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Abstract

In the last decade technology has improved rapidly, in terms of computing power and mobility,

and has changed the way how we interact with media in general. Mobile devices are capable

of performing decent 3D renderings and with the increase in wireless communications these

devices are centralized portals to a wealth of shared data always available on demand. Albeit

the progress, most social media is still reduced to exchange of textual messages, video/audio

buffered streaming and documents that need to be downloaded first. Especially when we focus

on 3D simulations we see that this barely exists let alone in a collaborative manner. For mo-

bile devices especially the games are showing the current 3D capabilities, but are often greatly

compressed and all kinds of tricks are utilized in order to provide a balance between frame rate

and image quality. This is logical since a mobile device is still limited and in terms of compu-

tational power greatly lacking in comparison to a stationary machine. With a focus on complex

3D virtual environments and collaborative aspects it is impractical not only to manually copy 3D

content from one device to another whenever a user decides to switch from device or to share

the environment with others, but also to render the complex 3D data locally on resource-limited

devices such as mobile phones and tablets. The problem becomes more apparent when running

a 3D virtual environment that is driven by a complex simulation as often this is tightly coupled,

e.g. deformation of a 3D model. In addition the simulation might have several dependencies

such as compiler output for a specific platform and hardware, e.g. when using some computing

language such as OpenCL or CUDA. Depending on the simulation and rendering technology

used, not only mobile devices but also regular workstations can be overwhelmed and become

unusable (often leading to higher costs in hardware).

In order to overcome the limitations for such devices we are looking at remote solutions, specif-

ically for 3D virtual environments, involving one or more simulation driven 3D entities and in

addition provide support for collaborative aspects. We strive to enabling user-centric pervasive

computing environments where users can utilize nearby heterogeneous devices any-time and

anywhere. Providing cloud-like services to which one or more users can connect and interact di-

rectly with the 3D environment, without the burden of any direct dependencies of the provided

service.

We propose a context-aware adaptive rendering architecture which visualizes 3D content with

customized user interfaces, dynamically adapting to current device contexts such as process-

ing power, memory size, display size, and network condition at runtime, while preserving the

interactive performance of the 3D content. To increase the responsiveness of remote 3D render-
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ing, we use a mechanism which temporally adjusts the quality of visualization, adapting to the

current device context. By adapting the quality of visualization in terms of image quality, the

overall responsiveness and frame-rate are maintained no matter the resource status. In order

to overcome inevitable physical limitations of display capabilities and input controls on client

devices, we provide a user interface adaptation mechanism, utilizing an interface markup lan-

guage, which dynamically binds operations provided by the 3D application and user interfaces

with predefined device and application profiles.

A generalized data sharing mechanism based on publish/subscribe methodology is used to

handle data between service-service and service-user allowing for peer to peer or server-client

structured communications. Providing easy binding to different kinds of data models that need

to be synchronized, using a multi-threaded approach for local and remote updates to the data

model. An extra layer between the sharing of the data and the local data is applied to provide

conversions and update on demand capabilities (e.g. a data model in Graphics memory needs

to be pre processed to adhere to the constraints of the rendering pipeline).

The framework is divided into several layers and relies on the Presentation Semantics Split Appli-

cation Model, providing distinct layers with each clear defined functionalities. The functionalities

from each layer are isolated and encapsulated into a uniform model for implementation, result-

ing into a single minimalistic kernel that can execute at runtime the requested functionalities,

which are called nodes. These nodes then can be concatenated in parent/child relationships, or

be executed as stand-alone processes, providing easy deployment and scalability.

The context-aware adaptive rendering framework is used in several use-case scenarios based

on different domains, User Centric Media, Telemedicine and E-Commerce. User Centric Media

focuses on the adaptation rendering and support for heterogeneous devices. Telemedicine has

a focus on collaboration and access to a diverse set of data, 3D as well as non 3D data such as

2D extracts from volumetric MRI data. E-Commerce explores the possibilities for augmented

reality on mobile devices as a service and overall deployment of 3D rendering services with user

management.
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Résumé

Durant la dernière décennie, la technologie s’est améliorée rapidement en termes de puissance

de calcul et de mobilité. Cela a changé la façon dont nous interagissons avec les médias en géné-

ral. Les appareils mobiles sont capables d’effectuer des rendus 3D décent et avec l’augmentation

des communications sans fil, ces dispositifs sont des portails centralisés où une multitude de

données partagées sont toujours disponibles sur demande. Malgré le progrès, la plupart des

médias sociaux sont encore réduits à l’échange de messages texte, vidéo ou audio sous forme

de flux à mémoire tampon, les documents doivent eux être téléchargés avant l’utilisation. En

ce qui concerne les simulations 3D, nous voyons que cela existe très peu et encore moins de

manière collaborative. Pour les appareils mobiles, les jeux montrent les capacités 3D actuelles

mais ils sont souvent fortement compressées et toutes sortes d’artifices sont utilisés afin d’assu-

rer un équilibre entre le taux de rafraichissement et la qualité d’image. Cela est logique car un

appareil mobile est encore très limité en termes de puissance de calcul comparé à un poste de

travail. En mettant l’accent sur les environnements virtuels 3D complexes et les aspects collabo-

ratifs, il est impossible non seulement de copier manuellement le contenu 3D d’un appareil à

un autre lorsque l’utilisateur décide de changer de dispositif, de partager l’environnement avec

d’autres personnes, mais aussi d’effectuer le rendu de données 3D complexes localement sur

les machines à ressources limitées tels que les téléphones mobiles ou les tablettes. Le problème

devient plus évident lorsque l’exécution d’un environnement virtuel en 3D est générée par une

simulation complexe, par exemple lors la déformation d’un modèle 3D. De plus, la simulation

peut avoir plusieurs dépendances telles que la production de compilateur pour une plate-forme

ou du matériel spécifique, par exemple lors de l’utilisation d’un langage informatique comme

OpenCL ou CUDA. Selon la simulation et la technologie de rendu utilisé, non seulement les ap-

pareils mobiles, mais aussi les postes de travail fixes peuvent être dépassés et devenir inutilisable

(conduisant souvent à des coÃ»ts plus élevés dans le matériel).

Afin de surmonter les limites de ces dispositifs, nous étudions des solutions à distance, en par-

ticulier pour les environnements virtuels 3D, impliquant une ou plusieurs simulations 3D et

pouvant fournir un support pour les aspects collaboratifs. Nous nous efforçons de permettre

l’utilisation d’environnements informatiques étendues, orientés utilisateurs où les utilisateurs

peuvent utiliser des dispositifs hétérogènes en tout temps et n’importe où. Nous voulons fournir

des services dans le nuage pour lesquelles un ou plusieurs utilisateurs peuvent se connecter et in-

teragir directement avec l’environnement 3D, sans les problèmes dues aux dépendances directes

du service fourni.
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Nous proposons un système de rendu adaptatif sensible au contexte, permettant de visuali-

ser le contenu 3D avec des interfaces utilisateurs personnalisées, adaptées dynamiquement aux

contextes de l’appareil tels que la puissance de calcul, la quantité de mémoire, la taille de l’écran

ou encore l’état du réseau lors de l’exécution, tout cela en préservant la performance interactive

du contenu 3D. Pour accroître la réactivité à distance du rendu 3D, nous utilisons un mécanisme

qui ajuste en temps réel la qualité de la visualisation, en l’adaptant au contexte de l’appareil.

En adaptant la qualité de la visualisation en termes de qualité d’image, la réactivité globale et

la vitesse de rafraichissement sont maintenus, peu importe le statut de la ressource. Afin de

surmonter les limites physiques inévitables de capacité d’affichage et les contrôles d’entrée sur

les machines clientes, nous fournissons un mécanisme d’adaptation d’interface utilisateur, basé

sur un langage de balisage de l’interface qui lie dynamiquement les opérations prévues par l’ap-

plication avec les interfaces 3D et l’utilisateur, comprenant des profils de périphériques et d’ap-

plications prédéfinies. Un mécanisme de partage de données généralisé fondé sur la méthode

publication/abonnement est utilisé pour traiter les données entre le service-service et le service-

utilisateur permettant une communication structurées de type pair à pair ou client-serveur. Nous

voulons fournir facilement une liaison entre différents types de modèles de données qui doivent

être synchronisés, en utilisant une approche parallélisée pour mettre à jour un modèle de données

en locale et à distance. Une couche supplémentaire entre les données partagées et les données lo-

cales est appliquée pour fournir des conversions et mettre à jour les capacités à la demande (par

exemple, un modèle de données dans la mémoire graphique doit être prétraité afin d’adhérer

aux contraintes du pipeline de rendu).

Le système est divisé en plusieurs couches et s’appuie sur la Presentation Semantics Split Appli-

cation fournissant des couches distinctes contenants chaque fonctionnalité d’une manière clai-

rement définie. Les fonctionnalités de chaque couche sont isolés et encapsulés dans un modèle

uniforme pour l’implémentation, le résultat est un noyau minimaliste, appelé nœud, qui permet

d’exécuter les fonctionnalités demandées. Ces nœuds peuvent être concaténés dans une relation

parent / enfant ou être exécutés comme des processus autonomes, fournissant un déploiement

et une évolutivité facile.

Le système de rendu adaptatif lié au contexte est utilisé dans plusieurs scénarios ou cas d’utili-

sation rattachés à des domaines, le User Centric Media, la télémédecine et e-commerce. Le User

Centric Media se concentre sur le rendu adaptatif et le support de périphériques hétérogènes. La

télémédecine met l’accent sur la collaboration et l’accès à un ensemble varié de données, des don-

nées 3D mais aussi des données 2D comme par exemple des données 2D d’IRM volumétrique.

Le e-commerce explore les possibilités de la réalité augmentée sur les appareils mobiles en tant

que services ainsi que le déploiement global de services de rendu 3D tout en incluant la gestion

des utilisateurs.
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Chapter 1. Introduction

1.1 Motivation

The Internet, a vast and seemingly endless cyberspace connecting millions of people, has be-

come part of our daily life. Over the last decade, the introduction of new consumer hardware

has shaped how we use the internet. With more and more content becoming available every day,

the internet has an every increasing presence. Through a multitude of different devices, such as

e-readers, phones, tablets, desktop systems etc., we are able to exchange data with each other

across the world, independent of location, time and the device used. Applications are extended

with networking capabilities, either deployed locally on the client device or, as is the trend now,

fully hosted on the Internet (servers) as a service (cloud services). Our focus is to bring rich

and interactive 3D content to a broad range of end-devices together with the capability of real-

time collaboration. The presentation of 3D content varies from application to application since it

has to adhere to the functionality and intended usage, this could be a fully static scene with no

dynamic aspects in terms of 3D rendering (static 3D models, fixed light models, no interaction)

with just a few polygons or a fully dynamic morphing 3D environment with a multitude of 3D

entities within it (deformable 3D models, dynamic light approximations, complex interactivity

within the 3D scene). We are interested in the latter scenario. While small computing devices

are capable of rendering in high detail, supporting shader programs and offering progressively

more calculation power, they still have their limitations and will likely not become more power-

ful than a stationary computer. In traditional way, developing for a mobile platform often comes

with a huge set of optimizations to perform, such as lower texture resolution, using higher com-

pression (not even speaking on limitation of supported compression techniques due to different

hardware), limited polygon count and shader complexity has to be reduced greatly. Often for

light approximations, statically lit scenes with pre-baked light-maps are used instead of fully dy-

namic high dynamic range (HDR) light models, and shadow rendering has to resort to single

shadow mapping with no depth complexity (e.g. blurring and smoothing according to intensity

and angle) or other low computational approximations. The development for a multitude of

devices leads to several code and artistic pipelines, that have to be maintained and any update in

the base data has to be checked thoroughly. We therefore propose an adaptive remote 3D ren-

dering solution that can overcome these limitations, with additionally the support of real-time

collaboration. This would lead to a singular point of access, independent of the device, while

retaining all normal visuals and interactions. Our focus is less on the streaming and compression

of the data itself, but more on the management and handling of the data, managing the synchro-

nization between clients and provide novel methods of adaptation schemes that not only take

into account the single attachment of a client, but incorporates the possibility of multi-user and

multi-device. Within our focus we cover three major research domains which will be explained

and motivated in the following sections. The eldest research domain is Computer-Supported Co-

operative Work (CSCW), with its prime focus on collaboration, secondly the domain of Distributed

Virtual Environment (DVE) which orients around services in a network specifically designed for

Virtual Environments (VEs) and last the most recent domain is adaptive rendering targeted at pro-

viding a more optimized output for visualization. Albeit we handle all three domains, as they are
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1.1 Motivation

tightly intertwined with one another, the presented work will show more focus on the adaptive

rendering, which we present as Context Aware Adaptive 3D Rendering (CAAR), due to supporting

heterogeneous devices the context-awareness and multi-user deployment have a great impact

within this particular domain.

Following in this chapter is a short look into the three domain, the objectives of the conducted

research and an overview of the several chapters is presented in section 1.4.

1.1.1 In the field of Computer-Supported Cooperative Work

We can easily say that CSCW exists since the first computer network was established (one might

argue the term being used[1]) and covers a broad variety of technologies (covering the full Open

Systems Interconnection (OSI) model)and research areas. Since then it has come a long way and

many practices are now common in many applications. Especially in the area of mobile and

ubiquitous devices, all kinds of media are being used and shared everywhere through CSCW

based software[2]. The main principle is to have a user-centric multimedia converge, which puts

the (mobile) user in the centre. However applications on mobile devices often lack the more

complex functionalities as the ones can be seen on desktop systems. Such mobile applications

need to be optimized and adapted, and are often dumbed down version of their desktop coun-

terparts, lacking functionality. It is a true challenge to provide the same functionality that is

dependent on a collaborative framework, due to previous mentioned short-comings, and with

most mobile-phones and tablets having a capacitive touch screen (meaning the input is controlled

with a finger instead of a stylus) the user’s input is a challenge. Providing on-screen keyboards

takes away more display-space, and given that finger based input is far less accurate than a con-

ventional mouse pointer, the interface needs to be adapted to these situations. Yet these devices

bring great potential and can be used in a lot of new areas. Where previously mobile devices

and networks were barely capable of live streaming data, we have now come to a point where

it is feasible to have live-interactive streaming data. Technology wise, especially on the network

infrastructure, it will still take years to get a good coverage, but in closed environments (short

range, with limited connection capabilities) we see remote rendering being used in products

(Nintendo Wii U, Sony Playstation Vita etc.).

The focus in our work lies on the transmission and modification of 3D content and bringing

this to a multi-user environment, an example is given in figure 1.1. The targeted environment

can be described as a system with three primary features, where “Context-Aware Adaptive 3D

Rendering” is the process of providing 3D content to a end-user device in such a manner that it

delivers the best possible format for the given device and network connection. The second part

has to be taken into two forms, where the first has the focus on device heterogeneity and the

second on the collaborative aspects for virtual environments. To elaborate this a bit better the

first part can be noted as “User-Centric Pervasive Computing Environments” and aims at the

ability to provide service scalability and heterogeneous device support access the system from

all kinds of devices and still retain the same functionalities and visuals. Whereas the second

part “Collaborative Computing Environments” points out that the system is capable of handling
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Network
(Internet)

Client DevicesService Servers

UMTS

Wi-Fi

Lan

Figure 1.1: The environment for a collaborative environment, with service servers provide a multi-user
environment capable of handling a diversity of devices.

multiple users and have them interact in the same user-space which brings forth other topics such

as interest management for virtual environments and interaction/event handling. A system with

these kinds of capabilities is applicable in many fields, examples are

• Collaborative 3D design work (remote assistance and modelling)

• Educational (remote e-learning, local group-work, virtual classrooms)

• Multi-user gaming environment (Serious games and streamed games in general)

• Medical (Telemedicine, intra-network systems with mobile devices, virtual training)

• On-site analysis (construction sites, city/building plans for repairs, travelling)

• E-Commerce (virtual shops and product presentations/customizations)

1.1.2 3D Content Going Mobile

In the last decade wireless networks provide faster, more stable & reliable and often persistent

connections to mobile devices and considerable efforts have been made for nomadic access of

multimedia in mobile computing[3]. However more than often this nomadic access limits the

users in that it forces them to use their mobile devices as a singular point of access to their

multimedia. It is also impractical to manually transmit 3D content from one device to another

whenever the user wishes to utilize different devices. Not only does it distract the user in forcing

to copy the 3D content but also some resource-limited devices, such as a mobile phone or a

Personal Digital Assistant (PDA), may not be capable to render complex 3D data directly on the

device itself. This also still leaves out possible simulations that modify the 3D content, which

may require high computational power, or are platform specific and as for mobile devices may

drain the battery.

To overcome the resource limitations of mobile devices, a data-centric approach[4], with which

a client device uses semantically equivalent 3D data depending on different device capabilities,
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1.1 Motivation

has been used. However, with this approach there is no guarantee that the consistency of mod-

ified 3D content is maintained while a user is switching between different devices. Adaptive

remote rendering approaches [5], [6] have been proposed to seamlessly access 3D data with

heterogeneous devices. They adaptively generate size of images and frame rate based on the

pre-configured client rendering capabilities, display size and network conditions on a dedicated

server and stream to the client devices. This, however, decreases the interactive performance of

3D content, not only because it takes a longer response time to get feedbacks if 3D content is

fully rendered remotely and streamed back to a client but also because there is no support for

adapting the dynamic context changes such as network bandwidth at runtime. Hybrid render-

ing approaches [7], [8] maximize the utilization of resources on the server-side by delegating

the rendering of highly complex 3D scenes to a dedicated server. They can support the client’s

interaction with 3D content even in the case of temporal network failure. However, with this

approach the users are not able to exploit diverse devices and have it adapting to the current

context at runtime. The client devices therefore still need to transfer large amounts of 3D data

to the server on-demand. Furthermore these approaches do not consider client device capabili-

ties, such as display size and input controls, to represent the user interface. It is impractical to

provide complex full-featured controls on resource-limited devices such as Netbook, Ultra Mo-

bile Personal Computer (UMPC), PDA and smart phone devices due to small displays, limited

computational power and/or limited connectivity.

With the current trend of storing data in cloud based data centres and more and more ubiquitous

devices and interoperability between device types, it is the next logical step towards a truly and

fully integrated service platform that combines all of this. It is therefore our vision that a system

can provide in a collaborative working environment in a distributed virtual environment, with

distributed simulations for rendering 3D content and seamless streamline this into a multi-user

environment, whilst being able to adapt to the end-user hardware. Topics regarding this vision

include:

• Network Topologies

• Scalability

• Collaborative Virtual Environments

• Interest Management and Event filtering

• Real Time Simulations

• Adaptive 3D Rendering

• Concurrency Control

• Streaming 3D-Content

With an architecture specifically designed for being deployed with a grid/module (cloud) based

approach, being itself modular and easily scalable, can offer on-demand services, in our case

specifically aimed at 3D virtual environments, which are inserted as plug-ins, can automatically
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load-balance themselves accordingly in a set of dedicated servers (which may be located around

the world) and support mobile, ubiquitous and stationary devices can greatly improve the way

we have access and interact with 3D content nowadays1. Utilizing service protocols so it can

dynamically fine-tune towards the end-user, in terms of application, device and network capa-

bilities. Providing the capability of dynamically switching devices without losing it’s current

session and or interactions with the group in a collaborative session. Where we define a service

not only as a rendering service but could be a simulation which modifies 3D content, it’s output

can be shared by multiple users, either independently or in the same user-space.

1.2 Contributions

We propose a context-aware adaptive rendering architecture which visualizes 3D content and an

user interface on top of a CVE, while dynamically adapting to the current context such as device

availability in the current location and their capabilities, i.e. processing power, memory size, dis-

play size, and network condition, while preserving interactive performance of 3D contents. To

maintain an optimal responsiveness of remote 3D visualization, we use a scheme-based mecha-

nism, including a device profile, to adjusts quality of visualization adapting to the current device

contexts. By adapting the quality of visualization in terms of image quality, the overall respon-

siveness and frame-rate is maintained no matter the resource status. To overcome the inevitable

physical limitations of display and input controls on client devices, an interface adaptation mech-

anism, based on an interface mark-up language, which dynamically binds operations provided

by the 3D application and user interfaces with predefined device and application profiles. A

generalized data sharing mechanism based on publish/subscribe methodology is used to handle

data between service-service and service-user allowing for peer to peer or server-client struc-

tured communications, providing easy binding to different kinds of data models that need to be

synchronized, using a multi-threaded approach for local and remote updates to the data model.

An extra layer between the sharing of the data and the local data is applied to provide conver-

sions and update on demand capabilities (e.g. a data model in Graphics memory needs to be

pre processed to adhere to the constraints of the rendering pipeline). The framework is divided

into several layers and relies on the Presentation Semantics Split Application Model (PSSAM),

providing distinct layers with each clear defined functionalities. The functionalities from each

layer are isolated and encapsulated into a uniform model for implementation, resulting into a

single minimalistic kernel that can execute at runtime the requested functionalities, which are

called nodes. These nodes then can be concatenated in parent/child relationships, or be executed

as stand-alone processes, providing easy deployment and scalability.

With this architecture we cover the three prime technical domains, shown in figure 1.2 presented

in a triangular shape complimenting each other. In practise, as will be shown later, the domains

are tightly intertwined and it is not always clearly to distinguish in which domain a certain

functionality lies. The CSCW handles all multi-user collaborative aspects and influences the

DVE in terms of multi-user instances that need to be created in the virtual world (such as a

1Project Intermedia section D.1
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Figure 1.2: The target platform can be divided into three domains, where the lower two domains are
extending the upper domain.

virtual camera extending to a fully controllable visualized virtual avatar), providing information

about the interest of each user in order to limit the output of the DVE to the most essential

data for an individual or a group of users and last handling the interaction with other services

simulation services. The DVE provides the simulation and rendering distribution instead of

single deployment approaches for scalability and the linking between several instances of the

simulation, user representation in the virtual world and filtering of higher level interactions. On

top of this is the CAAR providing the rendering layer capable of supporting low-end to high end

devices with fine-tuned performance rendering schemes.

1.3 Research Context and Objectives

The main goals are:

• Development of the framework architecture for a platform with support for multiple-users,

services and rendering modules.

• Development of a service oriented modular base component using the subscriber/pub-

lisher model.

• Development of the client architecture for heterogeneous devices.

• Development of algorithms for handling the interest-management.

• Development of algorithms for handling the adaptive rendering and context switching.

For creating the framework, first its groundwork has to be established (design and implementa-

tion). The architecture of the core and base components should be set up in a generic manner,

in order to be very versatile towards the services that are build on top of it to provide flexibility

and scalability. Yet it should be kept comprehensive in its functionalities to avoid overhead and

overly complexity.

The overall architecture elaborates on the support of simulation, rendering and interacting re-

motely with an 3D virtual environment, while incorporating CVE basic principles, such as sup-
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Chapter 1. Introduction

porting multi-user and collaboration. Simulation is the logic of the program that provides the

raw data. Rendering is the logic of taking the data and visualize it to its end device-display. The

interaction is the influence of the user on the simulation.

Nowadays we have large virtual network, however most of them are only accessible by a lim-

ited type of devices. For example a Massive Multi-player game is mostly only accessible by

Personal Computer (PC), or by a game-console. More and more software providing similar vir-

tual environments for hand-held devices providing the same functionality. However these are all

separated. The deployment of the framework supports a scalable approach, providing the means

to distribute any service within a network.

The framework must meet the certain requirements

• Provide service scalability, with the increase in users the service must be able to coop with

the increase by being able to balance out the users among its available resources. As the

number of users in a DVE increases, a large number of interactions are likely to impose a

heavy burden on network and computational resources. One of the key aspects to consider

for lessening the burden is scalability, that is, a system should keep interactive performance

of users from significantly degrading even with an increase in the number of users.

• Provide efficient event-handling schemes

• Provide heterogeneous device support, by being able to switch between different schemes

of rendering types and dynamic interfaces.

• Provide Runtime adaptation depending on the connection quality, the user events and the

content being rendered.

In order to realize the architecture several aspects are researched and are explored in several

domains of deployment as shown in figure 1.3. We use User Centric Media, Telemedicine and

E-Commerce as our target domains. By examining the differences and requirements and design

an architecture that can support all of these fields.

All aspects combined form together the “Herd” framework. Which will consist out of a collec-

tion of modules coupled together forming the base of the framework, and a set of Application

Program Interface (API) and client side specific developed software modules. The main system

is developed in C++, targeted at a Windows environment, whereas the client modules target the

Java, Android and Windows Phone systems. The framework is described in-depth in section 4.2

In order to cover the domains as shown in figure 1.3, several application scenarios are introduced.

The architecture is formed into the “Herd framework” and each application scenario covers

several aspects of the goals stated in section 1.3. The scenarios also show a growing aspect of

deployment, in that, it extends its technical field with each follow-up.

• The Architecture. The global architecture that enables the envisioned scenarios.

• Simple Remote Rendering for Low-end Devices. The initial approach on the remote 3D

rendering and it’s usability.
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User-Centric media
· 3D Adaptive Rendering
· Interest Management
· Interface Adaptation

E-Commerce
· Multi-service Interactivity for Group Work
· Load Balancing and on demand Service Scaling
· Data Propagation and Adaptation 

Telemedicine
· Interaction Schemes for Heterogeneous Devices
· Distributed simulations
· Concurrency Control

Herd
Framework

Figure 1.3: From several domains certain aspects of the target framework are realized and combined into
one, the Herd framework.

• Remote Rendering with Augmented Reality. Experimenting with Augmented Reality as an

extension to remote rendering and simulation.

• Adaptive Rendering with Dynamic Device Switching. Combining technologies, such as

mobile IP and Zigbee wireless communication modules for triangular based indoor local-

ization, into a single approach towards an adaptive remote rendering system capable of

switching between devices.

• Service Distribution and Render Context Switching. Setting up and maintaining multiple

3D rendering contexts and simulation services for remote adaptive rendering. Using load-

balancing schemes and user session management for service control and distribution.

• The Collaborative Magnetic Resonance Imaging (MRI) Segmentation. Providing two types

of services, the segmentation and the 3D visualization. Accessible from mobile and station-

ary devices. Supporting multiple locking mechanisms for experimental purposes.

• Collaborative Services with shared data for simulation and virtual environments. A full

scale deployment, prototyping all aspects of the framework. Offering independent user

applications with shared data between services and end-user applications.

1.4 Manuscript Organization

• Chapter 2 Related Work

The chapter is divided into several sections starting with the introduction into CVE and

highlights its aspects. Followed by two sections onto which our framework mainly focuses,

Interest Management and 3D Adaptive Rendering. These two aspects will be explained in

more detail and related work in the field is presented. Then the whole concept of CVE is

related to the three deployment domains as mentioned in section 1.2.

• Chapter 3 Methods and Design

In this chapter we re-examine what has been said on our contributions and deepen the

research goals. As we further examine the individual parts of our proposed architecture

methodological level and are described in detail, alongside with similar closely related
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research.

• Chapter 4 Technical Design and Implementation

Where chapter 3 handles the architecture in theoretical manner, this chapter deals with its

technical design and implementation. Placing the theory into practice is more than often

not as straight forward as we would wish it to be, we therefore highlight the choices on

technical design issues and implementation strategies. We make a separation also between

the design and implementation, as the design could be platform independent while its

implementation might be bound to the use of a certain programming language/compiler,

platform and hardware.

• Chapter 5 Experiments and Results

Along the way of designing and implementing the proposed architecture several experi-

ments were conducted. Early stage proof of concepts were used to elaborate certain aspects

of the architecture as it evolved into its final form. Each experiment is described in detail,

which entails the deployment domain(User-Centric Media, E-commerce, Telemedicine), the

technical aspects, the set-up, execution and results.

• Chapter 6 Conclusion

The final words concluding our findings on the presented research, the proposed architec-

ture, the established implementation and conducted validation during several stages of its

design and implementation.
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Chapter 2. Related Work

2.1 Motivation

Albeit the main focus lies on researching new ways on how to bring 3D content to heterogeneous

devices, we also look at the parts around it, which overlap with several deployment domains. At

the core there is the CVE. The term “Collaborative Virtual Environment”,in short CVE, has its

roots in the CSCW, which in turn has a long history of research of more than half a century[9] .

Albeit the term CSCW back then might have been different, e.g. group support or office automa-

tion, in essence it took off in the early 1960. We take a short look at where this area of research

came from and which systems have been developed along the way. Collaborative systems exists

in many varieties with each their own specific target of deployment[1], [10]–[13]. An overview is

given in figure 2.1, where each ring represents a work level. Even if the terms in the figure are

outdated it still can be projected to the current day application environment. Where Organization

is related massive multi-user, Project and small-group may have become more overlapped or even

merged, with globally faster Internet connections and overall standardized means for collabora-

tion and data sharing. Still, a distinction can be made if a target environment is intended for

Local Area Network (LAN), e.g. within a company using specialized software, or Wide Area

Network (WAN), e.g. public accessible services with collaborative support. This is still reflected

on the right side within each ring. Whereas on the left side the main type of development within

the given area is depicted. Notably the most important development, with an increase of users,

is the human-factors and computer human interaction. This also exist at the smallest level, how-

ever the complexity increase with multi-user systems become very challenging. Even the simple

working procedures can become quite complicated due to several factors, such as providing

consistency among the client-systems, reliability of transmission, interaction responsiveness and

interaction dominance (two users at the same time perform interaction which conflict with each-

other). The target systems are also still applicable to some extend, e.g. mainframes still exist

today but are outperformed by computer clusters (super computers), minicomputers (minis) are

no longer existing mainly due to increased performance in desktop computers. The structural

deployment stays the same, with an increase in supported user clients the targeted software and

hardware gain in complexity and overall higher requirements for development and maintenance.

A distinction can be made in how certain multi-user applications are deployed. The small matrix

in figure 2.2 gives an overview with examples of what kind of collaboration is taking place,

where horizontal is time and vertical is place. If at the same place and time, the collaboration

takes place in a meeting environment, where everybody is together and works together. Then

combinations of different but predictable or unpredictable times of collaboration against same,

different and predictable or unpredictable places. The category into which a CVE is placed

depends on the target application of the CVE and often overlaps (supports) multiple possibilities

of time and place. Current popular CVE systems are the Massive Multi-player Online Game

(MMOG), in which a persistent virtual world is accessible to users from all over the world

connected to the Internet. Using a client application to connect to a server system on which the

persistent world is being kept. There is no direct need for collaboration and collaboration can
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Figure 2.1: Each ring abstracts a level of scale on cooperative work and group-ware.Top the level, below
targeted systems, left development and right the research areas [1]

take place in various forms, e.g. simple text chat, audio conversation or meet up with friends

by having the virtual avatar (the users representation in the virtual world) all together in one

place and perform game or non-game related collaboration. Obviously the main target of a

MMOG is to have game-related collaboration, however since it often supports various forms of

communication, other kinds of collaboration, outside of the game perspective, may take place.

Here it becomes also a bit more complicated since in the real world the time and place may differ,

but also in the virtual world the time and place may differ. Albeit, there is no Massive Multi-

player Online (MMO) to date in which virtual time-zones exist and therefore is always the same

throughout the virtual world. This differs greatly from more specialized CVE, which for example

only target the support of virtual meetings, in which it is the aim to have the users representation

more expressive and believable, since these are stronger related to user-avatar interaction. Within

such an environment there is no virtual time or place and from figure 2.2 this is placed at same

time-different and unpredictable place. It seems more constrained, yet this is only because of

shifting the focus on what kind of collaboration has to be performed. With a virtual meeting

the users need to be tracked, the “speaker” needs to be highlighted, there might be a form

of document/media sharing or a common white-board interaction. Eventually these types of

virtual environments will merge together as progression in interaction, graphical representation

and new collaborative schemes are researched and developed. An example is a Virtual shopping

street, where multiple users can roam the streets and enter virtual shops. Within the shops users

can discuss products and see 3D representations and annotations about it. There is a flow from

Massive multi user environment to an isolated virtual meeting environment. Many MMOG to

date already use similar approaches[14], but this is mainly due to game content constraints and
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by providing the users in the isolated environment an optimized/stable interactive performance.
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Figure 2.2: “3-by-3 map of group-ware options categorizes representative applications according to place
and time.”[1]

In this introduction we have shed some light on the origin of collaborative virtual environments

and how they are placed within the place and time matrix. A more in depth view is provided

in the next section 2.2 “Collaborative Virtual Environments”, where the building block of an

CVE system are being highlighted and which systems provide full CVE experiences. In section

2.3 and 2.4 two core components of a CVE system are highlighted. Section 2.3 delves into the

aspects of “Interest Management” and section 2.4, the main field of advancement in the last

few years, and primary focus of this thesis, “Heterogeneous Environments and Adaptive 3D

Rendering”. The last section “Deployment Domains” 2.5 gives a small overview of the domains

mentioned in figure 1.3.

2.2 Collaborative Virtual Environments

Over the past decades many CVE systems have been developed (Appendix B figure B.1) and

found their origins in the military simulation [15][16], educational research and entertainment

environment. Notably early CVEs are SIMNET[15], Rendezvous[17] and Habitat[18].

“Habitat is a multi-participant online virtual environment, a cyberspace.”[19]

An extended list of CVE systems and certain extensions of the CVE systems is given in appendix

B “Frameworks”. Note that the given list is far from complete as many additions have been

made in neighbouring fields such as rendering, compression, telemedicine, human computer

interaction, etc, all contributing to the CVE research area. This is because a CVE in itself is a

support tool, providing the means to “work together”(figure 2.3) and therefore depends on all

kinds of research areas.

The base components for a CVE were established quite early on and have stayed in essence the

same over time. This is presented in figure 2.4 as separate “manager” modules. For each user/-

client connection a session needs to be established and maintained, therefore a session manager is

needed. The whole virtual environment can be seen as users accessing simultaneously a database

and only take the information out of it which is of “interest” for them through a Data Manager

and visualized to their local client device. The Interest manager which incorporates strategies to
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Figure 2.3: Abstract view what a CVE offers.

filter, aggregate and optimize the data generally determines which data is important for the user

to have. Since we’re dealing with multiple possible interactions and mutations to the data, which

is shared among the clients, a Concurrency Manager is needed. At a lower level, events routed

between the sender and recipients need to be handled, therefore an Event Manager is needed and

at the lowest level there is the Communication Manager for handling all incoming and outgoing

traffic (handling different types of events with certain requirements E.g. Transmission Control

Protocol (TCP)/User Datagram Protocol (UDP) streams, buffering, packet control etc.).

Communication
Manager

Data
Manager

Session
Manager

Concurrency 
Control

Manager

Interest
Manager

Event
Manager

Figure 2.4: Common CVE Management modules

Where the first CVE used broadcasting but was abandoned fairly quickly due to congestion and

later approaches switched to utilize the Multicast principle [20]–[24], which is fine for univer-

sity and basically any LAN environment, however for normal consumers who are connected to

the Internet, Multicast is not being routed by most of their Internet Service Providers (ISPs)[25].

Techniques to circumvent this are the use of Multicast protocols, for example Distance Vec-

tor Multicast Routing Protocol (DVMRP), Multicast Extensions to OSPF (Open Shortest Path

First) (MOSPF), Protocol Independent Multicast - Dense Mode (PIM-DM) and Protocol Indepen-

dent Multicast - Sparse Mode (PIM-SM). However for these to work the routers between the

server and clients still need to be configured to support the protocols or tunnelling. There are

also the backbones Abilene, MBone (albeit both are retired)and the current Internet2 Network

backbone (United States only), however these are also primarily targeted at universities and are

less relevant to heterogeneous environments and consumer connected devices. The way an CVE

operates depends heavily on the type of network, as where our focus is the consumer connec-

tion over Internet and therefore Multicast becomes more difficult to apply, but not impossible as

commercial applications such as “Onlive” 1 and “Gaikai” 2 have proven. However even with the

launch of Internet protocol version 6 (IPv6) in 2011 and 2012, 3 (major websites and providers

switch permanently to IPv6, while still being backwards compatible with Internet protocol ver-

1Onlive web-link http://www.onlive.com/
2Gaikai web-link http://www.gaikai.com/
3IPv6 web-link http://www.worldipv6day.org/ and http://ipv6.com/
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sion 4 (IPv4), but newer websites may only be available by IPv6), which has Multicast embedded

as a standard, the chances are slim that a proper Multicast scheme can be used without striking

major deals with ISPs [26] and still have to fall back on the use of tunnels[27]. In figure 2.5 three

basic types of routing schemes are given, which have been used by most CVEs. Broadcasting,

one to all, is still used for internal LAN environments and mostly for service discovery/an-

nouncements, Multicast, one to many, uses the UDP and is favoured for use on video and audio

streaming and the last one Unicast, one to one, is the most prominent used method for exchange

of data currently on the global Internet infrastructure.

Server

Client

Broadcast Multicast Unicast

Server-network

Figure 2.5: Basic communication types, Broadcast[28], Multicast[29] and Unicast[30].

Starting from 1997 newly developed CVE systems started to provide multiple combinations com-

munication architectures to overcome the limitation of Multicast on Internet. Mainly by using

Peer to Peer approaches[31]–[35], which are solely Unicast connection between the clients and

several strategies have been researched in creating hybrid systems[36]. Figure 2.6 shows com-

mon examples of some basic communication architectures. The server-network construction if

often used in combination with multicasting. Clients connected to a server may either reside

within a LAN or a Virtual Private Network (VPN), where the connection between the servers

provides connection to other grouped clients. The database between the server is fully repli-

cated, as this provides the fastest interaction response for the clients within one group. This

reduces the amount of data being send over the network and provides less delay for clients,

since they are connected to a nearby server. The client-server set-up is possibly the most basic

set-up, but is still one of the most used set-ups for Massive Multi-player Games as it provides

full control over the data. Whereas Peer-to-peer utilized a shared distributed database among its

peers, which provides updates to only those users who might need it and is often used with an

Application Layer Multicast Protocol on top[25], [37]. Note that the deployment of these basic

communication architectures also depend on the scale, the infrastructure and type of CVE.

Server

Client

Broadcast Multicast Unicast

Server-network Client - Server Peer to Peer

Figure 2.6: Basic network communication architectures.

