Rn−(a j ),Rn+(b j ), . . . ,Rn+(bN−1),Rn−(aN ),0]>,
and using (1.4.6)-(1.4.8), we obtain the iteration relation rn = T O

2D rn−1, where T O
2D is the

block matrix

T O
2D :=



T2

T̃1 T2

T1 T2

T1 T2

. . .
. . .

T1 T2

T1 T̃2

T1


. (1.4.9)

We are ready to prove the scalability of the OSM in the overlapping case.

Theorem 1.4.1. Recall (1.4.7) and defineϕ(k,δ, p) := |g3−pg1|+|g4−pg2|. The overlapping
OSM (1.4.2) is scalable, in the sense that

ρ(T O
2D (k,δ, p)) ≤ ‖T O

2D (k,δ, p)‖∞ ≤ max
k

max{ϕ(k,δ, p),‖T̃1(k,δ, p)‖∞} < 1,

independently of N for every p ≥ 0.

Proof. Because of the structure of T O
2D , the norm ‖T O

2D‖∞ is given by

‖T O
2D‖∞ = max

i

∑
j
|(T O

2D )i , j | = max{ϕ(k,δ, p) , ‖T̃1‖∞ , ‖T̃2‖∞ }.

We start showing that ϕ(k,δ, p) < 1 for any k, p ∈ [0,∞) and δ> 0. To do so, we notice that

|g3 −pg1| = |1

γ
(−k(k −p)e−2δk +k(k +p)e2δk +p(k −p)e−2δk +p(k +p)e2δk )|

= 1

γ
|(k +p)2e2δk − (k −p)2e−2δk )| = 1

γ
((k +p)2e2δk − (k −p)2e−2δk )

and

|g4 −pg2| = 1

γ
|(k(k −p)ekL −k(k −p)e−kL −p(k +p)ekL −p(k −p)e−kL)|

= 1

γ
(k +p)|k −p|(ekL −e−kL),

which implies that

ϕ(k,δ, p) = (k +p)2e2δk − (k −p)2e−2δk + (k +p)|k −p|(ekL −e−kL)

(k +p)2ekL+2kδ− (k −p)2e−kL−2kδ
.
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By computing the derivative of ϕ with respect to p we find

∂ϕ

∂p
=− 2ke2δk+2kL −2ke2δk

k2 e4δk +2ke4δk +p2 e4δk e2kL +2k2 e2δk −2e2δk p2 ekL +(p−k)2
for p<k,

∂ϕ

∂p
= 2ke2δk+2kL −2ke2δk

k2 e4δk +2ke4δk +p2 e4δk e2kL +2p2 e2δk −2e2δk k2 ekL +(k−p)2
for p>k.

Analyzing the signs of these derivatives, we see that ϕ(k,δ, p) is strictly decreasing for
p < k and it is strictly increasing for p > k, thus it reaches a minimum for p = k. Therefore
the maximum of ϕ(k,δ, p) with respect to the variable p is obtained for p = 0 and for
p →+∞:

ϕ(k,δ, p) ≤ max
{
ϕ(k,δ,0) , lim

p→∞ϕ(k,δ, p)
}
.

For p = 0, δ> 0 and L > 0 we have

ϕ(k,δ, p = 0) = e2δk −e−2δk +ekL −e−kL

ekL+2δk −e−kL−2δk

= sinh(2δk)+ sinh(kL)

sinh(kL)cosh(2δk)+ sinh(2δk)cosh(kL)
< 1,

and, under the same conditions,

lim
p→∞ϕ(k,δ, p) = sinh(2δk)+ sinh(kL)

sinh(kL)cosh(2δk)+ sinh(2δk)cosh(kL)
=ϕ(k,δ,0) < 1.

Hence, it holds that ϕ(k,δ, p) ≤ϕ(k,δ,0) < 1. We now focus on ‖T̃1‖∞ and ‖T̃2‖∞. Notice
that ‖T̃1‖∞ = ‖T̃2‖∞ and

‖T̃1‖∞ =
∣∣∣∣∣ (k +p)e−kL + (k −p)ekL

(k +p)ek(L+2δ) + (k −p)e−k(L+2δ)

∣∣∣∣∣
=

∣∣∣∣ k cosh(kL)−p sinh(kL)

k cosh(k(L+2δ))+p sinh(k(L+2δ))

∣∣∣∣< 1.

In order to get a bound independently of k, we observe that lim
k→∞

ϕ(k,δ, p) = lim
k→∞

‖T̃1‖∞ =
0 if δ > 0. Therefore defining ρ̄(δ) := maxk max{ϕ(k,δ, p),‖T̃1(k,δ, p)‖∞}, we see that
‖T O

2D‖∞ = max{ϕ,‖T̃1‖,‖T̃2‖} < ρ̄(δ) < 1, for every δ, p > 0.

For the case without overlap, we need a further argument because for δ = 0 both ρ(T O
2D )

and ‖T O
2D‖∞ are less than one for any finite frequency k, but tend to one as k →∞. One

can therefore construct a situation where the method would not be scalable as follows:
suppose we have N subdomains, and on the j -th subdomain we choose as initial guess
e0

j the j -th frequency e0
j = ê0

j sin( j π
L̂

y). Then the convergence of the method is deter-

mined by the frequency which maximizes ρ(T O
2D (k)). When the number of subdomains

N becomes large, this maximum is attained for the largest frequency kN = N π
L̂y

since
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ρ(T O
2D (k)) → 1 as k →∞. Thus, every time we add a subdomain to the chain with a new

initial condition on the interface N +1 according to our rule, the convergence rate of the
method deteriorates from ρ(T O

2D (N π
L̂

)) to ρ(T O
2D ((N +1)π

L̂
)) and the scalability property is

lost. Theorem 1.4.2 gives however a sufficient condition such that the OSM is weakly scal-
able also without overlap, and to see this we introduce the vector en with en

k = ‖rn(k)‖∞
where rn(k) contains the Robin traces at the interfaces of the k-th Fourier mode.

Theorem 1.4.2. Given a tolerance Tol, and supposing there exists a k̃ that does not depend
on N such that e0

k < Tol for every k > k̃, then the OSM without overlap, δ= 0, and p > 0 is
weakly scalable.

Proof. Suppose that the initial guess satisfies ‖e0‖∞ > Tol, since otherwise there is noth-
ing to prove. Then, due to the hypothesis, we have that max π

L ≤k≤k̃ e0
k > Tol. We now show

that the method contracts with a ρ independent of the number of subdomains up to the
tolerance Tol, and therefore we have scalability. Indeed, for every k such that π

L ≤ k ≤ k̃

en
k = ‖rn(k)‖∞ ≤ ‖T O

2D (k)‖∞‖rn−1(k)‖∞ ≤ ‖T O
2D (k̄)‖∞‖rn−1(k)‖∞ = ‖T O

2D (k̄)‖∞en−1
k ,

where ‖T O
2D (k̄)‖∞ = max π

L ≤k≤k̃ ‖T O
2D (k)‖∞ < 1 because ‖T O

2D (k)‖∞ is strictly less than 1 for

every finite k. Now for k > k̃,

en
k = ‖rn(k)‖∞ ≤ ‖T O

2D (k)‖∞‖rn−1(k)‖∞ ≤ ‖rn−1(k)‖∞ = en−1
k ,

since ‖T O
2D (k)‖∞ ≤ 1. Therefore we observe that the method does not increase the error for

the frequencies k > k̃ while it contracts for the other frequencies with a contraction factor
of at least ρ̄ = ‖T O

2D (k̄)‖∞ < 1. Hence, as long as ‖en‖∞ > Tol, we have ‖en‖∞ ≤ ρ̄n‖e0‖∞
with ρ̄ independent of N .

The technical assumption in Theorem 1.4.2 on the frequency content of the initial error
is not restrictive, since in a numerical implementation we have a maximum frequency
kmax which can be represented by the grid. Choosing k̃ = kmax, the hypothesis of The-
orem 1.4.2 is verified. Note also that without overlap, δ = 0, we have that ‖T O

2D‖∞ = 1
for p = 0 or p →∞. Therefore we can not conclude that the method is scalable in these
two cases. For p = 0, the OSM exchanges only partial derivatives information on the in-
terface. For p →∞, we obtain the classical Schwarz algorithm and it is well known that
without overlap (δ= 0), the method does not converge. We finally show the behaviour of
p 7→ ‖T O

2D (k,δ, p)‖∞ for a fixed pair (δ,k) in Figure 1.4. According to the proof of Theorem
1.4.1, the minimum of the function p 7→ ϕ(k,δ, p) is located at p = k. Even though it is
a minimum for ϕ(k,δ, p) and not necessarily for ‖T O

2D (k,δ, p)‖∞ or ρ(T O
2D ), we might de-

duce from Figure 1.4 that in order to eliminate the k-th frequency, a good choice would be
to set p := k in the OSM. For the Laplace equation, it has been shown for two subdomains
that setting p := k leads to a vanishing convergence factor ρ(k) for the frequency k [74].
In the case of many subdomains, a similar result has not been proved yet, but Figure 1.4
indicates that it might hold as well.
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Figure 1.4: Infinity norm of the iteration matrix T O
2D as a function of p for L = 1, L̂ = 1,δ=

0.1,k = 20, N = 50.

x
a0 a1 a j−1 a j aN−1 aN

· · · · · ·

Ω1 · · · Ω j · · · ΩNL̂
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Figure 1.5: Nonoverlapping domain decomposition in two dimensions. Notice that a j =
j L.

1.4.1.2 Scalability analysis for the Dirichlet-Neumann method

We now consider a two dimensional problem decomposed into nonoverlapping subdo-
mains as shown in Figure 1.5. The error form of the parallel Dirichlet Neumann method
(PDNM) is given by

−∆en
j = 0 in Ω j ,

en
j (·,0) = 0, en

j (·, L̂) = 0,

en
j (a j , ·) = (1−θ)en−1

j (a j , ·)+θen−1
j+1 (a j , ·),

∂x en
j (a j−1, ·) = (1−µ)∂x en−1

j (a j−1, ·)+µ∂x en−1
j−1 (a j−1, ·),

for j = 2, . . . , N −1, and

−∆en
1 = 0 inΩ1,

en
1 (·,0) = 0, en

1 (·, L̂) = 0,

en
1 (a0, ·) = 0,

en
1 (a1, ·) = (1−θ)en−1

1 (a1, ·)+θen−1
2 (a1, ·),
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and

−∆en
N = 0 inΩN ,

en
N (·,0) = 0, en

N (·, L̂) = 0,

∂x en
N (aN−1, ·) = (1−µ)∂x en−1

N (aN−1, ·)+µ∂x en−1
N−1(aN−1, ·),

en
N (aN , ·) = 0,

where θ,µ ∈ (0,1). We consider again the Fourier expansion of en
j , where the Fourier coef-

ficients vn
j (x,k) solve

∂xx vn
j = k2vn

j in (a j ,b j ),

vn
j (a j ) = (1−θ)vn−1

j (a j )+θvn−1
j+1 (a j ),

∂x vn
j (a j−1) = (1−µ)∂x vn−1

j (a j−1)+µ∂x vn−1
j−1 (a j−1).

Defining

Dn
j := (1−θ)vn−1

j (a j )+θvn−1
j+1 (a j ),

N n
j := (1−µ)∂x vn−1

j (a j−1)+µ∂x vn−1
j−1 (a j−1),

we get

vn
j (x,k) = 1

kγ2

[
ke−k[( j−1)L−x]Dn

j +e−k( j L−x)N n
j +kek[( j−1)L−x]Dn

j −ek( j L−x)N n
j

]
,

for j = 2, . . . , N −1, and

vn
1 (x,k) = Dn

1

γ1
[ekx −e−kx ], vn

N (x,k) = 1

kγ2

[
e−k(N L−x)N n

N −ek(N L−x)N n
N

]
,

where γ1 := e−kL −ekL and γ2 := ekL +e−kL . Using the expressions of N n
j and Dn

j , we get

[
0

Dn
1

]
= T̂1

[
N n−1

1
Dn−1

1

]
+T2

[
N n−1

2
Dn−1

2

]
,[

N n
2

Dn
2

]
= T̃0

[
0

Dn−1
1

]
+T1

[
N n−1

2
Dn−1

2

]
+T2

[
N n−1

3
Dn−1

3

]
,[

N n
j

Dn
j

]
= T0

[
N n−1

j−1

Dn−1
j−1

]
+T1

[
N n−1

j

Dn−1
j

]
+T2

[
N n−1

j+1

Dn−1
j+1

]
, for j = 3, . . . , N −2,[

N n
N−1

Dn
N−1

]
= T0

[
N n−1

N−2
Dn−1

N−2

]
+T1

[
N n−1

N−1
Dn−1

N−1

]
+ T̃2

[
N n−1

N
0

]
,[

N n
N

0

]
= T̃1

[
N n−1

N
Dn−1

N

]
+ T̃2

[
N n−1

N−1
Dn−1

N−1

]
,

(1.4.10)
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where

T0 :=
[

2
γ2

kγ1

γ2

0 0

]
, T1 :=

[
1−µ 0

0 1−θ
]

, T2 :=
[

0 0
−θγ1

kγ2

2θ
γ2

]
,

T̃0 :=
[

0 µkγ2

γ1

0 0

]
, T̂1 :=

[
0 0
0 1−θ

]
, T̃1 :=

[
1−µ 0

0 0

]
, T̃2 :=

[
0 0

− θγ1

kγ2
0

]
.

Defining en :=
[

0,Dn
1 ,N n

2 ,Dn
2 , . . . ,N n

j ,Dn
j , . . . ,N n

N−1,Dn
N−1,N n

N ,0
]>

, the iteration relations

(1.4.10) may be rewritten as
en = T DN

2D en−1,

where

T DN
2D :=



T̂1 T2

T̃0 T1 T2

T0 T1 T2

T0 T1 T2
. . .

. . .
. . .

T0 T1 T2

T0 T1 T̃2

T0 T̃1


. (1.4.11)

Numerically we observe that ρ(T DN
2D ) < 1, but in general ‖T DN

2D ‖∞ > 1. Hence, the infinity-
norm is not suitable to bound the spectral radius and conclude convergence and scal-
ability. Nevertheless in Theorem 1.4.3, we prove scalability of the PDNM under certain
assumptions on the parameters µ,θ and using similarity arguments..

Theorem 1.4.3. Denote by kmin the minimum frequency and define α(x) := 1/cosh(x). If
θ =µ, then

ρ(T DN
2D ) ≤ ρ̄(µ) :=

√
1−µ+µ2 +µα(kminL),

where ρ̄(µ) is independent of N . Furthermore, if cosh(kminL) > 2, then ρ̄(µ) < 1 for any pos-
itive µ such that µ< 1−2α(kminL)

1−α(kminL)2 , which implies that the PDNM is convergent and scalable.

We show in Figure 1.6 the function ρ̄(µ) for the case L̂ = 1, that is kmin = π. The proof of
Theorem 1.4.3 relies on the following lemma.

Lemma 1.4.4. Let α(x) := 1/cosh(x). Then for any x ∈ (0,∞) such that cosh(x) > 2 it holds
that 1−2α(x)

1−α(x)2 ∈ (0,1). Moreover, for any x ∈ (0,∞) and µ ∈ (0,1) such that cosh(x) > 2 and

µ< 1−2α(x)
1−α(x)2 , it holds that

√
1−µ+µ2 +α(x)µ< 1.

Proof. Let x ∈ (0,∞), then α(x) = 1/cosh(x) < 1. Hence we have 0 < 1−α(x)2 < 1. Now,
take any x ∈ (0,∞) such that cosh(x) > 2. First, we have 1

2 > 1
cosh(x) , which implies that
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Figure 1.6: Functionµ 7→ ρ̄(µ) for L = 1 and L̂ = 1. Notice that forµ< 0.831 (vertical dashed
line) it holds that ρ̄(µ) < 1.

1−2α(x) > 0. Second, we note that 1−2α(x) < 1−α(x) < 1−α(x)2. Therefore, we obtain
that 1−2α(x)

1−α(x)2 ∈ (0,1). Now take any µ ∈ (0,1) such that µ < 1−2α(x)
1−α(x)2 . This implies that 1−

2α(x)+ (α(x)2 −1)µ> 0. Multiplying this by µ, with a direct calculation, we get −µ+µ2 <
−2α(x)µ+α(x)2µ2. Adding 1 to both sides and taking the square root then leads to the
claim.

We are now ready to prove Theorem 1.4.3.

Proof. If µ= θ, the matrix T DN
2D has the structure

T DN
2D :=



0

B̃1,1 B̃1,2
2µ
γ2

B̃2,1 B̃2,2

B̂1,1 B̂1,2
2µ
γ2

2µ
γ2

B̂2,1 B̂2,2

. . .
. . .

. . .
. . .

B̂1,1 B̂1,2
2µ
γ2

2µ
γ2

B̂2,1 B̂2,2

B 1,1 B 1,2
2µ
γ2

2µ
γ2

B 2,1 B 2,2

0



,
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where B̃ , B̂ ,B ∈R2×2. We introduce an invertible block diagonal matrix

G :=



g 0
0 G̃ 0

0 Ĝ 0
0 Ĝ 0

. . .
. . .

. . .

0 Ĝ 0
0 g


, with Ĝ :=

[
d̂1 0
0 d̂2

]
and G̃ :=

[
d̃1 0
0 d̃2

]
,

where the elements g , d̂1, d̂2, d̃1, d̃2 ∈ R \ {0} will be chosen in such a way that the matrix
G−1T DN

2D G can be bounded in some suitable norm. We have

G−1T DN
2D G :=



0

C̃1,1 C̃1,2
2µ
γ2

C̃2,1 C̃2,2

Ĉ1,1 Ĉ1,2
2µ
γ2

2µ
γ2

Ĉ2,1 Ĉ2,2

. . .
. . .

. . .
. . .

Ĉ1,1 Ĉ1,2
2µ
γ2

2µ
γ2

Ĉ2,1 Ĉ2,2

C 1,1 C 1,2
2µ
γ2

2µ
γ2

C 2,1 C 2,2

0



,

where
C̃ = G̃−1B̃G̃ , Ĉ = Ĝ−1B̂Ĝ , C = Ĝ−1BĜ .

Now, we split G−1T DN
2D G into a sum, i.e. G−1T DN

2D G = Tdiag +Toff, where Tdiag contains the
diagonal blocks, that is

Tdiag =



0
C̃

Ĉ
. . .

Ĉ
C

0


,

and Toff = G−1T DN
2D G −Tdiag contains the remaining off-diagonal elements 2µ

γ2
. Then we

have

ρ(T DN
2D ) = ρ(G−1T DN

2D G) ≤ ‖G−1T DN
2D G‖2 = ‖Tdiag +Toff‖2

≤ ‖Tdiag‖2 +‖Toff‖2 ≤
√
ρ(T >

diagTdiag)+
√
ρ(T >

offToff).
(1.4.12)
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Notice that

T >
offToff = diag

(
0,0,

4µ2

γ2
2

, . . . ,
4µ2

γ2
2

,0,0

)
,

and hence
√
ρ(T >

offToff) = 2µ
γ2

. Now, we focus on the term ρ(T >
diagTdiag). The block diagonal

structure of T >
diagTdiag allows us to write

ρ(T >
diagTdiag) =

√
max

{
ρ(C̃>C̃ ),ρ(Ĉ>Ĉ ),ρ(C

>
C )

}
. (1.4.13)

The evaluation of the spectral radii ρ(C̃>C̃ ), ρ(Ĉ>Ĉ ), and ρ(C
>

C ) leads to the analysis of
cumbersome formulas, and we thus bound instead the spectral radii by the correspond-
ing infinity-norms. To do so, setting d̃1 := γ1 and d̃2 := kγ2, we obtain

ρ(C̃>C̃ ) = ρ(G̃B̃>G̃−1G̃−1B̃G̃) ≤ ‖G̃B̃>G̃−1G̃−1B̃G̃‖∞ = 2µ2 −2µ+1.

Next, we set d̂1 := γ2 and d̂2 := kγ1 and get

ρ(C
>

C ) = ρ(ĜB
>

Ĝ−1Ĝ−1BĜ) ≤ ‖G̃B
>

G̃−1G̃−1BG̃‖∞

= max

{
1−µ,1−µ+ µ2(e−kL −ekL)4

(e−kL +ekL)4

}
≤ 1−µ+µ2,

where the fact that (e−kL−ekL )4

(e−kL+ekL )4 ≤ 1 for any k is used. Now, a direct calculation shows that

2µ2 −2µ+1 ≤ 2µ2 −2µ+1+ 4µ(1−µ)

(ekminL +e−kminL)2
≤ 1−µ+µ2,

for any µ ∈ (0,1). Therefore, we obtain

‖Tdiag‖2 = ρ(T >
diagTdiag) ≤

√
1−µ+µ2.

Recalling (1.4.12) and (1.4.13), we conclude that

ρ(T DN
2D ) ≤ ‖Tdiag‖2 +‖Toff‖2 ≤

√
1−µ+µ2 + 2µ

γ2

≤
√

1−µ+µ2 + 2µ

(ekminL +e−kminL)
=: ρ̄(µ),

which is the first statement of the theorem. The second part follows now from Lemma
1.4.4 by observing that if ρ̄(µ) < 1, then ρ(T DN

2D ) ≤ ρ̄(µ) < 1 where ρ̄(µ) is independent of
N .
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1.4.1.3 Scalability analysis for the Neumann-Neumann method

Finally we study the convergence of the Neumann-Neumann method (NNM). For our
model problem, the error form for the NNM is the following: first solve

−∆en
j = 0 inΩ j ,

en
j (·,0) = 0, en

j (·,L) = 0,

en
j (a j−1, ·) =Dn

j−1, en
j (a j , ·) =Dn

j ,

for j = 2, . . . , N −1 and

−∆en
1 = 0 inΩ1,

en
1 (·,0) = 0, en

1 (·,L) = 0,

en
1 (a0, ·) = 0, en

1 (a1, ·) =Dn
1 ,

−∆en
N = 0 inΩN ,

en
N (·,0) = 0, en

N (·,L) = 0,

en
N (aN−1, ·) =Dn

N−1, en
N (aN , ·) = 0,

then solve
−∆ψn

j = 0 inΩ j ,

∂xψ
n
j (·,0) = 0, ψn

j (·,L) = 0,

∂xψ
n
j (a j−1, ·) = ∂x en

j (a j−1, ·)−∂x en
j−1(a j−1, ·),

∂xψ
n
j (a j , ·) = ∂x en

j (a j , ·)−∂x en
j+1(a j , ·),

for j = 2, . . . , N −1 and

−∆ψn
1 = 0 inΩ1,

ψn
1 (·,0) = 0, ψn

1 (·,L) = 0, ψn
1 (a0, ·) = 0,

∂xψ
n
1 (a1, ·) = ∂x en

1 (a1, ·)−∂x en
2 (a1, ·),

and
−∆ψn

N = 0 inΩN ,

ψn
N (·,0) = 0, ψn

N (·,L) = 0, ψn
N (aN , ·) = 0,

∂xψ
n
N (aN−1, ·) = ∂x en

N (aN−1, ·)−∂x en
N−1(aN−1, ·),

and finally set
Dn+1

j :=Dn
j −ϑ(ψn

j+1(a j , ·)+ψn
j (a j , ·)), (1.4.14)

for j = 1, · · · , N −1, where ϑ> 0. We expand both en
j and ψn

j in Fourier series ,

en
j (x, y) =

∞∑
m=1

vn
j (x,k)sin(k y), ψn

j (x, y) =
∞∑

m=1
wn

j (x,k)sin(k y),

where k ∈K . The Fourier coefficients vn
j (x,k) and wn

j (x,k) solve the problems

k2vn
j −∂xx vn

j = 0 in (a j−1, a j ),

vn
j (a j−1,k) =Dn

j−1,

vn
j (a j ,k) =Dn

j ,

k2wn
j −∂xx wn

j = 0 in (a j−1, a j ),

∂x wn
j (a j−1,k) = ∂x vn

j (a j−1,k)−∂x vn
j−1(a j−1,k),

∂x wn
j (a j ,k) = ∂x vn

j (a j ,k)−∂x vn
j+1(a j ,k),
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for j = 2, . . . , N −1, and

k2vn
1 −∂xx vn

j = 0 in (a0, a1),

vn
1 (a0,k) = 0,

vn
1 (a1,k) =Dn

1 ,

k2wn
1 −∂xx wn

1 = 0 in (a0, a1),

w̃n
1 (a0,k) = 0,

∂x wn
1 (a1,k) = ∂x vn

1 (a1,k)−∂x vn
2 (a1,k),

and

k2vn
N −∂xx vn

N = 0 in (aN−1, aN ),

vn
N (aN−1,k) =Dn

N−1,

vn
N (aN ,k) = 0,

k2wn
N −∂xx wn

N = 0 in (aN−1, aN ),

∂x wn
N (aN−1,k) = ∂x vn

N (aN−1,k)−∂x vn
N−1(aN−1,k),

wn
N (aN ,k) = 0,

for the first and last subdomains. For the sake of notation, we set Dn
0 =Dn

N = 0 and defin-
ing γ1 := ekL −e−kL , the solution vn

j can be written as

vn
j (x,k) = 1

γ1

[
Dn

j

(
ek(x−( j−1)L) −ek(( j−1)L−x)

)
+Dn

j−1

(
ek( j L−x) −ek(x− j L)

)]
,

which is used to solve the problems in wn
j , and we obtain

wn
j (x,k) = 1

γ2
1

(
2Dn

j−1(ekL +e−kL)−2Dn
j −2Dn

j−2

)(
ek(x− j L) +ek( j L−x)

)
+ 1

γ2
1

(
2Dn

j (ekL +e−kL)−2Dn
j−1 −2Dn

j+1

)(
ek(x−( j−1)L) +ek(( j−1)L−x)

)
,

for j = 2, . . . , N −1, and

wn
1 (x,k) = 1

γ1γ2

(
2Dn

1 (ekL +e−kL)−2Dn
2

)(
ekx −e−kx

)
,

wn
N (x,k) = 1

γ1γ2

(
−2Dn

N−1(ekL +e−kL)+2Dn
N−2

)(
ek(x−N L) −ek(N L−x)

)
,

where γ2 := ekL +e−kL . Using equation (1.4.14) we get

Dn+1
j =Dn

j − ϑ

γ2
1

[
4Dn

j

((
ekL +e−kL

)2 −2

)
−4Dn

j−2 −4Dn
j+2

]
, (1.4.15)

for j = 2, . . . , N −2, and

Dn+1
1 =Dn

1 − ϑ

γ2

(
2(ekL +e−kL)Dn

1 −2Dn
2

)
− ϑ

γ2
1

(
2((ekL +e−kL)2 −2)Dn

1 +2(ekL +e−kL)Dn
2 −4Dn

3

)
,

Dn+1
N−1 =Dn

N−1 −
ϑ

γ2

(
2(ekL +e−kL)Dn

N−2 −2Dn
N−2

)
− ϑ

γ2
1

(
2((ekL +e−kL)2 −2)Dn

N−1 +2(ekL +e−kL)Dn
N−2 −4Dn

N−3

)
.

(1.4.16)
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We define en = [
Dn

1 , Dn
2 , · · · , Dn

N−1

]>, and write equations (1.4.15)-(1.4.16) as en+1 = T N N
2D en ,

where the iteration matrix T N N
2D is given by

T N N
2D =



α̃ γ̃ β̃

0 α 0 β

β 0 α 0 β

. . .
. . .

. . .
. . .

. . .
. . .

. . . α 0 β

β 0 α 0
β̃ γ̃ α̃


,

with α := 1− 4ϑ
γ2

1

((
ekL +e−kL

)2 −2
)
, β := 4ϑ

γ2
1

, α̃ := 1− 2ϑ
γ2

(ekL + e−kL)− 2ϑ
γ2

1
((ekL + e−kL)2 −2),

γ̃ := 2ϑ
γ2

− 2ϑ
γ2

1
(ekL +e−kL), β̃ := 4ϑ

γ2
1

.

Theorem 1.4.5. If L
L̂
> ln(1+p2)

π , then the NNM with ϑ = 1
4 is scalable, in the sense that

ρ(T N N
2D ) ≤ ‖T N N

2D ‖∞ = 4
γ2

1
< 1.

Proof. The infinity-norm of T N N
2D is given by

‖T N N
2D ‖∞ = max

{|α̃|+ |γ̃|+ |β̃|, |α|+2|β|} .

Using ϑ= 1
4 and exploiting the definition of γ1, the coefficient α in T N N

2D becomes

α= 1− 1

γ2
1

((
ekL +e−kL

)2 −2

)
= 1− cosh(kL)2

sinh(kL)2 + 1

2

1

sinh(kL)2 =− 2

γ2
1

.

Similarly, one obtains that α̃=− 1
γ2

1
. Moreover, we have β= β̃= 1

γ2
1

. Therefore, we get

‖T N N
2D ‖∞ = max

{(
2+ 2

γ2

)
1

γ2
1

,
4

γ2
1

}
= 4

γ2
1

,

since γ2 > 1. This shows that ‖T N N
2D ‖∞ is strictly smaller than one if the condition 4

γ2
1
< 1

holds, meaning that γ1 > 2, and since the map k 7→ γ1 = 2sinh(kL) is strictly increasing in
k, it suffices that γ1 > 2 is satisfied for just k = π

L̂
. Hence the condition becomes sinh(kL) >

1 or equivalently kL > arcsinh(1) = ln(1+p
2), which concludes the proof.

1.4.1.4 Numerical results

We close this subsection with a numerical experiment. We start with a random initial
guess and we apply the different methods to solve (1.4.1) with f = g = 0. We set the ge-
ometric parameters equal to L̂ = L = 1 and we discretize each subdomain square with
Nh = 100 interior unknowns. For the overlapping OSM we chooseδ= 10h, where h = 1

Nh+1

and we set p =π. For the PDNM, we set θ =λ= 1
2 while for the PNNM θ = 1

4 . In Table 1.1,
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N 10 20 30 40 50

OSM 13 13 13 13 13
PDNM 70 70 70 70 70
PNNM 6 6 6 6 6

Table 1.1: Number of iterations to reach convergence as the number of subdomains N
increases.

we report the number of iterations to reach convergence with a tolerance of Tol := 10−12

for the different methods as the number N of the subdomains increases. We can observe
that every method requires a constant number of iterations to reach convergence. There-
fore, these numerical experiments are in agreement with the theoretical results presented
in this subsection. According to Table 1.1, it seems that the PNNM is the fastest method.
However, we remark that each iteration of the PNNM requires two subdomain solves, so
its cost is comparable with the OSM. Moreover, the PNNM is extremely sensitive on the
choice of θ, see [26].

1.4.2 Scalability analysis for Discrete Fracture Network

Discrete fracture networks (DFNs) are advanced mathematical models to study flows in
fractured media. A DFN usually consists of complex three-dimensional structures charac-
terized by the intersections of planar polygonal fractures generated stochastically. Thus,
fractures are represented by two dimensional planes which intersect randomly in the
three dimensional space, giving rise to highly complex structures, that are coupled through
the conservation of physical quantities of interest. The generation of accurate meshes is
not trivial for DFNs and in the last decade, there has been a great interest in developing
robust discretization techniques for DNFs, ranging from the virtual element method [7]
to XFEM [8] and optimization approaches [9]. Much less attention has been devoted to
the development of fast and robust ad-hoc iterative solvers. In this section, we limit our
study to the scalability properties of optimized Schwarz methods applied to DFNs. Part
of this work has been carried out during a research visit at the GEOSCORE group led by
Prof. Berrone at Politecnico di Torino.

We consider a simplified DFN composed by the union of one-dimensional fractures Fi ,
i = 1, ..., N depicted in Fig 1.7. Denoting the DFN byΩ, we haveΩ=∪N

i=1Fi . The boundary
of the fractures is denoted with ∂Fi and it holds that ∂Ω = ∪N

i=1∂Fi . Furthermore, the
boundary ∂Ω can be decomposed into a Dirichlet boundaryΓD and a Neumann boundary
ΓN , so that ∂Ω = ΓD ∪ΓN . The intersections between fractures are called traces and are
denoted by Sm , m = 1, ..., N − 1 =: M . We suppose that the vertical fractures have two
traces located at y = γ1 and y = γ2, while the horizontal ones are intersected at x = γ1 and
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x
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y
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γ1

γ2

Figure 1.7: On the left, we show the geometry of a discrete fracture network with five
fractures intersecting in four traces. On the right we specify the geometry of the fractures.

x = γ2, except the first and last fracture which have only one trace. Our goal is to solve

−ν(τ)∂ττu = f in Ω, B(u) = 0 on ∂Ω, (1.4.17)

u|Fi = u|Fi+1 on Si , i = 1, ..., M ,[[
∂ui

∂τi

]]
+

[[
∂ui+1

∂τi+1

]]
= 0 on Si , i = 1, ..., M ,

where τi is the local variable on the fracture Fi , the operator B represents the boundary
conditions, ν(τ) is the diffusion coefficient which might change between fractures and
[[v]] is the jump of v across the intersection of fractures.

We now define an OSM for (1.4.17). Given a DFN Ω composed of N fractures, we decom-
pose Ω into a set of Nsub nonoverlapping subdomains Ωi , Ω=∪Nsub

i=1 Ωi . Each subdomain
can correspond to a single fracture, or to a set of fractures. In the following we suppose
that Ωi = Fi and thus, Nsub = N . To solve equation (1.4.17), starting with an initial guess
u0

j , j = 1, ..., N , the OSM computes at each iteration n = 1,2, ... until convergence

−ν j∂τ jτ j un
j = f j in F j , B j (un

j ) = 0 on ∂Fi ,[[
∂un

j

∂τ j

]]
+ s+j−1un

j =−
[[

∂un−1
j−1

∂τ j−1

]]
+ s+j−1un−1

j−1 on S j−1, (1.4.18)[[
∂un

j

∂τ j

]]
+ s−j un

j =−
[[

∂un−1
j+1

∂τ j+1

]]
+ s−j un−1

j+1 on S j .

for j = 2, ..., N −1, while for j = 1, N ,

−ν1∂τ1τ1 un
1 = f1 in F1, B1(un

1 ) = 0, −νN∂τNτN un
N = fN in FN , BN (un

N ) = 0,[[
∂un

1

∂τ1

]]
+ s−1 un

1 =−
[[

∂un−1
2

∂τ2

]]
+ s−1 un−1

2 on S1, (1.4.19)

[[
∂un

N

∂τN

]]
+ s+N−1un

N =−
[[

∂un−1
N−1

∂τN−1

]]
+ s+N−1un−1

N−1 on SN−1.



CHAPTER 1. INTRODUCTION TO DOMAIN DECOMPOSITION METHODS 33

The functions f j are the restriction of the force term on the fracture F j and s+,−
j , j = 1, ..., M

are positive parameters. We remark that equations (1.4.18)2,3 are obtained taking a linear
combination with parameter s+,−

j of the coupling conditions expressed in (1.4.17)2,3. We
obtain what are usually called transmission conditions (1.4.18)2,3 in the domain decom-
position literature to distinguish them from the physical coupling conditions (1.4.17)2,3.
The two formulations are equivalent in the sense that, at convergence, u j = u|F j .

1.4.2.1 Convergence and scalability analysis

In this subsection we perform a convergence and scalability analysis of OSMs applied to
DFNs. For the sake of simplicity we suppose that s+,−

j = p ∈R+ for j = 1, ..., N −1 and ν j =
1, j = 1, ..., N . We first discuss the case in which every B j represents a Dirichlet boundary
condition. Second, we treat the more realistic case in which we have Neumann boundary
conditions everywhere, expect at the left boundary of F1 and at the right boundary of FN .
Intermediate cases can be derived straightforwardly from our analysis.

Equations (1.4.18) and (1.4.19) define a sequence
{

un
j

}
n

. To study the convergence of

the proposed method we use the linearity of the problem defining en
j := u −un

j , and we
consider the error equations

−∂τ jτ j en
j = 0, in F j , B j (en

j ) = 0 on ∂Fi ,[[
∂en

j

∂τ j

]]
+pen

j =−
[[

∂en−1
j−1

∂τ j−1

]]
+pen−1

j−1 on S j−1, (1.4.20)[[
∂en

j

∂τ j

]]
+pen

j =−
[[

∂en−1
j+1

∂τ j+1

]]
+pen−1

j+1 on S j .

for j = 2, ..., N −1, while for j = 1, N ,

−∂τ1τ1 en
1 = 0, in F1, B1(en

1 ) = 0, −∂τNτN en
N = 0, in FN , BN (en

N ) = 0,[[
∂en

1

∂τ1

]]
+pen

1 =−
[[

∂en−1
2

∂τ2

]]
+pen−1

2 on S1,

[[
∂en

N

∂τN

]]
+pen

N =−
[[

∂en−1
N−1

∂τN−1

]]
+pen−1

N−1 on SN−1.

Inside each fracture the analytical solutions are

en
1 = ên

1 τ1

γ2
χ([0,γ2])+ ên

1 (L−τ1)

L−γ2
χ([γ2,L]), (1.4.21)

en
j =

ê1,n
j τ j

γ1
χ([0,γ1])+

 ê1,n
j (γ2 −τ j )

γ2 −γ1
+

ê2,n
j (τ j −γ1)

γ2 −γ1

χ([γ1,γ2])+
ê2,n

j (L−τ j )

L−γ2
χ([γ2,L]), j = 2, ..., N −1,

en
N = ên

NτN

γ1
χ([0,γ1])+ ên

N (L−τN )

L−γ1
χ([γ1,L]). (1.4.22)

The functions χ([a,b]) are characteristic functions which satisfy χ(τ) = 1 if τ ∈ [a,b] and
zero otherwise. We remark that the unknown coefficients ê i ,n

j , i = 1,2, j = 1, ..., N rep-
resent the value of the error functions at the traces S j+(i−3)+1 on the fracture j . We now
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insert these expressions into the transmission conditions, and we aim to express the co-
efficients of the error in fracture j at iteration n in terms of the coefficients of the errors in
fractures j −1 and j +1 at iteration n −1. For instance, for F1,F2 and F3 we find directly

ên
1

(
L

γ2(L−γ2)
+p

)
= ê1,n−1

2

(
p − γ2

γ1(γ2 −γ1)

)
+ ê2,n−1

1

γ2 −γ1
(1.4.23)

ê1,n
2

(
p + γ2

γ1(γ2 −γ1)

)
− ê2,n

1

γ2 −γ1
= ên−1

1

(
p − L

γ2(L−γ2)

)
,

− ê1,n
1

γ2 −γ1
+ ê2,n

2

(
p + L−γ1

(L−γ2)(γ2 −γ1)

)
= ê1,n−1

3

(
p − γ2

γ1(γ2 −γ1)

)
+ ê2,n−1

3

1

γ2 −γ1
,

ê1,n
3

(
p + γ2

γ1(γ2 −γ1)

)
− ê2,n

3

γ2 −γ1
= ên−1,1

2

γ2 −γ1
+ ên−1,1

2

(
p − L−γ1

(γ2 −γ1)(L−γ2)

)
,

− ê1,n
3

γ2 −γ1
+

(
L−γ1

(L−γ2)(γ2 −γ1)
+p

)
ê2,n

3 = ê1,n−1
4

(
p − γ2

γ1(γ2 −γ1)

)
+ 1

γ2 −γ1
ê2,n−1

4 .

Carrying out the calculations for N fractures and defining the vector vn = (ên
1 , ê1,n

2 , ê2,n
2 , ..., ê1,n

N )>,

vn ∈RÑ , Ñ := 2(N −2)+2, which contains all the values at the traces at iteration n, we find
the recurrence relation

vn = T D
N vn−1 = M−1

N NN vn−1. (1.4.24)

The matrix MN ∈RÑ ,Ñ has the following block structure

MN :=



F1

F2

F2
. . .

F2

F4


, with blocks F2 :=

(
p + γ2

γ1(γ2−γ1) − 1
γ2−γ1

− 1
γ2−γ1

p + L−γ1

(L−γ2)(γ2−γ1)

)
, (1.4.25)

F1 := p + L
γ2(L−γ2) and F4 := p + L

γ1(L−γ1) . The block F2 appears N −2 times on the diagonal.
The matrix NN has the following structure

NN :=



a b
d

a b
b c

. . .
. . .

b c
. . .

. . . a b
d

b c


(1.4.26)

where a := p − γ2

γ1(γ2−γ1) , b := 1
γ2−γ1

, c := p − L−γ1

(L−γ2)(γ2−γ1) , d := p − L
γ1(L−γ1) .
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Theorem 1.4.6. Suppose that γ1 +γ2 = L and s+,−
j = p, ∀ j . Then, the optimized Schwarz

method is scalable for the solution of problem (1.7) with Dirichlet boundary conditions on
each Fi , in the sense that ρ(T D

N ) ≤C < 1, independently of N for every p > 0.

Proof. We want to show that ρ(T D
N ) ≤ C < 1 for every p > 0. To do so, we observe that

ρ(T D
N ) = ρ(M−1

N NN ) = ρ(NN M−1
N ) ≤ ‖NN M−1

N ‖∞. Direct calculations show that

‖NN M−1
N ‖∞ = max

{∣∣∣∣ pγ2(L−γ2)−L

pγ2(L−γ2)+L

∣∣∣∣ ,
2p(L−γ2)2 + ∣∣L+ (L−2γ2)(L−γ2)2p2

∣∣
(p(L−γ2)+1)(p(L−γ2)(2γ2 −L)+L)

}
.

The first term is clearly less than 1 for every p > 0. Considering the second term, we

distinguish two cases: if L+(L−2γ2)(L−γ2)2p2 < 0, then p >
p

Lp
2γ2−L(L−γ2)

and the second

term simplifies to −1+(L−δ2)p
1+(L−δ2)p which is positive in the admissible range of p and strictly less

than 1. Similarly, if L+(L−2γ2)(L−γ2)2p2 ≥ 0, then we have
2p(L−γ2)2+|L+(L−2γ2)(L−γ2)2p2|
(p(L−γ2)+1)(p(L−γ2)(2γ2−L)+L) =

p(L−δ2)(2γ2−L)−L
p(L−δ2)(−2δ2+L)−L < 1. Thus we conclude that ‖NN M−1

N ‖∞ < C , with C < 1 for every p > 0
and independent of N .

We have shown that for a simplified DFN, the OSM is scalable for the solution of prob-
lem (1.7) with Dirichlet boundary conditions on the boundary of the fractures. We re-
mind that for one-dimensional chains of fixed size-subdomains, the OSM does not scale
[28]. What happens if we consider Neumann boundary conditions? Unfortunately, as one
could guess from the discussion in Section 3.1 and 8 of [28], the method does not scale
and thus the spectral radius of the iteration matrix tends to one as the number of frac-
tures increases. Imposing Neumann boundary conditions except on the left of the first
fracture and on the right of the last one, the general solution becomes

en
1 = ên

1 τ1

γ2
χ([0,γ2])+ ên

1χ([γ2,L]), (1.4.27)

en
j = ê1,n

j χ([0,γ1])+
 ê1,n

j (γ2 −τ j )

γ2 −γ1
+

ê2,n
j (τ j −γ1)

γ2 −γ1

χ([γ1,γ2])+ ê2,n
j χ([γ2,L]), j = 2, ..., N −1,

en
N = ên

Nχ([0,γ1])+ ên
N (L−τN )

L−γ1
χ([γ1,L]). (1.4.28)

We can again obtain a recurrence relation vn = T N
N vn−1 = M̃−1

N ÑN vn−1, where the matrices
M̃N ÑN have the same structure of (1.4.25) and (1.4.26), but with blocks F̃1 := p+ 1

γ2
, F̃4 :=

p + 1
L−γ1

, F̃2 :=
(

p + 1
γ2−γ1

− 1
γ2−γ1

− 1
γ2−γ1

p + 1
(γ2−γ1)

)
, ã := p − 1

γ2−γ1
, b̃ := 1

γ2−γ1
, c̃ := ã, d̃ := p − 1

(L−γ1) .

In Fig 1.8, we show how the spectral radii of T D
N and T N

N vary as the number of fractures
increases. We clearly observe that while the spectral radius of T D

N remains bounded below
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Figure 1.8: Behaviour of the spectral radii of T D
N and T N

N when increasing the number of
fractures. Parameters: L = 1,γ1 = 0.2 and γ2 = 0.6.
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Figure 1.9: Number of iterations to reach a tolerance of tol = 10−10 as NTop increases. The
DFN is made by 2003 fractures.

one, the spectral radius of T N
N tends rapidly to one, indicating that we need a larger num-

ber of iterations to reach a fixed tolerance as N increases. This phenomenon has been
already explained in [28] and it is due to the fact that the constants require about N /2
iterations to start contracting in the fractures in the middle of the network, see Figure 3
in [28]. Fortunately, the situation is generally more favourable in realistic simulations.
First of all, every fracture which intersects the boundary of the cube/square, where the
fractures are generated, will have Dirichlet boundary conditions. Second, the number
of subdomains is generally less than N , since each subdomain will be composed by sev-
eral fractures. Therefore the convergence of the method will depend on the maximum
over the subdomains of the minimum distance between each subdomain and the Dirich-
let boundary. To imitate this behaviour, we simulate a one dimensional DFN which has
Neumann boundary conditions everywhere except on the first and last fracture. Then we
modify the DFN imposing Dirichlet boundary conditions every NTop fractures. In Fig. 1.9,
we show how the convergence of the method depends on NTop. A subdomain Ω j such
that ∂Ω j ∩ΓD = ; is called “floating subdomain”. We conclude that the decomposition
of the DFN into subdomains should try to minimize the number of floating subdomains.
The use of a coarse level to obtain scalability even with Neumann boundary conditions is
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currently under study.

1.4.2.2 Optimization of the transmission conditions

The rate of convergence of OSMs depends strongly on the transmission conditions. There-
fore it is important to have good estimates of the parameters s+,−

j . In the rest of the sub-
section, we derive optimized transmission conditions for two fractures and we show that
these optimized transmission conditions are very efficient in the many fracture case as
well.

We consider two fractures F1 and F2, and we suppose that on the two fractures we may
have discontinuous diffusion coefficients ν1 and ν2. The OSM for the error equation is

−ν1∂τ1τ1 en
1 = 0, in F1, en

1 (0) = 0 −ν2∂τ2τ2 en
2 = 0, in F2, en

2 (L) = 0,[[
∂en

1

∂τ1

]]
+ s−1 en

1 =−
[[

∂en−1
2

∂τ2

]]
+ s−1 en−1

2 , on S1,

[[
∂en

2

∂τ2

]]
+ s+1 en

2 =−
[[

∂en−1
1

∂τ1

]]
+ s+1 en−1

1 , on S1.

We now want to find the best parameters s−1 , s+1 , to have the fastest convergence possible.
The general solutions are given by

en
1 = ên

1 τ1

γ2
χ([0,γ2])+ ên

1 (L−τ1)

L−γ2
χ([γ2,L]), (1.4.29)

en
2 = ên

2 τ1

γ1
χ([0,γ1])+ ên

2 (L−τ1)

L−γ1
χ([γ1,L]), (1.4.30)

where the unknowns are the two coefficients ên
1 and ên

2 . Inserting these solutions in the
transmission conditions we obtain

ên
1

(
ν1L

γ2(L−δ2)
+ s−1

)
= ên−1

2

(
− ν2L

γ1(L−δ1)
+ s−1

)
,

ên
2

(
+ ν2L

γ1(L−δ1)
+ s+1

)
= ên−1

1

(
ν1L

γ2(L−δ2)
+ s+1

)
.

Rescaling the index, one obtains ên
1 = ρ(s−1 , s+1 ,ν1,ν2)ên−2

1 and ên
2 = ρ(s−1 , s+1 ,ν1,ν2)ên−2

2 ,
where

ρ(s−1 , s+1 ,ν1,ν2) =
(

ν2L
γ1(L−δ1) − s−1

)(
ν1L

γ2(L−δ2) − s+1
)

(
ν1L

γ2(L−δ2) + s−1
)(

ν2L
γ1(L−δ1) + s+1

) .

It follows from the structure of ρ(s−1 , s+1 ,ν1,ν2) that if we chose s−1 = s−,opt
1 := ν2L

γ1(L−δ1) and

s+1 = s+,opt
1 := ν1L

γ2(L−δ2) , we would have ρ(s−1 , s+1 ,ν1,ν2) = 0. In other words we would have a
nilpotent method, i.e. a method which converges to the exact solution in a finite number
of steps, in this case two steps. We refer to [32] for a discussion about the nilpotent prop-
erty of some domain decomposition methods. We conclude this subsection showing that
the two fracture analysis can provide good estimates for the Robin parameters also in the
multifracture case. In Figure 1.10, we plot the spectral radius of T D

N for 2,5,103 and 203
fractures with Dirichlet boundary conditions.
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Figure 1.10: Behaviour of the spectral radii of T D
N when varying the Robin parameter p.

Parameters: L = 1,γ1 = 0.2, γ2 = 0.6 and ν1 = ν2 = 1.
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Figure 1.11: Geometry of a two dimensional fracture.

1.4.2.3 A simplified 2-D model

In this section we consider the two dimensional extension of the 1D model. We suppose
that each fracture is a two dimensional plane which can be rotated and translated such
that it corresponds to Fig 1.11. The intersections between planes are called traces, de-
noted by S j , and are straight segments crossing the whole fracture. On each fracture we
consider a local reference system of coordinates {τ1,τ2}. The coordinate τ1 is perpen-
dicular to the traces while τ2 is parallel. We consider the case in which all B j represent
Dirichlet boundary conditions.

1.4.2.4 Convergence and scalability analysis

We work directly on the error equation. Under the geometry hypothesis, the error can be
expanded in Fourier series in each fracture, i.e. e j =∑∞

k=0 ẽ j (τ1,k)cos( kπ
L τ2). The Fourier

coefficients ẽ j (τ1,k) are obtained imposing the boundary conditions and the transmis-
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sion conditions. The general solutions can be written for k > 0

ẽn
1 (τ1,k) = ên

1 (k)
sinh( kπ

L τ1)

sinh( kπ
L γ2)

χ([0,γ2])+ ên
1 (k)

sinh( kπ
L (L−τ1))

sinh( kπ
L (L−γ2))

χ([γ2,L]), (1.4.31)

ẽ j (τ1,k) = ê1,n
j (k)

sinh( kπ
L τ1)

sinh( kπ
L γ1)

χ([0,γ1])+ ê2,n
j (k)

sinh( kπ
L )(L−τ1)

sinh( kπ
L (L−γ2))

χ([γ2,L]) (1.4.32)

+
(

ê1,n
j (k)

sinh( kπ
L (γ2 −τ1))

sinh( kπ
L (γ2 −γ1))

+ ê2,n
2 (k)

sinh( kπ
L (τ1 −γ1))

sinh( kπ
L (γ2 −γ1))

)
χ([γ1,γ2]), j = 2, ..., N −1,

ẽn
N (τ1,k) = ên

N (k)
sinh( kπ

L τ1)

sinh( kπ
L γ1)

χ([0,γ1])+ ên
N (k)

sinh( kπ
L (L−τ1))

sinh( kπ
L (L−γ1))

χ([γ1,L]), (1.4.33)

while for k = 0,

ẽn
1 (τ1,0) = ên

1 (0)τ1

γ2
χ([0,γ2])+ ên

1 (0)(L−τ1)

L−γ2
χ([γ2,L]), (1.4.34)

ẽn
j (τ1,0) =

ê1,n
j (0)τ j

γ1
χ([0,γ1])+

 ê1,n
j (0)(γ2 −τ j )

γ2 −γ1
+

ê2,n
j (0)(τ j −γ1)

γ2 −γ1

χ([γ1,γ2]) (1.4.35)

+
ê2,n

j (0)(L−τ j )

L−γ2
χ([γ2,L]), j = 2, ..., N −1,

ẽn
N (τ1,0) = ên

N (0)τN

γ1
χ([0,γ1])+ ên

N (0)(L−τN )

L−γ1
χ([γ1,L]). (1.4.36)

We remark that the unknowns ê i ,n
j (k) are the values attained by the k-th mode of the

Fourier expansions at each trace. The Fourier expansion is generally truncated at kmax =
Nh ≈ 1

h , where Nh is the number of discretization points on the traces. Indeed, the numer-
ical grid is only capable of representing a certain number of frequencies which depends
on the mesh size. Similarly to the 1D case, one can obtain recurrence relations which
link the Fourier coefficients of one fracture at iteration n as functions of the Fourier co-
efficients of the neighbouring fractures at iteration n − 1. In particular for k = 0, vn

0 :=(
ên

1 (0), ê1,n
2 (0), ê2,n

2 (0), . . . , ên
N (0)

)
satisfies vn

0 = T D
N vn−1

0 , where T D
N is the matrix of the 1D

system with Dirichlet boundary conditions. For k > 0, we obtain instead vn
k = T 2D

N (k)vn−1
k ,

where T 2D
N = M−1

2D N2D has the same block structure of the 1D case but with blocks defined
as

F2 :=
p +coth( kπ

L γ1)+coth( kπ
L (γ2 −γ1)) − 1

coth( kπ
L (γ2−γ1)

− 1
sinh( kπ

L (γ2−γ1)
p +coth( kπ

L (L−γ2))+coth( kπ
L (γ2 −γ1))

 ,
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Figure 1.12: Behaviour of the spectral radii of the iteration matrix for OSMs applied to the
2D DFN. On the left with Dirichlet boundary conditions on the vertical edges and on the
right with Neumann boundary conditions everywhere. Parameters: L = 1,γ1 = 0.4,γ2 = 0.8
and p = 20.

F1 := p +coth( kπ
L γ2)+coth( kπ

L (L −γ2)) and F4 := p +coth( kπ
L (L −γ1))+coth( kπ

L (γ1)). On
the other hand the coefficients of N2D are

a := p −coth

(
kπ

L
γ1

)
−coth

(
kπ

L
(γ2 −γ1)

)
, b := 1

sinh( kπ
L (γ2 −γ1)

, (1.4.37)

c := p −coth

(
kπ

L
(L−γ2)

)
−coth

(
kπ

L
(γ2 −γ1)

)
, d := p −coth

(
kπ

L
(L−γ2)

)
−coth

(
kπ

L
(γ2 −γ1)

)
.

