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Abstract

We derive ground state eigenfunctions and eigenvalues of various relativistic elliptic integrable models. 
The models we discuss appear in computations of superconformal indices of four-dimensional theories 
obtained by compactifying six-dimensional models on Riemann surfaces. These include, among others, 
the Ruijsenaars-Schneider model and the van Diejen model. The derivation of the eigenfunctions builds 
on physical inputs, such as conjectured Lagrangian across dimensions IR dualities and assumptions about 
the behavior of the indices in the limit of compactifications on surfaces with large genus/number of punc-
tures/flux.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Elliptic integrable quantum mechanical systems are ubiquitous in the study of supersym-
metric quantum field theories [28,19,45,24,44,13–15]. Typically these systems appear while 
accounting for various protected sectors of such theories. It would be thus extremely interesting 
to understand the eigenvalues and eigenfunctions of such integrable systems. See for example 
[57,35,49,60,38,17,40,2,4,3,47]. In particular, as we will review below, studying the supercon-
formal index of classes of supersymmetric theories in four dimensions, the knowledge of the 
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eigenfunctions leads to determination of the index even if a usual Lagrangian definition of a 
theory is not known. The way the relations between the eigenfunctions and indices of four di-
mensional theories proceeds is through realizations of the 4d QFTs as compactifications of six 
dimensional SCFTs and derivation of the precise map between geometric compactification data 
of a six dimensional theories and the four dimensional theories. See [52] for a review.

Many examples of such a map are known when we also have a different, independent, defini-
tion of the four dimensional theory: namely we have across dimensions infrared duality. In this 
note we will show how even a limited knowledge of a class of across dimensions dualities can 
lead to determination of eigenfunctions of certain elliptic integrable systems. On one hand we 
have a definition of the index of a class of theories using the Lagrangian in terms of sequences 
of elliptic hypergeometric integrals. On the other hand, under certain assumptions, the same in-
dex admits expansion in terms of eigenfunctions of an elliptic integrable system. Making these 
assumptions and elementary arguments from statistical physics we can determine the eigenfunc-
tions. The method is particularly simple to apply to extract the eigenfunction of the ground state 
of the system: although the energies depend on complex parameters there is a natural ordering of 
the spectrum and a natural notion of the ground state.

We will first outline the general method to determine the eigenfunctions in Section 2. We stress 
that the method has a physical input from across dimensional dualities and also relies on certain 
mathematical assumptions. Then in Section 3 we discuss several examples of applications of the 
method. First, we will consider the A1 Ruijsenaars-Schneider model. The eigenfunctions of this 
model are well known in certain limits of the parameters leading to e.g. Macdonald polynomials. 
Here we will see how these can be easily computed perturbatively in parameters without taking 
any limits. The consistency of the result, at least in the perturbative expansion, gives evidence for 
the validity of our suggested eigenfunctions and the underlying conjectures. We will also discuss 
the BC1 van Diejen model and two somewhat more esoteric but simple integrable models which 
arose in physical contexts: we refer to these systems as the A2 and the A3 models. The paper is 
supplemented by a Mathematica notebook1 detailing all the reported computations.

2. Ground state eigenfunction from large compactifications

We commence with a general discussion. Let us consider the supersymmetric index [34,55,18]
of a compactification of some 6d (1, 0) SCFT T6d on geometry C (defined by genus of a Riemann 
surface, the number and types of punctures, and flux for the 6d symmetry). For an N = 1 SCFT 
the superconformal index is defined as,

I = TrS3(−1)F qj2−j1+ R
2 pj2+j1+ R

2

rankGF∏
�=1

u
Q�

� . (1)

The trace is computed over the Hilbert space in radial quantization: that is quantization on S3

times the radial direction. Here (j1, j2) are the two Cartan generators of the su(2) × su(2) isom-
etry of S3; Q� are Cartan generators of the global symmetry GF ; and R is the charge under the 
superconformal R-symmetry. The index is then a function of the compactification geometry as 
well as various parameters,

I[T6d ,C]({xj },u6d , q,p) . (2)

1 https://github.com /anedelin /GroundStates.
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The parameters are fugacities for various combinations of symmetries of the theory in 4d . Pa-
rameters q and p are related to superconformal symmetry (as detailed above) and are there for 
any N = 1 SCFT in 4d . The rest of the parameters correspond to various global symmetries. 
They depend on a theory at hand and are typically taken to be phases. For theories arising in 
compactifications we can split the global symmetry GF into two kinds: the one coming from 
the symmetry, G6d , of the 6d theory and the one associated to the punctures. Given the 6d

SCFT the possibilities for the latter symmetry are classified as follows. One first compactifies 
the 6d SCFT on a circle (possibly with holonomies for the 6d symmetry) and obtains an effec-
tive 5d description. In some cases the 5d description is in terms of a gauge theory and one could 
study boundary conditions in the 5d spacetime. Such boundaries correspond to punctures and the 
various symmetries one can obtain are sub-groups of the 5d gauge group G5d . Punctures with 
symmetry G5d are called maximal and these will play a special role for us. For a given 6d SCFT 
there might exist different circle compactifications leading to different G5d and thus to different 
kinds of maximal punctures. In addition to being maximal or non-maximal, punctures can be 
distinguished by other properties. We will collectively refer to maximal punctures with different 
defining properties as being of different types. From now on we will only turn parameters in the 
definition of the index corresponding to maximal punctures.