The main reasons why we are concerned with communication types and architectures are the

limitations of network infrastructures and end devices [38]. The Communication Manager can
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be seen as the titan Atlas holding up the “virtual” world. Every packet send over the network

takes its time to be “put” on the network, to be received by its recipient and processed again. On

a single device with a single user everything can be handled easily sequential. Having two users

on one device (with each their own input devices) already increases the complexity and the need

for managing the input, however on one device the input received would still be instantaneously

and can be seen as sequentially. Put a network between the input devices lag and jitter are

introduced. Lag is the time it takes for a packet to arrive, often measured by the Round Trip

Time (RTT). Whereas jitter is the variation in transmission time due to different routing across

the network, packet corruption/loss and resend or network congestion. Network congestion

occurs when the network cannot handle the amount of data being send, data would be lost and

might need to be resend (e.g. TCP congestion control).

2.3 Interest Management

In every form of information exchange we could state that there is always a form of “Interest

Management”. From a simple conversation “face to face” we direct our information to the recip-

ient, within networks it works in a similar way. As mentioned before using basic communication

types, however these also have their limitations and in order to overcome these communication

architectures are used to control these basic communication types. However in complex multi-

user networks these systems architectures are limited (often in term of computational power,

network bandwidth, network speed) and are unable to keep a consistent fully replicated state

of the application, this is especially the case in Large Scale virtual environment (LSVE). The

solution to this problem is to “simply” not have a fully replicated state and only keep the “im-

portant” sub-states up to date. To determine what is important is dependent on what the client

needs and what it is allowed to have. Simply said it is fully dependent on the application. For

VE systems this would be the direct environment of where the user resides within the Virtual

World (VW). For example, assuming the client has no information at all, except his position in

the VW, it will require all the data that are within his sensory range. This can be the geom-

etry of the world (mesh data), textures, sounds (environmental, interaction), dynamic objects,

Non-Playable Character (NPC) and other users represented by avatars (animated 3D models,

consisting out of mesh data, textures, event sound etc.), all this data does not necessarily has to

come from a “resources”-server, but could be included in the client dataset, yet still it needs the

information on what, when and where to enable. This is handled by the Interest Manager and

is normally placed just above the Event Manager (EM) ( 2.4). Many systems exist to date that

incorporate different strategies on handling information [21], [39]–[47].

“ The Interest Manager (IM) seeks to reduce the volume of data exchange by exploiting the

fact that clients in the system generally have a limited area of the virtual environment with

which they interact at any given point in time.”[48]

The most obvious aspect of an VE is that it revolves around one or more virtual worlds and

most systems take advantage of that, separating the virtual worlds and dividing a virtual word
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into smaller sections [39], [40]. These are called many names, e.g. “Rooms” finding it’s origins

from Multi User Dungeon (MUD) applications, Cells [49] and “Regions” are well known from

NPSNET [21], SPLINE[23], SCORE[50], ATLAS[34]. This falls under the notion “Region-Based

filtering”. Regions that are connected by portals which is based on an older term “door” as used

by MUDs.

• Region based Divide the world up into compartments

• Spatial based Sensory of the entity Aura and nimbus

• Class based Parameter based

• Hybrids Most systems employ a mixture of the previously mentioned IM methods

2.4 Heterogeneous Environments and Adaptive 3D Rendering

Several adaptive rendering mechanisms [4]–[8], [51] have been proposed to overcome resource

heterogeneity. Krebs et al. [4] proposed a data-centric approach where users are using the same

or semantically equivalent 3D data with heterogeneous devices. It is composed of three tiers.

The presentation tier contains the controller and view parts of the Model View Controller (MVC)

paradigm [52]. The domain tier contains application semantics as well as data. The manifold tier

glues the presentation and domain tier. Device heterogeneity is handled by pre-described pro-

files in eXtensible Mark-up Language (XML)/eXtensible Style-sheet Language (XSL). The XSL

document maps elements in the XML document to nodes in the result tree so that the renderer

knows how to render them. Parsing the common XML file and the local XSL file generates the

view at a particular user’s machine. However, this approach is not able to guarantee the consis-

tency of modified 3D data. It furthermore takes a long time to transfer the 3D data when a user

moves across diverse devices. Preda et al. [6] proposed a formal model of adaptive rendering

for multi-user 3D games. They defined a set of transformations for adaptation to heterogeneous

client devices, rendering, coding, simplification, and modelling and possible process chains for

visual adaptation. However, they did not provide any mechanism to dynamically adapt the cur-

rent context at runtime and to increase interactive performance for users. To increase interactive

performance of 3D simulation and rendering, a hybrid rendering approach in which a common

subset of 3D models are rendered on both the client and server sides, could be utilized. Engel

et al. [7] proposed a system which maximized utilization of resources on server-side by delegat-

ing rendering of highly complex 3D scene to a dedicated server. It, however, still limited users

to exploit diverse devices adapting to the current contexts because a client needed to transfer

large amount of 3D data to server on-demand. Weaver et al. [8] proposed a perceptually adap-

tive rendering system for immersive virtual reality which reduced the computational burden by

rendering detail only where it is needed. Eccentricity from the user’s point of gaze is used to de-

termine when to render detail in an immersive virtual environment, and when it can be omitted

in order to display higher quality environments without reducing interactivity.
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2.5 Deployment Domains

2.5.1 User-centric Media

Nowadays even the smallest of devices have the computational capabilities and connections to

provide access to most of our media (music, video, documents etc) [3]. This provides interactive

environments where media can be accessed, visualized, interacted and shared with [2]. With the

uprising of social networking sites, such as Facebook, Twitter, LinkedIn, Flickr etc, a whole new

way of distributing and interacting with social media content has been developed[53]. According

to Tian et al. [54] this has led to a new area of research Social Multimedia Computing. Research

that has led to this new area also made considerable efforts in the field of audio-video systems

and applications convergence, especially in “smart home environments” [55] as well for “Mobile

computing” [56]–[58]

2.5.2 Telemedicine

Telemedicine is a rapidly developing application system in the medical domain that harnesses the

advances in telecommunication and multimedia technologies [59] and has led to many health-

care benefits, e.g., telesurgery applications that use image-guided robotics and real-time consul-

tation (teleconferencing) for distance-based surgery [60]; and telemonitoring systems for elderly

prevention and care by using wireless sensory devices to communicate the status/condition of

patients with physicians [61]. Moving ahead from simple text, image and video communica-

tions, modern telemedicine applications are supporting complex systems such as surgery (tele-

surgery), collaborative diagnosis (tele-diagnosis), and online rehabilitation (tele-rehab). Further-

more, typically these telemedicine systems are used for hospitals that do not have the facility/-

expertise, and locations could be remote or in under-developed countries, thus having restricted

networking capabilities. In particular, teleradiology - a telemedicine system that involves the elec-

tronic transmission of digital radiographic images (e.g., MRI and X-Ray) from one geographical

location to another, has revolutionized the healthcare practices by enabling efficient distribution

and sharing of medical images. Teleradiology has evolved from teleconferencing and shared

2D images running on imaging workstations with LAN [62], to current state-of-the-art systems

that are capable of streaming volumetric medical images in real-time via a wireless network

[63]. Moreover, modern systems now support thin client/cloud computing [64] that processes

(e.g., volume rendering) and stores all the medical image data in a client-server relationship,

thus not requiring local imaging workstations to access and view the images. Despite the re-

markable growth in the medical image processing and analysis capabilities, little progress has

been made in the mechanism that enables real-time interactive collaboration among multiple

users in teleradiology domain. In such applications, collaboration tools include the usual text

and video based interaction, image navigation, and image editing, which we refer to hereon as

‘collaborative editing’. Basic image editing involves appending information to the image without

changing the image’s state, i.e., textual annotations and measurements using a ruler or simple
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Table 2.1: Classification of Social Media [67]

Social presence/Media Richness

Low Medium High

Low

Self- 
presentation /

 self- 
disclosure

High Blogs
Social networking 

sites(e.g. Facebook)
Virtual social worlds 

(e.g. Second Life)

Collaborative 
projects(e.g. 
Wikipedia)

Content 
communities (e.g. 

Youtube)

Virtual game worlds 
(.e.g. World of 

Warcraft)

brightness/contrast state changes of an image and lookup table of the image stack using a sim-

ple strict locking concurrency control mechanism [63], [65]. Unfortunately, these studies degrade

real-time interactive performance of users because only a single user, who has ownership of the

shared object, can edit the object and the others wait until the lock is released by the current

owner. They also barely provide a scalable interaction mechanism among a group of users nor

a scalable data (information) sharing architecture among distributed multiple sites. It might not

only cause degradation of system performance if the number of users increases but also limit to

utilize diverse medical data distributed in the local sites. Our previous study [66] investigated

the concept of using collaborative mechanism for real-time interactive segmentation among mul-

tiple users. The goal was to demonstrate that such capability can find large array of useful

applications in teleradiology, especially for education and clinical usage.

2.5.3 E-Commerce

E-commerce has been booming in the last decade, from on-line services for buying digital wares,

ordering physical products, booking flights, hotels are common. Full social frameworks are

provided around these services and offer customer-customer feedback (ratings, forums, blogs).

Eventually even e-mail will be replaced, or at least completely assimilated, by technologies such

as Twitter and Facebook. Albeit similar software already existed for a long time, it became

greatly accepted by the public (globally) and many companies adapt their marketing and internal

strategies to take advantage and integrate these social media technologies into their core-business

[67]. An interesting classification table concerning Social Media is given by Kaplan and Haenlein,

table 2.1.

2.6 Summary and Conclusion

We have explored the core technologies and research areas that revolve around the research of

3D Adaptive Rendering, including the deployment domains User centric media, Telemedicine and

E-Commerce with a strong focus on Mobile computing. As research on Mobile computing has

mainly focused on device-centric approaches which makes a mobile device as a point of multi-

media convergence to support nomadic access to multimedia, which is still limited to the usage
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of a single mobile device with the limited resources. We aim to overcome these limitations, in the

next chapter we address how to move beyond the home and device-centric convergence towards

truly user centric convergence of multimedia. Our vision is to make a user as a multimedia cen-

tral which means that “a user is a point at which services and interaction with them (devices and

interfaces) converge across spatial boundaries”. To realize the user-centric convergence, we de-

fined three key challenging issues: dynamic distributed networking, mobile and wearable inter-

faces, and multimedia adaptation and handling. Dynamic distributed networking layer mainly

focuses on a transparent access to diverse networks for seamless multimedia session continuity

which enables a user to switch among different devices and networks with minimal manual in-

tervention from the user. Mobile and wearable interfaces layer provides dynamic composition of

wearable devices and various mobile interfaces to access multimedia contents exploiting diverse

devices nearby to users, which make users free from using specific devices to access multimedia

contents. Multimedia adaptation and handling layer support multimedia contents to be pre-

sented to different devices for personal manipulation which requires adaptation of multimedia

to device or personal context along with seamless presentation of the multimedia for different

devices.
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3.1 Motivation

This chapter delves deeper into what we proposed (section 1.2), a context-aware adaptive render-

ing architecture. First we overview the architecture, lay out the aspects that need to be handled

and provide insights in its components on a methodological level. The architecture itself is the

backbone to the several application scenarios (use-cases) that were developed and experimented

on. Albeit the initial designs remained the same, the architecture morphed along with the de-

fined application scenarios which where conducted chronologically in order to accommodate the

new requirements. As it tries to incorporate all the requirements of each scenario in a generic

manner, not only to fulfil the requirements as a re-usable design for further application scenario,

but also to gain a broader spectrum of applicability outside of the specified scenarios.

In the first section we discuss the architecture and lay out the three core aspects, adaptive ren-

dering, collaborative virtual environments and scalability with heterogeneous device support.

Before handling the application scenarios an introduction is given into an real-time virtual fashion

model simulation library (VTO) as it functions as a basis for several of the application scenarios

(section 3.3). Each application scenario is first introduced in section 3.4, where we justify the

purpose and choice of each scenario and explain the order of how the scenarios came to be.

The first scenario in section 3.5 is the basic utilization of the architecture, where in section 3.6 the

application is extended with Augmented Reality (AR) and using the VTO library. In section 3.7

we present a collaborative work, where the framework is used with different third party modules

to provide a seamless hand-over of the running session to another device without interruption

and how mobile devices can be used for data transfer to a localized collaborative device (touch

table). The application scenario thereafter in section 3.8 takes the VTO library and provides it as

a scalable service. Offering strategies for deploying similar services in a cloud-like environment.

We then present how the framework can be used in a different domain, in this case Telemedicine,

and focus more on collaborative aspects in section 3.9. The last application scenario, section

3.10 contains several envisioned services, showing off the various aspects of the architecture.

Using the VTO for the simulation, but providing a collaborative pattern designer, from which

automatically meshes are extracted and given to the simulation. An overview of the key aspects

of each scenario is given in table 3.1.

Since the main focus is on bringing media into a user-centric context every application scenario is

logically placed within that domain. Most of the scenarios are applicable for E-Commerce usages,

either by deploying at small scale, LAN environments as native applications, or in at grand-

scale, e.g. WAN environment as web-based services. Most notably are the last two application

scenarios as they show the full capabilities of the framework and its usage.
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Table 3.1: Application scenarios

Deployment of the 
framework. Multiple 

devices can access the 
same stream 

simultaneously. Input 
handling and adaptation 

are utilized.

Focus on service 
maintenance and 

deployment. Using load 
balancing and automatic 

redirecting of a client 
connecting to a service.
In addition the service is 

provided in a web-browser 
environment.

A webcam on the mobile 
device is used. The AR 

tracking is either done on 
mobile or server. 

Rendering is performed on 
the server and composition 

either server or mobile 
device

Two sub scenarios, both on 
integration with 3rd party 

modules. 
1 Enabling seamless 
switching of device. 

Rendering from server and 
streaming to a single 

session.
2 Seamless data transfer 
from device to device.

Multiple services for 
collaborative segmentation 

of MRI data. Offloading 
high data usage from 

client. Operating on same 
data, with device 
independency.

Single point of data store 
which influences a 

autonomous simulation.
User-Centric User-Centric User-Centric

E-CommerceTeleMedicineE-CommerceE-Commerce
User-CentricUser-Centric

Remote Rendering for 

Low-end Devices

Remote Rendering with 

Augmented Reality

Adaptive Rendering with 

Dynamic Device Switching

Service Distribution and 

Render Context Switching

The Collaborative MRI 

Segmentation

Collaborative Services 

with shared Data Models

User-Centric
E-Commerce

Offering coupling for 
complex data model for 

synchronization. Complex 
data models are data 

models where the use of 
the data is dependent on 

other data in the data 
model.

Several services are used.

3.2 Concepts and Architecture

Albeit the main target is to bring 3D content to any kind of device, the intended architecture

should be capable to be used in a variety of deployment areas where 3D content may not neces-

sarily be the main focus. This involves the deployment of services in a network, keeping several

data connections with services, interactivity with services and propagation of changes in the

service data states among users who share the same interest. As a result the architecture relies

strongly on the concept of publish/subscribe model[68] and the PSSAM[44]. We reiterate the

research context and objectives into three core aspects of the framework as follows:

• Adaptive rendering: To overcome resource limitations of mobile devices, we propose a

context-aware adaptive rendering system which visualizes 3D content and a user interface,

while dynamically adapting to the current context such as device availability in the cur-

rent location and their capabilities, i.e., processing power, memory size, display size, and

network condition, while preserving interactive performance of 3D contents.

• Collaborative multi-user environments: The ability to not only share the same view but

also interact with each-other and with the provided service. In conjunction with the adap-

tive rendering the challenge is to preserve the interactive performance using adaptation

schemes and maintain a synchronized collaborative data state of the simulations, client

applications and services.

• Service scalability and heterogeneous device support: Whereas Adaptive rendering focuses

on optimizing for a single device, the service scalability focuses on overall deployment scal-

ability and optimizations. Handling adaptation for services and end-user application and

devices. The challenge of being able to place services anywhere, create modular compo-

nents that together form a service and easily can be maintained and support a seamless

range of devices for visual output and interaction.

It should be noted that the presented architecture designs are independent from the technical

designs (which are presented in chapter 4). As the architecture design aims to retain a certain

level of abstractness and therefore platform independence, thus without being limited by imple-

mentation and deployment issues. The technical designs on the other-hand adhere more to the
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feasible requirements of development and deployment environment. E.g. utilizing common pro-

gramming patterns, restrictions in threading and multi-process setups, network communication,

and buffering. With the technical designs the presented architecture design is reconstructed, yet

it does not resemble this in all cases (depending on the requirements per application scenario

certain aspects are treated differently).

3.2.1 Publish and Subscribe

The architecture leans strongly on the concept of the publish/subscribe model we therefore

elaborate more on this, and justify the usage throughout our work. Therefore, at the base of the

each presented aspect we apply this concept as follows:

• Scalability

By using a modular approach where services or partial services can link together using

a publish/subscribe approach can easily be deployed in different environments. A single

service can reside on a computer, in order to have it announced it can either use a broad-

cast receive/response mechanism or a centralized service approach. Meaning that a client

connects to the main service and asks for a service.

• Interactivity

Interactivity is about binding input to functionality, which can be done using the same ap-

proach, whereas the input is the publisher and the functionality the subscriber. Yet the way

it is announced can differ, in this case the binding of the input with the functionality hap-

pens from a publisher makes him known to the subscriber. Another aspect of interactivity

is the abstraction of functionality through the use of 2D interface elements, using singular

elements for the generation of events that are translated into, the selection of functionalities

to be executed with the given parameters.

• Context Aware

Context aware in this context is expressed in the device and network capabilities. In order

to switch strategies upon changes in capabilities (e.g. change of device) different adapta-

tion paths may be taken, this involves the use of different kind of services (e.g. remote

rendering, or direct streaming of 3D data). Applying publish subscribe provides a uniform

model for changing functionality in a dynamic setup of services that.

• Remote 3D Content Streaming

The streaming of 3D content may involve, as mentioned in the previous point, several

services, such as Level of Detail (LOD) reduction, Colour optimizations and general com-

pression (e.g. video compression) algorithms. These may all be separated services that

can be concatenated at runtime depending on the context awareness scheme. Aside from

the separated components, there is also the tightly integrated optimization of the 3D con-

tent, internally in the engine and program logic. Often this is best known as the LOD (as

and example, polygon meshes can be reduces in polygon count depending on distance),

and is used in any major graphics engine, however this is fully dependent on the running
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program and its restrictions on the LOD capabilities (e.g. we want no loss in quality in a

medical simulation, however in an crowd simulation it is preferred over loss in fluidity).

The usual behaviour of the publisher/subscriber method can be best illustrated by the program-

ming design pattern Observer pattern as shown in figure 3.1. The observer defines itself a as a

template (interface) upon which concrete implementations are build, which are than able to be

added to an observable object. Whenever the observable object changes its state it may notify all

of his observer objects.

Observer

Notify()

Observable

ObserverCollection

AddObserver()
RemoverObserver()
NotifyObserver()

Observer1

Notify()

Observer2

Notify()

Figure 3.1: UML diagram of the Observer Pattern[69].

This concept is used throughout the whole architecture as it is the uniform method for keeping

consistency among one-to-many relationships without the need of having tight coupling of func-

tionality and as indicated in the points above it offers flexibility in all areas. May it be from a

clean MVC point of view, scalability and multi platform deployment or functionality adaptation.

3.2.2 Adaptive Rendering System

In order to support polymorphic visualization of 3D content on heterogeneous devices, the adap-

tive rendering system exploits the PSSAM [44], in which an interactive 3D application can be

typically divided into four layers; presentation, semantics, link, and adapter. The presentation

layer supports the interface between the user and the shared semantics as well as the visual-

ization of 3D contents. The semantics are organized into software modules which encapsulate

the 3D content. The presentation and semantics are dynamically bound with adapter at initial-

ization as well as runtime. The context-aware adaptive rendering system is composed of five

logical layers as shown in figure 3.2. The network layer provides not only the low level con-

nection between the server and client using TCP or UDP but also the transparent change of

subscription end-points for seamless subscription to 3D content when a user switches one device

to another. The communication abstraction layer, which is composed of two major components,

being the communication manager and event manager, abstracts low-level events to high-level

(application-level) events in order to mask low-level events generated by heterogeneous devices.

It also marshals/un-marshals incoming events and redirects them to the appropriate compo-

nents. The adaptation layer on the client side has two components, the context manager and re-

source manager. The resource manager constantly monitors the current state of the resources in

terms of application performance. Based on the information provided by the resource manager,
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the context manager can determine the optimal performance by taking adaptation decisions. The

decisions are translated into events and sent to the adaptation manager on server-side so that it

executes the appropriate adaptation strategy. The presentation layer contains the render engines.

On the server-side, a 3D engine is rendering the 3D content and generates images of different

quality based on current client resource capability. To transmit images to a client, the frame-

buffer is taken into the compression manager. This generates a stream of compressed frames

(similar to a video stream) that is being decompressed on the client side and displayed using a

2D rendering engine. The dynamic state management on the server-side maintains the current

state of the 3D simulation in order to switch from devices without losing the current simula-

tion. In the application layer the application logic is responsible for client side handling of input

and overall client side functionalities. On the server side it is the data storage containing the 3D

content that is needed for the 3D rendering and simulation.

3D content

Dynamic State
Management 3D Renderer

Compression
Manager

Data
Controller

Adaptation
Manager

Event
Manager

Communication
Manager

Application
Logic

2D Renderer
Device Input
Management

Compression
Manager

Context
Manager

Event
Manager

Communication
Manager

Server Client
Application

Layer

Presentation
Layer

Adaptation
Layer

Communication
Abstraction Layer

Network Layer

Resource
Manager

Presentation Information

Codec Information

High Level Event

Adaptation Information

Data stream

State Changes

Dynamic States

Static data

Figure 3.2: Overall architecture of context-aware adaptive rendering system.

3.2.3 Run-time Presentation Adaptation Control

We mainly focus on increasing responsiveness of 3D content taking into account the current con-

text of devices. This means that whenever the user performs an action, the response to this action

should be shown to the user within a certain amount of time. Figure 3.3 shows the typical flow

of the remote rendering with interaction. The time taken between the creation of an event and

getting the results back to the user is the time that we reduce with the adaptation manager. The

three main stages are: send the events, perform simulation cycle and send the results. Assuming

that the simulation is fast enough to deliver a response within a certain amount of time, the

main adaptation takes place after the simulation step. Here a compression algorithm is used in
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Figure 3.3: Round trip time, from input to visual response.

order to reduce the amount of data that needs to be transferred. For a thin client this is the com-

pression of the image-data into an image/video stream. For hybrid or full client rendering, the

system compresses the actual 3D data (e.g. lossless compression of vertices). In figure 3.4, we

can see the several adaptation points given by diamond shaped objects. The dynamic adaptation
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Figure 3.4: Adaptation points, denoted by the diamond shaped objects.

is aimed at the regulation of the output data. We increase the perception of visual interaction

with a remote rendered 3D environment by introducing a temporal adjustment of presentation

quality adaptation mechanism. By decreasing the quality, the decoding speed is increased on the

client side which offers a more fluid experience and interaction feedback can be visualized faster.

The decreasing of quality is indicated by the client and only when necessary, i.e. fast interaction

and frame rate stabilization. Additionally for thin-clients the frame-rate is increased. Whenever

the user interacts with a 3D object, the actions are displayed faster but at the expense of image

quality. The decrease of image quality is achieved by switching to a stronger compression al-

gorithm (if the decoding side can keep up), by changing compression parameters and/or if the

client supports fast image scaling the actual image resolution can be reduced and up-scaled on

the client side. We also use another approach,which detects changes in the rendered frame and

compares it with previous rendered frames. If the amount of difference from the previous frame

is greater than a certain threshold the adaptation control changes the compression strategy by
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reducing the quality temporarily. The third approach is the encapsulation of expected load for

functions or performance indicators. This can be done manually or at run-time. Manually by

reading the load factor for a function from a predefined configuration file. This is the same con-

figuration file that defines which events are bound to specific functions. The run-time approach

is a profiler algorithm that, whenever a function is executed, (based on an incoming event) mea-

sures the time that is needed for full execution. The difficulty here is that a function itself can be

very fast, but the effects of the function (influencing the simulation) can result in longer times.

Either by predefining the load factor or by adjusting the load factor through the measurement

of function execution another feature can be introduced, namely load prediction. By anticipat-

ing the actions and their resulting time-frame for user feedback the level of adaptation can be

controlled to achieve a constant time cycle. Another, more straight-forward, approach to keep

a constant time cycle is to keep a constant data rate. This does not take into consideration the

quality of the network but only the amount of data being sent. It can be achieved by fixing a

specific frame rate and keeping a threshold on the data size for each frame. If the size of a frame

after compression is higher than a certain threshold the compression quality is lowered until the

threshold is met again. By default, we use this passive adaptation rule. However, depending on

the device profile a preferred frame-size is given, which is the actual data size for a frame (after

compression) to be sent to the client. An extension to the dynamic adaptation control is based

on the network load and should be balanced together with the frame rate. The whole procedure

is shown in figure 3.5.
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Figure 3.5: Adaptation manager: the adaptation control.
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3.2.4 Dynamic Interface Adaptation

In order to overcome the physical heterogeneity limitations in display capabilities and input

controls on client devices, we provide a dynamic user interface reconfiguration mechanism for

interaction with 3D content. It means to change the way the interface is presented to the user

(big screen or small screen brings several design issues with it) and to adapt to input capabilities

of the client device. Figure 3.6 shows the details of dynamic mapping. Each Element is an event
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Figure 3.6: Dynamic event mapping of user interface.

handler, and is listening to certain events to which it can respond by creating new events. Each

event received from an input device is first handled by the Client Event handler, this module

determines if the event should be handled by the client or the server. Then on the server or

client side, the raw event is sent to the corresponding Element that is listening to the device. An

Element can have a representation, which can be a form of visualization in 2D or 3D, but also in

the form of audio or any other form of feedback. The handling and control of the representation

is performed by the logic that is assigned to the specific Element. The representation of the

element is loosely coupled and therefore it may reside on the server or client side. According

to the Element logic, the raw event can be translated into higher level events. These can be a

representation update, simulation, adaptation or any other application specific event. This makes

an Element a dynamic building block that is used by the User Interface adaptation manager to

construct and modify the user interface whenever needed. For example a combo box on a PC

is displayed in 2D using Windows, GTK+ or Qt native widgets, but it can also be displayed as

a ring selection in 3D, using a different representation but the same logic, and accepting the

same events, or accept different events but with the same logic. Currently there are three forms

of user-interface-interaction implementations, two with a visual representation and one with no

interface visualization as follows:

• Interaction with 2D interface. The default 2D interface providing windows, buttons, text

fields and other widgets with its entire well established visual feedback mechanism. This
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is an intermediate layer between input device and the 3D simulation, providing the means

to perform complex operations and provide the necessary data for it. For example a text-

box and a button, might update simulation parameters, which will be more dynamic than

an increase and decrease button, but at the expense of more user interactions (typing and

confirmation with a mouse-click or keyboard command, instead of a single click).

• Interaction with 3D interface. This form of interaction is integrated into the 3D environment

and therefore provides the user with direct interaction with 3D objects. This is usually

achieved by means of a 3D pointer, which is able to hover over 3D objects and whenever

the user executes a command to select or perform some other action it is directly executed

on the specific object. Aside from the input device, this interaction mechanism boils down

to see the 3D object, select the object, execute operation on object and wait for visual feedback.

The visual feedback should be direct if the simulation behind is a real-time simulation.

In essence this approach is similar to the 2D interaction mechanism, but by adding one

dimension more it provides us with new abilities as to how we perceive the interaction

and handling of virtual objects. The implementation of a 3D interface feedback may have

similar features as its 2D version; for example selected objects should be highlighted, or

just by hovering over objects information on them should be displayed. This feedback is

different from the 3D simulation itself, as it does not intervene with the simulation, but just

provides visual 3D feedback.

• Interaction with Implicit Inputs. It has input device bindings directly to an event that

changes simulation parameters without showing it in the sense of an interface. For example

3D movement, the camera is being moved around in the 3D world. The visual feedback

is that the user gets the impression of moving in a virtual world, but there is no direct

feedback from any object in the world. It is exactly the same as the 3D interaction, but

without a direct 3D interface implementation. All of these interaction mechanisms can

be used with any kind of human interface device (HID), such as a pointing device (e.g.

mouse) or keyboard etc. Each input device can be coupled differently according to its

input capabilities, the application capabilities and user preferences. The binding between

the application and device can be hard-coded and to some degree the user can set its own

preferences. However in order to switch from one device to another, the interface mapping

needs to adapt accordingly. Another form of adaptation is dynamic coupling in which

coupling changes depending on the current context. For example if the connection between

device and server is very bad, than 3D rotation can be limited from smooth rotation to fixed

rotation (for example front, side, top view).

3.3 Controllable and Adaptable Virtual Fashion Model

At the base of some of the application scenarios lays a real-time virtual fashion model simula-

tion library which is named Virtual Try-On (VTO), we therefore introduce this library prior to

the scenario sections. The VTO consists of three interconnected parts: A body sizing module,

32



3.3 Controllable and Adaptable Virtual Fashion Model

a motion adaptation module and a real-time cloth simulation library. The combination of these

three libraries provides us with a template model that can be fully customized to match the

user’s measurements. Any animation that comes with the template body is adapted in real time

to fit the personalized anatomy and the cloth simulation library allows for any type of garment

to be simulated on the body as well as the real-time adaptation of garment size. This allows

the user to quickly evaluate how a certain garment looks on him/her, as well as the real-time

visualization of different garment sizes to select a best fit. The body resizing module is based

on a parametrized human body model as described by Kasap and Magnenat-Thalmann [70].

Based on a template model we can modify up to twenty-three measurements parameters, corre-

sponding to twenty-three different body areas. If the parameter concerned involves a change in

the length of a certain body part, the underlying skeleton used in animation is resized as well.

Body sizes are generated to the anthropometric measurement standards, assuring a physically

plausible deformation. Since the deformation is based on actual measurements it can be adapted

to match the measurements of the user. This process is completely dynamic. The body is mod-

ifiable both at the rest pose and during animation. The results of this process can be seen in

figure 3.7. Changing body sizes and lengths means that the animation recorded or made for

Figure 3.7: Starting from a template model on the left the body is increasingly adapted during animation
to its final anatomy on the right.

the template model does no longer match the new anatomy. A change in lengths of parts of

the skeleton will cause visual errors, such as foot skating for example, if they are not taken into

account for the animation. And these changes, as well as changes in girth, might result in incor-
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rect inter-penetration between body parts. Besides this the animation might become physically

implausible because animation based on a small and light body does not look correct on a larger

and bigger built avatar. In order to solve these undesirable effects we have integrated a motion

adaptation library based on the work of Lyard and Magnenat-Thalmann [71], [72]. Any changes

to the parameterized human body model cause the animation to be adapted to the new anatomy

resulting a visually pleasing and plausible animation of the personalized avatar. Again all of this

can be performed completely interactively and without any significant performance impact on

the application.

To complete the virtual fashion model we need to combine the adaptable and animated avatar

with a cloth simulation module. Cloth simulation is a complex and computationally intensive

process that can easily turn out to be the bottleneck for the performance of your entire appli-

cation. This can be partially alleviated by reducing the geometric complexity of the simulated

garments, choosing an efficient but less accurate simulation scheme or by approximating the

collision interaction between garment and body. In this specific case however the need to give an

as accurate as possible representation of garment behaviour and its fit to a body puts some re-

strictions on the abstractions we can make. We have therefore integrated a simulation module as

described by Magnenat-Thalmann et al.[73]. This module, which uses an optimized implemen-

tation of the tensile cloth model by Volino and Magnenat-Thalmann [74] allows us to simulate

garments based on measured fabric parameters with fairly realistic results. It furthermore allows

us to switch between different garment sizes on the fly based on integrated grading information.

Collision detection is performed using a skinned representation of the garment and its distance

to the nearest body vertex as described in [73].

The VTO’s three individual libraries have been integrated through a thin wrapper class that hides

most of the complex interaction between the three libraries described above, exposing only basic

functionality to load and interact with body and cloth. All is built on top of or in close relation

to OpenSceneGraph (OSG). We have created several custom callbacks to perform the necessary

per frame updates for skinning procedures and cloth simulation calls. The model itself as well as

the garments, animation and parameters used in body sizing are stored in a single COLLADA

file1, for which we have modified the OSG plug-in to load custom data. Some examples of the

results we obtain with the VTO can be seen in figure 3.8.

In order to put into perspective the use of this simulation we have tested it on a range of hard-

ware. The simulation is implemented using C++ and build for x86 systems. The application

performs on simulation step a simulation calculation and rendering cycle. Thus every frame

rendered is also a simulation cycle. Later versions use a decoupled simulation and rendering, as

rendering is often also related to interface aspects and in order to have a more response interface

it can benefit from this decoupling. Table 3.2 shows the results of this test. The UMPC as our

slowest unit is barely capable of rendering a single frame per second. In fact the frame-rate

capturing is rounding it up to a single fps. The tablet which is far superior in respect to the

UMPC isn’t doing much better. The only decent results are gotten from desktop systems. Which

1Collada web-link: http://www.collada.org/
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Figure 3.8: The Virtual Try On in action. On the left a front and side view of the base model wearing a size
34 dress and on the right a more voluptuous model wearing the same dress scaled to a size 38.

Table 3.2: VTO performance in frames per second

UMPC (vii) Tablet (viii) PC (iii) PC (iv) PC (v) PC (vi)
1 2 20 27 30 30

makes this an excellent example to showcase the benefit of streaming. It should be noted that the

implementation of the VTO is a single process and doesn’t use threading, this greatly reduces

the performance on current systems which all contain multi-core processors. An attempt to over-

come this problem is presented by Kevelham [75] and is partially described in section 3.10 where

an early build of the simulation is used as a replacement.

3.4 Application Scenarios

As briefly introduced in section 3.1 there are six application scenarios that will utilize the pro-

posed framework. In this section we motivate the choice of applications and look at which stage

they were introduced. Per application scenario a background is provided, explaining certain

design en development choices taken.

3.4.1 Remote Rendering for Low-end Devices

The first application scenario Remote Rendering for Low-end Devices, evolved with the framework

and was the first to be utilized, during the initial prototyping and brainstorming for the design

of the framework. It started out as a fairly simple TCP based server-client application sending

packets of uncompressed images. Extended to use UDP for faster transfer, and as it turned out,

it later became a requirement for Adaptive Rendering with Dynamic Device Switching. At this point

there was no compression, frame-rate control or event adaptation. It functioned as an initial
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test, fulfilling some of the requirements of the project for which it was build (see section D.1).

Gradually more functionality was added up until the full scheme as shown in figure 3.2 was

covered. Although the application, or better said the library used by the application, represented

the distinctive layers, it did not adhere to the requirement of offering a scalable solution as

stated in section 1.3. So far it covered event handling schemes, remote rendering adaptation and

heterogeneous device support. The real framework had yet to be developed.

In order to tackle the scalability the notion of the publish-subscribe methodology was applied

more strongly and led to the encapsulation of functionality within nodes that can be addresses

uniformly. This is described in the next chapter Technical Design And Implementation(section

4.2) in more detail. The original program became obsolete and the new framework was applied.

Aside from separating several functionalities, such as frame grabbing and compression, it now

offered better scalability due to the uniform approach of encapsulating functionality which led

for example to separating visualization from simulations into their own respective processes.

The content for the first application was of no concern as it was more important to have the

basic functionality laid out. Therefore a static scene was used and minimal interaction could be

performed with it. Aside from the 3D visualization no user interface, neither in 2D or 3D, was

presented, and only the virtual camera could be rotated using touch or mouse movement.

3.4.2 Remote Rendering with Augmented Reality

Augmented Reality was shortly introduced after the build of the first application, and was part

of a requirement for the project (see section D.1). This led to the extension of the previous

application into the application scenario textitRemote Rendering with Augmented Reality and

was upgraded in a similar way. The interesting part here is the use of AR which proved to

be quite difficult in combination with the required content that had to be displayed. Where in

the first application the content was a static 3D model, here it was replaced with a controlled

animated avatar. Which was further extended with a cloth simulation (see section 3.3). This

made it impossible to run on a mobile device, and therefore the simulation had to be run on

a server. At this stage the simulation and rendering where tightly integrated and could not be

easily separated (without reprogramming everything from scratch) and left us with simulation

and rendering of the avatar on the server. The mobile device, with the camera, provides either

AR information or the camera image to the server, which is presented as two designs in section

3.6.2.

The content in this application is based on an in-house developed/researched cloth simulation

and avatar rendering framework, the VTO. However it should be noted that this application

never used the final developed framework, as due to changes in the project the requirements

changed as well, forcing us to look into new directions. Which led to application scenario Adap-

tive Rendering with Dynamic Device Switching.
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3.4.3 Adaptive Rendering with Dynamic Device Switching

The initial design for the framework was setup and ideas for the scalability were investigated.

In an collaborative effort between several universities a solution was provided to grand more

freedom to the end-user. Although it didn’t solve the scalability issue, it greatly enhanced the

flexibility instead. By utilizing Mobile IP technology, the user could change from one device to

another, without the interactive session being lost. This technology (provided by a partner within

the Intermedia project, see section D.1) however had limited support for network protocols, as

only UDP was supported. This made it more difficult to have services built on top of it that use

sophisticated user sessions, as basically it would require building a custom TCP implementation

on top of it. It did however show that the framework could be easily adapted to this new

situation. As at around this time the implementation of nodes was established and the uniform

handling of data made it easy to control the flow of data packets. As a secondary sub scenario,

the introduction of seamless data transfer was introduced, leading to a scenario where data from

a phone was transferred to a interactive table, where the application could facilitate multiple

users on one screen using touch and at the same time stream to external clients (e.g. mobile

devices). However due to complexity of all the third party components, provided by the project

partners, this setup was hard to maintain and could not be replicated after a while, due to ending

of the supporting project.

The content for this application presented is based on an in-house developed/researched cloth

simulation and avatar rendering framework (the VTO). A first look at user interface adaptation

was done using Qt interface language as a User Interface Mark-up Language (UIML) send from

the server to the client. Where upon connection a (UDP) packet was send to the server containing

the profile of the device. Whenever the user would switch from device, the new device would

announce itself to the server by providing a new profile.