(1.4.38)

Fig 1.12 shows numerically that the OSM is scalable also for a 2D DFN with Dirichlet
boundary conditions. Observing that the frequency k = 0 behaves according to the 1D
analysis, one can easily guess that the OSM with Neumann boundary conditions on each
fracture except the first and last fracture does not scale. Repeating the calculations one
finds an iteration matrix T̃ 2D

N and Fig 1.12 confirms this intuition.

1.4.2.5 Optimization of the transmission conditions

We now analyse in more details the convergence behaviour of OSMs for two 2D fractures,
focusing on establishing optimized transmission conditions. We consider the problem

−ν1∆en
1 = 0, in F1, en

1 = 0 on ∂F1 −ν2∆en
2 = 0, in F2, en

2 (L) = 0 on ∂F1,[[
∂en

1

∂τ1

]]
+ s−1 en

1 =−
[[

∂en−1
2

∂τ1

]]
+ s−1 en−1

2 , on S1,

[[
∂en

2

∂τ1

]]
+ s+1 en

2 =−
[[

∂en−1
1

∂τ1

]]
+ s+1 en−1

1 , on S1.

On the one hand, inserting the Fourier expansion into the transmission conditions and
defining

f1(k) := ν2kπ

L

(
coth

(
kπ

L
γ2

)
+coth

(
kπ

L
(L−γ2)

))
, f2(k) := ν1kπ

L

(
coth

(
kπ

L
γ1

)
+coth

(
kπ

L
(L−γ1)

))
,
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we obtain for k > 0,

ên
1 (k) f2(k)+ s−1 =−ên−1

2 (k) f1(k)+ s−1 ,

ên
2 (k) f1(k)+ s+1 =−ên−1

2 (k) f2(k)+ s+1 .

Rescaling the index we get ên
j (k) = ρ(k, s−1 , s+1 )ên−2

j (k), for k > 0, j = 1,2, whereρ(k, s−1 , s+1 ) :=
f1(k)−s−1
f2(k)+s−1

f2(k)−s+1
f1(k)+s+1

. On the other hand, concerning the constant mode k = 0, we recover the

1D result, ên
1 (0) = ρ1D (s−1 , s+1 )ên−2

1 (0) where

ρ1D (s−1 , s+1 ) =
(

ν2L
γ1(L−δ1) − s−1

)(
ν1L

γ2(L−δ2) − s+1
)

(
ν1L

γ2(L−δ2) + s−1
)(

ν2L
γ1(L−δ1) + s+1

) .

To derive optimized transmission conditions, we have to solve the min-max problem

min
s−1 ,s+1 ∈R+

max

{
ρ1D (s−1 , s+1 , ), max

k∈[1,kmax]
ρ(k, s−1 , s+1 )

}
. (1.4.39)

To solve (1.4.39) we use some classical tools from the theory of OSMs. Guided by [95],
we set s−1 = f1(p) and s+1 = f2(p), for some p ∈ R+. This ansatz allows us to rescale the
Robin parameters of the two fractures according to the physical properties of the problem
such as the diffusion coefficients ν1 and ν2. We will see in Chapter 2 that rescaling the
parameters s−1 and s+1 permits to take advantage of heterogeneity, i.e. the OSM becomes
faster the more different ν1 and ν2 are. Moreover we remark that f j , j = 1,2 being positive
functions, we satisfy the constraint s−1 , s+1 ∈R+. Hence we have simplified problem (1.4.39)
to

min
p∈R+ max

{
ρ1D (p), max

k∈[1,kmax]
ρ(k, p)

}
. (1.4.40)

We now observe that ρ(k, p) is not defined at k = 0, since the hyperbolic cotangent has a

singularity. However we observe that limk→0ρ(k, p) =
(

ν2L
γ1(L−δ1)− f1(p)

)(
ν1L

γ2(L−δ2)− f2(p)
)

(
ν1L

γ2(L−δ2)+ f1(p)
)(

ν2L
γ1(L−δ1)+ f2(p)

) = ρ1D (p).

Thus we introduce the function ρ̃(k, p) = ρ(k, p) for k > 0 and ρ̃(0, p) = ρ1D (p). Using this
result we can further simply the min-max problem to

min
p∈R+ max

k∈[0,kmax]
ρ̃(k, p). (1.4.41)

and we proof the following result.

Theorem 1.4.7. The solution of the min-max problem (1.4.41) is given by the unique p∗

which satisfies ρ̃(0, p) = ρ̃(kmax, p).

Proof. We first observe that both f1 and f2 are positive and increasing functions for k > 0,
while ρ̃(k, p) = 0 only if k = p. We compute the derivative with respect to p and we obtain

∂ρ̃(k, p)

∂p
= ( f1(k)+ f2(k))( f2(p)− f2(k))( f1(k)+ f2(p)) f ′

1(p)+ f ′
2(p)( f2(k)+ f1(p))( f1(p)− f1(k))

( f2(k)+ f1(p))2( f1(k)+ f2(p))2 ,
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Figure 1.13: Behaviour of the spectral radii of the T D
N when varying the Robin parameter

p. Parameters: L = 1,γ1 = 0.2, γ2 = 0.6 and ν1 = ν2 = 1

where f ′
j (p) stands for the derivative of f j with respect to p. We set h(k, p) := ∂ρ̃(k,p)

∂p . We

remark that if p > kmax then, ∂ρ̃(k,p)
∂p > 0 for all k ∈ [0,kmax], and we are not at the opti-

mum. Thus we conclude that p ∈ (0,kmax). For symmetry we have ∂ρ̃(k,p)
∂k = h(p,k), and

we conclude that the function is decreasing until k = p and then it is increasing until k =
kmax, hence the function has two local maxima located in k = 0 and k = kmax. Therefore,
maxk∈[0,kmax] |ρ̃(k, p)| = max{ρ̃(0, p), ρ̃(kmax, p)}. Now since ∂ρ̃(0,p)

∂p > 0 and ∂ρ̃(kmax,p)
∂p < 0

∀p ∈ (0,kmax], by continuity the optimal p∗ satisfies ρ̃(0, p∗) = ρ̃(kmax, p∗). The unique-

ness of p∗ follows from the strict sign of ∂ρ̃(k,p)
∂p for k = 0,kmax.

In Figure 1.13 we plot the spectral radius of the iteration matrix for 2,5 and 103 fractures
as function of p. We remark that, as in the one dimensional case, the analysis for only two
fractures provides good estimates for the optimal parameters in the many fracture case.



CHAPTER2

Heterogeneous optimized

Schwarz methods for Second

Order PDEs

"We begin with a few remarks concerning the choice of parameters (γi j ): first
of all, it is possible to replace, say in the case m = 2, λ=λ12 and µ=λ21, by two
arbitrary constants,(...), or even by two proportional functions,(...), or even by
local or nonlocal operators(...)"

— Lions, On the Schwarz alternating method III: a variant for
nonoverlapping subdomains, 1990

Due to their property of convergence in the absence of overlap, optimized Schwarz meth-
ods (OSMs) are the natural domain decomposition framework for heterogeneous prob-
lems, where the spatial decomposition is provided by the multi-physics of the phenom-
ena. Their origins lie in the pioneering paper [126], in which Lions proposed a conver-
gent nonoverlapping algorithm using Robin transmission conditions. In a small para-
graph of [126], reported in the epigraph of this Chapter, Lions discusses briefly general-
izations of this method, using more general transmission conditions on the interfaces. It
is really incredible how seminal these few lines are and how much research derived from
them! Nowadays, there are standard procedures to obtain so called optimized transmis-
sion conditions. The problem of interest is posed in a simplified setting where one can
use the Fourier transform [74], for unbounded domains, or Fourier series expansion or
more generally separation of variables [100, 95], for bounded domains, to transform the
PDE into a set of ODEs parametrized by the frequencies k. Then, solving the ODEs and
using the transmission conditions, one can get a recursive relation for the Fourier coeffi-
cients and obtain a closed formula for the convergence factor which contains some free
parameters to optimize. The literature regarding OSMs for homogeneous problems is
well developed. Optimized transmission conditions have been obtained for many prob-
lems such as Helmholtz equations [91, 81], Maxwell equations [58, 121, 137], advection
diffusion problems [65, 95], Navier Stokes equations [12], shallow water equations [133]

43
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and Euler equations [62]. In all these works, homogeneous problems are analyzed, in the
sense that a unique physics is considered in the whole domain, and therefore the coupling
on the interfaces regards equations of the same nature. First attempts to generalize this
situation have been carried out in [131], [78], where Laplace equations with different dif-
fusion coefficients were considered, and in [60], which was devoted to Maxwell equations
with discontinuous coefficients. Let us remark that at least two possible interpretations of
heterogeneous domain decomposition methods exist. The first one concerns problems
where the same physical phenomenon is taking place in the whole domain, but it can
be convenient to use a cheaper approximation in some parts of the domain in order to
save computational resources. This might be the case in the presence of boundary lay-
ers, or for example in CFD simulations where a potential flow is used far away from the
zone of interest while the Navier-Stokes equations are fully solved near, for instance, an
aircraft. In this situation, good transmission conditions can be obtained through a fac-
torization approach, see [82] for further details. The second interpretation assumes that
two different physical phenomena are present in the domain and they interact through
an interface. In this case some physical coupling conditions must be satisfied along the
common interface, such as the continuity of the function and its normal derivative for
second order PDEs, or the continuity of normal stresses for fluid-structure problems. An
examples in this direction can be found in [102] where a partial optimization procedure
was carried out for a fluid-structure problem. For this kind of heterogeneous problems,
a domain decomposition approach can be extremely useful since it allows to reuse spe-
cific solvers designed for the different physical phenomena present in the domain. For
instance, one can use a finite volume solver where a strong advection is present while us-
ing a multigrid solver where diffusion dominates or an ad-hoc linear elasticity solver com-
bined with a CFD code for the Navier-Stokes equations. In this perspective, OSMs lead to a
significantly better convergence of the coupling routine with respect to other domain de-
composition algorithms ( e.g. Dirichlet-Neumann, Neumann-Neumann) since they take
into account the physical properties in their transmission conditions. We refer the inter-
ested reader to [122, 123] for the application of OSMs for the coupling of atmospheric and
oceanic computational simulation models. Optimized transmission conditions have also
been applied in time dependent PDEs [158] and in electrical circuits [85, 87, 86, 119].

This chapter is based on [97] and [96]. In these works we studied heterogeneous prob-
lems which arise from the coupling of second order PDEs. In [97], we focused on elliptic
PDEs and we proved theoretical results and asymptotic formulae both for single and dou-
ble sided optimizations. From our analysis, it follows that OSMs do not suffer from the
heterogeneity, it is the opposite, they are faster the stronger the heterogeneity is. It is even
possible to have h independent convergence choosing two independent Robin param-
eters. This property was proved for a Laplace equation with discontinous coefficients,
but only conjectured for more general couplings in [78]. We then focus on the coupling
between the Helmholtz equation and the Laplace equation [96]. In this case, the well-
possessedness of the problem is not obvious and thus we investigate it in detail. Then we
derive optimized transmission conditions. The last part of this Chapter aims to answer
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the question: what can we do if the theoretical analysis is not applicable to my case of
interest? Am I doomed to use other domain decomposition methods? No, actually you
are not. In fact, we show that using a technique called probing it is possible to obtain nu-
merically optimized transmission conditions for very complicated and general problems
in a inexpensive way.

2.1 Reaction Diffusion-Diffusion coupling

Let us consider two domainsΩ1 := (−∞,0)× (0,L) andΩ2 := (0,+∞)× (0,L) and the inter-
face Γ := {0}×(0,L). In this Section we study a reaction-diffusion equation with discontin-
uous coefficients along the interface Γ,

(η2(x)−ν(x)∆)u = f in Ω, (2.1.1)

where Ω := Ω1 ∪Ω2, η2(x) = η2 ≥ 0 in Ω1 and η(x) = 0 in Ω2, while ν(x) = ν1 in Ω1 and
ν(x) = ν2 in Ω2, with ν1,ν2 ∈ R+. Equation (2.1.1) is closed by homogeneous Dirichlet
boundary conditions on the horizontal edges and assuming lim

x→±∞u = 0. The OSM for this

problem is

(η2 −ν1∆)un
1 = f in Ω1, (ν1∂x +S1)(un

1 )(0, ·) = (ν2∂x +S1)(un−1
2 )(0, ·),

−ν2∆un
2 = f in Ω2, (ν2∂x −S2)(un

2 )(0, ·) = (ν1∂x −S2)(un−1
1 )(0, ·),

where S j , j = 1,2 are linear operators along the interfaceΓ in the y direction. The goal is to
find which operators guarantee the best performance in terms of convergence speed. We
consider the error equation whose unknowns are en

i := u|Ωi −un
i , i = 1,2, and we expand

the solutions in the Fourier basis in the y direction, en
i =∑

k∈V ên
i (x,k)sin(k y), i = 1,2 with

V := {
π
L , 2π

L , . . .
}
. Moreover we suppose that the operator S j are diagonalizable, with eigen-

vectorsψk (y) := sin(k y), such that S jψk =σ j (k)ψk , whereσ j (k) are the eigenvalues of S j .
Under these assumptions, we find that the coefficients ên

i satisfy,

(η2 −ν1∂xx +ν1k2)(ên
1 ) = 0, k ∈ V , x < 0,

(ν1∂x +σ1(k))(ên
1 )(0,k) = (ν2∂x +σ1(k))(ên−1

2 )(0,k), k ∈ V ,
(−ν2∂xx +ν2k2)(ên

2 ) = 0, k ∈ V , x > 0,
(ν2∂x −σ2(k))(ên

2 )(0,k) = (ν1∂x −σ2(k))(ên−1
1 )(0,k), k ∈ V .

(2.1.2)

Solving the two differential equations parametrized by k in (2.1.2), imposing that the solu-
tions remain bounded for x →±∞ and defining λ(k) :=

√
k2 + η̃2 and γ(k) := k, we obtain

ên
1 = ên

1 (0,k)e
p

k2+η̃2x = ên
1 (0,k)eλ(k)x in Ω1,

ên
2 = ên

2 (0,k)e−kx = ên
2 (0,k)e−γ(k)x in Ω2,

(2.1.3)

where η̃2 = η2

ν1
. The transmission conditions in (2.1.2) allow us to express the Fourier coef-

ficient at iteration n of the solution in one subdomain as function of the coefficient of the
solution in the other subdomain at the previous iteration n −1, namely

ên
1 (0,k) = −ν2γ(k)+σ1(k)

ν1λ(k)+σ1(k)
ên−1

2 (0,k), (2.1.4)
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and

ên
2 (0,k) = ν1λ(k)−σ2(k)

−ν2γ(k)−σ2(k)
ên−1

1 (0,k). (2.1.5)

Combining (2.1.4) and (2.1.5) we get

ên
1 (0,k) = −ν2γ(k)+σ1(k)

ν1λ(k)+σ1(k)
· ν1λ(k)−σ2(k)

−ν2γ(k)−σ2(k)
ên−2

1 (0,k).

By induction we deduce

ê2n
1 (0,k) = ρn ê0

1(0,k), ê2n
2 (0,k) = ρn ê0

2(0,k),

where the convergence factor ρ is defined by

ρ := ρ(k,σ1,σ2) = −ν2γ(k)+σ1(k)

ν1λ(k)+σ1(k)
· ν1λ(k)−σ2(k)

−ν2γ(k)−σ2(k)
.

Expressing the dependence on the Fourier frequency k we get

ρ(k,σ1,σ2) = −ν2k +σ1(k)

ν1
√

k2 + η̃2 +σ1(k)
· ν1

√
k2 + η̃2 −σ2(k)

−ν2k −σ2(k)
. (2.1.6)

A closer inspection of (2.1.6) leads us to conclude that if we chose the operators S j such
that their eigenvalues are

σ
opt
1 (k) := ν2k and σ

opt
2 (k) := ν1

√
k2 + η̃2, (2.1.7)

then we would have ρ ≡ 0. In this case the algorithm would converge in just two iterations.
This option, even tough it is optimal, leads to non local operators Sopt

j , which correspond
to the Schur complements [136], and they are expensive from the computational point
of view. Indeed, the operator associated to the eigenvalues σopt

1 (k) := ν2k corresponds

to the square root of the Laplacian on the interface Γ, i.e. Sopt
1 = ν2(−∆Γ)

1
2 which is a

fractional and non local operator. The non-local property of Sopt
1 can also be understood

considering a discretization of the straight interfaceΓ and the discrete counterpart of Sopt
1 ,

i.e. Sopt
1h := ν2(−∆y,h)

1
2 where−∆y,h = Diag(−1,2,−1) is the classical 1-D Laplacian. A direct

implementation shows that the matrix Sopt
1h is dense. Even though the use of Sopt

1h would
destroy the sparsity of the subdomain matrices, theoretically it could still be used as a
transmission condition and the method would then converge in two iterations. However,
the major drawback is that in general we do not know the operator Sopt

j and therefore
we would have to assemble numerically the Schur complements. This is an operation
which requires the knowledge of the inverse of the subdomain operators and therefore it
is computationally expensive.

We thus look for classes of convenient transmission conditions which are amenable to
easy implementation, and then to find which transmission conditions among a specific
class lead to the best convergence factor. We consider here zeroth order approximations
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of the optimal operators in (2.1.7) which correspond to classical Robin conditions on the
interface. In order to get the best transmission conditions in terms of convergence speed,
we have to minimize the maximum of the convergence factor over all the frequencies
k. Defining D1,D2 as the classes of transmission conditions, we are looking for a couple
(σ∗

1 ,σ∗
2 ) ∈D :=D1 ×D2 such that

(σ∗
1 ,σ∗

2 ) = argmin
(σ1,σ2)∈D

( max
kmin≤k≤kmax

|ρ(k,σ1,σ2)|). (2.1.8)

The lower and upper bounds kmin, kmax depend on the problem under study: kmin is
given by the Fourier expansion and here it is equal to kmin = π

L . The presence of kmin

in (2.1.8), is the “memory” that our problem has of the boundness of the domain. We
refer the interested reader to [76, 101, 100, 95] for more details on the influence of the
domain on OSMs. The upper bound kmax is instead the maximum frequency that can be
resolved by the grid and it is typically estimated as kmax = π

h where h is a measure of the
grid spacing.

2.1.1 Zeroth order single sided optimized transmission conditions

Let p be a free parameter, we define

σ1(k) = ν2p, σ2(k) = ν1

√
η̃2 +p2. (2.1.9)

We have made this choice because the optimal operators in (2.1.7) are clearly rescaled
according to the diffusion constants of the two subdomains and thus we imitate this be-
haviour. Furthermore we introduce the parameter η̃2 in the definition of σ2(k) in or-
der to make the problem amenable to analytical treatment. With this choice, we have
σ j (k) = σ

opt
j (k) for k = p; in other words, for the frequency k = p, the transmission con-

ditions lead to an exact solver which converges in two iterations. The idea of introducing
free parameters such that the eigenvalues σ j (k) are identical to the optimal ones for a
certain frequency is essential, because as we will see in the following, it allows us to solve
the min-max problems which, for a generic choice of σ j , are extremely hard to solve.

Inserting (2.1.9) into (2.1.6), the min-max problem (2.1.8) becomes

min
p∈R

max
kmin≤k≤kmax

∣∣∣∣∣ k −p

k +λ
√

p2 + η̃2
·
√

k2 + η̃2 −
√

p2 + η̃2√
k2 + η̃2 + p

λ

∣∣∣∣∣ , (2.1.10)

where λ = ν1
ν2

. We define ρ(k, p) := k−p

k+λ
p

p2+η̃2
·
p

k2+η̃2−
p

p2+η̃2p
k2+η̃2+ p

λ

. We are now solving the

min-max problem (2.1.10). The main steps are the following:

• Restricting the range in which we are searching for p.

• Identifying the candidates for the maxima in the variable k.
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• Studying how the maxima behave when varying the parameter p.

Lemma 2.1.1 (Restriction for the interval of p). If p∗ is a solution to problem (2.1.10) then
p∗ belongs to the interval [kmin,kmax].

Proof. First we note that |ρ(k, p)| < |ρ(k,−p)| for every p ≥ 0. Therefore we can assume
p∗ ∈ R+. Moreover the function is always positive and equal to zero only for k = p. Thus

we can neglect the absolute value. Direct calculations show that ∂ρ(k,p)
∂p = h(k, p) where

h(k, p) :=
(p −k)λp(

√
k2 + η̃2λ+k)

(k +λ
√

p2 + η̃2)2(
√

k2 + η̃2λ+p)
√

p2 + η̃2
+

(
√

p2 + η̃2 −
√

k2 + η̃2)λ(
√

k2 + η̃2λ+k)

(k +λ
√

p2 + η̃2)(
√

k2 + η̃2λ+p)2
. (2.1.11)

We observe that if p∗ < kmin then ∂ρ
∂p (k, p∗) < 0 for all k ∈ [kmin,kmax], hence we are for

sure not at the optimum since increasing p∗ would decrease the convergence factor for
all the frequencies k ∈ [kmin,kmax].
On the other hand if p∗ > kmax then we have ∂ρ

∂p (k, p∗) > 0 ∀k ∈ [kmin,kmax]. Hence
we cannot be at the optimum either since decreasing p∗ would decrease ρ(k, p) ∀k ∈
[kmin,kmax]. Thus we can conclude that if p∗ is a solution of (2.1.10), then p∗ lies in the
interval [kmin,kmax].

Now we focus on the search of the maxima of ρ(p,k) with respect to k knowing that p ∈
[kmin,kmax].

Lemma 2.1.2 (Local maxima in k). For any fixed value of p ∈ [kmin,kmax], the function
k → ρ(k, p) assumes its maximum either at k = kmin or at k = kmax.

Proof. We consider the derivative of ρ(k, p) with respect to k and we recall that ρ(k, p)
is always positive so we may neglect the absolute value. Direct calculations show that
∂ρ
∂k = h(p,k). Thus considering (2.1.11) we have that letting p ∈ (kmin,kmax), ∂ρ∂k < 0,∀k < p,

and ∂ρ
∂k > 0,∀k > p. Therefore the maximum is attained on the boundary, either at k = kmin

or k = kmax.
On the other hand, if p = kmin, ρ(k,kmin) has a zero in k = kmin. For all the other values of k
in the interval [kmin,kmax], the function is strictly increasing and therefore the maximum
is attained at k = kmax. The case p = kmax is identical and hence the result follows.

We now have all the ingredients to solve the min-max problem (2.1.10).

Theorem 2.1.3. The unique optimized Robin parameter p∗ solving the min-max problem
(2.1.10) is given by the unique root of the non linear equation

|ρ(kmin, p∗)| = |ρ(kmax, p∗)|. (2.1.12)
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Figure 2.1: Illustration of the equioscillation property described in Theorem 2.1.3.

Proof. From the previous lemmas, we know that we can rewrite problem (2.1.10) as

min
p∈[kmin,kmax]

max
{
ρ(kmin, p),ρ(kmax, p)

}
,

i.e. the maximum is either attained at k = kmin or k = kmax. We now show that the optimal
p∗ satisfies a classical equioscillation property [150], see Fig 2.1 for a graphical represen-

tation. We first note that ρ(kmin, p) = 0 for p = kmin, and ∂ρ(kmin,p)
∂p > 0,∀p ∈ (kmin,kmax].

Therefore increasing p, ρ(kmin, p) strictly increases until it reaches its maximum value
for p = kmax. On the other hand, we have that ρ(kmax,kmin) is strictly greater than zero,

and while p increases from kmin to kmax, ρ(kmax, p) decreases, because ∂ρ(kmax,p)
∂p < 0,∀p ∈

[kmin,kmax). Furthermore we have that ρ(kmax,kmax) = 0.
Hence, thanks to the strict monotonicity of both ρ(kmin, p) and ρ(kmax, p), there exists by
continuity a unique value p∗ such that ρ(kmin, p∗) = ρ(kmax, p∗). This value is clearly the
optimum, because perturbing p∗ would increase the value of ρ at one of the two extrema
and therefore the maximum of ρ over all k.

Even though a closed form solution of (2.1.12) is not known, it is interesting to study
asymptotically how the algorithm performs. Therefore we keep ν1, ν2 and η̃2 fixed, and
kmax = π

h while letting h → 0. We introduce the notation f (h) ∼ g (h) as h → 0 if and only if

lim
h→0

f (h)
g (h) = 1.

Theorem 2.1.4. Let D :=
√

k2
min + η̃2. Then ifν1,ν2, η̃2 are kept fixed, kmax=π

h and h is small

enough, then the optimized Robin parameter p∗ is given by

p∗ ∼C ·h− 1
2 , C :=

√
(λD +kmin)π

(λ+1)
. (2.1.13)

Furthermore the asymptotic convergence factor of the heterogeneous OSM is

max
kmin≤k≤π/h

|ρ(k, p∗)| ∼ 1−h
1
2

[
λD

C
+ D

C
+ kmin

λC
+ kmin

C

]
. (2.1.14)
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Proof. We make the ansatz p =C ·h−α in the equation (2.1.12). Expanding for small h, we
get that

|ρ(kmin, p)| ∼ 1−hα
[
λD

C
+ D

C
+ kmin

λC
+ kmin

C

]
.

On the other hand,

|ρ(kmax, p)| ∼ 1−h1−α
[
λC

π
+ 2C

π
+ C

λπ

]
.

Comparing the first two terms we get the result.

Remark 2.1.5. Note that if we set η̃2 = 0, then we recover the results for the coupling of
two Laplace equations with different diffusion constants, see [78]. In that case,

ρ ∼ 1−h
1
2

√
kmin

π

[
(λ+1)2

λ

]
, p∗ =

√
kminπh− 1

2 .

Moreover we have that the convergence factor (2.1.14) satisfies for λ = ν1
ν2

→∞, |ρ| ∼ 1−
h

1
2λ

√
D
π and for λ→ 0, |ρ| ∼ 1−h

1
2 1
λ

√
kmin
π . On the other hand as η̃→ ∞ we have |ρ| ∼

1−h
1
2
√
η̃ (λ+1)

3
2p

λπ
. It follows that for all strong heterogeneity limits, the constant in front

of the asymptotic term h
1
2 becomes larger, therefore the deterioration is slower and the

method is more efficient.

2.1.2 Zeroth order two sided optimized transmission conditions

Let us consider now the more general case for Robin transmission conditions, with two
free parameters p and q such that the operators S j have eigenvalues

σ1(k) = ν2p, σ2(k) = ν1

√
q2 + η̃2.

We remark that σ1(k) is exact for the frequency k = p while σ2(k) is exact for frequency
k = q . Therefore from (2.1.6) we deduce the method converges in two iterations for two
frequencies. Letting again λ= ν1

ν2
, we get

min
p,q

max
kmin≤k≤kmax

|ρ(k, p, q)| = min
p,q

max
kmin≤k≤kmax

∣∣∣∣∣ (k −p)(
√

k2 + η̃2 −
√

q2 + η̃2)

(k +λ
√

q2 + η̃2)(
√

k2 + η̃2 + p
λ )

∣∣∣∣∣ . (2.1.15)

Following the same philosophy of the previous section, we start restricting the range in
which we need to search for the parameters p and q . Then we focus on the maxima with
respect to k and finally we analyse how these maxima behave with respect to p and q .

Lemma 2.1.6 (Restriction for the interval of p, q). If the couple (p∗, q∗) is a solution to
the min-max problem (2.1.15), then we have that both p∗ and q∗ belong to the interval
[kmin,kmax].
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Proof. For p > 0, we observe that |ρ(k, p, q|) < |ρ(k,−p, q)| and q is always squared so we
can restrict both parameters to be positive without loss of generality. Next we consider
the partial derivatives of |ρ| with respect to p and q :

sign

(
∂|ρ|
∂p

)
=−sign(k −p), sign

(
∂|ρ|
∂q

)
=−sign(k −q). (2.1.16)

Repeating the same argument of Lemma 2.1.1, we conclude that we are not at the opti-
mum unless both p and q belong to [kmin,kmax].

Next we analyse the behaviour of |ρ(k, p, q)| with respect to the variable k.

Lemma 2.1.7 (Local maxima in k). For p, q ∈ [kmin,kmax],

max
kmin≤k≤kmax

|ρ(k, p, q)| = max{|ρ(kmin, p, q)|, |ρ(k̃, p, q)|, |ρ(kmax, p, q)|},

where k̃ is an interior maximum between [min(p, q),max(p, q)].

Proof. We first observe that |ρ(k, p, q)| has two zeros, one at k = p and the other at k = q .
Next we consider the derivative of ρ(k, p, q) with respect to k, and assuming that p 6= q1

we get,

∂ρ(k, p, q)

∂k
= (

√
k2 + η̃2 −

√
q2 + η̃2)(

√
k2 + η̃2)(

√
k2 + η̃2 + p

λ )(λ
√

q2 + η̃2 +p)

D(k, p)
+

+ (k −p)(k +λ
√

q2 + η̃2)k( p
λ +

√
q2 + η̃2)

D(k, p)
.

(2.1.17)

The denominator D(k, p) is always positive. Now we consider the two cases in which k <
min(p, q) and k > max(p, q): in both we have that ρ(k, p, q) > 0, and analyzing equation

(2.1.17) we conclude that for k < min(p, q), ∂ρ(k,p)
∂k < 0 and for k > max(p, q), ∂ρ∂k > 0. Hence

by continuity of ∂kρ(k, p), there exits at least one k̃, which is a local minimum of ρ(k, p)
and a local maximum for |ρ(k, p)| see Fig. 2.2, such that ∂kρ = 0, and all of them lie in the
interval [min(p, q),max(p, q)] for p and q fixed. Now we prove that the interior maximum
is unique. Indeed the interior maxima for |ρ(k, p, q)| are given by the roots of the equation
∂kρ(k, p) = 0 which corresponds to√

q2 + η̃2 −
√
η̃2 +k2

k +λ
√
η̃2 +q2

=
(
k −p

)
k(

λ
√

k2 + η̃2 +p
)√

k2 + η̃2
. (2.1.18)

First we suppose that p < k < q . Then we have that the left hand side of (2.1.18) is positive
in k = p, it is strictly decreasing in k, and it reaches zero at k = q . The right hand side

1If p = q we are considering the optimization problem discussed in the previous subsection.
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Figure 2.2: The left panel shows an example of the convergence factor with its three local
maxima localized at k = kmin, k = kmax and k = k̃. On the right we summarizes how these
local maxima behave as function of p and q .

of (2.1.18) instead starts from zero and it is strictly increasing. We conclude that there
is a unique point k̃ such that the two sides are equal and hence a unique interior maxi-
mum k̂ for |ρ(k, p, q)|. If instead q < k < p, changing the sign of (2.1.18) and dividing by
k/

√
k2 + η̃2, the right hand side is strictly decreasing while the left hand side, computing

the derivative, is strictly increasing and hence the same conclusion holds.
We may conclude that the function assumes its maximum either at the interior point k̃,
or at the boundaries of the interval, i.e. kmin, kmax.

In the next lemma we prove that the end points kmin and kmax satisfy an equioscillation
property as in the previous case of a single parameter p.

Lemma 2.1.8 (Equioscillation at the end points). The optimized convergence factor |ρ(k, p, q)|
must satisfy equioscillation at the endpoints, i.e.

|ρ(kmin, p∗, q∗)| = |ρ(kmax, p∗, q∗)|.

Proof. We study how |ρ(kmin, p, q)|, |ρ(k̃, p, q)| and |ρ(kmax, p, q)| behave as p, q vary and
we show that if we do not have equioscillation at the boundary points, we can always im-
prove the convergence factor until equioscillation is reached. Taking into account (2.1.16)
we have for every p, q ∈ [kmin,kmax]

∂|ρ(kmin, p, q)|
∂p

> 0,
∂|ρ(kmin, p, q)|

∂q
> 0,

∂|ρ(kmax, p, q)|
∂p

< 0,
∂|ρ(kmax, p, q)|

∂q
< 0.

In other words, increasing independently p, q increases |ρ(kmin, p, q)| and decreases |ρ(kmax, p, q)|.
We now compute the total derivative of |ρ(k̃, p, q)| with respect to p and q , which since
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we have ∂k |ρ(k̃, p, q)| = 0, corresponds to the partial derivative with respect to the two ar-

guments. One then finds that the sign of ∂|ρ(k̃,p,q)|
∂p and ∂|ρ(k̃,p,q)|

∂q depends on the position

of k̃ with respect to p and q . Indeed it holds

sign

(
∂|ρ(k̃, p, q)|

∂p

)
= sign(p − k̃), sign

(
∂|ρ(k̃, p, q)|

∂q

)
= sign(q − k̃).

The right panel of Fig. 2.2 summarizes the dependence of the local maxima with respect to
p and q . Let us suppose that p < q , q fixed, and |ρ(kmin, p, q)| < |ρ(kmax, p, q)|. The other
cases are treated similarly. We do not make any assumptions on the value of |ρ(k̃, p, q)|.
Now if we increase p we decrease max{|ρ(kmin, p, q)|, |ρ(k̃, p, q)|, |ρ(kmax, p, q)|} as long as
|ρ(kmin, p, q)| ≤ |ρ(kmax, p, q)| and p ≤ q . If |ρ(kmin, p, q)| = |ρ(kmax, p, q)| for a certain
p < q , then we obtain the desired result since we have improved uniformly the conver-
gence factor. Suppose instead that when p = q , and therefore |ρ(k̃, p, q)| = 0, we still
have |ρ(kmin, p, q)| < |ρ(kmax, p, q)|. Thus the convergence factor is equal to |ρ(kmax, p, q)|.
We now set up a process which improves max[kmin,kmax] |ρ(k, p, q)| until we get equioscilla-
tion at the boundary points. As long as |ρ(kmin, p, q)| < |ρ(kmax, p, q)|, we increase p > q
until |ρ(k̃, p, q)| ≤ |ρ(kmax, p, q)|. When we reach |ρ(k̃, p, q)| = |ρ(kmax, p, q)|, we then in-
crease q until q = p. If while increasing q we still have |ρ(kmin, p, q)| < |ρ(kmax, p, q)|,
then we repeat the process. Continuing this process, we must reach equioscillation at
some point by continuity since when p approaches kmax, we must have |ρ(kmin,kmax, q)| >
|ρ(kmax,kmax, q)| = 0. At the same time we improved surely the convergence factor since,
in spite of the initial value of |ρ(k̃, p, q)|, we have that max[kmin,kmax] |ρ(k, p, q)| ≤ |ρ(kmax, p, q)|
which is decreasing along the process.

We now have enough tools and insights to prove the main results of this subsection:

Theorem 2.1.9. There are two pairs of parameters (p∗
1 , q∗

1 ) and (p∗
2 , q∗

2 ) such that we obtain
equioscillation between all the three local maxima,

|ρ(kmin, p∗
j , q∗

j )| = |ρ(kmax, p∗
j , q∗

j )| = |ρ(k̂, p∗
j , q∗

j )| j = 1,2. (2.1.19)

The optimal pair of parameters is the one which realizes the

min
(p∗

j ,q∗
j ), j=1,2

|ρ(kmin, p∗
j , q∗

j )|. (2.1.20)

Proof. Let us define F1(p, q) := ρ(kmin, p, q) and F2(p, q) := ρ(kmax, p, q). Due to Lemma
2.1.8, we know that there exist values (p, q) such that F := |F1(p, q)|−|F2(p, q)| = 0. We can
thus express one parameter, for example q , as a function of the other one, i.e. q = q(p).
Although the expression is too complicated to be used for analytical computations, we are
able to infer about the structure of q(p). First of all we can state that q(p = kmin) = kmax

since |F1(kmin, q(kmin))| = 0 implies that |F2(kmin, q(kmin)| = 0 but then the only choice
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possible is q(kmin) = kmax. Similarly we have q(kmax) = kmin. We next use implicit differ-
entiation to infer about the behaviour of q with respect to p.
Following classical arguments we have that, since F (p, q(p)) = 0,

0 = dF (p, q(p))

d p
= dF1(p, q(p))−dF2(p, q(p))

d p
= ∂F1 −∂F2

∂p
+ ∂F1 −∂F2

∂q
q ′(p),

and therefore

q ′(p) =
∂F2
∂p − ∂F1

∂p

∂F1
∂q − ∂F2

∂q

. (2.1.21)

Analyzing the sign of each term, we conclude that q ′(p) < 0 ∀p ∈ (kmin,kmax). Therefore
we state that q(p) is a strictly decreasing function which starts from q(p = kmin) = kmax

and reaches its minimum at q(kmax) = kmin.
Now we have only one free parameter p, since q is constrained to vary such that the
equioscillation between the end points is achieved, thus we look for values of p such that
we obtain equioscillation between kmin and the interior maximum k̃.
Let us first study how F̃ (p, q) := ρ(k̃, p, q(p)) behaves while p varies. As long as p ≤ k̃ ≤
q(p), we have

sign

(
∂|F̃ (p, q(p))|

∂p

)
= sign(

√
q(p)2 + η̃2 −

√
k̃2 + η̃2) · sign(F̃ (p, q(p)) < 0,

sign

(
∂|F̃ (p, q(p))|

∂q

)
= sign(p − k̃) · sign(F̃ (p, q(p)) > 0.

Then, keeping in mind the q ′(p) < 0, F̃ (p, q(p)) is strictly decreasing for all the values of p
such that p < k̃ < q(p),

d |F̃ (p, q(p))|
d p

= ∂|F̃ (p, q(p))|
∂p

+ ∂|F̃ (p, q(p))|
∂q

·q ′(p) < 0.

Similarly it is straightforward to verify that for q(p) < k̃ < p

d |F̃ (p, q(p))|
d p

= ∂|F̃ (p, q(p))|
∂p

+ ∂|F̃ (p, q(p))|
∂q

·q ′(p) > 0.

Moreover we have that for p = k̃ = q(p), |F̃ (p, q(p))| = 0 and d |F̃ (p,q(p))|
d p = 0.

Focusing next on |F1(p, q(p))| we can state that, neglecting the sign(F1(p, q(p))), because
it is always positive or zero, the derivatives at the left and right boundary extrema are
equal to

d |F1(kmin,kmax)|
d p

= ∂|F1(kmin,kmax)|
∂p

+ ∂|F1(kmin,kmax)|
∂q

q
′
(p) = ∂|F1(kmin,kmax)|

∂p
> 0,

and

d |F1(kmax,kmin)|
d p

= ∂|F1(kmax,kmin)|
∂p

+ ∂|F1(kmax,kmin)|
∂q

q
′
(p) = ∂|F1(kmax,kmin)|

∂p
< 0.
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So for values of p in a right neighbourhood of p = kmin, |F1(p, q(p))| increases, while
for values of p in a left neighbourhood of p = kmax, |F1(p, q(p))| decreases. Using the
monotonicity of |F (k̃, p, q(p))| and the fact that when k̃ = p = q(p), |F (k̃, p, q(p))| = 0,
while |F (kmin, p, q(p))| > 0, we conclude that there exists at least one pair (p, q) such that
|F (kmin, p, q(p))| = |F (k̃, p, q(p))|.
We still have to prove that actually there exist only two couples (p j , q j ) such that equioscil-
lation is achieved. Indeed, if we imagine that |F1(p, q(p))| had a certain behaviour, for
example it oscillates, then we might have more than two pairs. Nevertheless we show that
|F1(p, q(p))| has a unique local maximum for p ∈ [kmin,kmax] so that only two equioscilla-
tions are allowed among all the three local maxima: one while |F̃ (p, q(p))| decreases, the
other one for increasing |F̃ (p, q(p))|.
To do so, we consider d |F1(p,q(p))|

d p again and substitute (2.1.21),

d |F1(p, q(p))|
d p

=
∂F1
∂q · ∂F2

∂p − ∂F2
∂q · ∂F1

∂p

∂F1
∂q · ∂F2

∂q

.

The zeros of the derivative are given by the non linear equation

(p −kmin)(
√

k2
max + η̃2 −

√
k2

min + η̃2)

√
k2

min + η̃2 + p
λ√

k2
max + η̃2 + p

λ

=

(kmax −p)(
√

q2 + η̃2 −
√

k2
min + η̃2)

kmin +λ
√

q2 + η̃2

kmax +λ
√

q2 + η̃2
.

It is sufficient to observe that the left hand side starts from 0 and it is strictly increasing in
p, while the right hand side starts from a positive value, it decreases with p and it reaches
0 for p = kmax. So the equation admits only one solution and therefore the local maximum
with respect to p of |F1(p, q(p))| is unique. The solution to the min-max problem (2.1.15)
is the pair of parameters (p∗, q∗) which allows equioscillation among the three local max-
ima and realizes (2.1.20). Every other pair of parameter would led to the increase of at
least one of the local maxima and therefore of the maximum of |ρ| over k.

In [78], the authors proved a similar result for the Laplace equation with discontinuous
coefficients without the presence of the further optimality condition (2.1.20). Their result
was based on the possibility to restrict the interval of interest for the parameters to p < q
or q < p according to the value of λ. In the present case this is not possible because of
the presence of η̃2 which breaks the symmetry of the convergence factor. Therefore we
cannot discard a priori one of the two possible equioscillations and the further condition
(2.1.20) must be added. Nevertheless in the asymptotic regime for h → 0 and kmax →∞,
the next result allows us to clearly choose the optimal pair as a function of λ, recovering
the property of the results for the simplified situation treated in [78].
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Theorem 2.1.10. Let D :=
√

k2
min + η̃2. Then if the physical parameters η̃2,ν1,ν2 are fixed,

kmax = π
h and h goes to zero, the optimized two-sided Robin parameters are for λ≥ 1,

p∗
1 ∼ λ(kmin+D)

λ−1 − 2
p

2(1+λ)(λD+kmin)λ2
p
π(kmin+D)

πλ(λ−1)3 h
1
2 ,

q∗
1 ∼ π(λ−1)

2λ h−1 +
p

2(1+λ)2
p
π(kmin+D)

2λ(λ−1) h− 1
2 ,

maxkmin≤k≤π/h |ρ(k, p∗
1 , q∗

1 )| ∼ 1
λ −

2
p

2(1+λ)
p

(kmin+D)p
πλ(λ−1)

h
1
2 ,

(2.1.22)

and for λ< 1 we have

p∗
2 ∼ 1

2π(1−λ)h−1 +
p

2(1+λ)2
p
π(D+kmin)

2(1−λ) h− 1
2 ,

q∗
2 ∼

√(
D+kmin

1−λ
)2 − η̃2 − 2

p
2(D+kmin)2(λ+1)(λD+kmin)

(λ−1)4
p
π(D+kmin)

√
D+kmin

1−λ −η̃2
h

1
2 ,

maxkmin≤k≤π/h |ρ(k, p∗
2 , q∗

2 )| ∼λ− 2
p

2λ(1+λ)
p

(kmin+D)p
π(1−λ)

h
1
2 .

(2.1.23)

Proof. Guided by numerical experiments, for λ ≥ 1 we make the ansatz p ∼ Cp + Ah
1
2 ,

q ∼ Qh−1 +Bh− 1
2 , and k̂ = Ck h− 1

2 . First of all considering the equation ∂kρ(k̃, p, q) = 0,
we find setting to zero the first non zero term Ck = √

Cp ·Q. Inserting this into (2.1.19)
and comparing the two leading terms, we get the result. Similarly for λ< 1, we make the

ansatz p ∼ Cp h−1 + Ah− 1
2 , q ∼ Q +Bh

1
2 and k̂ = Ck h− 1

2 and we get Ck =
√

Cp
√

Q2 + η̃2.
Substituting and matching the leading order terms we obtain the result.

If we set η̃2 = 0, then D = kmin and we recover the results of [78]. Note that in contrast
to the one sided case, the convergence factor does not deteriorate to 1 as h → 0, but it is
bounded either by 1

λ if λ ≥ 1 or by λ if λ < 1, so we obtain a non-overlapping OSM that
converges independently of the mesh size h. We emphasize that the heterogeneity makes
the method faster instead of presenting a difficulty. A heuristic explanation is that the
heterogeneity tends to decouple the problems, making them less dependent one from
the other. In contrast with other domain decomposition methods, OSMs can be tuned
according to the physics and therefore they can benefit from this decoupling.

2.2 Advection Reaction Diffusion-Reaction Diffusion coupling

In this Section, we consider the domain decomposition described at the beginning of Sec-
tion 2.1. In Ω1 we have a reaction diffusion equation, while in Ω2 we have an advection
reaction diffusion equation. We allow the reaction and diffusion coefficients to be differ-
ent among the subdomains. The OSM reads

(η2
1 −ν1∆)un

1 = f , in Ω1,
(ν1∂x +S1)(un

1 )(0, ·) = (ν2∂x −a · (1,0)>+S1)(un−1
2 )(0, ·),

(η2
2 +a ·∇−ν2∆)un

2 = f , in Ω2,
(ν2∂x −a · (1,0)>−S2)(un

2 )(0, ·) = (ν1∂x −S2)(un−1
1 )(0, ·),

(2.2.1)
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where a = (a1, a2)>. The additional term in the transmission conditions arises from the
conservation of the flux in divergence form, see Chapter 6 in [139]. We first suppose
a2 = 0. Then we can solve the error equations in the subdomains through separation
of variables and we obtain en

i =∑
k∈V ên

i sin(k y), i = 1,2, where

ên
1 (k, x) = An(k)e

√
η2

1
ν1

+k2x
ên

2 (k, x) = B n(k)eλ−(k)x ,

and λ−(k) := a1−
p

a2
1+4ν2

2k2+4ν2η
2
2

2ν2
. Inserting e1, e2 into the transmission conditions we get

ν1

√
η2

1

ν1
+k2 An(k)+σ1(k)An(k) = ν2λ−(k)B n−1(k)−a1B n−1(k)+σ1(k)B n−1(k),

ν2λ−(k)B n(k)−a1B n(k)−σ2(k)B n(k) = ν1

√
η2

1

ν1
+k2 An−1(k)−σ2(k)An−1(k).

The convergence factor is therefore given by

ρ(k,σ1,σ2) = ν2λ−(k)−a1 +σ1(k)

ν1

√
η̃2

1 +k2 +σ1(k)

ν1

√
η̃2

1 +k2 −σ2(k)

ν2λ−(k)−a1 −σ2(k)
,

where η̃2
1 = η2

1
ν1

. We rewrite λ−(k) as λ−(k) = a1
2ν2

−
p

k2 +δ2 with δ2 = a2
1

4ν2
2
+ η2

2
ν2

. Using the

dependence on k, the convergence factor becomes

ρ(k,σ1,σ2) = ν2

p
k2 +δ2 + a1

2 −σ1(k)

ν1

√
η̃2

1 +k2 +σ1(k)

ν1

√
η̃2

1 +k2 −σ2(k)

ν2

p
k2 +δ2 + a1

2 +σ2(k)
.

We can define two optimal operators Sopt
j associated to the eigenvaluesσopt

1 (k) := ν2

p
k2 +δ2+

a1
2 and σopt

2 (k) := ν1

√
k2 + η̃2

1 which lead to convergence in just two iterations.

2.2.1 Zeroth order single sided optimized transmission conditions

Following the strategy of the previous section, we choose σ1(k),σ2(k) so that they coin-
cide with the optimal choice for the frequency k = p, i.e. σ1(k) = ν2

√
p2 +δ2 + a1

2 and

σ2(k) = ν1

√
p2 + η̃2

1. Defining λ := ν1
ν2

, the convergence factor becomes

ρ(k, p) =
√

k2 + η̃2
1 −

√
p2 + η̃2

1

1
λ

(p
k2 +δ2 + a1

2ν2

)
+

√
p2 + η̃2

1

·
p

k2 +δ2 −
√

p2 +δ2

λ
√

k2 + η̃2
1 +

(√
p2 +δ2 + a1

2ν2

) . (2.2.2)

Theorem 2.2.1. The unique optimized Robin parameter p∗ solving the min-max problem

min
p∈R

max
kmin≤k≤kmax

|ρ(k, p)|,
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is given by the unique root of the non linear equation

|ρ(p∗,kmin)| = |ρ(p∗,kmax)|.

Proof. The proof is very similar to the proof of Theorem 2.1.3, therefore we just sketch
the main steps. We start observing that ρ(k, p) has only one zero located at k = p and
ρ(k, p) > 0 ∀k, p. Thus we may neglect the absolute value. Analysing the derivative with
respect to p, we find

sign

(
∂ρ(k, p)

∂p

)
=−sign(k −p).

This implies that ∂ρ(k,p)
∂p > 0 if k < p and ∂ρ(k,p)

∂p < 0 if k > p. We conclude that p must lie

in the interval [kmin,kmax]. Similarly the derivative with respect to k satisfies ∂ρ(k,p)
∂k < 0 if

k < p and ∂ρ(k,p)
∂k > 0 if k > p. Hence, the local maxima with respect to k are located at the

boundary points k = kmin and k = kmax. Repeating the final argument of Theorem 2.1.3
we get the result.

Since a closed form formula is again not available, we study the asymptotic behaviour for
the optimal parameter p∗ when taking finer and finer meshes.

Theorem 2.2.2. If the physical parameters are fixed, kmax=π
h and h is small enough, then

the optimized Robin parameter p∗ satisfies

p∗ ∼Ca ·h− 1
2 , Ca =

√
ν2 (λ+1)π

(
2
√

k2
min + η̃2

1λν2 +2
√

k2
min +δ2ν2 −a1

)
p

2ν2 (λ+1)
.

Furthermore the asymptotic convergence factor is

max
kmin≤k≤π/h

|ρ(k, p∗)| ∼ 1−h
1
2

(
Ca (λ+1)2

λπ

)
.

Proof. We insert the ansatz p =Ca ·h−α into the equation (2.1.12). Expanding for small h,
we get that

ρ(p,kmin) ∼ 1−hα
(

Ca (λ+1)2

λπ

)
.

On the other hand,

ρ(p,kmax) ∼ 1+h−α+1

1

2

(λ+1)
(
−2

√
k2

min + η̃2
1λν2 −2

√
k2

minδ
2ν2 +a1

)
Ca ν2λ

 .

Comparing the first two terms we get the result.
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2.2.2 Zeroth order two sided optimized transmission conditions

In this paragraph we generalize the previous transmission conditions, introducing an-
other degree of freedom q . The operators S j are such that their eigenvalues are

σ1(k) = ν2

√
q2 +δ2 + a1

2
, σ2(k) = ν1

√
p2 + η̃2

1,

and the convergence factor becomes

ρ(k, p) =
√

k2 + η̃2
1 −

√
p2 + η̃2

1

1
λ

(p
k2 +δ2 + a1

2ν2

)
+

√
p2 + η̃2

1

·
p

k2 +δ2 −
√

q2 +δ2

λ
√

k2 + η̃2
1 +

(√
q2 +δ2 + a1

2ν2

) .

In order to prove a similar result as in Theorem 2.1.9, we suppose that η̃1 = 0, i.e. only dif-
fusion is present in Ω1, and a1 > 0, i.e. the advection flux is pointing into the subdomain
Ω2.

Theorem 2.2.3. There are two pairs of parameters (p∗
1 , q∗

1 ) and (p∗
2 , q∗

2 ) such that we ob-
tain equioscillation between all the three local maxima located at the boundary extrema
kmin,kmax and at the interior point k̃,

|ρ(kmin, p∗
j , q∗

j )| = |ρ(kmax, p∗
j , q∗

j )| = |ρ(k̃, p∗
j , q∗

j )| j = 1,2.

The optimal pair of parameters is the one which realizes the

min
(p∗

j ,q∗
j ), j=1,2

|ρ(kmin, p∗
j , q∗

j )|.

Proof. Similarly to the proof of Theorem 2.1.9, we observe that the function admits two
zeros, one located at k = p, the other at k = q due to the choice of the transmission oper-
ators. Computing the derivatives with respect to p and q we get

sign(
∂|ρ|
∂p

) =−sign(ρ) · sign(k −q) =−sign(k −p),

sign(
∂|ρ|
∂q

) =−sign(ρ) · sign(k −p) =−sign(k −q).

We conclude that, at the optimum, both p and q lie in [kmin,kmax], i.e. the function at
the optimum has two zeros in the interval. Now we study the behaviour with respect to
k. Computing the derivative with respect to k, we find that the potential local maxima are
given by the roots of

p
δ2 +k2 −

√
δ2 +q2

k(λk +
√

q2 +δ2 + a1
2ν2

)
= p −k

p
k2 +δ2

(
pλ+

p
k2 +δ2 + a1

2ν2

) .
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With some algebraic manipulations, we find that a sufficient condition such that p−k

(pλ+
p

k2+δ2+a1/(2ν2))
has a monotonic behaviour with respect to k is that a1 > 0. Letting p, q in [kmin,kmax], we
have that the local maxima of the function are located at kmin,kmax, k̃. Moreover we have

∂|ρ|
∂p

|k=kmin > 0,
∂|ρ|
∂q

|k=kmin > 0,

∂|ρ|
∂p

|k=kmax < 0,
∂|ρ|
∂q

|k=kmax < 0, (2.2.3)

∂|ρ|
∂p

|k=k̃ < 0,
∂|ρ|
∂q

|k=k̃ > 0.

We can thus repeat the same arguments as in the proof of Theorem 2.1.9 since all steps are
now exclusively based on the sign of the partial derivatives with respect to the parameters,
see (2.2.3), and the result follows.