Given indices of two compactifications, each with at least two maximal punctures of the same 
type, one can compute the index of the compactification on a surface which is obtained by gluing 
the two surfaces along the two maximal punctures,

I[T6d ,C1 ⊕ C2]( {xj }S1∪S2 ,u6d , q,p) = (3)∮
dx �(x,u6d ;q,p) I[T6d ,C1]( {xj }S1 ∪ {x},u6d, q,p) ×

I[T6d ,C2]( {xj }S2 ∪ {x−1},u6d, q,p) .

The parameters x correspond to the Cartan generators of G5d associated to the glued maximal 
punctures. The function �(x, u6d; q, p) is defined by properties of the punctures and is built 
from indices of various vector and chiral superfields one needs to introduce when gluing the two 
punctures. The integration for each parameter is over the unit circle when we assume to take 
|q|, |p| < 1.

Finally, given a 6d SCFT and a 5d circle reduction one obtains an elliptic relativistic inte-
grable model defined by a set (elements of which are parametrized by label α) of commuting 
Hamiltonians [24],

Hα [T6d ,G5d ] (x,u6d ;q,p)

such that indices corresponding to different compactifications are Kernel functions of these,

Hα [T6d ,G5d ] (x1,u6d ;q,p) · I[T6d ,C]({x1,x2, · · · },u6d , q,p) = (4)

Hα [T6d ,G5d ] (x2,u6d ;q,p) · I[T6d ,C]({x1,x2, · · · },u6d , q,p) .

Here x1,2 correspond to maximal punctures of the same type and have G5d associated to them. 
Moreover, the Hamiltonians of the integrable system are self-adjoint under the scalar product de-
fined using the measure �(x, u6d; q, p). The Hamiltonians Hα , when acting on the parameters 
corresponding to G5d , introduce surface defects into the index computation. The surface defects 
are labeled by α and the range of values for it depends on the theory at hand. The self-adjointness 
property follows from conjectured S-dualities that the underlying theories satisfy: e.g. the surface 
defect can be introduced by acting on any of the maximal punctures) [24]. Because of the duality 

3



B. Nazzal, A. Nedelin and S.S. Razamat Nuclear Physics B 996 (2023) 116364

property the Hamiltonians for any choice of α commute. In practice, choosing a particular 6d

theory to perform the computation for, one obtains a set of commuting analytic difference oper-
ators with coefficients being elliptic functions. Often these correspond to well known relativistic 
elliptic integrable models (and sometimes more esoteric ones). Thus we will refer to the set of 
Hα as an elliptic integrable model. See [24,26,50,43,42,41] for concrete examples.

There are various ways to derive the integrable models associated to the 6d theory (with 
a given circle compactification). One such way is first to derive, or more precisely conjec-
ture, across dimensions dual of some compactification with enough punctures. This means to 
conjecture a 4d Lagrangian theory flowing in the IR to the same fixed point as the 6d SCFT 
compactified on a surface. Then using the Lagrangian theory one can compute the corresponding 
index and derive the integrable model from its analytical properties [24].2

2.1. Index and eigenfunctions

Given the Kernel property of the index (4) it is natural to wonder whether one can expand the 
index in terms of some proper set � of eigenfunctions of the integrable model,

Hα [T6d ,G5d ] (x,u6d ;q,p) · ψλ(x) = Eα,λ ψλ(x) . (5)

Because of self-adjointness of the Hamiltonians we can choose these functions to form an or-
thonormal set,∮

dx �(x,u6d ;q,p) ψλ(x) ψλ′(x−1) = δλ,λ′ . (6)

We want to make the following ansatz,

I[T6d ,C]({xj },u6d , q,p) =
∑
λ∈�

Cλ[T6d ,C](u6d ;q,p)

s∏
j=1

ψλ(xj ) . (7)

Here we only refine the index with fugacities corresponding to the chosen type of a maximal 
puncture (and s is the number of such punctures). If such an ansatz makes sense then the Kernel 
property is manifest. Moreover, if we glue two surfaces together then the index of the glued 
surface is given by,

I[T6d ,C1 ⊕ C2]( {xj }S1∪S2 ,u6d, q,p) = (8)∑
λ∈�

C
(1)
λ [T6d ,C1](u6d ;q,p) C

(2)
λ [T6d ,C2](u6d ;q,p)

∏
j∈S1∪S2

ψλ(xj ) .