3.4.4 Service Distribution and Render Context Switching

This application scenario directly made use of the presented framework (as it is described in

chapter 4. Its content, alike previous, based on the VTO now offered more functionality towards

the user. An interface is presented that enables the user to change the appearance of the avatar,

all the while the cloth simulation continuously updating the garments. It is the first scenario

where partial implementation of the framework ported to other languages, such as Java and

C#. Several interface adaptation solution were analysed, depending on the implementation and

libraries used. In continuation of the user interface adaptation it was extended with a Java

implementation using a custom protocol with a full client side implementation that can adapt to

the server interface protocol and last a fully server side rendered user interface (presented in 3D

space), which is then included in the streaming.

This scenario was build in several stages and presented within several projects (see sections

D.3 and D.4. The first implementation concerned the service distribution and having multiple

server/client connections and was a full C++ implementation. Where the second extended to a
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web based service for which we used Java applets (albeit other options such as ActiveX, Flash and

HTML5 are feasibly). This allowed the user to access the provided service through a browser.

The last stage was providing a multi-user experience with a single service instance, meaning

where previously only one user could customise the 3D avatar, now multiple people could see

the same and interact with it independently. Albeit the Java client was not updated to this

implementation, a C# implementation was deployed on a mobile phone instead.

3.4.5 The Collaborative MRI Segmentation

Another project (section D.2) provided a different look at how to use the framework. With a more

focus on collaboration and less on the 3D visualization (albeit still present) it shows that it can

be deployed in different domains. Therefore this project offered a unique opportunity and after

some investigation it showed that there is a lot to be done in Telemedicine. As a requirement for

the project MRI data had to be segmented and this is done manually and supported by automatic

segmentation algorithms[76]. This became our leading point for collaboration, offloading the

datasets to dedicated servers and support thin clients a with segmentation application.

The content provided comes from a prior manually segmented 3D surface model, that is being

adapted/reshaped conform a different MRI data set. The deforming 3D shape can be visualized,

however the editing itself occurs on a 2D plane (on top of a MRI slice) and therefore is solely

presented in 2D. The application scenario has been build in two stages. The first build used a

preliminary version of the framework and offered a limited form of user interaction. Restricted

to placing points that influence the simulation, there was no direct influence by other users other

then removing points placed by others. All data was provided by a single service point that

also runs the simulation. Furthermore the MRI visualization and 3D rendering was streamed

using JPEG compression. The second implementation improved on the first by modularizing

functionality in several services, such as the mesh deformation simulation, MRI slice provider,

a mesh cut through visualization and a publish-subscribe data sharing. The client offers more

complex interactions and uses a better adaptive rendering for the streaming of MRI data. Albeit

in essence the same, it offers more depth and is capable of showing more the benefits of the

presented framework.

3.4.6 Collaborative Services with shared Data Models

The content for the VTO is produced by an in-house developed/researched software called Fash-

ionizer [77][78]. This formed the basis for this scenario. The original intention was to extend this

software into a collaborative editing service. Due to legacy requirements, this unfortunately

turned out to be prohibitively impractical. Therefore a subset of the features was taken and a

new pattern designer service was implemented. As a consequence this limited the scenario as a

whole due to missing features, however it’s main purpose is to utilize the framework and this

is still being presented. Albeit the overall design shows a full system (section 4.8, figure 3.24),

it is shown that implementation wise it didn’t get that far. Instead several services are isolated

and tested in two smaller deployment stages. The first is the collaborative pattern designer, which
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allows to, as the name implies, collaboratively create patterns, that can be exported into a format

that is supported by Fashionizer and a newly created (and still under research/development)

GPU based cloth simulation. It makes full use of the publish/subscribe data sharing and illus-

trates this with a complex data model (data elements with dependencies). The second stage is

the simulation of the cloth and streaming the 3D rendering to the end clients. This is based on

the previously mentioned GPU accelerated cloth simulation running on a dedicated server with

a multitude of graphics cards, which sends the deformed mesh to a render client. The client then

can function either as the end client or as a proxy streaming service for further propagating the

visual output to an external end client (such as mobile devices that can decode the video stream

but would not be capable to render the 3D mesh itself).

3.5 Remote Rendering for Low-end Devices

As the initial step towards a functional framework based on the proposed architecture, we focus

first on the remote rendering approach with adaptation capabilities for providing a stable stream

of screen information. This setup can be layered as shown in figure 3.9, provides a streaming of

image data to several clients and in return the clients can send input events for interaction with

the 3D environment. A minimal protocol was set for controlling several parameters in the service

side. Such as frame rate or update rate, switching between a push and pull mechanism for up-

dates and for packing interaction events, such as mouse/touch movement for cursor/3d camera

control. The design for this setup is therefore kept minimalistic. The service as well as the client
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2D Render Interaction
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TransmitReceive

Unpack
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Figure 3.9: Overview of remote rendering in its basic form.

have a single input and output stream. Whereas the output of the service can be defined as the

visualization data for the client (as input) and takes input from user interactions made available

from the client. The 3D rendering in its basic form does not involve any in-engine optimizations,

instead it can be seen as an independent module that outputs uncompressed images of the 3D

scene. This is done by the frame capture and can be done in several ways (see for implementa-

tion section 4.2.4 for compression options and 4.3 for server client implementations). The image

than is being compressed, either lossy or lossless and provided to the transmit module. This

already involves all the layers as presented in figure 3.2, where the application layer is the 3D

39



Chapter 3. Methods and Design

content (including the virtual camera), the presentation layer the 3D rendering and capturing,

the adaptation layer the compression and the communication layer the packing of the data into

a stream, and finally put it into the network layer. Upon receiving at the client it travels all the

way up in the layers, up till the presentation layer, where it is being displayed on screen. On the

client side in the application layer the logic enables the input of interaction from the client de-

vice, depending on the type of interaction it follows a certain event packing scheme. E.g. mouse

movement is packed into a fixed event rate, accumulating the in-between event, a mouse click

however is send directly. The event rate transmission can be controlled either by user setting or

automatic rate speed. In this application scenario the functionality of interaction is pre-defined,

as the user can only move the 3D virtual camera, this either gives the impression of navigating in

a 3D environment or the rotation of a single 3D scene, depending on the virtual camera control

scheme.

3.6 Remote Rendering with Augmented Reality

In this application scenario we extend on the previous one by introducing AR and the use of a

heavy simulation which the user can see the output from (the VTO, section 3.3). This brings a

great challenge to mobile devices as it combines two things, the need for remote simulation and

the handling of merging the rendering with a mobile camera. To be more clear on the mobile

camera, it can be any kind of camera attached to a mobile device, e.g. camera on a smart phone,

tablet or a web-cam connected to a laptop.

3.6.1 Trends in Augmented Reality

To allow for AR applications to be deployed on mobile devices, a very recent trend in mobile AR

systems is the usage of UMPC2. A number of researchers have started employing them in AR

simulations such as Wagner et al [79], Newman et al [80] and specifically the Sony Vaio U70 and

UX180, as well as Samsung Q1. Elmqvist et al [81] have employed the Xybernaut Mobile Assis-

tant, which, although shares some common characteristics with UMPCs, does not belong in the

UMPC category. Wireless Local Area Network (WLAN) have already being utilized in AR appli-

cations. Human Pacman (Cheok et al. [82]) is an interactive role-playing, physical fantasy game

integrated with human-social and mobile-gaming that emphasizes on collaboration and com-

petition between players. By setting the game in a wide outdoor area, natural human-physical

movements become an integral part of the game. In Human Pacman, Pacmen and Ghosts are

human players in the real world who experience mixed reality visualization from wearable com-

puters. Virtual cookies and actual physical objects are incorporated to provide novel experiences

of seamless transitions between real and virtual worlds and tangible human computer interface

respectively. Human Pacman uses WLAN technology to enable mobility in small scale environ-

ments. While the transmission range of one WLAN base station or access point is typically 100

meters, a number of access points can be used to provide coverage in much larger areas. Using

the approach, currently there are efforts underway to provide WLAN coverage in entire cities
2UMPC (vii)
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which will contribute significantly in the proliferation of AR applications. Virtual Characters

have already been synthesized with real actors in common non-real-time mixed reality worlds,

as illustrated successfully by a number of cinematographic storytelling examples. One of the

earliest research-based examples was the virtual Marilyn Monroe as appearing in the research

film “Marilyn by the lake” by MIRALab3, University of Geneva as well as Balcisoy et al. [83].

However these compositing examples involve non-real-time (offline) pre-rendered simulations

of virtual characters and mostly are rendered and post-processed frame by frame in an ad hoc

manner by specialized digital artists or compositors as they are termed in the industrial domain

of special effects (SFX). The active SFX sector with applications in film, television and entertain-

ment industry has exemplified such compositing effects in a constantly growing list of projects.

In this scenario we study the recent surge of employing virtual characters in mobile AR systems.

A first such real-time example in a mobile setup employed virtual creatures in collaborative AR

games (Hughes et al. [84]) as well as a conversational and rigid-body animated characters, dur-

ing a construction session (Tamura et al [85], Cheok et al. [82]). In cultural heritage sites, a recent

breed of mobile AR systems allows for witnessing ancient virtual humans with body anima-

tion, deformation and speech, re-enacting specific context-related scenarios (Papagiannakis et al.

[86]) as well as allowing visitors to interact and further inquire on their storytelling experience

(Egges et al. [87]). An important aspect of such AR examples is that these virtual characters

are staged in scenario-based life-size scaling, position orientation as a result of marker-less AR

tracking and registration. Further recent examples of marker-based tracking such as ARToolkit4,

various researchers employed dynamic content on top of such markers, such as 3D storytelling

book content (Billinghurst et al. [88]) and other interactive characters reacting to user’s actions

(Barakonyi et al. [89], Wagner et al. [90]). Very recent examples include also the use of virtual

characters as outdoor navigation guides (Schmeil et al. [91]).

3.6.2 Two Designs

Even though the VTO itself runs adequately on a dedicated workstation, preliminary tests con-

firmed our suspicion that the UMPC used5, as our low-end device, does not have the computing

power needed (VTO performance table 3.2). It reached its limit on just a couple of frames per

second and is heavily limited by its Central Processing Unit (CPU). Besides running the VTO

several other tasks are needed to run at the same time, which are some form of marker tracking

and perform graphical operations to provide an augmented reality visualization. Tasks to be

performed:

• VTO simulation. A CPU intensive process which is combined with a rendering engine, the

output should be combined with the web-cam image.

• Web-cam image capture. The images are to be used for the tracking of a marker, should be

rendered to the UMPC device and underlay the rendered image of the simulation.

3Marilyn by the lake, http://www.youtube.com/watch?v=tr6SPD4C_ns
4Artoolkit web-link: http://www.hitl.washington.edu/artoolkit/
5Asus UMPC (vii)
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• AR tracking. Using fiducial markers for tracking. The tracking works on a frame by frame

basis and outputs a transform matrix relative to the camera. The transform matrix is used

by the rendering part of the VTO simulation, to offset and rotate the model accordingly.

• Blending and render. The image from the web-cam and the rendering from the simulation

should be blended together and visualized on the client device screen. This means that

the simulation output is laid on top of the web-cam image and therefore should contain

information about the transparency. There are two common types, using a colour key

where a single colour marks per pixel transparent or not or an additional layer (e.g. RGBA)

with per pixel blending information.

We already have established the requirement of having the simulation on the server side, and

therefore also the rendering output. Streaming the output has been shown before in the first

application scenario. Here however the avatar with the clothing has to be positioned accordingly

in respect to the camera position and the marker. Therefore the transform from the tracking

algorithm should be provided. This can be done either on the client and send the transform

matrix to the server or have the web-cam image directly send to the server and have the tracking

performed on the server as well. This led us to two different designs as some of these tasks

are quite performance intensive themselves, and are implemented and tested separately. Each

having at least the VTO running on a dedicated server and streaming rendered images to the

client application running on the UMPC.

The first setup is given in figure 3.10. The client is merely responsible for camera capture, sending

the result to the server and receiving and displaying the final augmented result.

Camera 
Tracker

Image 
Augmenting

Rendering

Frame Capture

Viewer

Data Stream 
support layer

Publisher-side

Camera Frame

Subscriber-side

Composed Image

VTO
Simulation Camera 

Frame

Orientation
Matrix

3D data
2D 

Image

Figure 3.10: The server performs camera tracking, simulation and rendering of the VTO, as well as final
augmentation of the camera image.

The subscriber is the client application with the web-cam. In this design the web-cam images is

taken by the frame capture and send over the network to the server. The image is first processed

by the Camera tracker using a tracking algorithm to orient itself in the given space by recognizing

the fiducial marker. The orientation matrix is then given to the rendering module and the frame

itself forwarded to the image augmenting. The VTO Simulation is an ongoing process from which

the deformation of the 3D mesh models is used in the rendering. The image from the rendering

is then blended together with the web-cam image in the image augmenting. The combined result

is send back to the client.
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The second design is given in figure 3.11 and shows that several components have been moved

to the subscriber side.
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Viewer
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Figure 3.11: In this setup all tracking and augmentation tasks are performed on the client. The server is
responsible for running the VTO.

In this case the tracking is done on the subscriber side and the resulting orientation matrix is

send over the network to the publisher and directly inserted into the Rendering module. Which

alike the previous design, outputs the simulation rendering and is send back to the subscriber,

but without compositing the final result. Which is now performed on the subscriber side.

Both approaches have their benefits and negative side effects which are highlighted in the imple-

mentation and experiment sections.

3.7 Adaptive Rendering with Dynamic Device Switching

In this scenario the main focus lies on bringing 3D content not only to any device, but being able

to switch from device to another device without losing the session. This application scenario fell

in line with the requirements within the Intermedia project (see appendix D section D.1). The

challenge to bring together several services into one, where each of the services was treated as a

black box, yet providing 3D remote rendering able to switch from device to another. The scenario

is subdivided into two, the first with a focus on the integration with several technologies that

enable the switching of a networking session between devices, utilizing a localization of the user

near a device and provide a layer of added security.

3.7.1 Real-time switching device

Adaptive 
Rendering Server

Mobile Session 
Server

Zigbee Localization 
Server

Security Server

Client Application

   

Figure 3.12: The client application and communication service servers.

The adaptive rendering server is based on the previous application scenario’s remote rendering

structure and streams to a given IPv4 address. This address, also known as a Personal Address

(PA), is provided by the Mobile Session Server which is based on an implementation of the
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Mobile Ip[55]. The SAIL system [92] provides localization through the use of Zigbee modules in

its surrounding and is given as the Zigbee Localization Server. The security server authenticates

the device being used and allows or prohibits the connection with the streaming server (in this

case it allows the device to use to switch to the given PA. As addition to this application scenario
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(Inter Process 
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and Mobile session 
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Rendering Server 
is valid

Render 2DAdaptation
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Management
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server 

communication
(SIP, VNAT, DIP)

Figure 3.13: Client internal components, where overlap shows the connectivity with other components.

the user interface is defined on the service side, upon device switch the device introduces himself

to the service upon which it may send an updated user interface. This is utilizing the scheme

presented in section 3.2.4.

3.7.2 Data sharing among switching devices

In addition to switching devices we look also at how to switch from a single-user device to a

device which can be operated by multiple people. We can say that mobile phones are personal

devices and hold various personal contents such as photos, videos, contacts, etc. Viewing this

content on the small screen display of phones is acceptable for a single user and for assuring

the privacy of browsing. However, when it comes to sharing the viewing with other users

simultaneously, the limited phone UI and display fail to deliver acceptable user experiences as

those in single-user scenarios. The small screen allows for two or three users to have a clear

view of the displayed material without the hassle experienced when trying to locate and move

more viewers around the phone to have direct line-of-sight to its screen. Several approaches

and technologies have emerged to overcome this over-the-shoulder form of interaction. The most

noticeable is the use of projectors, whether built-in or externally attached, to allow the projection

of content onto any surface [93], allowing thus a multi-user access. Another solution relies on

44



3.7 Adaptive Rendering with Dynamic Device Switching

pairing the phone with a public display to present the content to be shared [94]. Both applications

however encounter the limitation of having only one user in control of the interaction with the

displayed content. A more conceivable approach is based on integrating the mobile phone with

a multi-touch interactive table [95] which receives the content from the phone and lays it on

the surface for multiple users to view and interact with; hence, removing the burden of the

limited access. The research conducted here focuses on this integration and it utilises Bluetooth,

near field communication (NFC), 3D content and 3D manipulation to facilitate it for a group

learning interactive experience in the medical domain. The system presented demonstrates how

mobile phones and interactive tables can cooperatively work together for more collaborative

interaction experience for medical students with medical content on their phones. Unlike most

existing systems, it manipulates 3D content rather than 2D ones. The student basically carries

this content on her phone and shares it with others over the table to promote a group discussion.

She does so by touching an NFC tag on the table with her NFC-enabled phone to identify the

Bluetooth address of the server to connect to. Once identified and connected the server receives

and displays the transmitted 3D content on the surface of the table. Here a detailed anatomical

model of the upper leg muscle and bone construction segmented from MRI scan data has been

used. Students are capable then of manipulating the model and its components through different

2D gestures on the table. They can move, rotate, zoom in/out, enable/disable its parts, and

change their transparency.

NFC

Bluetooth

Interactive 
Table

Remote ClientServer Application

Figure 3.14: Overall work flow of the system.

The OSG graphics library has been used to implement the viewer that renders these 3D mod-

els and facilitates its manipulations. This library handles windows-based single-input events

through one mouse pointer. It cannot handle multiple input pointers and this is not useful when

it comes to interacting with multi-touch tables. This limitation has been resolved here through

the use of the TUIO6 open-source framework as shall be detailed next. A screenshot of the actual

application visuals is shown in figure 3.15.

6TUIO open-source frameworkhttp://www.tuio.org
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Figure 3.15: The interactive table application showing leg muscles and bones and the corresponding ontol-
ogy.

3.8 Service Distribution and Render Context Switching

Internet

ClientsVTO Service

Figure 3.16: The VTO service accessible through the Internet.

In figure 3.16 the concept of the VTO service is given, where on the left side is the providing

infrastructure which offers the VTO through the Internet to the clients on the right side. As

shown the client devices may differ and therefore have different interface requirements upon
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which the VTO service has to reply and provide an adapted interface for the specific device.

This is done through device profiles. The service offers two types of visualization types and

several stages of adaptation in order to provide an optimized visualization based upon the device

and network constraints. These constraints include limited computational capabilities, specific

display sizes, network bandwidth and transfer speed. In continuation of the work in [96] this

system extends on the ability of switching between rendering and streaming methods. The

base adaptation provides static image transfer on request or as a pushed stream of images with

variable quality, interval and different image formats are supported. The optimal streaming is

based on the VP8 codec7 implementation and provides streaming of the 3D content utilizing a

micro-buffer in order to reduce stutter yet retain a real-time interactive experience. The client

VTO Service

VTO Service Manger

VTO Service

VTO Service

VTO Service

VTO Service

Service Launcher
(VTO Service Manger)

Service Launcher
(VTO Service Manger)

Session Manger

VTO Service

Client
(java application)

Request VTO

(optional) User login

Request VTO

(optional) User login

Server 1

Server 2

HTTP,
java web-client,

Resources

Direct VTO connection

Figure 3.17: Top level services, providing VTO deployment in an on-request load balanced setup.

application is implemented in Java and is available as a standalone application and as an applet

and provided by a HyperText Transfer Protocol (HTTP) server and runs within the browser. In

both cases it is dependent on Java and Windows environment. The decoding module at the client

application is provided as a C++ dynamic library and is loaded through a Java Native Interface

(JNI) wrapper. Once the client application is loaded it connects to the VTO service manager and

sends a message requesting for a VTO Service. The manager keeps a list of service launchers

and forwards the message to one of the Service Launcher using a least-burdened load-balancing

scheme. The service-launcher than can assign an already active VTO Service back to the VTO-

Service manager or execute a new VTO-Service process and return its connection address. For

each server there is one Service Launcher and basically is a generic process starter, using inter

process communication the Service Launcher keeps track of the spawned services and monitors

their activity. The connection information given back to the VTO Service manager is repacked

7WebM & VP8 codec web-link: http://www.webmproject.org/
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into a message to the client, upon which the client directly connects to the VTO Service. The VTO

Service than informs the Service Launcher of being in use. The Service Launcher registers the

VTO service of being in use, using a time-out and a periodic testing of the state of its spawned

services in order to avoid double assignment of users and zombie processes. Optionally, the

user can provide login credentials and load preferences from a former session directly. Whereas

the Service Launcher resides on the same computer as its spawned processes, the VTO Service

Manager and Session Manager can reside elsewhere in the network. In case of service failure,

the VTO service process is killed (in case still active) and a new VTO service is spawned with the

same access parameters. The client will automatically reconnect (periodic based) to the service

and provide the current user state back to the Service upon connection. In figure 3.18 the VTO

Event Manager
Communication 

Manager

Adaptation 
Manager

Compression3D Rendering

VTO Module

Interaction 
Manager

Interface Provider

Stream manager

3D Logic
(virtual camera 

navigation)

2D Logic
(2D interface 

bindings)

Application Logic
(change dress, 

colors, face texture 
etc)

Figure 3.18: Server side internal modules.

Service internal components are depicted. At the base there is the Communication Manager which

is responsible for marshalling an unmarshalling messages coming from the Service Launcher or

the active client connection. These are two separate connections, whereas the connection to the

Service Launcher is an IPC based and the connection with a client Socket (using TCP) based.

The message is translated into an event object and given to the Event Manager which inspects the

event and decides how to process it. There are four types of messages, Adaptation, Simulation,

Interface and Interaction. Adaptation events are messages that come from the client informing

the adaptation manager to change certain parameters (these could be frame rate, resolution,

compression type and quality). Simulation events are specific functions directly called by the

client, often without any user input but rather the client informing the simulation to be set to

certain parameters (initial setup, or recovery). The Interface event is a single event requesting the

service to send the interface elements. The client provides what kind of interface it needs based

on the requested display size. The interface elements are generated dynamically depending on

the VTO Module capabilities (e.g. body sizing parameters are translated in to a set of sliders).

A basic set of 2D interface elements, such as sliders, buttons and selection boxes, are supported.
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Interaction events are separated in two types’ 3D interaction and 2D interaction. The main

difference is the 3D interaction tends to be a stream of events, e.g. handling the virtual camera

and therefore has a different handling scheme. Whereas the 2D interaction is a translation of the

client state’s 2D interface element to a set of parameters which is provided to the function bound

the application logic.

3.8.1 VTO Module

The base of the VTO is similar to what is described in section 3.6, however now the focus lies

more on the integration with a distribution system and serving multiple sessions at once instead

on the blending of AR. The VTO service internal components are shown in figure 3.19. Starting
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settings)

Face Texture 
Replacement 

Module

Animation Manager

Body resizing

Simulation

VTO Body Manager

OSG Update 
Module

3D Render engine

API calls

Data Manager

Figure 3.19: Virtual Try-On Service.

with the VTO Body Manager, which grants access to the internal functionalities of the simulation,

it’s resources and additional functions, such as the change of animation, body sizing and face

texture based on a provided image.

3.9 The Collaborative MRI Segmentation

In this section we present a collaborative Telemedicine system for real-time and interactive seg-

mentation of volumetric medical images. Unlike the conventional strict locking mechanism, we

use an optimistic approach, relax the temporal and spatial constraints for collaborative editing,

where multiple users are allowed to simultaneously update the shared medical images without

waiting a lock to be released by a user. To achieve this, we introduce a two-tier sharing architec-

ture [44] with iterative simulation process to avoid roll-back problem [97]–[99] usually caused in

the optimistic approach, i.e., multiple users can request updates on the shared data within a time

range (simulation time period), where these requests are used to the simulation parameters and

let wrong inputs be amended by simulation algorithm in a iterative and progressive manner. In

order to utilize the diverse medical resources (data) scattered in the distributed sites, we relax a
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spatial constraint in the traditional server-client architecture exploiting the previously described

publish/subscribe paradigm [100] with group concept.

In our approach, each site can be a server node if it has the medical data to be shared by a

group of users. A user can load the medical data, initiate a session and declare it to a multi-

session management component. Users can join to the session at any time. A Group concept

is introduced to provide functionality for efficiently formulating a group session and interaction

among users in a session.

We present two case scenarios, representing the potential usage of the collaborative Telemedicine

system, and are evaluated with an user survey to measure the usefulness and the practicability

of our system in real situations (section 5.6). The two scenarios are (i) An experienced physician

is over-looking and guiding the iterative segmentation of an image by one or more trainees

(teacher-students scenario); and (ii) Two or more experts are simultaneously segmenting the same

volumetric image data (expert-expert scenario).

The collaborative Telemedicine system consists of two architectural layers: the collaboration sup-

port layer and medical semantic layer as shown in figure 3.20. The first layer provides mecha-

nisms to enable real-time interactive collaboration among users by relaxing temporal and spatial

constraints of the conventional systems. The second layer contains the simulation of medical

data and user interface components that controls the simulation.
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Figure 3.20: Overview of the system architecture. The medical semantic layer (top) handles the simulation
and user interaction while the collaborative support layer (bottom) provides the collaboration mechanism.

3.9.1 Collaboration Support Layer

To make users to exploit medical data in their local site for collaboration, which means that all

medical data does not need to be located in a specific server but a user who has the medical data

can be a host, we use the event-based publish/subscribe paradigm [100]. It clearly decouples
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the communication entities but it does not provide sufficient methods to formulate a group for

collaboration and to customize interactions among users in the group adapting to application

semantics or policies. For this a group concept is introduced on top of the publish/subscribe

paradigm. A Group is defined as a collection of distinct entities that share the same contexts

satisfying constraints, according to: Group = e∣ f (e) ∶ constraints, where e is an entity and f is

a context function. An entity is a user or an object in the shared data. Each entity has its

own property and can be included in multiple distinct groups. A context function is defined

by developers to create a group based on application semantics using properties of entities and

external semantics such as device capabilities and network conditions, i.e., a context function can

be defined as “users who share the same interest on a specific medical image for interactive seg-

mentation”. The Collaboration support layer consists of three main components: Session control,

Interaction substrate, and consistency management which utilize the group concept to relax the

spatial constraint. A session implies a basic unit which is an independent collaboration among

users. It provides users with the interfaces for entering or leaving its collaborative editing of

medical data and membership management, and defines specific rules applied to a session. It is

inherited from group component. We define a session as a group of users who share the same

interest on medical dataset. Session can easily control membership using the basic functions of

the group (ex, add and remove). Sessions are managed in an intermediate node which runs on a

separate machine. Multiple sessions are also supported. For dynamic management of sessions,

the multi-session controller holding a reference list of sessions provides users with the interfaces

for initiation, termination, selection, join, leave, creation, and deletion of a medical collabora-

tion session. Once a user initiates the collaboration session, i.e., loads the image, declares the

new session to Session control component, multiple users can connect to the session and start

the collaboration. When one of the users selects a segmentation command, an iteration of the

segmentation is executed and the results are relayed to all the users in the session. The results

are composed of the image data (slice) and segmentation data (segmentation overlay). At any

point, any user can collaboratively segment the image by adjusting the segmentation parameters

via interactive image annotation. These parameters are then inserted as new constraints in the

segmentation and used in the next segmentation iteration process which will be described in de-

tail in section 3.9.4. To enable users to interact with each other, a set of well-defined interaction

protocol is required. Group provides basic functions such as union, intersection and difference,

to create a group. Application developers can define their own functions to create a group based

on application semantics. For example, to make a subset of members interact with each other,

filter function can be defined as well as to broadcast to other groups, aggregation function can

be defined as follows: A filter is a method that makes a subgroup from a group, which holds the

following conditions.

• If x is a member of a group G, then x is also a member of group B, where B = f (A)

• B ⊃ A, where B = f ilter(A)

An aggregation is a method that makes a super-group from groups, which holds the following

conditions.
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• If x is a member of a group G, then x is also a member of group B, where B = f (A)

• A ⊂ B, where B = aggregation(A)

Apart from traditional DVE systems [34], [101] which mostly exploited spatial relationship, i.e.,

region of interest [34], [99], to filter interaction events, in our system, context function can be

described with the current contexts of devices, such as network and computational resources,

display size, etc. It gives freedom to developers to make filters with specific application require-

ments. An exemplary context function has to be implemented, which allows users to participate

in a collaborative session with diverse devices e.g., UMPC, desktop, without degrading interac-

tive performance of users. One of key issue in consistency management is to provide ways to

manipulate the shared medical data concurrently and to hare consistent views among users. The

proposed system provides monolithic view as well as polymorphic view sharing among users

in a session. The former implies a group of user shares the exactly same view of the shared

data and the later implies a group of users has the different views of the shared data but user

interactions are shared among users in the both approaches. The proposed system provides a

policy-based optimistic concurrency control scheme which allows users to update objects without

conflict checks with others and thus to interact with objects more naturally exploiting application

contexts. More details are described in section 3.9.3.

3.9.2 Medical Semantic Layer

The medical semantic layer provides the segmentation simulation, rendering of the 3D medical

data and the application policies to the collaboration support layer, which allows customizing

the interactions among the users and the collaboration algorithms. The core components are the

Segmentation simulation, View generator, Slice producer, and the Viewers, as shown in figure

3.20. The Segmentation simulation is encapsulated into a service and continuously provides the

deformed mesh after a simulation cycle to its subscribers. The subscribers are the depended

services Slice producer and View Generator and from the subscriber side the Thin simulation.

The first two only take the output of the simulation and process it further. The Thin simula-

tion on the other hand is capable of sending commands to the simulation in order to modify

its parameters. The Thin simulation also subscribes to the Slice producer for the visualization

of the current slice. Through its interface, input taken from keyboard and mouse is translated

into simulation commands and send to the Segmentation simulation service. The slice producer

processes the deformed mesh into a contour plot for subscribed Thin simulations. Whenever a

subscriber changes from slice, the service will send the corresponding MRI image to the sub-

scriber, which is then visualized on the subscriber. The collaborative Viewer, which provides 3D

visualization of the full mesh (segmentation), is separate from the Thin simulation. This is a re-

mote rendered 3D representation provided by the View generator. The View generator takes the

deformed mesh and this then renders the 3D mesh. The resulting 2D image is compressed and

sent to the subscribers. A secondary service of the view generator is the Interface manager. This

sub module provides user interfaces to subscribers adapting to the current device capabilities.
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3.9.3 Collaborative Editing Mechanism

To enable real-time and interactive editing over the conventional methods [34] such as strict

locking concurrency control, two-tiered sharing approach [44]: semantics-tier and presentation-

tier sharing, is used as shown in figure 3.21. It enables the semantics (3D Image + 3D deformable

Shared Semantics

3D deformable 

model

3D image 

stack
2D slice image with 

segmentation overlay

Presentation

Dynamic generation 

of polymorphic view 

of the shared 

semantics

Figure 3.21: Presentation-Semantics split model. Supporting group collaboration (segmentation overlay) on
the polymorphic 2D image among users.

models) to be shared and thus can instantiate more than one presentation (2D slice image +

segmentation overlay), which is in term, shared among all the users in a collaborative session.

A polymorphic presentation of the shared semantics is dynamically generated when a group of

users request edits (e.g., new slice position on the stack, B/C change, segmentation constraints)

within a simulation process. The generated presentation is replicated to each user of the group,

not only to support direct manipulation on the replicated presentation, but also to continuously

support the users to collaborate even in the event of a transient network failure. Users can

temporally manipulate, update and annotate on the presentation within the simulation process.

In our approach, rather than accepting inputs from only a single subscriber within a time frame,

multiple parameters (changes) from multiple subscribers are used in the segmentation process.

Parameters can be global (e.g., weight coefficients) or local (i.e., local constraints as used in the

examples in section 3.9.4. This mechanism allows the users to manipulate objects without waiting

to get ownership of the lock to update the segmentation overlay. However, in collaborative

editing, it is difficult to identify which input parameters are responsible for the segmentation

evolution, especially when the segmentation result is unexpected, due to all inputs from the users

having an influence on the segmentation evolution. A common method to track the parameter

for segmentation is to implement a rollback mechanism [99]. Rollback is the process of recording

all the input parameters which can be used to roll back to the previous input in the segmentation

evolution. Nevertheless, it is hard to apply such rollback mechanism because this makes the

system complex for the users in undoing and redoing of previous. To overcome this, three

strategies are proposed in this study. Firstly, segmentation algorithm must be iterative, thereby

enabling different users to amend, stop and resume the segmentation process. Most importantly,
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each iteration has to provide intermediate results that provide sufficient feedback to the user for

correct interpretation. This provides efficient monitoring of the algorithm evolution. Secondly,

changes made by users have an immediate influence in its local view so that the user may receive

instant feedback. Thirdly, weight factor policy is used to fuse inputs from users. For example,

inputs from an expert have higher weight than inputs from student in our Teacher-student use

case scenario.

3.9.4 Multi-user Iterative Image Segmentation

Our segmentation algorithm is based on an iterative and progressive evolution of physically-

based discrete deformable models [76], [102], [103]. In our case, these deformable models are

represented by 2-Simplex meshes [104] that deform under the influence of forces. Each mesh ver-

tex is considered as a particle with mass whose state (position and velocity) is derived from the

Newtonian law of motion and the applied forces. At each iteration step, the particles state is up-

dated by an implicit Euler numerical integration. External forces are based on image information

(e.g., gradients, intensity distribution) to drive the model towards the desired anatomical bound-

aries. Conversely, internal forces enforce the mesh geometry to respect smoothness and shape

constraints. Shape constraints derive from statistical shape models (SSM) that ensure that meshes

can only adopt valid configurations expressed by statistics inferred from a collection of training

shapes. SSMs proved to be very efficient and robust in medical image segmentation [105] and

have been successfully applied to segment a wide variety of structures (e.g., bone [76], [106], liver

[105] and bladder [107]). Our segmentation algorithm allows the simultaneous segmentation of

various structures of interest. To cope with models inter-penetration, efficient collision detection

and response are implemented. Coupled with a multi-resolution approach (from coarse to fine),

a fast and interactive segmentation algorithm is derived. In order to monitor and possibly cor-

rect the algorithm evolution, interactive control must be provided to users [108], especially in

our context of collaborative work. This is achieved by the means of internal, external or frontier

constraint points that deform the mesh so that the points are respectively in the interior, at the

exterior or on the surface of the mesh (See figure 3.22 and [66]). In practice, constraint points

Figure 3.22: Example of constraint points on MRI images. The blue point (right) represents the internal
points (marked inside the ROI shape in green, the red is the external, and the yellow points are the frontier
points.

attract or repel meshes by creating forces on some vertices. An example of an internal constraint

point P is depicted in figure 3.23. The closest face of the mesh, here represented by two vertices
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P0 and P1, is attracted under the action of two forces f1 and f2. Each force fi is computed as:

fi = α ∗wi(P − P⊥) (3.1)

where wi is the barycentric weight computed from the projection P⊥ of Pp on the face, and α

denotes a global weighting coefficient specific to the constraint point type (internal, external or

frontier). These external forces have a local influence (closest faces are only affected) while the

f1

P1

P

P0

f2
P

┴

Figure 3.23: Illustration of internal CPs): The closest face (P0; P1) to the CP P is attracted by creating 2 forces
f1 and f2 on P0 and P1 respectively, whose calculation depends on P and its projection P⊥ on the face.

modification of the force weight α can globally affect the segmentation since all constraint point

forces of same type share the same weight. The next section will explain how such weights

can be tuned to account for the various collaborative segmentation scenarios. This segmentation

algorithm is thus a good candidate for our collaborative application as it fulfils the requirements

defined in section 3.9.3 and allows the concurrent segmentation of multiple structures. In this

case, the models contour and the constraint points are overlaid in the slice and represent what

was previously denoted in section 3.9.3 as segmentation overlay (See also figure 3.21).

3.10 Collaborative Services with shared Data Models

In this application scenario we integrate all aspects of the architecture and present it in three

parts, where the first part focuses on the collaborative aspect and sharing data between users,

where consistency is high importance. The proposed application is based on generating 3D

meshed, using 2D pattern drawing. The second part takes the data output from the first and

uses it at a real time basis for its simulation services, together with single access to users for

remote rendering of the simulation results. The 2D patterns are transformed into 3D meshes

and for each mesh a cloth simulation service is started and starts simulating the given 3D mesh.

Any updates to the base 2D pattern, resets the simulation and updates the 3D mesh. Simulation

parameters can be changed by outside services that subscribe to it. This involves 3D adaptive

rendering and Simulation Control services. Whereas the 3D Adaptive Rendering service provides

the rendering either remotely or can be integrated as the client application. The Simulation

Control service provides the means to change several aspects of the simulation, depending on

the type of simulation the internal parameters can be changed, but also more general parameters
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such as the simulation speed and update rate to the subscribers. The third part takes the output

from the second part and uses it as a means populate a virtual environment. The output from

the second part is the transformed mesh, which than is used either as an NPC or as a user’s

avatar representation. User can connect to the DVE through different clients that as described in

the second part, either integrate th 3D Adaptive rendering or subscribe through an 3D Adaptive

Rendering service. This application scenario shows the data propagate and mutation from it’s

initial creation to it’s deployment and usage within a Virtual World.

Interactive performance in terms of responsiveness is one of key challenging issues for re-

mote interactive 3D applications. We introduce a run-time presentation and dynamic interface-

adaptation mechanisms which aim to preserve the real-time interactive performance of 3D con-

tent, taking into account heterogeneous devices in user-centric pervasive computing environ-

ments. To support perceptual real-time interaction with 3D contents, temporal adjustment of

presentation quality adaptation is used. In other words it dynamically adjusts the quality of

presentation on client devices according to the current device context. As to overcome the in-

evitable physical heterogeneity in display capabilities and input controls on client devices, we

provided a dynamic user interface reconfiguration mechanism for interaction with 3D contents.