Theorem 2.2.4. Let D :=
√

k2
min +δ2. If the physical parameters η̃2

2,ν1,ν2, a1 are fixed,

kmax = π
h and h goes to zero, the optimized two-sided Robin parameters are for λ≥ 1,

p∗
1 ∼ P1h−1 +E1h− 1

2 , q∗
1 ∼Q1 −F1h

1
2 , max

kmin≤k≤ π
h

|ρ(k, p∗
1 , q∗

1 )| ∼λ− E1π(λ+1)
(P1λ+π)2 h

1
2 ,

with

P1 := π(λ−1)

2λ
, Q1 :=

√√√√D +kmin + a1
2ν2λ

1− 1
λ

−δ2,

E1 :=
(2(P1

√
δ2 +Q2

1 +C 2
h)(λ+1)ν2 +P1a1)(λP1 +π)2

2λ2P1ν2Chπ(λ+1)
,

F1 :=
(2(P1

√
δ2 +Q2

1 +C 2
h)(λ+1)ν2 +P1a1)(2ν2(λkmin +

√
δ2 +Q2

1)+a1)2
√
δ2 +Q2

1

4λ2P1ν
2
2ChQ1(2ν2(λkmin +D)+a1)

,

Ch :=

√
P1(2

√
δ2 +Q2

1ν2(λ+1)+a1)√
2ν2(λ+1)

.

and for λ< 1,

p∗
2 ∼ P2 −E2h

1
2 , q∗

2 ∼Q2h−1 +F2h− 1
2 , max

kmin≤k≤ π
h

|ρ(k, p∗
2 , q∗

2 )| ∼λ− F2λπ(1+λ)
(λπ+Q2)2 h

1
2 .
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with

P2 :=
D +kmin + a1

2ν2

1−λ , Q2 := π(λ−1)

2
,

E2 := ((λ+1)(D2
h +P2Q2)ν2 + a1Q2

2 )(2ν2(λP2 +D)+a1)2

2ν2
2DhQ2(2kminλν2 +2ν2D +a1)

,

F2 :=
p
λ+1

√
(D +kmin)(λ+1)+ a1

2ν2

p
π(3λ−1)2

p
2(1−λ2)

,

Dh :=
√

Q2(2P2ν2(λ+1)+a1)√
2ν2(λ+1)

.

Proof. The proof follows the same steps as in the proof of Theorem 2.1.10.

2.2.3 Advection tangential to the interface

In the previous section we restricted our study to the case of advection normal to the in-
terface. Here we consider the other relevant physical case, namely advection tangential
to the interface, so that a1 = 0 and a2 6= 0 in (2.2.1). For homogeneous problems, this case
has been studied through Fourier transform in unbouded domains, see for instance [64].
However, in [95] we have shown that for homogeneous problems with tangential advec-
tion this procedure does not yield efficient optimized parameters. The reason behind this
failure lies in the separation of variables technique which applied to the error equation,

(η2
1 −ν1∆)en

1 = 0, in Ω1,
(ν1∂x +S1)(en

1 )(0, ·) = (ν2∂x +S1)(en−1
2 )(0, ·),

(η2
2 +a2∂y −ν2∆)en

2 = 0, in Ω2,
(ν2∂x −S2)(en

2 )(0, ·) = (ν1∂x −S2)(en−1
1 )(0, ·),

(2.2.4)

leads to

en
1 = ∑

k∈V

ên
1 (0,k)eλ1(k)x sin(k y) and en

2 = ∑
k∈V

ên
2 (0,k)e−λ2(k)x e

a2 y
2ν2 sin(k y), (2.2.5)

whereλ1(k) =
√

k2 + η̃1,λ2(k) =
p

4ν2
2k2+4ν2

2η̃2
2+a2

2
2ν2

with η̃2
j := η2

j

ν j
. Since the functionsψk (y) :=

sin(k y) and φk (y) := e
a2 y
2ν2 sin(k y) are not orthogonal, it is not possible to get a recurrence

relation which expresses ên
j (0,k) only as a function of ên−2

j (0,k) for each k and j = 1,2.
Nevertheless, we propose a more general approach. First let us define two scalar prod-
ucts, the classical L2 scalar product and the weighted scalar product

〈 f , g 〉 = 2

L

∫
Γ

f g d y, 〈 f , g 〉w = 2

L

∫
Γ

f g e−
a2 y
ν2 d y.

It follows that 〈ψk ,ψ j 〉 = δk, j and 〈φk ,φ j 〉w = δk, j . Setting S1 := ν2λ2(p)I and S2 := ν1λ1(q)I
for p, q ∈R and inserting the expansions (2.2.5) into the transmission conditions of (2.2.4)
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we obtain

+∞∑
i=1

ên
1 (0, i )(ν1λ1(i )+ν2λ2(p))ψi (y) =

+∞∑
l=1

ên−1
2 (0, l )(−ν2λ2(l )+ν2λ2(p))φl (y),

+∞∑
l=1

ên
2 (0, l )(−ν2λ2(l )−ν1λ1(q))φl (y) =

+∞∑
i=1

ên−1
1 (0, i )(ν1λ1(i )−ν1λ1(q))ψi (y).

(2.2.6)

We truncate the expansions for i , l > N , since higher frequencies are not represented by
the numerical grid, and we project the first equation ontoψk with respect the scalar prod-
uct 〈·, ·〉 and the second one onto φ j with respect to the weighted scalar product 〈·, ·〉w,

ên
1 (0,k)(ν1λ1(k)+ν2λ2(p)) =

N∑
l=1

ên−1
2 (0, l )(−ν2λ2(l )+ν2λ2(p))〈ψk ,φl 〉,

ên
2 (0, j )(−ν2λ2( j )−ν1λ1(q)) =

N∑
i=1

ên−1
1 (0, i )(ν1λ1(i )−ν1λ1(q))〈φ j ,ψi 〉w.

(2.2.7)

Defining now the vectors en
j ∈RN such that (en

j )i := ên
j (0, i ) for j = 1,2, the matrices Vk,l :=

〈ψk ,φl 〉, W j ,i := 〈φ j ,ψi 〉w and the diagonal matrices (D1)l ,l := (−ν2λ2(l )+ν2λ2(p)), (D̃1)k,k :=
(ν1λ1(k)+ν2λ2(p)), (D2)i ,i := (ν1λ1(i )−ν1λ1(q)), (D̃2) j , j := (−ν2λ2( j )−ν1λ1(q)), we ob-
tain,

en
1 = D̃−1

1 V D1en−1
2 ,

en
2 = D̃−1

2 W D2en−1
1 ,

(2.2.8)

which implies

en
1 = D̃−1

1 V D1D̃−1
2 W D2en−2

1 and en
2 = D̃−1

2 W D2D̃−1
1 V D1en−2

2 . (2.2.9)

Since for two given matrices A,B the spectral radius satisfies ρ(AB) = ρ(B A), we conclude
that ρ(D̃−1

1 V D1D̃−1
2 W D2) = ρ(D̃−1

2 W D2D̃−1
1 V D1) and therefore, in order to accelerate the

method, we are interested in the minimization problem

min
p,q∈R

ρ((D̃−1
1 V D1D̃−1

2 W D2)(p, q)). (2.2.10)

Remark 2.2.5. Problem (2.2.10) does not have a closed formula solution. However in the
next subsection we show its efficiency by solving numerically the minimization problem.
For these cases where the theoretical analysis falls short without providing any good es-
timates, in subsection 2.5 we discuss a cheap and reliable numerical procedure to find
optimized transmission conditions.

Remark 2.2.6. Equation (2.2.10) is a straight generalization of the min-max problem (2.1.8).
Indeed, assuming that the functionsψk and φ j are orthogonal, the matrices V and W are
the identity matrix. Therefore equation (2.2.9) simplifies to en

1 = D̄en−2
1 and en

2 = D̄en−2
2 ,

where the diagonal matrix D̄ satisfies (D̄)k,k = ν2λ2(k)−ν2λ2(p)
ν1λ1(k)+ν2λ2(p)

ν1λ1(k)−ν1λ1(q)
ν2λ2(k)+ν1λ1(q) . Since the eigen-

values of a diagonal matrix are its diagonal entries we get that if W =V = I ,

min
p,q∈R

ρ((D̃−1
1 V D1D̃−1

2 W D2)(p, q)) = min
p,q

max
k

∣∣∣∣ν2λ2(k)−ν2λ2(p)

ν1λ1(k)+ν2λ2(p)

ν1λ1(k)−ν1λ1(q)

ν2λ2(k)+ν1λ1(q)

∣∣∣∣ .
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Remark 2.2.7. The case of an arbitrary advection, i.e. a1 6= 0 and a2 6= 0 has been recently
treated in [95] for homogeneous problems. Considering a heterogeneous problem with
advection fields a j = (a1 j , a2 j )> in domainΩ j , j = 1,2, a separation of variables approach

would lead to non orthogonal functions ψk (y) = e
a21 y
2ν1 sin(k y) and φk (y) = e

a22 y
2ν2 sin(k y)

unless a21
2ν1

= a22
2ν2

, and thus it is not possible to obtain a recurrence relation as shown in
(2.2.5). However the approach developed in this section can be readily applied. The sub-
domain solutions are

en
1 (x, y) = ∑

k∈V

ên
1,k e

a21 y
2ν1 sin(k y)eλ1(k)x , en

2 (x, y) = ∑
k∈V

ên
2,k e

a22 y
2ν2 sin(k y)e−λ2(k)x ,

withλ1(k) = a11+
p

4ν2
1k2+4ν2

1η̃1
2+a2

11+a2
21

2ν1
andλ2(k) = −a12+

p
4ν2

2k2+4ν2
2η̃2

2+a2
12+a2

22
2ν2

. Defining S1 =
ν2λ2(p)+a12, S2 = ν1λ1(p)−a11, the two scalar products 〈 f , g 〉w1 = 2

L

∫
Γ f g e−

a21 y
ν1 d y and

〈 f , g 〉w2 = 2
L

∫
Γ f g e−

a22 y
ν2 d y and repeating the calculations (2.2.6)-(2.2.8), one finds the re-

currence relation (2.2.9), with Vk,l := 〈ψk ,φl 〉w1 , W j ,i := 〈φ j ,ψi 〉w2 and the diagonal ma-
trices (D1)l ,l := (−ν2λ2(l )+ν2λ2(p)), (D̃1)k,k := (ν1λ1(k)+ν2λ2(p)− a11 + a12), (D2)i ,i :=
(ν1λ1(i )−ν1λ1(q)), (D̃2) j , j := (−ν2λ2( j )−ν1λ1(q)−a12 +a11).

2.3 Numerical results

The numerical experiments are performed using the subdomains Ω1 = (−1,0) × (0,1),
Ω2 = (0,1)× (0,1). We use a classical five point finite difference scheme for the interior
points and treat the normal derivatives with second order discretization using a ghost
point formulation.

2.3.1 Reaction Diffusion-Diffusion coupling

We first consider the reaction diffusion-diffusion coupling analyzed in Section 2.1. Tables
2.1 and 2.2 show the values of the convergence factor in two different asymptotic regimes,
when h → 0, and for strong heterogeneity. As the asymptotic Theorem 2.1.10 and Remark
2.1.5 state, a strong heterogeneity improves the performance of the algorithm. In the sin-
gle sided optimized case, the value of the convergence factor |ρ(k)| tends to 1, while in
the double sided case, |ρ(k)| is bounded either by λ or by 1/λ. Fig. 2.3 shows the num-
ber of iterations required to reach convergence with a tolerance of 10−6 as function of the
optimized parameters in both the single and double sided cases. We see that the analysis
predicts the optimized parameter very well.

2.3.2 Advection Reaction Diffusion-Diffusion coupling

Next we consider the advection reaction diffusion-diffusion coupling with advection nor-
mal to the interface. Table 2.3 summarizes the behaviour of ρ(k) as h → 0 and for strong
heterogeneity. Similarly Fig 2.4 shows the number of iterations required to reach conver-
gence with the tolerance of 10−6. Figure 2.5 shows the number of iterations to reach con-
vergence for the tangential advection case. The minimization problem (2.2.10) is solved
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h ρ single sided ρ double sided
1/50 0.7035 0.4052

1/100 0.7801 0.4748
1/500 0.8950 0.6160

1/1000 0.9245 0.6672
1/5000 0.9655 0.7650

h ρ single sided ρ double sided
1/50 0.1721 0.0337

1/100 0.2625 0.0456
1/500 0.4868 0.0685

1/1000 0.5823 0.0760
1/5000 0.7662 0.0872

Table 2.1: Asymptotic behaviour as h → 0 for the reaction diffusion-diffusion coupling.
Physical parameters: left table η̃2 =λ= 1, right table η̃2 =λ= 10.

λ ρ single sided ρ double sided
0.001 0.0125 7.8 ·10−4

0.01 0.1075 0.0078
0.1 0.4453 0.0757
1 0.5851 0.4748

10 0.2625 0.076
100 0.0389 0.0078

1000 0.0040 7.8 ·10−4

Table 2.2: Asymptotic behaviour as λ → 0 and λ → ∞, with h = 0.05 for the reaction
diffusion-diffusion coupling. Physical parameter: η̃2 = 1.
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Figure 2.3: Number of iterations required to reach convergence with a tolerance of 10−6 as
function of the optimized parameters for the reaction diffusion-diffusion coupling. The
left panel shows the single sided case while the right panel shows the double sided case.
Physical parameters : ν1 = 2, ν2 = 1, η2 = 10, mesh size h = 0.02.
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h ρ single sided ρ double sided
1/50 0.4766 0.1835

1/100 0.5910 0.2306
1/500 0.7889 0.3274

1/1000 0.8452 0.3618
1/5000 0.9273 0.4228

λ ρ single sided ρ double sided
0.001 0.0031 4.89 ·10−4

0.01 0.0297 0.0049
0.1 0.2101 0.0458
1 0.4865 0.2552

10 0.2786 0.0517
100 0.0459 0.0056

1000 0.0049 5.6 ·10−4

Table 2.3: For the advection reaction diffusion-diffusion coupling, the left table shows
the asymptotic behaviour when h → 0 while the right table shows the values of the con-
vergence factor for strong heterogeneity when h = 1/50. Physical parameters: η2

1 = 1,η2
2 =

2,ν1 = 2,ν2 = 1, a2 = 0, a1 = 5, mesh size h = 0.02.
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Figure 2.4: Number of iterations required to reach convergence with a tolerance of 10−6

as function of the optimized parameters for the advection reaction diffusion-diffusion
coupling with normal advection. Physical parameters: ν1 = 2, ν2 = 1, η2

1 = 1, η2
2 = 2, a1 = 5,

mesh size h = 0.02.

numerically to find the optimal parameters p and q using the Nelder-Mead algorithm. We
have solved the minimization problem with different initial couples (p, q) and we have
noticed that the optimal solution satisfies an ordering relation between p and q depend-
ing on λ as in Theorem 2.1.10 and 2.2.4.

2.3.3 Application to the contaminant transport problem

Contaminant transport in underground media is a topic of great interest in the last thirty
years due, for instance, to the increasing threat of contamination of groundwater supplies
by waste treatments and landfill sites or to the disposal of nuclear radioactive waste [10].
We refer to [5] for a reference regarding modeling issues of contaminant transport. Our
model assumes that the computational domainΩ=Ω1∪Ω2∪Ω3∪Ω4, represented in Fig-
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Figure 2.5: In the top row, we show the number of iterations required to reach conver-
gence with a tolerance of 10−6 as function of the optimized parameters for the advection
reaction diffusion-diffusion coupling with tangential advection. In the bottom row, we
show the dependence on p and the level curves of the objective function in the min-max
problem (2.2.10). Physical parameters: ν1 = 1, ν2 = 2, η2

1 = 1, η2
2 = 2, a2 = 15, mesh size

h = 0.01.

ure 2.6, can be partitioned into four layers. In the first one, the contaminant, whose con-
centration is described through the unknown u, penetrates mainly thanks to rainfalls and
therefore an advection towards the negative y direction is present. The next two layers are
formed by porous media so that the contaminant spreads in a diffusive regime described
by the Laplace equation. We furthermore suppose that in the second layer, some chem-
ical reactions may take place which are synthesized in the reaction term. Finally in the
last layer, an underground flow transports the contaminant in the x direction towards a
groundwater supply which is connected to a water well. The problem belongs to the het-
erogeneous class, since in different parts of the domain we have different physical phe-
nomena, and thus in the last paragraph we use the results discussed in this manuscript
to design an efficient domain decomposition method to compute the stationary and time
dependent distribution of the contaminant.
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Figure 2.6: Geometry for the contaminant transport problem.

The computational domain Ω is set equal to Ω = (0,8) × (−4,0), with Ω j = (0,8) × (1 −
j ,− j ), j = 1...4. On the top boundary Γ1, we impose a condition on the incoming con-
taminant flow, i.e. ∂u

∂y −a2u = 1 while on the bottom edge Γ3 we impose a zero Neumann

boundary condition ∂u
∂y = 0. On the vertical edges Γ2 and Γ4 we set absorbing boundary

conditions so that

∂u
∂n +pu = 0 on {0}× [−3;0] and {8}× [−3;0],

∂u
∂n −a1u +pu = 0 on {0}× [−4;−3] and {8}× [−4;−3],

where n is the outgoing normal vector. The parameter p is chosen equal to p =
√
ππ

h ,

being kmin = π and kmax = π
h . This choice derives from the observation that imposing

∂u
∂n+S u = 0, where S is the Steklov-Poincaré, is an exact transparent boundary condition,
see [136, 135]. Thus we replace the expensive exact transparent boundary condition with

an approximation of the Steklov-Poincaré operator. We know from [74] that p =
√
ππ

h is

indeed a zero order approximation of S . To solve the system of PDEs, we consider the
OSM:

−ν1∆un
1 −a2∂y un

1 = 0 inΩ1, B1(un
1 ) = 0 on ∂Ω1 \ Γ̃1,

∂n1,2 un
1 +p12un

1 = ∂n1,2 un−1
2 +p12un−1

2 on Γ̃1,
η2

2un
2 −ν2∆un

2 = 0 inΩ2, B2(un
2 ) = 0 on ∂Ω2 \ {Γ̃1, Γ̃2},

∂n1,1 un
2 +p21un

2 = ∂n1,1 un−1
1 +p21un−1

1 on Γ̃1,
∂n2,3 un

2 +p23un
2 = ∂n2,3 un−1

3 +p23un−1
3 on Γ̃2,

−ν3∆un
3 = 0 inΩ3, B3(un

3 ) = 0 on ∂Ω3 \ {Γ̃2, Γ̃3},
∂n2,2 un

3 +p32un
3 = ∂n2,2 un−1

2 +p32un−1
2 on Γ̃2,

∂n3,4 un
3 +p34un

3 = ∂n3,4 un−1
4 +p34un−1

4 on Γ̃3,
−ν4∆un

4 +a1∂x un
4 = 0 inΩ4, B4(un

4 ) = 0 on ∂Ω4 \ Γ̃3,
∂n3,3 un

4 +p43un
4 = ∂n3,3 un−1

3 +p43un−1
3 on Γ̃3,

(2.3.1)

where Γ̃i are the shared interfaces Γ̃i = ∂Ωi ∩∂Ωi+1, i = 1,2,3, the vectors ni , j are the nor-
mal vectors on the interface Γ̃i pointing towards the interior of the domainΩ j and the op-
erators Bi (ui ) represent the boundary conditions to impose on the boundary excluding
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Figure 2.7
Stationary distribution of the contaminant. Physical parameters:

ν1 = 0.5,ν2 = 3,ν3 = 3,ν4 = 1,η2
2 = 0.01, a2 = 2, a1 = 2.

the shared interfaces. Regarding the Robin parameters pi , j , we choose them according to
the two subdomain analysis carried out in this Chapter. Due to the exponential decay of
the error away from the interface, see eq. (2.1.3), if the subdomains are not too narrow in
the y direction, the information transmitted from each subdomain to the neighbouring
one does not change significantly and therefore the pi , j from a two subdomain analysis
are still a good choice. We remark that this argument does not hold for the Helmholtz
equation, for which there are resonant modes for frequencies k ≤ω, where ω is the wave
number, which travel along the domains and they do not decay away from the interface.
Figure 2.7 shows the stationary distribution of the contaminant. We observe that due to
the advection in the y direction inΩ1, the contaminant accumulates on the interface with
Ω2, representing the porous medium, and here we have the highest concentration. Then
the contaminant diffuses into the layers below and already in the porous media region
it feels the presence of the tangential advection in Ω4. Next we also consider the tran-
sient version of equations (2.3.1). We discretize the time derivative with an implicit Euler
scheme, so that each equation has a further reaction term equal to η2

j ,tr an = η2
j ,st at + 1

∆t .
Figure 2.8 shows the time dependent evolution of the concentration u over 400 integra-
tion steps. The initial condition is set equal to zero on the whole domainΩ.

Table 2.4 shows the number of iterations to reach a tolerance of 10−6 for the algorithm
(2.3.1) both used as iterative method and as a preconditioner for GMRES for the substruc-
tured system, see [80] for an introduction to the substructured version of (2.3.1). We con-
sider both single and double sided optimizations for the parameters pi , j at each interface.
For the time evolution problem, the stopping criterion is

max

‖un,k
1,Γ̃1

−un,k
2,Γ̃1

‖
‖un,k

1,Γ̃1
‖

,
‖un,k

2,Γ̃2
−un,k

3,Γ̃2
‖

‖un,k
2,Γ̃2

‖
,
‖un,k

3,Γ̃1
−un,k

4,Γ̃3
‖

‖un,k
3,Γ̃3

‖

≤ 10−6. (2.3.2)

From Figures 2.7 and 2.8, we note that this physical configuration would represent a safe
situation since a very small concentration of contaminant manages to get through the ver-



CHAPTER 2. HETEROGENEOUS OSMS FOR SECOND ORDER PDES 69

0

0.5

1

1.5

2

2.5

3

3.5

4

y

0 2 4 6 8

x

1

2

3

4

5

6

7

8

9

×10 -3

(a) 100 time steps.

0

0.5

1

1.5

2

2.5

3

3.5

4

y

0 2 4 6 8

x

2

4

6

8

10

12

14

×10 -3

(b) 200 time steps.

0

0.5

1

1.5

2

2.5

3

3.5

4

y

0 2 4 6 8

x

2

4

6

8

10

12

14

16

18

×10 -3

(c) 300 time steps.

0

0.5

1

1.5

2

2.5

3

3.5

4

y

0 2 4 6 8

x

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

(d) 400 time steps.

Figure 2.8: Evolution of the contaminant concentration u.

Iterative GMRES
Single sided 270 33

Double sided 55 25

Iterative GMRES
Single sided 11.5 5.7

Double sided 9.6 4.3

Table 2.4
Number of iterations to reach a tolerance of 10−6 for the OSM (2.3.1) used as an iterative
method and as a preconditioner. The left side refers to the stationary case while the right

side to the transient one where we consider the number of iterations needed to satisfy
the stopping criterion (2.3.2) averaged over 400 time steps.

tical diffusive layers and to reach the right-bottom of the domain, where it could pollute
the water well.

2.4 Coupling Helmholtz and Laplace Equations

In this Section, we introduce and analyze heterogeneous OSMs with zeroth order op-
timized transmission conditions for the coupling between the hard to solve Helmholtz
equation [71] and the Laplace equation. It is a simplified instance of the coupling of
parabolic and hyperbolic operators, which might arise in Maxwell equations. The Helmholtz
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equation is used in the time harmonic regime of a wave equation and the Laplace opera-
tor represents the parabolic part.

2.4.1 Well-posedness analysis

We consider the nonoverlapping decomposition described at the beginning of Section
1.3. Our model problem is

(−∆−qω2)u = f in Ω,
∂u

∂n
+ iωu = 0 on Γ1 := ∂Ω1 \Γ, (2.4.1)

u = 0 on Γ2 := ∂Ω2 \Γ,

where ω > 0 is the Helmholtz frequency, and q ∈ L∞(Ω) satisfies q = 1 in Ω1 and q = 0
in Ω2. Since the well-posedness of the problem is not straightforward due to the indefi-
nite nature of the Helmholtz part, we first analyze it in more detail adapting arguments
presented by Després in his PhD thesis [50].

Lemma 2.4.1. The norm ||u||2 = ∫
Ω |∇u|2 +ω∫

Γ1
|u|2 is equivalent to the canonical norm

on H 1(Ω) if |Γ1| > 0.

Proof. We first observe that H 1(Ω) is the direct sum of V = {
v ∈ H 1(Ω) :

∫
Ω v = 0

}
and Ṽ ={

v ∈ H 1(Ω) : v is constant inΩ
}
, H 1(Ω) = Ṽ ⊕V . Then, on the one hand, it easy to see that

for all v ∈ Ṽ , there exist a constant C̃ =
√

ω|Γ1|
|Ω| such that

C̃ ||v ||H 1(Ω) ≤ ||v || ≤ C̃ ||v ||H 1(Ω). (2.4.2)

On the other hand, for every v ∈V , we first use the Poincaré inequality with constant C to
get

||v ||2H 1(Ω) ≤ (1+C )
∫
Ω
|∇v |2 ≤ (1+C )

(∫
Ω
|∇v |2 +ω

∫
Γ1

|v |2
)
= (1+C )||v ||2. (2.4.3)

Using the continuity of the trace operator, we obtain

||v ||2 =
∫
Ω
|∇v |2 +ω

∫
Γ1

|v |2 ≤
∫
Ω
|∇v |2 +ω

∫
∂Ω

|v |2 ≤ max(1,C∂Ωω)

(∫
Ω
|∇v |2 +

∫
Ω
|v |2

)
.

(2.4.4)
Having proved that the two norms are equivalent on the subspaces V and Ṽ with Ṽ ⊕V =
H 1(Ω), the two norms are also equivalent on H 1(Ω).

Let us define V := {v ∈ H 1(Ω) : v = 0 on Γ2}, with || · ||V = || · ||H 1(Ω), and consider problem
(2.4.1) in the variational form

Find u ∈V : a(u, v)−b(u, v) =V −1 〈 f , v〉V ∀v ∈V , (2.4.5)

where a(u, v) = ∫
Ω∇u∇v̄ + iω

∫
Γ1

uv̄ , b(u, v) = ω2
∫
Ω2

uv̄ and f ∈ V −1. To use Fredholm
theory, we now show that the bilinear form b is a compact pertubation of a.
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Lemma 2.4.2. Let B be an operator from V to V such that

a(Bu, v) = b(u, v) ∀v ∈V , (2.4.6)

then B is a continuous compact operator.

Proof. We first prove continuity, i.e. ∃C > 0 : ∀u ∈ V , ||Bu||V ≤ C ||u||V . From the defi-
nition of B, and applying Lax-Milgram to (2.4.6), we have ||Bu||V ≤ 1

α ||b(u)||V −1 , where
b(u) : V →C is the functional defined by V −1〈b(u), v〉V := b(u, v). Then we have ∀v ∈V

|V −1〈b(u), v〉V | := |b(u, v)| =ω2
∣∣∣∣∫
Ω2

uv̄

∣∣∣∣≤ω2||u||L2(Ω2)||v ||L2(Ω2) ≤ω2||u||L2(Ω2)||v ||V .

We thus conclude that ||b(u)||V −1 ≤ω2||u||L2(Ω2), and hence we have the bound

||Bu||V ≤ 1

α
ω2||u||V .

To prove compactness, let un be a bounded sequence in V , i.e ∃C > 0 : ∀n, ||un ||V < C .
From weak compactness of V it follows that there exists a subsequence un j such that
un j * u for some u. Hence un j converge strongly to u in L2 (Ω). Considering a(Bun j −
Bu,Bun j −Bu) = b(un j −u,Bun j −Bu) we have letting n →∞ and using the Cauchy-
Schwarz inequality∣∣∣∣∫

Ω
|∇(Bun j −Bu)|2 + iω

∫
Γ1

|Bun j −Bu|2
∣∣∣∣≤ω2||un j −u||L2(Ω2)||Bun j −Bu||L2(Ω2).

(2.4.7)
We observe that Bun j *Bu in V because un j * u in V and B is a continuous operator
[44]. Hence, both un j and Bun j converge strongly in L2(Ω). In particular we have that
a(Bun j −Bu,Bun j −Bu) → 0 which implies ||Bun j −Bu|| → 0. With Lemma 2.4.1, we
have that Bun j →Bu in V and thus B is a compact operator.

Since B is a compact operator, due to the Fredholm alternative, existence of the solu-
tion of problem (2.4.5) follows from uniqueness. We need two further Lemmas to prove
uniqueness. We denote with γ j u and N j u the trace of u and the trace of the normal
derivative on the j -th interface and we introduce the space E(Ω,∆) := {u ∈ H 1(Ω) : −∆u ∈
L2(Ω)}.

Lemma 2.4.3 (Grisvard, Theorem 1.5.3.11, page 61, [106]). LetΩ be an open bounded sub-
set ofR2 whose boundary is a curvilinear polygon of class C 1,1 with interfaces Γ j , j = 1, .., N .
The mappings u → γ j u and u → N j u have a unique continuous extension from E(Ω,∆)

to respectively H
1
2 (Γ j ) and H− 1

2 (Γ j ). Moreover for every u ∈ E(Ω,∆) and v ∈ H 1(Ω) with

γ j v ∈ H
1
2 (Γ j ) ∀ j , the Green’s formula holds:

(−∆u, v) = (∇u,∇v)−
N∑

j=1
〈N j u,γ j v〉. (2.4.8)
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Lemma 2.4.4 (Després, Corollary 2.1, page 22, [50]). LetΩ be an open bounded arc-connected
subset of R2 and assume that Γ is a nonempty open subset of ∂Ω of class C 2 and q ∈ L∞(Ω).
If u ∈ H 2(Ω) satisfies

(−∆−qω2)u = 0 on Ω, u|Γ = ∂nu|Γ = 0, (2.4.9)

then u=0 in Ω.

Theorem 2.4.5. Under the hypotheses of Lemmas 2.4.3 and 2.4.4, u ≡ 0 is the only solution
of the boundary value problem (2.4.1) with f = 0.

Proof. Choosing v ∈ D(Ω), the space of C∞(Ω) functions with compact support, in the
weak formulation of eq. (2.4.1) we obtain −∆u−qω2u = 0. Hence, since u ∈V ,∆u ∈ L2(Ω)
and u ∈ E(Ω,∆). Using Green’s formula and choosing v = u we get∫

Ω
|∇u|2 −ω2

∫
Ω1

|u|2 + iω
∫
Γ1

|u|2 = 0. (2.4.10)

Considering the imaginary part we have
∫
Γ1
|u|2 = 0, which implies u = 0 on Γ1. We now

have homogeneous Dirichlet data on the whole domain ∂Ω = Γ1 ∪Γ2. Regularity results
for Dirichlet problems in smooth domains state that u ∈ H 2(Ω). Using again the Green’s
formula and −∆u −qω2u = 0 inΩ , we obtain

H− 1
2 (Γ1)

〈
∂u

∂n
, v

〉
H

1
2 (Γ1)

+ i w
∫
Γ1

uv = 0, ∀v ∈V. (2.4.11)

Since u = 0 on Γ1, we can conclude that ∂nu = 0 on Γ1 and by the unique continuation
principle in Lemma 2.4.4, the result follows.

2.4.2 Zeroth order single sided optimized transmission conditions

In order to make analytical calculations, we simplify the analysis and set Ω= R2, with Ω1

being the left half plane andΩ2 the right half plane. The heterogeneous OSM is

(−ω2 −∆)u1 = f in Ω1, (∂x +S1)(un
1 )(0, ·) = (∂x +S1)(un−1

2 )(0, ·),
−∆u2 = f in Ω2, (∂x +S2)(un

2 )(0, ·) = (∂x +S2)(un−1
1 )(0, ·),

(2.4.12)

where the S j , j = 1,2 are linear operators along the interface in the y direction. The system
is closed by the Sommerfeld radiation condition limx→−∞

p|x| x
|x| (∂x un

1 −iωun
1 ) = 0 and by

the boundedness condition limx→+∞ un
2 = 0. The goal is to find which operators lead to

the fastest convergence. We define the errors e j := u−u j , and taking the Fourier transform
of the error equations in the y direction, we obtain

(−ω2 −∂xx +k2)(ên
1 ) = 0 k ∈R, x < 0,

(∂x +σ1(k))(ên
1 )(0,k) = (∂x +σ1(k))(ên−1

2 )(0,k), k ∈R,
(−∂xx +k2)(ên

2 ) = 0 k ∈R, x > 0,
(∂x +σ2(k))(ên

2 )(0,k) = (∂x +σ2(k))(ên−1
1 )(0,k), k ∈R,

(2.4.13)
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where σ j (k) are the Fourier symbols of the operators S j . Solving the equations in (2.4.13)
and imposing the radiation/boundedness conditions, we get

ên
1 = ên

1 (0,k)eλ(k)x , ên
2 = ên

2 (0,k)e−|k|x ,

where λ(k) := i
p
ω2 −k2 if k <ω and λ(k) :=

p
k2 −ω2 if k ≥ω. Applying the transmission

conditions, it follows that

ên
1 = ρ(k)ên−2

1 , ên
2 = ρ(k)ên−2

2 ,

where

ρ(k) = −|k|+σ1(k)

λ(k)+σ1(k)

λ(k)+σ2(k)

−|k|+σ2(k)
.

Next, to approximate the optimal choice for σ1(k) and σ2(k) which would require non
local operators, we set σ1 = −σ2 = p(1+ i ). This choice is motivated by [70] where the
single and double sided optimizations were studied and compared for the time harmonic
Maxwell equations. Since both σ j and λ(k) contain complex numbers, we have to study
the modulus of the convergence factor,

|ρ(k, p)|2 =


((k −p)2 +p2)

((k +p)2 +p2)

((
p

k2 −ω2 −p)2 +p2)

((
p

k2 −ω2 +p)2 +p2)
k ≥ω,

((k −p)2 +p2)

((k +p)2 +p2)

((
p
ω2 −k2 −p)2 +p2)

((
p
ω2 −k2 +p)2 +p2)

k <ω.

(2.4.14)

Since we are interested in minimizing the convergence factor over all relevant numerically
represented frequencies, we study now the minimax problem

min
p≥0

max
k∈[kmin,kmax]

|ρ(k, p)|2, (2.4.15)

where kmin is the minimum frequency and kmax is the maximum frequency supported by
the numerical grid.

Theorem 2.4.6. Assuming that kmax > 2ω, the solution of the minimax problem (2.4.15) is

given by p∗ = ωp
2

if |ρ(kmax, p∗ = ωp
2

)|2 ≤ (
p

2−1)2+1
(
p

2+1)2+1
, and otherwise it is given by the unique

p∗ such that |ρ(k =ω, p∗)|2 = |ρ(kmax, p∗)|2.

Proof. We consider p > 0, because for p = 0 the convergence factor is equal to 1, and for
p < 0 it is greater than one, while for values of p > 0, the convergence factor is always
less than 1. We introduce a change of variables which will be useful in the computations,
namely x =

p
k2 −ω2 if k ≥ω and x =

p
ω2 −k2 for k <ω. Problem (2.4.15) then becomes

min
p>0

max

 max
[0,

√
ω2−k2

min]

G(x, p), max
[0,
p

k2
max−ω2]

F (x, p)

 , (2.4.16)



CHAPTER 2. HETEROGENEOUS OSMS FOR SECOND ORDER PDES 74

where

G(x, p) = ((x −p)2 +p2)

((x +p)2 +p2)

((
p
ω2 −x2 −p)2 +p2)

((
p
ω2 −x2 +p)2 +p2)

,

F (x, p) = ((x −p)2 +p2)

((x +p)2 +p2)

((
p

x2 +ω2 −p)2 +p2)

((
p

x2 +ω2 +p)2 +p2)
.

First, we observe that ∂G
∂x |x=0 = ∂F

∂x |x=0 = − (2((ω−p)2+p2))
(p((ω+p)2+p2)) < 0 for all p > 0 and G(0, p) =

F (0, p). Indeed, x = 0 (k =ω) is a cusp for ρ2(k, p) and hence it is a local maximum which
needs to be minimized. The minimum of G(0, p) with respect to the variable p is given by

p̄ = ωp
2

and G(x = 0, p = ωp
2

) = (
p

2−1)2+1
(
p

2+1)2+1
≈ 0.176. We thus have found a lower bound for

the value of the minimax problem. Next, we study how G(x, p) behaves in the rest of the
interval, and start by restricting our attention to the case p ≥ p̄. Computing the partial
derivative with respect to x of G(x, p), we find that it has a unique zero x1 given by the
root of the non linear equation

x(4p4 +x4)(2p2 +x2 −ω2) = ((ω2 −x2)2 +4p2)(2p2 −x2)
√
ω2 −x2. (2.4.17)

To proof uniqueness, it is enough to notice that the LHS is zero for x = 0 and strictly in-
creasing in x, if p ≥ p̄, while the RHS is greater than zero for x = 0 and strictly decreas-
ing in x. Therefore G(x, p) decreases until x < x1 and then increases monotonically. If

x1 >
√
ω2 −k2

min then the max
[0,

√
ω2−k2

min]
G(x, p) =G(0, p), otherwise if x1 ≤

√
ω2 −k2

min it

is sufficient to notice that G(
√
ω2 −k2

min, p) < G(ω, p) = G(0, p), to conclude that it holds
again max

[0,
√
ω2−k2

min]
G(x, p) =G(0, p). Next we focus on the second interval, considering

the function F (x, p). The zeros of the derivative ∂F
∂x are given by the zeros of the equation

x(4p2 +x4)(22 +x2 −2p2) = (2p2 −x2)((ω2 +x2)2 +4p2)
√
ω2 +x2.

Repeating an argument similar to the one above, we find that again there is a unique zero

x2, in this case∀p > 0, which again might or might not belong to the interval [0,
√

k2
max −ω2].

If x2 is outside the interval or F (
√

k2
max −ω2, p̄) ≤ F (0, p̄), then we can conclude that the

optimal value p∗ is given by p∗ = p̄, i.e. the value which minimizes the convergence
factor for the frequency k = ω. Otherwise the local maxima are located at x = 0 and

x =
√

k2
max −ω2. We compute the partial derivative w.r.t the variable p, which satisfies

∂F
∂p |x=pk2

max−ω2 < 0 for p ∈ I = [0,
√

k2
max−ω2

2 ], and under the non restrictive hypothesis kmax >
2ω, we have that p̄ ∈ I . Analyzing the sign of the derivative shows that it is not useful to
look for p∗ in [0, ωp

2
], since both local maxima would increase. This justifies why we stud-

ied G only for p ≥ p̄. Since ∂F
∂p |x=0 > 0 for p > ωp

2
and because

F

√
k2

max −ω2,

√
k2

max −ω2

2

=
(

(
p

2−1)2 +1

(
p

2+1)2 +1

)2

< F

(
0,

ωp
2

)
< F

0,

√
k2

max −ω2

2

 ,

(2.4.18)
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we conclude that there exists a unique value p∗ such that F (0, p∗) = F (
√

k2
max −ω2, p∗),

which concludes the proof.

Remark 2.4.7. It is interesting to note that this problem is different from the ones already
studied in the literature. For instance we showed immediately that the convergence fac-
tor is bounded from below, i.e. it is not possible to get a better convergence factor than

ρ2(k, p) = (
p

2−1)2+1
(
p

2+1)2+1
. We also did not have to exclude the resonance frequency k = ω by

introducing ω− and ω+, as in the Helmholtz case [91]; the OSM can benefit from the het-
erogeneity, leading to |ρ(k =ω, p)|2 < 1.

We now present two asymptotic results. First we let h → 0, h being the mesh size, and
suppose that the maximum frequency supported by the numerical grid scales like kmax =
π/h →∞.

Theorem 2.4.8. When the physical parameters ω and kmin are fixed, kmax = π
h and h → 0,

then the solution of problem (2.4.15) is given by

p∗ =
p
ωπ

2
·h−1/2 +o(h−1/2), |ρ(k, p∗)|2 = 1− 4

p
ωp
π

h
1
2 +o(h1/2). (2.4.19)

Proof. For kmax → ∞, ρ(kmax, p) → 1, and hence the solution of the minimax problem
is given by equioscillation. Inserting the ansatz p ≈ Cp h−α into |ρ(k = ω, p)|2 = |ρ(k =
kmax, p)|2 and comparing the leading order terms then gives the result.

The second asymptotic limit is typical of the Helmholtz equation. Asω increases, in order
to control the so called pollution effect [3], we need to decrease significantly h in order to
have a good approximation of the solution. Generally, the scaling relation used is h = Ch

ωγ ,
with γ> 1. Common values are γ= 3

2 , or γ= 2.

Theorem 2.4.9. If kmin is fixed, kmax = π
h ,ω goes to infinity and h = Ch

ωγ , with γ> 1, then the
solution of problem (2.4.15) is given by

p∗ =
p
π

2
√

Ch

·ω 1+γ
2 +o(ω

1+γ
2 ), |ρ(k, p∗)|2 = 1− 4

√
Chp
π

ω
1−γ

2 +o(ω
1−γ

2 ).

Proof. A direct calculation shows that |ρ(k = kmax, ωp
2

)|2 → 1 for ω→∞, and thus again

the solution is given by equioscillation. Expanding equation |ρ(k =ω, p)|2 = |ρ(k = kmax, p)|2,
with the ansatz p =Cpω

α then leads to the desired result.

2.4.3 Numerical results

We implemented our heterogeneous OSM on a square domain Ω := (−1,1)× (−1,1), with
Ω1 := (−1,0)× (−1,1) and Ω2 := (0,1)× (−1,1). We used second order centered finite dif-
ferences for the interior points and first order approximations for the boundary terms. In
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Figure 2.9: Parameters ω2 = 50, h = 0.05. Left: Modulus of u(x, y). Right: Parameter p vs
number of iterations. The optimal p given by equioscillation is indicated by a star.

h Optimal p∗ maxk |ρ2(p∗,k)| iterations
1

50 16.52 0.4225 53 (810)
1

100 23.53 0.55043 73 (1614)
1

200 33.37 0.6543 104 (3284)
1

400 47.27 0.7403 148 (6554)

ω Optimal p∗ maxk |ρ2(p∗,k)| iterations

10π 34.8451 0.2119 31 (839)
20π 84.7084 0.2622 38 (2954)
40π 205.0570 0.3167 46 (8096)
60π 342.6739 0.3506 48 (>10000)

Table 2.5: The two tables show the behaviour of the heterogeneous OSM under mesh
refinement and when ω increases with hω

3
2 held constant.

Figure 2.9 on the left, we show the modulus of the solution of problem (2.4.1) for ω2 = 50
and f = 1. On the right in Figure 2.9, we show a comparison between the optimal nu-
merical value p and the theoretical estimation provided by Theorem 2.4.6. We see that
our simplified analysis on unbounded domains is able to give a good approximation of
the optimal parameter in the bounded domain context. Finally, we show in Table 1 the
behavior of the algorithm when the mesh size h decreases and for large values of ω, with
hω

3
2 = const. In brackets, we show the number of iterations required for a non-optimized

case, i.e. using p = 1. We clearly see that the optimization leads to a much better algo-
rithm, which deteriorates much more slowly when the mesh is refined, and ω increases.
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2.5 Probing the Steklov-Poincaré operator

Over the last decades, several theoretical results have been developed to establish opti-
mized transmission conditions for many different PDEs. We have already cited several of
these contributions and we proposed a new analysis for heterogeneous PDEs in the pre-
vious sections. Despite this large effort and their better convergence with respect to other
classical domain decomposition methods, optimized transmission conditions are not so
widely. This is mainly due to the strict hypotheses used in the theoretical analysis, that are
not always satisfied in practice, and they can discourage the potential user from imple-
menting optimized transmission conditions. This is especially true if the PDEs needs to
be solved few times and thus one relies on other domain decomposition methods. Nev-
ertheless, there are cases where one really needs to use OSMs and to have good estimates
of the optimized parameters. Heterogeneous problems are instances, since a decoupling
approach is often preferable compared to a monolithic one. Then, OSMs provide a robust
and simple decoupling framework. Other nonoverlapping domain decomposition meth-
ods, like the Dirichlet-Neumann method, are not so robust and they cannot be adapted
to physical parameters of different scales between the subdomains. Concerning homo-
geneous problems, time dependent PDEs or parametric PDEs require the solution of the
same PDEs several times, and thus the better convergence rate of OSM can represent a
significant advantage. In this paragraph, we discuss numerical procedures to find opti-
mized transmission conditions in those cases where the theoretical analysis falls short.

From (1.3.17) and setting µ = 0, we observe that an OSM can be seen as a fixed point
iteration λk+1

2 =T (s1, s2)λk
2 , where the iteration operator T :Λ→Λ is

T (s1, s2) := (s2I +S2)−1(s2I −S1)(s1I +S1)−1(s1I −S2). (2.5.1)

It is possible to show that if s1 = s2 = s, then ‖T (s, s)‖ < 1, see [52, Theorem 5.4.2], and thus
the sequence

{
λk

2

}
k≥1 converges inΛ thanks to the Banach fixed point theorem. Given the

equivalence between (1.3.17) and (1.3.15), this result is another proof of the convergence
of OSMs, different from the one originally proposed by Lions in [126].
The discrete counterpart of (2.5.1) is

T (s1, s2) = (s2I +Σ2)−1(s2I −Σ1)(s1I +Σ1)−1(s1I −Σ2), (2.5.2)

where I is the identity matrix which derives from Robin transmission conditions. In order
to speed up the convergence of the fixed point iteration, we can rely on the wide literature
about ADI methods, see [2, Chapter 7.7] and [153, Chapter 7] for a general introduction,
and [130, 52] for an application to OSMs. We here summarize these approaches and we
distinguish two cases. If Σ1 and Σ2 commute, then they share a common eigenbasis

{
v j

}
j

[2, Lemma 7.18]. Defining µi
j the eigenvalues of Σi associated to the eigenvector v j , a
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direct calculation shows that

T (s1, s2)v j = (s2I +Σ2)−1(s2I −Σ1)(s1I +Σ1)−1(s1 −µ2
j )v j = (s2I +Σ2)−1(s2I −Σ1)

s1 −µ2
j

s1 +µ1
j

v j

= (s2I +Σ2)−1
(s2 −µi

j )(s1 −µ2
j )

s1 +µ1
j

v j =
s1 −µ2

j

s1 +µ1
j

s2 −µ1
j

s2 +µ2
j

v j .

We thus consider the problem

min
s1,s2

maxρ(T (s1, s2)) = min
s1,s2

max
j

∣∣∣∣∣ s1 −µ2
j

s1 +µ1
j

s2 −µ1
j

s2 +µ2
j

∣∣∣∣∣ . (2.5.3)

Supposing s1 = s2 = s, and introducing the upper and lower bounds α,β, 0 < α < µi
j < β,

i = 1,2, ∀ j , we focus on the simpler problem

min
s

max
x∈[α,β]

( s −x

s +x

)2
. (2.5.4)

The solution of (2.5.4) is provided by sopt = √
αβ, see for instance [74]. Hence, we have

found an optimized choice for the transmission conditions if Σ1 and Σ2 commute. Let us
briefly note that one could also consider a sequence of parameter {sk }k . For q steps, this
choice leads to an iteration operator

T ({sk }k ) =
q∏

k=1
(sk I +Σ2)−1(sk I −Σ1)(sk I +Σ1)−1(sk I −Σ2).

This possibility has been studied under the commutative hypothesis by Wachspress in
[154] and [155]. See also [79] for an application to OSMs.
If the matrices do not commute and setting s1 = s2 = s, one relies on the estimate

ρ(T (s)) = ρ((sI +Σ2)−1(sI −Σ1)(sI +Σ1)−1(sI −Σ2))

= ρ((sI −Σ2)(sI +Σ2)−1(sI −Σ1)(sI +Σ1)−1))

≤ ‖(sI −Σ2)(sI +Σ2)−1‖2‖(sI −Σ1)(sI +Σ1)−1)‖2 = max
j

∣∣∣∣∣ s −µ2
j

s +µ2
j

∣∣∣∣∣max
j

∣∣∣∣∣ s −µ1
j

s +µ1
j

∣∣∣∣∣ .

(2.5.5)
Supposing that 0 <α<µi

j <β, i = 1,2, ∀ j , we have

max
j

∣∣∣∣∣ s −µ2
j

s +µ2
j

∣∣∣∣∣max
j

∣∣∣∣∣ s −µ1
j

s +µ1
j

∣∣∣∣∣≤ max

{∣∣∣ s −α
s +α

∣∣∣ ,

∣∣∣∣ s −β
s +β

∣∣∣∣} .

The two terms are simultaneously minimized when s =√
αβ.

From this analysis we obtain that, in both the commutative and noncommutative case
and supposing s1 = s2 = s, it is reasonably to set s = √

αβ. One could estimate α and β
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either through variational estimates or using the power method. Both these tecniques are
discussed in [52]. From [130] we know that α ∼ O(1) while β ∼ O(h−1), thus we obtain
s =O(h− 1

2 ) which is in agreement with several results in literature, see [74, 160].
Let us remark that this analysis does not lead to any good insights in case we use higher or-
der transmission conditions, since instead of the identity matrix we would have a general
sparse matrix. Finally the estimates (2.5.5) split the iteration operator into two parts, one
depending on Σ1, the other on Σ2, thus neglecting completely the interaction between
the Σi . It follows that for non commutative matrices, (2.5.5) is not always a sharp upper
bound.

In this paragraph, we consider a new numerical procedure to find optimized parameters
based on probing which has been already studied in the context of domain decomposi-
tion methods. In [143, Section 4.2.6], the authors proposed to probe the matrix Σ to find
an approximate matrix Σ̃ to use directly as preconditioner for the Schur complement sys-
tem (1.3.5). In the frequency filtering method proposed in [156, 157], probing is used to
replace inverse matrices with cheap approximations in a block LU decomposition. We re-
fer the interested reader to [92, 93] for a discussion about the relations between frequency
filters, analytical factorizations and OSMs. Our renewed interest in probing is mainly mo-
tivated by [10], where the authors estimated an optimized Robin parameter by probing
the Steklov-Poincaré operator.
With the word ‘probing’ we mean the numerical procedure through which we estimate a
generic matrix G by testing this matrix over a set of vectors. In mathematical terms, given
a set of vectors xi and yi :=Gxi , i ∈I := {1, ..., M }, we study the problem

Find G̃ such that G̃xi = yi ,∀i ∈I . (2.5.6)

In general we look for a matrix G̃ with some nice properties( diagonal, tridiagonal, sparse...),
so that problem (2.5.6) does not always have a solution. Calling D the set of admissible
matrices, it is better to consider the problem

min
G̃∈D

max
i∈I

‖yi −G̃xi‖, (2.5.7)

We now observe that if one uses more general transmission conditions described by ma-
trices Σ̃1 and Σ̃2, (2.5.2) becomes

T (Σ̃1, Σ̃2) = (Σ̃2 +Σ2)−1(Σ̃2 −Σ1)(Σ̃1 +Σ1)−1(Σ̃1 −Σ2). (2.5.8)

It is sufficient to assume that Σ̃ j are positive definite matrices to guarantee the invert-
ibility of (Σ̃ j +Σ j ), j = 1,2. Choosing Σ̃1 = Σ2 or Σ̃2 = Σ1, we have T = 0, and hence the
method is nilpotent. We have simply reobtained that the Steklov-Poincaré operators are
optimal transmission operators [32, 136, 88]. Since the assembly of matrices Σi , i = 1,2
is too expensive, we propose to approximate them through probing. Unfortunately, this
very natural idea turns out to be inefficient.
To see this, let us carry out a continous analysis on a infinite strip Ω = Ω1 ∪Ω2, with
Ω1 = (−∞,0)× (0,1) andΩ2 = (0,∞)× (0,1). We consider the Laplace equation and thanks
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to symmetry we have S1 = S2 =: Se . It is well known that the eigenvectors of Se are
vk = sin(kπy), k ∈N+ with eigenvalues µk = kπ so that Se vk = µk vk =: yk , see [74]. Sup-
pose now that we look for an operator S = sI with s ∈ R+, which corresponds to a Robin
transmission condition with parameter s. Choosing as probing functions the normalized
functions vk with k = 1, ...Nh

2, (2.5.7) becomes

min
S:S=sI , s∈R+ max

k∈[1,Nh ]
‖yk −Svk‖ = min

s
max

k∈[1,Nh ]
‖yk − svk‖

= min
s

max
k∈[1,Nh ]

‖µk vk − svk‖ = min
s

max
k∈[1,Nh ]

|kπ− s|. (2.5.9)

The solution of (2.5.9) is s∗ = Nhπ
2 , while, since S1 and S2 commute, the parameter which

minimizes the spectral radius of T is sopt = √
Nhπ. The difference between the two es-

timates can be explained as follows. Probing the optimal Steklov-Poincaré corresponds
to minimize the numerator of (2.5.3), neglecting completely that the iteration operator T
involves also the inverse of (Σi + Σ̃i ), i = 1,2. This observation suggests us to consider the
minimization problem

min
Σ̃1,Σ̃2∈D

max
i∈I

‖Σ2xi − Σ̃1xi‖
‖Σ1xi + Σ̃1xi‖

‖Σ1xi − Σ̃2xi‖
‖Σ2xi + Σ̃2xi‖

. (2.5.10)

We say that this problem is ‘consistent’ in that sense that if Σ1,Σ2 share a common eigen-

basis
{

v j
}

j with eigenvalues
{
µi

j

}
, Σ̃i = si I , i = 1,2, then choosing x j = v j ,

min
Σ̃1,Σ̃2∈D

max
j∈I

‖Σ2x j − Σ̃1x j‖
‖Σ1x j + Σ̃1x j‖

‖Σ1x j − Σ̃2x j‖
‖Σ2x j + Σ̃2x j‖

= min
s1,s2

max
j∈I

∈
∣∣∣∣∣ s1 −µ2

j

s1 +µ1
j

s2 −µ1
j

s2 +µ2
j

∣∣∣∣∣= min
s1,s2∈R+ρ(T (s1, s2)).

(2.5.11)
We stress that the (2.5.10) has to be solved numerically. In our experiments we used the
function fminsearch in MATLAB which is based on the Nelder-Mead algorithm. Further-
more, the application of the Schur complements Σi on a vector x j requires a subdomain
solve. These evaluations can be done in parallel, however it is desirable to keep the num-
ber of probing vectors small. The choice of x j plays a key role to obtain good estimates
and it is usually driven by insights provided by theoretical analysis.

2.5.1 Numerical results

In this subsection we present numerical results to validate the approach of (2.5.10) in
different cases. We also discuss how to choose properly the probing vectors xi .