One way for such an expansion to make sense is if there is a natural ordering on λ ∈ �,

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · . (9)

We will compute the indices in expansion in the parameters q and p (assuming as before that 
these are taken to be inside the unit circle). We note that the index of a superconformal theory is 
always regular in such an expansion and starts off as I = 1 + · · · . We define partial sums,

I(n) =
n∑

i=0

Cλi
[T6d ,C](u6d ;q,p)

s∏
j=1

ψλi
(xj ) . (10)

2 See [53,26,39,31,61] for related developments.
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Fig. 1. Graphical representation of gluing indices of tori with (at least) two maximal punctures to higher genus surfaces.

If we want to reproduce the index up to any given order N in expansion in q and p and there is 
a finite value of n(N) such that up to order N , I(n>n(N)) are equal, then the ansatz makes sense. 
This amounts to the coefficients Cλi

contributing at non-decreasing orders as we increase i. We 
will give evidence in several examples below that this property is in fact true for a wide variety 
of setups.

Moreover, we will see that the eigenfunction ψλ0(x) plays a special role. We will find that 
there is a unique eigenfunction which contributes to the index at order N = 0. Thus, in particular 
λ0 is strictly less than λi for all i > 0. We will refer to this eigenfunction as the ground state of 
the integrable system and will denote it by ψ0(x).

2.2. Ground state from large compactifications

Let us assume that we can compute the index using explicit Lagrangian across dimension 
dualities for some compactification with at least two maximal punctures. In addition we might 
have other punctures, the surface might have some higher genus, and there might be some flux. 
We assume that the ansatz for the index of this theory in terms of eigenfunctions (8) is well 
defined in the sense discussed above. Then we write the index for this theory as,

I1(x1,x2) =
∞∑
i=0

Cλi
ψλi

(x1) ψλi
(x2) . (11)

Next we consider the index obtained by gluing n copies of this theory sequentially along the 
maximal punctures (Fig. 1). This can be done iteratively,

In+1(x1,x2) =
∮

dx �(x,u6d ;q,p) In(x1,x) I1(x−1,x2) . (12)

The theory obtained in this way has the number of other punctures, the genus, and the flux, 
multiplied by n. The index is given in terms of eigenfunctions by,

In(x1,x2) =
∞∑
i=0

(
Cλi

)n
ψλi

(x1) ψλi
(x2) . (13)

We then take the limit of large n. Up to any set order of the expansion of the index in this limit, 
starting with some value of n only the ground state will contribute to the index. In particular we 
can compute,
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C0 ≡ Cλ0 = lim
n→∞

In+1(x1,x2)

In(x1,x2)
. (14)

From here we obtain an explicit expression for the ground state eigenfunction,

ψ̃0(x) ≡ ψ0(1) ψ0(x) = lim
n→∞

1

(C0)
n In(x,1) . (15)

Here we can get rid of ψ0(1) factor by normalizing the eigenfunction using the appropriate scalar 
product. This gives us a very simple algorithm to compute the ground state eigenfunctions for a 
variety of elliptic relativistic integrable models. The algorithm only relies on the physical input 
of deriving across dimensions dualities for a two punctured compactification on some surface 
satisfying the relevant properties outlined above. In principle one can try and generalize the 
algorithm to derive all eigenfunctions of a given model. However the details will cease to be 
generic as we might have several λi contributing at the same order of the expansion. Moreover, 
it will be technically more involved to implement as it would require computation of indices to 
high orders in expansion to derive eigenfunctions up to low orders.

In the following section we will implement this algorithm to derive ground state eigenfunc-
tions for a variety of models.

2.3. Universality of large compactifications

Let us next discuss the physical implication of the above. For concreteness let us take the 
theory with two punctures to be a genus one compactification with two maximal punctures and no 
flux. Then gluing g−1 such theories together we will obtain a theory corresponding to genus g−
1 compactification and two maximal punctures. Finally we can glue the two punctures together 
to obtain a theory corresponding to genus g compactification with no flux and no punctures. 
Following the above results the index of this theory in the large g limit is well approximated by,

Ig ∼ (C0)
g−1 . (16)

By well approximated we mean that the deviation between two sides of the above starts at or-
ders in expansion which grow linearly with g. This universal result hints that there should be a 
clean physical interpretation associated with C0. In fact it was conjectured in [25] that the ex-
pansion (8) has the following meaning. Let us again take for concreteness the case say of genus 
g compactification with no flux and no punctures so that (8) takes the form of,

I =
∑
λ∈�

(Cλ)
g−1 . (17)