We then extend these concepts to a Multi-user environment, offering a variety of services which

are linked together by their functionalities. The full scenario is shown as a service diagram in
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Figure 3.24: Deployment of the architecture.

figure 3.24, where three Cloth Designer client applications are connected to the Cloth Creator,

which maintains the connections, consistency and interactivity notification. It either connects or

integrates the Shared Memory Space (SMS) service, which basically is a database containing any

data a subscriber wants to store in it. In this case the Cloth Creator is the actual publisher to

the SMS, and does not directly act as a subscriber. However since the data is shared with the

other Cloth Designers, for consistency, depending on the implementation either the Cloth Cre-

ator directly notifies the Cloth Designers or the Cloth Designers are subscribed to the SMS and

are updated upon data modification. The possibilities of implementation are further explored in

section 4.8. The Cloth Creator stores the 2D pattern as well a generated 3D mesh constructed
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3.10 Collaborative Services with shared Data Models

from the 2D pattern. Then the Cloth Simulation services take the data and start simulating it.

However without control, there is nothing much going to happen. Therefore the Cloth Simula-

tion can be controlled through outside services, as shown in the figure these are the Cloth Viewer

Phone, Cloth Viewer Tablet and the Virtual Environment services. The Mesh Adaptation, does

not control the direct input to the Cloth Simulation, just the output, this can be done through

Adaptive Rendering, or LOD adjustments and stream the content to the Cloth Viewer for render-

ing. The Virtual environment is shown as the biggest module. This merely indicates that is an

DVE and uses IM mechanisms to keep the data rate to its subscribers optimal, load balances the

VE among its resources and provides scalability. The next three sections explain in more detail

the three parts of the application scenario.

3.10.1 Collaborative Shared Workspace

This demonstrator highlights certain aspects of collaboration. Multiple users can interact at

the same time, using different kinds of devices and networking capabilities. This demo aims

at showing a synchronized view and data, multiple types of collaboration (for user testing), 2D

interface adaptation and event handling. The pattern designer is a simple 2D drawing application
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Figure 3.25: Cloth pattern designer modules.

for creating the cloth patterns. Each Cloth designer is a client application communicating with

the Cloth creator capable of running on different kinds of devices. The Cloth creator offers the

service of taking patterns and triangulates them into the proper cloth format for simulation and

rendering. Each mutation done by the clients is echoed back to the other clients, as multiple

clients can work on the same pattern. Whenever a triangulation is done by the Cloth creator the

client applications are updated with the data in order to visualize the outcome. A command can

be sent by any of the client applications to store the pattern and triangulated data into the SMS.

3.10.1.1 Cloth Designer Client

In order to show the several aspects of collaborative environments, we choose to take an con-

structive approach towards the creation of content that can be used in later stages. In this case the

creation of Cloth patterns. This is partly based on the MIRALab’s own Cloth creation application
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Fashionizer [78]. The collaborative version inherits a subset of functionalities from Fashionizer.

Supporting the making of 2D patterns through making 2D line shapes, where lines support a

linear or parametric curved relation, as shown in figure 3.26. It is targeted at desktop environ-

ments and tablets. Albeit the underlying structure supports the usage of arbitrary sized displays,

the focus lies on a working environment (desktop pc) and presenting environment (tablet pc).

The modular logic is presented in figure 3.27 and shows a common MVC approach. It keeps a

Figure 3.26: Pattern designer.

local copy of the current data set that the user is working and provides functionalities for the

interaction. There are two communication channels, one with the Cloth Creator and one with

the SMS service. Note, that the SMS service could be provided through the Cloth Creator. The

Interface provides core interaction schemes for mouse and touch based input. An earlier pro-

totype will also be discussed which depended more a keyboard and mouse approach, yet this

is not cumbersome on a tablet device and therefore a pure visual interaction scheme is used.

When looking back at figure 3.2 and consider the layers we can see the following data flows. At

the application layer, interaction from the user device is taken and provided to the presentation

layer where the device input manager translates propagates it through the context manager to

the event manager. Interactions here are interface elements, such as buttons, sliders and other

graphical widget interactions, together with client specific interaction logic for handling direct

input for pattern drawing. Compression can be used for transferring pattern data with the SMS

service, using a pre-specified protocol.

3.10.1.2 Cloth Creator Service

The Cloth Creator Service that monitors 2D patterns in the SMS, and whenever a 2D pattern is

changed it transforms the 2D pattern into its 3D counterpart and stores this (elsewhere) in the
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Figure 3.27: Design overview of the cloth designer.

SMS service again. Note that this does not have to be the same SMS service, but can be pre-

defined through the use of a configuration script. The Cloth Creator, does not take any direct
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Figure 3.28: Design Cloth Creator.

user input or any other function than just subscribe itself to the 2D patterns and update the 3D

counterparts. This is shown in figure 3.28, where we employed the MVC approach. The Model is

the Local data which is a shadow copy of the data it has subscribed to in the SMS, the Controller

is the Core Logic, which basically just takes the 2D pattern and transforms it into the 3D mesh

and updates its Local data and the SMS. The Viewer is the Abstract Interface, which is a Net-

worked connection (publish/subscriber approach) which takes protocol pre-defined commands

for updating and controlling the data (either local, or redirected to the SMS).

3.10.1.3 Shared Memory Space Service

The Shared Memory Space is a generic module for storing in a publish/subscribe way data. The

Idea of the SMS is to keep it very simple to store and share data. Basically the SMS employs a

basic protocol for adding, removing and modifying data. The service can be deployed as stand

alone or can be integrated into a client/server application. This creates a p2p approach to sharing

data. As given by figure 3.29, it takes publishers as incoming communication and subscribers as

outgoing communication. It creates a network of SMS modules. The internal structure is a tree

of data, forming caches and leaves which contain custom data.
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Figure 3.29: Design overview of the SMS.

3.10.2 Remote Rendering Adaptive Rendering

This demonstrator targets at a single user experience for viewing 3D data on different kinds of

devices. Target devices are PC (high-end), Tablet (mid-range), Smart-Phone (low-end). The main

demonstration is the adaptation of 3D mesh data and optimizing it for the different kinds of

devices. A real-time algorithm will check for the most optimal path and provide the data either

as raw 3D data for local rendering on the device or as a stream of images (video compression).

Interaction events will mostly involve on handling the 3D camera. Next to the 3D interface

interaction handling, some extended 2D interface elements will be presented in the form of a

material editor. This means the user will be able to change diffuse color, reflective properties and

select pre-made OpenGL Shader programs for rendering. The interesting case for using shaders

here is that not all devices support Shader programs, so how do we display the mesh. A real-time

adaptation switching must occur to handle this. This involves certain user-interface aspects, and

concerns usability testing. A Cloth viewer can request for a cloth to be viewed. It will be loaded
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Figure 3.30: Single view on the simulation of cloth.

into a simulator (Bart cloth simulator) which is then connected to the Mesh adaptation service

for handling the data stream between simulation and end-device. Streaming of the mesh is

currently possible (Java client) and together with the possibility of encoding to a real-time video

stream support of any OpenGL shader-programs is possible. The mesh-adaptation module has

to be made so that it recognizes the device and application specific state and act accordingly.

This involves changing the level of detail for 3D mesh data streaming and adaptation switching

between image stream and 3D data stream.
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Figure 3.31: Early prototype of the cloth simulation viewer

3.10.3 Distributed Virtual Environment

The last demonstrator incorporates the previous two core functions and extends it to a full

DVE. This means that multiple people can roam around in a virtual world, using different

devices, where multiple cloth simulations are rendered. Depending on the capabilities of Bart’s

simulation the DVE interaction scheme will change accordingly. For now it will be showing

multiple cloth meshes, real-time simulated, and offer multiple people personalized views and

the ability to interact with the simulated cloths. The main component is the DVE, which takes the
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Figure 3.32: Multi-Cloth simulation in a multi-user virtual environment.

approach of common known Massively multi-user virtual environment (MMVE) applications. It

can be hosted on several servers based on a known Interest Management filtering - Region based
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filtering system. When a user moves around it switches servers whenever entering another

region (the users won’t notice any difference and happens completely on the background). Each

server within the DVE handles the users in his region of responsibility and takes 3D mesh data

from attached Cloth simulations. E.g. we deploy a DVE of 3 servers and each server hosts a part

of 3D virtual world, where each part contains 10 cloth simulations. Thus therefore each server

there are 10 cloth simulations attached. Users connect to one server initially and can see updates

for 10 cloth at max. When the user switches to a different region, it will start receiving updates

from 10 different 10 cloth simulation (attached to that region). Possible interactions are moving

the cloth around. Depending on the progress of the cloth simulation other types of interaction

can be proposed. Most interesting here is the adaptation between the DVE and the client device,

as again it ranges from Smart Phone to PC.
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Chapter 4. Technical Design And Implementation

4.1 Motivation

In order to realize the methods as described in the previous chapter a technical base has to be pro-

vided, this technical base however has more restrictive dependencies, such as actual deployment

on variations of hardware, operating system, development environment and tooling software.

Whereas a method can be generalized and is free from these dependencies, here we must adhere

to them and provide solutions that accommodate the targeted method. We go into the details of

the design and its implementation of the framework, which is called Herd framework. Outlining

the core architecture and a set of developed modules which are used in the use-cases.

“ Definition of HERD

1. (a) A number of animals of one kind kept together under human control.

(b) A congregation of gregarious wild animals.

2. (a) i. A group of people usually having a common bond <a herd of tourists>.

ii. A large assemblage of like things.

(b) The undistinguished masses : crowd <isolate the individual prophets from

the herd – Norman Cousins>.

”1

The Herd framework is in essence a middleware, established around a core set of functionalities

with a plug-in system that maintains and offers services. Following the design concepts and prin-

ciples from previous work, the Virtual Human Director (VHD) framework, by from Ponder et al.

[109], yet more oriented at the networking aspects and based on top of the concepts of ATLAS

[34]. The VHD framework offered a highly modularized approach and had limited capabilities

for network rendering using IRIS Performer[110] libraries and output to Virtual Reality Mod-

elling Language (VRML)2 clients. Where ATLAS is a pure middleware framework with a great

focus on VEs, handling a great amount of users and offer interest management methodologies.

The Herd framework, like ATLAS, follows a layered approach, as was given in figure 3.2, which

always has a trade-off between the freedom of users friendly and simplicity of development[111].

It is the balance between offering low-level functionality and encapsulated functionality that act

like black-boxes. With low-level access the developer is granted more freedom in implement-

ing the needed functionalities as desired, which can be more efficient or more coherent to an

existing code-base. Higher level functionality provided through APIs restrict this freedom and

therefore flexibility. It can greatly speed up development and ease of use, but limits the use for

non-intended usages and therefore create obstacles during development. Several fundamental

requirements were identified[112] which could efficiently help developers both with high and

low level features.

1Webster http://www.merriam-webster.com/dictionary/herd
2VRML http://www.w3.org/MarkUp/VRML/
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4.1 Motivation

• communication architecture, three types were defined, previously shown in figure 2.6,

where the client/server is the most traditional and still most used on the internet offer-

ing a simple consistency and security mechanism at the server side. The peer to peer offers

more flexibility by decreasing hop delays and single point of failure, but is hard to main-

tain and security measures has to be applied to all peers. The third is a hybrid of these

two, having servers in full data-model replication and clients connected with partial data

at a “need to know” basis. With the framework presented here each of these types can be

established and therefore capable of adapting to an application needs.

• user membership management, it has shown that in order to maintain a large amount of

user to group them into smaller groups for interactive among them, this is widely adapted

by MMVE applications. The main reason for this is to filter data unintended for the user,

which would normally causing to flood the user, yet it can be quite expensive to filter on a

per user basis, therefore groups are formed with common interests. There are many Inter-

est Manager methodologies, that take mostly only VEs into account, dividing the virtual

world on certain criteria. We extend on this by including the client device and networking

capabilities, as a form of context awareness.

• transmission scheme, the base type of how to send a message to the other side boils down

to using TCP or UDP based transmission. Where TCP offers a whole range of features (or-

dering of data packets, error checking, read as a stream, congestion control, etc.) and UDP

is a basic send a message into the net offering more speed. Both have there usages, whereas

TCP is most used for multi-user and data-transfers and UDP for streaming of data where

speed is favoured over reliability (character movement in a VE or live media streaming).

Higher level transmission schemes are placed on top of these and can bring a fine-grained

transmission, example protocols are HTTP, FTP, VOIP. The presented framework uses

pure TCP and UDP, but offers the capabilities to encapsulate the previously mentioned

protocols.

• event management, eventually what transmission schemes accomplish is the pass-through

of events containing the data, even if for example TCP establishes a session for each con-

nection, it does not control the application. These events are the actual communication

and make the application act upon receiving them, however a set of control messages are

needed for the entire system to work properly. We differentiate between core control events

and application/service control event. The core control events, is a fixed set of events that

are used to identify and establish a session on application level, to which additional informa-

tion can be given, such as id login etc. The application/service control events are specific to

each application providing a remote access to application functionality and extend the core

events.

The implementation and design concepts, showing implementation examples as coding blocks

and class diagrams given in this chapter reflect the state of implementation and are abstracted

where necessary. There always remains a part of implementation trivial to the case presented,
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yet we try to take these also into consideration, e.g. the graphical interface to the kernel API. To

give a broader view on the capabilities and flexibility at which we aim with the framework.

4.2 The Architecture - The Herd Framework

The Herd System is a framework for setting up a scalable system for offering service that can

be concatenated. The base of the Herd System is a node graph architecture maintained by

a kernel. Each node is a self-contained module which can communicate with its parent and

children nodes. Additional functionality can be implemented within a node. A node can be run

in a thread or remotely started into its own process. Extra nodes with newer functionality can be

added dynamically through the plugin system.

HerdKernel

HerdUdpNode

HerdTcpNode

HerdSslTcpNode

HerdPublisherNode

HerdSubscriberNode

HerdJpgNode

HerdZipNode

HerdVpxDecoderNode

HerdVpxEncoderNode

HerdVpxViewerNode

HerdThreadzServer

HerdThreadzSimulation

HerdThreadzCreator

HerdThreadzDesigner

HerdThreadzManager HerdVtoServer

HerdVtoSession

HerdVtoManager

HerdNodeLibCore HerdNodeLibMedia HerdNodeLibThreadz HerdNodeLibVto

Figure 4.1: Herd Kernel and Node libraries.

Figure 4.1 shows in abstract view the current components within the Herd Framework. On top

there is the Herd Kernel, which is the heart of the framework and consists out of a minimal set

of management modules and template classes, which are used by the Node Libraries. The Core

Library consists of the most used nodes, such as the TCP and UDP communication and the net-

worked memory cache system. The Media Library contains several nodes for encoding/decoding

several data formats, either for lossy or lossless data streams. The Threadz and VTO libraries are

specific node libraries created for the discussed application scenarios and are described in their

respective scenario section 4.6 and 4.8. Note that it is not mandatory to encapsulate all function-

ality into nodes, this will be shown by the other application scenarios which use an embedded

approach to using the framework and will be discussed in the specific application implementa-

tion sections.
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4.2.1 Kernel

The kernel is a lightweight management module that offers access to node libraries and load

them dynamically at runtime using a plugin system. The internal classes of the Herd Kernel are

shown in figure 4.2. The kernel can be divided into three parts, the management by the kernel,

loading of plugins and providing of a template for services that can be packed into plugins and

loaded by the kernel.

HerdKernel

HerdAttributes HerdAttribute AttributeType

PacketTypeHerdDataPacket

HerdCommand

HerdNode

ModuleVersion

HerdPluginLib

HerdDataManager

Figure 4.2: Herd Kernel internal structure

The main management class is HerdKernel, together with HerdDataManager. The plugin class is

HerdPluginLib and the service template class is HerdNode. The template class HerdNode contains

a partial implementation needed by the HerdPluginLib and HerdKernel and serves as a base class

for extended service implementations. Thus, if we look at all the nodes in the node libraries

listed in figure 4.1 they are all derived from the HerdNode. The kernel has no specific knowledge

about these nodes and only operates on the HerdNode class. Through the use of a plug-in system

(HerdPluginLib), the kernel is able to load and unload specific plug-ins at runtime and using

the HerdAttributes each HerdNode can contain it’s own configuration without specific knowledge

about the Node functionalities. In the following sub sections we take a deeper look into the

plug-in-system, the HerdNode class and depending classes will be highlighted and the main class

used for data exchange, the HerdDataPacket, is given in full. But first the HerdKernel class itself.

The kernel as given in figure 4.3 is a straight forward management class for maintaining the

libraries, fetching and creating nodes. With several overloaded functions to provide some flexi-

bility in the way plugins and nodes are loaded or created. In order to create a Node a Kernel is

mandatory, however it is not mandatory to keep the kernel existing. It is possible to have a node

loaded without letting the kernel taking care of (such as clean-up afterwards). Such is the case

when using a embedded approach, e.g. an existing application just needs to use a node-service

internally, it can create a kernel, create the node and discard the kernel again without losing the

node. However the application itself has to clean-up afterwards, which includes the removal of

temporary files of the dependent plugin libraries. This will become clear in section 4.2.1.1.

In code snippet 4.1 an example application is given that uses the Herd framework to start a ser-

vice. A kernel is created, upon creation the kernel directly initializes. Then through the function
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+initkj*:*void
+loadPluginLibkpluginName*:*string,*useDefaultPath*:*boolean*=*truej*:*boolean
+unloadPluginLibkpluginName*:*stringj*:*void
+createNodekparent*:*HerdNode*K,*library*:*string,*nodeName*:*string,*registerNode*:*boolean*=*true,*directExecute*:*boolean*=*truej*:*HerdNode*K
+createNodeklibraryInfo*:*ModuleVersion*K,*nodeName*:*string,*registerNode*:*boolean*=*true,*directExecute*:*boolean*=*truej*:*HerdNode*K
+cloneNodeknode*:*HerdNode*K,*registerNode*:*boolean*=*true,*directExecute*:*boolean*=*truej*:*HerdNode*K
+removeNodeknode*:*HerdNode*Kj*:*boolean
+createRelationkparent*:*HerdNode*K,*child*:*HerdNode*Kj*:*boolean
+breakRelationkchild*:*HerdNode*Kj*:*boolean*K
+getPluginLibrarykname*:*stringj*:*HerdPluginLib*K
+getpluginLibrarykname*:*string,*majorVersion*:*int,*minorVersion*:*int,*buildnumber*:*int,*revisionNumber*:*intj*:*HerdPluginLib*K

HerdKernel

Figure 4.3: Kernel class.

createNode a specific node can be requested. In the example this can be given as a command line

parameter thus “application.exe libname nodename” and if no parameters are given it will look

into the HerdNodeLibThreadz library for node with the name HerdThreadzDesigner. As given in

figure 4.3 several overloaded createNode functions exist with the purpose of flexibility. By default

the kernel will look into the executed directory for a Data folder and in there for a Plug-ins folder.

Through the use of the other functions custom library paths can be given. The given createNode

function here takes five parameters, the first the parent node. As nodes can be linked in a parent-

child relation a prior node can be given, however in this case it is the root node, thus providing

0. Then the library name and the node name are given, and the fourth parameter concerns the

registration of the node by the kernel. The kernel keeps track of its created nodes, in order to

stop them and clean up after being done with them, however the registration can be avoided by

setting the fourth parameter to false. The last parameter tells the kernel to directly execute the

node. This is not always wanted, as it can be desired to change certain attributes of the node

or might be not needed if the node mainly contains static functionality that has no need for a

continues execution, either in a thread or it’s own process.

1 #include "HerdKernel.h"

2 #include <conio.h>

3

4 int main(int argc, char* argv[]) {

5 string libName = argc==3 ? (argv[1]) : "HerdNodeLibThreadz";

6 string nodeName = argc==3 ? (argv[2]) :"HerdThreadzDesigner";

7 Herd::HerdKernel kernel;

8 Herd::HerdNode node = kernel.createNode(0, libName, nodeName, true, true);

9 if (!node)

10 return 1;

11 while(node−>isRunning()) //wait till node is finished

12 Sleep(100);

13 return 0;

14 }

Code 4.1: Example application for running a specific node from a library.

In the given example, the application will wait until the service thread is terminated, which will

flag isRunning to false and the application ends. Upon destroying the kernel, and therefore going

through the destructor of the kernel, it will clean up any registered node and plugin data.
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4.2.1.1 Plugins

The use of runtime plug-ins has many advantages and is a common usage by a major group of

software products use this approach to create a greater flexibility for deployment, easier update

and replacement without the majority of the software. A plug-in can be send as an automated

update to another HerdKernel to be loaded on the fly and start offering services available from

the library. Through this process services can be offloaded dynamically to other server-hardware

without the need of reconfiguring. The functionality for this is not encoded into the HerdKernel

or the Plug-in class itself, as this in itself is a service and is embedded into a node.

-versionm:mModuleVersion
-libm:mshared_library
-pluginsm:mfactory<HerdNode>
-locationm:mpath

HerdPluginLib
-modulePathm:mstring
-moduleNamem:mstring
-majorVersionm:mint
-minorVersionm:mint
-buildNumberm:mint
-revisionNumberm:mint

ModuleVersion

Figure 4.4: The Plugin and ModuleVersion class.

The plug-in class is given in figure 4.4 and uses the Boost extension classes shared_library, fac-

tory and type_map to define a shared library. The ModuleVersion class is used by the kernel

upon loading the library as it extracts the given information from the binary, based on the

VS_VERSION_INFO data block (this is a Visual Studio resource block).

1 #include "HerdVpxEncoderNode.h"

2 #include "HerdVpxDecoderNode.h"

3 #include "HerdVpxViewerNode.h"

4

5 //boost

6 #include <boost/extension/extension.hpp>

7 #include <boost/extension/factory.hpp>

8 #include <boost/extension/type_map.hpp>

9

10 BOOST_EXTENSION_TYPE_MAP_FUNCTION

11 {

12 using namespace boost::extensions;

13 std::map<std::string, factory<Herd::HerdNode>>&nodeFactories(types.get());

14 nodeFactories["HerdVpxEncoderNode"].set<Herd::HerdVpxEncoderNode>();

15 nodeFactories["HerdVpxDecoderNode"].set<Herd::HerdVpxDecoderNode>();

16 nodeFactories["HerdVpxViewerNode"].set<Herd::HerdVpxViewerNode>();

17 };

Code 4.2: Example code for creating a shared library.

In the code snippet 4.2 an example is given for constructing a shared library. In this case the VPx

nodes are taken into the shared library, as each node header is included, followed by the specific

Boost headers. By using a combination of a type_map set, with the node name as the key and

the factory class signature. It is possible to use the node name to fetch the factory for creating

the specific node. For a full overview on the use of shared_library implementation see the boost
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extension documentation.3

We take advantage of the plugin system in order to dynamically spawn processes from these

libraries. It opens many possibilities such as sending the appropriate plugin over the network

and have it directly launched without the main program having to restart, granting the setup

of a flexible and scalable system. Further more, upon launching a plugin-node, the dependent

plugin libraries are copied first into a temporary directory and the actual node is launched using

the temporary plugins. This has the benefit that launched node has its own in-use plugins, and

newer version of the plugin can be uploaded and replace the old ones, without stopping current

running nodes. The idea behind this was a dynamic and autonomous upgrade system. Where

a node could store a state of the node, shut-down and relaunch with the new version. The new

version then should take the state and convert where necessary to it’s own active state. Albeit

this is very possible with the given implementation it is very heavily application dependent. That

serializing its state and upgrading into the new version can only be given as a concept instead of

a fully automatic implementation.

4.2.1.2 Node

The Plugin libraries are the containers for the nodes, and the node is the container for the actual

service. Where the plugin is ultimately a plugin file (e.g. Windows a dynamic link library (DLL),

Linux/unix based systems a Shared Object (SO) file).

The node is the basic hull for a service and offers several methods for execution and exchange of

data with outside program logic.

Core 
Management 

Functions

Publisher
(Parent Node)

Subscribers
(Child Nodes)

Command
Handler

Data Packet 
Handler

Application Logic

DataFunctions

Figure 4.5: Node design in the Herd framework.

The skeleton class diagram is given in figure 4.6 and shows the relevant public and protected

functions. An implementation based on the HerdNode class can be a static collection of functions

3Boost extension http://boost-extension.redshoelace.com/docs/boost/extension/index.html
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that through the use of commands and the corresponding data packet can manipulate data or

may be deployed as a dynamic autonomous process.

SupdateCustomName<>
SvalidateAttributes<>
SvalidateAttributes<attributey:yHerdAttributes>y:ybool
SgetAttributes<>y:yHerdAttributesyO
Sinit<traversey:ybool>y:ybool
Sdeinit<traversey:ybooly=ytrue>y:ybool
Sstop<traversey:ybooly=ytrue>y:ybool
Srun<traversey:ybool>y:ybool
Spause<traversey:ybool>y:ybool
SisPaused<>y:ybool
ScanPause<>y:ybool
SisRunning<>y:ybool
SaddCommandById<commandIDy:yint>
SaddCommand<commandy:yHerdCommand>
ShandleCommand<>
SsetName<namey:ystringyM>
SgetLibrary<>y:yModuleVersionyO
SsetLibrary<moduleVersiony:yModuleVersionyO>
SaddChild<nodey:yHerdNodeyO>
SremoveChild<nodey:yHerdNodeyO>
SgetChildren<>y:ylist<HerdNodeO>yO
SsetParent<nodey:yHerdNodeyO>
SsetOutput<outputStreamy:yostreamyO>
Soutput<>y:yostreamyO
SsetKernel<kernely:yHerdKernelyO>
SgetKernel<>y:yHerdKernelyO
SgetAttribute<>y:yHerdAttributeyO
SgetAttributeValue<>y:ystring

HerdNode

SsetAttribute<namey:ystringKytypey:yAttributeTypeKyvaluey:ystringKyoverwritey:ybooly=ytrue>
SsetAttribute<namey:ystringKyvaluey:ystring>
ShandlePacket<packety:yHerdDataPacketyO>
SbufferPacket<packety:yHerdDataPacketyO>
SgetBufferQueueSize<>y:yint
SsetPacketCallback<objecty:yvoidyOKyfuncy:yvoidy<Ofunc><voidOKyHerdDataPacketyO>>
SgetCallbackFunction<>y:yyvoidy<Ofunc><voidOKyHerdDataPacketyO>yO
SgetPacketCallbackObject<>y:yvoidyO
SgetFrontPacket<>y:yHerdDataPacketyO
SpopFrontPacket<>
SsetId<tagy:yuuid>
SgetStringId<>y:ystring
SgetId<>y:yuuid
SgetInfo<>y:ystring
hrunExec<functiony:ytemplate<classyAfKyclassyMKyclassyT>yOKytraversey:ybooly=ytrue>y:ybool
hnodeThread<>
hnodeProcessThread<>
hkillProcess<>y:ybool

Figure 4.6: Node class.

By default a node has one thread running, the command thread and has two inputs, addCommand

and handlePacket. The addCommand takes HerdCommand objects, which will be put unto a queue.

The execution of the commands by default is done in the running command thread which is

calling the handleCommand function. Another function special to the command execution is the

addCommandById function. Which makes it possible to have a factory approach to the creation

and adding of commands. The benefit here is that an outside party only needs a shallow protocol

on the execution of commands, through simple events. The handlePacket is a special function that

takes a HerdDatapacket as its input. However the node does not know from where is comes, either

top level application logic, parent node, child node, from internal node logic, or provided by the

HerdCommand. It just handles the packet. The packet itself may contain some information on

its origin, but it is up to the implementation on top of the node that decides on what to to with

it. The output from the node, other than direct function calls to other parts in the program, is

done by providing a HerdDataPacket object, which it can push to its own handlePacket, a callback

function or stack it upon a buffer. As mentioned before, by default the node thread is the main

execution thread and its base implementation is a loop-structure, which continues while the flag

for being active is set. Within the loop-structure the handleCommand function is called in order to

wait for incoming commands, and as a result to be executed.

In order to start the thread the function run is called, either by higher program logic or the

HerdKernel object upon creation. The base implementation is shown in code snippet 4.3 and

consists out of a single line, pointing to the internal function runExec, which is a special function

that takes a function pointer.
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VnameA:Astring
VdoDeleteA:Abool

<HerdCommandInameA:Astring>AdoDeleteA:AboolA=AtrueS
<initIS
<executeInodeA:AHerdNodeABS
<getNameISA:Astring
<deleteCommandISA:Abool

HerdCommand

<loadIfileA:Astring>AclearA:AbooleanA=AtrueSA:Abool
<clearISA:Abool
<isLoadedISA:Abool
<setAttributeInameA:Astring>AtypeA:AAttributeType>AvalueA:Astring>AoverwriteA:Abhhh
<setAttributeInameA:Astring>AvalueA:AstringS
<setFloatInameA:Astring>AvalueA:AfloatS
<setIntInameA:Astring>AvalueA:AintS
<setStringInameA:Astring>AvalueA:AstringS
<setBoolInameA:Astring>AvalueA:AboolS
<getFloatInameA:AstringSA:Afloat
<getIntInameA:AstringSA:Aint
<getStringInameA:AstringSA:Astring
<getBoolInameA:AstringSA:Abool
<getAttributeTableISA:Amap<string>AHerdAttribute>AB
<getValuesISA:Avector<string>
<getConfigFileISA:Astring
<hasConfigFileISA:Abool
<hasConfigFileIconfigFileA:AstringSA:Abool

HerdAttributes

Figure 4.7: The Command and Attributes class.

1 bool HerdNode::run(bool traverse) {

2 return runExec(&HerdNode::nodeThread, this, traverse);

3 }

Code 4.3: The Run function within the Node class.

There are two advised ways to deviate from this approach by overriding the specific function

(HerdNode::run) and provide a custom function pointer to the protected function runExec. Or by

overriding the nodeThread function. The former version gives the possibility to start a second

thread to run the nodeThread function, for handling incoming commands while the custom func-

tion handles the main thread loop. If two threads are not needed than the best way is the latter

modification and incorporate the command handling functionality.

4.2.1.3 DataPacket

The data packet is the base component for exchanging messages and data in general between

nodes. It had been kept with minimal functionalities providing get and set functions for most

common primitive data types that exist across several programming languages. Albeit depending

on the language some data-types may have a different notation or lack of it, in those cases (e.g.

Java primitive type conversion in code 4.4) it is often possible to upgrade the primitive type to a

bigger type that is capable of representing the same value.

1 public int getUShort() {

2 return m_dataBuffer.getShort() & 0xFFFF;

3 }

4

5 public void addFieldUShort(short data) {

6 int i = data & 0xFFFF;

7 m_dataBuffer.putShort((short) i);

8 }

Code 4.4: Java unsigned short (2 bytes) conversion to a (signed) int (4 bytes).

In figure 4.8 the class with all the functions are shown. Upon creating a data packet, it has

three different constructors, the default, second with a size parameter indicating that the buffer
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should directly allocate a certain amount in memory and third the copy constructor for cloning

the object. The internal data buffer is split into header and body, where the header contains basic

information on the body part. The functions encodeHeader and decodeHeader are used to write

dedicated variables within the HerdDataPacket object into the header of the data buffer and vice

versa. Several functions provide access to the data, first of the addField and get functions that

provide write and read functions for the primitive data types, other means of access are by char

pointers to the buffer. These are getData which points directly to the beginning of the buffer,

getBody points to the first byte after the header and thus the beginning of the body part and the

getRead-/writePosition which are dynamic pointers. The getReadPosition pointer increases every-

time a get function is called, e.g. getUShort increases the offset with 2, as a ushort is 2 bytes.

The same applies to the getWritePosition which increases with every addField function. Other

functions provided offer additional data to the packet, such as the Id of a packet, which can refer

to a user or session Id. The toSend function sets a boolean marking it for sending, which actually

also indicates the direction of the packet. Since the packet is given to a node by the handlePacket

function, it does not know the intended direction, this will be more clarified in section 4.2.3.1.

mHerdDataPacketRV
mHerdDataPacketRsizeC:Csize_tV
mHerdDataPacketRdataPacketC:CHerdDataPacketV
mencodeHeaderRisSendingC:CboolC=CtrueV
mdecodeHeaderRVC:Cbool
mgetBodyRVC:CconstCcharCv
mgetDataRVC:CcharCv
mgetCapacityRVC:Csize_t
mgetLengthRVC:Csize_t
mgetBodyLengthRVC:Csize_t
msetBodyLengthRlengthC:Csize_tV
msetIdRsessionIdC:CintV
mgetIdRVC:Cint
mtoSendRsendingC:CboolV
mtoSendRVC:Cbool
mtoConsoleRV
mclearRV
maddFieldRdataC:CconstCcharCvWCsizeC:Csize_tV
maddFieldRdataC:CconstCunsignedCcharCvWCsizeC:Csize_tV
maddFieldRdataC:CcharV
maddFieldRdataC:CunsignedCcharV
maddFieldRdataC:CintV
maddFieldRdataC:CunsingedCintV
maddFieldRdataC:CshortV
maddFieldRdataC:CunsignedCshortV
maddFieldRdataC:ClongV
maddFieldRdataC:CunsignedClongV
maddFieldRdataC:CfloatV
maddFieldRdataC:CdoubleV
maddFieldRdataC:CboolV

HerdDataPacket

mgetCharRVC:Cchar
mgetUCharRVC:CunsignedCchar
mgetIntRVC:Cint
mgetUIntRVC:CunsignedCint
mgetShortRVC:Cshort
mgetUShortRVC:CunsignedCshort
mgetLongRVC:Clong
mgetULongRVC:CunsignedClong
mgetFloatRVC:Cfloat
mgetDoubleRVC:Cdouble
mgetBoolRVC:Cbool
mgetStringRVC:Cstring
msetReadPointerRoffsetPositionC:Csize_tV
mshiftReadPointerRshiftValueC:CintV
mresetReadPointerRV
mvalidReadPositionRVC:Cbool
mgetReadPointerRVC:Csize_t
mgetReadRemainingRVC:Csize_t
mgetReadPositionRVC:CconstCcharCv
mgetWritePositionRVC:CconstCcharCv
msetPacketTypeRtypeC:CPacketTypeV
mgetPacketTypeRVC:CPacketType

Figure 4.8: DataPacket class.

The implementation is intended to be flexible and open, as there is direct access to the data

buffer, which however implies that it is the programmers responsibility to handle this with care.

There are guidelines on its intended usage for example the use of the read and a write pointer

index. Whenever a get- function is called the read pointer is shifted according to the amount of

bytes read. Same applies to the write pointer upon executing an add- function. This however

is purely for convenience and can be overruled if needed, for example the buffer allocation can

be set to a certain amount, the direct pointer to the data taken and used for direct mem copy
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Table 4.1: HerdDataPacket structure

Header Body
Size (4 byte) Type (1 byte) Data (max 4294967295 bytes)

Table 4.2: HerdDataPacket supported data types

Bytes Min Max C++ C# Java
1 −128 127 char sbyte byte
1 0 255 unsigned char Byte short
1 f alse true bool Bool boolean
2 −32768 32767 short Short short
2 0 65535 unsigned short Ushort int
4 −2147483648 2147483647 long Int int
4 0 4294967295 unsigned long Uint long
4 1.175494351E − 38 3.402823466E + 38 float Float float
8 2.2250738585072014E − 308 1.7976931348623158E + 308 double Double double
* 0 Max packet char*/String string String

operations. As long as the data packet header is set correctly it is handled as a valid packet by

nodes.

As given by table 4.1 the header is in total five bytes and the body itself can be arbitrarily long

(up to a theoretical 4GiB, as it is the maximum value for an unsigned integer data type). The

packet type is set to a system protocol identifier, which is one of four possible values, System, Node,

Client, Merged type. Initially they represent no true meaning, but are intended for basic event

filtering, where System packets are handled internally by the service node, the Node event for a

group, the Client for an individual and Merged indicates that the package is containing multiple

packages that have to be unpacked first. These types of events are based on the way the TCP

node was constructed and how service nodes in concatenation are developed (see section 4.2.3.1).

In table 4.2 are the different supported data types listed with their values and given for several

programming languages. Notice that Java does not support unsigned values and therefore the

return type is a primitive data type that can encapsulate the full range (4.4).

In code snippet 4.5 an example is given on how a data packet is created. In the example the

packet is instantiated and is followed by a Clear function call. This is not needed for a newly

created data packet and serves as illustration. The clearing of data does not resize the buffer,

merely sets the written volume to zero. An unsigned short (two bytes) is added and a string

with a length of fifteen bytes. Then the Encodeheader is called, to write into the data packet

header the size of the body, which is seventeen bytes (2+ 15). After which it is given to another

node into the handlePacket function (for example an TCP node which will send the packet to all

its registered sessions.
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1 DataPacketPtr packet = HerdDataPacket::create();

2 packet.Clear();

3 unsigned short packetType = UserProtocol::CUSTOM_PACKET_ID;

4 packet−>AddField(packetType);

5 packet−>AddField("Adding a string");

6 packet−>EncodeHeader();

7 m_serverNode−>handlePacket(packet);

Code 4.5: Creating a data packet.

This makes the use of the HerdDataPacket extremely flexible in how the developer wants to keep

data.

4.2.1.4 Graphical Manager

On top of the kernel manager there is the graphical version of the manager, providing a visual

tool in managing, loading and setting attributes to node services. We briefly show the usage

of this interface as it merely is the higher level functionality for maintaining services. In figure

4.9 the main screens are shown, the log, add node, libraries and the main -screen. The log is

a reroute of the standard output stream. It is divided into two parts, the upper for normal

messages and the lower for error messages. The add node screen shows the loaded libraries and

the nodes they contain. Upon selection a node its attributes are read, however the node itself

is not instantiated. Attributes can be freely changed and are remembered during the time the

graphical manager is active. The node will be added to the main screen when the OK button is

clicked. The libraries screen shows the library nodes found in the default directory. The icon to

the left of each library indicates if it is loaded or not. Details can be displayed in the text area

on the right when selecting a library (version number, node names etc.). The main screen shows

which nodes are loaded (instantiated objects) and the icon to the left of each nodes shows it’s

current state (running, stopped, pause). Since nodes can have parent-child relations the nodes

are shown as a tree when applicable. Note that it is up to the developer to go along these lines

as nodes can be created without being registered by the kernel or set at being a child/parent

member of another node. Through this interface nodes can be easily added, removed, started,

stopped, paused and reconfigured by its attributes.

The implementation of this interface uses the Qt SDK in support for desktop platform indepen-

dent compilations.