2.5.1.1 Laplace equation in a square box

We start with a sanity check considering a Laplace equation in a domainΩ=Ω1∪Ω2 with
Ω1 = (−1,0)× (0,1), Ω2 = (0,1)× (0,1) and Γ = {0}× (0,1). Given a discretization of the

2We approximate the maximum frequency on the numerical grid with kmax = Nh , where Nh is the size
of the Schur complement matrix, i.e. the number of degrees of freedom on the interface.
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Figure 2.10: Contour plot of the spectral radius of the iteration matrix T (Σ̃1, Σ̃2) with Σ̃i =
si I (left) and of T (Σ̂1, Σ̂2) with Σ̂i = pI + q H (right). The red crosses are the parameters
estimated solving (2.5.10).

interface Γwith N points, we choose as probing vectors the discretization of the following
functions

x1 = sin(πy), x2 = sin(
√

Nhπy), x3 = sin(Nhπy). (2.5.12)

This choice is motivated by the theoretical analysis in [74] and Theorem 2.1.9, which show
that the optimal parameters si satisfy equioscillation between the minimum, the maxi-
mum and a medium frequency which scales as

√
Nh . We first look for matrices Σ̃i = si I

representing zeroth order double sided optimized transmission conditions. Then, we look
for matrices Σ̂i = pI +q H , where H is a tridiagonal matrix H := Diag( 2

h2 )−Diag( 1
h2 ,−1)−

Diag( 1
h2 ,+1), where h is the mesh size. At the continuous level, Σ̂i represents second order

transmission conditions, so that (1.3.14)2,3 become

∂un+1
1

∂n1
+pun+1

1 −q
∂2un+1

1

∂τ2 = ∂un
2

∂n1
+pun

2 −q
∂2un

2

∂τ2 , on Γ,

∂un+1
2

∂n2
+pun+1

2 −q
∂2un+1

2

∂τ2 = ∂un
1

∂n2
+pun

1 −q
∂2un

1

∂τ2 , on Γ.

(2.5.13)

Fig 2.10 shows that solving (2.5.10) with just three probing vectors permits to obtain good
estimates in both cases.

2.5.1.2 Second order PDE with curved interface

We now look at a more challenging problem. We solve a second order PDE

−∇·ν(x)∇u +a(x)> ·∇u +η(x)u = f in Ω, (2.5.14)

where Ω is represented in Fig 2.11. The interface Γ is a parametric curve γ(t ) : [0,1] →
(0,r sin(k̂πt )), with r ∈R+. In our first example, we choose ν(x) = 10, a(x) = (8,0)> ,η(x) = 0
in Ω1, ν(x) = 1, a(x) = (2,0)>, η(x) = 5 in Ω2 , r = 0.1 and k̂ = 4. Driven by the theoretical
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Figure 2.11: Representation of the domainΩ and its decomposition into Ω1 and Ω2.
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Figure 2.12: Contour plot of the spectral radius of the iteration matrix T (Σ̃1, Σ̃2) with Σ̃i =
si I (left) and Σ̃i = pI + q H (right). The red crosses are the parameters estimated solving
(2.5.10).

analysis of Section 2.2, we rescale the transmission conditions according to the physical

parameters setting Si := fi (si )I , where fi := νi

√
s2

i +
a2

i 1

4ν2
i
+ a2

i 2

4ν2
i
+ ηi

νi
− ai 1

2 , for the zeroth or-

der transmission conditions, and Si := fi (si )I +q H for the second order ones. In Fig 2.12,
we show that (2.5.10) still leads to a good estimate of the optimized parameters both for
zeroth and second order transmission conditions.

If we increase the parameter r and k̂, then (2.5.10) loses its accuracy. The reasons are
two-fold. On the one hand, the matrices Σi becomes strongly non commutative and their
eigenvectors are significantly different as Fig 2.13 shows. On the other hand, there is no
reason to choose the probing vectors according to (2.5.12). In the case of strong het-
erogeneity or strong asymmetry of the decomposition into subdomains, we suggest to
choose the probing vectors as the eigenvectors of the Steklov-Poincaré operators Σi . To
approximate the eigenvectors associated to the largest eigenvalues, we select some initial
vectors( we can choose for instance x3 of (2.5.12)) and we compute few iterations, e.g. 2 to
3, of the power method applied to the operators Σi . To approximate the eigenvectors as-
sociated to the smallest eigenvalues, we apply the power method to Σ−1

i , which is known
as the Neumann to Dirichlet operator. All these computations require the solution of a
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Figure 2.13: The top panel shows the solution of (2.5.14) with ν(x) = 1, a(x) = (10(y +
x2),0)>, η(x) = 0.1(x2+y2) inΩ1, ν(x) = 100, a(x) = (10(1−x), x)>, η(x) = 0 inΩ2, f (x) = x2+
y2 in Ω, r = 0.4 and k̂ = 8. In the bottom-left panel, the crosses represent the optimized
parameters obtained solving (2.5.10) with probing vectors computed with k iterations of
the power method. The black circle represents the solution of (2.5.10) with the probing
vectors in (2.5.12). The green upward-pointing triangle corresponds to

√
αβ where α =

min{µ1
k ,µ2

k } and β= max{µ1
k ,µ2

k }. On the right, we plot the eigenvectors associated to the
smallest eigenvalues of Σ j , j = 1,2 for this test case.

Dirichlet or Neumann problem, but they can be performed in parallel. Fig. 2.13 shows
that solving (2.5.10) with probing vectors (2.5.12) does not lead to a good estimate of the
optimized parameter s in the case Σ̃i = fi (s)I . Solving (2.5.10) using the approximation of
the eigenvectors of Σi instead leads to a perfect estimate. Let us remark that already with
only one iteration of the power method we obtain a very satisfactory estimate.



CHAPTER3

Multilevel optimized Schwarz

methods

"The third idea to improve the efficiency of Schwarz’s methods is not to use
multigrid as a solver in an overall DD context, but to use the DD idea for smooth-
ing in an overall multigrid context."

— U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Chapter 6.5.1.

We have seen in Figure 1.2 that one-level domain decomposition methods are in general
not weakly scalable, that is, their rate of convergence deteriorates when the number of
subdomains grows. Some exceptions are possible in specific geometries, and we have
discussed examples in Section 1.4. Two-level methods are needed to achieve scalability. A
two-level domain decomposition method consists of two components: a domain decom-
position iteration and a coarse correction which can be either additive or multiplicative.
For several decades, the main goal of the second level was just to make the subdomains
communicate among them to obtain a convergence independent of the possibly large
number of subdomains. An example is the Nicolaides coarse space [61, Chapter 4]. Un-
der this perspective, a coarse grid correction for OSM was first studied numerically in [66],
where the authors proposed to consider a coarse mesh defined by a single mesh point for
each subdomain, see also [34] Variants of this idea were also discussed in [67] where a
convergence analysis is carried out.

However, coarse corrections can do much more than just providing scalability; indeed for
every domain decomposition method there is a coarse correction, called optimal coarse
correction, that makes the domain decomposition method a direct solver, that is the iter-
ation becomes nilpotent [89, 94, 83]. The main idea behind these articles is to identify a
space which contains the optimal coarse correction. This space is called complete coarse
space and then one aims to find the smallest space possible containing the optimal coarse
correction which is denoted as optimal coarse space. Finally, the optimal coarse space,
which is still to large, is approximated leading to a so called optimized coarse space. This
approach shares similarities with the ideal coarse correction in Algebraic Multigrid, see

84
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for instance [152, Section A.2.3] or [148]. In this Chapter, we follow the same path. We
analyze the one-level OSM and we identify in which coarse space lies the optimal coarse
correction. However, computing the optimal coarse correction would be as expensive as
solving directly the original problem. We therefore approximate the optimal coarse space
geometrically, solving on a coarse grid the equation for the optimal coarse correction.
These steps lead to the definition of a two-level optimized Schwarz method.

Our method can also be interpreted in another perspective. Following multigrid litera-
ture, our method can also be thought as a two-level method consisting of a smoother,
the OSM iteration, and a coarse grid solver. Generalizing, we define a multilevel opti-
mized Schwarz methods where on each level we use the OSM as a smoother and we call
it multilevel optimized Schwarz method (MOSM). The idea of using domain decomposi-
tion methods as smoothers inside a multigrid scheme is not new. Some remarks in this
direction are available for instance in Section 15.3.3 of [109], Section 3.4 of [143] and Sec-
tion 6.5 of [152]. There is also a wide literature regarding multilevel domain decomposi-
tion methods which traces back to the 90s and an introduction is available in Chapter 3
of [143]. However, in this research area the authors framed several multilevel precondi-
tioners, into the so-called Schwarz abstract theory, see Chapter 1.2.1, and they provided
condition number estimates for the resulting preconditioned systems in very general set-
tings [159, 14]. In this Chapter, we do not consider condition number estimates but we
focus on the properties of the iterative method, carrying out a Fourier analysis which, al-
though under more restrictive hypotheses, permits to have a complete description of the
method through the derivation of an iteration matrix which acts on the Fourier modes. In
addition, the use of Fourier techniques is motivated by our interest in understanding the
dependence of the multilevel method on the optimized transmission conditions.

We analyze the OSM because it has a very good smoothing property: in case of overlap, it
inherits the smoothing property from the classical Schwarz method which converges ex-
ponentially fast for high frequencies. This property can even be enhanced by an adapted
choice of the transmission conditions in the OSM. However the potentiality of OSM is re-
markable in the case without overlap, essential for heterogeneous problems, in which the
classical Schwarz method simply would not work, while the transmission conditions in
OSM allow us to tune at will the OSM as a smoother or as a rougher. Thus, even though for
homogeneous problems, the classical parallel Schwarz method would do its job, for het-
erogeneous problems only the OSM has the desired properties. Furthermore, we show
that there is no need to develop a complete new theory for the optimized transmission
conditions in a multilevel setting. Indeed we show that one can just choose the optimized
parameters using the already available literature for the one-level OSM by just changing
the range of frequencies in the min-max problems in order to optimize the smoothing
property of OSM. We show that these two approaches are asymptotically equivalent as
h → 0. We also prove mesh independent convergence for the two-level OSM, recovering
the well-known properties of multigrid schemes, see Chapter 2 of [152]. This is a signif-
icant improvement over the one-level Schwarz methods which have a mesh dependent
convergence and therefore their convergence deteriorates as the number of unknowns
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increases [74].

The strength of the approach presented in this chapter lies in its generality and flexibil-
ity. In fact, even though the development of efficient smoothers has reached a certain
maturity in the multigrid literature, see for instance Chapters 5-8 of [152], one may have
to use ad hoc solutions according to the specific equation under study which might be
very sophisticated and difficult to implement. Our approach is instead very general since
the smoother, being a domain decomposition method, does not change according to the
equation and it is straightforward to implement as long as one has a routine for the one-
level domain decomposition method.

This Chapter is based extensively on [99]. In Section 3.1, we present the two-level OSM for
a nonoverlapping decomposition and in Section 3.2 we propose a convergence analysis
based on Fourier expansion. Section 3.3 defines the method for overlapping decomposi-
tions and studies its convergence properties. In Section 3.4, we generalize the two-level
OSM to a multilevel framework, discussing implementation details on how to modify the
residual while moving from one grid to the other to assure we add the right correction on
the fine grid. Numerical results are presented in Section 3.5.

3.1 Two-level OSM for a nonoverlapping decomposition

In this section we introduce the two-level OSM for a nonoverlapping decomposition. We
consider a second order elliptic PDE,

L u = f on Ω, (3.1.1)

in the geometrical setting described at the beginning of Chapter 1.3. Given two initial
guesses u0

1, u0
2, the one-level parallel OSM reads for n ≥ 1,

L un
1 = f in Ω1, ∂x un

1 +pun
1 = ∂x un−1

2 +pun−1
2 on Γ,

L un
2 = f in Ω2, −∂x un

2 +pun
2 =−∂x un−1

1 +pun−1
1 on Γ.

(3.1.2)

If we define two functions on Γ as

r1 :=−∂x un
1 −pun

1 +∂x un
2 +pun

2 and r2 :=−∂x un
1 +pun

1 +∂x un
2 −pun

2 , (3.1.3)

and then we solve the coupled system

L e1 = 0 in Ω1, ∂x e1 +pe1 −∂x e2 −pe2 = r1 on Γ,
L e2 = 0 in Ω2, −∂x e2 +pe2 +∂x e1 −pe1 = r2 on Γ,

(3.1.4)

we have that ũ1 := un
1 +e1 and ũ2 := un

2 +e2 are solutions of problem (3.1.1). Indeed ũ1, ũ2

satisfy the PDE in the interior of the subdomains, and from (3.1.4) we have that ∂x (e1 −
e2) =−∂x (un

1 −un
2 ) and (e1 −e2) =−(un

1 −un
2 ). Thus

∂x ũ1 = ∂x un
1 +∂x e1 = ∂x un

1 −∂x (un
1 −un

2 )+∂x e2 = ∂x un
2 +∂x e2 = ∂x ũn

2 .
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Similarly we have that ũ1 = ũ2 on Γ. Clearly at the continous level we have that e, such
that e|Ω j = e j , lies in the complete infinite dimensional coarse space [94]

A :=
{

v ∈ H 1,disc(Ω) : L (v|Ω j ) = 0, j = 1,2
}

,

with H 1,disc(Ω) := {
v ∈ L2(Ω) : v|Ω j ∈ H 1(Ω j ), j = 1,2

}
. With this observation, it has been

proposed to construct a discrete coarse space Vh ⊂A , a restriction matrix Rc to the coarse
space, and to solve the linear system

(Rc AR>
c )−1Rc e = Rc (f− Aun).

Following this strategy, it is possible to define a complete discrete coarse space Ah which
leads to a direct method. However the complete coarse space is too expensive to use and
therefore it is usually approximated obtaining optimized coarse spaces which are sub-
spaces of Ah , see Refs [94, 83, 89] for an overview.

In this manuscript we define a two-level OSM which, inspired by the multigrid method,
solves equation (3.1.4) on a coarse mesh. Our two-level method can be summarized as
follows: we iterate algorithm (3.1.2) on a fine grid, we define after n1 iterations the func-
tions r1 and r2, we restrict them to a coarse grid where we solve directly system (3.1.4),
we interpolate the corrections e1 and e2 to the fine grid and we add them to the iter-
ates. To analyze the discrete version of this algorithm we set Ω := (−1

2 , 1
2 )× (0,1), Ω1 :=

(−1
2 ,0)×(0,1),Ω2 := (0, 1

2 )×(0,1), with an interface Γ := {0}×[0,1]. We discretize equations
(3.1.2) on a fine mesh with mesh size h := 1

2`
and equations (3.1.4) on a coarser mesh with

mesh size H := 1
2`−1 . Thus the fine mesh has Ny := 2`−1 degrees of freedom in the y di-

rection and Nx := Ny+1
2 in the x direction for each subdomain, while the coarser mesh

has N c
y := Ny+1

2 −1 and N c
x := N c

y+1

2 . Therefore each subdomain has N := Ny Nx degrees of
freedom on the fine mesh and N c := N c

y N c
x on the coarse one. In the following we use the

index ` to indicate which mesh we are considering. In [146] the authors introduced the
augmented system Ã`ũ` = f̃`, which contains the variables at the interface Γ twice, with

Ã` =
(

A1,` −B12,`

−B21,` A2,`

)
∈R2N ,2N ,

where A j ,` ∈RN ,N is the discrete Laplacian in the domainΩ j with Robin boundary condi-

tions onΓ, B j i ,` are interface operators, f̃` = [f1,`, f2,`] is the force vector and ũ` = [u1,`,u2,`] ∈
R2N is the vector of the degrees of freedom on the mesh indexed by `. They showed that
the discrete version of eq. (3.1.2), i.e.

A j ,`un+1
j ,` = f j ,`+

∑
k 6= j

B j k,`un
k,`, j = 1,2,

is equivalent to the algebraic iterative method ORAS, which in the correction form reads

ũn+1
` = S`(Ã`, ũn−1

` , f̃`) := ũn +
2∑

j=1
RT

j ,`A−1
j ,`R j ,`(̃f`− Ã`ũn

` ), (3.1.5)



CHAPTER 3. MULTILEVEL OPTIMIZED SCHWARZ METHODS 88

where R j ,` ∈ RN ,2N are restriction operators on the domain Ω j . We emphasize that the

residual rn
`
= f̃`− Ã`ũn

`
is a vector with zero entries except for the degrees of freedom as-

sociated to the interface, where it represents a discretization of the functions in (3.1.3).
Thus, we construct the restriction operator R` so that it acts as the full weighting restric-
tion operator R1D ∈ RN c

y ,Ny for the points on the interface, and it has zero blocks corre-
sponding to the interior degrees of freedom,

R`r` =


0

R1D

R1D

0




0
r1Γ,`

r2Γ,`

0

=


0

R1D r1Γ,`

R1D r2Γ,`

0

=


0

r1Γ,`−1

r2Γ,`−1

0

= r`−1.

Other possible choices are available: one could replace the zero blocks with 2D full weight-
ing restriction operators R2D , or with straight injection operators. This change would not
affect the method, since they all map a zero function on the fine mesh to a zero function
on the coarse mesh. Therefore the properties of the restriction operators are uniquely de-
fined once we characterized the action of the restriction operator on the interface. This
is an advantage of the two-level OSM, and of a large class of two-level domain decom-
position methods: they do not require to restrict on the whole volume but only on the
interfaces, which are 1-D curves for two dimensional problems, or 2-D surfaces for three
dimensional problems. In Chapter 4 we will further introduce a new framework of two-
level and multilevel domain decomposition methods defined directly on the interfaces.
On the coarse mesh, we solve the restricted residual equation inverting the operator Ã`−1,
which corresponds to a direct discretization of the original problem on the mesh indexed
by `− 1. Finally concerning the interpolation operator, we define I` = diag(I2D,`, I2D,`),
with I2D,` ∈RN ,N c

being the standard linear interpolation operator from the coarse to the
fine grid. Another possible choice is to define I A

`
which interpolates on the interface and

then extends harmonically on the fine grid. With all these ingredients, the algorithm we
have described previously at the continuous level to solve the continous problem (3.1.1)
can be rewritten in the discrete form as

Algorithm 1: Function two-level OSM(Ã`, ũ0
`

, f̃`).

- For n = 1 : n1, ũn
`
← S`(Ã`, ũn−1

`
, f̃`).

- r`← f̃`− Ã`ũn1

`
.

- r`−1 ← R`r`.
- ẽ`−1 ← Ã−1

`−1r`−1.
- ũn1

`
← ũn1

`
+ I`ẽ`−1.

- For n = n1 +1 : n2, ũn
`
← S`(Ã`, ũn−1

`
, f̃`).

- Return ũn2

`
.

Considering the error equation, i.e. f̃` = 0, Algorithm 1 leads to the classical iteration
matrix of a two-level method,

S2LOSM ũ` = Sn2

`

(
I − I` Ã−1

`−1R` Ã`

)
Sn1

`
ũ`, (3.1.6)
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where I ∈ R2N ,2N is the identity matrix and Sn
`

corresponds to n iterations of the itera-
tive method defined in (3.1.5). The convergence properties of the two-level method de-
pend on an effective team play between the smoother and the coarse correction. As in
the multigrid literature, n1 and n2 are mainly chosen heuristically. The stronger is the
smoothing property of the smoother, the smaller n1 and n2 can be. We show in Sections
3.2.2 and 3.3.1 that OSMs are very efficient smoothers, so that common choices for n1

and n2 are 1 or 2. In the numerical experiments section, we set n1 = n2 = 2. We close this
section emphasizing that the exact correction given by ẽ` = Ã−1

`
r` is a discrete harmonic

function (in the PDE sense) in the interior of the subdomains. The coarse correction, be-
ing ẽ`−1 = Ã−1

`−1R`r` is still harmonic on the coarse mesh, but the interpolated correction
I`ẽ`−1 is not harmonic on the fine grid. In other words, the linear interpolator destroys
the harmonicity of the correction and thus we conclude that with the linear interpolator
I` we cannot have a direct method! The interpolator I A

`
should therefore be preferred

since it adds a correction which lies in the complete discrete coarse space. However its
use is more expensive since it requires to solve subdomain problems. In the rest of the
manuscript we will always use the geometric interpolator I` if not explicitly stated other-
wise.

3.2 Convergence analysis for the two-level OSM

Our analysis is based on a semi-discrete study of Algorithm 1. We take into account the
mesh properties in the y direction, while we consider a continuous problem in the x di-
rection. We carry out the calculations supposing that L =−∆, but at the end of the sub-
section we discuss how the analysis adapts to general second order operators. Further-
more we assume n1 and n2 to be even numbers. Accordingly, the error equation of (3.1.1)
can be written as

−∂xx u −∂y y,hu = 0 on Ω j , j = 1,2,

where, using separation of variables, u is semi discrete as well, i.e. u = φ(x)ψ( j h), where
j = 1, . . . , Ny . Inserting this ansatz we obtain the eigenvalue equation in the y direction

−∂y y,hψ( j h) = γ2ψ( j h),

whose solutions are given by ψk ( j h) := sin(kπ j h), j = 1, . . . , Ny , k = 1, . . . , Ny and γ2(k) :=
4

h2 sin2(kπh
2 ). Solving the equation in x we obtain φk (x) = A(k)eλ(k)x +B(k)e−λ(k)x , with

λ(k) =
√
γ2(k). To simplify further the problem we suppose that the domain is unbounded

in the x direction so that the general solution is given by

u1 =
Ny∑

k=1
A(k)ψk eλ(k)x and u2 =

Ny∑
k=1

B(k)ψk e−λ(k)x . (3.2.1)

The initial guesses u0
1 and u0

2 can be written in the general form of eq. (3.2.1) for a proper
choice of A(k) and B(k). After an even number n1 of iterations of the smoother, standard
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calculations, see for instance [74], show that

un1
1 =

Ny∑
k=1

ρ(k, p)n1 A(k)ψk eλ(k)x and un1
2 =

Ny∑
k=1

ρ(k, p)n1 B(k)ψk e−λ(k)x ,

where ρ(k, p) =
(
λ(k)−p
λ(k)+p

)
. If n1 is not even then the role of A(k) and B(k) is flipped, and

the analysis follows the same calculations, but the notation to keep track of both cases
becomes cumbersome. Thus we prefer to assume that n1 is even for the sake of clarity.
Then we compute the residuals r1 and r2 in (3.1.3),

r1 =∑Ny

k=1 g−(k)A(k)ρ(k, p)n1ψk +
∑Ny

k=1 g+(k)B(k)ρ(k, p)n1ψk ,

r2 =∑Ny

k=1 g+(k)A(k)ρ(k, p)n1ψk +
∑Ny

k=1 g−(k)B(k)ρ(k, p)n1ψk ,
(3.2.2)

where g−(k) := −λ(k)− p and g+(k) := −λ(k)+ p. We observe that r1 and r2 are one di-
mensional functions in the variable y, which are sums of eigenfunctions of the discrete
Laplacian. Well known results are available for the action of the full weighted restriction
operator R1D and the linear interpolation operator I1D := 2R>

1D on these functions, see for
instance Chapter 2 of [109]. In particular, defining k̃ := Ny +1−k, we have

R1D (ekψk +ek̃ψk̃ ) = (ek c2
k −ek̃ s2

k )φk , (3.2.3)

where ck := cos(kπh
2 ), sk := sin(kπh

2 ) and φk, j := sin(kπ j H) with k, j ∈ V := {1,2, ..., N c
y }

are the eigenvectors of the 1D discrete Laplacian on the coarse grid. The eigenfunction
ψ Ny +1

2

is actually mapped to zero by the restriction operator, that is R1Dψ Ny +1

2

= 0, and thus

this frequency is not represented on the coarse level. Using these results we obtain

R1D r1 =
N c

y∑
k=1

φk

[
ρ(k)n1

(
g−(k)A(k)+ g+(k)B(k)

)
c2

k −ρ(k̃)n1
(
g−(k̃)A(k̃)+ g+(k̃)B(k̃)

)
s2

k

]
,

R1D r2 =
N c

y∑
k=1

φk

[
ρ(k)n1

(
g+(k)A(k)+ g−(k)B(k)

)
c2

k −ρ(k̃)n1
(
g+(k̃)A(k̃)+ g−(k̃)B(k̃)

)
s2

k

]
,

(3.2.4)

where for the sake of brevity we omitted the dependence of ρ(k, p) on p. On the coarse
mesh the general solution of the semi-discrete Laplace equation is again given by a for-
mula similar to (3.2.1),

e1 =
N c

y∑
k=1

A(k)φk eλc (k)x and e2 =
N c

y∑
k=1

B(k)φk e−λc (k)x , (3.2.5)

where λ2
c (k) := 4

H 2 sin2(kπH
2 ) are the eigenvalues of the 1D Laplacian on the coarse mesh.

Imposing the boundary conditions to solve the residual system (3.1.4), we obtain

(λc (k)+p)Ā(k)+ (λc (k)−p)B̄(k) = R1D r1(k),
(λc (k)−p)Ā(k)+ (λc (k)+p)B̄(k) = R1D r2(k),

(3.2.6)

which leads to

Ā(k) = R1D r1(k)+R1D r2(k)

4λc (k)
+ R1D r1(k)−R1D r2(k)

4p
,

B̄(k) = R1D r1(k)+R1D r2(k)

4λc (k)
+ R1D r2(k)−R1D r1(k)

4p
.
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The last step is to interpolate the correction to the fine grid. Since we deal with a semi-
discrete analysis, we can use the results on the interpolation of the eigenvectors of the
Laplace operator [109]. In particular we have that, ∀k ∈ V , I1Dφk = c2

kψk −s2
kψk̃ . It follows

that
un1

1 + I`e1 = ∑Ny

k=1

(
ρ(k, p)n1 A(k)+d 2

k Ā(k)
)

eλ(k)xψk ,

un1
2 + I`e2 = ∑Ny

k=1

(
ρ(k, p)n1 B(k)+d 2

k B̄(k)
)

e−λ(k)xψk ,

where d 2
k = c2

k if k ≤ N c
y , d 2

k =−s2
k if k ≥ N c

y +2 and d 2
k = 0 if k = N c

y +1. Algebraic calcula-

tions allow us to write a linear relation which maps the coefficients A(k),B(k), A(k̃),B(k̃)
after one step of this two-level method. Denoting with ρ = ρ(k, p), ρ̃ = ρ(k̃, p) and vn

k =(
An(k),B n(k), An(k̃),B n(k̃)

)>
, we obtain

vn
k =Gn2

k D̃kGn1

k vn−1
k ∀k ∈ V , (3.2.7)

where

D̃k :=



(
1− c4

k
2

(
1+ λ(k)

λc (k)

))
c4

k
2

(
1− λ(k)

λc (k)

)
c2

k s2
k

2

(
1+ λ(k̃)

λc (k)

)
c2

k s2
k

2

(
λ(k̃)
λc (k) −1

)
c4

k
2

(
1− λ(k)

λc (k)

) (
1− c4

k
2

(
1+ λ(k)

λc (k)

))
c2

k s2
k

2

(
λ(k̃)
λc (k) −1

)
c2

k s2
k

2

(
1+ λ(k̃)

λc (k)

)
c2

k s2
k

2

(
1+ λ(k)

λc (k)

)
c2

k s2
k

2

(
λ(k)
λc (k) −1

) (
1− s4

k
2

(
1+ λ(k̃)

λc (k)

))
s4

k
2

(
1− λ(k̃)

λc (k)

)
c2

k s2
k

2

(
λ(k)
λc (k) −1

)
c2

k s2
k

2

(
1+ λ(k)

λc (k)

)
s4

k
2

(
1− λ(k̃)

λc (k)

) (
1− s4

k
2

(
1+ λ(k̃)

λc (k)

))

 , (3.2.8)

Gn
k :=


ρ(k)n

ρ(k)n

ρ(k̃)n

ρ(k̃)n

 . (3.2.9)

The smoother is described by the matrix Gn
k while D̃k takes into account the coarse correc-

tion. Denoting with en =
(
vn

1 , ...,vn
N c

y
, A

(
Ny+1

2

)
,B

(
Ny+1

2

))>
, we conclude that en = T en−1,

where

T =



Gn2
1 D̃1Gn1

1
. . .

Gn2

N c
y
D̃N c

y
Gn1

N c
y

ρ
(

Ny+1
2 , p

)n1+n2

ρ
(

Ny+1
2 , p

)n1+n2


. (3.2.10)

Remark 3.2.1 (Extension to more general differential operators). Equation (3.2.10) has
been obtained supposing L = −∆, but it can be readily extended to more general oper-
ators. The necessary hypothesis for the calculations are the assumptions on the geome-
try of the problem, on the use of a uniform mesh along the interface and that ψk ( j h) =
sin(kπ j h), so that we can characterize the action of the restriction and prolongation op-
erators. As long as these assumptions are verified, one can consider a general equation
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(−ν∆+a1∂x u +a2∂y + c)u = 0. If a1 = a2 = 0 and c 6= 0, then equation (3.2.10) is still valid

replacing λ(k) with λ(k) =
√
γ(k)2 + c

ν and using the corresponding convergence factor

[74]. If only a2 = 0, then using the expansions

u1 =
Ny∑

k=1
A(k)ψk eλ+(k)x and u2 =

Ny∑
k=1

B(k)ψk e−λ−(k)x , (3.2.11)

with λ(k)+,− = a1±
√

a2
1+4ν( 4

h2 sin2(kπ h
2 ))+4νc

2ν , and carrying out the same calculations, one can
derive a similar iteration matrix. The case a2 6= 0 cannot be treated in this framework
because it leads to ψk ( j h) 6= sin(kπ j h), see Chapter 2.2.3 for more details on tangential
advection.

3.2.1 Optimization of the semidiscrete nonoverlapping two-level OSM

To optimize the parameter of the two-level method one would have to solve the mini-
mization problem minp ρ(T ), which, T being block diagonal, is equivalent to minimizing

the spectral radii of the matrices Gn2

k D̃kGn1

k and ρ
( N+1

2 , p
)n1+n2 . However the eigenvalues

of the matrices Gn2

k D̃kGn1

k are lengthy expressions. Thus, we look for a sharp upper bound
of ρ(T ). We first prove the following Lemma.

Lemma 3.2.2. Defining Γ(k, p) := 3ρ(k, p)n1+n2 s2
k , we have

ρ(T ) ≤ max
k∈[1,Ny ]

Γ(k, p). (3.2.12)

Proof. We define the matrix T̃ which is obtained from T replacing the blocks Gn2

k D̃kGn1

k
with Dk := D̃kGn1

k Gn2

k = D̃kGn
k , where n := n1 +n2. A classical property of the spectral

radius states that ρ(Gn2

k D̃kGn1

k ) = ρ(D̃kGn1

k Gn2

k ) = ρ(Dk ). Therefore we have ρ(T ) = ρ(T̃ ) ≤
‖T̃ ‖1. We note that due to the diagonal structure of the matrix T̃ ,

‖T̃ ‖1 = max

{
max
k∈V

‖Dk‖1,ρ

(
Ny +1

2
, p

)n}
.

Thus we focus on the term ‖Dk‖1. Using the trigonometric formula sin(2x) = 2sin(x)cos(x),
we obtain

λ(k)

λc (k)
=

2
h sin(kπh

2 )
2
H sin(kπH

2 )
= H sin(kπh

2 )

h sin(kπh)
= 1

cos(kπh
2 )

= 1

ck
> 1, ∀k ∈ V ,

λ(k̃)

λc (k)
=

2
h sin(π2 −kπh

2 )
2
H sin(kπH

2 )
= H cos(kπh

2 )

h sin(kπh)
= 1

sin(kπh
2 )

= 1

sk
> 1, ∀k ∈ V .

Substituting these expressions into (3.2.8), direct calculations yield

‖Dk‖1 = max
{
ρn (

1− c4
k + ck s2

k

)
, ρ̃n (

1− s4
k + c2

k sk
)}

.
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Exchanging the order of the max operations over a finite set we have

max
k∈V

‖Dk‖ = max
k∈V

max
{
ρn (

1− c4
k + ck s2

k

)
, ρ̃n (

1− s4
k + c2

k sk
)}

= max

{
max
k∈V

ρn (
1− c4

k + ck s2
k

)
,max

k∈V
ρ̃n (

1− s4
k + c2

k sk
)}

.

Now we proceed with a change of variable in the second term in the curly brackets. Due to

our hypothesis on the mesh, we have that h = 1
Ny+1 , so thatρ(k̃, p) =

(
2
h sin((Ny+1−k)π h

2 )−p
2
h sin((Ny+1−k)π h

2 )+p

)
=(

2
h ck−p
2
h ck+p

)
, where we used the trigonometric identity sin(π2 −x) = cos(x). Using again this re-

lation and denoting with Z :=
{

Ny+1
2 +1, ..., Ny

}
, we conclude that

max
k∈V

(
2
h ck −p
2
h ck +p

)n (
1− s4

k + c2
k sk

)= max
k∈Z

(
2
h sk −p
2
h sk +p

)n (
1− c4

k + s2
k ck

)
= max

k∈Z

(
ρ(k, p)n (

1− c4
k + s2

k ck
))

.

Thus we obtain the equality,

‖T̃ ‖1 = max

{
max

k∈V ∪Z

(
ρ(k, p)n (

1− c4
k + s2

k ck
))

,ρ

(
N +1

2
, p

)n}
.

Now we relax the discrete constraint and we consider the continuous frequencies k ∈
[1,

Ny+1
2 )∪ (

Ny+1
2 , Ny ]. Clearly it holds that

max

{
max

k∈V ∪Z

(
ρ(k, p)n (

1− c4
k + sk c2

k

))
,ρ

(
Ny +1

2
, p

)n}
≤

max

{
max

k∈[1,
Ny +1

2 )∪(
Ny +1

2 ,Ny ]

(
ρ(k, p)n (

1− c4
k + sk c2

k

))
,ρ

(
Ny +1

2
, p

)n
}

.

We now use the key observation that

lim
k→ Ny +1

2

ρ(k, p)n (
1− c4

k + s2
k ck

)= ρ (
Ny +1

2
, p

)n
(

1−
(p

2

2

)4

+
(p

2

2

)3)
(3.2.13)

> ρ
(

Ny +1

2
, p

)n

, (3.2.14)

and hence we can bound ‖T̃ ‖1 as

‖T̃ ‖1 ≤ max
k∈[1,Ny ]

ρ(k, p)n (
1− c4

k + s2
k ck

)
.

To simply further the right hand side of this inequality we use the relation

(1− c4
k + s2

k ck ) = s2
k (1+ c2

k + ck ) ≤ s2
k (3− s2

k ) ≤ s2
k 3, ∀k ∈ [1, Ny ],

and defining Γ(k, p) := 3ρ(k, p)n s2
k we obtain the desired bound.
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We now consider the problem min
p

‖T̃ ‖1. From now on we restrict our analysis to the case

n1 +n2 = 2 and due to Lemma 3.2.2, we study the simpler problem min
p

max
k∈[0,Ny ]

Γ(k, p),

where we expanded the range of frequencies to k ∈ [0, Ny ].

Theorem 3.2.3. Assuming that n1 +n2 = 2, the solution of the min-max problem

min
p

max
k∈[0,Ny ]

Γ(k, p) (3.2.15)

is given by

p∗ = (2
p

6+2
p

3−2
p

2−4)sin( 1
2 hNyπ)

h
, (3.2.16)

which is the unique root of the non linear equation

Γ(k̃, p) = Γ(Ny , p),

where k̃ is the unique interior maximum of Γ(k, p) in the interval k ∈ [0, Ny ].

Proof. First we observe that Γ(k, p) ≥ 0, ∀k, p and Γ(k, p) = 0 if and only if k = 2arcsin( hp
2 )

hπ
or k = 0. Second, we compute the derivative of Γ(k, p) with respect to p,

sign

(
∂Γ(k, p)

∂p

)
= sign(hp −2sk ).

Therefore, at the optimum, p must lie inside the interval [0, 2
h sNy ]. We then look for the

maximum with respect to k. We have that ∂Γ(k,p)
∂k = 0 if and only if k1 = 2arcsin( hp

2 )
hπ which

therefore is a minimum and zero, and for k2 = 0, k3 = 1
h and k̃ = 2arcsin( 1

2 (
p

2−1)ph)
πh < k1.

We can conclude that the function for p ∈ [0,
2sNy

h ] starts from zero at k = 0, it increases

until it reaches an interior maximum at k̃, then it decreases until the zero k1 and then it
is strictly increasing until k3. We observe that k3 = 1

h > Ny , therefore the function has two

local maxima, one located at k̃ and the other one at k = Ny . Moreover varying p ∈ [0, sNy ],

the zero k1(p) is mapped into the interval [0, Ny ]. Suppose now that Γ(k̃, p) > Γ(Ny , p), the
other case is treated similarly. Since sign(∂pΓ) = sign(k1 −k), we have ∂pΓ(k̃, p) > 0 and
∂pΓ(Ny , p) < 0, therefore increasing p decreases the maximum of Γ(k, p) until Γ(k̃, p∗) =
Γ(Ny , p∗). This is the optimal solution since varying the parameter p would increase the
value of Γ either at k = k̃ or k = Ny . The uniqueness follows from the strict monotonicity.
Finally, solving the equation Γ(k̃, p∗) = Γ(Ny , p∗) we get the expression for p∗.

Theorem 3.2.4 (Mesh independent convergence). Assuming that n1 +n2 = 2 and choos-
ing p as in Theorem 3.2.3, the spectral radius of the two-level OSM iteration matrix T is
bounded below 1 uniformly with respect to h,

ρ(T (p∗)) ≤C < 1 as h → 0, with C = 0.0520. (3.2.17)
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Proof. Based on Lemma 3.2.2, we have

ρ(T (p)) ≤ ‖T (p)‖1 ≤ max
k∈[0,Ny ]

Γ(k, p).

Taking the minimum with respect to p, the inequality still holds, thus

min
p
ρ(T (p)) ≤ min

p
max

k∈[0,Ny ]
Γ(k, p).

We denote with p∗ the solution of the min-max problem studied in Theorem 3.2.3. Clearly
there is no reason why p∗ would still be the solution of the min-max problem minp ρ(T (p)).
Nevertheless we have that

min
p
ρ(T (p)) ≤ ρ(T (p∗)) ≤ Γ(Ny , p∗) = min

p
max

k
Γ(k, p).

Substituting the expression of p∗ we get that

Γ(Ny , p∗) =
3(
p

2+3−p
6−p

3)2 sin
(

hNyπ

2

)2

(
p

2+1−p
6−p

3)2
.

We now observe that Γ(Ny , p∗) is a strictly decreasing function of h, therefore it has its
maximum for h → 0. Computing the limit lim

h→0
Γ(Ny , p∗) = 0.0520 =: C . Hence we con-

clude that minp ρ(T (p)) ≤ ρ(T (p∗)) ≤C < 1, as h → 0.

Remark 3.2.5. The asymptotic performance of the one-level OSM has been the subject of
intensive study. For straight interfaces, in [74] it has been shown that for zero order trans-
mission conditions the spectral radius is bounded from above by 1−O(h

1
2 ) in a nonover-

lapping decomposition and by 1−O(h
1
3 ) in the overlapping case with overlap proportional

to the mesh size. See also [130] for a generalization to arbitrary interfaces. For second or-
der transmission conditions [74], we have respectively 1−O(h

1
4 ) and 1−O(h

1
5 ). Theorem

3.2.4 shows that the two-level OSM gains the same property of the multigrid scheme with
a convergence independent of the mesh size because of the presence of the coarse cor-
rection. We emphasize that the same conclusion holds if one uses the classical parallel
Schwarz method instead of OSM as smoother.

3.2.2 How to choose the optimized parameter in the nonoverlapping case

As we emphasized in the proof of Theorem 3.2.4, in general p∗ is not a solution of the
minimization problem minp ρ(T (p)). Thus we study numerically the behaviour of the
spectral radius and of the other bounds as functions of p. On the left of Figure 3.1, we plot
the behaviour of different quantities as p varies. From the right panel, we observe that
the solutions of none of the min-max problems involving the different bounds or even
ρ(T (p)) provides an optimized convergence. The reasons of this discrepancy lie in the
several simplifications used in the literature for the derivation of the convergence factors
for the one-level OSMs which is mainly based on a continuous analysis. It therefore ne-
glects the computation of the discrete derivative and it approximates the eigenvalues of
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Figure 3.1: On the left comparison between the spectral radius of S2LOSM and T and var-
ious upper bounds. On the right, number of iterations required to reach convergence
as function of p and comparison between the predicted p obtained by solving different
min-max problems involving the quantities presented in the left panel. The fine mesh
corresponds to `= 6.
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Figure 3.2: The continous line corresponds to the numerical convergence factor, the
dashed line corresponds to ρ2

c (k, p) and the dash-dotted line to ρ2(k, p).

the discrete Laplacian with the ones of the continuous Laplacian1. In our analysis, we in-
deed take into account the eigenvalues of the discrete Laplacian, but we did not include
the discrete derivative. We show that our small theoretical improvement actually worsens
the approximation of the numerical convergence factor in the high frequencies regime. In
Figure 3.2, we plot, for a fixed p, the numerical convergence factor, ρ2(k, p) and also the

continuous analogue of ρ2(k, p), i.e. ρ2
c (k, p) =

(
πk−p
πk+p

)2
, which involves the continuous

eigenvalues of the Laplace operator in 1D. It is evident that actually ρ2
c (k, p) is a better ap-

proximation of the numerical convergence factor. On the other hand, ρ2(k, p) is wrongly
faster for high frequencies and that is why our estimates for p are constantly lower than

1We remind that usually the unbounded hypothesis is also made, but it has no significant impact in this
case.
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the optimal ones.

Guided by these observations we now consider an analysis which is less precise from the
theoretical point of view than the one proposed in Section 3.1, but that will provide a
better approximation of the optimal parameter p. We carry out a complete continuous
analysis by replacing the expansions (3.2.1) with

u1 =
Ny∑

k=1
A(k)ψk eπkx and u2 =

Ny∑
k=1

B(k)ψk e−πkx . (3.2.18)

We insert this anstanz into the iterative method and when dealing with the restriction and
prolongation operators we assume2 that the same results as in the discrete case hold, see
for instance eq (3.2.3). Repeating the same calculations we obtain the recurrence relation
vn

k = D̃c
k vn−1

k similar to (3.2.8) where

D̃c
k :=



(
1−c4

k

)
0

c2
k s2

k
2

(
1+ k̃

k

) c2
k s2

k
2

(
k̃
k −1

)
0

(
1−c4

k

) c2
k s2

k
2

(
k̃
k −1

) c2
k s2

k
2

(
1+ k̃

k

)
c2

k s2
k 0 1− s4

k

(
1+ k̃

k

)
2

s4
k

(
1− k̃

k

)
2

0 c2
k s2

k

s4
k

(
1− k̃

k

)
2 1− s4

k

(
1+ k̃

k

)
2


. (3.2.19)

Defining Gc,n
k = diag(ρn

c (k, p),ρn
c (k, p),ρn

c (k̃, p),ρn
c (k̃, p)), Dk := D̃c

kGc,n1

k and recalling en :=(
vn

1 , ...,vn
Nc

, A
( N+1

2

)
,B

( N+1
2

))
, we conclude that en = T en−1, where

T =



D1

D2
. . .

DN c
y

ρn
c

(
Ny+1

2 , p
)

ρn
c

(
Ny+1

2 , p
)


.

Lemma 3.2.6. Defining Γ(k, p) := 3ρn
c (k, p)s2

k , we have

ρ(T ) ≤ ‖T ‖1 ≤ max
k∈[1,Ny ]

Γ(k, p).

Proof. The proof follows the step of the proof of Lemma 3.2.2. Direct calculations show
that

‖T ‖1 = max

{
max
k∈V

ρn
c (k, p)s2

k (1+2c2
k ),max

k∈V
ρn

c (k̃, p)c2
k

(
1+ s2

k

N y +1

k

)
,ρn

c

(
Ny +1

2
, p

)}
.

2It is a slight abuse of notation since under our hypothesis on the mesh, the eigenvectors of the discrete
Laplacian correspond to the discretization on the mesh points of the eigenvectors of the continuous Lapla-
cian.
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Studying the second term in the brackets we conclude that 1+ s2
k

N y+1
k ≤ 2 for k ∈ V , so

that we can consider the upper bound

‖T ‖1 ≤ max

{
max
k∈V

3ρn
c (k, p)s2

k ,max
k∈V

3ρn
c (k̃, p)c2

k ,ρn
c

(
Ny +1

2
, p

)}
.

Similarly to Lemma 3.2.2, we introduce the set Z :=
{

N y+1
2 +1, . . . , N y

}
, so that ‖T ‖1 ≤

max
{

maxk∈V ∪Z 3ρn
c (k, p)s2

k ,ρn
c

(
Ny+1

2 , p
)}

.

Finally observing that 3ρn
c ( N y+1

2 , p)s2
N y+1

2

≥ ρn
c

(
Ny+1

2 , p
)

and considering a continous set

of frequencies k ∈ [1, Ny ], we get the desired bound.

We are ready to prove the following theorem.

Theorem 3.2.7. Assuming n = 2, the solution of the min-max problem

min
p

max
k∈[0,Ny ]

Γ(k, p) (3.2.20)

is given by p which is the unique solution of the nonlinear equation

Γ(k̂, p) = Γ(N , p), (3.2.21)

where k̂ is the unique interior maximum of Γ(k, p).

Proof. The function has two zeros, one located at k = 0, the other at k = p
π . Analyzing the

sign of the derivative with respect to p we obtain that

sign

(
∂Γ

∂k

)
= sign(p −kπ),

and we conclude that at the optimum p ∈ [0, Nyπ]. The derivative with respect to k is
given by

∂Γ

∂k
= 3

(
πk −p

)
sin

(
1
2 hkπ

)
π

(
cos

(
1
2 hkπ

)
hk2π2 −cos

(
1
2 hkπ

)
hp2 +4 sin

(
1
2 hkπ

)
p

)
(
πk +p

)3
.

Therefore the stationary points are located at k = 0, k = p
π , k = 1

h , which is actually outside

the interval [0, Ny ] and at k = k̂, which is the unique root of the equation cos
(1

2 hkπ
)

hk2π2−
cos

(1
2 hkπ

)
hp2+4 sin

(1
2 hkπ

)= 0. Indeed dividing by cos
(1

2 hkπ
) 6= 0, ∀k ∈ [0, Ny ], we get

the equation

hk2π−hp2 +4tan

(
1

2
πhk

)
p = 0,

which is a strictly increasing function of k which for k = 0 is negative and for k = Ny is pos-
itive. Moreover we have that k̂ ≤ p

π . The function therefore has the following behaviour:
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Figure 3.3: On the left comparison between the spectral radius of S2LOSM and of T and
various upper bounds. On the right, number of iterations required to reach convergence
for different values of p obtained by solving different min-max problems involving the
quantities presented in the left panel. We also add a magenta triangle which represents
the solution of minp max

k∈[
Ny +1

2 ,Ny ]
ρ2

c (k, p).

it starts from 0 at k = 0 and it is strictly increasing until it reaches its local maximum at
k = k̂. Then it decreases and it reaches zero at k = p

π and eventually it increases until the
local maximum located on the boundary at k = Ny . Using the classical arguments of The-
orem 3.2.3 we conclude that the solution is indeed given by equioscillation between the
two local maxima.

In conclusion we show in Figure 3.3 a comparison of the different optimized parame-
ters that can be obtained minimizing the spectral radius, the 1-norm or the upper bound
Γ(k, p). We see that the unique solution of equation (3.2.21) leads to an optimized con-
vergence.

Remark 3.2.8. In a one-level setting, one chooses the optimized parameter solving the
min-max problem

min
p

max
[1,Ny ]

ρ2
c (k, p). (3.2.22)

In the case without overlap, the parameter p solution of (3.2.22) does not lead to a smoother,
since it tries to balance the convergence factor for low and high frequencies. However,
similarly to the Jacobi smoother in a multigrid setting [109], one can choose p such that
the OSM eliminates the high frequencies, see Figure 3.4, while the low ones are corrected
on the coarse mesh. One obvious choice would then be to solve the min-max problem

min
p

max
k∈[

Ny +1

2 ,Ny ]
ρ2

c (k, p). (3.2.23)

Figure 3.3 shows that this heuristic idea indeed leads to an excellent optimized parameter
so that, instead of the min-max problems involving the new quantites Γ,Γ, one could
just use the same min-max solution involving the one-level convergence factor ρc (k, p)
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Figure 3.4: Comparison of the smoothing property among the Jacobi method with damp-
ing parameter w = 2

3 , the OSM tuned as a solver, and the OSM tuned as a smoother.

by changing the interval for the variable k. The analytical solution of (3.2.23) is given

by p∗ =
√

Ny+1
2 Ny ≈ C h−1 as h → 0, so that the asymptotic behaviour of the optimized

parameter obtained from (3.2.23) and (3.2.16) is the same.

3.3 Two-level OSM analysis for an overlapping decomposition

In this section, we present an analogous analysis for the overlapping two-level OSM. Given
two initial guesses u0

1, u0
2 and an overlapping decomposition of Ω into Ω1, Ω2 with Γ j :=

∂Ω j \∂Ω, j = 1,2, the one-level parallel overlapping OSM reads for n ≥ 1

L un
1 = f in Ω1, ∂x un

1 +pun
1 = ∂x un−1

2 +pun−1
2 on Γ1,

L un
2 = f in Ω2, −∂x un

2 +pun
2 =−∂x un−1

1 +pun−1
1 on Γ2.

(3.3.1)

Defining two functions on the interfaces as

r1 :=−∂x un
1 −pun

1 +∂x un
2 +pun

2 on Γ1 and r2 :=−∂x un
1 +pun

1 +∂x un
2 −pun

2 on Γ2,
(3.3.2)

and then solving

L e1 = 0 in Ω1, ∂x e1 +pe1 −∂x e2 −pe2 = r1 on Γ1,
L e2 = 0 in Ω2, −∂x e2 +pe2 +∂x e1 −pe1 = r2 on Γ2,

(3.3.3)

we have that ũ1 := un
1 + e1 and ũ2 := un

2 + e2 are solution of problem (3.1.1) in the sense
that ũ1 = u|Ω1 and ũ2 = u|Ω2 .

To analyze the method, we suppose that the two subdomains are Ω1 = (−1
2 , a)× (0,1) and

Ω2 = (−a, 1
2 )× (0,1), with two interfaces Γ1 = [a]× [0,1] and Γ2 = [−a]× [0,1]. Inserting the

expansions (3.2.18) into the residual definition (3.3.2) we get

r1 =
Ny∑

k=1
g−(k)A(k)ρn1

o (k, p)ψk ekπa +
Ny∑

k=1
g+(k)B(k)ρn1

o (k, p)ψk e−kπa on Γ1,

r2 =
Ny∑

k=1
g+(k)A(k)ρn1

o (k, p)ψk e−kπa +
Ny∑

k=1
g−(k)B(k)ρn1

o (k, p)ψk ekπa on Γ2,

(3.3.4)
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where ρo(k, p) :=
(
πk−p
πk+p

)
e−2aπk , see [74] for a derivation. Solving the corresponding ver-

sion of eq (3.2.6), we obtain

A(k) = R1D r1(k)+R1D r2(k)
2F (k) + R1D r1(k)−R1D r2(k)

2G(k) ,

B(k) = R1D r1(k)+R1D r2(k)
2F (k) + R1D r2(k)−R1D r1(k)

2G(k) ,

where F (k) := 2kπcosh(πka)+2p sinh(πka), G(k) := 2kπsinh(πka)+2p cosh(πka). Then
computing the updated approximations un1

1 + Ie1 and un1
2 + Ie2 we obtain that the vector

vn
k = (

An(k),B n(k), An(k̃),B n(k̃)
)t

satisfies the recurrence relation vn
k = D̃O

k vn−1
k , with

D̃O
k :=



ρ
n1
o

(
1−c4

k

)
0

ρ̃
n1
o c2

k s2
k

2

(
F̃
F + G̃

G

)
ρ̃

n1
o c2

k s2
k

2

(
F̃
F − G̃

G

)
0 ρ

n1
o

(
1−c4

k

) ρ̃
n1
o c2

k s2
k

2

(
F̃
F − G̃

G

)
ρ̃

n1
o c2

k s2
k

2

(
F̃
F + G̃

G

)
ρ

n1
o c2

k s2
k 0 ρ̃

n1
o − ρ̃

n1
o s4

k

(
F̃
F + G̃

G

)
2

ρ̃
n1
o s4

k

(
F̃
F − G̃

G

)
2

0 ρ
n1
o c2

k s2
k

ρ̃
n1
o s4

k

(
F̃
F − G̃

G

)
2 ρ̃

n1
o − ρ̃

n1
o 2s4

k

(
F̃
F + G̃

G

)
2

 , (3.3.5)

where F := F (k, p), F̃ := F (k̃, p) and similarly for G and G̃ .

Remark 3.3.1. We note that the same calculations can be adapted to obtain an iteration
matrix for a two-level method which uses the parallel Schwarz method as a smoother. We
need to replace Equation (3.3.1) with the classical parallel Schwarz method, the residuals
are r1 = −un

1 +un
2 = −r2 and in the residual problem (3.3.3) we impose e1 − e2 = r1 on Γ1

and e2 − e1 = r2 on Γ2. Finally, we use the properties of the interpolation and restriction
operators and the convergence factor ρPSM (k) := e−2aπk .

Computing the 1-norm of D̃O
k is delicate because the sign of the terms F̃

F − G̃
G depends

on p, and therefore many possible cases arise. Therefore assuming n1 = 2, we look for a
proxy quantity to analyze, and inspired by Section 3.2 we define Γover (k, p) := 3skρ

2
o . We

consider the problem analogous to (3.2.20) for the overlapping case.

Theorem 3.3.2. The solution of the min-max problem

min
p

max
k∈[0,+∞]

Γover (k, p) (3.3.6)

is given by p which is the unique solution of the nonlinear equation

Γover (k̂, p) = Γover (k̃, p),

where k̂ and k̃ are the interior maxima of Γover (k, p) for k ∈ [0,∞].