The index counts (with signs) various local operators in the 4d theory. The 4d theory is a com-
pactification of a 6d one. A natural question is whether one can identify the origin of the 4d

operators counted by the index in the 6d theory. The conjecture of [25] is that the C0 captures 
local operators in 4d which originate from local operators in 6d properly smeared on the Rie-
mann surface. The smearing (which is the essence of the Riemann-Roch theorem) resonates with 
the g − 1 power appearing in the index. For other values of λ the local operators in 4d originate 
from non-local operators in 6d wrapping the Riemann surface. The label λ should be related 
to labeling of various such operators in 6d . In the limit of large genus the fact that the index 
is dominated by λ = λ0 indicates then that the non-local operators would acquire large charges 
upon compactification and contribute to the tail of the expansion of the index.
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The function C0 captures directly information about local operators of the 6d theory. Tech-
nically one can view it as contribution to the index in 4d of local operators in 6d in genus two 
compactifications. At the more conceptual level the coefficients of various terms in C0 count with 
signs dimensions of certain vector spaces one can associate to local operators in 6d [5]. These di-
mensions depend on the quantum numbers of the theory, and in particular also on ones related to 
the compactified geometry. Note also that here as we do not have flux and because of the univer-
sality in large genus limit the coefficient C0 should manifest the full symmetry G6d . This should 
be also true for higher coefficients Cλ. As the coefficient C0 for compactifications with zero flux 
and no punctures will play an important role in understanding the 6d physics, to distinguish it 
from other compactifications we will denote it by Ĉ0. By a similar logic [25] the eigenfunction 
ψ0(x) should capture the circle reduction of 5d operators associated to the maximal puncture.

3. Examples

3.1. Elliptic RS model

The first example we will discuss is the elliptic Ruijsenaars-Schneider model of type A1. The 
action of the basic Hamiltonian on a function is given by,3

HRS
A1

· ψ(x) =
θp(

√
p
q

t x−2)

θp(x2)
ψ(x q

1
2 ) +

θp(
√

p
q

t x2)

θp(x−2)
ψ(x q− 1

2 ) . (18)

This model arises when compactifying the (2, 0) type A1 6d SCFT to 4d [24]. The symmetry of 
the 6d theory is G6d = SU(2), fugacity for the Cartan generator of which is parametrized here 
by t . The circle compactification to 5d gives the maximally supersymmetric YM theory with 
gauge group SU(2). Thus the maximal puncture symmetry is SU(2) and the fugacity for it is the 
parameter (denoted by x above) on which the Hamiltonian acts.

The simple across dimension duality we can use is the compactification on a sphere with two 
maximal SU(2) punctures (and a third SU(2) puncture that will play no role). The relevant theory 
is just a collection of two free bifundamental chiral fields [22]. The index is given by,

I1(x1,x2) = 
e

(
(q p)

1
4 t

1
2 (x1)±1(x2)±1

)2
. (19)

The integration measure here is,∮
dx �(x,u6d ;q,p) · · · = (20)

(q;q)(p;p)

2

∮
dx

2πix


e(
√

q p

t
x2)
e(

√
q p

t
x−2)
e(

√
q p

t
)


e(x2)
e(x−2)
· · · .

We use the following definitions,


e(z) =
∞∏

i,j=0

1 − z−1qi+1pj+1

1 − z qipj
, θp(z) =

∞∏
i=0

(1 − zpi)(1 − z−1pi+1) , (21)

3 Note that our choice of parameters is slightly different than the usual one in the literature. For example our t is related 
to the one in [24] as t → t (q p)

− 1
2 .
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(z;q) =
∞∏
i=0

(1 − z qi) .

Using these definitions we readily compute from (14),

C0 = 1 + 3 t
√

p q +
(
t−2 − 2 + 5t2

)
p q +

(
3t − t−1

)
(p

3
2 q

1
2 + q

3
2 p

1
2 ) + · · · . (22)

Our procedure gives results as an expansion in parameters q and p. We will quote the results to 
the orders we were able to perform actual computations. However, in principle one can compute 
to any desired order.4

Using (15) we then obtain,

ψ̃0(x) = 1 + (4 + x2 + x−2) t (q p)
1
2 + (23)(

t−1 + (5 + x2 + x−2) t
)

(q + p) (q p)
1
2 +(

10 t2 − 6 − x2 − x−2 − t−2 + t2(x4 + x−4 + 4x2 + 4x−2)
)

q p + · · · .