4.2.1.5 Process launcher

The HerdNode has the internal ability to spawn a new process of itself, in which its intended

service will be executed. In order to do this we use the Qt’s QProcess for calling a small applica-

tion that will spawn the desired node. The standard input and output from the application are

linked with the QProcess and provides our main communication method with the node. Through

the standard input/output streams we use the HerdDataPackets to send over data. To initiate a

node to run in it’s own process the boolean attribute Process detach is set to true. Upon running

the node it checks the boolean and creates a QProcess object. Which will run the NodeProcess
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Figure 4.9: Graphical interface for managing the Herd framework.

executable. The NodeProcess will start reading from the standard input (thus from the QProcess

object). Incoming data is treated as HerdDataPacket organized data, by first reading the header

and decoding the header for determining the expected packet body size. Than read for the

amount of data of the body. When the specified amount of data is read the HerdDataPacket is

complete and read for instructions. These are predefined by a protocol, create node, quit process

and new command. A packet with the create node identifier contains all additional information

for the creation of the intended node. These are library name, node name, the full version identi-

fier and the set of attributes for configuring the node. The quit process identifier speaks for itself,

any active node will be terminated and the process will exit. The last identifier, new command,

provides commands to the node by packing the actual data packet. A new packet is created from

the data and given to the intended node through the handlePacket function.

4.2.2 Plugin Libraries

The plugin libraries are the previously mentioned node libraries as given in figure 4.1. In this sec-

tion we take a deeper look into each of these libraries and the given nodes. From code snippet

4.2 each library is constructed in the same way, the plugins are however platform dependent.

For each platform the library has to be compiled in order to be loaded properly for the given

platform. The implementation supports this by using development tools that are not specifically

dependent on platform implementations and providing a unified approach to loading the plug-

ins. The core basis is developed with C++ (hence compiling platform specific), however partial

implementations are also provided with different programming languages, such as managed

code languages as C# and Java. These are mostly used on the client side.
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4.2.3 Core Plugin Library

The core plugin library contains several nodes that are used by most of the applications and

therefore form the basic building blocks for it. These include the network communication and

memory sharing nodes. An abstract overview of the two network communication nodes (TCP

and UDP)are shown in figure 4.10.

HerdNode

HerdTcpNode HerdTcpCore HerdTcpSession

HerdUdpNode

HerdSslTcpNode HerdSslTcpCore HerdSslTcpSession

HerdUdpCommand

HerdUdpInterface

HerdUdpSequence

HerdUdpStream

HerdDataPacket

Figure 4.10: TCP, SSLTCP and the UDP communication nodes diagram.

Utilizing the communication nodes for sharing data between services/nodes provides only a

very generic way of accessing shared data and is not tightly coupled in terms of updates since

everything has to be explicitly done by the service. Which is fine for general data transmis-

sions such as input events and streamed data, but not for data models where the state of the

model have to be synchronized. For this we introduce a sharing methodology based on the pub-

lish/subscribe. An abstract overview is given in figure 4.11, showing two nodes a publisher and

subscriber. Both of these maintain a set data, which is atomized into MemCaches and MemObjects,

each of these can be updated individually. The benefit of this approach is that it can be easily

coupled with an existing data model. Either by using the cache structure as a shadow copy of

the data, or a direct extension on the data model as will be shown in 4.2.3.3.

HerdNode

HerdTcpNode

HerdPublisherNode

HerdSubscriberNode

MemCache

MemCacheListener

MemListener

MemManager MemObject

MemObjectListener

MemProtocol

MemPublisher

MemSubscriber

Figure 4.11: The publish subscribe components.
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Albeit the figure indicates that the publish/subscribe service explicitly uses a HerdTcpNode, in-

ternally it is referred to as a HerdNode and therefore could be replaced by any other node.

4.2.3.1 Transmission Control Protocol node

For most of the services the TCP connection is used for data exchange over network or as inter-

process communication. During the design and development stage of the HerdTcpNode it laid

down the foundation for how the HerdNode itself operates. The node encapsulates the function-

ality that a TCP socket offers, but provides additional functionality for managing sessions and

event control through the use of HerdDataPackets. It therefore also solely expects HerdDataPackets

as input, this means it will not recognize any other structured data. For example HTTP or file

transfer protocol (FTP) should be encapsulated into their own respective nodes, ultimately also

using raw sockets for communication.

HerdNode

Um_bufferedp:pboolp=pfalse
Um_forwardingp:pboolp=pfalse

QattachCBp:pvoid
QdetachCBp:pvoid
QgetSessionCBp:pHerdTcpSession
QsendToSessionsCsessionIdsp:pset<uint>Opdatapacketp:pHerdDataPacketBp:pvoid
QsendPacketToClientCB

HerdTcpNode

QconnectCBp:pvoid
QrunCBp:pvoid
QsendCdataPacketp:pHerdDataPacketOpbufferdp:pboolBp:pvoid
QgetSocketCBp:ptcp::socket
QsetIdCBp:pvoid
QgetIdCBp:pulong
QreadHeaderCBp:pvoid
QreadBodyCBp:pvoid
QsendQueCBp:pvoid

HerdTcpSession

QacceptSessionCsessionp:pHerdTcpSessionB
QattachCBp:pvoid
QdetachCBp:pvoid
QgetSessionCsessionIdBp:pHerdTcpSession
QhandleSystemPacketCBp:pvoid
QisServerCBp:pbool
QrunClientCBp:pvoid
QrunServerCBp:pvoid
QsendCdataPacketp:pHerdDataPacketBp:pvoid
QsendPacketToClientCdataPacketp:pHerdDataPacketBp:pvoid
QsendToSessionsCsessionIdsp:pset<uint>OpdataPacketp:pHerdDataPacketBp:pvoid
QstopCBp:pvoid
UrunIOServiceCBp:pvoid
UsendIdCsessionp:pHerdTcpSessionBp:pvoid

HerdTcpCore

HerdUser

HerdDataPacket

deque

Figure 4.12: Abstract Tcp class diagram.

Internally the node generates HerdDataPackets objects from the data incoming from the network-

stream, which are then forwarded to the handlePacket function for further processing, these can

be either forwarded, buffered or provided to a callback function. It is the same handlePacket that

also handles the packets coming from the outside (e.g. parent nodes). Which can be handled for

the same purpose, but mostly for sending over the network to connected clients (TCP sessions).

In figure 4.12 the core classes are shown with functions, where the HerdTcpNode is the main access

point. Note that in most cases after creation of the TCP node, it is being accessed by its base

class HerdNode. Data is send by using a HerdDataPacket object and provide it to the handlePacket

function as illustrated by the code in 4.5.
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In order to use the node, several attributes have to be set. An example is shown in code 4.6,

where initially the node is created (line 2), followed by a set of setAttribute calls. The TCP socket

port number is set to 8080. The destination is in this case an IPv4 address 127.0.0.1, which is

the local host. Forwarding is set to false, which means that events received are handled by the

node, otherwise if set to true, the node acts as a bridge and forwards the packet to all other

connected sessions without processing it itself. The attribute connect indicates the direction of

how to establish a session, in this case it is this node that is going to connect to another TCP

instance using the local host and port number 8080. If set to false, the node will not initiate any

connection directly but waits for other TCP instances to connect upon which a session is created.

1 Herd::HerdKernel kernel;

2 auto node = kernel.createNode("HerdNodeLibCore", "HerdTcpNode" );

3 node−>setAttribute( "port", "8080" );

4 node−>setAttribute( "destination", "127.0.0.1" );

5 node−>setAttribute( "forwarding", "false" );

6 node−>setAttribute( "connect", "true" );

7 node−>setAttribute( "name", "Herd Demo client" );

8 node−>validateAttributes();

9 node−>setPacketCallback(node, &wrapperHandlePackets);

Code 4.6: Creating a TCP node, set attributes and provide a callback function for receiving packets.

The creation of sessions is basic TCP handling, but in addition for higher level sessions we pro-

vide more information and have an additional handshake, providing the connecting session with

an identifier number. At the same time on the receiver side that is creating the session, it gen-

erates a new HerdDataPacket that indicates that a new session has been created. The connection

flow is shown in figure 4.13. The actor (higher level application) runs the node which will run

internally a thread in which it will try to connect using the previously assigned attributes. Upon

connecting to the server side, a new session will be created and a first data packet is send to

the client containing the identifier for the session. On both sides the HerdTcpSession will create a

packet and provide it to the HerdTcpNode which is then either being buffered or provided to the

callback to be handled by the application.

The client now can start sending and receiving data, as shown in figure 4.13 as point 7. A

user packet is provided to the HerdTcpNode and propagated to the receiver, the server, where

the byte stream is read and put into a new HerdDataPacket object, which is then given to the

HerdTcpNode for further processing. Aside from the low-level packet type protocol (in the

five byte header) we use an additional protocol for specifying the purpose of the packet. As

seen in the code 4.5 the first field in the data packet is a two byte unsigned short type (in the

example UserProtocol::CUSTOM_PACKET_ID). We define a base protocol and on top of that a

user/application protocol. The base protocol, code snipped 4.7, lists the most common used

identifiers.
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HerdTcpSessionHerdTcpCoreHerdTcpSessionHerdTcpCore

Actor

HerdTcpNodeHerdTcpNode

4:yhandlePacketyfsessionyattached)

7.1.1.1.2:yhandlePacket

7.1.1.1.1:yreadHeaderyandybody
7.1.1.1:ytcp:yuserypacket

7.1.1:ysend
7.1:ysend

7:yhandlePacketyfuserypacket)

6.2.1.2.1:ysessionyattached

6.2.1.2:yhandlePacketyfsessionyattached)

6.2.1.1:ysetId
6.2.1:yhandleSystemPacket

5:ysendId6:ytcp:ysendysystemypacket

3:yrun

1:ywaityforysession

2.1.1.1.1:ycreateSession

6.2:yhandlePacketyfsystemypacket) 6.1:yreadHeaderyandybody

2.1.1.2:yrun

2.1.1.1:ytcp:yconnect
2.1.1:yconnect

2.1:yrunClient

2:yrun

Figure 4.13: Establish connection using the HerdTcpNode.

1 SESSION, USER_EVENT,

2 SESSION_ATTACH, SESSION_DETACH, PROFILE,

3 FRAME,FRAME_RATE_UP, FRAME_RATE_DOWN, FRAME_RATE, RESET_FRAME,

4 MOUSE_DOWN, MOUSE_UP, MOUSE_MOVE,

5 KEY_DOWN, KEY_UP,

6 BASE_PROTOCOL_END

Code 4.7: Base protocol containing system and basic event identifiers.

The first couple of identifiers are used during the initialization of the session, where SES-

SION_ATTACH/DETACH are created internally by the HerdTcpNode as illustrated before. There-

after are basic adaptation identifiers, e.g. for sending video frames., and last basic input events

for mouse and keyboard. The protocol ends with an identifier BASE_PROTOCOL_END which is

not used directly but is used by the application-level protocol, which may start from this iden-

tifier. Thus for example the identifier from code 4.5 CUSTOM_PACKET_ID may be defined as

“CUSTOM_PACKET_ID = BASE_PROTOCOL_END + 1”

4.2.3.2 User Datagram Protocol node

The benefit of using UDP is speed, which is favourable for services where guaranteed transfer of

data is of lower importance. Since UDPis connectionless it does not serve well for session based

services, however with a small extension and without reimplementing the whole TCP stack of

functionalities it is preferable using it for input events and video streaming. For video streaming

then sender side compresses a frame and sends it to the other side, which decompresses the

frame again, this however entails that the codec used should be able to handle lost frames. As

for input events similar rules are applied, for example mouse movement is a stream of screen

coordinates of the mouse pointer, losing a couple of these events is not critical. However when-
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ever there is a mouse button press it is a more important event. We therefore introduce two types

of UDP based streaming, command and stream, as can be seen in the class diagram figure 4.14.

These implementation are solely used for the framework presented and alike to the HerdTcpNode

serve its purpose for the presented use-cases. Other protocols based on UDP such as RUDP,

DHCP, RTP etc. should be encapsulated into their own respective HerdNode.

HerdNode

zm_forwading+:+bool
zm_isStream+:+bool

HerdUdpNode

HerdUdpStream

zlastPacketOffset+:+uint
zpacketCount+:+uint
ztotalPacketCount+:+uint
zresetToggle+:+bool

FisEmptyqD+:+bool
Fresetqtoggle+:+boolD+:+void
FaddPacketqoffset+:+uintA+buffer+:+ucharD+:+bool
FgetSequenceqdataPacket+:+HerdDataPacketA+sourceBuffer+:+ucharD+:+bool
FisFullqD+:+bool

HerdUdpSequence

HerdUdpCommand
FsendDataAsServerqD
FsendDataAsClientqD
FsendDataqD+:+bool
FreceiveDataFromBufferqD+:+HerdDataPacket
FreceiveDataqD+:+bool
FpopFrontPacketqD+:+void
FisConnectedqD+:+bool
FinitqnameA+portA+addressA+pSizeA+isServerA+rSizeA+sendAdressD+:+bool
FgetSocketqD
FgetFrontPacketqD+:+HerdDataPacket
FdeinitqD
FcloseSocketqD
FactAsServerqD+:+bool
FactAsClientqD+:+bool
(setNextBufferOffsetqD+:+void
(receiveDataThreadqthread_obj+:+voidBD
(errorCheckqcode+:+intD+:+void
(doConnectqD+:+void
(checkForDataqD+:+bool
(allocateReceiveBufferqD+:+bool

HerdUdpInterface

HerdDataPacket

array

deque

Figure 4.14: Udp functionality overview.

Both types extend on the HerdUdpInterface which is similar to the HerdTcpCore, handling connec-

tions, sending and receiving data. Since there are no sessions it is left to the implementation

of the service/application on how to handle this if needed. This might be done by using per

application session a different socket, or provide additional information in the data packet. The

actAsServer starts listening to a given socket and handles any data that it receives on it, it does

not know anything about sending data at this point. Where the actAsClient is given an address

to where it has to send(connect), it does not check if it exists as it will fire packets into the net

unknowingly if it ever arrives. Whenever the server receives datagram packets it will use the

senders address as its new reply address. In practice this works fairly well, and in fact most

networked games work use UDP for player movements. The HerdUdpInterface keeps a buffer for

the received datagrams, using HerdUdpSequence objects. A datagram is limited in size (theoreti-

cal limit of 65507 4, but commonly a size of around 1400 bytes or less is used) and therefore the

transfer of data can be split into several datagrams. Furthermore the datagrams can arrive in

an unordered fashion, meaning that for example sending two HerdDataPacket objects can be split

465535 minus the Internet protocol (IP) header and UDP header itself
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Table 4.3: UDP buffer cell structure

Cell Header Packet header Body
Parent packet offset type sequence info field data
4 bytes 1 byte 1 byte 2 bytes max (udp packet size - header size)

into several datagrams and be received in a mixed order. Depending on the network hardware

and lower level implementation, the buffer for receiving packets is limited, which can lead to

flooding of the buffer when receiving too many packets. To avoid this the buffer must be read

constantly and must not loose time on later processing of the data and from practice this turned

out to be quite tricky. To handle UDP quickly and correctly (incorporating the possibility of

fragmentation) we encapsulate the HerdDataPacket into a new packet and use a fixed buffer for

placing the incoming data without any further processing. The method we came up with proofed

to be quite fast and foremost easy to use. The fixed buffer is a one time memory pool allocation,

which can contain an X amount of datagrams. Each datagram has an additional header of 4

bytes and the data within the datagram also contains a 4 byte header for the data, this is shown

in table 4.3. The fields within a cell are:

• Parent packet offset, during writing a cell an offset to its parent cell with the same sequence

is written here and the new latest offset is kept in the sequence object.

• Type, indicates the packet state. Possible values are

– Value 1 Indicating the first packet of a sequence of packets.

– Value 2 An in between follow-up packet or so called sequence packet.

– Value 4 The final packet for a sequence of packets.

– Value 8 A singular packet that is the first and final packet (simply a single packet).

• Sequence, UDP streaming can keep track of maximum 256 different packet sequences the

sequence ID is the index number

• Info, The packet number (maximum packet numbers 65535)

Assume the maximum size for a datagrams is set to 1450 bytes and the buffer is set to 1 MiB, for

each datagram stored 4 bytes of additional data is used, therefore 721 datagrams can be stored

into it, which we call cells. Even if a datagram is not using its full capacity, it will be registered

as a full cell in the buffer. Upon receiving a datagram, a single memory copy is used to place

it into the buffer at the current buffer offset, which thereafter increments. The offset resets to

the beginning of the buffer at the last cell, creating a ring buffer. A secondary buffer is used

for managing and registering the incoming packets, which is an array of 256 HerdUdpSequence

objects. For each sequence number (0-255) there is an HerdUdpSequence that keeps track of any

incoming datagrams with the given identifier. This procedure is illustrated in figure 4.15.

Note that data received is directly written into the buffer and a pointer is used for indicating

the start of the cell in the buffer. At the end there is a check if the active sequence is complete,
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Set active buffer cell

Read sequence Id

Reset sequence

Buffer

Cell-buffer Sequence Id

Receive data

Read sequence Id

Add packet info to Sequence

Check if sequence is complete

Replace packet offset in cell

Set new packet offset

Increase packet count

If type == 4 or 8 set expected 

packet count

Read packet header

Sequence Object

AddPacket

Sequence Id

Sequence Id

pointer

pointer

pointer

pointer

pointer

Sequence Object

Reset
Set to zero:

Packet offset

Packet count 

Expected packet count

Sequence Object

IsFull

Packet count is not 0 and 

equals expected countPut sequence id into micro 

buffer

If true

Figure 4.15: Reading UDP packets.

meaning it either has a single packet of type 8 or the internal count of packets is equal to the

expected count of packet (which is the packet number from packet type 4). The identifier of the

sequence is placed into a micro buffer, which in case of streaming has a limited amount (e.g. 4

identifiers). It also sorts the identifiers with a relaxing sort at the end of the buffer as we want

sequences with a lower identifier handled first, but at the end it can occur that sequence 255

comes a bit late and sequence 0 has been placed already, then we still want 255 to be handled

first, but still after 254. The placements of the identifiers into the micro buffer is thread-safe and

from another thread the available identifiers are retrieved. This reduces the amount of operations

to be done within the actual networking thread and minimized the chance of packet flooding.

Packets are still being dropped if the micro-buffer is full, but it will push out the older ones first.

Whenever an identifier is retrieved in the other thread, the sequence object is accessed and a the

function getSequence is called. A new HerdDataPacket object is created and the needed amount of

memory is allocated.

8 30 10 X 1 31 10 X 2 31 21 X 8 32 10 X 4 31 42 X 8 33 10 X 2 31 34 X

Data
Info
Sequence
Type
Offset

1 2 3 4Data packet

0Offset 1 2 3 4 5 6

Figure 4.16: Retrieving a data packet from the buffer.

Shown in figure 4.16 is the buffer with several cells illustrated. The first cell has 0 for offset, 8 for

type meaning it is a single packet in this cell, sequence id 30, info set to 1 as it is packet number

1 and the data is marked X as this can be the maximum size of the remaining cell space. In this

case we want to retrieve sequence 31 which is composed out of several cells and spread out with

higher sequence numbers in between and incorrect order. The latest received data contained
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packet number 3, therefore the HerdUdpSequence object is pointing to offset 6 internally, it will

take the data and place it directly into the HerdDataPacket at position 3, then it will read the offset

from the cell header, which is pointing to 4, thus the next cell at offset 4 is read and placed. This

procedure is continued until the HerdDataPacket is filled. Afterwards the HerdDataPacket object

is forwarded to the handlePacket function where it is either buffered or redirected to the callback

function.

4.2.3.3 Publish-subscribe data sharing node

The published-subscribe data sharing allows for easy synchronization between data models. Al-

though the focus is on remote rendering and adapting towards the client, it became clear that

there is more data other than the rendering that can benefit the adaptation. For example for

localized rendering mixed together with remote rendering providing a hybrid solution. In order

to make it generic, we simply looked at what other data we have and how this is useful for shar-

ing. For collaboration it becomes very important where the users are working together virtually

and how where physically this virtual workspace is hosted, either at a central system, and every

view is streamed to each end-user or locally and modifications are propagated to each other.

This type of synchronization however is dependent on the type of connection either one user

since his modification to all other users (peer-to-peer) or to a central server that then takes care

of updating the other users (client-server). Our approach is capable of handling both situations

by breaking down the relation in generic terms of subscriber and publisher. A client for example

can be a subscriber and publisher. This however involves some management of data-transfer

between the subscriber and publisher within the client application. We can define three spaces

where data is residing, outside somewhere on the network, internally as a generic data model

and specialised data models optimized for specific routines that use the data. This is illustrated

in figure 4.17. Where the publisher is on the outside and communicates directly with the sub-

scriber which is internal and upon the subscriber we have listeners that translate the data into

the specialized data models.

DataModel
Data

Model

Rendering

Interface

Functionality

Adaptation

Compression

Synchronization

Conversion

Synchronization

End Device

Publisher Subscriber Listener

Figure 4.17: Flow of data from the cloud to the local data model and to application data. The cloud data
model is the Publisher, the local data model the Subscriber and the application data the listener.

The publisher and subscriber are similar in functionality, as both maintain a tree-based data struc-

ture of caches and objects, which is being kept synchronised. The data stored on both sides may

not be identical due to the adaptation rules being set for the given session. From figure 4.11 we
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can extract three important components, the MemManager from which both the publisher and

subscriber inherit, the MemObject which will contain the data and MemCache will inherit and

third the MemListener. In addition there is a protocol extending the base protocol ( code: 4.7

) that provides the necessary identifiers for handling the communication between the internal

MemManager and external MemManager, but also the internal communication from MemManager

to the listener.

ShandlePacketFdataPackety:yDataPacketyELy:yvoid
SgetObjectFL
SgetCacheFL
MgenerateIdFLy:yulong
MsubscribeCacheFdatay:yDataPacketyELy:yvoid
MsubscribeCacheByNameFdatay:yDataPacketyELy:yvoid
MunsubscribeCacheFdatay:yDataPacketyELy:yvoid
MunsubscribeCacheFcachey:yMemCacheyE-ysessiony:yulongLy:yvoid
MaddCacheFdatay:yDataPacketyELy:yvoid
MremoveCacheFdatay:yDataPacketyELy:yvoid
MrenameCacheFdatay:yDataPacketyELy:yvoid
MmodifyCacheFdatay:yDataPacketyELy:yvoid
MaddObjectFdatay:yDataPacketyELy:yvoid
MremoveObjectFdatay:yDataPacketyELy:yvoid
MmodifyObjectFdatay:yDataPacketyELy:yvoid

MemManager

SsubscribeCacheFcacheIdy:yulong-ytraversey:ybooleanLy:yvoid
SsubscribeCacheByNameFnamey:ystring-yparentCachey:yulongLy:yvoid
SunsubscribeCacheFcacheIdy:yulongLy:yvoid
SunsubscribeCacheFcachey:yMemCacheyE-ysessiony:yulongLy:yvoid
SaddCacheFcachey:yMemCacheyE-yparentCachey:yMemCacheyELy:yulong
SremoveCacheFcachey:yMemCacheyELy:yvoid
SrenameCacheFcachey:yMemCacheyELy:yvoid
SmodifyCacheFcachey:yMemCacheyELy:yvoid
SaddObjectFobjecty:yMemObjectyE-yparentCachey:yMemCacheyELy:yulong
SremoveObjectFobjecty:yMemObjectyELy:yvoid
SmodifyObjectFobjecty:yMemObjectyELy:yvoid
SsubscribeByNameFLy:yvoid
SsubscribeFcacheIdy:yulong-ytraversey:ybooleanLy:yvoid
SunsubscribeFcacheIdy:yulong-ytraversey:ybooleanLy:yvoid
SwaitForIdFreplyIdy:yulongLy:yulong
SenableListenerEventsFcachey:yMemCacheyE-ytraversey:ybooleanLy:yvoid
SdisableListenerEventsFcachey:yMemCacheyE-ytraversey:ybooleanLy:yvoid
SbuildFromCacheFcachey:yMemCache-ytraversey:ybooleanLy:yvoid

Subscriber

-unsubscribeCacheFcachey:yMemCacheyE-ysessiony:yulongLy:yvoid

Publisher

Figure 4.18: Abstract class diagram of the MemManager, Publisher and Subscriber.

The publisher only handles the HerdDataPacket objects, where the subscriber extends on this by

also providing similar function for direct access as shown in figure 4.18. Which is also reflected

in the encapsulating node classes. An example of creating a subscriber and adding data is given

in code 4.8.

1 auto node = kernel−>createNode("HerdNodeLibCore", "HerdSubscriberNode");

2 subscriber = static_cast<HerdSubscriberNode *>(node);

3 subscriber−>run();

4 subscriber−>subscribe(0);

5 auto parentCache = m_subscriber−>getCache(0);

6

7 MemCachePtr cache(new MemCache("Test cache"));

8 subscriber−>addCache(cache, parentCache);

9

10 MemObjectPtr memObject( new MemObject());

11 memObject−>data()−>addField("This is some test data.");

12 memObject−>data()−>addField("Another string.");

13 memObject−>data()−>addField(42);

14 memObject−>data()−>addField(1024.0f);

15 subscriber−>addObject(memObject, cache);

Code 4.8: Creating the subscriber and add data.

First through the kernel the required node is created. In this example we assume that there is

already a publisher node active on the system and the subscriber is able to connect directly to it

upon calling the run function. The subscriber subscribes to the root, which always has identifier 0.
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We then can get the root cache which is used as the parent cache for a new cache to be created, at

line 7. Using the addCache function we tell the subscriber to add the cache as a child to the root

cache. After that a new object is created, at line 10, which is child of the previously created cache.

By calling the data function we get access to the underlying HerdDataPacket and can add various

data. Using the addObject function the publisher is informed about the new object and is added

to the data tree. Any other subsciber is directly notified of these changes, but only those that

are subscribed to the cache. Figure 4.19 shows that a MemCache has a set of subscribers (which

is a list of TCP session identifiers and not the instance or pointer of MemSubscriber) and a set

of MemObject instances. The MemCache itself is also of base type MemObject and can therefore,

aside from a string typed name also contain various data.

1addCachey=
1addObjecty=
1removeCachey=
1removeObjecty=
1addsubscribery=
1removeSubscribery=

MemCache

-idD:Dulong
-invokeListenerD:Dboolean

1replaceDataydataD:DcharD0.DsizeD:Dlong.DsessionIdD:Dlong=D:Dvoid
1enableListenerEventsy=
1disableListenerEventsy=

MemObject

MemObjectListener

MemCacheListener

-idD:Dulong

MemSubscriber

DataPacket

1initDatay=
1onModifyObjecty=
1updateyactionD:Dint.DobjectD:DMemObjectD0D=D0=

MemListener

data
1

0..1

parentCache

memObjects1

0..0

memSubscribers0..0

listener

Figure 4.19: Abstract class diagram of the MemObject, MemCache and MemListener.

The whole concept of this approach is to avoid complexity and keeping it minimal, having a

singular connection publish/subscribe, a data tree of containers called MemCache and leaves

called MemObject. Without diving into constraints and type limitations which is often seen in

other data formats. This however does bring limitations in accessing the data. Each object does

have an identifier, and subscribing to a cache is best done by its identifier. But a subscriber that

just connects is not aware of what is already existing. It can therefore subscribe to a cache without

traversing the whole tree and the same applies for unsubscribe. Also the subscriber provides a

function subscribeCacheByName, however this will make a subscription to the first cache with the

given name within the list of children of the given parent cache, since it is possible to simply

add caches with the same name. This is currently left for the developer to take care of. A default

approach is to first always subscribe to the root, as this is a mandatory cache, without traversing

it. From there look at its children cache names and then decide whether to create a new cache or

subscribe to an existing one.

Until now we only discussed the direct connection between subscriber and publisher, but not the

relation to its listeners and what these listeners exactly are. Whenever the publisher is pushing an

update to its subscribers, the subscribers will update their data model accordingly, however the

higher level application has no direct notion of this happening, since it happens in its own thread
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and is therefore separated. Although it is possible to directly link the data from the MemObject

by pointer and therefore any update is given, albeit not really thread safe, but in some cases it

can be used. For example we can store the mouse cursor position of each user in a single cache

and the client application is directly linked to the data object and uses the data as coordinates for

drawing cursors for each user. Whenever the data is more sensitive and does not allow for errors

to occur or when there is a conversion needed a more sophisticated method is needed, which is

provided by the listeners. For example a listener is needed when we want to share a 3D model’s

vertex data, to render this data we can use vertex buffer objects (VBOs). Since we only need to

update the VBO whenever there is an actual update from the publisher, we need to be informed

about this, upon which we can copy the data from main memory into the graphic cards memory

using OpenGL commands 5 and possibly some pre-processing might be needed (e.g. calculating

new normal and tangent vectors). The listeners are providing these functions. Depending on the

listener it either contains a MemCache or MemObject and is used at a higher level for inheritance.

A class inherits from a listener type (cache or object) and can overwrite certain event functions

which are shown in figure 4.20

+setCache(cacheU:UMemCache)U:Uvoid
+getCache()U:UMemCache
+onAddCache(cacheU:UMemCache)
+onRemoveCache(cacheU:UMemCache)
+onRenameCache()
+onAddObject(objectU:UMemObject)
+onRemoveObject(objectU:UMemObject)
+onAddCacheReply()
+onSubscribe()
+onSubscribeChild(cacheU:UMemCache)
+onUnsubscribe()
+validate()
+updateModify()

MemCacheListener

+validate()
+setObject()
+getObject()
+onModifyObject()
+onAddObjectReply(objectU:UMemObject)
+updateModify()

MemObjectListener

Figure 4.20: Abstract class diagram of MemObjectListener and MemCacheListener.

This provides the communication from the subscriber to the listener, but not from listener to

subscriber. Modifying any of the data objects doesn’t invoke any updates towards the publisher.

For this to happen the updateModify function is provided. This function can also be overwritten

since conversion of data might be needed again (just in reversed direction). Ultimately the

updateModify function in the MemSubscriber class is called which takes the full data object (thus

the HerdDataPacket) and places this into a new HerdDataPacket, this is shown in code 4.9

5VBO information http://www.opengl.org/wiki/Vertex_Specification#Vertex_Buffer_Object
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1 if (!_object−>id()) {

2 std::cerr << "MemSubscriber::modifyObject - Unable to modify publisher object, local

object has no valid id" << std::endl;

3 return;

4 }

5 auto packet = HerdDataPacket::create();

6 packet−>addField(static_cast<unsigned short>(MemProtocol::MODIFY_OBJECT));

7 packet−>addField(_object−>id());

8 packet−>addField(_object−>getData(), _object−>getSize()); //the data

9 packet−>encodeHeader();

10 m_node−>handlePacket(packet);

11 }

Code 4.9: inform the publisher to update an object.

So far we can build a tree of data, subscribe to specific parts of the tree, get informed about

any actions performed on what we have subscribed to. For each action we can implement a

custom routine for handling and invoking new operations. It is possible to modify the data

and then have it updated to the publisher. There is however one obstacle left to solve, which is

the initial synchronizing of the data model with dependencies. In the tree of data each object

is its own with the only relation of having a parent cache. However on the application level

the data model may have complex dependencies on the data elements, where for example data

element A can only exist if data element B exists or has a certain value. This is no problem if

the application already has a valid data model that has to be published, since it will just be a

conversion of each data element to a data object and the relation can be stored in the data by

using the identifier of the object. However if the application is linking to a publisher which

only pushes a set of data elements, then the application must first wait until the subscription is

finished synchronizing. After this it can invoke the buildFromCache function which will traverse

from a given cache through all child caches and objects, for each of these a invokeUpdate update is

called with add_cache or add_object as action. This in turn will call the listeners onAddCache/Object

functions, which are then used for building the appropriate data model.

4.2.4 Media Plugin Library

We can define two types of data, generic data and image data. Generic data is basically any

kind of data that we want to transmit, this data should arrive exactly the same as it was send.

The image data on the other hand can be compressed with a degree of loss in image quality

and furthermore can be treated as a single image or a stream of images (video). Therefore three

different types of compression are provided, lossless and data type independent compression is

done by zip compression (for development zlib was used 6), a single image lossy compression

using JPEG (libjpeg 7) and the third compression codec used for continues streaming rendered

images the video codec VP8 (WebM8).

6“zlib was written by Jean-loup Gailly (compression) and Mark Adler (decompression)” http://www.zlib.net/
7“Developed by Tom Lane and the Independent JPEG Group (IJG) during the 1990’s and it is now maintained by

several developers” http://libjpeg.sourceforge.net/
8Developed by On2 Technologies http://www.webmproject.org/code/
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HerdNode

HerdVpxDecoderNode

HerdVpxEncoderNode

HerdZipNode

HerdJpgNode

HerdVpxViewerNode DisplayYuv

InputHandler RawInputProtocol

Vp8Decoder

Vp8Encoder

ResetFrameCommand HerdCommand

SDL OpenGL

DeviceProfile

LibVpx
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LibJpeg
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HerdTcpNode

Figure 4.21: Vpx (encoding, decoding), Jpeg and Zip media nodes diagram.

In figure 4.21 the encapsulation of these compression libraries are given with additionally a

viewer for the VP8 codec. The Vp8Encoder and Vp8Decoder encapsulate the external library

LibVpx and provide a specific interface for using it (encoding or decoding).

4.2.4.1 Encoding and decoding

For encoding the nodes HerdVpxEncoderNode, HerdZipNode and HerdJpgNode work in a similar

manner. A HerdDataPacket is provided to the handlePacket function in the encapsulating node

where it is being buffered into a thread safe array. In a separate thread the array is checked and

for any new data it is being compressed. After compression the data is placed into a new Herd-

DataPacket object and is forwarded to its child nodes (e.g. a HerdTcpNode). The HerdZipNode and

HerdJpgNode are set to encoding through the use of node attributes, where the VP8 is provided

in separate encoding and decoding nodes. Both the Jpg and Vp8 encoders assume that the data

provided is in RGB format. In general the procedure is as follows: The Vp8Encoder initializes

itself for encoding, providing pre-set variables such as the target bit-rate, the key frame inter-

val, width and height. Then within running thread upon receiving data the encode function is

called and the dimensions are checked between given frame and the encoder’s initialized dimen-

sions. The frame data is then extracted from the HerdDataPacket, converted into YUV format9 and

copied into the buffer for encoding. The output of the given frame is provided into two parts,

first the header, which is 12 bytes and then the body. The data is copied into a HerdDataPacket,

9YUV is a colour space with reduced bandwidth for chrominance components http://en.wikipedia.org/wiki/
YUV
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additionally with the base protocol identifier frame (code: 4.7).

The decoding works similar to the encoder, with the difference that the decoded data is handled

again by the node, and then either being placed into a buffer or send to a given callback function.

The decoding output of VP8 frames however is handled in a more special way. The data from

the HerdDataPacket object is decoded into a YUV frame but is not directly converted into RGB,

instead separate buffers for each channel (Y,U,V) are directly accessible from the outside. The

HerdVpxViewer takes advantage of this by converting the data itself according to the capabilities

of the hardware and platform it is running on. Offering three different conversions, the straight-

forward single threaded CPU conversion which is the most intensive but can run on any system,

a more optimized threaded version which can give more benefit with larger image dimensions

and a GPU version which uses an OpenGL fragment shader for the conversion.

4.2.4.2 Remote rendering client viewer

The HerdVpxViewer is used as a general client to any VP8 video streaming service and supports

the streaming over TCP and UDP. Upon executing the service it creates a single window in which

the incoming frames are displayed. The rendering is using the Simple DirectMedia Library 10

and can use either software renderer or accelerated renderer using OpenGL (SDL also supports

Direct3D however no rendering path for this has been implemented). Several checks are used to

determine the appropriate renderer to use. If accelerated is supported (in this case we only use

OpenGL) a second test is used to determine if shaders are supported and the non-square texture

support 11. If the test fails, the CPU method for YUV to RGB conversion is used and the result is

rendered using OpenGL’s command glDrawPixels. Otherwise the shader is used and the process

of converting YUV to RGB is transferred to the GPU. The shader for this is given in code 4.10.

10Simple DirectMedia Library (SDL) www.libsdl.org
11GL_ARB_texture_rectangle enable non-power of two dimensions texture targets http://www.opengl.org/

registry/specs/ARB/texture_rectangle.txt
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1 #extension GL_ARB_texture_rectangle : enable

2 uniform sampler2DRect Ytex, Utex, Vtex;

3

4 void main(void) {

5 float r,g,b, y,u,v;

6 y = texture2DRect(Ytex,vec2(gl_TexCoord[0].x, gl_TexCoord[0].y)).r;

7 float nx = gl_TexCoord[0].x * 0.5;

8 float ny = gl_TexCoord[0].y * 0.5;

9 u = texture2DRect(Utex, vec2(nx, ny)).r;

10 v = texture2DRect(Vtex, vec2(nx, ny)).r;

11 y = 1.1643 * (y − 0.0625) ;

12 u = u − 0.5;

13 v = v − 0.5;

14 r = y + 1.5958 * v;

15 g = y − 0.39173 * u − 0.81290 * v;

16 b = y + 2.017 * u;

17 gl_FragColor = vec4(r,s g, b, 1.0);

18 };

Code 4.10: the GLSL fragment program for converting an YUV image to RGB.

From the code it is shown that for each channel a separate texture is used (uniform sampler2DRect)

and corresponds to the channels provided by the decoder. In code 4.11 the rendering and up-

date of the textures procedure is shown. For each channel the corresponding texture unit is

activated and updated using the glTexSubImage2D command, which streams the buffer from the

main memory to the GPU memory. After updating each channel a full-screen quad polygon is

rendered which in combination with the active fragment shader visualizes the final image.