Proof. We first observe that Γover (k, p) ≥ 0,∀k, p and Γover (k, p) = 0 if and only if k = 0 or
k = p

π . The sign of the derivative of Γover with respect to p is

sign

(
∂Γover (k, p)

∂p

)
= sign(p −kπ),
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therefore we conclude that at the optimum p ≥ 0. The zeros of the derivative with respect
to k are located at k = 0,k = p

π and at the only two zeros k̃, k̂ of the non linear equation

tan

(
hkπ

2

)
= hπ(p2 −k2π2)

4pπ+2δp2 −2δk2π2 . (3.3.7)

Indeed g (k) := tan
(

hkπ
2

)
is a strictly increasing function in k, which is equal to zero for k =

0 and goes to infinity as k →+∞. The function l (k, p,δ) := hπ(p2−k2π2)
4pπ+2δp2−2δk2π2 is positive for

k = 0, it is stricly decreasing for every k and equal to zero at k = p
π . Therefore there exists

a k̂ in [0, p
π ] solution of (3.3.7). On the other hand l (k, p,δ) has a vertical asymptote at

k1 =
p
δp(δp+2π)

δπ > p
π and we have lim

k→k+
1

l (k, p,δ) =+∞ and lim
k→+∞

l (k, p,δ) = πh
2δ . Therefore

we conclude that there exists a k̃ > p
π solution of (3.3.7). Γover (k, p) has therefore two local

maxima k̂ ≤ p
π ≤ k̃, and repeating the final argument of Theorem 3.2.3 we obtain that the

solution of (3.3.6) is given by equioscillation.

3.3.1 How to choose the optimized parameter in the overlapping case

The nonoverlapping OSM is not a natural smoother and therefore the tuning of the trans-
mission conditions is essential to have an efficient two-level method. In constrast, the
overlapping OSM is a perfect smoother since it is exponentially fast for high frequencies
and thus we expect the tuning to be less important. Nevertheless, we want to study how
close the solution of the optimization problem (3.3.6) involving Γover (k, p) is to the solu-
tion of minp ρ(S2LOSM ). On the left panel of Figure 3.5 we plot the behavior of the itera-
tion matrix (3.1.6) and of Γover (k, p) as function of p. We denote with S2LOSM the iteration
matrix where we use the linear interpolator I` and with S A

2LOSM the one which uses I A
`

.
Concerning the choice of the optimized parameter, we deduce from Figure 3.5 that if we
use the harmonic extension operator, then Theorem 3.3.6 provides a perfect choice for
the optimized parameter. However, we observe that there is a significant difference in
the spectral properties of S2LOSM and S A

2LOSM . The explanation for this behavior lies in
the different choice of the interpolation operator: if we use the linear interpolator I`, the
corrections which we add to the iterates are not harmonic anymore. Hence, we cannot
assume that the expansions (3.2.18) hold in the interior of the subdomains and especially
on Γ j , j = 1,2, where the smoother S` acts. In Fig. 3.6 we plot the first eigenvector of
the iteration matrices S2LOSM and S A

2LOSM in the overlapping case. We can clearly observe
that the eigenvector of S2LOSM does not behave as an exponential along the x direction,
as required by expansion (3.2.18).

On the right panel of Fig. 3.5, we plot the spectral radius of S2LOSM and S A
2LOSM in the

nonoverlapping case where the discrepancy is negligible, the minp S2LOSM being attained
at p ≈ 124 and minp S A

2LOSM at p ≈ 118. Hence, in the nonoverlapping case the use of I` or
of I A

`
does not influence the method significantly. We remark that using I`, the correction

we add is not harmonic on the fine grid, but the nonoverlapping smoother takes values
next to the interface and thus is less affected by the non harmonicity inside the domain.
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Figure 3.5: On the left, we plot the behavior of S2LOSM , S A
2LOSM , ρ(T ) and maxk Γover (k, p)

with respect to p. We remark that S2LOSM does not behave as our analysis predicts. On
the right we plot S2LOSM , S A

2LOSM in the nonoverlapping case in which the discrepancy is
negligible. The fine mesh corresponds to `= 6.

Figure 3.6: First eigenvector of S2LOSM on the left and of S A
2LOSM on the right.

3.4 Multilevel generalization

In this section we generalize the two-level Algorithm 1 to a multilevel setting. As empha-
sized in the multigrid literature [109, 152], the coarse problem Ã`−1ẽ`−1 = R`rn1

`
, may still

be too large and therefore one could use recursively a two-level method to solve it. How-
ever in the nonoverlapping case, the smoothing property of the OSM depends strongly on
the transmission conditions and therefore, moving from one grid to another, they need
to be tuned according to the new mesh and this implies also that the residuals must be
properly modified.

Suppose that at the continuous level we do some smoothing steps of the double-sided
OSM, see [74], with free parameters p and q . According to equation (3.1.3), the residual
will be zero inside the domain and on the interface Γ we have the two functions

r1 :=−∂x un
1 −pun

1 +∂x un
2 +pun

2 and r2 :=−∂x un
1 +qun

1 +∂x un
2 −qun

2 . (3.4.1)
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Suppose now that we want to change the parameters in the transmission conditions to a
new couple (pc , qc ). We are thus interested in the system

L e1,c = 0 in Ω1, ∂x e1 +pc e1 −∂x e2 −pc e2 = r1,c on Γ,
L e1,2 = 0 in Ω2, −∂x e2 +qc e2 +∂x e1 −qc e1 = r2,c on Γ,

(3.4.2)

for some choice of r1,c and r2,c . We would like to choose r1,c and r2,c such that the solu-
tions of (3.4.2) and of (3.1.4) are identical. In this way the discrete solution of (3.4.2) with
new parameters pc , qc on a coarse mesh would lead to a good coarse correction.

Therefore we look at the expression of r1,c and r2,c such that e1,c = e1 and e2,c = e2. We
observe that the transmission conditions in (3.4.1) with the two parameters p and q imply

(e1 −e2) = r1 − r2

p +q
, (∂x e1 −∂x e2) = qr1 +pr2

p +q
.

Thus r1,c and r2,c should be such that

e1,c −e2,c =
r1,c − r2,c

pc +qc
= r1 − r2

p +q
= e1 −e2, (3.4.3)

∂x e1,c −∂x e2,c =
pc r2,c +qc r1,c

pc +qc
= pr2 +qr1

p +q
= ∂x e1 −∂x e2,

so that e j ,c ≡ e j , j = 1,2 since they satisfy the same PDE in the interior of the subdomains
and the same boundary conditions on the interface. Direct calculations from (3.4.3) lead
to

r1,c := r2,c + pc +qc

p +q
(r1 − r2), r2,c := r1

q −qc

p +q
+ r2

p +qc

p +q
. (3.4.4)

Moving to a discrete setting, we define r` as the residual on the fine grid computed with
parameters p`, q` and with rl ,c the modified residual where the role of pc and qc in eq
(3.4.4) is now played by p`−1, q`−1, i.e. the smoothing parameters we want to use on the
coarse grid. We call G the operator which takes r` and returns the modified residual ac-
cording to eq (3.4.4), i.e rl ,c = G (rl , pl , ql , pl−1, ql−1). Thanks to these observations, the
multilevel optimized Schwarz method to solve the linear system Ãlmax ũlmax = flmax con-
sists in multiple calls of the MOSM function described by Algoritm 2 until convergence is
reached. In the overlapping case, the smoothing property of the OSM is guaranteed by the
overlap and so there is no need to tune the parameters p` and q` on each mesh. We can
always use the parameters solution of (3.3.6) without losing in efficiency. Therefore, in the
overlapping case, we just consider G as the identity operator. According to the value of γ
in Algorithm 2 we obtain a V-cycle (γ= 1) or W-cycle (γ= 2). In the numerical section we
consider only the V-cycle, since the W-cycle shows a similar behaviour.

3.5 Numerical results

Every experiment starts with a random initial guess with values between -1 and 1, and
the right hand side is equal to f = 1. We use the acronyms OSMo(p) and OSM(p) to indi-
cate a one-level OSM with a single sided optimized parameter p with and without overlap.
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Algorithm 2: Function MOSM(Ã`, ũ0
`

, f̃`)

- If `= `mi n , then return ũ`min ← Ã−1
`min

f`min .

- For n = 1 : n1, ũn
`
← S`(Ã`, ũn−1

`
, f̃`).

- rl ,c ←G (̃f`− Ã`ũn1

`
, p`, q`, p`−1, q`−1).

- Set ẽ`−1 = 0.
- Call γ times ẽl−1 ← MOSM(Ã`−1, ẽl−1,Rl rl ,c ).
- ũn1

`
← ũn1

`
+ I`ẽl−1.

- For n = n1 +1 : n2, ũn
`
← S`(Ã`, ũn−1

`
, f̃`).

- Return ũn2

`
.

OSMV(p,q) indicates a V-cycle OSM with two optimized parameters p, q . The optimized
parameters are obtained by maximizing the smoothing property of the OSM scheme ac-
cording to the Remark 3.2.8. MGV stands for a multigrid V-cycle with a Jacobi smoother
with damping parameter w = 2

3 . The number of pre- and post-smoothing steps is set
equal to n1 = n2 = 2 on each level, except on the coarsest one where the linear system
is solved directly, for all the multilevel schemes, i.e. for MGV, OSMV(p), OSMV(p,q) and
OSMoV(p). For each equation we compute the exact solution ũexact solving directly the
augmented system and we present a table containing the number of iterations required
to reach a relative tolerance of Tol := 10−6, i.e.

‖ũn
l − ũexact‖∞
‖ũexact‖∞

≤ Tol.

3.5.1 Elliptic problems and scalability

We first consider the discrete setting described in Sections 3.1 and 3.3.1 with overlap fixed
to a = 0.0625. We study the diffusion equation

−∇·ν(x, y)∇u = f in Ω, u = 0 on ∂Ω, (3.5.1)

where ν(x, y) = ν1 in Ω1 and ν(x, y) = ν2 in Ω2. We define the ratio λ= ν1
ν2

as a measure of
the heterogeneity. If heterogeneity is present, we do not consider overlapping methods.
The coarsest grid corresponds to ` = 3 and the finest to ` = 9, leading respectively to 56
and 261632 degrees of freedom. Table 3.1 shows the number of iterations to reach the tol-
erance for the different methods. For the homogeneous case, i.e. λ= 1, the V-cycle OSM
is faster than both the one-level OSM and the multigrid method in terms of iterations
counts. In presence of heterogeneity, multigrid performance remains similar, while all
the methods based on optimized Schwarz methods, both one-level and multilevel vari-
ants, become faster. This is in accordance with the discussion in Chapter 2. However
to have faster convergence, OSMs do require the jump in the diffusion coefficient to be
aligned along the interfaces between the subdomains and to proper rescale the transmis-
sion conditions according the diffusivity constants of the adjacent subdomains. If this is
not the case, OSMs could even diverge. Therefore the method is not robust with respect
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λ OSM(p) OSM(p,q) OSMo(p) OSMV(p) OSMV(p,q) OSMoV(p) MGV

1 164 57 13 4 4 2 11
105 6 5 - 1 1 - 11

# Levels OSMV(p) OSMV(p,q) OSMoV(p)

2 4 4 2
4 4 4 2
6 4 4 2

Table 3.1: Top table: number of iterations to reach the tolerance for a diffusion problem
for the V-cycle OSMs and the multigrid scheme with a point Jacobi smoother. Bottom
table: number of iterations to reach convergence as the number of levels increases in the
multilevel methods for λ= 1.

ε OSMV(p) MGV MGV-Line Jacobi

10−1 4 59 6
10−3 5 4769 6

Table 3.2: Number of iterations to reach the tolerance for the anisotropic Laplace equation
for the V-cycle OSM, the multigrid scheme with a point Jacobi smoother and with a Line
Jacobi smoother.

to arbitrary decompositions into subdomains in case of jumping diffusion coefficients.
Some recent developments considering discontinuities across the interfaces are available
in [108].

We then study the robustness of the methods with respect to the number of levels. We fix
the finest grid to `= 9 and Table 3.1 shows that the number of iterations remains constant
as the number of levels increases.

We then consider the anisotropic version of (3.5.1) where ν(x, y) = diag(ε,1). If ε is small,
then we have a higher diffusivity in the y direction than in the x direction and multigrid
performance deteriorates due to the inefficiency of classical smoothers, see Chapter 5 of
[152]. Table 3.2 shows that the OSMV(p) does not suffer the anisotropy while multigrid
becomes inefficient. A Jacobi line smoother fixes multigrid but it also makes each iter-
ation much more expensive as it requires to solve Nx tridiagonal systems of dimension
Ny × Ny , where Nx and Ny are the number of unknowns in the x and y direction. For
three dimensional problems one needs to perform plane relaxations which could be very
complicated to implement in complex geometries [148]. The OSM smoother solves in-
stead two (or several for a many subdomains decomposition) larger sparse subdomain
problems. Depending on the implementation and architecture, these two costs can be
comparable.
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ν a1 a2 OSM(p) OSM(p,q) OSMV(p) OSMV(p,q) MGV

1 1 1 166 57 5 4 15
1 20 1 99 44 8 7 16
1 20 20 101 48 7 6 18

Table 3.3: Number of iterations to reach the tolerance for the advection-diffusion equa-
tion in different physical regimes.

Next we solve the advection diffusion equation

−ν∆u +a ·∇u = f in Ω, u = 0 on ∂Ω,

where ν ∈ R and a = (a1, a2)> ∈ R2. We refer to [95] for the analysis of the one-level OSM
for advection-diffusion PDEs in bounded domains. The coarsest mesh is ` = 5, equiv-
alent to 992 degrees of freedom, so that on the coarsest level we still have a rough de-
scription of the boundary layer due to the advection. Table 3.3 shows the number of
iterations to reach convergence in different physical regimes. Note that being faster in
terms of iteration numbers does not mean being faster in computational time: let us
study the computational cost of a two-level optimized Schwarz method and of a multi-
grid scheme using point Jacobi. We denote with N , Nc and M the number of degrees of
freedom on the first level, on the second level and in each subdomain on the fine mesh.
Nsub indicates the total number of subdomains while N i t and N i t

MG are the number of it-
erations of the two-level optimized Schwarz method and of the multigrid scheme. Then,
the computational cost (CC) of the two level optimized Schwarz method is CC MOSM =
O(N it((n1 + n2)Nsub Mγ + Nγ

c )) while for multigrid3 CC MG = O(N it
MG((n1 + n2)N + Nγ

c )),
where γ is an exponent which depends on the structure of the matrix and on the linear
solver used. It is clear that the subdomain solvers can represent a bottleneck due to the
term Mγ. One solution is to increase Nsub so that M becomes smaller and one can then do
the computations in parallel. We then study the scalability properties of OSMoV(p) with
two levels, i.e. a two-level method which uses an overlapping optimized Schwarz method
with one optimized parameter p as a smoother on the fine level. We consider a square
domain Ω divided into several subdomains by the partitioning tool Metis, see Figure 3.7
for an example of a decomposition. As we increase the number of subdomains, we keep
the size of each subdomain approximately constant (around 400 degrees of freedom), so
that the global problem becomes larger. In this setting, we solve (3.5.1) with ν(x, y) = 1
and f = 1. The numbers of pre- and post-smoothing steps are equal to n1 = n2 = 2 and
the overlap is constant, equal to four times the mesh size. Table 3.7 shows that the two-
level optimized Schwarz method is scalable and offers a comparison with the RAS method
equipped with the well-known Nicolaides coarse space, see Section 4.2 of [61] for a de-
tailed description. The OSMoV(p) requires much less iterations but, at least in its two-
level variant, it requires to solve a larger and more expensive coarse problem.

3We suppose to use a point wise Jacobi smoother which has a linear cost in N . However in several situa-
tions, e.g. Table 3.2, one has to rely on more expensive smoothers.
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N. subdomains 4 16 64 128
OSMoV(p) 3 3 4 4

RAS+Nicolaides 8 27 52 57

Figure 3.7: On the left, number of iterations to reach convergence as the number of sub-
domains increases. On the right, example of decomposition into 16 subdomains using
Metis.

ω OSM(p) OSMV(p) MGV

5π 15 2 4
25π 25 4 6
50π 34 9 10

100π 60 40 129

Table 3.4: Convergence behavior for the Helmholtz equation with different wavenumbers
for a two-level method. Fine mesh labeled by ` = 10 and coarse mesh by ` = 9. On the
right solution for ω= 25π.

3.5.2 Helmholtz equation with a dispersion correction

We consider the Helmholtz equation in a square cavity open on the vertical edges with
transparent Robin boundary conditions and with homogeneous Dirichlet conditions on
the horizontal ones. Both OSMs and multigrid do not converge in general for Helmholtz
problems when used iteratively, see Refs [71, 91] for a detailed discussion. The oscil-
latory nature of the Helmholtz equation makes it difficult to design efficient two-level
solvers. Some recents developments are available in [105, 46, 13, 147]. In this paragraph
we consider GMRES preconditioned by the one-level OSM [91], the V-cycle OSM and the
multigrid scheme. We show two numerical experiments. In the first one, we test the two-
level OSM with a fine mesh ` = 10, approximately one million degrees of freedom, and
a coarse mesh ` = 9 and we compare the iterations required to converge for an increas-
ing sequence of wave numbersω. In Table 3.4, we see that the V-cycle OSM and multigrid
schemes are extremely fast especially for low wave number. This is not surprising; in order
for the coarse correction to be effective, we need a good representation of the error on the
coarse mesh, therefore the lower the oscillations are the better representation we have
and we are basically in an elliptic regime. As ω increases, the V-cycle OSM deteriorates
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`min G`min OSMV(p) MGV

7 10.24 9 16
6 5.12 16 78
5 2.56 24 >200

`min G`min OSMV(p) MGV

7 10.24 9 8
6 5.12 16 20
5 2.56 26 >200

Table 3.5: Convergence behavior of the V-cycle OSM and of the multigrid scheme for ω=
25π as the number of points per wavelength on the coarsest grid G`min is reduced. The
right table refers to the dispersion correction. The finest grid corresponds to `max = 8
with G`max = 20.48

and multigrid becomes highly ineffective.

In the second experiment we investigate the robustness of the multilevel methods with re-
spect to the coarseness of the meshes. In order to provided a good coarse correction, the
coarse mesh should have at least a resolution of approximately ten points per wavelength
G` := 2π

h`ω
≈ 10. Moreover a coarse mesh amplifies the numerical dispersion; therefore,

since this requirement sets a practical constraint on the use of multigrid for Helmholtz
problems, some methods have been developed for dispersion correction such as opti-
mized finite difference schemes, see [147, 45]. In the following, we do not use some spe-
cific new finite difference stencils to contain the numerical dispersion, but instead on
each level, we modify the frequency ω of the Helmholtz equation. Indeed, in Section 2 of
[45], it is shown that choosing the Helmholtz frequency on each level such that

ω`(θ) =
∣∣∣√h−2

`
(4−2cos(ωh` cos(θ))−2cos(ωh` sin(θ)))

∣∣∣ , (3.5.2)

reduces the numerical dispersion and specifically it removes the dispersion in the direc-
tion defined by the angle θ. Thus, supposing that on the finest grid `max, the numerical
dispersion is negligible, on each coarser mesh we discretize the Helmholtz equation with
a modified frequency ω`(θ). We choose the angle θ = π

8 since it is very close to the value
found numerically which minimizes the maximum of the Euclidean distance between the
points lying on the continuous dispersion relation {ξ ∈ R2 : ‖ξ‖ =ω} and the discrete one
{ξ ∈R2 : h−2(4−2cos(h`ξ1)−2cos(h`ξ2)) =ω(θ)}, for ω= 25π.

Table 3.5 shows that multigrid is very sensitive to the coarseness of the meshes and that
the dispersion correction improves its convergence behaviour up to G` ≈ 5. The V-cycle
OSM is instead more robust than multigrid and it is unaffected by the correction of the
frequency ω.

3.5.3 Helmholtz-Laplace heterogeneous coupling

We study the MOSM for the Helmholtz-Laplace coupling discussed in Chapter 2.4,

−∆u −ω2u = f in Ω1, −∆u = f in Ω2, u = 0 on ∂Ω.

We consider the finest grid ` = 9 and the coarsest ` = 7 such that we have more than 10
points per wavelength. We see in Table 3.6 that the multigrid V-cycle diverges as an itera-
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ω OSM(p) OSM-V(p) MG-V

5π 165 6 13
25π 80 9 div

Table 3.6: Number of iterations to reach the tolerance for the different methods in the
Helmholtz-Laplace coupling.

tive method for a large wave number. The MOSM still converges but the coarse correction
clearly becomes less effective. The one-level OSM instead improves its performance for
increasing ω as long as the mesh size does not increase, as discussed in the numerical re-
sults of Chapter 2.4. If we choose the coarsest grid equal to l = 8, then also the multigrid
V-cycle converges but it requires 111 iterations, which illustrates the higher sensitivity of
the multigrid scheme compared to the MOSM for wave problems, see also subsection
3.5.2.



CHAPTER4

Substructured Two-Level and

Multilevel Domain

Decomposition methods

"Wisdom is brilliant, she never fades. By those who love her, she is readily seen,
by those who seek her, she is readily found.
She anticipates those who desire her by making herself known first.
Whoever gets up early to seek her will have no trouble but will find her sitting
at the door."

— Book of Wisdom, Chapter 6, 12-14.

Let us consider a vector space V 1, an invertible linear operator A : V → V and an ele-
ment b ∈ V . As we have seen in Chapter 3, a two-level domain decomposition method
consists of a classical one-level domain decomposition method also called “smoother”,
e.g. one of the methods presented in Sections 1.2 and 1.3, and a coarse correction step
performed on a coarse space Vc ⊂ V . In order for the coarse correction to be cheap, we
assume that dimVc ¿ dimV . Once Vc is defined, the mappings between V and Vc are re-
alized by a restriction operator R : V →Vc and a prolongation operator P : Vc →V . We will
denote the restriction of A on Vc with Ac , and set Ac := R AP . We emphasize that the ef-
ficiency of a two-level method relies on good team-play between the one-level smoother
and the coarse space. Indeed, the coarse space should contain those functions which
are slowing down the convergence of the one-level smoother. Heuristically, these “bad”
functions can be easily identified by running the one-level smoother for a few iterations
and looking directly at the form of the error and of the residual. For one-level domain
decomposition methods, the error and residual have a particular form after each itera-
tion. The error is harmonic inside the subdomains and it is predominant in the overlap
region, where we simply merge the different subdomain contributions. This observation

1The space V will be assumed of infinite dimension in Sections 4.1 and 4.2 (except for Theorem 4.2.4)
and of finite dimension in Section 4.3

111
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has motivated the development of different techniques to define coarse functions inside
the overlap and then to extend them in the interior of subdomains. In this direction we
can refer to the manuscripts [57, 63, 68, 72, 73, 113, 118, 144, 145]. On the other hand,
if one uses a nonoverlapping method (e.g. the OSM see Chapter 3) or an overlapping
method with a partition of unity corresponding to an algebraic nonoverlapping partition
of the unknowns, one gets that the residual is non-zero only along the interfaces between
the nonoverlapping (either physical or algebraic) subdomains. Therefore another main-
stream idea is to define functions on the interfaces and then to extend them in the interior
of the subdomains, see e.g. [1, 11, 31, 33, 39, 84, 90, 89, 94, 113, 99].

In this chapter, we introduce new computational frameworks to solve the linear system
Au = b, and we call them substructured two-level and multilevel domain decomposi-
tion methods. The term “substructured” is commonly used in the literature to refer to
nonoverlapping domain decomposition methods, see for instance the monographs [139,
151], and this particular meaning essentially derives from [138]. We will instead use the
term “substructured” to indicate that both the one-level domain decomposition method
and the coarse space are defined on the interfaces, independently of the type of (overlap-
ping or non-overlapping) decomposition of the domain. These interfaces will coincide
with the physical interfaces between the subdomains in the case of a nonoverlapping de-
composition, or they will consist of the parts of the boundary of a subdomain which lie
in the interior of another subdomain, in the case of an overlapping decomposition. See
Section 4.1 for a precise mathematical definition.

The content of this chapter is based on a long collaboration with Gabriele Ciaramella,
which resulted in the manuscripts [41, 43, 42]. In [41] we presented the new compu-
tational framework for the two subdomain case, introducing a substructured two-level
method based on a spectral coarse space, called Spectral 2-level Substructured (S2S) method,
and another substructured two-level method based on a geometric coarse space, called
Geometric 2-level Substructured (G2S) method.
The S2S method is based on a coarse space defined as the span of certain interface func-
tions. One can choose freely these interface functions, even though not all choices are
equivalent from the convergence point of view. An effective choice is to define the coarse
space as the span of the eigenfunctions of the one-level substructured smoother which
are associated to the largest eigenvalues in modulo. Clearly, computing the eigenfunc-
tions of the one-level smoother is not always desirable. A partial remedy is to compute
separately the eigenvectors of some local operators defined on each subdomain. An-
other approach is to approximate the leading eigenvectors of the one-level smoother, and
we propose a numerical procedure based on the principal component analysis to obtain
good approximations in an inexpensive way. Nevertheless, we emphasize that one could
choose the interface functions freely, and for instance one could use some of the inter-
face functions used by other two-level domain decomposition in volume, see for instance
[90, 89, 94, 113]. In Section 4.6, we will show numerical experiments using the interface
functions of the SHEM (Spectral Harmonically Enriched Multiscale) coarse space ([90]) as
a basis for our substructured coarse space.



CHAPTER 4. SUBSTRUCTURED MULTILEVEL DD METHODS 113

On the other hand, the G2S method is essentially a two-grid interface method, for which
the coarse correction is performed on a coarse interface grid. The G2S framework does
not require the explicit knowledge of the coarse space functions and it is suitable to be ex-
tended to a multilevel method, whenever the dimension of the coarse space is too large.
We will show that the G2S method converges much faster than a two-level method in vol-
ume using RAS as a smoother, underlying that the G2S method is not just a different im-
plementation of already known methods. For a discussion about the relation between the
G2S method and a two-grid volume method, we refer to [43, Section 5]. The S2S method is
presented in Section 4.2 while the G2S method is discussed in Section 4.3. Both methods
have been generalized to the many-subdomain case and further analyzed respectively in
[42] in [43]. In this chapter we are going to provide a complete overview, but several details
will not be treated. The interested reader can refer to [43] and [42].

At this point, one could ask what are the advantages and disadvantages of working at the
substructured level. Let us start considering a spectral two-level method in volume and
the S2S method. On the one hand, most of the two-level methods in volume construct
some functions in the overlap region or on the interfaces, which are then extended inside
the subdomains through subdomain solves. All these methods inevitably need this exten-
sion step since they are defined in volume. Clearly, working at the substructured level, the
S2S method does not need to extend the interface basis functions. On the other hand, as
we will see in Section 4.2, if one wants to build explicitly the substructured coarse matrix
Ac , then one would have to perform subdomain solves. Thus, if Ac is build explicitly, the
two costs compensate. From the memory storage point of view, the substructured meth-
ods require less storage as the interface functions are represented by only the degrees of
freedom on the substructures. Thus, for a three-dimensional problem with mesh size
h, a discrete interface coarse function is an array of size O(1/h2) which is much smaller
than O(1/h3), which is the size of an array corresponding to a coarse function in volume.
Thus, for this reason the resulting interface restriction and prolongation operators are
much smaller matrices and thus their action is cheaper to compute. Furthermore, we
numerically observed that a SHEM coarse space and a spectral S2S coarse space of same
dimension lead to a very similar convergence behaviour.

Concerning the G2S method, we first remark that the size of the coarse matrix Ac is much
smaller than the size of a coarse matrix in volume. This implies that the coarse correc-
tion is cheaper to compute and that less levels are needed to ease the burden of the direct
solve. Similarly to the S2S method, if one wants to assemble Ac of a G2S method explic-
itly, then one has to perform subdomain solves. This step can be done in parallel in a
pre-computation phase. Furthermore, the G2S method exhibits a much faster conver-
gence than a corresponding two-grid domain decomposition method, see for instance
Figure 4.6. Regarding the geometric interpolation and restriction operators, we empha-
size that if a two-level method in volume performs an interpolation in a n dimensional
space, then the G2S method performs an interpolation in n −1 dimensional space. For a
three-dimensional problem this property can be highly attractive.
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4.1 Substructured Parallel Schwarz method

We consider the model problem

L u = f in Ω, u = 0 on ∂Ω, (4.1.1)

and we suppose it admits a unique solution u ∈ H 1
0 (Ω). We decompose Ω into N over-

lapping Lipschitz subdomains Ω′
j , that is Ω = ∪ j∈IΩ

′
j with I := {1,2, . . . , N }. We now

introduce a notation inspired by [40]. For any j ∈I , we consider the set of neighbouring

indices N j :=
{
` ∈I : Ω′

j ∩∂Ω′
`
6= ;

}
. Given a j ∈ I , we define the substructure of Ω′

j

as S j := ∪`∈N j

(
∂Ω′

`
∩Ω′

j

)
, that is the union of all the portions of ∂Ω′

`
which lie in the

interior of Ω′
j . The sets S j are open and their closures are S j = S j ∪ ∂S j , with ∂S j :=

∪`∈N j

(
∂Ω′

j ∩ ∂Ω′
`

)
. The substructure of Ω is defined as S := ∪ j∈I S j . We denote with

E 0
j : L2(S j ) → L2(S) the extension by zero operator.

Given a bounded set Γ with boundary ∂Γ, we denote by ρΓ(x) the function representing
the distance of x ∈ Γ from ∂Γ. We can then introduce the H 1/2

00 (Γ) space

H 1/2
00 (Γ) := {v ∈ H 1/2(Γ) : v/ρ1/2

Γ ∈ L2(Γ)}, (4.1.2)

which is also known as the Lions-Magenes space; see, e.g., [124, 139, 149]. Notice that
H 1/2

00 (Γ) can be equivalently defined as the space of functions in H 1/2(Γ) such that their
extensions by zero to a superset Γ̃ of Γ are in H 1/2(Γ̃); see, e.g., [149]. Now, we consider a
set of partition of unity functions χ j : S j → [0,1], j = 1, . . . , N , such that

∑
j∈I E 0

j χ j ≡ 1 and

χ j (x) =


(0,1] for x ∈ S j ,

{1} for x ∈ S j \∪`∈N j S`,

{0} for x ∈ ∂S j \∂Ω.

Further, we assume that the functions χ j , j ∈I , satisfy the condition χ j /ρ1/2
S j

∈ L∞(S j ).

For any j ∈ I , we define Γint
j := ∂Ω′

j ∩
(∪`∈N jΩ

′
`

)
, and introduce the following trace and

restriction operators

τ j : H 1(Ω′
j ) → H

1
2 (S j ) and τint

j : H
1
2 (S) → H

1
2 (Γint

j ).

The operator τ j takes a volume function defined over Ω′
j and returns the trace over the

interior substructure S j . On the other hand, τint
j takes a function defined over the whole

substructure S and returns its restriction over Γint
j , that is the boundary of Ω′

j which lie in
the interior of other subdomains.

It is well known that (4.1.1) is equivalent to the domain decomposition system (see, e.g.,
[139])

L u j = f j in Ω′
j , u j =

∑
`∈N j

E 0
` (χ`τ`u`) on Γint

j , u j = 0 on ∂Ω′
j \Γint

j , (4.1.3)
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where f j ∈ L2(Ω′
j ) is the restriction of f on Ω′

j . We emphasize that the properties of the

partition of unity functions χ` guarantee that χ`τ`u` lies in H
1
2

00(S`) and E 0
`

(χ`τ`u`) ∈
H

1
2

00(S). Moreover, for ` ∈ N j it holds that τint
j E 0

`
(χ`τ`u`) ∈ H 1/2

00 (Γint
j ) if Γint

j ( ∂Ω j , and

τint
j E 0

`
(χ`τ`u`) ∈ H 1/2(Γint

j ) if Γint
j = ∂Ω j . Given a j ∈I such that ∂Ω′

j \Γint
j 6= ;, we define

the extension operator E j : H
1
2

00(Γint
j )×L2(Ω′

j ) → H 1(Ω′
j ) as E j (v) := w , where w solves the

problem
L w = f j in Ω′

j , w = v on Γint
j , w = 0 on ∂Ω′

j \Γint
j (4.1.4)

for a v ∈ H
1
2

00(Γint
j ). Otherwise, if Γint

j = ∂Ω′
j , we define E j : H

1
2 (Γint

j )×L2(Ω′
j ) → H 1(Ω′

j ) as
E j (v) := w , where w solves the problem

L w = f j in Ω′
j , w = v on Γint

j , (4.1.5)

for a v ∈ H
1
2 (Γint

j ). Using linearity, the domain decomposition system (4.1.3) can be writ-
ten as

u j = E j (0, f j )+E j

(
τint

j

∑
`∈N j

E 0
` (χ`τ`u`),0

)
, j ∈I . (4.1.6)

We now apply the operator χ jτ j on both sides of (4.1.6). Defining v j := χ jτ j u j , j ∈ I ,
then system (4.1.6) becomes

v j = g j +
∑
`∈N j

G j ,`(v`), j ∈I , (4.1.7)

where g j :=χ jτ j E (0, f j ) and the operators G j ,` : H
1
2

00(S`) → H
1
2

00(S j ) are defined as

G j ,`(·) :=χ jτ j E j
(
τint

j E 0
` (·),0

)
. (4.1.8)

The system (4.1.7) is the substructured form of (4.1.3). The equivalence between (4.1.3)
and (4.1.7) is explained by the following theorem.

Theorem 4.1.1 (Relation between (4.1.3) and (4.1.7)). Let u j ∈ H 1(Ω j ), j ∈I , solve (4.1.3),

then v j := χ jτ j (u j ), j ∈ I , solve (4.1.7). Let v j ∈ H
1
2 (S j ), j ∈ I , solve (4.1.7), then u j :=

E j (τint
j

∑
`∈N j

E 0
`

(v`), f j ), j ∈I , solve (4.1.3).

Proof. We have shown that v j := χ jτ j (u j ) satisfies the first statement while deriving the
substructured system (4.1.7). To obtain the second statement, we proceed as follows. First
we observe that

u j = E j (0, f j )+E j (τint
j

∑
`∈N j

E 0
` (v`),0), (4.1.9)

which multiplied by χ jτ j and using (4.1.7) implies v j = χ jτ j u j . Thus replacing v` =
χ`τ`u` into (4.1.9) leads to (4.1.6).



CHAPTER 4. SUBSTRUCTURED MULTILEVEL DD METHODS 116

Given any function w ∈ H 1
0 (Ω) and initializing u0

j := w |Ω′
j
, j ∈ I , the parallel Schwarz

method (PSM) is given by

L un
j = f j in Ω j , un

j = ∑
`∈N j

E 0
` (χ`τ`un−1

` ) on Γint
j , un

j = 0 on ∂Ω j \Γint
j , (4.1.10)

for n ∈N+. The substructured form of the PSM is

vn
j = g j +

∑
`∈N j

G j ,`(vn−1
` ), j ∈I , (4.1.11)

initialized by v0
j := χ jτ j (u0

j ) ∈ H
1
2

00(S j ). We emphasize that the iteration (4.1.11) is well

posed, that is vn
j ∈ H

1
2

00(S j ) for j ∈ I and n ∈N. Equations (4.1.11) and (4.1.7) allow us to
obtain the substructured PSM in error form, that is

en
j = ∑

`∈N j

G j ,`(en−1
` ), j ∈I , (4.1.12)

for n ∈N+, where en
j := v j −vn

j , for j ∈I and n ∈N. Equation (4.1.7) can be written in the

matrix form Av = b, where v = [v1, . . . , vN ]>, b = [g1, . . . , gN ]> and the entries of A are

[A] j , j = Id , j and [A] j ,` =−G j ,`, j ,k ∈I , j 6= k, (4.1.13)

where Id , j are the identities on L2(S j ), j ∈I . Similarly, we define the operator G as

[G] j , j = 0 and [G] j ,` =G j ,`, j ,k ∈I , j 6= k,

which allows us to write equations (4.1.11) and (4.1.12) as vn =Gvn−1 +b and en =Gen−1,
respectively, where vn := [vn

1 , . . . , vn
N ]> and en := [en

1 , . . . ,en
N ]>. Notice that G = I −A, where

I := diag j=1,...,N (Id , j ).

4.2 S2S method

In the next two subsections we focus on the S2S method which relies on a coarse space de-
fined as the span of certain interface basis functions. Ideally, one could define the coarse
space as the span of some of the eigenfunctions of the smoothing operator G . This leads to
a very efficient method. However, computing these eigenfunctions can be cumbersome
from the computational point of view. In these cases, we will discuss how to approxi-
mate them through a Principal Component Analysis (PCA) which shares similarities with
the randomized SVD. In alternative, one could also decide to use the eigenvectors of the
subdomain smoothing operators G j , which hopefully are less expensive to compute, and
we will provide a convergence analysis in the case of two subdomains. It is even possi-
ble to build the coarse space heuristically, by inserting functions which are thought to
be relevant for the convergence of the method. For instance, one could insert the lowest
Fourier modes defined on each substructure. Finally, one can also use the extensive liter-
ature available for two-level domain decomposition methods in volume. In Section 4.6 we
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Algorithm 3: Two-level substructured domain decomposition method

Require: u0 (initial guess)
1: un =Gun−1 +b, n = 1, . . . ,n1 (dd pre-smoothing steps)
2: r = r − Aun1 (compute the residual)
3: Solve Ac uc = Rr (solve the coarse problem)
4: u0 = un1 +Puc (coarse correction)
5: un =Gun−1 +b, n = 1, . . . ,n2 (dd post-smoothing steps)
6: Set u0 = un2 (update)
7: Repeat from 1 to 6 until convergence

present numerical experiments using the interface functions involved in the construction
of the SHEM coarse space [90, 89]. When needed, we will specify the coarse space used by
the S2S method. We will denote with S2S-G , S2S-G j , S2S-PCA and S2S-HEM, S2S methods
with coarse spaces made of respectively eigenfunctions of G , eigenfunctions of G j , ran-
dom functions obtained through a PCA, and a coarse space obtained through the SHEM
coarse space, see Section 4.6 for implementation details.

In spite of the choice of the interface functions, we now provide a general definition of the

S2S method. We introduce the space V := ⊗N
j=1H

1
2

00(S j ) and an operator A : V → V . The
space V can be equipped with an inner product structure. The inner product is defined

as 〈v , w〉 =∑N
j=1〈v j , w j 〉 j , where v j , w j ∈ H

1
2

00(S j ) and 〈,〉 j is the inner product on H
1
2

00(S j ).
We aim to solve the linear system Au = b. Let us suppose to have available a coarse space
Vc ⊂ V such that Vc = span

{
ψ1,ψ2, . . . ,ψNc

}
. The dimension of the coarse space is Nc .

We define the restriction and prolongation operators R : V →RNc and P :RNc →V as

Rv = (〈v ,ψ1〉,〈v ,ψ2〉, . . . ,〈v ,ψNc 〉)>, ∀v ∈V ,

Pw =
Nc∑
j=1

w jψ j , ∀w ∈RNc .
(4.2.1)

The restriction of A on Vc is defined in a Galerkin fashion, that is Ac : Vc → Vc , with Ac :=
R AP .
The S2S method is then defined by Algorithm 3. The integers n1 and n2 are the numbers
of pre- and post-smoothing steps. A direct calculation reveals that one iteration of the
two-level method can be written in the form of a stationary method

unew =Gn2 (I −PA−1
c R A)Gn1 uold + M̃b, (4.2.2)

where I is the indentity operator over V . Here, M̃ is an operator which acts on the right-
hand side vector b and which can be regarded as the preconditioner corresponding to our
two-level method. A direct calculation shows that

M̃ = I +PA−1
c R +PA−1

c R A,
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which corresponds to a two-level preconditioner where the coarse correction is treated
in a multiplicative way. Defining the errors enew := v − v new and eold := v − v old, iteration
(4.2.2) becomes

enew = T eold, T :=Gn2 (I −PA−1
c R A)Gn1 . (4.2.3)

In order for algorithm (3) to be well-defined, we need first to show that Ac is invertible.
This is discussed in the next Lemma where we need the orthogonal projection operator
onto Vc .

Definition 4.2.1. Given a space V and a subspace Vc = span
{
ψ1, . . . ,ψNc

}
, we define the

orthogonal projector PVc as the linear operator PVc : V →Vc such that

∀v ∈V , 〈v −PVc v ,ψ j 〉 = 0, j = 1, . . . , Nc .

Lemma 4.2.2 (Invertibility of a coarse operator Ac ). Let V be an inner product space
and Vc be a finite-dimensional subspace of V given by the span of the basis functions
ψ1, . . . ,ψNc . Let PVc be the orthogonal projection operator onto Vc . Consider an invert-
ible operator A : V → V and the matrix Ac = R AP ∈ RNc×Nc , where P and R are defined as
in (4.2.1). Then Ac has full rank if and only if PVc (Av) 6= 0∀v ∈Vc \ {0}.

Proof. We first show that if PVc (Av) 6= 0 for any v ∈ Vc \ {0}, then Ac = R AP has full rank.
This result follows from the rank-nullity theorem, if we show that the only element in
the kernel of Ac is the zero vector. To do so, we recall the definitions of P and R given
in (4.2.1). Clearly, Pz = 0 if and only if z = 0. For any z ∈ RNc the function Pz is in Vc .
Since A is invertible, then APz = 0 if and only if z = 0. Moreover, by our assumption it
holds that PVc (APz) 6= 0. Now, we notice that Rw 6= 0 for all w ∈ Vc \ {0}, and Rw = 0 for
all w ∈V ⊥

c , where V ⊥
c denotes the orthogonal complement of Vc in V with respect to 〈·, ·〉.

Since (V ,〈·, ·〉) is an inner-product space, we have APz = PVc (APz)+ (I −PVc )(APz) with
(I −PVc )(APz) ∈V ⊥

c . Hence, R AP z = RPVc (APz) 6= 0 for any non-zero z ∈RNc .

Now we show that, if Ac = R AP has full rank, then PVc (Av) 6= 0 for any v ∈ Vc \ {0}. We
proceed by contraposition and prove that if there exists a v ∈ Vc \ {0} such that Av ∈ V ⊥

c ,
then Ac = R AP is not full rank. Assume that there is a v ∈Vc \ {0} such that Av ∈V ⊥

c . Since
v is in Vc , there exists a nonzero vector z ∈RNc such that v = Pz. Hence APz ∈V ⊥

c . We can
now write that Ac z = R(APz) = 0, which implies that Ac is not full rank.

4.2.1 Spectral coarse space based on the eigenvectors of G: convergence
analysis and PCA

We start considering the case in which the functions
{
ψ j

}Nc

j=1 are eigenfunctions of G , that
is Gψ j =λ jψ j . We suppose that 1 is not an eigenvalue of G , so that the operator A = I −G
is invertible. We do not assume any orthogonality between the eigenfunctions. With such
a choice of Vc , it holds A(Vc ) ⊆ Vc which implies PVc (Av ) 6= 0 ∀v ∈ Vc \ {0}. Thus, due to
Lemma 4.2.2, the matrix Ac is invertible. In the proof of the convergence Theorem 4.2.4
we will need a matrix representation of the orthogonal projector.
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Lemma 4.2.3 (Matrix representation of the orthogonal projector). Once fixed the basis{
ψ j

}Nc

j=1 for Vc , the action of PVc has the matrix representation PVc = P (RP )−1R,

Proof. Given a general v ∈V , we express PVc v =∑Nc

i αiψi = Pα, with (α) j =α j . Inserting
into the orthogonal conditions 〈PVc v ,ψ j 〉 = 〈v ,ψ j 〉 we get

Nc∑
i
αi 〈ψi ,ψ j 〉 = 〈v ,ψ j 〉,

which can be rewritten as RPα= Rψ and the result follows.

So far we have worked assuming V is an infinite dimensional space. To prove the main
result of this subsection, we assume V is finite dimensional.

Theorem 4.2.4 (Convergence of the S2S method- Eigenfunctions of G). Consider a finite
dimensional inner product space V , an invertible operator A : V → V , A = I −G, and a
coarse space Vc := span

{
ψ1,ψ2, . . . ,ψNc

}
where ψ j are eigenvectors of G associated to the

eigenvalues λ j , j = 1, . . . , Nc . Furthermore we consider the operator R and P defined as
(4.2.1) and Ac := R AP. Then, defining T :=Gn2 (I−PA−1

c R A)Gn1 , we have

ρ(T ) = max |λ|n1+n2 such that λ ∈σ(G) \
{
λ1, . . . ,λNc

}
.

Proof. We first introduce the operator T̃ = (I −PA−1
c R A)Gn1+n2 . The operators T̃ and T

have the same spectrum and thus we focus on T̃ . The proof of this theorem is divided
into two parts. First we show that

{
ψ j

}Nc

j=1 are eigenvectors of T̃ associated to the zero

eigenvalue. Second, we show that all the other eigenvalues of G are still eigenvalues of T̃
by constructing directly the corresponding eigenvector. Let us start with the first part. If
we consider aψ j ∈Vc we have

(I −PA−1
c R A)Gn1+n2ψ j =λn1+n2

j ψ j −λn1+n2
j PA−1

c R Aψ j (4.2.4)

=λn1+n2
j (ψ j − (1−λ j )PA−1

c Rψ j ).

We now compute the action of Ac over a canonical vector e j , j = 1, . . . , Nc ,

R APe j = R Aψ j = (1−λ j )Rψ j ,

which, R AP being invertible, implies e j = (1−λ j )A−1
c Rψ. Inserting this expression into

(4.2.4) we obtain

(I −PA−1
c R A)Gn1+n2ψ j =λn1+n2

j (ψ j −Pe j ) =λn1+n2
j (ψ j −ψ j ) = 0.

We now focus on the remaining eigenvalues. For every eigenpair (ψk ,λk ) of G such that
ψk ∉Vc , we show that (φk ,λn1+n2

k ), with

φk := A−1(ψk −PVcψk ) = 1

(1−λk )
ψk −w , (4.2.5)
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for some w ∈Vc , is an eigenpair of T̃ . We claim that w ∈Vc since Vc , which is spanned by
eigenvectors of G , is invariant under the action of A−1. Using that Vc ⊂ Ker(T̃ ), we have

T̃φk = T̃
1

1−λk
ψk =λn1+n2

k

(
1

1−λk
ψk −PA−1

c Rψk

)
. (4.2.6)

If the eigenvectors were orthonormal, we would have finished the proof, since Rψk = 0.
In a more general case, we proceed as follows. We observe that

PA−1
c Rψk = PA−1

c RP (RP )−1Rψk = PA−1
c RPVcψk =

Nc∑
`=1

γ`PA−1
c Rψ`,

such that
∑Nc

`=1γ`ψ` is the orthogonal projection of ψk onto Vc . Now, we recall that
Rψ` = Ac ((1−λ`)−1e`), for ` = 1, . . . , Nc , and write PA−1

c Rψ` = ∑m
`=1γ`(1−λ`)−1ψ` =∑Nc

`=1γ`A−1ψ` = A−1PVcψk . Replacing this equality into (4.2.6), we obtain T̃φk =λn1+n2

k φk .

Theorem 4.2.4 provides very interesting insights on the convergence of the S2S method.
The coarse space Vc is such that the operator T has the same eigenvalues of the one-level
smoother G , except for those eigenvalues corresponding to eigenvectors which are in Vc .
These latter eigenvalues are actually mapped to zero. It follows that the choice of the
coarse space is extremely important. On the one hand, if the one-level smoother G has
a large eigenvalue, approximately equal to 1, and Vc does not contain the corresponding
eigenvector, then the S2S will be as slow as the one-level smoother. On the other hand,
even if G is not converging, e.g. it has an eigenvalue larger than 1, then if Vc contains
the corresponding eigenvector, then the S2S method will converge. In other words, the
coarse correction can transform a divergent method into a converging one (see [33, 30] for
a similar result concerning the Neumann-Neumann method and [94] for the AS method).
We will see in Section 4.6 that for high contrast jumping diffusion coefficients, the PSM
has just few eigenvalues approximately equal to 1. Including these very few eigenvectors
into the coarse space Vc permits to have a very fast domain decomposition solver. We also
remark that if the coarse space Vc is made of eigenvectors of G , then theoretically only one
coarse correction step would be sufficient to remove the error components related to the
slow eigenvectors of G .

Constructing a coarse space based on the eigenvectors of G is not always feasible, since
computing these eigenvectors can be even more expensive than solving the original lin-
ear system Au = b. In this paragraph we briefly discuss a randomized approach to ob-
tain good estimates for the eigenvectors of G and we suppose that ρ(G) < 1, that is the
smoother G is converging. The idea we present is to approximate the image of the smoother
Gr for some positive integer r . Indeed taking a sufficiently large value of r , the image of
Gr contains information about the “slow” eigenvectors of G which are responsible for the
slow convergence of the one-level algorithm. Motivated by this observation, we use a
principal component analysis to extract information about the slowest eigenvectors from
the image of Gr . We propose the following procedure
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1. Consider a set of q linearly independent randomly generated vectors
{xk }q

k=1 ⊂RN s
, where N s is the number of degrees of freedom on the product⊗N

j=1S j ,
and define the matrix X = [x1 · · ·xq ]. Here, q ≈ Nc and Nc is the desired dimension
of the coarse space.

2. Use the vectors xk as initial vectors and perform r smoothing steps to create the
matrix W = Gr X . This computation can be performed in parallel and we assume
that r is “small”.

3. Compute the SVD of W : W =UΣV >. This is cheap (O(q(N s)2)) because W ∈RN s×q

is “small”, since q is “small” and vk are interface vectors.

4. Since the left-singular vectors (corresponding to the non-zero singular values) span
the image of W , we define Vc := span{u j }Nc

j=1 and P := [u1, · · · ,u2m].

We emphasize that this procedure is numerically feasible since

• q is small since it is around the size of the coarse space, which also correspond to
the size of the linear coarse problem involving the coarse matrix Ac .

• The number of smoothing steps r is small. Numerically we have observed that
r ≈ 1−2 for classical equations, and r ≈ 6 for problems with jumping diffusion co-
efficients. Moreover, the smoothing steps can be done in parallel for the q columns
of X .

• The size of the vectors xk is relatively small and it is equal to the number of degrees
of freedom on the substructures.

• The PCA technique is thought to be done in an off-line phase, to generate a spectral
coarse space which can then be used repeatedly to solve the original linear system
in a many-query context.

Numerically, we have also explored the use of the randomized SVD algorithm which shares
similarities with our approach. However, we have not observed any significant advan-
tages in terms of iteration numbers. In section 4.6, we will show that the PCA procedure
permits to construct spectral coarse spaces which are extremely efficient.

4.2.2 Spectral coarse space based on the eigenvectors of G j : convergence
analysis

In this subsection, we provide a convergence analysis for a spectral coarse space which
consists of eigenfunctions of the operators G j . Our proof is restricted to the two subdo-
main case and we consider the decomposition introduced in Section 1.2. Since we do not
have cross points, we can simplify the notation described in 4.1. First, we have S1 = Γ2,
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S2 = Γ1 and v = [v1, v2]> = [τ1(u1),τ2(u2)]> = [(u1)|Γ2 , (u2)|Γ1 ]> ∈ H
1
2

00(Γ2)× H
1
2

00(Γ1). The
linear system Au = b reads (

I2 −G1

−G2 I1

)(
un

1
un

2

)
=

(
g1

g2

)
,

where I j are the identity operators on L2(Γ j ). Consider the two spaces H1 := H
1
2

00(Γ1) and

H2 := H
1
2

00(Γ2) and define H := H2 ×H1. Let
{
ψ1

k

}
k∈N be a basis of H1 and

{
ψ2

k

}
k∈N a

basis of H2. Let us introduce an inner product 〈·, ·〉1 for H1, an inner product 〈·, ·〉2 for H2,
and define 〈(a,b), (c,d)〉 := 〈a,c〉2 +〈b,d〉1 for all (a,b), (c,d) ∈H . Assume that the coarse
space Vc ⊂ H is the span of the basis functions (ψ2

1,0), . . . , (ψ2
m ,0) and (0,ψ1

1), . . . , (0,ψ1
m),

for a finite m > 0, which are orthonormal with respect to 〈·, ·〉. The operators P :R2m →H

and R : H →R2m are then defined as

P

[
v
w

]
:=

[ m∑
k=1

(v)kψ
2
k ,

m∑
k=1

(w)kψ
1
k

]>
,

R

[
f
g

]
:= [〈ψ2

1, f 〉2, · · · , 〈ψ2
m , f 〉2, 〈ψ1

1, g 〉1, · · · , 〈ψ1
m , g 〉1

]>
,

(4.2.7)

for any v,w ∈Rm and any ( f , g ) ∈H . The restriction of A on Vc is the operator Ac :R2m →
R2m given by Ac = R AP . It is possible to show that the matrix Ac is invertible using The-
orem 4.2.2 and we refer the reader to Lemma 3.1 in [41] for a detailed proof. The S2S
iteration in the error form reads as usual

enew = T eold, T :=Gn2 (I −PA−1
c R A)Gn1 .

To provide a convergence analysis, we study the operator T and we introduce the operator
norm

‖S‖op := sup
‖v‖2,∞=1

‖Sv‖2,∞ for any S ∈L (H ),

where L (H ) is the space of linear operators on H and ‖v‖2,∞ := max{‖v2‖H2 ,‖v1‖H1 }
with ‖v j‖H j := 〈v j , v j 〉1/2

j , for j = 1,2 and v = (v2, v1) ∈ H . Moreover, we also define the

contraction factor ρ(T ) := lim
n→∞(‖T n‖op)1/n .

We now make the further hypothesis that the interfaces Γ1 and Γ2 can be mapped one to
the other by simple rotation, translation and scaling. This hypothesis implies that H1 =
H2 =: H0 and we define the scalar product 〈·, ·〉 := 〈·, ·〉1 = 〈·, ·〉2. Further, we assume that
there exists a set of basis functions {ψ1,ψ2,ψ3, . . . } ⊂H0, orthonormal with respect to the
inner product 〈·, ·〉, that diagonalizes the operators G j :

G

[
ψk

ψk

]
=

[
0 G1

G2 0

][
ψk

ψk

]
=

[
ρ1(k)ψk

ρ2(k)ψk

]
, (4.2.8)

where ρ j (k) are the eigenvalues of G j , for j = 1,2. Thus, the operators G j share a com-
mon orthogonal eigenfunctions basis but they can have different eigenvalues. The coarse
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space is defined as Vc = (span{ψ1,ψ2, · · · ,ψm})2. Prolongation and restriction operators
are defined as in (4.2.7). To analyze the convergence behavior, we expand the error as

e0 =
[ ∞∑

j=1
(v)0

jψ j ,
∞∑

j=1
(w)0

jψ j

]>
and study the operator norm of T .