We verify (in expansion in q and p up to an order we could perform the computation) that the 
above is an eigenfunction,

HRS
A1

· ψ̃0(x) = E0 ψ̃0(x) , (24)

and obtain that the ground state energy is,

E0 = 1 − p + (t + 1

t
)
√

p q − pq + (t + 1

t
)p

√
p q − p2 + · · · . (25)

Note that t parametrizes the Cartan generator of the G6d = SU(2) and the energy is invariant 
under the Weyl group of this symmetry. An additional identity ψ̃0(x) has to satisfy [24] is,

ψ̃0(x)
∣∣
t→ 1

t
= 
e

(√
q p

t
x2

)

e

(√
q p

t
x−2

)

e

(√
q p

t

)4

ψ̃0(x) , (26)

can be also verified to hold for the eigenfunction (23) given here.
We also can consider various limits of the index giving simple known eigenfunctions [21,20]. 

First let us consider the Schur limit. In our notations this corresponds to taking t = (q/p)
1
2 . Then 

the eigenfunctions ψλ(x) are just the Schur polynomials times 1/ 
(
(q x2;q)(q x−2;q)(q;q)

)
. 

This can be easily verified to hold for (23). Moreover taking first t → t (q p)− 1
2 and then p → 0

we obtain the Macdonald limit of the index with the eigenfunctions expected to be given by 
Macdonald polynomials times 1/ 

(
(t x2;q)(t x−2;q)(t;q)

)
. Again, this can be verified to hold 

for (23). The relevant polynomial in both cases is just the constant one. More explicitly,

ψ̃0(x)
∣∣
t→t(q p)

− 1
2 |p→0

= (t2;q)

(t q;q)

1

(t x2;q)(t x−2;q)(t;q)4 . (27)

Finally, in this case by studying the Macdonald limit we know that the labels λ in (8) corre-
spond to finite dimensional irreps of SU(2) [21]. From here we deduce that there should be no 
degeneracy for λi , and thus (9) should define a strict ordering. From here we define

4 Practically, one can take q/p ≡ y and √qp ≡ X and think of all our expressions as expansions in X. The · · · in 
the expressions denote higher orders in X. Interested reader can consult a Mathematica notebook (https://github.com /
anedelin /GroundStates) for details of the computation.
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C1 ≡ Cλ1 = lim
n→∞

In+1(x,1) − (C0)
n+1ψ̃0(x)

In(x,1) − (C0)nψ̃0(x)
. (28)

The explicit computation gives,

C1 = 2(q p)
1
4

(√
t − 3pq

√
t + (3p + 3q + 2)

√
pqt3/2 + 3pqt5/2 + · · ·

)
. (29)

Note that C1 leading term scales as (q p)
1
4 whereas for C0 it scales as 1 and that is the reason 

why we can separate the two contributions in the limit considered here. From here we obtain an 
expression for the first excited state eigenfunction,

ψ̃1(x) ≡ ψ1(1) ψ1(x) = lim
n→∞

1

(C1)
n

(
In(x,1) − (C0)

nψ̃0(x)
)

. (30)

The computation results in,

ψ̃1(x) = 2 (x + 1

x
)

(
1 + p + q − (

1

t
− 4t)

√
p q

)
+ 2 (x3 + 1

x3 ) t
√

q p + · · · . (31)

In principle we can continue to other eigenfunctions in a similar manner. We can also compute 
Ĉ0 coefficient which in this case is given by:

Ĉ0 = 1 + pq
(
t2 + t−2 + 4

)
− 2

√
pq(p + q)

(
t + t−1

)
+

pq(p + q)
(
t2 + 5 + t−2

)
− 4(pq)3/2

(
t + t−1

)
−

2
√

pq(p2 + q2)
(
t + t−1

)
+ · · · . (32)

Note that the term at order q p can be written as χadj.SU(2)(t) + 3. This looks as a contribution 
of a conserved current of global SU(2)t symmetry of the 6d (1, 0) theory and we might want to 
interpret the +3 as coming from additional rotations in the compactification dimensions. This is 
very reminiscent of indices of compactifications on a sphere [30] where the rotations, the SU(2)

isometry of the sphere, become a global symmetry in 4d .

3.2. The A2 model

Let us start with the following Hamiltonian defined on A2 root system,

HA2
Y · ψ(x) = θp(p

1
2 Yx2/x3)θp(p

1
2 Yx3/x2)

θp(x2/x1)θp(x3/x1)
ψ(x1q

− 2
3 , x2q

1
3 , x3q

1
3 ) +

θp(p
1
2 Yx1/x3)θp(p

1
2 Yx3/x1)

θp(x1/x2)θp(x3/x2)
ψ(x1q

1
3 , x2q

− 2
3 , x3q

1
3 ) + (33)

θp(p
1
2 Yx2/x1)θp(p

1
2 Yx1/x2)

θp(x1/x3)θp(x2/x3)
ψ(x1q

1
3 , x2q

1
3 , x3q

− 2
3 ) .