1 glActiveTexture(GL_TEXTURE1);

2 glBindTexture(GL_TEXTURE_RECTANGLE_NV,1);

3 glTexSubImage2D(GL_TEXTURE_RECTANGLE_NV, 0, 0, 0, m_width>>1, m_height>>1, GL_LUMINANCE,

GL_UNSIGNED_BYTE, m_uBuffer);

4 glActiveTexture(GL_TEXTURE2);

5 glBindTexture(GL_TEXTURE_RECTANGLE_NV,2);

6 glTexSubImage2D(GL_TEXTURE_RECTANGLE_NV, 0, 0, 0, m_width>>1, m_height>>1, GL_LUMINANCE,

GL_UNSIGNED_BYTE, m_vBuffer);

7 glActiveTexture(GL_TEXTURE0);

8 glBindTexture(GL_TEXTURE_RECTANGLE_NV,3);

9 glTexSubImage2D(GL_TEXTURE_RECTANGLE_NV, 0, 0, 0, m_width, m_height,GL_LUMINANCE,

GL_UNSIGNED_BYTE, m_yBuffer);

10 drawQuad();

11 SDL_GL_SwapBuffers();

Code 4.11: Updating the Y, U and V textures.

4.2.5 From Desing to Implementation and back

In this section we reiterate on the presented design in the previous chapter and look at how the

implemented architecture relates to it. We look at the adaptive rendering overall architecture as

presented in figure 3.2 and elaborate on each of the several layers in a bottom-up fashion. At

the lowest level of the architecture we find the Network layer, the physical layer. On this part
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we have not much influence other than creating supportive software on top of it. Albeit one

might argue that changing structures in the physical network in order to adapt to the need of

the framework would greatly improve its usefulness (e.g. packet prioritizing, better multicast

support etc.). This is however out of the scope of the current research, as we mainly look at the

structures on top of this layer and how these can be more optimally structured and deployed.

The Communication abstraction layer containing the event manager and the communication manager

can be found back in the form of the basic HerdNode and the implementations of the protocols

inheriting it. We find these in the Core libraries (section 4.2.3), supporting TCP and UDP. The

data packets (HerdDataPacket) are basically the events containing an identifier and other data.

As was illustrated in table 4.1, a data packet contains a minimal header and does not force the

use of an identifier. The header, containing packet size and system protocol identifier, has the only

five bytes that are mandatory. The use of an extra identifier is presented here as a good practice

and is used in all application scenarios as user protocols. Where the first two bytes after the

system protocol identifier reflect the type of packet, represented in an unsigned short (hence two

bytes and thus a theoretical limit of 65536 identifiers are possible). The communication node

processes incoming and outgoing packets and performs minimal event management. Albeit the

presented TCP does register sessions and creates internally packets to inform the higher level

event management. This is given through either a callback function, pushing upwards to a

parent node or by buffering and externally fetching packets from the buffer. The usual method

is using the callback functionality, it prevents unwanted handling of packets in the parent node

(it also gives a more clear direction of the packet flow, thus parent to child). Fetching from the

buffer is useful if the packet has to be handled within a certain thread (e.g. rendering thread

or specific GUI architectures in which multi-threading makes it overly complicated). In general

Event Manager is the function that reads just the first two bytes and then determines where

the packet has to go for further processing. This function is simply a switch-case structure, an

example is shown in code 4.12.

1 void ClassName::handlePacket(DataPacketPtr packet)

2 {

3 unsigned short eventId = packet−>getUShort();

4 switch(eventId)

5 {

6 case CommunicationProtocol::MOUSE_DOWN:

7 handleMouseDown(packet);

8 break;

9 case CommunicationProtocol::FRAME_RATE:

10 handleFrameTime(packet);

11 break;

12 default:

13 std::cout<<"ClassName::handlePacket Unknown event ID: " << eventId << std::endl;

14 }

15 }

Code 4.12: Example of handling an incoming a data packet.

The example has been shortened for visibility, showing two cases from the user protocol, where

92



4.2 The Architecture - The Herd Framework

the first case MOUSE_DOWN is further processed in function handleMouseDown and is shown in

code snippet 4.13. The function handleMouseDown implements the actual unmarshalling of the

packet. It shows that in sequence the data is taken from the packet and fed to the function that

acts on the given data. In this case it is a viewer instance from OSG where we force a mouse

button press event. Which is then handled by the OSG instance and further application logic that

responds to it.

1 void ClassName::handleMouseDown(Herd::DataPacketPtr _dataPacket)

2 {

3 float x = _dataPacket−>getFloat();

4 float y = _dataPacket−>getFloat();

5 unsigned int b =_dataPacket−>getUChar();

6 m_guiInstance−>getEventQueue()−>mouseButtonPress(x,y,b);

7 }

Code 4.13: Process a mouse button down (event)data packet.

If we look back at the overall architecture then the single box for Event Manager is represented

in the implementation a dispersed set of functions, that either run in sequence or are operating

independently in a paralleled fashion with the only connection a shared buffer. This makes it

hard to concretely lay down the handling of event as we can only describe it at a very low level.

Using any 3rd party library often already introduces their own event management system and

therefore changes the implementation. The benefit of the presented framework is that it is able

to adapt to these circumstances in that it offers a uniform low level connection, easy enough for

using custom packet handling or 3rd party conversion/adaptations.

At the next layer the focus lies on the adaptation, containing the modules Context Manager,

Adaptation Manager and Data Controller. Most of the functionality needed for these modules are

harboured in the Media library, containing several nodes for compress, decompress and visu-

alization. The Context Manager is best represented by the viewer, HerdVpxViewerNode12, as it

monitors the rate at which it can process the data and sends back information on the optimal

data rate. This is continuously updated in order to adapt to changes in the either the network or

on the device itself. However the viewer, which uses SDL (OpenGL), is not utilized in all scenario

applications. Mainly due to different requirements on the actual streaming. In most cases where

the 3D content is streamed the viewer can be directly used as a node attached within the client

program logic, but in some cases different means are used. Best example is scenario The Collab-

orative MRI Segmentation, which requests new frames, instead of a steady stream of frames. The

viewer also has been partially reimplemented in Java and C# and in combination with other vi-

sualization libraries such as Qt and OSG. Therefore the Context Manager cannot be pinpointed to

a single part in the framework, it does however provide a reference implementation given by the

viewer. The same applies to the subcomponent Resource Manager, as different 3rd party depen-

dencies change the way on how to handle data, out framework does provide uniform methods

on how to generalize the procedure. The HerdNode provides a single entry for data packets,

these can be processed directly or buffered. In case of buffering the node is usually running its

12The name HerdVpxViewerNode is a bit misleading as it also can visualize JPG and direct raw images.
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own thread and checks the buffer for new packets. Another method is the publish-subscribe data

sharing (section 4.2.3.3), which offers a full sharing and data coupling solution between server,

client and the client internal data structures (figure 4.17). This is linked with the Data Controller

as it offers a structured way on how to control the data. It does not enforce what specifically

should be done with the data, as this is part of the overall program logic (thus the application

functionality). It is also linked with the layer on top of it, the Presentation layer, which focuses on

the actual rendering, compression and state of the program. The procedure of the 3D rendering

and presentation information exchange to the 2D rendering is best given in the first application

scenario Remote Rendering for Low-end Devices in section 4.3. Where the rendering is performed

by some graphics library (e.g. Used OpenGL based libraries such as SDL, Qt and OSG), frames

being grabbed and forwarded to a compression node and after send to connected sessions. The

Dynamic state management refers more to the publish-subscribe internal data structures which are

event driven by any changes that are made to the data, either coming from the Data Controller

(e.g. from the network) or from the top layer, the Application Layer. The Device Input Management

is translated into client side functions that translate incoming application events into event data

packets with a identifier from the user protocol. During the implementation of the scenarios (de-

scribed in the sections hereafter) several adaptations for handling the input management have

been invented. Mostly combined with the interface adaptation and representation methods. The

last layer on top of it all is the Application Layer which contains most of the application func-

tionality itself. Meaning that all the layers underneath it are there to enable and extended user

experience by facilitating collaboration, unburden the client and/or enabling clients to present

visualizations of which they are inherently not capable. One major aspect, which is not truly vis-

ible in the presented context-aware adaptation rendering system architecture, is the scalability itself.

The framework does not decide what has to be a server or a client (as the way it is presented

in figure 3.2), it simply offers the flexibility with the presented node structure, and full-fills the

requirement.

4.3 Remote Rendering for Low-end Devices

The implementation of the first scenario as described in section 3.5 is setup as a typical server/-

client. Where the server is a service on the network and the client can be utilized on a variety

of hardware. Following the layers presented in figure 3.9 we can already see that many of the

functionality is provided by the previously described core- and media-library plugin. The server

is utilizing the OSG rendering engine and can load 3D scenes from file. In the test setup (see

section 5.2) a static 3d model is used and interaction is limited to rotation of the model.

In order to capture a frame within OSG, a post camera callback has to be added to the active

camera within a viewport (figure 4.22). The callback contains a pixel buffer, which is activated

and a fast copy of the front buffer (since we don’t need the back buffer, double buffering is

disabled by default) into the pixel buffer is performed. Thereafter the mapping is set to the pixel

buffer, through which we can access directly the data and copy the pixel information into a local

buffer. This provides a great performance in contrast to directly reading from the front buffer
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Figure 4.22: Rendering and reading the buffer from the GPU to local memory, in order to be processed by
the adaptation and finally send over the network.

using for example glReadPixels. The local buffer, Data packet, is pushed into the adaptation thread

where the data is being compressed. For compression the previously presented media library

is used and can switch depending on the device between the JPEG and VP8 codec. The output

packet is given to the network thread to be send to the end-device for display. For grabbing the

frame in OSG the code presented in snippet 4.14 and 4.15. The code has been condensed to the

specific frame grab functionality only, constructors and helper functions are removed as well as

additional functionalities for adaptation, such as per user session frame per second limit.

1 struct RenderThread : public osg::Camera::DrawCallback {

2 public:

3 virtual void operator () (osg::RenderInfo& renderInfo) const {

4 glReadBuffer(_readBuffer);

5 auto extension = osg::GLBufferObject::getExtensions(_gc−>getState()−>getContextID(),true);

6 if (ext−>isPBOSupported()) {

7 grabFrame(extension);

8 }

9

10 void grabFrame(osg::GLBufferObject::Extensions* ext);

11 }};

Code 4.14: Example code for grabbing a frame in OSG, internal struct ContextData

The snippets show the main function for grabbing a frame, since this is specific code using OSG

some limitations were applied such as the use of a osg::Camera::DrawCallback struct. However the

callback can be easily attached to any camera given in OSG and the given view of the virtual

camera is streamed. The struct is called RenderThread which implies that it is a thread, this naming

is related to the threaded nature of OSG which heavily relies on threading. But mostly this name

was chosen as to distinguish between render thread, compression thread and networking thread

which it originally started with.
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1 void RenderThread::grabFrame(osg::GLBufferObject::Extensions* ext) {

2 if (_pboBuffer==0) {

3 ext−>glGenBuffers(1, &_pboBuffer);

4 ext−>glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, _pboBuffer);

5 ext−>glBufferData(GL_PIXEL_PACK_BUFFER_ARB, m_totalSizeInBytes, 0, GL_STREAM_READ);

6 } else {

7 ext−>glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, _pboBuffer);

8 }

9 glReadPixels(m_user−>m_offsetX, 0, m_user−>m_width, m_user−>m_height, _pixelFormat, _type, 0);

10 GLubyte* src = (GLubyte*)ext−>glMapBuffer(GL_PIXEL_PACK_BUFFER_ARB, GL_READ_ONLY_ARB);

11 if( src ) {

12 m_dataPacket−>setId(m_user−>_user_index);

13 memcpy((void*)m_dataPacket−>getReadPosition(), src, m_totalSizeInBytes);

14 m_user−>m_encoder−>handlePacket(m_dataPacket);

15 ext−>glUnmapBuffer(GL_PIXEL_PACK_BUFFER_ARB);

16 }}

Code 4.15: Example code for grabbing a frame in OSG

What happens is as stated before we first set the buffer from which we want to get the pixel data,

line 4 in snippet 4.14. After this since we utilize an intermediate copy of the buffer to a off-screen

buffer the specific extension for this is being accessed and checked if supported. If the extension

is supported the grabFrame function is being called. Through the use of the extension we set

the appropriate settings and bindings. Snippet 4.15 can be read into two parts, first the check if

the off-screen buffer was created (line 4, _pboBuffer. If not, then the buffer is allocated with the

appropriate memory size. And otherwise the existing buffer is simple activated, called binding

(line 7). The second part is the actual reading of the buffer. The command glReadPizels is used,

but its usage now has changed slightly. Because of the binding of an GL_PIXEL_PACK_BUFFER

the last parameter is no longer used as data output but as a byte offset within the bound buffer.

Therefore the pixel data is directly copied into the buffer which then can be mapped and a local

pointer access is given. Using a memcpy command the whole buffer is copied into a data packet

which is then further handled by the encoder. Figure 4.23 shows a sample application using our

proposed system.
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Figure 4.23: Remote rendering for Laptop and PDA.

4.4 Remote Rendering with Augmented Reality

As described in the section 3.6 two different approaches to the given scenario are given. There is

no direct interaction with the virtual camera other than physically moving the web-cam and/or

the fiducial markers.

The first design, figure 3.10, directly sends the web-cam image to the server and performs no

others task aside from rendering the incoming frames from the server. We utilized on the UMPC

an attached web-cam and a small program called WebcamXP13 which streams images from the

client to the AR server. Once the imaged has arrived at the server, we use the ARToolKit library

to track our camera according to the marker. The resulting transform then controls our virtual

camera. We then augment our VTO frame with the web-cam image.

JPEG compression is performed on the image before sending it back to the client. A raw 320x240

RGB8 image is 225KiB large. At 15 frames per second (fps) this would account for 3.3MiB, which

approaches the limits or our UMPC’s Wireless Fidelity (Wi-Fi) capabilities. The JPEG compres-

sion brings it down to about 12 to 14 KiB. We added compression by using Zlib[113], which

reduced the size with an additional 2 to 4KiB, which does gain some additional performance

even with the increased compression and decompression times. On the client side the images

are decompressed and drawn into the frame buffer using a glDrawPixels call. The major advan-

tage of this setup is that, because the server has the final augmented result it can be distributed

using the networking middleware to any number of clients, thereby allowing the user to share

their results in real-time. The problem with this setup lies in the used video streaming. AR-

13WebcamXP web-link: www.webcamxp.com
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Toolkit expects to connect to a web-cam, which necessitated the use of WebcamXP to create an

image stream and a virtual web-cam on the server side to connect to this stream. This drives up

CPU utilization on the server side, and combined with the buffering that happens in the stream

we get an additional lag of the final result. To eliminate the use of camera stream from client to

server a second setup was established (figure 3.11) in which the camera tracking is performed

on the client side. In stead of ARToolKit we used ARToolkitPlus 14. This is an edition that is

less heavy on the CPU and made with mobile devices in mind. All we transfer to the server is

the transformation matrix that is the result from our tracking. This leads to another necessary

change. Now the final augmentation is no longer performed on the server side, but by the client

itself. The server only renders an image using the transformation matrix in the VTO. Augment-

ing this result onto the camera frame can be done in either of two ways. By employing a simple

colour key blending scheme we can compress the image in a similar way as in the first setup. We

found however that the JPEG compression would result in some unwanted artefacts around the

border of our virtual fashion model. An alpha-blending approach provides results of a higher

quality, although this comes at the cost of an extra alpha layer in addition to the RGB data. In the

case of alpha blending we used Zlib compression only, although we could have combined it with

a PNG format. Overall performance did not significantly differ between these two approaches.

The added benefit of having an alpha-layer is the option to include shadowing information or

even a level of transparency in garments made of certain translucent fabrics.

The advantage of this setup over the first one is the increase in performance. By sending only

the transformation matrix the amount of data sent to the server is minimal. The limiting factor

in this scenario turned out to be the capture speed of the used webcam, which was 15 fps for

a decent quality. There are some disadvantages as well. We do currently not store the image

used for tracking on the client. So when the resulting VTO frame comes back from the server it

gets blended with a new frame from the camera. This causes some visible mismatch, although

not nearly as significant or disturbing as the lag introduced by the first scenario. Furthermore

the blending operations, although simple, do require some graphical power on the UMPC. The

combination of glBlend and glDrawPixels calls currently do keep up with the web-cam speed, but

at higher resolutions or frame rates this might turn out to be problematic. One of the advantages

of the first scenario disappears as well. The server no longer has the final augmented frame, so

distribution to other viewer clients is not as easy and natural as in the first scenario.

4.5 Adaptive Rendering with Dynamic Device Switching

The implementation of this application scenarios was done in two application setups. The first

with the focus on switching between devices without losing the user session and the second on

the sharing of data between devices. Both setups are depended on 3rd party provided technolo-

gies and will be more elaborated on in the respective sections.

14ARToolkitPlus web-link: http://studierstube.icg.tugraz.at/handheld_ar/artoolkitplus.php
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4.5.1 Real-time switching device

In figure 4.24 the components are given for the two instances, the server side and client side. The

server or Content Server contains the 3D content, rendering and adaptation, for security the License

Manager, and the Home Agent for the Mobile IP (MIP). On the user side we see several counter

parts, such as the Personal Agent and PA Manager which are part of the MIP, for security the DRM

client module and last for the adaptive rendering the Presentation Manager and Interface Adaptation

Manager. On the client side we have furthermore the localization module Localization Management

which is connected to its external system the Context Manager. For specific implementations on

the 3rd party modules see the Intermedia project for references as we can only go into detail on

our framework and the integration (see section D.1).

3D Content 
Manager

3D Renderer
Adaptation 
Manager

License Manager Home Agent Personal Agent

PA Migration 
Manager

DRM Client

Localization 
Management

Context Manager 
(SAIL)

Presentation 
Manager

Interface 
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Content Server User Client

UDP UPnP

Figure 4.24: System setup for Adaptive Rendering with Dynamic Device Switchingscenario

The Content Server exists out of several servers (figure 4.25), in order to support Mobile IP two

servers are employed, the security module is run separately as well as the Context Manager(SAIL).

The Mobile IP is ubiquitous towards the server and partially to the client application. Only need

minimal implementation on the client side. Specific drivers need to be installed which did

however limit deployment of the client implementation, as the Windows operating system was

required and only UDP was supported for network communication.

For integrating the MIP the client has to use the provided library and include a single header,

as shown in code 4.16. The header provides three functions that have to be used, start, stop and

check_registration.

1 #pragma comment(lib, "MobileSession.lib")

2 #include "mobile_session.hpp"

Code 4.16: Adding the Mobile IP framework.

After the inclusion the MIP has to be started, meaning that we have to tell the system that we want

to use the IP provided by the MIP framework. This will add the session address to the device

and starts the Mobile IP registration for it. As shown in code snippet 4.17 the start function takes

two parameters, the session_address and home_agent_address, which must be obtained in some

way, either from command line, reading them from a configuration file, etc. The start function

returns true on success or false if cannot use the Personal Agent to connect to the Home Agent.

The session_address is the IP that we want to use and the home_agent_address corresponds to the
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Figure 4.25: The Mobile IP servers running inside virtual machines, with a Linux distribution as operating
system.

server that will register the session address.

1 std::cout << "sessionAddress:" <<sessionAddress.c_str()<< " homeAgentAddress:"<<

homeAgentAddress.c_str() << std::endl;

2 if (!start(sessionAddress.c_str(), homeAgentAddress.c_str()))

3 {

4 std::cerr << "Error communicating with Mobile Session Service." << std::endl;

5 return false;

6 }

7 if(!checkRegistrationMobileSession())

8 {

9 std::cerr << "checkRegistrationMobileSession returned false." << std::endl;

10 return false;

11 }

12 return true;

Code 4.17: Starting the Mobile IP on the client, connecting to the Home Agent.

With the session address or more correct the Personal Address tells the system to use this instead

of its host IP address. The registration of the Personal Address is shown in code snippet 4.18. The

registration process takes some time for completion, however the function returns immediately

(to avoid blocking application), therefore a time-out structure is used.
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1 std::cout << "Probe Mobile Ip registration" << std::endl;

2 bool registered = false;

3 while(!timeOut)

4 {

5 registered = check_registration() == 0 ? false : true;

6 if (registered)

7 break;

8 Sleep(500);

9 }

10 if (!registered)

11 std::cerr << "Mobile IP registration error." << std::endl;

12 return registered;

Code 4.18: The Run function within the Node class.

Where the start function tells the client device to use a certain IP address, the registration tells

the Home Agent to have the given IP address corresponding to the underlying media access

control (MAC) address. To unregister the session address and basically remove it from the

device, a single call to the stop function is required.

In this setup we have the client with a specific Personal Address that we can take from device

to device. This is simply done by having another client starting and registering, which will

change the registered MAC address at the Home Agent and therefore the server streaming is

automatically redirected. This implementation however supports only one client, in fact the

server simply wait for an incoming UDP packet at the right port and will start sending out UDP

packets containing the 3D rendering output to the address it got from the incoming packet.

In summary switching between devices is a client executing the register function. When and how

this happens is done using the Localization Management or the SAIL system. At each device there

is a Zigbee module, and we identify the device by its Zigbee module. Each module has an iden-

tifier and all together construct a mesh network based on the least power consumption between

modules. The user carries a Zigbee module, which will automatically connect to the nearest

Zigbee module. By looking at the connecting modules, we can extract which device should be

active. This has to be communicated to the client application as otherwise no registration will

happen. Albeit a bit crude, the solution to this was using a http server publishing the active

module by its identifier. The client application polls every half a second the http server to check

if it is still the active device. In case the identifier changed, it will call the stop function and

therefore stop receiving the streaming from the server. Another device that then corresponds to

the changed identifier will start and register, continuing the visualization of the stream.

The third aspect of this scenario was the security. A digital rights management (DRM) licensing

system was used to authenticate the device to receive the stream. It did not however perform

encryption on the streaming itself. Figure 4.26 shows how a session take over is performed.
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Figure 4.26: Switching between devices using security enforcement and session takeover.

4.5.1.1 Interface Adaptation

In order to support interface adaptation for different devices, we utilized the Qt framework for

the rendering of the interface, and used the interface language for describing the interface. The

content for rendering was provided by the 3DAH project (section D.2) and contains a 3D bone

and muscle model of the leg with an ontology. For designing the interface the Qt Designer was

used, which then saves the interface in an XML formatted file. A minimal example is shown in

code 4.19.

1 ...

2 <widget class="QWidget" name="centralwidget">

3 <widget class="QTreeView" name="ontologyView">

4 <property name="geometry">

5 <rect>

6 <x>0</x>

7 <y>0</y>

8 <width>256</width>

9 <height>192</height>

10 </rect>

11 </property>

12 </widget>

13 ...

Code 4.19: Qt Interface language.

When a device sends a profile event to the server, which basically contains an identifier upon
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which the server sends back the associated interface file to the client. This is illustrated in figure

4.27a and 4.27b where the laptop for example has control over the transparency of the muscles

and the pda does not. In this case the interface changes are minimal but serve as an example. It

should be noted that the server does not depend on Qt itself, rather it just sends the requested

data to the client.

(a) Laptop interface (b) PDA interface

Figure 4.27: The server provides a slightly different interface depending on the device profile.

The client reconstructs the interface from the received data using the QUiLoader. However this

does not have any functionality since there are no bindings to functions etc. and furthermore the

interface description does not describe what this functionality will be. We must therefore inter-

cept the events from the widgets and send them back to the server, where the actual application

is running. The Event Manager on the server will then execute the functionality bound to it. This

is shown in code snippet 4.20

1 inline void GuiLoader::load(unsigned char * interfaceData, unsigned long size){

2 QByteArray ba((const char*)interfaceData, size);

3 QBuffer buffer(&ba);

4 delete formWidget; //delete old interface

5 formWidget = loader.load(&buffer, 0);

6

7 QList<QPushButton *> qButtons = formWidget−>findChildren<QPushButton *>();

8 foreach (QPushButton *qButton, qButtons)

9 eButtons.push_back(new EPushButton(qButton));

10

11 QList<QTreeWidget *> qTrees = formWidget−>findChildren<QTreeWidget *>();

12 foreach (QTreeWidget *qTree, qTrees)

13 eTrees.push_back(new ETreeWidget(qTree));

14

15 QList<QSlider *> qSliders = formWidget−>findChildren<QSlider *>();

16 foreach (QSlider *qSlider, qSliders)

17 eSliders.push_back(new ESlider(qSlider));

18 }

Code 4.20: Extract basic interface elements and overrule them with custom implementations.

Upon receiving the interface description the load function is called. There using the default

QUiLoader the interface is constructed. After the construction we traverse the interface and filter
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out all widgets and create our own widgets wrapping around each. In the presented code can

be seen that only push buttons, tree widgets and sliders are supported. Normally every Qt offered

widget has to be wrapped around in similar manner in order to intercept its events and inform

the server. Code 4.21 shows an example wrapping implementation.

1 ESlider::ESlider(QSlider *slider): m_slider(slider){

2 connect(m_slider, SIGNAL(sliderMoved(int)), this, SLOT(SliderMoved(int)));

3 }

4

5 void ESlider::SliderMoved(int sliderValue){

6 DataPacketPtr dataPacket = HerdDataPacket::create();

7 dataPacket.addField(UserProtocol::GUIEVENT)

8 dataPacket.addField(m_slider−>objectName().toStdString());

9 dataPacket.addField(sliderValue));

10 m_networkNode−>handlePacket(dataPacket);

11 }

Code 4.21: Wrapping a slider widget and connect its event to a custom function.

The base slider is kept by pointer value and a Qt connect function enables the communication of

events to the desired function. In this case, whenever the slider moves the ESlider::SliderMoved is

called. A packet is then created, providing first the user protocol identifier, followed by the name

of the widget (in Qt all widgets have an unique internal name) and last the new value. This is

then send to the server which will handle the rest and the client application will see the response

within the 3D rendering.

4.5.2 Data sharing among switching devices

In this section we illustrate how the three components of the system, interactive table, mobile

phones and 3D graphics, have been implemented to deliver the integrated interactive experience

for medical students. The integral component of the system is the multi-touch interactive table

which is basically a composition of various technologies (infra-red light, infra-red camera, and

projector) integrated together in one box and coordinated through computer-vision software

[114].

(a) Moving - five fingers. (b) Rotating - four fingers.

Figure 4.28: Interactive table moving and rotate.
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(a) Zooming - two fingers. (b) Selecting - one finger.

Figure 4.29: Interactive table zooming and selecting.

The table uses the Windows operating system and inherently supports single-pointer events.

Many solutions have been introduced to overcome this limitation and the TUIO framework is

one example. It defines a protocol and an API for tangible multi-touch interfaces which have

been integrated into OSG to translate multiple touches on the table surface to corresponding

single-pointer events that it handles. In this case, moving five fingers along the surface of the

table triggers the move action of the 3D model as in figure 4.28a. Moving four fingers will rotate

the model in the appropriate rotation angle, figure 4.28b right. And dragging two fingers towards

each other zooms out the model and dragging them apart zooms in, figure 4.29a.

A Java ME15 application has been implemented to handle the detection of and the connection

to the server. Both NFC and Bluetooth16 have been utilized to accomplish this. NFC is a short-

range high-frequency wireless technology which utilizes touch as a way of interaction between

two phone terminals, or between a phone and an NFC tag. The system here adopts the second

case where a student touches an NFC tag on the table with her NFC phone to identify the

Bluetooth address of the server. Then the mobile application initiates the authorized Bluetooth

connection and sends the 3D model across in XML format which is then parsed and rendered by

the 3D viewer.

The transferred model is a 3D model of the upper leg muscle and bone construction and it is part

of the 3D Anatomical Human project17 whose purpose is to study the anatomical and functional

aspect of the musculoskeletal system. A medical student can interact with the model’s different

parts by touching them directly on the table. She can tap the muscle or bone of interest on the

3D model and see its corresponding name on a side menu that is displayed along with the model

on the table. In addition, the user can disable parts of the 3D model in order to help her closely

diagnose specific bones or muscles. And she can even control the transparency of any of its parts

to allow a see-through experience. Both these actions are triggered when one finger touches the

surface of the table as figure 4.29b above shows.

15Java micro edition for mobile devices http://www.oracle.com/technetwork/java/javame
16Bluetooth wireless communication system http://www.bluetooth.com/
17Project 3DAH section D.2
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4.6 Service Distribution and Render Context Switching

In this section we discuss the methods and design for modifying the existing application in order

to support the goals as stated in the first section.

Rendering

Simulation 

& 

animation

Adaptive 

Rendering

Phone

Client

Tablet

Client

Desktop

Client

User

Session

Network

Session

Input 

Handling

Phone

Client
Server

Figure 4.30: Abstract system overview.

The VTO is represented by the Simulation & animation, Rendering and Input handling in figure

4.30. It has been separated into several nodes as will be shown later that each of these parts are

handled in separate threads, whereas the initial instalment is a straight forward single threaded

desktop application (aside from the inherit threading capabilities from OSG and Qt). The User

session, Adaptive rendering and Network session are partly application logic and are based on parts

of the Herd framework. The user session contains the state of each user connected, this includes

session identification, device-hardware profile, interaction-input capabilities. Thus all informa-

tion needed for the rendering for a specific end-device, the optimal parameters for the adaptation,

and identification of the networking session and connection. The adaptive rendering provides

a couple of functionalities, first of, the grabbing of what is being rendered, a frame, as this has

to be send to the end-client through the network. Secondly, the compression of the frame into

a more optimized data size for sending over the network and to be handled by the end-device.

Figure 4.30 shows three different clients (phone, tablet and desktop), where each of these offer

a different experience in terms of input, screen size and mobility. In the following sections we

analyse the current application and discuss the conversion into a multi-user service.

4.6.1 A multi user approach for a collaborative view

The base implementation of the VTO application is a single window application, as presented

in figure 4.33, rendering in an OpenGL context and accepting solely mouse pointer interaction.

All direct interaction with the avatar customization is provided through Qt widgets, which are

visualized within the 3D environment (OSG). Aside from interaction with the widgets, any other

mouse input is handled by the OSG manipulator for the virtual camera. Meaning when dragging

the mouse anywhere else than on a widget makes the camera rotate or pan for example.

The performance from a single threaded application is the accumulation of processing time for

each of its components and often is held back by some of these, which in this case is the VTO
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(b) Separation of the simulation and rendering.

Figure 4.31: From sequential to parallel, separating the simulation and rendering.

simulation. Therefore in order to be able to handle multiple users we need to decouple the

simulation of the avatar and garments from the rendering and input handling. And while we are

at it, the avatar animating component is taken apart also, since the animation and simulation have

the dependency to be executed in sequence. This is shown in figure 4.31a and 4.31b, where on the

left the application is limited to about 25 to 30 frames per second depending on the complexity

of the garment used by the simulation. For a single user application this might be acceptable,

however serving the same simulation and rendering to a multitude of users is going to increase

the cycle time significantly which results in a lower response and overall interaction rate. On

the right the simulation and animation are both placed into their own respective thread, and

are slightly executed in sequence, as first the animation thread is setting the new pose (the next

animation frame for the underlying skeleton) for the avatar, then the simulation thread handles

the deformation of the garments. The rendering is continuously as the interactive widgets are

also rendered into the same 3D context, therefore the updating of the avatar for rendering is

based on an update condition, which is set after a simulation cycle. If this condition is not met,

the current unmodified avatar will be rendered again.

The next step is to be able to render for multiple users, which is presented in figure 4.32. This

we do by providing multiple virtual cameras and at each rendering cycle looping through the

active users, set for each user the proper context (virtual camera, interactive widgets). The OSG

toolkit offers functionality to create multiple views (composite viewer), and therefore being able

to initialize for each user a unique view, while still sharing the data among each OpenGL context.

Each view has its own event queue which takes the input given by the user and is handled within
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Figure 4.32: For each user a separate frame needs to be rendered, with also the separation of the events
between sessions.

the given context. However normally each view is still rendered locally, meaning that the input

comes from directly connected devices at the computer running the application. In our scenario

the input is provided, marshalled into events, from each client through the network. Therefore

we need to handle in each view the events linked to the given user session and convert them

into the proper OSG events. Furthermore higher level events still need to be handled at the main

thread, such as accepting new sessions and attach a newly created view.

The client implementation is more straightforward and is closely designed to the MVC model.

Where there are two controllers, the application logic for handling user input and global inter-

action and the second controller handles the network events, render updates and profiling. The

network part handles incoming stream packets, into a buffer, which is read by the decoder. The

decoder flags for update after each decoded frame. The rendering measures the time between

each frame and how long it takes for processing a frame. This value is given back to the server to

adjust the frame rate. The server uses a relaxation in order to filter out spike frame rate adjust-

ments. This for example happens if the Wi-Fi connection is lost for a second, or the application

stops responding, but the network is still buffering frames. Aside from the client frame adjust-

ment, the server also tracks the frames it had send and can fill up a micro-buffer (3 to 4 frames),

if the micro-buffer is full the server will stop rendering for the given view port. This kind of

“hard frame drops” prevents the encoder and decoder from producing artefacts, since no frame

was lost between them.

The tablet and desktop client are programmed using C++ language and uses SDL software and

hardware acceleration (based on the OpenGL API for rendering). Supporting both VP8 and

MJPEG as input from the server. Albeit VP8 is preferred and can be decoded using hardware

acceleration and without for older hardware. The smart-phone client device is a Microsoft Win-

dows Phone 7 (WP7), and therefore limited to use the specialized WP7 software development

kit (SDK) support the C# programming language since no native SDK is provided, and this limits

us to use MJPEG for streaming as JPG decompression is supported while VP8 is not. Utilizing

Microsoft’s XNA framework (based on the Direct3D rendering API which in turn is part of Di-

rectX) the JPEG image is decoded and streamed into a texture. This texture is then rendered as

a full screen 2D sprite onto the phone’s display.
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Figure 4.33: The VTO example showing a screenshot from the client-program.

4.7 The Collaborative MRI Segmentation

The server holds the semantics and constitutes the 3D processing modules in Medical semantic

layer (figure 3.20), while subscribers share and edit the polymorphic presentations. It provides

a 3D rendering view of the surface model and a 2D view on a per user base. In this current

implementation, the 3D rendering is only for illustrative purposes and not used in the collabo-

rative editing. The views can be synchronized which means that all the users observe the same

slice. This particular mode is appropriate in the teacher-students scenario described in section

5.6.1, in which the teacher first segments while the students only observe as shown in figure

5.11. A second mode consists in letting the users to view a slice independently to the other

users in the same session. This option is essential for the second case scenario, in which experts

can segment different parts of the same dataset. The 2D viewer consists of the standard image

manipulations controls - LUT change, B/C, scaling, and annotation, in addition to be able to

change image slices (moving up and down in the image stack). Each subscriber is assigned to

a unique annotation colour and can either add or remove constraint points on the image (via

mouse selection) as a segmentation parameter. Per iteration cycle, the publisher compiles all

the parameters and executes the control based on time-stamp (first-come, first-serve) and event

management in Interaction substrate component. Multiple manipulations are possible, i.e., LUT

change and segmentation change, in a single iteration cycle.

A C# implementation of the framework was used to enable the MRI segmentation on a mobile

device (hardware (xi). Due to limitation of previous methods on interface adaptation, the whole

client was build from ground up with specific functionality supporting touch interaction and

switching between MRI segmentation and viewing the 3D model. This segmentation is illus-

trated in figure 4.34a and on top of the interface is a tabbed widget where the user can switch
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over to the 3D view, figure 4.34b.

(a) Mobile MRI segmentation display. (b) Mobile 3D rendering display.

Figure 4.34: Collaborative segmentation on a mobile device.

For desktop PC and the UMPC (mobile devices) two separate client applications were build.

An application dedicated to the MRI segmentation itself, and the other to the visualization of

the 3D content, which is based is identical to the previous presented application showing a 3D

rendering. The only minor difference is the actual rendering, where previously OSG was used,

here the VTK libraries were used. In end effect however it didn’t change much as both are

OpenGL based and therefore the grabbing of the rendering frame stays the same. Figure 4.35

illustrates both applications on the UMPC.

The implementation are very basic in terms of user interface on the UMPC and desktop and

require a keyboard and mouse for interactions. For rendering SDL was used and the transmission

of MRI images were provided in non-compressed 8-bit grey values, since the original images are

16 bit grey several controls were provided to the user to set a window on the source image. The

reason for the downcast to 8-bit was mainly because most applications working with MRI data

are doing this. Thus as a requirement from the users doing the segmentation (also most screens

are only capable of showing 8 bit colour depth). VTK provides functionality to do this easily,

as well as for providing cut through of the mesh, and showing it contour on a specific slice. A

separate server application was built for providing the actual MRI slice, offloading this process

from the simulation application. In general it concerns the exact same application, but with

mutual exclusion of functionality (simulation and MRI slice generating).
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Figure 4.35: Interface for the collaborative segmentation.

The rendering on the client is provided into two layers, the background layer showing the MRI

image and the overlay of the annotation data. Both received in separate threads, as two con-

nections are required (one MRI slice and the other the simulation). Furthermore the annotation

layers keeps a state of the user session, such as slice index, active mesh, contour of the meshes

and the interaction points. The contour and the interaction points are plotted as points on top of

the MRI image in the render cycle. The interaction points are depending on their function drawn

with a different colour as well as the active mesh and non-active meshes (figure 4.35).

Although the experiment shown in section 5.6 is based on the application just described, we

find it noteworthy to mention the continuation of this scenario and present a more sophisticate

version and continuation on the concept of the collaborative segmentation, which is shown in

figure 4.36.

The concept was well received and the benefit of having collaborative segmentation tooling was

evident. We therefore looked a more complex interaction and overhaul of the primitive interface.

Instead of points we look at a sequence of points that offer a relation between each other. From

a simple linear line, curved as well as custom defined point to point interpolation. Furthermore

the previous application was a specific tool to influence the simulation, in this case, there can still

be a simulation driven interaction, however, as a request it is possible to leave out the simulation

and have a manual segmentation instead. The implementation uses the publish-subscribe data

sharing method as described in section 4.2.3.3. Which furthermore enhances the flexibility of

the system, as other services can simply subscribe to the publisher and perform interactions. In

this case there are four server applications, the simulation, the MRI slice provider, the mesh contour

provider and the publisher. On the client side a single application is provided for the segmentation

(as shown in figure 4.36) and a separate 3D viewer.