Theorem 4.2.5 (Convergence of the S2S method- Eigenfunctions of G j ). Consider the
coarse space
Vc = (span{ψ1,ψ2, · · · ,ψm})2 and the operators P and R defined in (4.2.7). The S2S method
applied to the model problem (4.1.1) is a direct method for all the error components (ψk ,ψ`)
with k,` ≤ m, that is T

[
ψk ,ψ`

]> = 0 for all k,` ≤ m. Moreover, if the eigenvalues ρ j (k),
j = 1,2, are in absolute value non-increasing functions of k, the contraction factor of the
S2S, defined as ρS2S(T ) := lim

n→∞(‖T n‖op)
1
n , is given by

ρS2S (T )=
{
|ρ1 (m+1)ρ2 (m+1)| n1 +n2

2 , if n1 ,n2 are both even or odd,

|ρ1 (m+1)ρ2 (m+1)| n1 +n2 −1
2 max{|ρ1 (m+1)|,|ρ2 (m+1)|}, otherwise.

Proof. Let us suppose that both n1 and n2 are even. The other cases can be treated simi-

larly to this one. For n1 even we define πn1 (k) := ρ
n1
2

1 (k)ρ
n1
2

2 (k) and study the action of the

operator T on a vector
[
ψk ,ψ`

]>:

T

[
ψk

ψ`

]
=Gn2 (I−PA−1

c R A)Gn1

[
ψk

ψ`

]
.

We begin with the case k ≤ m and `≤ m. First, let us compute the action of the operator
R AGn1 on

[
ψk ,ψ`

]>. Since the operators G j are diagonalized by the basis {ψk }k using

(4.2.8) one obtains Gn1

[
ψk

ψ`

]
=

[
πn1 (k)ψk

πn1 (`)ψ`

]
. The action of A on

[
πn1 (k)ψk ,πn1 (`)ψ`

]> is

A

[
πn1 (k)ψk

πn1 (`)ψ`

]
=

[
Id −G1

−G2 Id

][
πn1 (k)ψk

πn1 (`)ψ`

]
=

[
πn1 (k)ψk

πn1 (`)ψ`

]
−

[
πn1 (`)ρ1(`)ψ`

πn1 (k)ρ2(k)ψk

]
.

Since A is invertible and has the form A = I−G , the eigenvalues ρ j (k) must be different

from one. Hence, the product A
[
πn1 (k)ψk ,πn1 (`)ψ`

]> 6= 0. Now, the application of the

restriction operator R on A
[
πn1 (k)ψk ,πn1 (`)ψ`

]> gives us

R A

[
πn1 (k)ψk

πn1 (`)ψ`

]
=

[
πn1 (k)ek

πn1 (`)e`

]
−

[
πn1 (`)ρ1(`)e`
π

n1
1 (k)ρ2(k)ek

]
=Λ

[
πn1 (k)ek

πn1 (`)e`

]
,

where ek and e` are canonical vectors inRm andΛ :=
[

I −ρ1(`)I
−ρ2(k)I I

]
, with I the m×m

identity matrix. We have then obtained

R AGn1

[
ψk

ψ`

]
=Λ

[
πn1 (k)ek

πn1 (`)e`

]
. (4.2.9)
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Now, by computing

Ac

[
πn1(k)ek

πn1(`)e`

]
=R

[
Id −G1

−G2 Id

][
πn1(k)ψk

πn1(`)ψ`

]
=R

[
πn1(k)ψk−πn1(`)ρ1(`)ψ`

πn1(`)ψ`−πn1(k)ρ2(k)ψk

]
=Λ

[
πn1(k)ek

πn1(`)e`

]
,

one obtains the action of A−1
c on Λ

[
πn1 (k)ek

πn1 (`)e`

]
, that is

[
πn1 (k)ek

πn1 (`)e`

]
= A−1

c Λ

[
πn1 (k)ek

πn1 (`)e`

]
. (4.2.10)

Using (4.2.9) and (4.2.10) we have

(I−PA−1
c R A)Gn1

[
ψk

ψ`

]
=

[
πn1 (k)ψk

πn1 (`)ψ`

]
−PA−1

c Λ

[
πn1 (k)ek

πn1 (`)e`

]
=

[
πn1 (k)ψk

πn1 (`)ψ`

]
−P

[
πn1 (k)ek

πn1 (`)e`

]
=

[
πn1 (k)ψk

πn1 (`)ψ`

]
−

[
πn1 (k)ψk

πn1 (`)ψ`

]
= 0.

(4.2.11)

This means that the S2S method is a direct method for all the pairs (ψk ,ψ`) with k ≤ m
and `≤ m. The result for n1 odd follows by similar calculations.

Next, let us consider the case k > m and `≤ m. Recalling that the basis {ψk }k is orthonor-
mal, one has

R AGn1

[
ψk

ψ`

]
= R

([
πn1 (k)ψk

πn1 (`)ψ`

]
−

[
πn1 (`)ρ1(`)ψ`

πn1 (k)ρ2(k)ψk

])
=

[
0 −ρ1(`)I
0 I

][
0

πn1 (`)e`

]
.

Similarly as before, we compute

Ac

[
0

πn1 (`)e`

]
= R A

[
0

πn1 (`)ψ`

]
= R

[−πn1 (`)ρ1(`)ψ`

πn1 (`)ψ`

]
=

[
0 −ρ1(`)I
0 I

][
0

πn1 (`)e`

]
,

which implies that [
0

πn1 (`)e`

]
= A−1

c

[
0 −ρ1(`)I
0 I

][
0

πn1 (`)e`

]
.

Thus, we have

T

[
ψk

ψ`

]
=Gn2

([
πn1 (k)ψk

πn1 (`)ψ`

]
−PA−1

c

[
0 −ρ1(`)I
0 I

][
0

πn1 (`)e`

])
=Gn2

([
πn1 (k)ψk

πn1 (`)ψ`

]
−P

[
0

πn1 (`)e`

])
=

[
πn1+n2 (k)ψk

0

]
.

(4.2.12)

Hence for any pair (ψk ,ψ`) with k > m and `≤ m, the S2S is a direct method only for the
`th error component, which belongs to the coarse space. The component k is not affected
by the coarse correction and only affected by the smoothing steps. For the remaining case
k > m and `> m, the same arguments as before imply that

T

[
ψk

ψ`

]
=Gn2 (I−PA−1

c R A)Gn1

[
ψk

ψ`

]
=Gn2Gn1

[
ψk

ψ`

]
=

[
πn1+n2 (k)ψk

πn1+n2 (`)ψ`

]
. (4.2.13)
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We can now study the norm of T . To do so, we first use (4.2.11), (4.2.12) and (4.2.13), and
that {ψk ,ψ`}k,` is a basis of H , to write

T v = T

[∑∞
k=1 ckψk∑∞
`=1 d`ψ`

]
= T

[∑∞
k=m+1π(k)ckψk∑∞
`=m+1π(`)d`ψ`

]
,

for any v ∈ H . Since |ρ1(k)| and |ρ2(k)| are non-increasing functions of k, |π(k)| is also a
non-increasing function of k. Therefore, using that the basis {ψk ,ψ`}k,` is orthonormal,
we get

‖T ‖op = sup
‖v‖2,∞=1

‖T v‖2,∞ ≤ max
(|πn1+n2 (k)|, |πn1+n2 (`)|)= |πn1+n2 (m +1)|.

This upper bound is achieved at v = [ψm+1,0]>. Hence, ‖T ‖op = |πn1+n2 (m +1)|. Now, a
similar direct calculation leads to ‖T n‖op = |πn(n1+n2)(m+1)|, which implies thatρS2S(T ) =
lim

n→∞(‖T n‖op)1/n = |πn1+n2 (m +1)|.

Theorem 4.2.5 shows that, similarly to the case of a coarse space based on the eigenfunc-

tions of G , the choice of the basis functions ψ j
k can affect drastically the convergence of

the method. We conclude this section dedicated to the S2S method with two remarks and
we refer the interested reader to [42] for further details. It is natural to pose the following
question: given an integer Nc , which is the coarse space of dimension Nc such that the
spectral radius of the S2S method is minimized? In other words, which is the coarse space
of dimension Nc leading to the fastest convergence? One would be tempted to say that
the spectral coarse space based on the eigenfunctions of G is optimal, as its convergence
is determined by the largest eigenvalue associated to an eigenvector not included in the
coarse space. However, we remark that the PCA and HEM coarse spaces, since they are
not based on eigenfunctions of G and A, lead to a two-level method with substantially
different eigenvalues and eigenvectors. It can happen that these coarse spaces do not
map exactly the “slowest” eigenvectors of G into the kernel of the S2S method, but they
can take care of them very efficiently, while still be faster on the remaining part of the
spectrum. We finally remark that the substructured matrix A is not symmetric but it has
eigenvalues strictly positive assuming σ(G) ⊂ [0,1). In the case of highly jumping diffu-
sion coefficients, the largest eigenvalues of G tends to one, which means that the smallest
eigenvalue of A tends to zero. If one uses a coarse space which is not made of eigenfunc-
tions of A, it can be that the coarse matrix Ac has some negative eigenvalue, which then
lead to a divergent method. We studied the effects of including a perturbed eigenvector
into the coarse space and we refer the interested reader to [42]. A simple numerical solu-
tion to this problem is to apply few times the smoother G to the basis of the coarse space,
in such a way to make each element of the basis closer to the eigenfunctions of G .

In the following section we aim to answer the following questions: is it possible to use
a two-level substructured method without providing directly a definition of the coarse
space Vc ? Is it possible to define a multilevel substructured domain decomposition method?
The G2S method is a positive answer to these needs.
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4.3 G2S method

In this section, we consider a discretization of the substructures such that each S j is ap-

proximated by a mesh of N j points, j ∈I . We denote the discrete substructures by S
N j

j ,

j ∈I and we set N s :=∑
j∈I N j . We then introduce finite-dimensional discretizations of

the operators G j ,` denoted by Gh, j ,` : RN j×N` . Similarly as in (4.1.13), we define the block
operators Ah ∈RN s×N s

and Gh ∈RN s×N s
as

[Ah] j , j = Ih, j , [Ah] j ,` =−Gh, j ,`, j ,k ∈I , j 6= k,

[Gh] j , j = 0, [Gh] j ,` =Gh, j ,`, j ,k ∈I , j 6= k,
(4.3.1)

where Ih, j ∈RN j×N j are identity matrices. Notice that Ah = Ih−Gh , where Ih = diag(Ih,1, . . . , Ih,N ).
Therefore, the substructured problem Av = b becomes

Ahv = bh ,

where bh = [bh,1, . . . ,bh,N ], and the PSM is then

vn =Ghvn−1 +bh . (4.3.2)

We emphasize that the matrices Gh and Ah are never assembled explicitly and their action
on given vectors is computed directly. Note that the action of Gh, j ,` on a given vector
requires a subdomain solve which is performed exactly. Concerning the invertibility of
Ah it is sufficient to assume ρ(Gh) < 1, that is the discrete PSM converges.

To define a two-grid method, we introduce coarser discretizations of the substructures

S
M j

j , j ∈ I , where M j < N j points. The total number of discrete coarse points is M s :=∑
j∈I M j . For each j ∈I we introduce restriction and prolongation matrices R j ∈RM j×N j

and P j ∈ RN j×M j . These could be classical interpolation operators used, e.g., in multi-
grid methods. If for example S j is a one-dimensional interval, then the full weighting
restriction matrix and the prolongation matrix are

R j := 1

2


1
2 1 1

2 · · ·
1
2 1 1

2 · · ·
1
2 · · ·

· · ·
· · · 1

2 1 1
2

 , P j := 2R>
j . (4.3.3)

We remark that using P j we are assuming that the function we interpolate is zero at
the boundary of the substructure, and this holds true since each function v j belongs

to H
1
2

00(S j ). The global restriction and prolongation matrices are defined block-wise as
R := diag(R1, . . . ,RN ) ∈ RM s×N s

and P := diag(P1, . . . ,PN ) ∈ RN s×M s
. The restriction of Ah

on the coarse level is then defined as A2h := R AhP . Notice that this matrix can be either
precomputed exactly or assembled in an approximate way. The G2S procedure is defined
by Algorithm 3, replacing the continuous operators with their discrete counterparts, and
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with the specific choice of the geometrical restriction and prolongation operators. One
iteration of the G2S method in the error form can therefore be written as

enew = Theold with Th :=Gn2

h (Ih −PA−1
2h R Ah)Gn1

h . (4.3.4)

We conclude this paragraph with some remarks.

• The G2S method is a classical two-grid type iteration, but instead of having the clas-
sical grids in volume, we consider two discrete levels on the substructures. This has
the advantage of performing all restriction and interpolation operations on inter-
faces which are one dimension smaller than the original domain Ω. Thus, dealing
with a problem in 3D, the G2S method requires to perform restriction and interpo-
lation operations in 2D.

• We refer the interested reader to [43, Section 3.2.3] for a discussion of analogies and
differences between the G2S method and a two-grid volume method. In particular,
it is shown that the G2S method is spectrally equivalent to a two-grid method in
volume which is very different from a standard two-grid method in volume using
PSM as a smoother.

• We insist that the G2S method does not require the explicit construction of a coarse
space Vc , but it exploits directly a discretization of the interfaces. However, it is
possible to show that the G2S method coincides with a S2S method with a precise
choice for the spectral coarse space, see [43, Section 3.2.1].

• The dimension of the coarser problem A2h is equal to the number of unknowns on
the substructures on the coarse mesh, and thus it is generally very small if compared
to the size of a coarse matrix of a two-grid method in volume. Thus, generally less
levels are required to obtain a sufficiently small coarse matrix to invert.

• If needed, it is clear that a simple recursion allows us to embed the G2S method into
a multi-grid framework. We discuss further implementation details in Section 4.4.

• The G2S method permits to have more freedom in the choice of the grids with re-
spect to volume methods. Since the coarse correction is added only on the sub-
structures, one could use a coarse grid which is coarser and coarser as the distance
from the substructures increases. A stretched mesh is not natural in the volume
case, as it would lead to a poor volume coarse correction away from the substruc-
tures and would require a more sophisticated volume interpolation step.

4.3.1 Convergence analysis

In this section, we analyze the convergence behavior of the G2S method. To do so, we
consider our model problem (3.1.1) and assume the two-subdomain decomposition de-
picted in Figure 4.1. We recall that such a decomposition implies S1 = Γ2 and S2 = Γ1

which are segments of same length L̃. For a given ` ∈N+, `≥ 2, we discretize (3.1.1) using
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Ω′

Ω′
1 Ω′

2

h

S2S1

P←−

R
−→

Ω′

Ω′
1 Ω′

2

2h

S2S1

Figure 4.1: Two-subdomain decomposition, substructures and their discretizations.

a uniform grid of Nh = 2`−1 points on each substructure so that the grid size is h = L̃
Nh+1 .

We also introduce a coarser mesh of Nc = 2`−1 −1 points on each substructure and mesh
size hc = 1

Nc+1 . We define the geometric prolongation operator P h
2h ∈ R2Nh×2Nc as P h

2h :=
diag(P̃ , P̃ ) and the geometric restriction operator Rh

2h ∈ R2Nc×2Nh as Rh
2h := diag(R̃, R̃). R̃

and P̃ correspond to the matrices P j ,R j in (4.3.3).

We suppose that the operators Gh,1 and Gh,2 have as eigenvectors the discrete Fourier
modes given by (ψψψk ) j = sin(kπh j ), for j ,k = 1, . . . , Nh . The eigenvalues are ρ j (k), k =
1, . . . , Nh , j = 1,2. It is well-known that the actions of R̃ and P̃ on the combination of a
low-frequency modeψψψk with its high-frequency companionψψψk̃ , with k̃ = Nh −k +1, are

R̃
[
ψψψk ψψψk̃

]=φφφk

[
c2

k −s2
k

]
, P̃φφφk = (c2

kψψψk − s2
kψψψk̃ ) = [

ψψψk ψψψk̃

][
c2

k
−s2

k

]
, (4.3.5)

where ck = cos(kπh
2 ), sk = sin(kπh

2 ) for k = 1, . . . , Nc and (φφφk ) j = sin(kπ2h j ), for k =
1, . . . , Nh+1

2 − 1 and j = 0, . . . , Nh+1
2 ; see, e.g., [109]. The vectors φφφk are Fourier modes on

the coarse grid. Before studying the convergence of the method, we discuss the well-
possessedness of the G2S iteration (4.3.4).

Lemma 4.3.1 (Invertibility of A2h). Assume that ρ1(k),ρ2(k) ∈ [0,1) for all k and that
ρ1(k) ≥ ρ1(k̃) and ρ2(k) ≥ ρ2(k̃) for any k = 1, . . . , Nc and k̃ = Nh − k + 1. The matrix
A2h := Rh

2h AhP h
2h ∈R2Nc×2Nc has full rank.

Proof. We refer the interested reader to the proof of Lemma 3.2 [43]

We now derive sharp estimates for the spectral radius of Th . The first step is this technical
Lemma.

Lemma 4.3.2. Consider the G2S matrix Th :=Gn2

h (I −P h
2h A−1

2h Rh
2h Ah)Gn1

h . The action of Th

on

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
is given by

Th

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
G̃k , (4.3.6)
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where G̃k := Dn2 (k)(Dn1 (k)−V (k)Λ−1
2 (k)Λ1(k)) with

Λ1(k) :=V (k)>H(k)Dn1 (k), Λ2(k) :=V (k)>H(k)V (k),

V (k) :=


c2

k 0
−s2

k 0
0 c2

k
0 −s2

k

 , H(k) :=


1 0 −ρ1(k) 0
0 1 0 −ρ1(k̃)

−ρ2(k) 0 1 0
0 −ρ2(k̃) 0 1

 ,

and Dn(k) is given by

Dn(k):=


π(k)n 0 0 0

0 π(k̃)n 0 0
0 0 π(k)n 0
0 0 0 π(k̃)n

, Dn(k):=


0 0 π21(k,n) 0
0 0 0 π21(k̃,n)

π12(k,n) 0 0 0
0 π12(k̃,n) 0 0


for n even and for n odd, respectively, whose entries are π(k) := (ρ1(k)ρ2(k))1/2, π12(k,n) :=
ρ1(k)

n−1
2 ρ2(k)

n+1
2 , and π21(k,n) := ρ1(k)

n+1
2 ρ2(k)

n−1
2 .

Proof. We consider the case in which both n1 and n2 are even. The other cases can be
obtained by similar arguments. Since n1 is even, we have that

Gn1

h =
[

(Gh,1Gh,2)n1/2 0
0 (Gh,2Gh,1)n1/2

]
.

Because of the relation (Gh,1Gh,2)n1/2ψψψk = (Gh,2Gh,1)n1/2ψψψk = πn1 (k)ψψψk , where π(k) :=
(ρ1(k)ρ2(k))1/2, we get

Gn1

h

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
π(k) 0 0 0

0 π(k̃) 0 0
0 0 π(k) 0
0 0 0 π(k̃)


n1

=
[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
Dn1(k).

Similarly, we obtain that Gn2

h

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
Dn2 (k). Moreover, direct

calculations reveal that

Ah

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
1 0 −ρ1(k) 0
0 1 0 −ρ1(k̃)

−ρ2(k) 0 1 0
0 −ρ2(k̃) 0 1

=[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
H(k)

(4.3.7)

and

Rh
2h

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
φφφk 0
0 φφφk

][
c2

k −s2
k 0 0

0 0 c2
k −s2

k

]
=

[
φφφk 0
0 φφφk

]
V (k)>, (4.3.8)
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where we used (4.3.5). It follows that Rh
2h AhGh

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
φφφk 0
0 φφφk

]
Λ1(k). Let us study

the action of the coarse matrix A2h on

[
φφφk 0
0 φφφk

]
. We use (4.3.5), (4.3.7) and (4.3.8) to write

A2h

[
φφφk 0
0 φφφk

]
= Rh

2h AhP h
2h

[
φφφk 0
0 φφφk

]
= Rh

2h Ah

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
V (k)

= Rh
2h

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
H(k)V (k) =

[
φφφk 0
0 φφφk

]
V (k)>H(k)V (k).

Thus, we have A2h

[
φφφk 0
0 φφφk

]
=

[
φφφk 0
0 φφφk

]
Λ2(k). Hence, recalling Lemma 4.3.1 we get

[
φφφk 0
0 φφφk

]
= A−1

h,c

[
φφφk 0
0 φφφk

]
Λ2(k). (4.3.9)

A direct calculation reveals that the eigenvalues ofΛ2(k) are

λ1,2 = c4
k + s4

k ±
√

(c4
kρ1(k)+ s4

kρ1(k̃))(c4
kρ2(k)+ s4

kρ2(k̃)),

and they are nonzero for k = 1, . . . , Nc . Hence,Λ2(k) is invertible and, using (4.3.9), we get

A−1
h,c

[
φφφk 0
0 φφφk

]
Λ1(k) = A−1

h,c

[
φφφk 0
0 φφφk

]
Λ2(k)Λ−1

2 (k)Λ1(k) =
[
φφφk 0
0 φφφk

]
Λ−1

2 (k)Λ1(k),

Summarizing our results and using the definition of Th , we conclude that

Th

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
Dn2 (k)

Dn1 (k)−


c2

k 0
−s2

k 0
0 c2

k
0 −s2

k

Λ−1
2 (k)Λ1(k)


and our claim follows.

Using Lemma 4.3.2, it is possible to factorize the iteration matrix Th . This factorization is
obtained in the following theorem.

Theorem 4.3.3 (Factorization of the iteration matrix Th). There exists an invertible matrix
Q such that Th =QG̃Q−1, where the G2S iteration matrix Th is defined in Lemma 4.3.2 and

G̃ =


G̃1

. . .

G̃Nc

γ1( Nh+1
2 )

γ2( Nh+1
2 )

 ,

where the matrices G̃k ∈ R4×4 are defined in Lemma 4.3.2 and γ j ( Nh+1
2 ) depend on n1, n2

and the eigenvalues ρ j ( Nh+1
2 ) of Gh, j , for h = 1,2.



CHAPTER 4. SUBSTRUCTURED MULTILEVEL DD METHODS 131

Proof. We define the invertible matrix

Q =
[
ψψψ1 ψψψNh

0 0 · · · ψψψNc
ψψψNc+2 0 0 ψψψ Nh+1

2
0

0 0 ψψψ1 ψψψNh
· · · 0 0 ψψψNc

ψψψNc+2 0 ψψψ Nh+1
2

]
.

Equation (4.3.6) says that Th

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
G̃k , for every k =

1, . . . , Nc and k̃ = Nh −k −1. Moreover, notice that the frequencyψψψ Nh+1
2

is mapped to zero

by the restriction operator, Rh
2h

[
ψψψ Nh+1

2
0

0 ψψψ Nh+1
2

]
= 0, and we get

Th

[
ψψψNh+1

2
0

0 ψψψNh+1
2

]
=Gn2

h Gn1

h

[
ψψψNh+1

2
0

0 ψψψNh+1
2

]
=

γ1(Nh+1
2 )ψψψNh+1

2
0

0 γ2(Nh+1
2 )ψψψNh+1

2

,

where the expressions of γ1( Nh+1
2 ) and γ2( Nh+1

2 ) depend on n1 and n2. For instance if

n1 +n2 is an even number, then γ1( Nh+1
2 ) = γ2( Nh+1

2 ) := (ρ1( Nh+1
2 )ρ2( Nh+1

2 ))
n1+n2

2 . Hence,
we conclude that ThQ =QG̃ and our claim follows.

The factorization of Th proved in Theorem 4.3.3 allows one to obtain precise convergence
results of a G2S method. Clearly, an optimal result would be a direct calculation of the
spectral radii of the matrices G̃k . However, this is in general a difficult task that requires
cumbersome calculations. Nevertheless, in Theorem 4.3.4 we are capable to obtain an
explicit expression for the spectral radii of G̃k under some reasonable assumptions that
are in general satisfied in case of Schwarz methods. Notice also that Theorem 4.3.4 guar-
antees that only one (pre- or post-) smoothing step is necessary for the G2S method to
converge.

Theorem 4.3.4. Assume that 1 > ρ1(k) = ρ2(k) = ρ(k) ≥ 0 for any k and that ρ(k) is a
decreasing function of k. The convergence factor of the G2S method is

ρG2S(Th) = max
k∈{1,...,Nc ,

Nh+1
2 }

(
c4

k (1−ρ(k))ρ(k̃)n1+n2 + s4
k (1−ρ(k̃))ρ(k)n1+n2

c4
k (1−ρ(k))+ s4

k (1−ρ(k̃))

)
< 1.

Proof. The convergence factor of the G2S is given by the spectral radius of the iteration
matrix Th . Theorem 4.3.3 implies that

ρG2S(Th) = max
{

max
k∈{1,...,Nc }

ρ(G̃k ),γ1

(
Nh +1

2

)
,γ2

(
Nh +1

2

)}
.
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G2S G2S C.C. Volume two-level Volume C.C.

vn+ 1
2 =Ghvn +bh O(N 3

sub) u
n+ 1

2
v = N un

v +M−1bv O(N 3
sub)

rn+ 1
2 = bh − Ah vn+ 1

2 O(N 3
sub) r

n+ 1
2

v = bv − Av u
n+ 1

2
v O((N v )2)

vn+1
c = A−1

2h (Rrn+ 1
2 ) O((M s )γs ) un+1

vc = A−1
vc (Rv r

n+ 1
2

v ) O((M v )γv )

vn+1 = vn+ 1
2 +Pvn+1

c O(M s N s ) un+1
v = u

n+ 1
2

v +Pv un+1
vc O(M v N v )

Table 4.1: Computational cost (C.C.) per iteration.

Regardless of the values of n1 and n2, direct calculations show that the matrices G̃k have
four eigenvalues:

λ1(k) =λ2(k) = 0,

|λ3(k)| = c4
k (1−ρ(k))ρ(k̃)n1+n2 + s4

k (1−ρ(k̃))ρ(k)n1+n2

c4
k (1−ρ(k))+ s4

k (1−ρ(k̃))
,

|λ4(k)| = c4
k (1+ρ(k))ρ(k̃)n1+n2 + s4

k (1+ρ(k̃))ρ(k)n1+n2

c4
k (1+ρ(k))+ s4

k (1+ρ(k̃))
.

Moreover, we observe that

|λ3(k)|− |λ4(k)| = 2c4
k s4

k (ρ(k)−ρ(k̃))(ρ(k)n1+n2 −ρ(k̃)n1+n2 )

((ρ(k)+1)c4
k + s4

k (ρ(k̃)+1))((1−ρ(k))c4
k + s4

k (1−ρ(k̃))
≥ 0,

where we used the monotonicity of ρ(k). On the other hand, since ρ1(k) = ρ2(k) = ρ(k),
we have γ1( Nh+1

2 ) = γ2( Nh+1
2 ) = ρ( Nh+1

2 )n1+n2 . Therefore we have that

max

{
max

k∈{1,...,Nc}
ρ(G̃k),ρ

(
Nh+1

2

)n1+n2
}
=max

{
max

k∈{1,...,Nc}
|λ3(k)|,ρ

(
Nh+1

2

)n1+n2
}

,

and the result follows by observing that λ3

(
Nh+1

2

)
= ρ

(
Nh+1

2

)n1+n2
, since ρ(k̃) = ρ(k) for

k = Nh+1
2 .

4.4 Implementation details of two-level substructured methods

In this section, we study the computational costs (C.C.) of one iteration of the G2S and
of a two-grid method in volume which uses the same smoother. Let N v be the size of
the volume problem and N s the size of the substructured problem (N s ¿ N v ). The size
of each subdomain is Nsub. The coarse spaces are of dimension M s for the G2S method
and M v for the volume method. The restriction and prolongation operators in volume
are denoted by Rv and Pv . For simplicity we assume n1 = 1, n2 = 0. The computational
costs of one iteration are reported in Table 4.1. For simplicity, we assume that restriction
and prolongation operations are classical matrix-vector products. Since the dimension
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Figure 4.2: Sparsity pattern for matrices Ah (left) and A2h (right).

of the substructured coarse space is smaller, the G2S could require much less computa-
tional effort in the solution of the coarse problem. However, we remark that the coarse
matrix A2h is typically block-dense, where the block structure is related to the connec-
tivity among the subdomains. We report in Figure 4.2 the sparsity patter of Ah and A2h

for a regular decomposition of a square into 4x4 subdomains. On the other hand, Avc is
typically a sparse matrix and the sparsity pattern depends on the discretization method.
In both cases, there are sophisticated algorithms for the solution of the corresponding
linear systems, and thus we use two parameters γs and γv to indicate the computational
cost of the coarse solvers. Assuming that the two coarse problems have the same, neg-
ligible, computational cost, Table 4.1 shows that in both cases the dominating costs cor-
respond to the application of the smoothing operators. This application costs O(N 3

sub)
for both approaches. However, the G2S method requires twice a cost of order O(N 3

sub),
since the computation of the residual involves the substructured matrix Ah and thus it
requires subdomain solves. If we could avoid this extra cost, then the G2S methods would
be faster than a volumetric method, since all other operations are performed on arrays
of much smaller sizes. Furthermore, we remark that the G2S method requires in general
less iterations than the corresponding method in volume as we will show in Section 4.6. To
avoid the two applications of the smoother in the G2S method, we exploit the special form
of the matrix Ah = Ih −Gh and propose two new versions of Algorithm 3. These are called
G2S-B1 and G2S-B2 and given by Algorithms 4 and 5. These substructured algorithms
require only one smoothing step per iteration and thus they are potentially cheaper than
a two-grid method in volume using the same smoother. We remark that the G2S-B1 and
G2S-B2 require to store the matrix P̃ := GhP . This matrix is anyway computed in a pre-
computation phase to assemble the coarse matrix A2h = R AhP = RP −RGhP = RP −RP̃ .
Hence no extra cost is required. Moreover, we now prove that G2S and G2S-B1 are equiv-
alent and they have the same spectral properties of G2S-B2.

Theorem 4.4.1 (Equivalence between G2S, G2S-B2 and G2S-B1). Algorithm 5 and Algo-
rithm 4 have the same convergence behavior. Moreover,

(a) Algorithm 4 generates the same iterates of Algorithm 3.
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Algorithm 4: G2S-B1

Require: v0 and P̂ =GhP .
1: v1 =Ghv0 +bh ,
2: w =Ghv1,
3: r = bh −v1 +w,
4: vc = A−1

2h Rr,
5: v0 = v1 +Pvc ,

Iterations:
6: v1 = w+ P̂vc +bh ,
7: w =Ghv1,
8: r = bh −v1 +w,
9: vc = A−1

2h Rr,
10: v0 = v1 +Pvc ,
11: Repeat 6 to 10 until convergence.

Algorithm 5: G2S-B2

Require: v0 and P̂ =GhP .
1: v =Ghv0,
2: r = bh −v0 +v,
3: vc = A−1

2h Rr,
4: v0 = v+ P̂vc +bh ,
5: Repeat 1 to 5 until convergence.

(b) Algorithm 5 corresponds to the stationary iterative method

vn =Gh(Ih −PA−1
2h R Ah)vn−1 + M̃bh ,

where Gh(Ih −PA−1
2h R Ah) is the iteration matrix and M̃ the relative preconditioner.

Proof. For simplicity, we suppose to work with the error equation and thus bh = 0. We call
ṽ0 the output of the first five steps of Algorithm 4 and v̂0 the output of Algorithm 3. Then
given an initial guess v0, we have

ṽ0 = v1 +Pvc = v1 +PA−1
2h R(−v1 +w)

=Ghv0 +PA−1
2h R(−AhGhv0) = (Ih −PA−1

2h R Ah)Ghv0 = v̂0.

Similar calculations show that also steps 6-10 of G2S-B1 are equivalent to an iteration of
3. For the second part of the Theorem, we write one iteration of Algorithm 5 as

v1 = v+ P̂vc =Gv0 +GhPA−1
2h R(−Ahv0) =Gh(Ih −PA−1

2h R Ah)v0.

Hence, Algorithm 5 performs a post-smoothing step instead of a pre-smoothing step as
Algorithm 4 does. The method still has the same convergence behavior since the matrices
Gh(Ih −PA−1

2h R Ah) and (Ih −PA−1
2h R Ah)Gh have the same eigenvalues.

Notice that Algorithm 4 requires for the first iteration two applications of the smoothing
operator Gh , namely two subdomains solves. The next iterations, given by Steps 6-10,
need only one application of the smoothing operator Gh . Theorem 4.4.1 (a) shows that
Algorithm 4 is equivalent to Algorithm 3. This means that each iteration after the first one
of Algorithm 4 is computationally less expensive than one iteration of a volume two-level
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DD method. Since two-level DD methods perform generally few iterations, it could be im-
portant to get rid of the expensive first iteration. For this reason, we introduce Algorithm
5, which overcome the problem of the first iteration. Theorem 4.4.1 (b) guarantees that Al-
gorithm 5 is exactly an S2S method with no pre-smoothing and one post-smoothing step.
Moreover, it has the same convergence behavior of Algorithm 4. These implementation
tricks can be readily generalized to a general number of pre- and post-smoothing steps
and they can also be applied to the S2S method.

Concerning the specific implementation details for the G2S, we remark that one can lighten
the off-line assembly of the matrix A2h = Rh

2h AhP h
2h , using instead the matrix

Ã2h :=
[

I2h,2 −G2h,1

−G2h,2 I2h,1

]
, (4.4.1)

which corresponds to a direct discretization of A on the coarse level.

4.5 Extension to a multilevel framework

Two-grid methods in volume are not very efficient for the solution of large problems due
to the dimension of the coarse problem which is roughly about one fourth of the dimen-
sion of the full problem in two dimensions. We have already remarked that the size of
the substructured coarse matrix is usually quite small, since it corresponds to the num-
ber of unknowns on a coarse discretization of the substructures. Nevertheless, there can
be problems for which the direct solution of the coarse problem is inconvenient also in
a substructured framework. For instance, if we considered several subdomains, then we
would have several substructures and therefore the size of the substructured coarse ma-
trix increases.

The G2S method is suitable to be generalized to multilevel framework following a classical
multigrid strategy [109]. Given a sequence of grids on the substructures labeled from the
coarsest to the finest by {`min,`min+1, . . . ,`max}, we denote by P`

`−1 and R`
`−1 the interpo-

lation and restriction operators between grids ` and `−1. To build the substructured ma-
trices on the different grids we have two possible choices. The first one corresponds to the
standard Galerkin projection. Letting A`max be the substructured matrix on the finest grid,
we can define the coarse matrices A` := R`+1

`
A`+1P`+1

`
, for ` ∈ {`min,`min+1, . . . ,`max−1}.

The second choice consists in defining A` directly as the discretization of (4.1.13) on
the grid labeled by `, and corresponds exactly to (4.4.1) for the two-grid case. The two
choices are not equivalent. On the one hand, the Galerkin approach leads to a faster
method in terms of iterations. However, the Galerkin matrices A` do not have the block
structure as in (4.1.13). For instance, A`max−1 = R`max

`max−1 A`max P`max

`max−1 = R`max

`max−1P`max

`max−1 −
R`max

`max−1G`max P`max

`max−1. Thus, the identity matrix is replaced by the sparse matrix R`max

`max−1P`max

`max−1.
On the other hand, defining A` directly on the current grid ` as in (4.4.1) leads to a minor
increase of the iteration number, but it permits to preserve the original block-diagonal
structure (which is important if one wants to use G2S-B1 and G2S-B2). The difference be-
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Algorithm 6: Geometric multilevel substructured DD method - GMS(u0,b,`)

1: if `= `min, then
2: set v0 = A−1

`min
b. (direct solver)

3: else
4: vn =G`(vn−1,b), n = 1, . . . ,n1 (DD pre-smoothing steps)
5: r = b− A`vn1 (compute the residual)
6: vc =GMS(0,R`

`−1r,`−1). (recursive call)

7: v0 = vn1 +P`
`−1vc (coarse correction)

8: vn =G`(vn−1,b), n = 1, . . . ,n2 (DD post-smoothing steps)
9: Set v0 = vn2 (update)

10: end if
11: return u0.

tween the two approaches is also studied numerically in Section 4.6. In spite of the choice
of A`, the geometric multilevel substructured domain decomposition method (GMS) is
described in Algorithm 6, which is a substructured multi-grid V-cycle.

4.6 Numerical Experiments

In this section we present numerical experiments to validate the computational frame-
work presented in this chapter. Subsection 4.6.3 considers a Laplace equation in a two
subdomains decomposition. We consider a two dimensional problem and the aim is to
provide an overview of the different methods in this simple example. We then consider
a three dimensional problem, showing the effects of the implementation tricks discussed
in section 4.4 and we present a comparison of computational times. In subsection 4.6.2,
we consider the Laplace equation in a many-subdomain decomposition and, while dis-
cussing the numerical results, we provide further implementation details. Finally subsec-
tion 4.6.3 deals with a more challenging diffusion problem with jumping coefficients.

4.6.1 Laplace equation on 2D and 3D boxes

We consider the Poisson equation −∆u = f in a rectangleΩ= (−1,1)×(0,1) with homoge-
neous Dirichlet boundary condition. The domain Ω is decomposed into two overlapping
rectanglesΩ1 = (−1,δ)×(0,1) andΩ2 = (−δ,1)×(0,1), where 2δ is the length of the overlap.
We discretize the problem using a standard second-order finite difference scheme based
on a uniform grid of Ny = 2`−1 interior points in direction y and Nx = 2Ny +1 interior
points in direction x. The overlap is 2δ = h(Nov +1) where h is the mesh size and where
Nov represents the number of interior points in the overlap in direction x. The results of
our numerical experiments are shown in Figures 4.3.

For the G2S method we use the one-dimensional interpolation operator P h
2h defined in

(4.3.3) and Rh
2h = 1

2 (P h
2h)>. For the S2S method and the SHEM method, we used coarse
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Figure 4.3: Convergence curves for ` = 6, Nov = 4, and Nc = 10 (top-left), Nc = 20 (top-
right), Nc = 40 (bottom).

spaces of dimension Nc . This means that for the SHEM method and S2S-G j , we include
Nc /2 sine Fourier functions on each interface. We also used the S2S method together
with Nc coarse functions generated randomly by the PCA procedure and this is denoted
by “S2S-PCA”. To generate the PCA coarse space, we set q = 2Nc and r = 2.

The figures show the decay of the relative errors with respect to the number of iterations.
All the methods are stopped if the relative error is smaller that 10−12. The G2S and the
two-grid RAS methods outperform the other methods in terms of iterations numbers and
the G2S method outperforms the two-grid RAS method. Notice that, while the G2S coarse
space has dimension about Ny , the one corresponding to the two-grid RAS method has
dimension about Nx Ny /4 ≈ N 2

y /2 À Ny . The spectral methods perform very well since

already for Nc = 10 they achieve an error of about 10−6 with less than 10 iterations and we
emphasize that the PCA coarse space has the same performance. Increasing the dimen-
sion of the coarse space, the convergence of the S2S methods and of the SHEM method
drastically improves. Notice that if Nc = 40, the dimension of the coarse spaces for S2S
and SHEM is 40, while the dimension of the coarse spaces of G2S and 2L-RAS are about
60 and 1900, respectively. The slower performance of 2L-RAS with respect to G2S can
be traced back to the interpolation step. This operation breaks the harmonicity of the
obtained correction, which therefore does not lie anymore in the space where the errors
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# (volume) G2S G2S-B1 G2S-B2 2L-RAS
539 4 4 4 6
6075 5 5 4 6
56699 4 4 4 6
488187 4 4 4 6

Table 4.2: Number of iterations performed by the different methods and for different
number of degrees of freedom.

# (volume) G2S G2S-B1 G2S-B2 2L-RAS
539 0.023 (0.005) 0.010 (0.003) 0.010 (0.003) 0.039 (0.06)
6075 0.143 (0.028) 0.102 (0.024) 0.070 (0.017) 0.190 (0.03)
56699 2.700 (0.675) 1.598 (0.399) 1.280 (0.320) 4.128 (0.688)
488187 126.0980 (31.524) 78.363 (19.591) 63.131 (15.783) 189.162 (31.527)

Table 4.3: Computational times performed by the different methods. In parentheses we
indicate the computational time per iteration.

lie; see, e.g., [94]. One could use interpolators which extend harmonically the correction
inside the overlapping subdomains although this would increase significantly the com-
putational cost of each iteration, see the discussion in Chapter 3.

Next, we repeat the same experiments on a three-dimensional box Ω = (−1,1)× (0,1)×
(0,1) decomposed into two overlapping subdomains Ω1 = (−1,δ)× (0,1)× (0,1) and Ω2 =
(−δ,1)× (0,1)× (0,1). Since we are interested in computational times, we solve the prob-
lem (up to a tolerance of 10−10 on the relative error) using the G2S method, its equivalent
forms G2S-B1 and G2S-B2, introduced in Section 4.4, and
2L-RAS. The length of the overlap is δ = hNov , where h is the grid size and Nov is fixed
to 4. Hence the overlap is proportional to the grid size. The results are shown in Tables
4.2 and 4.3. It is clear that the G2S methods outperforms 2L-RAS, in terms of iteration
numbers and computational times. In particular, G2S-B1 and G2S-B2 require per itera-
tion about half of the computational time required by 2L-RAS. The experiments have been
performed on a workstation with 8 processors Intel Core i7-6700 CPU 3.40GHz and with
32 GB of RAM.

4.6.2 Decompositions into many subdomains

In this paragraph, we consider a square domain Ω decomposed into M ×M nonoverlap-
ping square subdomainsΩ j , j = 1, ..., M 2 = N . Each subdomainΩ j contains N 2

sub interior

degrees of freedom, with Nsub := 2` − 1. Extending the subdomains Ω j by Nov points,
we obtain the overlapping subdomains Ω′

j with overlap δ = 2Nov h. On each subdomain

Ω j , we locate the discrete substructure S
N j

j , marked with blue lines in Figure 4.4, which
is made by four (one-dimensional) segments. On this domain, we consider a classical
Laplace equation.
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Ω j

Ω′
j Ω′

j

Figure 4.4: A nonoverlapping subdomain Ω j is enlarged by Nov = 2 points in each direc-

tion. The discrete substructure S
N j

j is denoted by a blue line. On the right panel, the

coarse discrete substructure S
M j

j is marked by red crosses.

Figure 4.5 compares several versions of the S2S method with respect to the SHEM coarse
space. We follow [90] for the implementation details of SHEM. We specifically compare
a S2S method with a coarse space made by eigenfunctions of G (S2S-G), a S2S method
with a coarse space obtained with the PCA procedure (S2S-PCA), and a S2S method with
a coarse space which is derived by the SHEM coarse space (S2S-HEM, that is S2S Har-
monically Enriched Multiscale). In more detail, we first create the SHEM coarse space
solving interface eigenvalue problems, see equation (8) in [90], and we extend these in-
terface functions into the interior of the subdomains. We then restricted these volume
functions on the substructures to obtain a basis for the S2S-HEM coarse space. For the
PCA approach, we generated q = 2×dimVc random vectors xk and we set r = 2. The result
we plot is averaged over 30 different random coarse spaces. The size of the coarse space
is set by the SHEM coarse space. In the left panel, we consider only the multiscale func-
tions without solving any eigenvalue problem along the interfaces. In the center panel,
we include the first eigenfunctions on each interface, and on the right we include the first
and the second eigenfunctions. In all cases we observe that the methods have a similar
convergence, which is slightly faster for the substructured methods. As we remarked at
the end of Section 4.2, S2S-G is not necessarily the fastest.

We now focus on the G2S method. For each discrete substructure S
N j

j , the geometric
interpolation operator P j acts block-wise on each one dimensional interval, i.e. P j =
diag{P̃1, P̃2, P̃3, P̃4}, where each P̃k , k = 1, ..,4, corresponds to the prolongation matrix
(4.3.3). The results of our numerical experiments for the G2S method are reported in Fig-
ure 4.6. The left panel shows the dependence of the spectral radius on the size of the
overlap for the one-level substructured method G , the RAS method, the G2S method and
the 2L-RAS method for N = 16, ` = 5. We then study the robustness of the method with
respect to an increasing number of subdomains. We first keep the size of each subdomain
fixed, Nsub = 25 −1, and thus we consider larger global problems as N grows. Then, we
fix a global domain Ω with approximately 17 ·103 interior degrees of freedom, and we get
smaller subdomains as N grows. In both cases, we observe that the spectral radius of both
2L-RAS and G2S does not deteriorate as the number of subdomains increases. Moreover,
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Figure 4.5: Convergence behavior of the different methods for a Laplace equation wit N =
16, ` = 4 and Nov = 2. The dimension of the coarse space is 36 (top-left), 84 (top-right),
132 (bottom).
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Figure 4.6: Dependence of spectral radius on the overlap (left) and robustness of the two-
level methods when increasing the number of subdomains for subdomains with same
size (center) and global problem fixed (right).

these numerical experiments confirm that the G2S method is faster in terms of iteration
count compared to the 2L-RAS method.

4.6.3 Diffusion problem with jumping diffusion coefficients

In this section, we test the S2S and G2S methods for the solution of a diffusion equation
−div(α∇u) = f in a square domain Ω := (0,1)2 with f := sin(4πx)sin(2πy)sin(2πx y). The
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Figure 4.7: Decomposition of Ω into 16 subdomains with two different patterns of chan-
nels (left and center) and solution of the equation with the central pattern (right).
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Figure 4.8: Illustration of the action of the restriction operator in volume (left) and of the
restriction and interpolation operators on a one-dimensional substructure (right).

domain Ω is decomposed into 16 non-overlapping subdomains and we suppose α = 1
everywhere except in some channels where α takes the values 102, 104 and 106. We con-
sider two configurations represented in Figure 4.7. We use a finite-volume discretization,
where each non-overlapping subdomain is discretized with Nsub = 2` cells and it is en-
larged by Nov cells to create an overlapping decomposition with overlap δ = 2Nov h. We
further assume that the discontinuities of the diffusion coefficient are aligned with the
edges of the cells and they do not cross any cell.

Concerning the geometric methods, the mapping between the fine and coarse mesh is
illustrated in Figure 4.8. At the volume level, the restriction operator maps four fine cells
to a single coarse cell by averaging the four cell values and the interpolation operator
is its transpose. At the substructured level, the restriction operator maps two fine cells
to a single coarser cell by averaging. The interpolation operator splits one coarse cell
to two fine cells assigning the same coarse value to each new cell. It still holds that the
interpolation operators is the transpose of the restriction operator. In this setting, we
study the robustness of the G2S method with respect to the mesh size and the amplitudes
of the jumps of α and we compare it to the 2L-RAS method. In Table 4.4 we report the
number of iterations to reach a relative error of Tol = 10−12. The iterations performed by
the G2S method are the numbers on the left in each cell of the table, while the iterations
of the 2L-RAS are the numbers in brackets on the right. These results show that the G2S
method is robust both with respect the jumps of the diffusion coefficient and the mesh
size, and that it outperforms the 2L-RAS method.
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dimVc 456 840 1608

α N v 4096 16384 65536
102 7 (39) 7 (41) 7 (41)
104 7 (42) 7 (41) 7 (41)
106 7 (39) 7 (40) 7 (40)

dimVc 456 840 1608

α N v 4096 16384 65536
102 8 (45) 7 (41) 7 (41)
104 8 (42) 7 (41) 7 (41)
106 8 (39) 7 (39) 7 (40)

Table 4.4: Number of iterations performed by the G2S and 2L-RAS (in brackets) methods
with Nov = 2 and for different values of jumps of α and different numbers of degrees of
freedom N v . The dimension of the substructured coarse space is dimVc . The left table
refers to the two channels configuration and the right table to the multiple channels one.

α S2S-G S2S-PCA S2S-EHM SHEM
102 11-9-7 11-9-7 10-9-7 12-10-7
104 11-9-7 11-9-7 11-9-7 12-11-7
106 11-9-7 10-8-7 10-8-7 10-9-7

Table 4.5: For each spectral method and value of α, we report the number of iterations
to reach a relative error smaller than 10−8 with a coarse space of dimension 84 (left), 132
(center) and 180 (right). The discretization parameters are N v = 16384 and Nov = 2.

We then investigate the performances of the S2S methods and we compared them with
the SHEM coarse space in the multiple channel configuration. We set ` = 4, which cor-
responds to N v = 4096 degrees of freedom, and Nov = 2. Table 4.5 shows the number of
iterations to reach a relative error smaller than 10−8 for the S2S-G , S2S-PCA, S2S-HEM
and SHEM methods. We consider coarse spaces of dimension 84, 132 and 180, which, for
the SHEM and S2S-HEM methods, correspond to multiscale coarse spaces enriched by
respectively the first, second and third eigenvectors of the interface problem (8) in [90].
For PCA coarse space, we set q = 2Nc and r = 6. We remark that for smaller values of r ,
the S2S-PCA method diverges. This increase in the value of r can be explained noticing
that for the multichannel configuration, the smoother G has several eigenvalues approx-
imately 1 for large values of α. Thus the PCA procedure, which essentially relies on a
power method idea to approximate the image of G , suffers due to the presence of several
clustered eigenvalues, and hence does not provide accurate approximations of the eigen-
functions of G . We also observed that a straightforward use of the restriction of the SHEM
functions could lead to a divergent S2S-EHM method. In order to improve this coarse
space, we build a matrix whose columns are the restriction of the SHEM functions. We
then use this matrix, instead of a random one, in the PCA procedure, obtaining a new
coarse space which is then used in the S2S-EHM method. Table 4.5 shows that all spec-
tral methods have very similar performance. We remark that all of them are robust with
respect to the strength of the jumps.



CHAPTER5

Application of optimized

Schwarz methods to the

Stokes-Darcy coupling

"Il existe sous la surface du sol, dans le terrains stratifiés, tantôt de véritables
cours d’eau souterrains circulant, avec des vitesses sensibles, dans des fissures,
fentes ou cavités naturelles"

— H. Darcy, Les fontaines publiques de la ville de Dijon, pag. 137.

Over the last decades, the filtration of fluids through porous media has increasingly drawn
the attention of researchers due to the large number of applications in physical processes.
Instances are blood simulations [47], groundwater and oil simulations [4], food processes
[49] and soil-water evaporation with applications to nuclear waste disposal [107]. In this
chapter, we study domain decomposition strategies to deal effectively with the Stokes-
Darcy system. Seminal works in this direction have been done by Discacciati in his Ph.D.
thesis [52], which culminated in the review article [55]. In the Chapters 2-3-4 of [52], the
author reduces the global Stokes-Darcy system to a single interface equation involving the
Steklov-Poincaré operator. Then a Dirichlet-Neumann preconditioner, much in the spirit
of Section 1.3.2, is proposed, and numerical results show that the preconditioner is robust
with respect to mesh size but not with respect to the physical parameters. Specifically, low
values of the diffusion constants lead to a poor performance. Thus, Robin-Robin domain
decomposition methods have been introduced in [56], where the Robin parameters are
heuristically tuned to make the method robust with respect to the physical parameters.
Robin-Robin domain decomposition methods for this system have also been proposed
by other groups, we name in particular the work by Xiaoming He, Yanzhao Cao and col-
laborators [111, 23, 24]

In this chapter, we present our contribution to the definition of efficient domain decom-
position strategies for the Stokes-Darcy coupling. We first propose a one-level OSM and
we discuss the limitations of standard techniques to find optimized transmission con-

143
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Figure 5.1: Stokes-Darcy domain

ditions for this complicated system. Then, we discuss the conditions for which we can
rely on the standard Fourier approach, and we further apply the probing technique to
find good estimates when those conditions are not satisfied. We then focus on two-level
and multilevel solvers. First, we apply the multilevel optimized Schwarz framework in-
troduced in Chapter 3 to design a two-level solver for the Stokes-Darcy coupling. Finally,
we apply the substructured framework discussed in Chapter 4 to define two-level spectral
and geometric substructured methods.

5.1 Definition of the model

Let Ω⊂Rd , d = 2,3, be a bounded domain decomposed into two nonoverlapping subdo-
mains Ωs and Ωd , separated by a sufficiently regular interface Γ, see Figure 5.1. The unit
normal vector pointing towards Ωd is denoted with n. We suppose that Ω, Ωs and Ωd are
Lipschitz domains, and we define Γs := ∂Ωs \Γ, and ∂Ωd \Γ= Γd ∪ΓN

d . We assume thatΩs

contains an incompressible fluid described by the Stokes equations

−∇·T (us , ps) = f, ∇·us = 0, inΩs , (5.1.1)

where T (us , ps) := 2µ∇s us −p f I is the stress tensor, ∇s us := 1
2 (∇us + (∇us)>) is the sym-

metrized gradient, fs is a body external force and µ ∈ R+ is the dynamic viscosity of the
fluid. The unknowns are the fluid velocity field us and the pressure field ps .
The lower domainΩd consists of a porous medium filled by a fluid which flows according
to Darcy’s law, discovered experimentally in 1886 [48],

ud =−K∇pd +gd , ∇·ud = 0 in Ωd , (5.1.2)

where ud is the fluid velocity, pd is the Darcy pressure and gd is a body force. K ∈ Rd×d

is the permeability tensor of the porous medium. Generally, K is a symmetric positive
definite tensor that can be diagonalized by introducing the so-called principal directions
of anisotropy, i.e. K = diag(k1, ...,kd ), ki ∈ L∞(Ωd ), ki > 0 a.e. inΩd . Taking the divergence
of the first equation in (5.1.2), we obtain a second order PDE only in terms of the pressure

−∇·K∇pd =−∇·gd in Ωd . (5.1.3)
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For the sake of simplicity, we impose homogeneous boundary conditions for the Stokes
domain, us = 0 on Γs . On the Darcy domain, we set pd = 0 on Γd , and a no slip condition
K∇pd ·next = 0 on ΓN

d , where next is the unit outward normal on ΓN
d .