Here Y is a general parameter and Hamiltonians with different Y commute with each other. The 
parameters xi satisfy 

∏3
i=1 xi = 1. This Hamiltonian was derived in [50] as corresponding to the 

integrable system associated with the 6d SCFT being the so called minimal SU(3) SCFT [59,6]
and the 5d effective theory being pure Chern-Simons SU(3) model with level nine [32]. The 
relevant across dimensions duality was derived in [54]. The model was further discussed in [56].

9
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The simple across dimension duality we can use is the compactification on a sphere with two 
maximal SU(3) punctures (and two so called empty ones). The relevant theory is just a collection 
of three free bifundamental chiral fields with a baryonic superpotential [54]. The index is given 
by,

I1(x1,x2) =
3∏

i,j=1


e

(
(q p)

1
3 x1

i x2
j

)3
. (34)

The integration measure here is,∮
dx �(x,u6d;q,p) · · · =

(q;q)2(p;p)2

6

∮ 2∏
i=1

dxi

2πixi

3∏
i=1

3∏
j=i+1

1


e(xi/xj )
e(xj /xi)
· · · . (35)

Note here G6d is trivial and thus there are no u6d parameters.
Using these ingredients we readily compute from (14),

C0 = 1 + 2pq + 2p2q + 3p3q + 3p4q + 3p5q + 3p6q + 2pq2 +
6p2q2 + 7p3q2 + 9p4q2 + 11p5q2 + 3pq3 + 7p2q3 + 9p3q3 +

13p4q3 + 3pq4 + 9p2q4 + 13p3q4 + 3pq5 + 11p2q5 + 3pq6 + · · · . (36)

Using (15) we then obtain the ground state eigenfunction,

ψ̃0(x) = 1 +
(

1

x3
1

+ 1

x3
2

+ 1

x3
3

)
q p +

(
1

x3
1

+ 1

x3
2

+ 1

x3
3

− 1

)
×

(q2p + p2q) +
(

1

x6
1

+ 1

x6
2

+ 1

x6
3

+ 1

x3
1

+ 1

x3
2

+ 1

x3
3

+ x3
1+

x3
2 + x3

3 − 4
)

q2p2 +
(

1

x3
1

+ 1

x3
2

+ 1

x3
3

− 3

)
(q3p + p3q) +(

1

x3
1

+ 1

x3
2

+ 1

x3
3

− 3

)
(q4p + p4q) +

(
1

x6
1

+ 1

x6
2

+ 1

x6
3

+

x3
1 + x3

2 + x3
3 − 9

)
(q3p2 + p3q2) + · · · . (37)

It can be verified that indeed ψ̃0(x) is eigenfunctions of (33),

HA2
Y · ψ̃0(x) = E0 ψ̃0(x) , (38)

and the corresponding ground state energy E0 is given by,

E0 = (1 − p
3
2 Y 3)(1 − p

3
2 Y−3)

θp(p
1
2 Y)

(1 − q p − p3 − p q2 −

2q p2 − 3p3q − 2p2q2 + · · · ) . (39)

This expression was verified up to fourth order in the expansion in p and q . Finally, we can also 
compute the coefficient Ĉ0 which is given by,

10
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Ĉ0 = 1 + 3q p + 4(q2p + p2q) + 16(q p)2 + 9(q3p + p3q) +
30(q3p2 + p3q2) + 9(q4p + p4q) + · · · . (40)

Note here at the order q p we only have the “geometric” +3 coefficient as there is no global 
symmetry in 6d .

3.3. The A3 model

Now let’s move to the A3 model and repeat the same procedure. The Hamiltonian for this 
model is defined by,

HA3 · ψ(x) =
θp(p

1
2 x3/x2)θp(p

1
2 x4/x2)θp(p

1
2 x3/x4)

θp(x2/x1)θp(x3/x1)θp(x4/x1)
ψ(x1q

− 3
4 , x2q

1
4 , x3q

1
4 , x4q

1
4 ) +

θp(p
1
2 x3/x1)θp(p

1
2 x1/x4)θp(p

1
2 x3/x4)

θp(x1/x2)θp(x3/x2)θp(x4/x2)
ψ(x1q

1
4 , x2q

− 3
4 , x3q

1
4 , x4q

1
4 ) +

θp(p
1
2 x1/x2)θp(p

1
2 x4/x2)θp(p

1
2 x1/x4)

θp(x2/x3)θp(x1/x3)θp(x4/x3)
ψ(x1q

1
4 , x2q

1
4 , x3q

− 3
4 , x4q

1
4 ) +

θp(p
1
2 x3/x2)θp(p

1
2 x1/x2)θp(p

1
2 x3/x1)

θp(x3/x4)θp(x2/x4)θp(x1/x4)
ψ(x1q

1
4 , x2q

1
4 , x3q

1
4 , x4q

− 3
4 ) .