The simulation is currently still required (although it doesn’t have to do anything aside from

loading the initial meshes), and will connect to the publisher providing the mesh data data. Any
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Figure 4.36: Interface for the collaborative segmentation.

modification to the mesh are pushed to the publisher. The MRI slice provider does not connect

to the publisher and clients connect directly to it. It is identical in function to its ancestor but

this time rebuild from scratch containing only the functionality to provide a slice in the MRI

stack. Whenever a client changes from slice it will make a request to the MRI slice provider,

which in turn keeps track of the user, using the TCP session as its basis. For each user it has

a VP8 node, this offers the functionality of fast traversal in the MRI stack, reduces bandwidth

and increases interactivity. It is however the client that makes the request for a video frame or

raw frame. This depends on the rate of interaction, if the interaction rate per second becomes

lower then a certain threshold it will request a raw frame. This shows a different approach on

the presented design as discussed in section 3.2.3. For the mesh contour, which is now provided

by the mesh contour provider, the approach is similar, as the client directly connects to it. The

mesh contour provider keeps track of the active users as well, but it actively sends mesh contours

whenever the mesh changes in the publisher. Meaning the mesh contour provider connects to the

publisher and subscribes to the meshes supplied by the simulation. Currently a fixed refresh rate

is used of five frames per second. The contour provided is a list of points which are rendered

as a line loop. The client rendering is a mix between OpenGL and Qt widgets. The OpenGL

rendering is adapted to be capable to handle the decoded video frame images coming from the

VP8 decoding node, as well as rendering the raw frame and supports the use of shaders. Shaders

also enable the possibility of client side customized visual enhancements e.g. sharpening and

different filtering. The Qt widgets are used for the contour rendering and the annotations. Active

annotations get interactive widgets enabling the user to select, move and remove points. Overall

the use of Qt provide an overall better user experience as the rendering is more robust.
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4.8 Collaborative Services with shared Data Models

4.8.1 Threadz Plugin Library

The Threadz library contains service nodes which are part of the use-case scenario as described

in section 3.10. The main service revolves around the Threadz Library, created by Kevelham [75],

which provides a GPU driven cloth simulation for real-time purposes. Four nodes are provided,

the manager, the server, the simulation and the creator. In this use case the focus lies on inter

service communication, where the manager maintains several server services, each server service

is uses one or more simulation nodes. The output of the simulation is the simulated 3D model

(thus an array of vertices).

4.8.1.1 Managing and spawning server services

The manager service functions the same way as the VTO manager as shown in figure 3.17,

capable of maintaining a set of server services and load balance these among several physical

servers. Users that connect to a manager are being redirected to an empty server service, upon

which they get information for directly connecting to the free server service.

HerdThreadzServer

HerdThreadzManagerHerdNode HerdTcpNode

Figure 4.37: Threadz Manager diagram.

The service itself therefore is quite small and all functionality is contained in a single class

HerdThreadzManager (figure 4.37). The manager creates two additional HerdTcpNode nodes, which

are child nodes. One node functions as the communication for users and the other for commu-

nicating with the servers. Although this separation is not necessary it does simplify the setup

and gives a cleaner overview of the functions. A client connects to the manager on the first

TCP connection, upon which the manager can simply send a “broadcast” message to the second

TCP connection. Without worrying on searching through and maintaining information on each

server, as each server can reply back to the manager if it is free. The first available server is taken,

and the connection information to it is given to the client. The client in turn connects to the given

server and provides a device profile.

4.8.1.2 The server service

The server does not directly perform the simulation itself but handles the user input and inter-

faces with the actual simulation by adding HerdThreadzSimulation nodes as child objects. Similar

to previously presented protocols, the HerdThreadzProtocol extends the base protocol with sev-

eral new event identifiers. These are represented also in figure 4.38 as HerdCommand objects.
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The HerdThreadzHandler translates incoming events into HerdCommand objects which are then

provided to the HerdThreadzSimulation.

HerdThreadzServer

HerdThreadzSimulation

HerdNode

HerdThreadzAddCloth

HerdThreadzHandler

HerdThreadzMoveTo HerdThreadzSendMesh HerdThreadzSetGravity

HerdCommand

HerdTcpNode

HerdThreadzProtocol

Figure 4.38: Threadz Server diagram.

The simulation service as shown in the abstract class diagram figure 4.39 maintains a list of Cloth

which through the ClothMechanical are provided to the actual simulation process. The LibThreadz

library focuses on the simulation of cloth material using NVidia CUDA18 for hardware acceler-

ation, as a fall-back it can also perform the same simulation directly on the CPU, however at a

considerable drop in simulation cycles per second. In order to give a better impression of the

HerdThreadzSimulation Cloth ClothMechanical

Cusp

Cuda

LibThreadz

HerdNode

Figure 4.39: Threadz Simulation diagram.

difference between executing calculations on the CPU and GPU table 4.4 provides a comparison

and figure 4.40 a visual of the actual test. The evaluation was performed by executing the code

paths from the Threadz library on a workstation19. As previously mentioned the VTO also con-

tains a cloth simulation, which is purely CPU based, however this is not taken into comparison

since the implementation differs, e.g. using different solvers and mechanical parameters.

4.8.1.3 Cloth creator

From the scenario given in section 3.10 the Cloth creator service takes 2D patterns and converts

this into 3D meshes. These meshes can then be given to a simulation service.

2D patterns which are then translated into 3D meshes using a Delaunay triangulation algorithm.

The Cloth creator service provides a function to translate a 2D pattern to a 3D mesh.

18NVidia CUDA parallel computing platform http://www.nvidia.com/object/cuda_home_new.html
19Workstation used for Threadz test: Intel Core i7 X 980 CPU with a NVIDIA GeForce GTX 480. (v)
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Table 4.4: Simulation timings for both the CPU and GPU back-ends for a varying number of elements.[75]

Elements CPU Tim GPU Time Speed-up
651 5.57s 0.55s 10.04x
1003 8.57s 0.55s 15.44x
2519 22.20s 0.56s 39.78x
4754 41.48s 1.07s 38.67x
7704 68.36s 1.18s 58.06x
12699 108.77s 1.60s 68.16x

Figure 4.40: A square fabric, clamped at the top edge, falls down under its own weight due to the effect of
gravity.

HerdNode
HerdMemPublisher

HerdThreadzCreator

HerdMemSubscriber

MeshGenerator

3D Mesh

2D pattern

Figure 4.41: Threadz Creator diagram.
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5.1 Motivation

In this chapter we look at the deployment of each application scenario which were implemented

using the proposed architecture. In the first application we look at one of the core aspects of

the framework, which is the remote rendering for low-end devices. We measure the frame-

rate and responsiveness between client and server. The second application scenario introduces

the use of Augmented Reality and a heavy simulation used for mesh deformation, this forces

the setup to be dispersed between end-device and server. We look at the performance and

feasibility of two different setups. The third application scenario handles another core aspect of

the architecture, flexibility for deployment and dependencies on third party technologies. With

a strong focus on User Centric Media, here we show the feasibility of seamless session hand-over

from device to device. Retaining an uninterrupted the 3D media content streaming. The fourth

application shows the scalability of the proposed architecture. Introducing multiple services and

maintenance of these services, with per session multiple users connected and inherently from

previous application scenarios support for heterogeneous devices. With the fifth application

scenario we introduce the Telemedicine domain and focus on collaboration with a more strict

common goal. Two different types of collaboration were utilized and tested upon.

5.2 Remote Rendering for Low-end Devices

In this experiment we look at the deployment of the client on a low end devices with the main

focus on the interaction rate and the frame rate. A traditional server client setup is used in a

LAN environment and a local Wi-Fi access point.

5.2.1 Deployment

A very early on experiment showing the initial proposed algorithm for adaptive rendering is pre-

sented first. The client application has been installed on a low end mobile device UMPC(hardware

(vii)) and the server application on a desktop PC (hardware (ii)). The time measured is the re-

sponse time in a local LAN environment. The adaptation regulates the quality of the image

encoding resulting in a faster response time, as shown in 5.1.
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Figure 5.1: The response for the UMPC and PC clients.
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5.2 Remote Rendering for Low-end Devices

As the results were done on a preliminary version of the framework a second experiment has

been conducted with the same hardware. In figure 5.2 shows the setup, using the last version of

the framework and the Java client implementation supporting the VP8 codec (where the previous

was JPEG only) and the server running an VTO instance. The rendering performed at 640x480

and runs on the server about 20 frames per second. Limiting itself in frame rate with a little

overhead over the response rate from the client. Depending on the settings the client frame

rate is adapted. The client is utilizing about 30% to 60% of the CPU and has a refresh rate of

about 101̃5 fps. Big visual changes in the scene will make the VP8 codec make a new key frame

resulting in spiking in bandwidth usage and drop in fps on the client side as it takes longer to

process. The interaction rate still shows the same behaviour as presented earlier.

Figure 5.2: Adaptive Rendering, on the left is the server window shown (1080p screen) and on the right the
UMPC

When removing all limiters the server will run at its maximum, which is with the VTO simulation

about 30 fps and the client runs at 20 fps, 100% CPU usage. However the response rate drops

down to a couple seconds and is uncontrollable as it fluctuates between 300 ms to 3 seconds. This

is mainly because the server drops the frames beforehand instead of the client and is therefore

flooding the client. As this is better for visual quality (no decoding errors on client because of

missing frames).

5.2.2 Concluding Remarks

Interactive performance in terms of responsiveness is one of key challenging issues for interactive

3D applications. We introduced run-time presentation adaptation and dynamic interface adap-

tation mechanisms which aim to preserve the real-time interactive performance of 3D content,

taking into account heterogeneous devices in user-centric pervasive computing environments. To

support perceptual real-time interaction with 3D contents, temporal adjustment of presentation
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quality adaptation is used. It dynamically adjusts the quality of presentation on client devices

according to the current device context. To overcome the inevitable physical heterogeneity in

display capabilities and input controls on client devices, we provided a dynamic user interface

reconfiguration mechanism for interaction with 3D contents. It can change the way how the

interface is presented to the user (big screen or small screen bring several design issues with it)

and adaptation to the user device input capabilities. In addition, functionality of 3D contents

and rendering are dynamically bound with user interfaces at runtime according to profiles.

5.3 Remote Rendering with Augmented Reality

Similar to the previous setup, however now with the added AR. During the implementation

(section 4.4) preliminary tests were conducted and showed that the first setup caused a great

amount of lag, therefore we mainly look here at the second setup. Also it should be noted,

rephrasing from section 3.4, that this application scenario was shortly no longer supported and

continued on after these tests.

5.3.1 Deployment

We have used a desktop PC (hardware (iii)) as our server system and the UMPC (hardware (vii))

again as our low end client system. The VTO running on the server acts as our rendering content

that has to be augmented with the webcam images from the client. The 3D content is a template

female body consisting of approximately 7500 polygons and garments are made up of about

2000 polygons. The VTO library on its own runs at an average of between 30 and 35 fps. Any

real-time changes to body sizes or length changes requiring animation adaptation do not have a

significant impact on this frame-rate and neither does the size adaptation of the garments. The

performance is mostly affected by the geometrical complexity of the garment as more elements

directly relates to more computation. As stated before the current performance of our system is

limited mostly by the camera hardware running at a fixed 15 fps for the UMPC. But tests show

that without waiting for the web-cam image to update we achieve a frame rate slightly below 30

fps. The system setup can be seen in action in figure 5.3 and 5.4. The UMPC at the bottom shows

our VTO on top of the marker that is visible above it. On the right-hand side the workstation that

serves as the server is visible, as well as the used camera. In order to have a real-time experience

the rendering resolution had to be kept quite low at 320x240 pixels. On the server side we could

enhance it slightly by using anti-aliasing.

5.3.2 Concluding Remarks

With this experiment we have presented a remote augmented reality and simulation solution for

a mobile VTO. We have demonstrated that it is both plausible and feasible to implement such

a system, while achieving interactive or even real-time performance. The development of this

prototype has shown us what the most important bottlenecks are. It has given us an idea of

where we should focus on for further research in order to improve the system, both in terms of
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Figure 5.3: The remote AR VTO in action.

performance and usability.

Two areas that clearly could use some improvement are the increase of frame-rate and a higher

resolution of the augmented result. This however is not just a matter of improved hardware.

Research into better or faster compression techniques and the analysis and improvement of our

networking middleware might allow us to improve the speed and quality of the results, thereby

providing a more pleasant user experience. Computationally the cloth simulation has the biggest

impact on application performance. It will be worthwhile to look into ways to improve its per-

formance without degrading, or while improving, the accuracy. One possible avenue would be

to implement this module, if not the entire VTO, as a highly parallelized GPU based application.

Besides bringing improved performance it might also cut down hardware costs on the server

side, thereby making our remote augmented reality system even more feasible. And with the

advent of GPU server racks it might improve the scalability as well. But besides performance

improvements it would also be interesting to investigate multiple user interaction, in order to

create a mobile collaborative environment. The ideal would be to provide a remote but shared

virtual world in which multiple users can interact in the same complex environment, without

the requirement of complicated or expensive hardware on their side.
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Figure 5.4: Image blending of the camera view with the 3D rendering.

5.4 Adaptive Rendering with Dynamic Device Switching

As this application scenario was divided into two sub scenarios, two separate experiments were

conducted on the use of the presented technologies. The complex nature of these scenarios make

it difficult to replicate as there is a great dependency on the 3rd party components.

5.4.1 Real-time switching device

Presented and tested at a workshop1. As previously mentioned, due to complexity this setup

has been replicated once thereafter at the project review of Intermedia.

5.4.1.1 Deployment

The infrastructure as was presented in section 4.5 figure 4.24 is as follows:

• A server running the Home Agent (Linux OS) for the MIP framework;

• A server running Foreign Agent (Linux OS), also used for the MIP framework;

• A server running the 3D server application (Windows OS);

• Some user clients, running the 3D client application (Windows OS), see figure 5.5a and

5.5b;

• A server monitoring the Zigbee mesh network and publish the active module using a HTTP

server (Linux OS).

5.4.1.2 Results

The user carries, as shown in the figures, a Zigbee module and whenever the user gets close to

a client device, the Zigbee reconfigures its network based on signal strength. By analysing the

Zigbee network structure the current active client is revealed. This information is then given to

the mobility framework which then tells the new client to change its mobile IP. The switching

happens at about one meter distance and works robust. It has been tested by more then ten

people, without counting the amount of times the testing person actually went forth and back

between the two end-clients. The one meter distance also gives a grace time for the client to

switch IP and start receiving the stream information. This takes about two to three seconds.

Which after also the user interface is adapted and changed. The main results are the integration

1InterMedia Cafe - organized by Intracom Telecom - Athens Information Technology
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(a) Moving to the UMPC. (b) Moving to the Laptop.

Figure 5.5: Seamless session hand-over between UMPC and laptop.

of the presented framework with the 3rd party technologies: Mobile Session Service, Context

Aware Localization and Digital Rights Management

5.4.2 Data sharing among switching devices

5.4.2.1 Deployment

From the preliminary tests conducted during development and shooting a video[115] for the

application presented here it was evident that interacting with 3D models on a wide scale display

directly without any intermediary peripherals (e.g. mouse, keyboard, joystick, etc.) has appealed

to users. They found the 2D gestures that simulate the 3D manipulations easy to apply. More

dedicated user trials with medical students, and maybe doctors, are planned to be performed.

This is expected to give more specialised recommendations regarding the content to be displayed

and even the way of manipulating it on the table to suit the way doctors interact with anatomical

material during their practices. A further work will be carried out to allow multiple users to

upload content onto the table simultaneously. This could facilitate an interchange of knowledge

within the formed group and the table would be sensitive to the location of those multiple users

around it and thus display content in the appropriate orientation.

5.4.3 Concluding Remarks

A working test-bed was implemented and will be shown during the upcoming InterMedia event

to get feedback from potential users. Such feedback will concern the responsiveness of the 3D

application and the degree of satisfaction during the migration. Moreover, performance analysis

is foreseen to quantify the delay during hand-overs and migrations. Through this application,

we gained the opportunity of extending the use of our generic mobility framework (it has been

used also in other sub-tasks, as described in the following). This has been very useful to expe-

rience with many limitations of the underlying MIP protocol, and to get important indication

123



Chapter 5. Experiments and Results

Figure 5.6: Remote rendering from a collaborative interactive table to a hand-held device.

about possible extensions. Thanks to the integration of the Network Probe into this system, we

had the possibility of exploiting the traffic classification engine as the trigger for data adaptation,

although very simple policies have been taken into account until now. We addressed three chal-

lenging issues; preservation of real-time interactive performance of 3D contents, context-aware

polymorphic presentation adaptation, and dynamic interface adaptation. To support perceptual

real-time interaction with 3D contents, a micro-scale buffer based adaptation mechanism is used.

It dynamically adjusts the frame rate of client device and the compression quality according to

the current network situation and rendering capability.

The novelty of the presented research here lays first in the usage of NFC for establishing a

connection between a mobile phone and a multi-touch table and secondly in the mapping of 2D

finger gestures for interactions to 3D manipulations. This is used for integrating mobile phones

and tables which can open new doors for collaborative interactions that can engage multiple

users at a time in various domains such as education, entertainment and even commerce. Adding

3D graphics enhances their experience even further which helps in creating an immersive group

learning experience.

5.5 Service Distribution and Render Context Switching

The experiment was conducted in three different set-ups, the first set-up utilized the Microsoft

Kinect for interaction and shows a "virtual mirror" for a single user. Any other user connected to

the same instance of the VTO can see the animations performed by the Kinect user. The Kinect is
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directly hooked up with the server and avoids going directly through the client. Testing showed

that the Kinect offers a stable 30 captures per second, which are applied to the avatar. Since the

garment simulation runs most of the time slower than the amount of captures, the animation

sometimes appears a bit sluggish and is therefore limited by how fast the simulation is. The

rendering itself for a single user is above 200 frames per second, as the scene to be rendered is

fairly light in terms of polygons, textures and deformable models.

The hardware used for the server is an Intel i7 core 950 (quad core 3 GHz), with a NVidia GTX

465 graphics card (hardware (iv). The clients range from a similar desktop system to a tablet

(Asus Eee Slate EP121) with an Intel core i5 (hardware (viii) and a Windows phone 7 (hardware

(xii)) which has an ARM-based single core 1 GHz CPU. These are shown in figure 5.7, connected

simultaneously to the same server.

Figure 5.7: Three clients: Left tablet, middle desktop system with touch-screen and right below a smart-
phone.

The phone client runs significantly slower then the, obviously, more powerful tablet and desktop.

This is however also because of the different kind of rendering, since the phone is limited to

using MJPEG. Where, for example, VP8 sends incremental information about changes in the

image, MJPEG is a full image. This is shown in the amount of data used by the network. For

VP8, if it is not sending a key frame (full-frame), it ranges from a few bytes to a couple kilobytes,

whereas the JPEG image has a size of 30 kilobytes per frame (800x480 resolution) at mediocre

quality settings. The frame-rate on the phone varies between 4 and 8 frames per second.

5.5.1 Results

In order to test the performance we used the following set-up: One server and eight identical

client machines. The server, with the same hardware as described before, creates a rendering

context for the eight users with a resolution of 1280 by 800 for each(10240 by 800 pixels). This

is the native resolution for the tablet. For every 5 seconds the amount of frames rendered by

the server and by the active clients are logged for a fixed duration. Initially starting with one

client connected, and after a one minute runtime a following client is activated. The results are

presented in figure 5.9 for the performance on the clients and 5.10 for the server.
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Figure 5.8: Close-up on the phone client. The client is using the Wi-Fi capabilities of the phone.
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Figure 5.9: Client performance with increasingly more clients connected to the server.

Because of the throttling mechanism and the micro-buffer, the clients never run at full speed,

unlike the server. This keeps the minimum and maximum frame-rate closer together and a more

stable average frame-rate is achieved. At about six clients the server is unable to uphold a faster

rendering speed then the clients and starts limiting the frame-rate.

With every additional client, the server not only renders another frame, but also the additional

frame grabber and encoder for every active client are making the server drop rapidly in speed.

Yet still with eight clients a possible interactive rate is maintained.

5.5.2 Concluding remarks

Because of the limitation of the Windows phone 7, it shows the utilizing of a different encoding

mechanism depending on the device profile. Possibly on a Windows Phone 8, iPhone or Android

based high-end smart-phones the VP8 codec can be deployed and should show better results.

This is even more interesting for video streaming codecs with hardware acceleration support,

which is dependent on the hardware-capabilities, limitations of the platform e.g. restrictions
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Figure 5.10: Server performance with increasingly more clients connected to the server.

from the operating system and possibly support by the drivers.

The difficulty lies in the rendering on a single server where a true separation of the simulation

and the rendering is not possible. Furthermore to have the interface embedded into the 3D

scene simplifies the interaction mechanics on the clients side. Where in the previous application

scenario a client side rendering of a device specific interface was presented on the basis of UIML,

here it completely omits the client side implementation and only limits itself to the handling of

user interaction or device input events. It does however burden the server side, and needs to

render within the 3D context the interface. This proved quite tedious during implementation and

several reimplementation were required. But this can be overcome when each user is connected

to its own rendering server.

5.6 The Collaborative MRI Segmentation

5.6.1 Deployment

For collaborative segmentation, we have selected a volumetric MRI data of the lower limbs,

which provides an interesting multi-user case scenario, where the segmentation is challenging

due to the poor image quality and inhomogeneous intensities within its structure (imposed by

hardware and protocol restrictions) [76] and thus can benefit from multiple users to concurrently

aid in the segmentation process. Moreover, this data offer many different types of anatomical

structures that needs to be segmented, e.g., bones and various types of muscles, thus benefiting

from the collaborative segmentation of multiple structures concurrently.

In order to illustrate the concepts of the proposed collaborative telemedicine system, two scenar-

ios were designed and evaluated.

• Teacher-students scenario A teacher shows to students the reading of a medical images

and the concept of semi-automatic segmentation for Region of Interest (ROI) annotation

on these images. In this scenario, both the teacher and the students have access to their

own computers which have installed our proposed collaborative editing medical viewer.
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A group session is started and all the students observe the segmentation evolution as the

teacher initiates the segmentation and changes the viewing slice across the dataset. Then

the teacher shows how to manually and locally correct the segmentation evolution by in-

serting various constraint points. Once this simple principle is explained, students are in-

vited to interact with the segmentation process. The teachers are assigned greater ’weight’

to the constraint points than the students, thus, enabling the teacher to override students’

constraints.

• Expert-expert scenario Two (or more) experts are segmenting the same dataset. Each of

them can monitor and modify the segmentation in different parts of the dataset hence ex-

pediting the segmentation process. As with the ”teacher-students” scenario, when experts

work in the same slice, weights may be allocated based on the experience of the users, thus

giving more priority on the segmentation constraints to the more experienced user.

Figure 5.11: A collaborative segmentation scenario. A teacher (center) uses her laptop to monitor and guide
the two students in a collaborative segmentation session, where one student is using a portable device (left)
and the other using a conventional workstation (right).

5.6.2 Performance Analysis

We evaluated the interactive performance of our proposed collaborative segmentation mecha-

nism with two example scenarios as in previous section, respectively of teacher-student and

expert-expert scenarios. In the first example, the expert-expert scenario was considered i.e., two

users with their own computer was requested to concurrently segment 4 different bone models

on an volumetric MRI ( dimensions of 483 ∗ 358 ∗ 270 pixels). In the second example, teacher-

students scenario was simulated, where 20 users concurrently joined in a collaborative session

where one user operated on an image volume (260 ∗ 511 ∗ 242) consisting of 21 models of the

muscles while the other users observed. We configured subscribers and a publisher with a desk-

top PC (hardware (i)) connected to LAN. For each experiment, we measured the fps on the

publisher and the subscriber sides. We averaged the fps over 100 segmentation processes. In

the first simulation we had 4.6 fps on the publisher, the averaging of the subscribers resulted

in 4.2 fps. On the second example, 3.8 fps on the publisher and 3.2 fps on the subscribers (av-

eraged). Simulation results show that our system does not expose any significant degradation

in system responsiveness and preserves interactive performance of users in varying conditions

and was satisfactory for collaborative editing ( 4 fps). Performance was mostly bound by the

segmentation iteration on the publisher. A subscriber used less than 1 MiB and less than 1%

of CPU consumption. The complexity of the segmentation, in terms of memory consumption
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and execution speed was mostly related to the size of the segmented image and the number of

models that were simultaneously segmented. These factors were expected to also have an impact

on the system as the image data and the models contours (overlaid on the slice at the subscriber

side) need to be sent over the network.

5.6.3 User Case Study

In order to measure the efficiency of our collaborative system in terms of usability, we ran a

controlled experiment over 10 participants (5 males and 5 females, with ages between 20 to

36 years old). The participants consisted of 2 experts and 8 students, where an expert was

considered to be a user experienced with knowledge in medical image analysis.

5.6.3.1 Experiment Design

Based on the two scenarios, repeated measures experiments were conducted. Only one indepen-

dent user feedback variable, the type of collaborative editing algorithm, was manipulated. Two

dependent variables were measured as follows.

• Task Completion Time: time taken to complete the segmentation on a single image.

• Segmentation Error: errors between segmented and the reference segmentation.

We also measured user satisfaction using questionnaire as follows.

• User Satisfaction: which type of algorithm fulfilled the best requirements for the specific

scenario? We devised a questionnaire based on a well-known IBM Post-Study question-

naire [116]. 10 questions corresponding to the system usefulness was designed where each

question used 5 point graphic scales, anchored at the end points with the terms ’Strongly

agree’ for 1 and ’Strongly disagree’ for 5. Some space was left at the end of the question-

naire for comments.

5.6.3.2 Tasks and Procedures

Participants were asked to learn our system with a simple introductory manual which exempli-

fies the usage of the system. All participants had no prior exposure to the application. After

participants were given only a basic introduction and a few minutes to play with the application,

they were further instructed on the use of the application by participating in the ’student-expert’

scenario. Participants were given two tasks: each participant had to collaborate with another

user in a segmentation task on an image using firstly the strict locking algorithm and then our

proposed collaborative mechanism. The segmentation consisted in segmenting the 4 bones on a

MRI (single slice image) as accurately as possible within the shortest time possible. Bone mod-

els were initialized sufficiently close to the structures to be segmented so that the users could

drive the meshes towards the structures through applying the three types of CPs (as described

in section 3.9.4). The ground truth segmentation was a priori computed by experts for use as a

benchmark in calculating the segmentation error. For a given mesh contour resulting from a user
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segmentation, an error e1 was computed as the Euclidean distance between each point of the

contour and its closer point on the reference contour. The same was done by inverting roles of

user and reference contours to get an error e2. The final segmentation error for a mesh was thus

the sum e1 + e2. By averaging the errors for all bones, we got the so-called average symmetric

distance error in mm. Pairs of participants were randomly chosen. After completing the tasks,

participants filled in a questionnaire.

5.6.4 Results

We calculated discrete statistics for every dependent variable and user satisfaction.

• Task Completion Time

Figure 5.12a shows the average time taken by non-expert participants to complete their

task. Using the proposed system, participants finished their task earlier compared to the

strict locking based system because participants could update their inputs without waiting

the other user to release the lock. Another reason is that each participant could work on

different model contours at the same time. In some cases, participant did not release the

lock preventing the other participant to improve the segmentation even though she/he had

a better idea to complete the task.
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Figure 5.12: Completion time and segmentation error results.

• Segmentation Error The obtained results revealed that participants’ segmentation error us-

ing strict locking was 4 percent greater on average than using the proposed system, as

shown in figure 5.12b. From our observation, this was attributed to the fact that the par-

ticipants were able to correct each other’s errors, where the agreements from both the

participants were more accurate than from an individual user.

• User Satisfaction From the questionnaire, a qualitative user satisfaction was derived. Most

people were strongly or moderately satisfied with the collaborative algorithm as shown in

figure 5.13. No participant strongly disapproved the use of both the proposed algorithm

and the strict locking algorithm. Similarly, participants reported that they could effec-

tively complete their tasks both with the proposed algorithm and strict locking algorithm.

However, participants felt more comfortable to collaborate with others with the proposed

algorithm because more freedom was given and it was not necessary to wait for the lock to
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be released.
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Figure 5.13: Average of the selected questions in questionnaire.

Participants were asked for comments or suggestions in the questionnaire. Two participants

reported that strict locking algorithm needed a floor control mechanism requesting a lock

or at least other communication facilities, such as chat, to negotiate their turn because they

felt uncomfortable to wait until lock is released. Two participants reported that they felt a

little-bit uncomfortable to interact with others because the simulation responsiveness was

relatively low in both cases because their inputs (constraint points) progressively affected

the segmentation instead of having an instantaneous effect. As mentioned in section 5.6.2,

a publisher run in a more powerful workstation or the use of segmentation optimizations

would yield a faster simulation. However, as explained in section 3.9.3, this progressive

change of the segmentation evolution is essential to be able to detect and correct errors

sufficiently early. Finally, in the context of our specific physically-based segmentation, cre-

ating large “brutal” changes may create instabilities in the simulation and thus ultimately

affect the quality of the segmentation.

5.6.5 Concluding Remarks

In this experiment we tested a collaborative telemedicine system for real-time and interactive seg-

mentation of volumetric medical images and demonstrated its usages using two typical case sce-

narios: teacher-students and expert-expert collaboration. User evaluation was conducted which

measured the enhancements with our approach in comparison to the conventional strict locking

collaborative system that is often found in medical systems. Our system performance results

indicated that, prior to code optimization, it can support large number of users for online collab-

orative editing of 3D volumetric medical images. View generation speed was heavily dependent

on the computational resources (CPU, memory size, video card capability) of the producer side

rather than the subscriber side or network condition because subscribers used less than one per-

cent of CPU consumption. Our user study results revealed that our proposed system can be

useful in teleradiology context and has many potential clinical applications. As our system is

designed to be modular, the system can be integrated to other, more complete, medical image

viewers, such as the popular open source image viewers built using Insight Segmentation and
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Registration Toolkit (ITK) 2. Our system is also not restricted to the use of the deformable model

segmentation algorithm as presented in this study. This algorithm was chosen for its inherent

characteristics to evolve from rough to optimal segmentation results via an iterative and intuitive

visual feedback. The advantage of visual feedback is in the ability for the users to understand

the segmentation process as it iterates to the final result. We conducted some preliminary tests

on a mobile device (an UMPC) over a wireless network, and similar performance was observed.

Future work will mostly focus on dynamic polymorphic presentation (view and interface) adap-

tation and context-aware network adaptation according to the current device capability in order

to support nomadic users to collaborate with each other exploiting diverse devices.

5.7 Collaborative Services with shared Data Models

We look at two aspects of the implementation which are the collaborative pattern designer and the

GPU based cloth simulation.

5.7.1 Collaborative pattern designer

The pattern designer was deployed on several devices, a desktop pc (hardware (v)) and sev-

eral tablets (hardware (viii) & (xv)) and was evaluated by a professional. In comparison the

professional software for designing garments and the implementation are shown in figure 5.14

(a) Collaborative Pattern Designer. (b) Fashionizer.

Figure 5.14: Designing a pattern.

Based on the professional’s remarks the following can be concluded. Mostly about the interface

and workflow which is quite different from Fashionizer. Although it should be remarked that

Fashionizer is a “not easy to use” application. But she was interested in the collaborative features

and would certainly use it as a discussion tool for discussing it with colleagues (figure 5.15). The

ability to both be able to edit is certainly a plus, but lack of functionality makes it not practical.

This is already evident from the screenshot 5.14, where a fully simulated dress is shown as well.

2Insight Segmentation and Registration Toolkit web-link: http://www.itk.org/

132

http://www.itk.org/


5.7 Collaborative Services with shared Data Models

Figure 5.15: Collaborative pattern designer used by two users.

5.7.2 GPU based cloth simulation

The server running the cloth simulation was deployed on a desktop system (harwdare (v)). The

results for the simulation are shown in table 4.4. The deformed mesh is send over LAN to end

clients (hardware (iv)). The simulation update rate can be set and can update at maximum of

the simulation cycle speed. As for the client there is a minimal impact on the performance, as

the data can easily be handled by the network and streaming it directly to the rendering is done

through updating VertexBuffers. The client runs depending on the size of the mesh at 200+ fps

and renders independently from the updates coming from the server.

Figure 5.16: Using the Threadz simulation through a Java client.

The Java client which is used for rendering was used. A simplified version of the pattern designer

was used to have a pattern send to the server, which is then directly simulated. Interaction with

the pattern is possible by mouse interaction. The user can select a mesh and upon dragging the

mesh is moved, by moving the fixed vertices. This gives the illusion of moving cloth and due to

stretching the rest of the cloth pulled after the fixed vertices. This was tested with multiple users

and no performance drop was detected. This is because the interaction on the mesh is treated

exactly the same as a deformation and therefore has no impact.
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5.7.3 Concluding Remarks

Albeit the applications usage was found to be minimal due to lack of completion, it did however

display the possibilities which were enabled by the presented framework. From a developers

points of view the publish subscribe data sharing allows it to implement these kind of collabora-

tion on complex data structures that require real-time updates and propagation relatively quick.

But it would require a more full fledged application to truly test if it is applicable in professional

tooling. So far it has shown promise in fashion design as well as MRI Segmentation.
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6.1 Motivation

In previous chapters we have described a framework architecture that enables 3D content to

be viewed and interacted with on a variety of platforms, and facilitates the creation of scalable

CVEs. We conducted several experiments each with a specific focus and deployments domain.

As for each experiment a conclusion was given, here we summarize the outcome of our research

and provide possible extensions in future work.

6.2 Achievements

We proposed a context-aware adaptive rendering architecture which visualizes 3D content and

an user interface on top of a CVE, while dynamically adapting to the current context such as

device availability in the current location and their capabilities. The design of the architecture

was laid out into several layers in which several components reside, each with their specific

function. The components communicate through a public/subscribe methodology. Albeit the

main implementation was done in C++ other languages were utilized to demonstrate that the

given design of the system can be easily adapted. This offers the flexibility to deploy mainly the

end-client applications on a greater range of devices. By using pre-defined device profiles we can

identify beforehand what the optimal system parameters are for the given service and at runtime

a limited set of attributes is used for adaptation during operation. Predefined parameters include

the hardware capabilities which result in a custom provided interface for the given device and

rendering streaming type. At runtime the streaming and interaction rate is adapted, mostly in

favour of a higher interactive rate rather than quality. Furthermore hybrid solutions are provided

by either sending 3D content and 2D content independently of each other and are composed on

the client side. The architecture provides a methodology for connecting existing data models

(graphics, application logic or other) easily and enable a synchronization based on publish and

subscribe. This offers a classic client/server setup, peer to peer or a hybrid of these two.

We have deployed this framework in several application domains, each with a specific focus. First

we have the user-centric media, where we focused on the adaptive rendering and providing the

visuals to a multitude of users. In this domain the individual user is the most important, where

the user can choose its device and connect to a service. We have shown how to create a service

around a Virtual Environment and how the end-client is capable of viewing and interacting

with it. With the focus shifted towards cloud like services, where we show the flexibility in

deploying the architecture among several servers and have a multitude of users connecting to

the service, using a single point of entrance. This introduced the need for interest management

and load balancing of the functionalities, as well as dynamic launching of additional services.

The last domain, Telemedicine, brought collaboration and the possibility of medical applications

to mobile devices. We showed how we can receive different types of data from several services

and have these combined in the end application and how interactions are influencing simulation

services that operate independently on the same shared dataset.
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From the results it shows that an architecture as presented makes it feasible to create a very

dynamic service that can be deployed for small scale services as well on a larger scale. It offers

bindings to existing applications to enhance them into cloud-based services and detach them

from local execution on the client side. This not only results in less dependencies on the client

side, but also a better maintenance on the provider side.

6.2.1 Remote Rendering for Low-end Devices

This application scenario used the presented framework in its most basic setup and delivers

an interactive view on 3D content. In its bare form it shows the potential of having streamed

applications instead of relying on the client device. The biggest drawback for this technology

however is the connectivity. Small transmission breaks can be accounted for, but larger gaps

and interaction and visual updates are not responsive. This partially can be overcome by having

a local rendering of the 3D environment, this however puts the burden on the client again.

The local copy however could be a dumbed down version and interactions, aside from basic

operations such as camera movement, can be buffered and send upon the re-establishment of the

connection. Within a local LAN environment this technology is a very good solution for heavy

3D tasks and directly reminds of the terminal approach from the 80’s, in a renewed way. As for

WAN the presented methodologies for streaming 3D content becomes more and more feasible,

as has been shown by commercially deployed applications (e.g. gaming cloud based services

Onlive and Gaikai). These however are very specialised and are very costly [26]. For example

ISP are being paid to prioritize their data streams, around the world multiple server centres are

needed as otherwise the distance is too great and the lag becomes too noticeable. The biggest

benefits from an approach like this is the rapid development and deployment for multi-platform

systems. since a single service has to be build and maintained instead of porting it to all kinds of

system and operating system (OS) flavours. On the client side there still needs to be a receiving

application, but its complexity is far less than the actual service and therefore development

time and maintenance of these clients are greatly reduced. The presented architecture provides

methods for stabilizing the streaming and offers functionality for switching between different

compression methods.

6.2.2 Remote Rendering with Augmented Reality

The addition of AR still gives a lot of hurdles when it comes to combine it with high quality

simulations. The decision to have the rendering locally on the device or server side have both

their advantages and disadvantages. Where locally the rendering is more responsive but less

detailed than rendered remotely due to limited capabilities. The simulation as a condition for

the scenario had to be run on a server and the camera image from the mobile device. Even on

newer hardware such as the Nokia Lumia 820 1 which has a dual core processor, the capturing

and streaming of the camera images itself take considerable calculation power, let alone the

processing of each frame for retrieving tracking information. In the last few years the rendering

1Nokia Lumia (xiii)
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capabilities have increased rapidly, from which we can profit by using better blending functions.

Yet on the other-hand the same can be said about the networking capabilities, which make it

more reasonable to have the camera image send to the server and wait for a fully composed

image in return. While today there are plenty of applications demonstrating both static and

dynamic content in AR scenarios, their use among the general public is still fairly limited, let

alone for mobile AR which is more limited to the use of platonic meta data (e.g. text and 2d

images). However as technology progresses the application scenario as presented will become

more feasible on a larger scale and new domains of usage will be explored.