The two physical models need to be coupled along the common interface Γ. There is not a
unique choice for the coupling conditions and we refer the reader to Section 3 of [55] for a
more detailed discussion of several cases. Generally, the continuity of the normal velocity,
i.e. us ·n = ud ·n, and the continuity of the normal stress, i.e. −n ·T ·n = pd are prescribed.
We remark that this last condition actually allows the pressure to be discontinuous along
Γ. In order to have a well-posed problem in Ωs , we still need to impose a condition on
the tangential velocity on Γ. In 1967, Beavers and Joseph found experimentally that the
difference between the slip velocity is proportional to the shear rate of the free fluid [6].
In mathematical terms this is equivalent to impose

−τ j ·T (us , ps) ·n = ε

µ
(us −ud ) ·τ j , j = 1, ...,d −1 on Γ, (5.1.4)

where τ j are linear independent unit tangential vectors lying on the interface Γ, and ε is a
constant depending on the physical structure of the porous medium. The well-posedness
of the Stokes-Darcy system with (5.1.4) has been only proved in 2010 [25]. However,
Saffman noticed in [141] that, in most applications, ud is much smaller that us and thus
can be neglected. Supposing ud = 0 in equation (5.1.4), we get the so called Beaver-
Joseph-Saffman (BJS) condition. This condition has also been derived mathematically
through homogenization theory in [134]. Another possible choice, which is much used in
blood simulations, is to impose a zero tangential velocity, i.e. us ·τ j = 0, j = 1, ...,d −1. To
summarize, in this thesis we will suppose the following coupling conditions:

us ·n = ud ·n,

−n · (T (us , ps) ·n) = pd ,

−ετ j · (T (us , ps) ·n) =µus ·τ j , j = 1, ...,d −1.

(5.1.5)

The strong form of the coupled Stokes-Darcy system is

−∇·T (us , ps) = fs , ∇·us = 0, in Ωs ,

−∇·K∇pd =−∇·gd , in Ωd ,

us = 0, on Γs ,

ud = 0 on Γd , K∇pd ·next = 0, on ΓN
d ,

us ·n = ud ·n, on Γ,

−n · (T (us , ps) ·n) = pd , on Γ,

−ετ j · (T (us , ps) ·n) =µus ·τ j , on Γ.

(5.1.6)
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Introducing two positive real parameters s1 and s2 and two initial guesses λ0
s and λ0

d , the
optimized Schwarz method for system (5.1.6) computes for n = 1,2...

(un
s , pn

s ) = Stokes Problem(f,λ
n−1
s ) :

−∇· (T (un
s , pn

s )) = fs , ∇·un
s = 0, in Ωs ,

un
s = 0, on Γs ,

−ετ j · (T (un
s , pn

s ) ·n) =µun
s ·τ j , on Γ,

−n · (T (un
s , pn

s )) ·n− s2un
s ·n =λn−1

s , on Γ,

pn
d = Darcy Problem(gd ,λn−1

d ) :

−∇·K∇pn
d =−∇·gd , inΩd ,

ud = 0 on Γd , K∇pd ·next = 0, on ΓN
d

pn
d − s1

(
K∇pn

d ·n−gd ·n
)=λn−1

d , on Γ,

(5.1.7)

with the updating rules

λn
s = pn

d + s2
(
K∇pn

d ·n−gd ·n
)= (

1+ s2

s1

)
pn

d − s2

s1
λn−1

d ,

λn
d =−n ·T (un

s , pn
s ) ·n+ s1un

s ·n =λn−1
s + (s1 + s2)un

s ·n.
(5.1.8)

This domain decomposition algorithm has been studied in the literature by several au-
thors. In [56], the authors defined the method and provided a convergence analysis based
on energy estimates. A similar analysis has been carried out in [35] where the author
included a rough estimation of the optimized parameters through a Von Neumman anal-
ysis. The first theoretical analysis devoted to establish optimized transmission conditions
has been carried out in [53]. Unfortunately, the standard techniques used to derive op-
timized transmission conditions are not effective for this particular coupling. Part of the
contribution of this thesis is to investigate the reasons for this failure and to propose alter-
native approaches. This is the main topic of Section 5.3, which is largely based on the pro-
ceeding paper [98]. Before concluding this Section, we refer the interested reader to [111]
and [23] for a study of domain decomposition methods based on Robin boundary condi-
tions for the Stokes-Darcy system equipped with the Beaver-Joseph coupling condition.
To the best of our knowledge, optimized transmission conditions have not been derived
for Beavers-Joseph coupling conditions. We also cite [24] where the authors proposed
an interesting non-iterative marching in time scheme based on domain decomposition
algorithms.

5.2 Weak formulation and well-posedness

In this Section we derive a weak formulation for the coupled Stokes-Darcy system (5.1.6)
and for the domain decomposition algorithm (5.1.7), and we show their well-posedness.
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First, we introduce the functional spaces and norms

Hs := {
w ∈ (H 1(Ωs))d : w = 0 on Γs

}
, ‖w‖2

Hs
:= ∫

Ωs
|∇w|2,

Qs := L2(Ωs), ‖q‖2
Qs

:= ∫
Ωs

|q|2,

Hd := {
ψ ∈ H 1(Ωd ) :ψ= 0 on Γd

}
, ‖ψ‖2

Hd
:= ∫

Ωd
|∇ψ|2,

W := Hs ×Hd , ‖w‖2
W := (‖w‖2

Hs
+‖ψ‖2

Hd
)

1
2 ,

Λ := H
1
2

00(Γ), ‖λ‖Λ := ‖λ‖
H

1
2

00

,

(5.2.1)

as well as the bilinear forms

ãs(u,v) := 2µ
∫
Ωs

∇s u : ∇s v+
d−1∑
j=1

∫
Γ
µ
ε (u)τ j (v)τ j , ∀u,v ∈ Hs ,

as(u,v) := ãs(u,v)+∫
Γ s2(u ·n)(v ·n), ∀u,v ∈ Hs ,

bs(v, q) :=−∫
Ωs

q∇·v, ∀v ∈ Hs ,∀q ∈Qs ,
ãd (pd , qd ) := ∫

Ωd
K∇pd ·∇qd , ∀pd , qd ∈ Hd ,

ad (pd , qd ) := ãd (pd , qd )+∫
Γ

1
s1

pd qd , ∀pd , qd ∈ Hd ,

C (pd ,v) := ∫
Γ pd (v ·n), ∀pd ∈ Hd ,∀v ∈ Hs ,

A (v , w) := 2µ
∫
Ωs

∇s v : ∇s w+∑d−1
j=1

∫
Γ
µ
ε (v)τ j (w)τ j +

∫
Ωd

∇φ ·K∇ψ
+∫

Γφ(w ·n)−∫
Γ(v ·n)ψ, ∀v = (v,φ),∀w = (w,ψ) ∈W,

B(w , q) := bs(w, q), ∀w = (w,ψ) ∈W,∀q ∈Qs ,
F (w) := ∫

Ωs
fs ·w+∫

Ωd
gd ·∇ψ, ∀w = (w,ψ) ∈W.

(5.2.2)
To have a well defined functional F acting on W , we assume that fs and gd are in (L2(Ωd ))d .

Integrating by part (5.1.6) and using the coupling conditions (5.1.5), one gets the weak
formulation,

Find us ∈ Hs , ps ∈Qs , pd ∈ Hd such that for all v ∈ Hs , qs ∈Qs , qd ∈ Hd

2µ
∫
Ωs

∇s us : ∇s v+
d−1∑
j=1

∫
Γ
µ(us)τ j (v)τ j −

∫
Ωs

p∇·v+
∫
Ωd

∇pd ·K∇qd ,

+
∫
Γ

pd (v ·n)−
∫
Γ

(us ·n)qd =
∫
Ωs

fs ·v+
∫
Ωd

gd ·∇qd ,

−
∫
Ωs

qs∇·us = 0.

(5.2.3)

Using the bilinear forms defined in (5.2.2), equation (5.2.3) can be written as

Find us ∈ Hs , ps ∈Qs , pd ∈ Hd such that for all v ∈ Hs , qs ∈Qs , qd ∈ Hd

ãs(us ,v)+bs(v, ps)+ ãd (pd , qd )+C (pd ,v)−C (qd ,us) =
∫
Ωs

fs ·v+
∫
Ωd

gd ·∇qd ,

bs(us , qs) = 0,

(5.2.4)
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which, in a more compact form, corresponds to

Find u = (us , pd ) ∈W and ps ∈Qs such that

A (u, v)+B(v , ps) = F (v), ∀v ∈W,

B(u, q) = 0, ∀q ∈Qs .

(5.2.5)

System (5.2.5) is well-posed and it admits a unique solution (u, ps) ∈ W ×Qs . The proof,
based on Brezzi’s saddle point theory, can be found in Chapter 2 of [52]. To solve a general
Stokes-Darcy problem, one could directly introduce a finite dimensional approximation
of (5.2.5). For instance, given two regular triangulations T s

h and T d
h , we define the finite

element spaces

H h
s :=

{
ψh

s ∈ (C 0(Ωs))d :ψh
s |T ∈ (P2(T ))d ,∀T ∈T s

h , ψh
s |Γs = 0

}
,

Qh
s :=

{
φh

s ∈C 0(Ωs) :φh
s |T ∈P1(T ),∀T ∈T s

h

}
,

H h
d :=

{
ψh

d ∈C 0(Ωd ) :ψh
d |T ∈P2(T ),∀T ∈T d

h , ψh
d |Γd = 0

}
,

(5.2.6)

and the basis H h
s = span

{
(ψh

s,i )
i=N s

v

i=1

}
, Qh

s = span
{

(φh
s,i )

i=N s
p

i=1

}
, H h

d = span
{

(ψh
d ,i )i=Nd

i=1

}
.

Then the discrete version of (5.2.5) is Ãs B>
s C

Bs 0 0
−C 0 Ãd


uh

s

ph
s

ph
d

=
 fh

s

0
gh

d

 , (5.2.7)

where
(Ãs)i , j := ãs(ψh

s, j ,ψh
s,i ), (Ãd )i , j := ãd (ψh

d , j ,ψh
d ,i ),

(Bs)i , j := bs(ψh
s, j ,φh

s,i ), (C )i , j :=C (ψh
d , j ,ψh

s,i ),

(fh
s )i := ∫

Ωs
fs ·ψh

s,i , (gh
d )i := ∫

Ωd
gd ·∇ψh

d ,i ,

(5.2.8)

and uh
s ,ph

s and ph
d are the coefficients of the solution in the corresponding basis. We have

verified this approach, by numerically solving a Stokes-Darcy problem with Ωs = (0,1)×
(0,1), Ωd = (0,1)× (−1,0), with solution

uex
s := (x2 y2 +e−y ,−2

3
x y3 +2−πsin(πx)), pex

s =−(2−πsin(πx))cos(2πy),

pex
d :=−(2−πsin(πx))(y +1).

(5.2.9)

One can verify that these functions satisfy the coupling conditions (5.1.5) along the inter-
face Γ= (0,1)× {0}. The functions f1, f2 and gd are chosen such that the functions (5.2.9)
satisfy the interior equations. We solved this problem using the GDGMatlab library, a fi-
nite element library we developed during these years which implements Lagrangian con-
tinuous Finite element methods as well as nodal discontinuous Galerkin methods, in-
cluding some of their hybrid versions. The library is freely available on GitHub1. Figure
5.2 shows on the left the sparsity pattern of the matrix in (5.2.7). We clearly observe that it

1Codes available at: https://github.com/vanzantom/GDGMatlab
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Figure 5.2: Sparsity pattern of the global Stokes-Darcy matrix on the left and error decay-
ing as the mesh is refined on the right.

has a strong diagonal structure with small off-diagonal blocks, representing the coupling
term C . On the right panel, we plot the error of the finite element approximation defined
as

err(uh
s ,ph

s ,ph
d ) := ‖uh

s −uex
s ‖Hs +‖ph

s −pex
s ‖Qs +‖ph

d −pex
d ‖Hd .

The error decays as h2, where h is a measure of the mesh size, in agreement with the clas-
sical results for the approximation error of the Taylor-Hood finite element space for the
Stokes unknowns, and of quadratic finite element spaces for the Darcy pressure. Instead
of solving directly the large system (5.2.7), it is naturally to use the sparsity pattern shown
in Figure 5.2, to define a domain decomposition method, which solves alternately a sad-
dle point problem, related to the Stokes domain, and a Laplace problem concerning the
Darcy pressure. To investigate further the decoupling algorithm (5.1.7), we first show the
well-possessedness of the local subproblems.

Let us remark that the weak formulation (5.2.5) has been obtained using the coupling
conditions

−n ·T (us , ps) ·n = (pd )Γ and (K∇pd −gd ) ·n =−(us ·n)Γ.

Thus, since (5.2.5) admits a unique solution in W ×Qs , a posteriori we can state that −n ·
T (us , ps) ·n ∈ Λ, as it is equal to the trace of a function pd ∈ Hd and ∂Γ ⊂ Γd , where pd

is equal to zero. Similarly we have (K∇pd −gd ) ·n ∈ Λ. We now introduce the extension
operator Es : Λ× (L2(Ωs))d → Hs ×Qs as (ũs , p̃s) = Es(λs , fs) where (ũs , p̃s) is the unique
solution of

Find (ũs , p̃s) ∈ Hs ×Qs such that

as(ũs ,v)+bs(v, p̃s) =
∫
Ωs

fs ·v−
∫
Γ
λs(v ·n), ∀v ∈ Hs ,

bs(ũs , qs) = 0, ∀qs ∈Qs .

(5.2.10)

Similarly, we define the extension operator Ed : Λ× (L2(Ωd ))d → Hd by p̃d = Ed (λd ,gd )
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where p̃d is the unique solution of

Find p̃d ∈ Hd such that

ad (p̃d , qd ) =
∫
Ωd

gd ·∇qd + 1

s1

∫
Γ
λd qd , ∀qd ∈ Hd .

(5.2.11)

To show that the operators Es and Ed are well defined, we need the following Lemma.

Lemma 5.2.1. The bilinear forms as(·, ·) : Hs×Hs →R and ad (·, ·) : Hd×Hd →R are coercive
and continuous.

Proof. The bilinear form ad (·, ·) is continuous since, using Cauchy-Schwarz and the trace
inequality

|ad (pd , qd )| ≤ k∞‖pd‖Hd ‖qd‖Hd +
1

s1
‖pd‖L2(Γ)‖qd‖L2(Γ)

≤ 2max

(
k∞,

(C d
tr )2

s1

)
‖pd‖Hd ‖qd‖Hd ,

where k∞ = maxi=1,...,d supx∈Ωd
Ki (x) and C d

tr is the continuity constant of the trace op-
erator in Ωd . Defining instead k0 := mini=1,...,d infx∈Ωd Ki (x) > 0, we have immediately
coercivity since

k0‖pd‖2
Hd

≤
∫
Ωd

K∇pd ·∇pd + 1

s1

∫
Γ

p2
d = ad (pd , pd ).

Now we consider as(·, ·). Calling C s
tr the continuity constant of the trace operator inΩs we

have

|as(u,v)| ≤ 2µ
∫
Ωs

|∇s u : ∇s v|+
d−1∑
j=1

∫
Γ

µ

ε
|(u)τ j (v)τ j |+

∫
Γ

s2|(u ·n)(v ·n)|

≤ 2µ‖u‖Hs‖v‖Hs + (d −1)
µ

ε
‖u‖L2(Γ)‖v‖L2(Γ) + s2‖u‖L2(Γ)‖v‖L2(Γ)

≤ γ‖u‖Hs‖v‖Hs ,

where γ := 2µ+ (d −1)µε (C s
tr )2 + s2(C s

tr )2.

The coercivity follows from Korn’s inequality with constant δ as

as(u,u) ≥ 2µδ‖u‖2
Hs

+
d−1∑
j=1

‖u ·τ j‖2
L2(Γ) + s2‖u ·n‖2

L2(Γ)

≥ 2µδ‖u‖2
Hs

.

Theorem 5.2.2. Problems (5.2.10) and (5.2.11) are well-posed.
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Proof. We denote the functional on the right side of equation (5.2.11) by Gd (·). Then using
Cauchy- Schwarz, we have

|Gd (qd )| ≤ ‖gd‖(L2(Ωd ))d ‖∇qd‖L2(Ωd ) +
1

s1
‖λd‖L2(Γ)‖qd‖L2(Γ),

≤ 2max

(
‖gd‖(L2(Ωd ))d ,

1

s1
C d

tr ‖λd‖L2(Γ)

)
‖qd‖Hd .

It follows that Gd (·) is a continuous functional on Hd and thus, since ad (·, ·) is continu-
ous and coercive, the Lax-Milgram theorem guarantees that the problem (5.2.11) is well-
posed, i.e. there exists a unique pd ∈ Hd solution of problem (5.2.11). Regarding (5.2.10),
we rely on Brezzi’s theory for saddle-point problems. We call Gs(·) the functional on the
right hand side and we have

|Gs(v)| ≤ ‖fs‖(L2(Ωs ))d ‖v‖L2(Ωs ) +‖λs‖L2(Γ)‖v ·n‖L2(Γ),

≤ 2max
(
C p‖fs‖(L2(Ωs ))d ,C s

tr ‖λs‖L2(Γ)
)‖v‖Hs ,

where C p is the Poincaré constant. On the other hand we have the continuity of bs(·, ·),

|bs(us , qs)| ≤
∫
Ωs

|qs∇·us | ≤ ‖q‖Qs‖us‖Hs ,

and, from Proposition 5.3.2 in [139], the inf-sup condition

∀q ∈Qs , ∃v ∈ Hs , v 6= 0 : bs(v, q) ≥β‖v‖Hs‖q‖Qs

holds. We remark that as(·, ·) is continuous and coercive over all Hs due to Lemma 5.2.1,
thus Brezzi’s theory guarantees that (5.2.10) has an unique solution.

5.3 One-level optimized Schwarz methods

In [53], the authors perform a Fourier analysis of the OSM (5.1.7) for a two dimensional
problem (d = 2). In their analysis, they considered unbounded domains where one can
use the Fourier transform. A separation of variables technique, as in [95], is not feasi-
ble unfortunately, since no analytical expression is available for the eigenvectors of the
Stokes operator in bounded domains with Dirichlet boundary conditions. Furthermore,
to simplify the calculations the authors assumed that K = diag(η1,η2) with η j > 0, j = 1,2
and since the solutions are required to go to zero as y →∞, they set ΓN

d =;. They finally
obtained that the convergence factor of algorithm (5.1.7) is

ρ(k, s1, s2) =
∣∣∣∣2µ|k|− s1

2µ|k|+ s2
· 1− s2

p
η1η2|k|

1+ s1
p
η1η2|k|

∣∣∣∣ , (5.3.1)

for all the Fourier frequencies k ∈R. The optimal choice s1 = 2µ|k| and s2 = 1p
η1η2|k|

would

lead to a direct method which converges in just two iterations; however this choice corre-
sponds to nonlocal operators once backtransformed2. Therefore a more practical choice

2See the extensive discussion in Section 2.1



CHAPTER 5. APPLICATION OF OSMS TO THE STOKES-DARCY COUPLING 152

is to set s1 = 2µp and s2 = 1p
η1η2p for some p ∈ R. An equivalent choice of optimized pa-

rameters has been treated in [53] where the authors obtained the following result.

Theorem 5.3.1 (Proposition 3.3 in [53]). The unique solution of the min-max problem

min
p

max
k∈[kmin,kmax]

ρ(k, p), (5.3.2)

is given by the unique root of the non linear equation ρ(kmin, p) = ρ(kmax, p).

One could also consider double sided optimized transmission conditions, choosing s1 =
2µp and s2 = 1p

η1η2q with p, q ∈ R. In [54], the authors propose to choose the couple p, q

such that ρ(kmin, p, q) = ρ(k̂, p, q) = ρ(kmax, p, q), i.e. they impose equioscillation. Even
though often the solution of such min-max problems is indeed given by equioscillation,
a priori there is no reason why this should be the case also for the Stokes-Darcy coupling.
In fact for heterogenous problems, it has been observed that there can exist a couple of
parameters which satisfies the equioscillation property, but leads to a non optimized con-
vergence or even to a divergent method, see for instance Theorem 2.1.9, Theorem 2.4.6
and reference [78]. In Theorem 5.3.2 we refine Proposition 1 of [54].

Theorem 5.3.2. The solutions of the min-max problem

min
p,q∈R

max
k∈[kmin,kmax]

ρ(k, p, q) = min
p,q∈R

max
k∈[kmin,kmax]

2µ
p
η1η2

∣∣∣∣ k −p

1+2µ
p
η1η2kp

· k −q

1+2µ
p
η1η2kq

∣∣∣∣ ,

(5.3.3)
are given by two pairs (p∗

i , q∗
i ), i = 1,2 which satisfy the non linear equations |ρ(kmin, p∗

i , q∗
i )| =

|ρ(k̂, p∗
i , q∗

i )| = |ρ(kmax, p∗
i , q∗

i )|, k̂ being an interior maximum. Moreover p∗
2 = q∗

1 and
q∗

2 = p∗
1 .

Proof. The proof is based on arguments presented in the proofs of Theorem 2.1.9 and
Theorem 3 in [95]. We outline the main steps. We first observe that ρ(k, p, q) is invari-
ant under p ↔ q , hence we consider only p < q and moreover ρ(k, p, q) = 0 for k = q and
k = p. The partial derivatives with respect to the parameters satisfy sign(∂pρ) = sign(p−k)
and sign(∂qρ) = sign(q−k), therefore at optimality we conclude that p, q lie in [kmin,kmax],
see the proof of Theorem 1 in [95]. Solving ∂kρ = 0, we get that there exists a unique
interior maximum k̂, with p < k̂ < q , so that we can restrict maxk∈[kmin,kmax]ρ(k, p, q) =
max{ρ(kmin, p, q),ρ(k̂, p, q),ρ(kmax, p, q)}. Repeating the same arguments of Lemma 2.1.8,
we obtain that at the optimum we must have ρ(kmin, p, q) = ρ(kmax, p, q), so that we can
express q as function of p and we can restrict the study to minp max{ρ(kmin, p, q(p)),ρ(k̂, p, q(p))}.
Defining δ := 2µ

p
η1η2, the equioscillation constraint is equivalent to

l (p) := kmin −p

1+δkminp

1+δkmaxp

kmax −p
= kmax −q(p)

1+δq(p)kmax

1+δq(p)kmin

kmin −q(p)
=: g (p). (5.3.4)

Since ∂p l (p) < 0 and ∂p g (p) > 0, q(p) must be a decreasing function of p so that equation
(5.3.4) is satisfied. Then using the sign of the derivatives of ρ with respect to p and q and
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the explicit expression of q(p), we have dρ(kmin,p)
d p > 0 and dρ(k̂,p)

d p < 0 for kmin < p < q(p).

These observations are sufficient to conclude that the solution of minp max{ρ(kmin, p, q(p)),ρ(k̂, p, q(p))}
is given by the unique p∗

1 , such that ρ(kmin, p∗
1 , q(p∗

1 )) = ρ(k̂, p∗
1 , q(p∗

1 )) and q∗
1 given by

q∗
1 = q(p∗

1 ). Due to the invariance p ↔ q , we get the same results in the case q < p and we
conclude that the other couple satisfies p∗

2 = q∗
1 and q∗

2 = p∗
1 .

In [53, 54], the authors studied extensively the methods obtained from Theorems 5.3.1-
5.3.2 as preconditioners for GMRES. They observed that these optimized parameters do
not lead to an optimized convergence and they proposed to minimize the L1 norm of the
convergence factor, that is

min
p

1

kmax −kmin

∫ kmax

kmin

ρ(k, p)dk. (5.3.5)

The motivation lies in the assumption that the Krylov method can take care of isolated
slow frequencies, and thus it would be better to have a convergence factor that is very
small for a large set of frequencies with possibly high peaks. A similar approach was first
discussed in [91] for the Helmholtz problem as the optimized Schwarz method does not
converge for the Helmholtz frequencyω, and thus the authors proposed to solve the opti-
mization problem minp maxk∈[kmin,ω−]∪[ω+,kmax]ρ(k, p). However, such a bad performance
of the optimized parameters obtained from a min-max problem does not have compar-
ison in the literature, and thus we investigated it in detail in [98]. We consider the do-
mains Ωs = (0,1)× (0,1), Ωd = (0,1)× (−1,0) and a uniform structured mesh with mesh
size h = 0.02, so that kmin = π and kmax = π/h. We discretize the corresponding error
equations of (5.1.7) with Taylor-Hood finite elements P2

2 −P1 for the Stokes unknowns
and P2 elements for the Darcy pressure. The physical parameters are set equal to µ= 0.1,
K = diag(η1,η2), with η1 = η2 = 1. The stopping criterion for the iterative method is
‖un‖H 1 +‖vn‖H 1 +‖pn

s ‖L2 +‖pn
d‖H 1 < 10−9 and similarly for GMRES the tolerance is 10−9.

Figure 5.3 shows the number of iterations to reach convergence. On the left panel we show
with a circle the optimized parameter p obtained from Theorem 5.3.1 and with a square
the optimized p obtained solving (5.3.5). We observe that indeed the solution of (5.3.5)
leads to a faster convergence than the classical approach of Theorem 5.3.1 for precondi-
tioned GMRES. This is in agreement with the results reported in [54, 53], where it has been
shown numerically that the solution of (5.3.5) leads to an equivalent or faster convergence
than Theorem 5.3.1 for a wide range of parameters. However, we remark that (5.3.5) leads
to a faster method than (5.3.2) also for the iterative method and not only under Krylov
acceleration! On the right panel of Figure 5.3 we observe that also Theorem 5.3.2 does not
lead to an optimized convergence and the symmetry of the parameters has disappeared.
To better understand the behaviour of the method, we set as initial condition one by one
the sine functions, which correspond to the restriction of the Fourier basis

{
e−i kx

}
k on

bounded domains with Dirichlet boundary conditions. We then compute numerically an

approximation of the convergence factor defining ρv (k, p) =
( ‖v3‖H1

‖v1‖H1

)
, ρpd (k, p) =

( ‖p3
d‖H1

‖p1
d‖H1

)
,

where v is the second component of the Stokes velocity and pd is the Darcy pressure.
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Figure 5.3: Number of iterations to reach the tolerance 10−9 for different optimized pa-
rameters. On the left, the circle represents the solution of Theorem 5.3.1, the square cor-
responds to the solution of (5.3.5). On the right the triangles correspond to the double
solutions of Theorem 5.3.2 and the contour plot refers to the iterative method.
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Figure 5.4: Comparison of the theoretical and numerical convergence factors. On the left,
optimized parameter from Theorem 5.3.1 and on the right, optimized parameter from
(5.3.5).

From the results presented in Figure 5.4, we observe two major issues: the first one is a
poor approximation of high frequencies. This is due to the fact that the discrete approx-
imation based on the finite element spaces P2

2 −P1 −P2 is not capable of representing
properly the exponential boundary layer of the high frequencies near the interface. This
can also be observed for the classical Laplace equation. We propose two remedies which
can also be combined. We could first raise the order of the approximation of the finite ele-
ment spaces toP2

3−P2−P3 and/or refine the mesh in the normal direction to the interface.
Both remedies improve the representation of the high frequencies. The second issue lies
in a unusual oscillatory behaviour of the low, odd frequencies. For instance, in the right
panel of Figure 5.4, the first frequency sin(πx) is transformed after one iteration into a
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complicated combination of higher frequencies so that actually the parameter p makes
the method much faster than the theory predicts. In [98], we claimed that the reason for
this phenomenon was that the sines do not form a separated variable solution for the
Stokes operator with Dirichlet boundary condition. This argument was based on our ex-
perience developed with the tangential advection case, discussed in Section 2.2.3, where
we have remarked that the unbounded analysis leads to inefficient optimized parameters
since the two equations lack a common eigenbasis. While our statements remain true,
we now believe a further reason lies in a compatibility condition which must be satisfied
whenever dealing with a Stokes problem with Dirichlet boundary condition all along the
boundary. Indeed, the imposed velocity field must satisfy

0 =
∫
Ωs

divus =
∫
∂Ωs

us ·n. (5.3.6)

Working with the error equation, and imposing a velocity field only on Γ, condition (5.3.6)
is satisfied by the even Fourier frequencies, but not by the odd frequencies. Thus, not
only the odd Fourier frequencies are not eigenvectors of the Stokes operator, but they are
even incompatible boundary condition, and this explains why the lowest Fourier mode
is immediately transformed into a combination of higher even frequencies after just one
iteration! We conclude that it is not possible to diagonalize the iteration as the formula
of the convergence factor (5.3.1) assumes. In Section 5.3.1, we discuss how to recover
optimized parameters for the Dirichlet case, and we show that actually imposing a normal
stress condition on the upper boundary, allows one to recover good estimates also with
the Fourier approach, since the velocity field does not need to satisfy equation (5.3.6)
anymore.

We conclude this subsection considering the Stokes-Darcy system (5.1.7) with periodic
boundary conditions on the vertical edges in order to make the bounded problem as sim-
ilar as possible to the unbounded case. In this setting there exists a separated variable
solution for the Stokes problem involving the Fourier basis {e−i kx }k , see [140]. In Fig-
ure 5.5 we show both the numerical and theoretical convergence factors computed for
even frequencies {sin(2kπx)}k . The same results are obtained using the other periodic
frequencies {cos(2kπx)}k . Comparing with Figure 5.4, we observe that now we have an
excellent agreement between the numerical and theoretical convergence factors and thus
we would expect that the optimized parameters from the min-max theorems provide op-
timized convergence. We thus start the optimized Schwarz method (5.1.7) with initial
guesses given by a linear combination of periodic sine and cosine functions multiplied
by random coefficients. Figure 5.6 shows that both Theorem 5.3.1 and 5.3.2 now lead to
optimized convergence for the iterative method (5.1.7) and we also observe the symme-
try of the optimized parameters in the right panel as Theorem 5.3.2 predicts. However
concerning GMRES, we note that the optimized parameter from Theorem 5.3.1 is still a
bit too small. This can be understood studying the eigenvalues of the preconditioned
matrix system which are shown in Fig 5.7. Analyzing the large real eigenvalue, we have
observed that the corresponding eigenvector is given by a zero velocity field us , a con-
stant pressure ps and a linear Darcy pressure pd . This constant mode is actually not
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Figure 5.6: Number of iterations to reach the tolerance 10−9 for different optimized pa-
rameters. On the left, the circle represents the solution of Theorem 5.3.1, the square cor-
responds to the approach of (5.3.5). On the right the triangles correspond to the double
solutions of Theorem 5.3.2 and the contour plot refers to the iterative method.

treated by the unbounded Fourier analysis and it is not present in our initial guess for
the iterative method. Defining the functions pn

d = Dn(y +L) and p f = P n with P,D ∈ R
and L is the vertical length of the subdomains, and inserting them into (5.1.7), we ob-
tain a convergence factor ρ(k = 0, p) := 1−s2

1+s1
. Solving numerically the min-max problem

minp max
k∈{0}∪[kmin,kmax]

ρ(k, p) we obtain the equioscillation between ρ(0, p) and ρ(kmin, p)

and a numerical value of p ≈ 48. In the right panel of Fig. 5.7 we start the method with
a totally random initial guess and this shows that taking into account the constant mode
actually makes our analysis exact.
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preconditioned volume matrix in the case with the optimized parameter of Theorem 5.3.1
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the star to the value of p such that we have the minimal residual of GMRES.

5.3.1 Application of the probing technique

In this subsection, we apply the probing technique introduced in Section 2.5 to the Stokes-
Darcy system. To do so, we need to reformulate the Stokes-Darcy system in a substruc-
tured form, that is, as an equation involving a Steklov-Poincaré operator over an interface
variable. Then we apply the ADI method to solve the Steklov-Poincaré system similarly to
(1.3.16). To the best of author’s knowledge, a first substructured formulation of the cou-
pled Stokes-Darcy system has been provided in [52]. We consider the geometrical setup
described by Figure 5.1 and we set ΓN

d =; and ε= 0, that is, we impose a zero tangential
velocity and we introduce the space

Hτ
s :=

{
us ∈ (H 1(Ωs))d : us = 0 on Γs and us ·τ j = 0, j = 1, . . . ,d −1 on Γ

}
.

The multidomain weak formulation of the Stokes-Darcy system, counterpart of (1.3.2) for
the Laplace equation, is [52, Proposition 2.4.1]

Find us ∈ Hτ
s , ps ∈Qs , pd ∈ Hd such that:

ã(us ,v)+bs(v, ps) = ∫
Ωs

fs ·v, ∀v ∈ H 1
0 (Ωs),

bs(us , qs) = 0, ∀qs ∈Qs ,
ãd (pd , qd ) = ∫

Ωd
gd ·∇qd , ∀qd ∈ H 1

0 (Ωd ),∫
Γ pdη=

∫
Ωs

fs ·E sη− ã(us ,E sη)−bs(E sη, ps), ∀η ∈Λ.∫
Γ(us ·n)η= ãd (pd ,E dη)−∫

Ωd
gd ·∇E dη, ∀η ∈Λ,

(5.3.7)

where E s and E d are general continuous extension operators from Λ to respectively Hτ
s

and Hd . Equations (5.3.7)4,5 are the coupling conditions along the interface and they play
the same role as the continuity of the traces and of the normal derivatives in (1.3.2)3,4. To
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obtain the Steklov-Poincaré equation for (1.3.2), we selected a primal interface function,
the trace, so that we could decompose each subdomain solution as the sum of two func-
tions, one which is the harmonic extension of the trace, and another one which takes into
account the force term, that is ui = H i (u|Γ)+Gi ( fi ). In order for the ui to be solutions,
they still need to satisfy the continuity of the dual variable, that is the normal derivative,
and this is exactly what the Steklov-Poincaré equation imposes. We are now going to fol-
low the same logical path for the Stokes-Darcy system. We remark it is possible to use two
different interface variables, λ := us ·n = (−K∇pd +gd )·n andϕ := pd =−n·T (us , ps)·n. In
contrast to the Laplace case, the function λ corresponds to the trace of the Stokes velocity
and to the normal derivative of the Darcy pressure, whileϕ corresponds to the trace of the
Darcy pressure and to the normal component of the normal stress for the Stokes domain.
We could choose eitherλ orϕ as primal variables, however choosingλ leads to some tech-
nical difficulties. First, we would need to solve a Dirichlet Stokes boundary value problem
which, in order to have a unique solution, requires to deal with a quotient space for the
pressure field. We would have then to compute the normal stress along Γ which depends
on the pressure defined up to a constant. Moreover, for a complete Dirichlet Stokes prob-
lem, the boundary condition needs to satisfy the compatibility condition (5.3.6) which,
supposing homogeneous boundary conditions along Γs , implies that

∫
Γλ = 0. Thus we

have a further constraint on the interface variable. For these reasons, we choose as in-
terface variable the Darcy pressure ϕ, and we refer the reader to [55, Section 5.1] for a
detailed discussion concerning the interface variable λ.

We define the operator H s :Λ→ Hτ
s ×Qs such that H s(ϕ) = (H 1

s (ϕ),H 2
s (ϕ)) satisfies

ãs(H 1
s (ϕ),v)+bs(v,H 2

s (ϕ)) =−
∫
Γ
ϕ(v ·n), ∀v ∈ Hτ

s ,

bs(H 1
s (ϕ), q) = 0, ∀q ∈Qs ,

(5.3.8)

and the function (u0
s , p0

s ) ∈ Hτ
s ×Qs solution of the boundary value problem with zero

normal stress condition along Γ 3

ãs(u0
s ,v)+bs(v, p0

s ) =
∫
Ωs

f ·v, ∀v ∈ Hτ
s ,

bs(u0
s , q) = 0, ∀q ∈Qs .

(5.3.9)

Concerning the Darcy domain, we define Hd :Λ→ Hd such that Hd (ϕ) satisfies

ãd (Hd (ϕ), qd ) = 0, ∀qd ∈ H 1
0 (Ωd ),

Hd (ϕ) =ϕ, on Γ,
(5.3.10)

and the function p0
d ∈ H 1

0 (Ωd ) solution of

ãd (p0
d , qd ) =

∫
Ωd

gd ·∇qd , ∀qd ∈ H 1
0 (Ωd ). (5.3.11)

3Using the interface variable λ, we would have to solve a Dirichlet Stokes problem, introducing the quo-

tient space Q0
s :=

{
q ∈Qs :

∫
Ωs

q = 0
}

.
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Knowing a priori (uex
s , pex

s , pex
d ) solution of (5.3.7) and defining ϕ = pex

d ,|Γ, we would have

that (uex
s , pex

s ) = (H 1
s (ϕ)+u0

s ,H 2
s (ϕ)+p0

s ) and pex
d =Hd (ϕ)+pd . However we do not know

the solution of (5.3.7) a priori. Nevertheless, we have that (H 1
s (ϕ)+u0

s ,H 2
s (ϕ)+p0

s ) and
Hd (ϕ)+pd satisfy already the first four equations of (5.3.7). We use the fifth to obtain an
equation for the unknown interface variable ϕ. Replacing (H 1

s (ϕ)+u0
s ,H 2

s (ϕ)+p0
s ) and

Hd (ϕ)+pd into (5.3.7)5, we get
〈S ϕ,η〉 = 〈χ,η〉, (5.3.12)

where S =Ss +Sd are defined as

〈Ssϕ,η〉 :=−
∫
Γ

(H 1
s (ϕ) ·n)η, 〈Sdϕ,η〉 := ãd (Hd (ϕ),Hd (η)), (5.3.13)

and χ ∈Λ′
is such that

〈χ,η〉 =
∫
Γ

(u0
s ·n)η+

∫
Ωd

gd ·∇Hd (η)− ãd (p0
d ,Hd (η)).

We emphasise that we set the extension operator Ed =Hd . Solving equation (5.3.12) per-
mits to obtain the exact trace pressure ϕ, from which we can then recover the exact lo-
cal solutions performing subdomain solves. For a proof of existence and uniquess of the
solution to (5.3.12) we refer to [52, Proposition 2.6.1]. Repeating the same calculations
presented at the end of Section 1.3.4 for the Laplace equation, we can rewrite the trans-
mission conditions of (5.1.7) at the weak level as

〈(s2Ss + I )λn ,η〉 = 〈(I − s2Sd )λn−1,η〉+〈s2χ,η〉, ∀η ∈Λ,

〈(s1Sd + I )λn ,η〉 = 〈(I − s1Ss)λn−1,η〉+〈s1χ,η〉, ∀η ∈Λ,
(5.3.14)

which leads to the fixed point iteration for the error equation

λn+1 = (s2Ss + I )−1(I − s2Sd )(s1Sd + I )−1(I − s1Ss)λn−1 = T (s1, s2)λn−1.

We are now perfectly in the framework discussed in Section 2.5. We introduce finite di-
mensional approximations Σs ,Σd of the operators Ss and Sd . We thus choose a set of
probing vectors

{
x j

}
with j in some index set K , and we aim to minimize numerically

the ratio

min
s1,s2∈R

max
j∈I

‖s2Σs x j −MΓx j‖
‖s1Σd x j +MΓx j‖

‖s1Σd x j −MΓx j‖
‖s2Σs x j +MΓx j‖

, (5.3.15)

where MΓ is the mass matrix over the interface defined as (MΓ)i , j := ∫
Γφiφ j , and

{
φk

}
is

a basis for the finite element approximation ofΛ.

We set the physical parameters equal to µ = 0.1, η1 = η2 = 1. We consider the probing
vectors x j such that x j is an approximation of sin(πkx), and k belongs to a index set K .
The optimized parameters are equal to s2 = 1p

η1η2p and s1 = 2µp, with p ∈ R. On the left

of Figure 5.8, we consider Dirichlet boundary conditions all along ∂Ω. We consider two
different sets, K1 := {

1,
p

N , N
}

and K2 := {1,2, N }, where N is the number of degrees of
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Figure 5.8: Comparison between the spectral radius of the iteration operator T (s1, s2) and
several estimated parameters through the probing technique.

freedom along Γ. As we discussed, the Fourier analysis does not provide good estimates.
However, also probing with the set index K1 does not provide good results. Guided by the
left panel of Figure 5.4 where we saw that the initialisation with the first even frequency
lead to the slowest numerical convergence factor, and since the first odd frequency does
not satisfy (5.3.6), we decided to probe with the set K2. We remark that the addition of
the first even frequency in the index set leads to a very precise estimate of the optimal pa-
rameter. The choice of the set of probing vector is thus not trivial for the case of Dirichlet
boundary conditions. We report that we also tried the power method approach described
in Section 2.5, but we did not observe any significant improvement with respect to K1.
We then impose a zero normal stress condition on the upper horizontal edge of Ωs . Due
to this conditions, the velocity field does not need to satisfy (5.3.6). We remark that both
the Fourier analysis and the probing technique with index set K1 permit to get excellent
optimized parameters. This experiment corroborates our statement that the compatibil-
ity condition is the key element for the failure of the Fourier analysis for the Stokes-Darcy
coupling.

5.4 Two-level optimized Schwarz methods

In this Section, we discuss how to use the two-level OSM framework introduced in Chap-
ter 3 to design an efficient two-level solver for the Stokes-Darcy coupling. We consider
the following geometrical and physical setting. A Newtonian fluid is flowing in a do-
main Ωs = (0,1)× (0,1) which interacts through an interface Γ = [0,1]× {0} with a porous
medium in a domain Ωd = (0,1) × (−1,0), see Fig 5.9. We suppose the fluid enters in
Ωs from the left with a velocity profile us = (y3,0)>, we impose us = (1,0)> on the top
boundary, while a zero normal stress condition is imposed on the right boundary, that is
−n·(2µ∇s us−ps I)·n = 0. Concerning the porous medium domain, we set a homogeneous
Dirichlet boundary condition along ∂Ωd \Γ.

We now consider the one-level OSM (5.1.7), and we explicitly express the dependence of
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=
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Figure 5.9: Geometry for the Stokes-Darcy problem.

λs and λd on the physical variables us , ps , pd ,

−∇· (2µ∇s un
s −pn

s I ) = 0, inΩs , (5.4.1)

∇·un
s = 0, inΩs ,

−∇·K∇pn
d = 0, inΩd ,

pn
d − s1

(
K∇pn

d ·n
)=−n · (2µ∇s un−1

s −pn−1
s I) ·n+ s1un−1

s ·n on Γ,

−n · (2µ∇s un
s −pn

s I) ·n− s2un
s ·n = pn−1

d + s2
(
K∇pn−1

d ·n
)

on Γ,

−ετ j · (2µ∇s un
s −pn

s I) ·n =µun
s ·τ j on Γ.

To obtain the enhanced matrix for the Stokes-Darcy coupling we consider the fixed point
version of system (5.4.1) by letting n →∞. Then, using the bilinear forms introduced in
(5.2.2), the weak formulation of system (5.4.1) is

as(us ,v)+bs(v, ps)−bSD (pd ,v) = 〈 f̄ ,v〉 ∀v ∈ Hs ,

bs(us , qs) = 0 ∀qs ∈Qs , (5.4.2)

ad (pd , qd )−bDS(us , ps , qd ) = 0 ∀qd ∈ Hd ,

where we have introduced the new coupling bilinear forms

bSD (pd ,v) :=−
∫
Γ

(pd + s2K∇pd ·n)v ·n,

bDS(us , ps , qd ) :=
∫
Γ

(us ·n)qd − 1

s1

∫
Γ

n · (2µ∇s us −ps I) ·n,

and the functional f̄ takes into account the non homogeneous Dirichlet conditions. A
finite element discretization of (5.4.2) leads to the discretize system(

As Bs

B>
s 0

)
−BSD

−BDS Ad

(
us

ps

)
pd

=


(

f
0

)
0

 . (5.4.3)
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Figure 5.10: Plot of the velocity field solution to the problem described in Figure 5.9.

We implement the two-level OSM using the finite element software FreeFem++ [112] and
we choose P1-bubble elements for the Stokes velocity and for the Darcy pressure and P1

elements for the Stokes pressure. We have 25404 degrees of freedom on the fine mesh
and 6454 on the coarse one. The optimized parameter p is chosen to maximizing the
smoothing property of the convergence factor (5.3.1). The parameters are h = 0.05, µ =
0.1, K = diag(1,1). We first compute the exact discrete solution (ūs , p̄s , p̄d )> by solving
directly system (5.4.3) and then we count the number of iterations for the one-level OSM
and the MOSM to reach a tolerance of Tol = 10−6, i.e.(‖un

s − ūs‖Hs +‖pn
s − p̄s‖Qs +‖pn

d − p̄d‖Hd

)≤ Tol. (5.4.4)

For the two-level method, we used two pre-smoothing steps and no post-smoothing. The
one-level OSM requires 14 iterations while the two-level OSM only 4. In Figure 5.10 we
show the velocity fields in the two subdomains for the problem described by Figure 5.9.
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5.5 Two-level and Multilevel substructured optimized Schwarz
methods

In this section, we aim to apply two-level and multilevel substructured methods to the
Stokes-Darcy system. To do so, we derive a substructured formulation for the one-level
OSM method (5.1.7) since it is the starting point to formulate S2S and G2S methods. While
doing so, we will generalize informally the computational framework described in Sec-
tion 4 to nonoverlapping decompositions and to more general domain decomposition
smoothers. A more formal derivation can be obtained immediately from our calculations
for the Stokes-Darcy system, and we summarize the main steps for a two-subdomains
decomposition in Remark 5.5.2.

We consider the geometry described in Section 5.1. The first step is to properly generalize
the concept of substructures and substructured unknowns in the nonoverlapping case.
In Section 4, the substructured iteration (4.1.11) involves the variables v j defined over the
substructures S j , j ∈ I . Recall that S j = ∪`∈N j

(
∂Ω′

`
∩Ω′

j

)
. We emphasize that we can

think of a substructured S j as the curve where the neighbouring subdomains take the
updated information about u j at each iteration. For a nonoverlapping decomposition,
we modify this definition to S j :=∪`∈N j

(
∂Ω`∩∂Ω j

)
, hence S j are now the portions of the

boundary of Ω j which are shared with neighbouring subdomains. For a nonoverlapping
decomposition into two subdomains, this definition implies S1 = S2 = ∂Ω1 ∩ ∂Ω2 =: Γ.
We also need to identify some interface variables. For the Parallel Schwarz method, we
used v j = χ jτ j u j , which represent the traces of the subdomains solutions u j on S j , that
is the data that subdomain j is passing to the neighbouring subdomains (multiplied by a
partition of unity function). Looking at the OSM iteration (5.1.7)-(5.1.8), it is then natural
to use the two substructured variables λs , λd ∈Λ, that is

λs = pd + s2
(
K∇pd ·n−gd ·n

)
and λd =−n ·T (us , ps) ·n+ s1us ·n.

Note thatλs is exactly the data that the Darcy domain passes to the Stokes domain at each
iteration, and λd coincides with the data passed from the Stokes to the Darcy domain. We
now introduce two continuous trace operators τd : Hd →Λ and τs : Hs ×Qs →Λ such that

τd (q) = q|Γ, ∀q ∈ Hd

τs((v, qs)) = (v ·n)|Γ, ∀(v, qs) ∈ Hs ×Qs .

With these trace operators, we rewrite (5.1.8) as

λn
s = pn

d + s2
(
K∇pn

d ·n−gd ·n
)= (

1+ s2

s1

)
pn

d − s2

s1
λn−1

d =
(
1+ s2

s1

)
τd (Ed (λn−1

d ,gd ))− s2

s1
λn−1

d ,

λn
d =−n ·T (un

s , pn
s ) ·n+ s1un

s ·n =λn−1
s + (s1 + s2)un

s ·n =λn−1
s + (s1 + s2)τs(Es(λn−1

s , fs)).
(5.5.1)

Assuming that the iteration converges and taking the limit for n →∞, we obtain the sys-
tem

λs =
(
1+ s2

s1

)
τd (Ed (λd ,gd ))− s2

s1
λd ,

λd =λs + (s1 + s2)τs(Es(λs , fs)).
(5.5.2)
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We now prove that system (5.5.2) is equivalent to the weak formulation (5.2.4).

Theorem 5.5.1 (Equivalence between volume and substructured formulations). Let the
pair (us , ps , pd ) ∈ Hs ×Qs × Hd solve (5.2.4), then the pair (λs ,λd ) := (pd + s2(K∇pd ·n−
gd ·n),−n ·T (us , ps) ·n+ s1us ·n) satisfy (5.5.2). On the other hand, if (λs ,λd ) satisfy (5.5.2),
then (ũs , p̃s , p̃d ) := (Es(λs , fs),Ed (λd ,gd )) satisfy (5.2.4).

Proof. Let us suppose (us , ps , pd ) satisfies (5.2.4) and remark that, due to the derivation
of the weak formulation, it holds that

−n ·T (us , ps) ·n = pd and us ·n =−(K∇pd ·n−gd ·n) in Λ. (5.5.3)

Let us also define

λd :=−n ·T (us , ps) ·n+ s1us ·n,

λs := pd + s2(K∇pd ·n−gd ·n).

It is clear that if (us , ps) = Es(λs , fs) and pd = Ed (λd ,gd ), then (λs ,λd ) satisfies (5.5.2). In-
deed, we would have

(1+ s2

s1
)τd (Ed (λd ,gd ))− s2

s1
λd = (1+ s2

s1
)pd − s2

s1
(−n ·T (us , ps) ·n+ s1us ·n) =

= pd + s2(K∇pd ·n−gd ·n) =λs

and

λs + (s1 + s2)τs(Es(λs , fs)) = pd + s2(K∇pd ·n−gd ·n)+ (s1 + s2)(us ·n) =
−n ·T (us , ps) ·n+ s1(us ·n) =λd .

We are then left to show that (us , ps) = Es(λs , fs) and pd = Ed (λd ,gd ). We start observing
that equation (5.5.3) implies

λd =−n ·T (us , ps) ·n+ s1us ·n = pd + s1(us ·n),

λs = pd + s2(K∇pd ·n−gd ·n) = pd − s2(us ·n).
(5.5.4)

Testing (5.2.4) against the test function (0,0, qd ), we get pd satisfies

ãd (pd , qd )−
∫
Ωd

gd ·∇qd =
∫
Γ

(us ·n)qd , ∀qd ∈ Hd . (5.5.5)

On the other hand, p̃d = Ed (λd ,gd ) satisfy

ad (p̃d , qd ) =
∫
Ωd

gd ·∇qd + 1

s1

∫
Γ
λd qd , ∀qd ∈ Hd . (5.5.6)

Replacing the expression of λd from (5.5.4), and using (5.5.5), we get

ad (p̃d , qd ) = ad (pd , qd ), ∀qd ∈ Hd , (5.5.7)
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which implies p̃d = Ed (λd ,gd ) = pd . Similarly, testing (5.2.3) against test functions (v, qs ,0)
we obtain that (us , ps) satisfy,

ãs(us ,v)+bs(v, ps)+C (pd ,v) =
∫
Ωs

fs ·v,

bs(us , qs) = 0.
(5.5.8)

On the other hand, using the expression of λs in (5.5.4), (ũs , p̃s) = Es(λs , fs) satisfies

as(ũs ,v)+bs(v, p̃s) =
∫
Ωs

fs ·v−
∫
Γ

pd (v ·n)+
∫
Γ

s2(us ·n)(v ·n), ∀v ∈ Hs ,∫
Ωs

∇· ũs ·qs = 0, ∀qs ∈Qs .
(5.5.9)

Inserting (5.5.8) we obtain that the couple (ũs , p̃s) = Es(λs , fs) satisfies

as(ũs ,v)+bs(v, p̃s) = as(us ,v)+bs(v, ps), ∀v ∈ Hs∫
Ωs

∇· ũs ·qs = 0, ∀qs ∈Qs .
(5.5.10)

and we deduce that (ũs , p̃s) = Es(λs , fs) = (us , ps). This concludes the first part of the proof.

We now suppose that (λs ,λd ) are solution of (5.5.2) and we define

(ũs , p̃s , p̃d ) := (Es(λs , fs),Ed (λd ,gd )).

From (5.5.2) we obtain

λs = p̃d − s2(ũ ·n), and λd = p̃d + s1(ũ ·n). (5.5.11)

Adding problems (5.2.11) and (5.2.10) we obtain for all (v, qs , qd ) ∈ Hs ×Qs ×Hd

ãs(ũs ,v)+bs(v, p̃s)+
∫
Γ

s2(ũs ·n)(v ·n)+ ãd (p̃d , qd )+ 1

s1

∫
Γ

pd qd

=
∫
Ωs

f ·v−
∫
Γ
λs(v ·n)+

∫
Ωd

gd ·∇qd + 1

s1

∫
Γ
λd qd , ∀(v, qs , qd ) ∈ Hs ×Qs ×Hd ,

bs(ũs , qs) = 0.

(5.5.12)

Inserting (5.5.11) into (5.5.12), we obtain that (ũs , p̃s , p̃d ) are solutions of (5.2.4), that is
solutions of the original coupled problem which concludes the proof.

We now define Gs : Λ→ Λ as Gs(λ) := τsEs(λ,0) and Gd : Λ→ Λ as Gd (λ) := τd Ed (λ,0).
Furthermore we set χs := τs(Es(0, fs)) and χd := τd (Ed (0,gd )). Using the linearity of the
operators Es and Ed , (5.5.2) can be reformulated as4(

I s2
s1

I − (1+ s2
s1

)Gd (·)
−I − (s1 + s2)Gs(·) I

)(
λs

λd

)
=

(
χs

χd

)
, (5.5.13)

4Working in a pure algebraic setting, one could get a slightly modified version of (5.5.13), see (4.6) in [53],
which differs in the sign of the term (s1+ s2)Gs (·) and in a parameter s1 multiplying Gd ( Gs and Gd are called
S f and Sd in [53]). These terms are already included in the definition of the infinite dimensional operators
Gs and Gd .
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which is exactly the counterpart of (4.1.13) for the Stokes-Darcy system. The substruc-
tured version of (5.1.7) is then(

λn
s

λn
d

)
=

(
0 s2

s1
I − (1+ s2

s1
)Gd (·)

−I − (s1 + s2)Gs(·) 0

)(
λn−1

s

λn−1
d

)
+

(
χs

χd

)
. (5.5.14)

Defining the errors en
s = λs −λn

s and en
d = λd −λn

d , the substructured OSM (5.5.14) reads
in the error form (

en
s

en
d

)
=

(
0 s2

s1
I − (1+ s2

s1
)Gd (·)

−I − (s1 + s2)Gs(·) 0

)(
en−1

s

en−1
d

)
. (5.5.15)

Remark 5.5.2 (Substructured OSM for the Laplace equation). Considering the OSM for

the Laplace equation (1.3.14), we define two interface variables as λn
1 := ∂un

1
∂n2

+ s2un
1 and

λn
2 := ∂un

2
∂n1

+ s1un
2 . It is possible to show, [61, Chapter 2], that the OSM iterates satisfy

λn
1 =−λn−1

2 +2s1un
2 and λn

2 =−λn−1
1 +2s2un

1 .