(41)

where 
∏4

i=1 xi = 1 parametrize the SU(4) puncture symmetry on which the operator acts. Note 
that as opposed to the A2 case there are no additional parameters that the operator depends on. 
This operator was derived in [50] from compactifications of SO(8) minimal conformal matter 
and was also discussed later in [56].

Similar to the previous case, the simplest across dimension duality we have here is the com-
pactification on a sphere with two maximal SU(4) punctures and two empty ones (i.e. the 
puncture with no symmetry). The relevant theory consists of just two bifundamental chiral fields 
and a baryonic superpotential [54]. The superconformal index is given by,

I1(x1,x2) =
4∏

i,j=1


e

(
(q p)

1
4 x1

i x2
j

)2
. (42)

The integration measure here is,∮
dx �(x,u6d;q,p) · · · =

(q;q)3(p;p)3

24

∮ 3∏
i=1

dxi

2πixi

4∏
i=1

4∏
j=i+1

1


e(xi/xj )
e(xj /xi)
· · · . (43)

Also here G6d is trivial and thus there are no u6d parameters.
Performing the same computation as above we find from (14),

C0 = 1 + 2pq + 2p2q + 2p3q + 2pq2 + 4p2q2 + 2pq3 + · · · (44)

11
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Then using (15) we find the ground state to be,

ψ̃0(x) = 1 +
⎛⎝3 +

4∑
i<j

x2
i x2

j

⎞⎠pq +
⎛⎝2 +

4∑
i<j

x2
i x2

j

⎞⎠ (pq2 + p2q + pq3 + p3q) +
⎛⎝ 4∑

i<j

x4
i x4

j + 5
4∑

i<j

x2
i x2

j +
4∑

i<j

x−4
i

⎞⎠p2q2 + · · · (45)

We can act with (41) to verify that this is an eigenfunction of the Hamiltonian. Indeed we find 
that the energy is given by,

E0 = 1 + 2p
1
2 + 2p + 4p

3
2 + 5p2 − pq + · · · (46)

3.4. The van Diejen model

Another interesting example of elliptic integrable Hamiltonians is van Diejen integrable model 
that was first introduced as deformation of RS model in [16].5 The Hamiltonian itself is written 
as follows [46],

HvD · ψ(x) ≡

8∏
n=1

θp

(
(pq)

1
2 hnx

)
θp(x2)θp

(
qx2

) ψ(qx) +
8∏

n=1
θp

(
(pq)

1
2 hnx

−1
)

θp(x−2)θp

(
qx−2

) ψ
(
q−1x

) + V (h;x) ψ(x) . (47)

This operator depends on the octet of hi parameters. The constant term V (h; x) of van Diejen 
Hamiltonian is an elliptic function in x variable with periods 1 and p. Poles of this function in 
the fundamental domain are located at

x = ±q± 1
2 , x = ±q± 1

2 p
1
2 , (48)

and corresponding residues are given by:

Resx=sq±1/2V (h;x) = ∓s

8∏
n=1

θp

(
sp

1
2 hn

)
2q∓ 1

2 θp

(
q−1

)
(p;p)2∞

,

Resx=sq±1/2p1/2V (h;x) = ∓s

8∏
n=1

h
− 1

2
n θp (shn)

2q∓ 1
2 p− 3

2 θp

(
q−1

)
(p;p)2∞

, (49)

where s = ±1. The expression we can write for this constant term is not unique. For our purposes 
we will use the following form,

5 See e.g. [8,58,1] for discussions of some of the eigenfunctions of this model.

12
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V (x;hi) =

8∏
j �=i

θp

(
q−1hihjh

− 1
2

)
θp

(
q−2h2

i h
−1/2

) θp

(
(pq)

1
2 h−1

i x±1
)

θp

(
(pq)− 1

2 hih−1/2q−1x±1
) +

⎡⎢⎢⎢⎣
8∏

j �=i

θp

(
(pq)

1
2 hjx

−1
)

θp

(
(pq)

1
2 h−1

i h1/2qx−1
) θp

(
(pq)

1
2 h−1

i h1/2x
)

θp

(
(pq)

1
2 h−1

i x−1
)

θp

(
q−1x−2

)
θp

(
x2

) +

(
x → x−1

)]
, (50)

which was derived in [42]. Here h parameter is just a product of all hi :

h =
8∏

i=1

hi . (51)

This model was shown to arise in the compactifications of the 6d E-string theory down to 4d

[43,42]. The global symmetry of 6d theory here is E8 whose Cartan is parametrized by hi

parameters. Circle compactification of the E-string theory leads to the SU(2) maximally super-
symmetric Yang-Mills theory. Thus the maximal puncture symmetry in 4d theory is also SU(2)

and van Diejen operator (47) acts on the fugacities of this symmetry. From the point of view 
of 4d theory hi parameters play the role of the inverse charges of the SU(2) puncture moment 
maps. The moment maps depend on the type of the puncture. In what follows for convenience 
reasons we will use such a puncture that all of the parameters of the integrable models above 
are identified with moment maps directly. Considering the problem with all parameters turned 
on is computationally complicated so we will only analyze it by setting all of the moment maps 
charges to be the same and equal to t , which at the level of hi parameters is equivalent to,

hi = t−1 , ∀ i = 1, ...,8 . (52)

The simplest building blocks we need to run our arguments are two- and three-punctured 
spheres with SU(2) punctures. Two-punctured sphere (tube) theory is just a bifundamental chiral 
field for two SU(2) symmetries with the flip field and two octets of the fundamental multiplets 
corresponding to two sets of the moment map operators [23,33]. In case all moment maps have 
the same charges the index reads,

I1(x1, x2) = 
e

(
pqt4

)

e

(
t−2x±1

1 x±1
2

)

e

(
(pq)

1
2 tx±1

1

)8
. (53)

Here we define tube theory so that the punctures are of conjugated types. The integration measure 
for the resulting eigenfunctions is the following:∮

dx �(x,u6d ;q,p) · · · =

(q;q)(p;p)

2

∮
dx

2πix

1


e

(
x±2

) 8∏
i=1


e

(
(pq)

1
2 hix

±1
)

· · · =

(q;q)(p;p)

2

∮
dx

2πix

1


e

(
x±2

)
e

(
(pq)

1
2 t−1x±1

)8 · · · , (54)

13
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where in the last line we specify measure in our case corresponding to (52). Then using our 
algorithm we derive the following expression for C0:

C0 = 1 − pq(1 + p + q)t−4 +
(
t4 + 28

(
t2 − t−2

))
pq(1 + p + q + p2 + q2) +

p2q2
(
t8 + 28t6 + 273t4 − 512t2 + 456t−2 − 785

)
+ ... (55)

Corresponding ground state is then given according to (15) by,

ψ̃0(x) = 1 + √
pq

[
16t−1 + 8t

(
x + 1

x

)]
+

pq

[
108t−2 − 69 + 128

(
x + 1

x

)
−

(
x2 + 1

x2

)
+

36t2
(

1 + x2 + 1

x2

)]
+ √

pq(p + q)

[
16t−1 + 8t

(
x + 1

x

)]
+ · · · . (56)

Now acting with the van Diejen Hamiltonian (47) on the function above we can check that it is 
indeed an eigenfunction of the operator with the corresponding ground state eigenvalue given by

E0 = 1 − p − q + ... (57)

Finally we can also use an expression for the trinion theory derived in [51] in order to find Ĉ0
defined in Section 2.3. The trinion index in the case of equal charges of all moment maps is given 
by:

I(x1, x2, x3) = (q;q)2(p;p)2

6

∮
dz1,2

2πiz1,2

3∏
j �=i

1


e

(
zi

zj

)
3∏

i=1


e

(
(pq)

1
6 t

4
3 x±1

1 zi

)

e

(
(pq)

1
6 t−

1
6 x±1

2 zi

)

e

(
(pq)

1
6 t−

1
6 x±1

3 zi

)

e

(
(pq)

1
3 t−

1
3 z−1

i

)6
. (58)

Gluing two such trinions along two pairs of SU(2) punctures we obtain a genus-one tube the-
ory. Using this basic building block we can construct higher genus tori leading to the following 
expression for Ĉ0:

Ĉ0 = 1 + p q

(
8t3 + 8

t3 + 28t2 + 28

t2 + 56t + 56

t
+ 67

)
+ ... . (59)

Note that the coefficient of q p is what is expected from decomposition of the adjoint represen-
tation of E8 into irreps SU(8) × U(1) plus 3, namely it is 248E8 + 3.

4. Discussion

We have illustrated how using physical input from across dimensions dualities one can gen-
erate eigenfunctions and eigenvalues for a variety of elliptic relativistic integrable models. In 
principle for any six dimensional SCFT one can associate an integrable model (most straightfor-
wardly if the SCFT when compactified on a circle admits an effective Lagrangian description).6

6 For more general constructions see e.g. [10,11,9,12,37,7,36,27,29].
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Thus the method is applicable for this rather large class of models. While we have considered 
several examples in this paper there are still plenty of models to be considered. First candidates 
for this program are models obtained in the compactifications of the minimal (D, D) conformal 
matter and defined on AN and C2 root systems [43,41] as well as BCn van Diejen model which 
is expected to be related to the compactification of the rank n E-string theory [48,30]. Another 
important direction of the future research is going beyond the ground states. It would require 
on one hand more model specific methods (e.g. to deal with “degeneracies”) and on the other 
hand also to develop more sophisticated computational approaches. It would be also interesting 
to understand whether the functions derived here admit an independent all order definition.
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