Expressing now un
j :=G j (λn−1

j , f ), where G j are extensions operators of a Robin trace on
Γ with some right hand side f , we obtain the substructured iteration(

λn
1

λn
2

)
=

(
0 −I +G2(·,0)

−I +G1(·,0) 0

)(
λn−1

1
λn−1

2

)
+

(
G2(0, f )
G1(0, f )

)
.

5.5.1 Numerical experiments

We present numerical experiments to study the convergence properties of the S2S and
G2S methods applied to the Stokes-Darcy system. We consider the geometry of Fig 5.9
with a mesh of regular elements whose mesh size is h. We present tables with the number
of iterations to reach a tolerance Tol = 10−8. We consider the one-level OSM (G), the S2S
method with a coarse space made of Nc eigenfunctions of G (S2S-G(Nc )), the S2S method
with a coarse space made of Nc random functions obtained through PCA (S2S-PCA(Nc )),
and the G2S method. Concerning the two-level methods, we emphasize that the one-level
OSM is not a natural smoother, see also the discussion in Chapter 3, and thus we need to
choose properly the optimized parameters to have good smoothing properties. A wrong
estimation of these parameters could destroy the excellent convergence properties of the
two-level methods. Hence, we aim to study both how fast the two-level methods are if the
exact optimized parameters are available, and how the convergence deteriorates if one
uses either Fourier or probing techniques to estimate them.

5.5.1.1 Robustness with respect to the mesh size

We first study the robustness of the methods with respect to the mesh size h. We consider
two different settings. On the left of Table 5.1, we consider homogeneous Dirichlet bound-
ary conditions except on the top horizontal edge of Ωs , where a zero normal stress con-
dition is imposed. We have observed that the Fourier analysis is precise in this settings,
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h 1
4

1
8

1
16

1
32

G 12(12) 13(13) 14(14) 15(14)
S2S-G(5) 11(7) 13(8) 14(8) 15(8)

S2S-PCA(5) 9(6) 14(8) 16(10) 16(10)
S2S-G(10) 7(6) 13(6) 14(8) 14(8)

S2S-PCA(10) 6(5) 12(6) 16(8) 16(8)
G2S 6(6) 6(6) 5(5) 4(4)

h 1
4

1
8

1
16

1
32

G 13(12) 12(12) 12(12) 12(12)
S2S-G(5) 10(7) 10(8) 10(9) 9(9)

S2S-PCA(5) 7(7) 7(9) 8(10) 9(10)
S2S-G(10) 6(5) 6(6) 8(6) 8(7)

S2S-PCA(10) 5(4) 6(6) 8(7) 8(8)
G2S 6(6) 6(6) 5(5) 4(4)

Table 5.1: Number of iterations to reach a tolerance of Tol = 10−8 for the one-level OSM
(G), the S2S method with coarse space made of Nc eigenfunctions of G (S2S-G(Nc )), the
S2S method with Nc random functions obtained through PCA (S2S-PCA(Nc )), and the G2S
method. The physical parameters are µ= 0.1, η1 = η2 = 1.

see Section 5.3.1. On the right of Table 5.1, we impose homogeneous boundary condi-
tions all along ∂Ω, and we use probing to estimate the parameters. For each method we
present a couple of numbers. The first number indicates the iterations required to reach
the tolerance with a parameter obtained through Fourier analysis (left table) and prob-
ing technique (right table). When using the Fourier approach, we solve the optimization
problem (5.3.1) with a range of frequencies k ∈ [π, Nπ], where N is the number of un-
knowns on Γ. The resulting parameters are used for G and the S2S methods. For the
G2S method we use frequencies in the range k ∈ [ N

2 π, Nπ] to optimized the smoothing
property. Concerning probing, we use the set K2 defined in Section 5.3.1 for the G and
S2S methods, while K3 := { N

2 , N
}

for the G2S method. The second number in bracket is
obtained using the parameter p = argminρ(X (p)), where X is either the one-level OSM
(G), the S2S-G method and the G2S method. These exact optimized parameters are found
through a brute force optimization. For the S2S-PCA, we use the same parameters of the
S2S-G method.

We remark that the one-level OSM has mesh independent convergence, as shown in [56].
We stress that in the spectral case it is absolutely not trivial how to choose the parame-
ters. Setting p = argminρ(G(p)) is not necessarily the best choice, as it guaranties that the
spectral radius is minimized, but we do not have any control on the remaining part of the
spectrum. As Table 5.1 shows, it could be better to choose a different p which has few
large eigenvalues, whose corresponding eigenvectors are inserted into the coarse space,
and the remaining spectrum contains only very small eigenvalues. In our numerical ex-
periments, it happens that p = argminρ(G(p)) leads to a very large plateau of eigenvalues,
even though ρ(G(p)) is minimized, and thus increasing the dimension of the coarse space
does not lead to a significant improvement of the convergence. The S2S methods and G2S
are faster than the one-level OSM, even tough the improvement is not so significant as for
the second order elliptic equation discussed in Chapter 4. Nevertheless, we note that both
methods are roughly twice faster than the one-level OSM, and the G2S method becomes
even faster as the mesh size decreases since the coarse problem size increases. Since each
iteration of the one-level OSM is quite expensive, as it requires to solve a Stokes prob-
lem, it is really promising to see this reduction in terms of iteration numbers with only
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µ 10−2 10−3 10−4

G(p) 29(29) 64(61) 90(30)
G(p,q) 17(15) 25(22) 80(16)

S2S-G(5) 19(13) 36(19) 14(13)
S2S-PCA(5) 12(12) 34(21) 10(14)
S2S-G(10) 9(8) 27(11) 11(10)

S2S-PCA(10) 10(8) 26(12) 10(10)
G2S 7(7) 9(9) 11(11)

Table 5.2: Number of iterations to reach a tolerance of Tol = 10−8 for the one-level OSM
(G), the S2S method with coarse space made of Nc eigenfunctions of G (S2S-G(Nc )), the
S2S method with Nc random functions obtained through PCA (S2S-PCA(Nc )) and the G2S
method. The mesh size is h = 1

8 and η1 = η2 = 1.

the additional cost of a small coarse problem defined over the interface. For instance,
considering a mesh size h = 1

128 , the global problem has 214788 unknowns ( 148739 for
the Stokes equation and 66049 for the Darcy equation), while the dimension of the coarse
problem for the G2S method is 254.

5.5.1.2 Robustness with respect to physical parameters

In this subsection we study the robustness of the two-level methods with respect to the
physical parameters. The first Robin-Robin method for the Stokes-Darcy coupling was in-
deed introduced in order to overcome the deterioration of the convergence of the Dirichlet-
Neumann method as the physical parameters become smaller. In addition to the methods
already considered, we add a one-level double sided OSM denoted with G(p, q). Table 5.2
reports the number of iteration to reach a tolerance of Tol < 10−8 for the different meth-
ods as µ become smaller. We remark that the one-level methods are not very robust, and
the estimation of the optimized parameters is not trivial as it fails for both the one-level
methods when µ= 10−4. Finally, the addition of a coarse space makes the iterative meth-
ods less sensitive to the choice of the optimized parameters.



CHAPTER6

Substructured Nonlinear

Preconditioning

"The subject of preconditioning (...) is already decades old. Yet the design and
study of preconditioners seems constantly fresh as it continues to address prob-
lems from new application domains, adapts to new computer architectures,
and incorporates ideas from new fields"

— E. Chow, K. Vulk, Preconditioning in the new decade, SIAM News, Issue 2,
2020.

Among the new ideas which will give life to the preconditioning field in the next decade,
the authors of the epigraph included nonlinear preconditioning. At a first glance, stating
that we aim to precondition a nonlinear system seems a nonsense. As a matter of fact,
preconditioning is traditionally associated with linear systems as the same word precon-
ditioning automatically induces the reader to think about techniques to better “condition”
a matrix operator A. Suppose we aim to solve a linear system Au = b. Then to precondi-
tion the linear system on the left or on the right means to replace the original linear system
with

M−1 Au = M−1b, left preconditioning,

AP−1 y = b, Pu = y, right preconditioning,

where M−1 and P−1 are called respectively left and right preconditioners.
Let us now consider a nonlinear system F (u) = 0. By preconditioning a nonlinear system,
we mean that we aim to replace the original nonlinear system with a new nonlinear sys-
tem, still having the same solution, but for which the nonlinearities are more balanced
and Newton’s method converges faster [18, 77]. Thus, to precondition a nonlinear system
on the left or on right means to replace the original nonlinear system with

G(F (u)) = 0, left preconditioning,

F (H(y)), u = H−1(y), right preconditioning,

where G and H are nonlinear functions called respectively left and right preconditioners.
Seminal contributions in nonlinear preconditioning have been made by Cai and Keyes
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in [18, 19], where they introduced the ASPIN method (Additive Schwarz Preconditioned
Inexact Newton), which is a left preconditioner. The development of efficient precondi-
tioners is not an easy task even in the linear case. One useful strategy is to study efficient
iterative methods, and then to use the associated preconditioners (see equation (1.1.7))
in combination with Krylov methods [77]. The same logical path paved the way to the
development of the RASPEN method (Restricted Additive Schwarz Preconditioned Exact
Newton) in [59] which will be explained in the next sections. For the sake of completeness,
we remark that domain decomposition methods can also be applied as either nonlinear
iterative methods, that is by just solving nonlinear problems in each subdomain and then
exchanging information between subdomains as in the linear case [128, 129, 17, 117], or
as preconditioners to solve the Jacobian linear system inside a Newton’s iteration. In the
latter case, the term Newton-Krylov-DD is employed, where DD is replaced by the domain
decomposition preconditioner used [17, 117].

This chapter is based on ongoing work with Faycal Chaouqui, Martin Gander and Pratik
Kumbhar. Starting from the RASPEN method introduced in [59], we define a similar method
at the substructured level and we called it “SRASPEN” (Substructured Restricted Addi-
tive Schwarz Preconditioned Exact Newton) method. Considering one-level variants, we
prove that substructuring does not modify the convergence behaviour of Newton’s method,
that is, RASPEN and SRASPEN methods produce the same iterates on the substructures.
However, we will discuss the advantages of applying substructuring from a computational
point of view. Considering instead two-level variants, we will show that the SRASPEN
method exhibits faster convergence. Since here we will discuss preliminary results, we
refer the reader to [29] for further details.

We emphasize that substructuring has received very little attention in the nonlinear case
compared to the linear case. Actually, the term nonlinear elimination is usually employed
instead of substructuring, and this concept is tightly linked with the development of right
preconditioners. In the next section we provide a brief review of two methods where sub-
structuring ideas are used in the nonlinear case.

6.1 Nonlinear Elimination

We consider the nonlinear system
F (u) = 0, (6.1.1)

where F = ( f1, f2, . . . , fn)> and u = (u1,u2, . . . ,un)>. A standard technique to solve (6.1.1) is
Newton’s method which, starting from an initial guess u0, generates a sequence of iterates{
uk

}
, k = 1,2, . . . , defined as

uk = uk−1 + rk , rk =−(JF (uk−1))−1F (uk−1), (6.1.2)

where JF (uk−1) is the Jacobian of F evaluated at uk−1. It is well known that Newton’s
method converges quadratically sufficiently close to the exact solution u. However, the
choice of the initial guess u0 has a tremendous influence and global convergence is not
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guaranteed. Another popular method to solve (6.1.1) is the inexact Newton method which
differs from Newton’s method in two aspects. First, it allows one to solve the Jacobian
system approximately, which can be of great interest for large problems. Second, it in-
troduces a relaxation parameter tk ∈ (0,1] multiplying rk . The goal of tk is to enlarge
the convergence basin of Newton’s method, as the residual is certainly decreasing along
the direction rk in a neighbourhood of uk , but sometimes Newton’s method could take
too large steps in this direction, ending up increasing the residual. The inexact Newton
method is based on the recurrence relation

uk = uk−1 + tk rk , where rk sastifies αk = ||JF (uk−1)rk +F (uk−1)||
||F (uk−1)|| < 1, (6.1.3)

and tk ∈ (0,1] is chosen such that ||F (uk )|| < δ||F (uk−1)||, δ ∈ (0,1). We emphasise that αk

is a measure of how well we solve approximately the Jacobian system and usually αk < 1
is sufficient for convergence. We refer the interested reader to the monograph [51] for a
comprehensive theory of convergence of Newton’s method.

To the best of the author’s knowledge, the first nonlinear elimination algorithm has been
proposed in [120] based on the following idea. Let us suppose that F can be partitioned
into

F (x1, x2) = (F1(x1, x2),F2(x1, x2)), with JF (x1, x2) =
(

JF11 JF12

JF21 JF22

)
, (6.1.4)

where JFi j := ∂Fi
∂x j

. The functions F j have as many equations as the degrees of freedom of

x j , j = 1,2. We assume that F1(x1, x2), regarded as a function of x1 given x2, has some
components which are highly nonlinear, with large residual, and that lead to very small
values of tk . For smooth functions F1, we can use the Implicit Function Theorem to find
formally a function h(x2) such that F1(h(x2), x2) = 0, that is, for every choice of x2 there
exists an x1 function of x2, such that F1(x1(x2), x2) = 0. Assuming that h(·) is known, then
one solves the smaller nonlinear system

g (x2) := F2(h(x2), x2) = 0. (6.1.5)

From the computational point of view, it is straightforward to apply Newton’s method to
(6.1.5). Computing the Jacobian of g and using implicit differentiation for h′, one finds

g ′(x2) = (F2(h(x2), x2))′ = JF22 + JF21 h′(x2) = JF22 − JF21 J−1
F11

JF12 ,

that is, the Schur complement of JF . Thus, solving g ′(xk−1
2 )rk =−g (xk−1

2 ) is equivalent to
solve (

JF11 JF12

JF21 JF22

)(
∆x1

rk

)
=

(
0

−F2(h(x2), x2)

)
, (6.1.6)

i.e., the original global Jacobian problem evaluated at (h(x2), x2). In Algorithm 7 we sum-
marize this method proposed in [120]. We stress that Step 5 of Algorithm 7 requires to
evaluate h(·) in xk

2 +tk rk for every tk . Since generally we do not have a closed form expres-
sion for h(·), we need to solve F1(∆x1, x2 + tk rk ) = 0 and set ∆x1 = h(x2 + tk rk ) for every
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Algorithm 7: Nonlinear Elimination Algorithm [120]

Require: x0 and F .
1: Split the nonlinear system into F = (F1,F2) and the unknowns into x0 = (x0

1 , x0
2).

2: Solve F1(x0
1 , x0

2) = 0 and set x1 = h(x0
2), k = 0.

3: Repeat from 4 to 6 until convergence
4: Solve equation (6.1.6) with the current approximation (h(xk

2 ), xk
2 ).

5: Find tk such that ||F2(h(xk
2 + tk rk ), xk

2 + tk rk )|| ≤ δ||F (h(xk
2 ), xk

2 )||.
6: Set xk+1

2 = xk
2 + tk rk , h(xk+1

2 ) = h(xk
2 + tk rk ) and k = k +1.

value of tk . This implies a potentially large number of solves for F1. Indeed, we can think
of Algorithm 7 as an efficient way to spread the computational costs. If F1 slows down the
convergence of Newton’s method, instead of performing several solves on the global and
large nonlinear system, Algorithm 7 performs very few iterations of the inexact Newton
method applied to F2, while focusing on solving the harder nonlinear problem F1. Algo-
rithm 7 can also be interpreted as a Newton’s method applied to the right preconditioned
system F (H(x)) = 0. To see this, let us ignore Step 5 so that we are dealing with an ex-
act Newton’s method and define H(x1, x2) := (h(x2), x2). Then starting from x0 = (

x0
1 , x0

2

)
,

Step 2 computes y0 = H(x0), while Step 3 applies Newton’s method to F (H(x0)) to get an
approximation x1. Finally Step 6 computes y1 = H(x1) for the next Newton iteration.

The decomposition (6.1.4) assumed by the nonlinear elimination algorithm proposed in
[120] is very general and does not necessarily share any link with a domain decomposition
method. Cai and collaborators have recently introduced domain decomposition variants
of this algorithm and applied them to several problems such as CFD [20] and hyperelas-
ticity with application to arteries’ deformation [103, 104]. The motivations of the work
proposed in [20] lie in the observations that certain local strong nonlinearities can be
handled locally and for instance, local subdomain solves allow one to have a zero residual
inside each subdomain, but still quite large residuals are present along the interfaces be-
tween subdomains. Thus, whenever the residual of a global Newton’s iteration is too large
in some part of the domain, they propose to add a RAS step inside a Newton-Krylov-RAS
iteration. As the authors explicitely stated in [20], “its (The RAS step) purpose is to provide
a better initial guess for the next outer Newton iteration". To define mathematically the
method we follow the notation of [20].
Let us introduce the set of indices S := {1,2, ...,n}, and decompose it into several subset
Si , i = 1, ..., N , such that

⋃N
i=1 Si = S and Si ∩ S j = ; if i 6= j . In addition to Si , we con-

sider the set Sδi such that Si ⊂ Sδi for every i . The sets Si and Sδi can be thought as an
algebraic nonoverlapping and overlapping decomposition of S 1. We also need to define
the spaces Vi := {

x ∈Rn : x j = 0, if j ∉ Si
}
, V δ

i := {
x ∈Rn : x j = 0, if j ∉ Sδi

}
and the matri-

ces R0
i : Rn → Vi and Rδ

i : Rn → V δ
i . Moreover, we define the restriction of F onto V δ

i as

1The sets of indices Si can be defined dynamically at each outer Newton iteration as the sets of indices
of equations fi for which the residual is too large according to some criteria. In this case, the Si do not share
any link with a geometric decomposition of the domain, see [104].
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Algorithm 8: Newton-Krylov-Schwarz-RAS [20]

Require: xk and F .
1: If global condition is satisfied, stop.
2: If local conditions are not satisfied go to Step 3. Otherwise go to Step 4 and set

x̃k = xk .
3: Compute one step of the RAS method, x̃k =G(xk ).
4: Compute the next approximation xk+1, performing one step of the Newton method

on F (x) = 0 with the approximate solution x̃k and use a Krylov method
preconditioned by a Schwarz method to solve the Jacobian system.

5: Repeat from 1 to 4 until convergence.

Fδ
i := Rδ

i F (x), i = 1, ..., N . Then, as we will discuss in detail in Section (6.2), one step of the
nonlinear RAS method can be written as

w =G(x) = x +
N∑

i=1
R j

0 xδi , where xδi are solution of Fδ
i (x +xδi ) = 0.

With these ingredients, the algorithm proposed in [20] is described by Algorithm 8. The
aim of the local nonlinearity conditions is to check that the residual is balanced among the
sets Si . Thus for every i = 1, ..., N , we claim that the nonlinearity is not balanced if there
exits an m ∈ {1, ..., N } such that ||Fδ

m(xk )|| > ρ||F (xk )||, where ρ ∈ (0,1) is a parameter to be
tuned. For further details we refer the interested reader to [104]. Algorithm 8 can be seen
as a special case of Algorithm 7, where the function H is now the Schwarz operator G , and
the unknowns in the interior of each subdomain are treated implicitly, as the genereric
variable x1 was eliminated in Algorithm 7. Indeed, the Schwarz operator G guarantees
that, given some particular values on the interface between subdomains, the residual is
zero in the interior of the subdomains, that is, the set of the interior nonlinear equations
is satisfied.

In other words, Algorithm 8 uses the RAS method in an outer Newton iteration to elim-
inate the interior degrees of freedom, leaving to Newton’s method the duty to take care
of the remaining unknowns. In the next section we are going to adopt a different point
of view. We will derive a substructured formulation of the Schwarz method for nonlinear
problems, that is the counterpart of (4.1.11). Once we have the iterative method, we will
use Newton’s method to solve the corresponding fixed-point equation. The method we
propose is therefore naturally defined over the substructured unknowns, and it does not
require to explicitly eliminate the interior unknowns at each outer Newton iteration.



CHAPTER 6. SUBSTRUCTURED NONLINEAR PRECONDITIONING 174

Figure 6.1: The domain Ω is divided into nine nonoverlapping subdomains (left). The
center panel shows how the diagonal nonoverlapping subdomains are enlarged to form
overlapping subdomains. On the right, we denote the unknowns represented in V s (blue
line) and the unknowns of a coarse space of V s (red crosses).

6.2 Definition of the SRASPEN method

Let us consider the boundary value problem posed in a Lipschitz domain Ω ⊂ Rd , d ∈
{1,2,3},

L (u) = f , in Ω,

u = 0, on ∂Ω.
(6.2.1)

We assume that (6.2.1) admits a unique solution in some Hilbert space V . If the boundary
value problem is linear, a discretization of (6.2.1) leads to the linear system

Au = f , (6.2.2)

while if the boundary value problem is nonlinear, we solve the nonlinear system

F (u) = 0. (6.2.3)

In this section we introduce a new one-level nonlinear solver based on domain decom-
position for the nonlinear system (6.2.3) called the SRASPEN (Substructured Restricted
Additive Schwarz Preconditining Exact Newton) method. To introduce this method and
to better specify the relations between SRASPEN and other existing linear and nonlinear
solvers, we take a brief excursus on domain decomposition methods to solve (6.2.2) and
(6.2.3).
Let us decompose the domainΩ into N overlapping subdomainsΩ′

j , that isΩ=⋃
j∈J Ω′

j

with J := {1,2, . . . , N } (see Fig. 6.1). For each subdomain Ω′
j , we define V j as the restric-

tion of V onto Ω′
j . Further, we introduce the classical restriction and prolongation oper-

ators R j : V → V j , P j : V j → V , and the restricted prolongation operators P̃ j : V j → V . We
assume that these operators satisfy

R j P j = IVi ,
∑

j∈J

P̃ j R j = I , (6.2.4)

where IVi is the identity on Vi and I is the identity on V . A classical domain decomposi-
tion method to solve a linear equation (6.2.2) is the RAS method, which starting from an
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approximation u0 computes for n = 1,2, . . .

un = un−1 + ∑
j∈J

P̃ j A−1
j R j ( f − Aun−1), (6.2.5)

where A j are defined as A j := R j AP j . Let us now rewrite the iteration (6.2.5) in an equiv-
alent form using the hypothesis in (6.2.4) and the definition of A j ,

un = ∑
j∈J

P̃ j R j un−1 + ∑
j∈J

P̃ j A−1
j R j

(
f − Aun−1)= ∑

j∈J

P̃ j A−1
j

(
A j R j un−1 +R j

(
f − Aun−1))

= ∑
j∈J

P̃ j A−1
j

(
R j AP j R j un−1 +R j

(
f − Aun−1))= ∑

j∈J

P̃ j A−1
j R j

(
f − A

(
I −P j R j

)
un−1)

=: GRAS(un−1).
(6.2.6)

Similarly, the RAS method can be used to solve the nonlinear equation (6.2.3). To show
this, we introduce the solution operators G j which are defined through

R j F (P j G j (u)+ (I −P j R j )u) = 0. (6.2.7)

The nonlinear RAS method then reads

un = ∑
j∈J

P̃ j G j (un−1). (6.2.8)

It is possible to show that (6.2.8) reduces to (6.2.6) if F (u) is a linear function. Infact as-
suming F (u) = Au − f , equation (6.2.7) becomes,

R j F
(
P j G j

(
un−1)+ (

I −P j R j
)

un−1)= R j
(

A
(
P j G j

(
un−1)+ (

I −P j R j
)

un−1)− f
)

= A j G j
(
un−1)+R j

(
A

(
I −P j R j

)
un−1 − f

)= 0,
(6.2.9)

which implies G j
(
un−1

)= A−1
j R j

(
f − A

(
I −P j R j

)
un−1

)
, and thus (6.2.8) reduces to (6.2.6).

We remark that
(
P j R j − I

)
un−1 contains non-zero elements only outside subdomain Ω j ,

and in particular A
(
P j R j − I

)
un−1 represents precisely the boundary condition for Ω j

given the old approximation un−1. This observation suggests that the RAS method, like
most domain decomposition methods, can be written in a substructured formulation.
Infact, despite the iteration (6.2.6) is written in volume form, that is, it involves the whole
vector un−1, only very few elements of un−1 are needed to compute the new approxima-
tion un . For further details about the classical parallel Schwarz method in a substructured
formulation we refer to [80] for the two subdomain case, and [41] for a general decompo-
sition into several subdomains with cross points at the continuous level.

We now define a substructured formulation for the RAS method both for the linear and
the nonlinear case. In the following we use the notation introduced in [40]. For any j ∈J ,
we define the set of neighbouring indices N j := {` ∈ J : Ω j ∩∂Ω` 6= ;}. Given a j ∈ J ,
we introduce the substructure of Ω j defined as S j := ⋃

`∈N j

(
∂Ω`∩Ω j

)
, that is the union

of all the portions of ∂Ω` with ` ∈N j . The substructure of the whole domainΩ is defined
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as S := ⋃
j∈I S j . We now introduce the space V S which can be interpreted as the space

V restricted onto the substructure S. We can define it in two ways. Either V S := V|S , or
V S :=⊗ j∈S j V|S j . In the following sections we have used the first definition since we prefer
to have full rank operators RS and PS . Remark that in Chapter 4, we used the second def-
inition, V S := ⊗ j∈S j V|S j , which doubles the unknowns in the overlap between interfaces
and leads to operators RS and PS which are not full rank, and may cause problems while
solving the Jacobian system inside a Newton’s iteration. Associated to V S , we consider the
restriction operator RS : V →V S and a prolongation operator PS : V S →V . The restriction
operator RS takes an element v ∈V and restricts it onto the skeleton S. The prolongation
operator PS extends an element v ∈V S to the global space V . How this extension is done
is not crucial as we will use PS inside a domain decomposition algorithm, and thus only
the values on the skeleton S will play a role. Hence, we only require that RSPS = IS , where
IS is the identity operator on V S . In the following, PS extends an element vS ∈V S to zero
in Ω\ S, but the same analysis can be adapted to any other choice of PS .

Given a substructured approximation v0 ∈V S , for n = 1,2, . . . we define the Substructured
RAS (SRAS) method as

vn =GSRAS(vn−1), (6.2.10)

where GSRAS(v) := RSGRAS(PS v). The RAS method and SRAS method are obviously tightly
linked, but when are they equivalent? We must impose some conditions on PS and RS . It
is sufficient to assume that the restriction and prolongation operators satisfy

RSGRAS(u) = RSGRAS(PSRSu), ∀u ∈V. (6.2.11)

Heuristically, we need that the operator PSRS preserves all the information used by GRAS

to compute the new iterate. The formal equivalence between RAS and SRAS is shown in
the following theorem.

Theorem 6.2.1 (Equivalence between RAS and SRAS). Assume that the operators RS and
PS satisfy Assumption (6.2.11). Then given an initial guess u0 ∈ V and its substructured
restriction v0 := RSu0 ∈V S , define the sequences

{
un

}
and

{
vn

}
such that

un =GRAS(un−1), vn =GSRAS(vn−1).

Then for every n ≥ 1, RSun = vn .

Proof. We prove the statement for n = 1 through a direct calculation. Taking the restric-
tion of u1 we have

RSu1 = RSGRAS(u0) = RSGRAS(PSRSu0) = RSGRAS(PS v0) =GSRAS(v0) = v1,

where we used assumption (6.2.11) and the definition of v0. The other cases follow by
induction.
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Similarly to the linear case, we can define a substructured RAS method in the nonlinear
case. Defining

GS
j (vn−1) := RS P̃ j G j

(
Ps vn−1) , (6.2.12)

we obtain the nonlinear substructured iteration,

vn = RS
∑

j∈J

P̃ j G j (PS vn−1) = ∑
j∈J

GS
j (vn−1). (6.2.13)

The same identical calculations of Theorem 6.2.1 allow one to obtain an equivalence re-
sult between nonlinear RAS and nonlinear substructured RAS.

Theorem 6.2.2 (Equivalence nonlinear RAS and SRAS). Assume that the operators RS and
PS satisfy RS

∑
j∈J P̃ j G j (u) = RS

∑
j∈J P̃ j G j (PSRSu). Then given an initial guess u0 ∈ V

and its substructured restriction v0 := RSu0 ∈V S , define the sequences
{
un

}
and

{
vn

}
such

that
un = ∑

j∈J

P̃ j G j (un−1), vn = ∑
j∈J

GS
j (vn−1).

Then for every n ≥ 1, RSun = vn .

In the manuscript [59], it has been proposed to use the fixed point equation of the non-
linear RAS method as a preconditioner for Newton’s method, in a spirit that goes back to
[19, 18]. This method has been called RASPEN (Restricted Additive Schwarz Precondi-
tioning Exact Newton) and it consists in applying the Newton method to the fixed point
equation

F (u) = u − ∑
j∈J

P̃ j G j (u) = 0. (6.2.14)

Here and in the article in preparation [29], we analyze a substructured version of the
RASPEN method thus called SRASPEN. It consists in applying Newton’s method to the
fixed point equation

F S(v) = RSF (PS v) = RSPS v − ∑
j∈J

RS P̃ j G j (PS v) = v − ∑
j∈J

GS
j (v) = 0. (6.2.15)

6.2.1 Computation of the Jacobian and implementation details

To apply Newton’s method, we need to compute the Jacobian of SRASPEN. Since SRASPEN
and RASPEN methods are closely related, indeed F S(v) = RSF (PS v), we can immedi-
ately compute the Jacobian of F S once we have the Jacobian of F , through the chain rule
JF S (v) = RS JF (PS v)PS . The Jacobian of F has been derived in [59] and we report the
main steps for the sake of completeness. Differentiating equation (6.2.14) with respect to
u leads to

JF (u) := dF

du
(u) = I − ∑

j∈J

P̃ j
dG j

du
(u), (6.2.16)
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where JF (w) denotes the action of the Jacobian of RASPEN on a vector w . Recall that
the local inverse operators G j : V → V j are defined in equation (6.2.7) as the solutions of
R j F (P j G j (u)+ (I −P j R j )u) = 0. Differentiating this relation yields

dG j

du
(u) = R j −

(
R j J

(
u( j )

)
P j

)−1
R j J

(
u( j )

)
, (6.2.17)

where u( j ) := P j G j (u)+ (I −P j R j )u is the volume solution vector in subdomain j and
J is the Jacobian of the original nonlinear function F . Combining the above equations
(6.2.16)-(6.2.17) and defining ũ( j ) := P j G j (PS v)+ (I −P j R j )PS v , we get

JF (u) =
( ∑

j∈J

P̃ j

(
R j J

(
u( j )

)
P j

)−1
R j J

(
u( j )

))
, (6.2.18)

JF S (v) = RS

( ∑
j∈J

P̃ j

(
R j J

(
ũ( j )

)
P j

)−1
R j J (ũ( j ))

)
PS , (6.2.19)

where we used the assumptions
∑

j∈J P̃ j R j = I and RSPS = IS . We remark that to assem-

ble JF (u) or to compute its action on a given vector, one needs to calculate J
(
u( j )

)
, that is

evaluating the Jacobian of the original nonlinear function F on the subdomain solutions
u j . The subdomain solutions u j are obtained evaluating F (u), that is performing one
step of the RAS method with initial guess equal to u. A smart implementation can use
that the local Jacobian matrices R j J

(
u( j )

)
P j are already computed by the inner Newton

solvers while solving the nonlinear problem on each subdomain, and hence no extra cost
is required to assemble this term. Further, the matrices R j J

(
u( j )

)
are different from the

local Jacobian matrices at very few columns corresponding to the degrees of freedom on
the interfaces and thus one could only modify those specific entries. In a lazier imple-
mentation, one can directly evaluate the Jacobian of F on the subdomain solutions u j ,
without relying on already computed quantities. Concerning JF S (v), we emphasize that
ũ( j ) is the volume subdomain solution obtained by the substructured RAS method start-
ing from a substructured function v . Thus, as u( j ), ũ( j ) is readily available in a Newton’s
iteration after evaluating the function F S .

From the computational point of view, (6.2.18) has several implications. First, the sub-
structured Jacobian JF s is a matrix of dimension NS ×NS where NS is the number of un-
knowns on S, and thus is a much smaller matrix than JF , whose size is Nv × Nv , with
Nv the number of unknowns in volume. Hence, at each Newton iteration, the SRASPEN
method must solve a much smaller system compared to the RASPEN method. This is even
more important if one does not rely on some Krylov method, but prefers to use a direct
solver as the assembly of JF s is dramatically cheaper than for JF . Further implementa-
tion details and a more extensive comparison are available in the numerical section 6.5.

6.3 Convergence analysis of RASPEN and SRASPEN

Theorem (6.2.2) states an equivalence between the nonlinear iterative RAS method and
the nonlinear iterative substructured RAS method. Are the RASPEN and SRASPEN meth-
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ods equivalent? Does the Newton method behave differently if applied to the volume or
to the substructured fixed point equation? In this section we aim to answer these ques-
tions, discussing the convergence properties of the exact Newton method applied to F

and F S . Let us remember that, given two approximations u0 and v0, the exact Newton
method computes for n ≥ 1,

un = un−1 − (
JF

(
un−1))−1

F
(
un−1) , vn = vn−1 − (

JF S

(
vn−1))−1

F S(vn−1), (6.3.1)

where JF

(
un−1

)
and JF S

(
vn−1

)
are the Jacobian matrices respectively of F and F S eval-

uated at un−1 and vn−1. In this paragraph we do not need a precise expression for JF

and JF S . However we recall that, by definition F S(v) = RSF (PS v), so that the chain rule
derivation leads to JF S (v) = RS JF (PS v)PS . If the operators RS and PS were square matri-
ces, we would immediately obtain that the RASPEN and SRASPEN methods are equiva-
lent, due to the affine invariance theory for Newton’s method [51]. However, in our case
RS and PS are rectangular matrices, mapping between spaces of different dimensions.
Nevertheless, in the following theorem we show that the RASPEN and SRASPEN methods
provide the same iterates restricted on the interfaces under further assumptions on RS

and PS .

Theorem 6.3.1 (Equivalence RASPEN and SRASPEN). Assume that the operators RS and
PS satisfy

RSF (u) = RSF (PSRSu) =F S(RSu). (6.3.2)

Given an initial guess u0 ∈ V and its substructured restriction v0 := RSu0 ∈ V S , define the
sequences

{
un

}
and

{
vn

}
such that

un = un−1 − (
JF

(
un−1))−1

F
(
un−1) , vn = vn−1 − (

JF S

(
vn−1))−1

F S (
vn−1) .

Then for every n ≥ 1, RSun = vn .

Proof. We prove the equality RSu1 = v1 through direct calculations and the general case
is obtained by induction. Taking the restriction of the RASPEN iteration

RSu1 = RSu0 −RS
(

JF

(
u0))−1

F
(
u0)= v0 −RS

(
JF

(
u0))−1

F
(
u0) ,

and we deduce that to prove RSu1 = v1 we need to show that

RS
(

JF

(
u0))−1

F
(
u0)= (

JF S

(
v0))−1

F S (
v0) . (6.3.3)

Due to the definition of F S and of v0, and to the assumption (6.3.2), we have

F S (
v0)= RSF

(
PS v0)= RSF

(
PSRSu0)= RSF

(
u0) ,

which substituted into (6.3.3) leads to

RS
(

JF

(
u0))−1

F
(
u0)= (

JF S

(
v0))−1

RSF
(
u0) ,
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Algorithm 9: Two-level iterative RAS

1: Solve the coarse problem F0
(
y
)= F0

(
R0uk

)−R0F
(
uk

)
and set C0

(
uk

)= y −R0uk .

2: Add the coarse correction to the current iterate uk+ 1
2 = uk +P0C0

(
uk

)
.

3: Compute one step of the RAS method, uk+1 =∑
j∈J P̃ j G j

(
uk+ 1

2

)
.

4: Repeat from 1 to 3 until convergence.

which holds true if RS
(

JF

(
u0

))−1 = (
JF S

(
v0

))−1
RS . Multiplying on the left and on the

right by the Jacobians, and since JF S

(
v0

)= RS JF

(
PSRSu0

)
PS , we are left to show that

RS JF

(
PSRSu0)PSRS = RS JF

(
u0) ,

which is trivially true taking the Jacobian of the assumption (6.3.2).

6.4 Two-level methods

In this section we consider two level versions of the iterative RAS and SRAS methods as
well as of the RASPEN and SRASPEN methods. To define a two-level method, we introduce
a coarse space V0 ⊂V , a restriction operator R0 : V →V0 and an interpolation operator P0 :
V0 → V . The nonlinear system F can be projected onto the coarse space V0, defining the
coarse nonlinear function F0 (u0) := R0F (P0u0), for every u0 ∈V0. Due to the definition, it
follows immediately that J0 (u0) = R0 J (P0u0)P0, ∀u0 ∈V0. To compute a coarse correction
we rely on the FAS approach [15]. Given a current approximation u, the coarse correction
C0(u) is computed as the solution of

F0(C0(u)+R0u) = F0(R0u)−R0F (u). (6.4.1)

The two-level RAS method is described by Algorithm 9 and it consists of a coarse correc-
tion followed by one iteration of the RAS method.

We now focus on a substructured counterpart. We introduce a coarse substructured space
V S

0 ⊂ V S , a restriction operator R0 : V S → V S
0 and a prolongation operator P 0 : V S

0 → V S .
We define the coarse substructured function as

F S
0 (v0) := R0F

S(P 0(v0)), ∀v0 ∈V S
0 . (6.4.2)

From the definition it follows that JF S
0

(v0) = R0 JF S (P 0v0)P 0, ∀v0 ∈ V S
0 . There is a pro-

found difference between the two-level volume RAS and the two-level substructured RAS:
in the first one (Algorithm 9), the coarse function is obtained restricting the original non-
linear system F (u) = 0 onto a coarse mesh. In the substructured version, the coarse sub-
structured function is defined restricting onto V S

0 the substructured fixed point equa-
tion. That is, the coarse substructured function corresponds to a coarse version of the
SRASPEN method. Hence, we remark that this algorithm is exactly the nonlinear coun-
tepart of the linear 2-level algorithm described in Chapter 4, where, similarly, the coarse
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Algorithm 10: Two-level substructured iterative RAS

1: Solve the coarse problem F S
0

(
y
)=F S

0

(
R0vk

)
−R0F

S
(
vk

)
and set C S

0

(
vk

)= y −R0vk .

2: Add the coarse correction to the current iterate vk+ 1
2 = vk +P 0C S

0

(
vk

)
.

3: Compute one-step of the RAS method, vk+1 =∑
j∈J GS

j

(
vk+ 1

2

)
.

4: Repeat from 1 to 3 until convergence.

substructured matrix did not involve the original volume matrix, but the fixed point equa-
tion (4.1.13). The substructured two-level iterative RAS is then defined in Algorithm 10.
As in the linear case, numerical experiments will show that the substructured two-level
method exhibits a faster convergence in terms of iteration counts compared to the two-
level volume RAS method. However, we remark that evaluating F0 is rather cheap, while
evaluating F S

0 could be quite expensive as it requires to perform subdomain solves on
the fine mesh. One possible improvement is to approximate F S

0 replacing F S in its defi-
nition with another function which performs subdomain solves on a coarse mesh, much
in the spirit of the coarse matrix Ãc in (4.4.1) for the linear case. Further, we emphasize
that a prerequisite of any domain decomposition method is that the subdomain solves
are cheap to compute in a high performance parallel implementation, so that in such a
setting evaluating F S

0 should be cheap as well.

Once we have defined the two-level iterative methods, we are ready to introduce the two-
level versions of the RASPEN and SRASPEN methods. The fixed point equation of the
two-level RAS method is

F2L(u) := u − ∑
j∈J

P̃ j G j (u +P0C0(u)) =−P0C0(u)− ∑
j∈J

P̃ j C j (u +P0C0(u)) = 0, (6.4.3)

where we have introduce the correction operators C j (u) := G j (u)−R j u. Thus, the two-
level RASPEN method, defined in [59], consists of applying Newton’s method to the fixed
point equation (6.4.3).
Similarly, the fixed point equation of the substructured two-level RAS method is

F S
2L(v) := v − ∑

j∈J

GS
j

(
v +P 0C S

0 (v)
)
=−P 0C S

0 (v)− ∑
j∈J

C S
j

(
v +P 0C S

0 (v)
)
= 0, (6.4.4)

where we have introduced the correction operators C S
j (v) :=GS

j (v)−RS P̃ j R j PS v . The two-
level SRASPEN method consists in applying Newton’s method to the fixed point equation
(6.4.4).

6.4.1 Computation of the Jacobian and implementation details

In this subsection, we discuss how to compute the Jacobian matrices for the two-level ver-
sions of the RASPEN and SRASPEN methods. First, we consider the RASPEN method and
we explain the calculations already reported in [59]. To compute the Jacobian of F2L(u)



CHAPTER 6. SUBSTRUCTURED NONLINEAR PRECONDITIONING 182

we need
dC j

du , j = 1, ..., N and dC0
du . Recalling that C j (u) =G j (u)−R j u and (6.2.17), it follows

that
dC j

du
(u) = dG j

du
(u)−R j =−(R j J

(
u j

)
P j )−1R j J

(
u j

)
,

where u j := P j G j (u)+(I−P j R j )u = u+P j C j (u). To compute the term dC0
du we differentiate

(6.4.1) and we get

J0(R0u +C0(u))

(
R0 + dC0

du

)
= J0(R0u)R0 −R0 J (u),

which implies
dC0

du
(u) =−R0 + J̃−1

0 ( Ĵ0R0 −R0 J (u)),

with J̃0 = J0(R0u +C0(u)) and Ĵ0 = J0(R0u), that is the same Jacobian but evaluated on
different functions. Finally, using the chain rule while differentiating (6.4.3), we obtain

dF2L

du
(u) =−P0

dC0

du
(u)+ ∑

j∈J

P̃ j (R j J (u j )P j )−1R j J (u j )

(
I +P0

dC0

du
(u)

)
, (6.4.5)

where u j = P j G j (u+P0C0(u))+ (I −P j R j )(u+P0C0(u)). We remark once more that these
quantities are readily available at each Newton iteration, since u +P0C0(u) and G j (u +
P0C0(u)) are computed when evaluating F2L(u).

We now focus on the substructured two-level function F S
2L . Differentiating (6.4.2) yields

JF S
0

(R0v +C S
0 (v))

(
R0 +

dC S
0

d v
(v)

)
= JF S

0
(R0v)R0 −R0 JF S (v),

which leads to
dC S

0

d v
(v) =−R0 + J̃−1

(
ĴR0 −R0 JF S (v)

)
, (6.4.6)

where J̃ := JF S
0

(R0v +C S
0 (v)) and Ĵ := JF S

0
(R0v). The Jacobian JF S

0
can be computed com-

bining equations (6.4.2) and (6.2.18). Furthermore, we need the subdomain extensions of
R0v and R0v +C S

0 (v) but again, these terms are already computed when evaluating the
right hand side of the FAS equation.

Moreover, since C S
j (v) =GS

j (v)−RS P̃ j R j PS(v) and GS
j (v) = RS P̃ j G j (Ps v), it holds that

dC S
j

d v
(v) =

dGS
j

d v
(v)−RS P̃ j R j PS = RS P̃ j

[
(R j JF (ũ j )P j )−1R j JF (ũ j )+R j

]
PS −RS P̃ j R j PS

=−RS P̃ j (R j JF (ũ j )P j )−1R j JF (ũ j ).
(6.4.7)

Using (6.4.6) and (6.4.7), we finally obtain

dF S
2L

d v
(v) =−P0

dC S
0

d v
(v)+ ∑

j∈J

RS P̃ j (R j J (ũ j )P j )−1R j J (ũ j )

(
I +P0

dC S
0

d v
(v)

)
, (6.4.8)

where ũ j = P j G j (PS(v +P 0C S
0 (v))+ (I −P j R j )(PS(v +P 0C S

0 (v))).
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Figure 6.2: Solution field u(x) of the Forchheimer equation (left panel) and force term
f (x) (right panel).

6.5 Numerical results

In this section we present numerical results in order to compare the Newton method, the
nonlinear RAS method, the RASPEN method and the SRASPEN method for the solution of
a one dimensional Forchheimer’s equation and of a two dimensional nonlinear diffusion
equation.

6.5.1 Forchheimer’s equation in 1D

Forchheimer’s equation is an extension of the Darcy equation for high flow rates, where
the linear relation between the flow velocity and the gradient flow does not hold anymore.
In a one dimensional domainΩ := (0,1), the Forchheimer model is

q(−λ(x)u(x)′))′ = f (x) inΩ,

u(0) = uL and u(1) = uR ,
(6.5.1)

where uL ,uR ∈R,λ(x) is a positive and bounded permeability field and q(y) := sign(y)
−1+p1+4γ|y |

2γ ,
with γ > 0. To discretize (6.5.1), we use the finite volume scheme described in detail in
[59]. In our numerical experiments, we setλ(x) = 2+cos(5πx), f (x) = 50sin(5πx)ex , γ= 1,
u(0) = 1 and u(1) = e. The solution field u(x) and the force field f (x) are shown in Figure
6.2. We then study the convergence behaviour of the different methods. Figure 6.3 shows
how the relative error decays for the different methods and for a decomposition into 20
subdomains (left panel) and 50 subdomains (right panel). The initial guess is equal to
zero for all the methods. From Figure 6.3, it seems that the convergence of the RASPEN
and SRASPEN methods is not affected by the number of subdomains. However, Figure 6.3
does not tell the whole story, as one should focus not only on the number of iterations,
but also on the cost of each iteration. To compare the cost of an iteration of the RASPEN
and SRASPEN methods, we have to distinguish two cases, that is if one solves the Jacobian
system directly or with some Krylov methods, e.g GMRES. First suppose that we want to
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Figure 6.3: Convergence behaviour for the Newton method, the nonlinear RAS method,
the RASPEN method and the SRASPEN method applied to the Forchheimer’s equation.
On the left, the simulation refers to a decomposition into 20 subdomains while on the
right we consider 50 subdomains. The mesh size is h = 10−3 and the overlap is 8h.

solve the Jacobian system with a direct method and thus we need to assemble and store
the Jacobians. From the expressions in equation (6.2.18) we remark that the assembly
of the Jacobian of the RASPEN method requires N × Nv subdomain solves, where N is
the number of subdomains and Nv is the number of unknowns in volume. On the other
hand, the assembly of the Jacobian of SRASPEN method requires N ×NS solves, where NS

is the number of unknowns on the substructures and NS ¿ Nv . Thus, while the assembly
of JF is prohibitive, it can still be affordable to assemble JF S . Further, the direct solution
of the Jacobian system is feasible and cheap as JF S has size NS×NS . Suppose now that we
solve the Jacobian systems with GMRES and we indicate with I (k) and I S(k) the number
of GMRES iterations to solve the volume and substructured Jacobian systems at the k-th
outer Newton’s iteration. Each GMRES iteration requires N subdomain solves which can
be performed in parallel. In our numerical experiment we have observed that generally
I S(k) ≤ I (k), with I (k)− I S(k) ≈ 0,1,2, that is GMRES requires the same number of itera-
tions or slightly less to solve the substructured Jacobian system compared to the volume
one.
To compare the two methods fairly, we follow [59] and introduce the quantity L(n) which
counts the number of subdomain solves performed by the two methods up to iteration n,
taking into account the advantages of a parallel implementation. We set L(n) =∑n

k=1 Lk
i n+

I (k), where Lk
i n is the maximum over the subdomains of the number of Newton’s iter-

ations required to solve the local subdomain problems at iteration k. The number of
linear solves performed by GMRES should be I (k) · N , but as the N linear solves can be
performed in parallel, the total cost of GMRES corresponds approximately to I (k) linear
solves. Figure 6.4 shows the error decay with respect to L(n). We note that the two meth-
ods require approximately the same computational cost and SRASPEN is slightly faster.
For the decomposition into 50 subdomains, the RASPEN method requires on average 91.5
GMRES iterations per Newton iteration, while the SRASPEN method requires an average
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Figure 6.4: Relative error decay for the RASPEN method and the SRASPEN method applied
to the Forchheimer equation with respect to the number of linear solves. On the left, the
simulation refers to a decomposition into 20 subdomains while on the right we consider
50 subdomains. The mesh size is h = 10−3.

of 90.87 iterations. The size of the substructured space V S is NS = 98. For the decomposi-
tion into 20 subdomains, the RASPEN method requires an average of 40 GMRES iterations
per Newton’s iteration, while the SRASPEN method needs 38 iterations. The size of V S is
NS = 38, which means that GMRES reaches the given tolerance of 10−12 after exactly NS

steps which is the size of the substructured Jacobian. Under these circumstances, it can be
convenient to actually assemble JF S , as it requires NS ·N subdomain solves which is the
total cost of GMRES. Furthermore, the NS ·N subdomain solves are embarrassingly par-
allel, while the NS ·N solves of GMRES can be parallelized in the spatial direction, but not
in the iterative one. As a future work, we believe it will be interesting to study the conver-
gence of a Quasi-Newton method based on the SRASPEN method, where one assembles
the Jacobian substructured matrix after every few outer Newton iterations, reducing the
overall computational cost.

As a final remark, we specify that Figure 6.4 has been obtained setting a zero initial guess
for the nonlinear subdomain problems. However, at the iteration k of the RASPEN method
one can use the subdomain restriction of the updated volume solution, that is R j uk−1,
which has been obtained by solving the volume Jacobian system at iteration k − 1 and
is thus generally a better initial guess for the next iteration. On the other hand in the
SRASPEN method, one could use the subdomain solutions computed at iteration k−1, i.e.
uk−1

i , as initial guesses for the nonlinear subdomain problems, as the substructured Jaco-
bian system corrects only the substructured values. Numerical experiments showed that
with this particular choice of initial guesses for the nonlinear subdomain problems, the
SRASPEN method requires generally more Newton iterations to solve the local problems.
In this setting, there is not a method which is constantly faster than the other as it depends
on a delicate trade-off between the better GMRES performance and the need to perform
more Newton iterations for the nonlinear local problems in the SRASPEN method.
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Figure 6.5: Relative error decay versus the number of iterations (top row) and error decay
versus number of linear solves (bottom row). The left figures refer to a decomposition
into 4 subdomains, while the right figures to a decomposition into 25 subdomains. The
mesh size is h = 0.012 and the overlap is 8h.

6.5.2 Nonlinear Diffusion

In this subsection we consider the nonlinear diffusion problem

−∇· (1+u(x)2)∇u(x) = f , in Ω⊂R2,

u(x) = g (x) on ∂Ω,
(6.5.2)

where Ω is a square domain and the right hand side f is such that u(x) = sin(πx)sin(πy)
is the exact solution. We start all the methods with the initial guess u0 = 105, so that we
start far away from the exact solution, and hence Newton’s method exhibits a long plateau
before quadratic convergence begins. Figure 6.5 shows the convergence behaviour for
the different methods with respect to the number of iterations and the number of lin-
ear solves. The average number of GMRES iterations is 8.1667 for both the RASPEN and
SRASPEN methods for the 4 subdomain decomposition. For a decomposition into 25
subdomains, the average number of GMRES iterations is 19.14 for the RASPEN method
and 19.57 for the SRASPEN method. We remark that as the number of subdomains in-
creases, GMRES needs more iterations to solve the Jacobian system. This is consistent
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Figure 6.6: Relative error decay versus the number of iterations for the Newton method,
the iterative two-level methods RAS and SRAS and the two-level variants of the RASPEN
and SRASPEN methods. The left figure refers to a decomposition into 4 subdomains,
while the right figure refers to a decomposition into 16 subdomains. The mesh size is
h = 0.012 and the overlap is 4h.

with the interpretation of (6.2.18) as a Jacobian matrix J
(
u( j )

)
preconditioned by the ad-

ditive operator
∑

j∈J

(
R j J

(
u( j )

)
P j

)−1
; We expect this preconditioner not to be scalable

since it does not involve a coarse correction.

We conclude this chapter showing the convergence behaviour for the two-level variants
of the RASPEN and SRASPEN methods. We use a coarse grid in volume taking half of the
points in x and y , and a coarse substructured grid taking half of the unknowns as de-
picted in Figure 6.1. The interpolation and restriction operators P0,R0,P 0 and R0 are the
classical linear interpolation and full weighting restriction operators defined in Chapter
4. From Figure 6.6, we note that the substructured iterative method is much faster than
the classical two-level RAS method, and this observation is in agreement with the linear
case treated in Chapter 4. Since the two-level iterative methods are not equivalent, we
also remark that the two-level SRASPEN methods shows a better performance than the
two-level RASPEN method in terms of iteration number. As the one-level smoother is the
same in all methods, the better convergence of the substructured methods implies that
the coarse equation involving F S

0 provides a much better coarse correction than the clas-
sical volume one involving F0.
Even though the two-level substructured methods are faster in terms of iteration num-
ber, the solution of the FAS problem involving F S

0 = R0F
S(P 0(v0)) is rather expensive

as it requires to evaluate twice the substructured function F S (each evaluation requires
subdomain solves) to compute the right hand side, to solve a Jacobian system involving
JF S

0
, and to evaluate F S on the iterates, which again require the solution of subdomain

problems. Unless one has a full parallel implementation available, the coarse correction
involving F S

0 is doomed to represent a bottleneck. Future efforts will be in the direction of
approximating F S

0 , by replacing the function F S , which is defined on a fine mesh, with an
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approximation on a very coarse grid, thus reducing the overall cost of the substructured
coarse correction.
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