6.2.3 Adaptive Rendering with Dynamic Device Switching

In user-centric pervasive computing environments where users can utilize diverse devices nearby

any-time and anywhere, anchored subscription of 3D contents is essential because it is impracti-

cal not only to manually copy 3D contents from one device to another whenever a user moves but

also to render complex 3D data locally on the resource-limited devices, such as cell phone and

PDA. Three challenging issues are addressed; preservation of real-time interactive performance

of 3D contents, context-aware polymorphic presentation adaptation, and dynamic interface adap-

tation for a context-aware adaptive rendering system which facilitates a mobile user to seamlessly

manipulate 3D contents utilizing heterogeneous devices nearby. To increase interactive perfor-

mance of 3D contents, a context adaptation mechanism which dynamically adjusts frame rate

on a client device while and a hybrid rendering mechanism which partially caches a subset of

3D model depending on client capabilities are used. To overcome heterogeneity of device capa-

bilities such as display size and input controls, a user interface adaptation mechanism, which

dynamically customizes functionality of system and user interfaces based on current device ca-

pability, is also introduced in our system. This application scenario is the result of a cooperation

of partners in different fields, researching on interdisciplinary aspects of user-centric multimedia,

mobile and wearable interaction, multimedia content annotation and adaptation, and networking

and DRM. Where our main contribution resulted in an user-centric experience for uninterrupted

streaming of 3D content while switching between devices. Albeit quite complex as the use of sev-

eral services and certain infrastructure is required to have the optimal experience, the scenario

shows the potential of deploying applications in such environments where a user can simple

change between devices without interrupting continuity, move to a different location and change

from device again. The ubiquity of the whole system behind is the key part in achieving this

user-centric experience. Deployment of our architecture was somewhat limited as the depending

components where restricting certain aspects, such as the limitation to only use UDP. Therefore

tracking of the user is more difficult since UDP has no guaranteed data delivery.

6.2.4 Service Distribution and Render Context Switching

As the previous and first application scenario overcomes the limitations for mobile devices and

enables to have 3D media in a user centric environment, this application scenario looks to the

other side of providing the service and how to build and deploy a cloud-like service environment.
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As presented the architecture provides functionality that enables to have services being spawned

and due to it modularized offer of functionality the services can be deployed across multiple

servers and be managed by a master service. This is still very application specific, but as the

architecture provides bare functionality, rapid development of these kind of services is made

possible.

6.2.5 The Collaborative MRI Segmentation

In the previous application scenarios the term collaboration has been used, and made possible

to some extend, however more elaboration on the collaboration aspect was conducted in this

application scenario. Furthermore the context had been changed from a user-centric media and

E-commerce domain to a Telemedicine domain. A domain which we interpreted as more seri-

ous as the intent is less commercial and a more “worthy cause”. There is a lot being done in

Telemedicine, however it is still in its infant state when it comes to collaboration and having

the possibility of mobility, which opens up a whole new area of applications. A possible ap-

plication was presented here (section 3.9) and studied in the context of collaboration. We show

how different kinds of collaboration impact the usefulness, where a free independent interaction

scheme clearly is preferred over turn based, while still retaining the capability to interact with

modifications applied by other user. We show how the same application can be used on a mobile

device with a significant smaller screen, yet still provide the same functionality and collabora-

tion. The segmentation of MRI is still mostly done by a single professional user, however with

the presented framework it is possible to provide a robust multi-user solution. Aside from the

manual segmentation done by the user, the simulation that attempts at automatic segmentation

is another important part, as it shows that besides real users also artificial generated interaction

can be applied in a similar fashion without modifying any end-client application or collaborative

aspects.

In continuation of the scenario, the application has been rebuild with the publish subscribe data

sharing in mind. This currently shows a great improvement over the old implementation and is

part of future research.

6.2.6 Collaborative Services with shared Data Models

To employ a full pipeline from designing a pattern to the end-client where the user can interact

in real-time with the simulation proofed to be more cumbersome than anticipated. Although

the framework does provide all the means to make it happen it does not ease the process of im-

plementing user applications. Which need solid requirements on the expected tooling, interface

and data formats. It was an attempt at showing the framework within a greater deployment

but hampered at the amount of implementation needed. In retrospect the application scenario

should have more focused on the multi-user and simulation interaction. Since the MRI seg-

mentation proofed to be exemplary in showing the collaborative aspect. In its defence however,

this scenario was constructed before the renewed implementation of the MRI segmentation and

was implemented during establishing the publish subscribe data sharing methodology. During
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which it both evolved, from concept to prototyping forth and back.

6.3 Limitations and Future research

The use-case scenarios presented here were conducted in localized areas and tested with up

to 30 end-clients. Albeit the presented architecture took into consideration the ability to scale

to a multi-fold of active end-clients it was never applied. Mainly due to the issues already

present at the small scale deployment deemed to be more challenging than anticipated. It is

therefore for future research on how to extend this to a greater area, while retaining all the same

capabilities. In some sense the issue can be solved by increasing the amount of server hardware

to accommodate the increase of end-clients. This however is a poor solution as it only solves the

rendering and simulation demands, but the handling of user events and interaction within the

VE will increase significantly.

Improvements can be achieved in having a more dedicated streaming processing software. As

currently direct frames are grabbed from a buffer on the graphics card, depending on the ren-

dering engine used this can be done in several ways. The fastest image grab methodology was to

render to a texture buffer and have this then copied to a local buffer. Possibly faster methods can

include dedicated hardware capable of capturing and direct compressing into a specific format.

Albeit this was not the focus of the framework, utilizing the jpeg and VP8 codecs mainly in

software mode did limit the frame-rate. Later updates to the VP8 codec offered some hardware

acceleration, but there are faster compression codecs available (mostly commercial).

The adaptive user interface integration proofed to be difficult and is currently the biggest limita-

tion. Using several methods throughout the application scenarios, the embedded interface into

the 3D scene shows the easiest solution. However this requires that the interface is displayed

within the rendering context (OpenGL for example). This is no problem when using Qt and

building an application from ground up. But the dependency on using a library that is capable

of rendering the interface in the 3D scene can be interpreted as too strict. Other solutions might

be found in the use of HTML 5 and the use of JavaScript and web-sockets for custom implemen-

tations and functionality. Albeit these can be very power consuming, where a native interface

performance-wise is insignificant.

In continuation of using nodes and the possibility of running them in their own respective pro-

cess came from the idea of upgrading services remotely and without interruption. By having a

node saving its state to disk and spawn the new version of the same node which then takes the

old state. Converting it to its own state and takeover from the old node which then can be shut

down. The initial implementation shows that this is quite possible but it becomes rather quickly

very complex especially with platform independence in mind and having active networking

connections. However we feel this is a viable direction.
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Acronyms

3G 3rd generation mobile telecommunications

4G 4th generation mobile telecommunications

ALM Application Layer Multicast

ALMP Application Layer Multicast Protocol

AoIM Area of Interest Management

API Application Program Interface

AR Augmented Reality

CAAR Context Aware Adaptive 3D Rendering

CAVE Cave Automatic Virtual Environment

COLLADA COLLAborative Design Activity

CPU Central Processing Unit

CP Constraint Point

DRM digital rights management

CSCW Computer-Supported Cooperative Work

CVE Collaborative Virtual Environment

DHCP Dynamic Host Configuration Protocol

DLL dynamic link library

DOI Domain of Interest

DUI Distributed User Interface

DVE Distributed Virtual Environment

DVMRP Distance Vector Multicast Routing Proto-
col

EM Event Manager

fps frames per second

FTP file transfer protocol

GHz gigahertz

GiB gibi bytes

GPGPU general-purpose computing on graphics
processing unit

GPU graphics processing unit

GUI graphical user interface

HCI human computer interaction

HDR high dynamic range

HID human interface device

HMD head mounted display

HTTP HyperText Transfer Protocol

IE Interest Expression

IM Interest Manager

IP Internet protocol

IPv4 Internet protocol version 4

IPv6 Internet protocol version 6

ISP Internet Service Provider

ITK Insight Segmentation and Registration Toolkit

JNI Java Native Interface

JPEG Joint Photographic Experts Group

KiB kibi bytes (1024 bytes)

LAN Local Area Network

LOD Level of Detail

LSVE Large Scale virtual environment

MAC media access control
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MBone Multicast Backbone

MHz megahertz

MiB mebi bytes (1024 kibi bytes)

MIP Mobile IP

MMOG Massive Multi-player Online Game

MMO Massive Multi-player Online

MMVE Massively multi-user virtual environment

MOSPF Multicast Extensions to OSPF (Open Short-
est Path First)

MRI Magnetic Resonance Imaging

MUD Multi User Dungeon

MVC Model View Controller

NCVE Networked Collaborative Virtual Environ-
ment

NFC near field communication

NPC Non-Playable Character

NUI natural user interface

OS operating system

OSG OpenSceneGraph

OSI Open Systems Interconnection

PA Personal Address

PC Personal Computer

PDA Personal Digital Assistant

PIM-DM Protocol Independent Multicast - Dense
Mode

PIM-SM Protocol Independent Multicast - Sparse
Mode

PNG Portable Network Graphics

PSSAM Presentation Semantics Split Application
Model

RAM Random Access Memory

ROI Region of Interest

RTP Real-time Transport Protocol

RTT Round Trip Time

RUDP Reliable User Datagram Protocol

SAIL Sensor Abstraction and Integration Layer

SDK software development kit

SDL Simple DirectMedia Library

SERVIVE Service oriented intelligent value adding
network for clothing-SMEs embarking in Mass-
Customisation

SMS Shared Memory Space

SFX special effects

SO Shared Object

SSL Secure Socket Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UIML User Interface Mark-up Language

UML Unified Modelling Language

UMPC Ultra Mobile Personal Computer

UPnP Universal Plug and Play

VBO vertex buffer object

VE Virtual Environment

VHD Virtual Human Director

VOD video on demand

VOIP voice over IP

VPN Virtual Private Network

VRML Virtual Reality Modelling Language

VTO Virtual Try-On

VW Virtual World

WAN Wide Area Network

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

XML eXtensible Mark-up Language

XSL eXtensible Style-sheet Language
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Figure B.1: Chronological overview of publications on CVEs (Appendix B)

Table B.1: CVE Architectures

Name Year Description References
A3 2008 Interest Management Algorithm for Distributed Simulations of MMOGs [45]
Advanced Distri-
bution Simulation

1995 ADS

ALSP 1997 "Aggregate Level Simulation Protocol describes message filtering Two classes of
data: - Attributes of persistent objects Entities in VE - Interactions Non persistent
events
Class filter, filter on class (regardless of value) Attribute value filter (e.g. range
checks)
Filtering at sender and receiver
Uses broadcast"

[117]

ANTS (MOVE) 2002 ANTS/MOVE Multiuser Oriented Virtual Environments [118]
ARIVU 2010 Power-aware middleware for multiplayer mobile games [119]
ATLAS 2002 A Scalable Network Framework for Distributed Virtual Environments [34]
Aviary 1994 distributed obiect system. [120]
Avocado 1999 A Distributed Virtual Reality Framework [121], [122]
Bamboo 1998 Virtual Environment Toolkit, a portable system for dynamically extensible, real-

time, networked, virtual environments
[123], [124]

Beach 2004 application model and software framework for synchronous collaboration in ubiq-
uitous computing environments.

[125]

Continued on next page
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Table B.1 – Continued from previous page
Name Year Description References
Bricknet 1994 Based on an object sharing strategy allowing users to set-up their own private work-

spaces, populated by shared and private objects. Virtual worlds are not restricted
to sharing an identical set of objects; a virtual world manages its own set of objects,
some or all of which may be shared with the other virtual worlds on the network.

[126]

Calat 1996 Intelligent tutoring system. server side and a multimedia viewer on the client side. [127]
Calvin 1996 Prototype of Cavern. multiple users to synchronously and asynchronously exper-

iment with architectural room layout designs in the Cave Automatic Virtual Envi-
ronment (CAVE).

[128]

Cavern 1997 A distributed architecture for supporting scalable persistence and interoperability
in collaborative virtual environments

[129]

CavernSoft-G2 2000 (CavernSoft G1 is Cavern)Toolkit for High Performance Tele-Immersive Collabora-
tion.

[130]

CCTT 1995 "Close combat tactical trainer DIS compliant Interest Management – pre-defined
grid and packet type based.
Uses multicast per grid-cell"

[131]

Colyseus 2006 a distributed architecture for online multiplayer games [132]
Community Place 1997 Formerly known as Cyber Passage. Community Place is a shared multi-user VRML

system de- signed to work in the Internet. It consists of a VRML2.0 browser, a
multi-user server architecture and an application support environment.

[133]

Continuum 2007 An architecture for user evolvable collaborative virtual environments [134]
CoUniverse 2009 Framework for Building Self-Organizing Collaborative Environments Using

Extreme-Bandwidth Media Applications
[135], [136]

Cove 2006 Collaborative object-oriented visualization environment [137]
Coven 2001 Based on DIVE; prototype large-scale applications of CVE. [138]
CSPray 1997 Provides different levels of information sharing, incremental updates to reduce

network traffic, an intuitive floor control strategy for coordinating access to shared
resources, a built in session manager to handle participants who either join late or
leave early and a host of collaborative 3D visualization aids.

[139]

CVD 1999 Together with CAVE5D and tightly integrated with Cavern. Cave5D/Virtual Direc-
tor, integrates the capabilities of both existing VR applications, Cave5D and Virtual
Director, in order to enable the user to view and interact with the data from within
the data set, visualize the data in real time and easily record the experience.

[140]

CyberWalk 2003 a web-based distributed virtual walkthrough environment. [141]
DACIA 2000 A mobile component framework for adaptive groupware application. [142]
DEVA3 2000 Architecture for a Large-Scale Distributed Virtual Reality System. [31]
DEVRL 1996 Distributed extensible virtual reality laboratory [143]
DIS 1993 Distributed Interactive Simulation, the follow up of SIMNET and focuses on mili-

tary simulations.
DISCIPLE 1999 a framework for multimodal collaboration in heterogeneous environments. [144]
DIVE 1993 "The Distributed Interactive Virtual Environment (DIVE) is an internet-based multi-

user VR system where participants navigate in 3D space and see, meet and interact
with other users and applications. The DIVE software is a research prototype cov-
ered by licenses. Binaries for non-commercial use, however, are freely available for
a number of platforms. The first DIVE version appeared in 1991.
DIVE supports the development of virtual environments, user interfaces and ap-
plications based on shared 3D synthetic environments. DIVE is especially tuned
to multi-user applications, where several networked participants interact over a
network."

[145]

Dive 3 1999 Latest (and last) version DIVE 3.3x (eXperimental) [24]
DOOVIE 1997 an architecture for networked virtual environment systems [146]
Drone 2009 A Flexible Framework for Distributed Rendering and Display [147]
DSG 2010 "Distributed Scene Graph to Enable Thousands of Interacting Users in a Virtual

Environment"
[148]

DVS 1991
EQUIP 2002 a software platform for distributed interactive systems [149]
ERCIS 1998 Distributed interactive simulation for group-distance exercises on the web. [150]
EventHeap 2000
FlowVR 2004 A framework for distributed virtual reality applications [151], [152]
FUSE 2002 ubiquitous collaboration within diverse mobile environments [153]
GreenSpace 1995 a distributed virtual environment for global applications. [154]
HLA 1995 "Higher Level Architecture; general purpose architecture for distributed computer

simulation systems. Two types of filtering Class based and Value based"
[155]

HyClass 1997 Interactive Cooperative Learning System Based on Virtual Shared Space [156]
Hydra 2007 A Massively-Multiplayer Peer-to-Peer Architecture for the Game Developer [157]
ICOME 1999
iRos 2002 A dedicated meeting space with large displays, wireless or multimodal devices,

and seamless mobile appliance integration.
[158]

Continued on next page
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JPSD 1995 "Joint Precision Strike Demo Prototype simulator Uses DIS protocol A node sim-

ulates entities Per node Interest management Entity broadcasts(publish) their in-
terest manager to other nodes Static: priori simulation Dynamic: upon need Uses
point-to-point unicast"

LEARS 2011 lockless, relaxed atomicity state parallel game server [159]
MACVE 2007 A Mobile Agent Based Framework for Large-Scale Collaborative Virtual Environ-

ments
[160]

MaDViWorld 2002 A software framework for massively distributed virtual worlds [161]
MASSIVE 1 1994 Initially aimed at teleconferencing, supports multiple users, applications and

worlds connected by "portals"
[22]

MASSIVE 2 1996 * [162]
MASSIVE 3 2000 flexible support for data consistency and world structuring [162]
Matrix 2005 Adaptive Middleware for Distributed Multiplayer Games [163]
MAVERIK 1999 A micro-kernel for large-scale virtual environments [164]
MERCURY 2002 a scalable publish-subscribe system for internet games [165]
Mobihoc 2007 a middleware adopt- ing VFC to support multiplayer distributed games in ad-hoc

networks.
[166]

ModSAF 1995 "Modular Semi-Automated Forces Designed for US Army Initial: LISP on BBN
ButterFly Progress: SIMNET SAF -> OdinSAF Final: ModSAF
Used for STOW-ED-1 and NPSNET
Filter by Static Spatial based, cells And filter packet on Type (class) Uses broadcast
Interest management done by aggregate level (not individual)
“destination based filtering”"

MOPAR 2005 a mobile peer-to-peer overlay architecture for interest management of massively
multiplayer online games.

[167]

MPACC (gaia) 2001 Model-Presentation- Adapter-Controller-Coordinator, an application model that ex-
tends the MVC pattern to Ubiquitous Computing scenarios. This new model takes
into account issues such as the non-existence of a single interaction device, con-
textual properties associated to the user and the space where the application runs,
automatic model-view data type adaptation, mobility of the view, model and con-
troller, and applications running on behalf of a user or a space, instead of in the
context of a particular device.

[168]

MPCW-
REALTIME

1992

MUVEES 2003 a Multi-User Virtual Environment for Learning. [169]
NATIVE 1999
NetEffect 1997 a network architecture for large-scale multi-user virtual worlds [170]
NOMAD 2000
NPSNET I 1991 "Navel Postgraduate School NET DIS compliant Uses Hexagonal grid, per cell mul-

ticast address
AOI, radius of grid cells. Oldest active entity in grid cell -> group leader for adding,
deleting members to grid cell"

[21]

NPSNET II 1993
NPSNET III 1993
NPSNET IV 1993
NPSNET V 2000 "a platform for research on infrastruc- ture technology for networked virtual envi-

ronments."
[171]

Octopus 2001 A cross-platform, object oriented API designed to abstract the complex details in-
volved with CVEs including soc ket management, shared data handling, shared
object control and representations of other users (avatars).

[172]

OdinSAF 1995
OpenPing 2004 a reflective middleware for the construction of adaptive networked game applica-

tions
[173]

P2LIFE 2010 An Infrastructure for Networked Virtual Marketplace Environments [35]
PaRADE 1997
PAULINGSWORLD 1998 An Immersive Environment for Collaborative Exploration of Molecular Structures

and Interactions
[174]

PAVR 1999
Proximity Detec-
tion

1994

QUICK 2000 Framework for optimizing fidelity on a per-task basis. Integrates ratings of repre-
sentational Quality, scene node Importance, and ma- chine resource Cost.

[175]

RAVE 2008 Resource-aware visualization environment [176]
Reality Built for
Two

1990 Development platform for designing and implementing real-time virtual realities . [177]

Rendezvous 1990 an architecture for synchronous multi-user applications [17]
Repo-3D 1998 A distributed 3D graphics library [178]

Continued on next page
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Table B.1 – Continued from previous page
Name Year Description References
RING 1995 A client-server system for multi-user virtual environments. [179]
Rubber Rocks 1992 Interactive simulation in a multi-person virtual world [180]
SCAPE 2003 Stereoscopic Collaboration in Augmented and Projective Environments [181]
SCORE 2004 a scalable communication protocol for large-scale virtual environments. [50]
SEMMO 2008 A Scalable Engine for Massively Multiplayer Online Games [182]
SIMNET 1987 Miltary real-time distributed combat simulations. Mainly based on broadcast net-

working and filtering. Introduces the concept of "dead-reckoning"
[15]

SmallTool 1998 a toolkit for realizing shared virtual environments on the Internet. SmallView was
realized with this toolkit.

[183]

SmartCU3D 2001 a Collaborative Virtual Environment System with Behavior Based Interaction Man-
agement

[184]

SPLINE 1996 Used for social virtual environment "Diamon Park". Support audio and video in-
teraction.

[23]

Steve Benford Spa-
tial model of inter-
action

1993 COMIC Project; A Spatial Model of Interaction in Large Virtual Environments [185]

STOW 1994 Synthetic Theater of War [16]
STOW ACTD 1997 "Synthetic Theater of War Advanced Concept Technology Demonstration

Uses experimental HLA, and grid based, variable pre-defined grid cell sizes. Each
cell with multicast"

STOW ED-1 1995 "Synthetiic Theater of War Demo 1 Uses DIS PDU (but not fully DIS compliant)
Uses multiple grid layers (fidelity) with multicast Similar to ModSAF
Complete data when subscribe to all grid-layers. Agent at LAN-WAN, as long
entity has IE in group, agent wil stay in multicast group."

STOW-E 1994 "Synthetic Theater of War - Europe One of the STOW programs DIS 2.03 with
custom PDU Uses grid-based and PDU type filtering AOI, grid cell set Uses broad-
casting for lan-wan-lan data (node-node)"

StudierStube 1998 An environment for collaboration in augmented reality [186]
Three-Tiered IM 1999 Based on Bamboo, providing an extensible interest management for scalable per-

sistent distributed virtual environments
[187]

TRADE 1997 A transatlantic research and development environment. [188]
UCAVE 2012 Ubiquitous collaborative activity virtual environments [189]
Urbi et Orbi 2000 An asynchronous architecture to manage communication, display, and user inter-

action in distributed virtual environments.
[190]

VAST 2007 Voronoi-based Adaptive Scalable Transfer; a fully-distri- buted peer-to-peer proto-
col, designed to handle event mes- sages in MMOGs

[191]

VELVET 2003 An Adaptive Hybrid Architecture for Very Large Virtual Environments [192]
VEOS 1994 Virtual Environment Operating Shell. emphasizes rapid prototyping, heteroge-

neous distributed computing, and portability.
[193]

VERN 1991 Virtual Environment Realtime Network, object oriented testbed for interconnection
of envirnments over a network of graphical workstations.

[194]

Vesuvius 2007 Interactive Atmospheric Visualization in a Virtual Environment [195]
Virtual Society 1995 Based on Community Place, [196], [197]
VISINET 1997 collaborative 3D visualization and VR over ATM networks [198]
VISTEL 1993 In VISTEL, the 3D models of the participants at different sites are combined into an

artificially created 3D image of a virtual space, and by displaying the 3D image of
the virtual space on the 3D screen at each site, the participants will get the feeling
of meeting each other in a common space.

[199]

VLNET 1995 a shared virtual life network with virtual humans that provides a natural interface
for collaborative working.

[200]

Von 2006 A Scalable Peer-to-Peer Network for Virtual Environments [33]
VPARK 1999 a Networked Virtual Environment (NVE) System, called W-VLNET (Windows Vir-

tual Life Network) and an Attraction Building System, able to create and modify
attractions used in the NVE System.

[201]

WAVES 1993 Design of architectures for low-end distributed virtual environments [202]
Whiskey 2007 Synchronous collaborative systems for distributed virtual environments in Java [203]
Wolverine 2005 A distributed Scene-Graph Library [204]
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Hardware

This section lists an overview of all the hardware mentioned in more detail.

(i) Workstation, Intel Pentium 4 CPU at 3.40GHz, 2GiB RAM, NVidia GeForce 7800GT

(ii) Workstation, 2.4GHz Intel Core2 CPU, 2GiB RAM and an NVIDIA GeForce 7800 GT GHz, Win-
dows XP.

(iii) Workstation, 2.4GHz Intel Core2 CPU, 2GiB RAM and an NVIDIA GeForce 8800GTX GHz, Win-
dows XP.

(iv) Workstation, Intel Core i7 950 CPU. NVIDIA GeForce GTX 480, Windows 7.

(v) Workstation, Intel Core i7 X 980 CPU. NVIDIA GeForce GTX 480, Windows 7.

(vi) Workstation, Intel Core i7 3770 CPU. NVIDIA GeForce GTX 660, Windows 8.

(vii) Ultra Mobile Personal Computers are based on the Microsoft Origami specification released in
2006 and have been developed jointly by Microsoft, Intel, and Samsung, among others. UMPCs
are basically small form factor mobile PCs running Microsoft Windows XP. The UMPC used is a
Asus R2H. Intel Celeron M Processor ULV : GHz 900MHz;Intel 910GML Express Chipset;DDR 533
MHz SDRAM, 256MB on board;Embedded Intel GM965.

(viii) Tablet, Asus Slate EP121, Intel Dual-Core i5 470um, DDR3, 4GB SO-DIMM, 64GB SSD, Intel HD
Graphics, Windows 8.

(ix) Motion tracker, Type Mtx.a small and accurate 3DOF Orientation Tracker. It provides drift-free 3D
orientation as well as kinematic data: 3D acceleration, 3D rate of turn and 3D earth-magnetic field.

(x) Mobile phone HTC Hero, 288 MB RAM, 512 MB ROM, Qualcomm MSM7200A, 528 MHz, Adreno
130 GPU, Android OS, v1.5 (Cupcake).

(xi) Mobile phone HTC HD2, 448 MB RAM, 512 MB ROM, Qualcomm QSD8250 Snapdragon, 1 GHz
(Scorpion) , Adreno 200 GPU, Microsoft Windows Mobile 6.5 Professional.

(xii) Mobile phone Samsung Omnia 7, 512 MB RAM, 8GB Flash, Qualcomm QSD8250 Snapdragon, 1
GHz (Scorpion), Adreno 200 GPU, Microsoft Windows Phone 7.5.

(xiii) Mobile phone Nokia Lumia 820, 1 GB RAM, 8GB Flash, Qualcomm Snapdragon S4 MSM8960, 1.5
GHz dual-core Qualcomm Krait, Adreno 225 GPU, Microsoft Windows Phone 8.

(xiv) Head-mounted display
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(xv) Surface pro 2 tablet, Microsoft Windows 8.1, 4 GB Ram, Intel Core i5-4200u CPU 1.6Ghz, Intel
Graphics.
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Appendix D

Projects

The work presented in this thesis was supported by several projects. Each of these projects brought
their own domain, limitations and requirements to the research topic. It broadened the topic, made
it more varied and diverse as a whole level of complexity in overall design of the framework was
added, which made it challenging and intriguing. Each section presents a description of the project
and includes a section with the contributions correlated with the work presented in this thesis. Starting
with the main project Intermedia bringing the main focus on user centric media, followed by the second
most important contributing project 3DAH in terms of telemedicine, and last the two supportive projects
Servive and Leapfrog for e-commerce and real-world applications. The descriptions given are the official
descriptions from the project websites.

D.1 InterMedia

“ There have been considerable efforts to have Audio Video systems and applications converge, in
particular in home environments with homes as spaces of convergence, and for nomadic users with
advanced mobile devices as points of convergence. These trends are important but also have limitations
that we seek to address and overcome: home-centric systems fail to account for increased mobility
and the desire to provide continuous service across spatial boundaries outside the home; device-centric
convergence, e.g. in 3G phones, supports nomadic use but provides a very limited user experience as
no single device and interface will fit many different applications well.

In this Network of Excellence 12 we seek to progress beyond home and device-centric convergence
toward truly user-centric convergence of multimedia. Our vision is The User as Multimedia Central:
the user as the point at which services (multimedia applications) and the means for interacting with
them (devices and interfaces) converge. Key to our vision is that users are provided with a personalized
interface and with personalized content independently of the particular set of physical devices they have
available for interaction (on the body, or in their environment), and independently of the physical space
in which they are situated. Our approach to this vision is to investigate a flexible wearable platform that
supports dynamic composition of wearable devices, an ad-hoc connection to devices in the environment,
a continuous access to multimedia networks, as well as adaptation of content to devices and user context.

The concept of user-centric convergence liberates a nomadic user from carrying a range of mobile de-
vices by providing personalized access to multimedia regardless of devices and networks. It is accom-

1Network of Excellence web-link: http://cordis.europa.eu/fp6/instr_noe.htm
2Project Intermedia web-link: http://cordis.europa.eu/projects/rcn/79765_en.html
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plished not only by removing spatial constraints but also by making multimedia contents adapted to
diverse devices and networks in our daily activities. An overview of the three key challenging issues
(dynamic distributed networking, mobile and wearable interfaces, and multimedia content adaptation
and handling) is shown in D.1 with their internal components. Dynamic distributed networking layer
mainly focuses on a transparent access to diverse networks for seamless multimedia session continuity
which enables a user to switch among different devices and networks with minimal manual interven-
tion from the user. We defined two frameworks: PA Framework and Sensor Abstraction and Integration
Layer (SAIL). The PA framework [55] provides a cross-layer user-centric mobility framework that ac-
counts for terminal handover and session migration. It associates network addresses to the users and
their sessions. It exploits context information to automate the processes of terminal handover and
session migration. SAIL [92] gathers data from heterogeneous context sources and exports context in-
formation as they came from “virtual sensors”; through high-level standard interfaces (for example,
HTTP and UPnP).

Personal Address Framework
Sensor Abstraction and 

Integration Layer

Mobile and Wearable 
Interfaces

Multimedia Adaptation and Handling

Dynamic Distributed Networking

Modular Wearable 
Framework

Mobile 
Interfaces

ROI-based Video 
Adaptation

Sound Adaptation

3D Adaptive 
Rendering

Image Adaptation

Figure D.1: InterMedia Research Challenges and Architecture[205]

The mobile and wearable interfaces layer provides various interfaces to access multimedia contents
exploiting diverse devices nearby to users which make users free from using specific devices to access
multimedia contents. We use a modular approach towards a wearable interface in a sense that users
do not have to decide between several garments according to their fixed respective functionalities, but
they can rather select and attach modules (e.g., UI, storage, localization sensors, and communication
protocols, etc.) that will suit their needs. Thus, it becomes entirely personalized as it depends on
the selected wearable modules, user profile, and the available surrounding devices. To overcome the
limited output capabilities of mobile devices, in particular mobile phones, new mobile interfaces are also
developed such as display technologies like projector phones, interactive surfaces and remote displays.
Using those interfaces, multimedia can be explored and shared in a collaborative manner using new
interaction techniques. Multimedia adaptation and handling layer support multimedia contents to be
presented to different devices for personal manipulation which requires adaptation of multimedia to
device or personal context along with seamless presentation of the multimedia for different devices. We
provide diverse adaptation mechanisms according to multimedia types including video, image, sound,
and 3D contents. We also provide a multimedia sharing architecture through dynamic networks with
other users.”
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D.1 InterMedia

D.1.1 Contributions

The Intermedia project provided most of the application scenarios, which are Remote Rendering for
Low-end Devices, Remote Rendering with Augmented Reality and Adaptive Rendering with Dynamic
Device Switching. In the beginning of the project there was a strong focus on researching indoor guid-
ance systems, which entailed a wearable mobile device or suit as described by Rigetti[206] and a head
mounted display (HMD) which then augments or superimposes a 3D virtual environment on what was
seen, with orientation corrections from a motion tracker3. The guidance system could be given com-
mands by voice and an 3D avatar would walk in front of the user, guiding the user to its destination
within the building. To give an impression figure D.2 shows an example, in which a prototype of the
system is demonstrated, the user is wearing the HMD, with on top the orange Xsense motion tracker.
The laptop to the right shows the 3D rendering as it is presented to the user. A basic styled rendering
was chosen as it is being projected as it were over the real world. Therefore wire-frame models and
bright colours were chosen.

Figure D.2: Indoor guidance using Augmented Reality.

It is here where the first two scenarios are applied. The device that is with the user doesn’t necessarily

3Xsense motion tracker see (ix)

151



Appendix D. Projects

contain all the information about the building, therefore it should be transferred. The full 3D rendering
was performed on the device and displayed on the HMD4. As seen from the figure the HMD is a
see through and one-eye display creating a superimposed image. This however demanded a lot of
processing power from the mobile device, which was a UMPC5, and therefore remote solutions looked
at. At the second stage of the project the focus on augmented reality was lessened and shifted towards
a stronger user-centric approach. This evolved into have still the wearable devices and have 3D content
displayed on it. The 3D content however is rendered remotely and streamed to the device all the
while a user session is kept, capable of switching from device to device without inturrupting the 3D
content streaming. Furthermore we contributed to the collaborative aspects that were added without
impeding the user-centric approach. This resulted into having uncommon devices (e.g. interactive
table), portable devices and common devices (e.g. PC) running their own perspective clients that all
connect and visualize a common 3D environment in which multi-user interaction is made possible.

D.2 3D Anatomical Human

“The objective of this network is to increase, by scientific exchange, the development of new technolo-
gies and knowledge around virtual representations of human body for interactive medical applications.
The network has a specific goal: developing realistic functional three-dimensional models for the human
musculoskeletal system, the methodology being demonstrated on the lower limb.

3DAnatomicalHuman6 is a Marie Curie Research Training Network project within EU’s Sixth Frame-
work Program7. These Networks provide the means for research teams of recognized international
stature to link up, in the context of a well-defined collaborative research project, in order to formulate
and implement a structured training program for researchers in a particular field of research.

The objective of this project is to train a body of researchers in the various domains involving the
modelling and simulation of human body for medical purposes. The network will be naturally pluri-
disciplinary and pluri-institutional and will:

• Promote the culture of pluri-disciplinary research applied to concrete problems of the real world.

• Bridge complementary approaches for modelling and simulating the human musculoskeletal sys-
tem through the development of modelling and simulation methods with different level of details.

• Improve the learning support for medical training.

• Increase awareness of the use of virtual reality technologies to real clinical problems.

• Demonstrate the feasibility and efficiency of virtual and augmented reality techniques to repro-
duce with realism not only the shape but also certain physiological processes, and provide ad-
ditional information usually non-visible, like stress or temperature distribution on anatomical
structures.

• Integrate Knowledge Management in functional simulation in order to provide high-level models
(framework for information management) and improve the acceptance of simulation models by
clinicians (medical semantics).

”4head mounted display, see (xiv)
5UMPC mobile device, see (vii)
6Project 3DAH web-link: http://cordis.europa.eu/projects/rcn/82439_en.html
7Marie Curie Research Training Network web-link: http://ec.europa.eu/research/fp6/mariecurie-actions/

indexhtm_en.html
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D.3 Servive

D.2.1 Contributions

A stronger focus on collaboration was given within this project, where we used various data generated
within the project itself (such as MRI scan data) and provide a view on what could be possible for
Telemedicine with the researched technologies. This is shown in application scenario 3.9, which com-
bines the automatic segmentation (Schmid and Magenenat-Thalmann [76]) of MRI data with manual
segmentation into a collaborative environment. The difficulty here lies within the simultaneous inter-
action of the users with a simulation running in the background and to overcome device heterogeneity.
The MRI which can be huge amount of data is too much to handle for a hand-held device and therefore
a service provided, only provides a view on the data specifically for the given session running on the
device. Furthermore the sharing and synchronization of data between users had to be established as
well as application logic that separates interaction data and surface contour data and visualizes it. The
interaction in general is provided equally, albeit on a PC a mouse is used and on a smart-phone the
touch based input. The experiment in section 5.6 shows two types of collaboration, strict and relaxed
locking of actions. The collaborative interaction all happens in a 2D space, as the view on the MRI
data gives a “sliced” 2D-image. The segmentation output however is a 3-dimensional surface model,
which is rendered at the server side, where the simulation is also running. In order to have the 3D
view visualized on the client, prior streaming methods are utilized and per client interaction on the 3D
scene are used for rotating and translating the virtual camera. Other contributions to this project were
in close collaboration with the Intermedia project, as a collaborative learning tool in application scenario
Adaptive Rendering with Dynamic Device Switching. With bringing user-centric media which in this
case is the medical data into an E-Learning environment.

D.3 Servive

“The project Service oriented intelligent value adding network for clothing-SMEs embarking in Mass-Customisation,
in short Servive, proposes the enlargement of the assortment of customizable clothing items currently
on offer, the enhancement of all co-design aspects and the development and testing of a new produc-
tion model based on decentralized networked SME cells8. The Servive network links critical Mass-
Customization enabling services and adapt these services to the specific needs of well-defined target
customer groups.

The main activity in the Servive project is formed by the conceptualization, design and development of
a model configuration module and the Virtual-Try-On Web Service. This is a server-based and real-time
garment simulation solution that presents the results of the customer’s personalized garments in an
appropriate form for comfort and fit evaluation based on the customer’s physiology.”
D.3.1 Contributions

The Servive and Leapfrog projects brought aspects of E-Commerce and are mostly expressed and elab-
orated in application scenario Service Distribution and Render Context Switching. Here we contributed
to enable single user access to a cloud-based service that offers a 3D content rendering service. In this
case clothing on a virtual avatar are being rendered, which can be customized by the user. These kind
of services are not really new, but are offered in either 2D and/or pre-rendered content. The challenge
here was to overcome this and provide interactive 3D content through a browser without burdening the
end-device with heavy processing demands in the process. Therefore the developed architecture was

8Project Servive web-link: http://cordis.europa.eu/projects/rcn/89318_en.html
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deployed together with methods for load balancing and managing the server side services. The client
software was based on a partial implementation of the proposed architecture in Java, which then could
be run inside a browser as an applet object.

D.4 Leapfrog

“The project Leadership for European Apparel Production From Research along Original Guidelines (LEAPFROG)
main objective is to modernize and ultimately transform the clothing sector into a flexible knowledge-
driven high-tech industry and to preserve its long-term prosperity and competitiveness in an enlarged
Europe9. In order to achieve such a long-term industrial transformation the LEAPFROG initiative will
focus on 3 major objectives.

• A radical re-engineering and intelligent automation of the current garment manufacturing process
will create the clothing factory of the future.

• A radical move towards rapid customized manufacturing through flexible and integration of cost-
effective and sustainable processes from fabric processing to customer delivery.

• A paradigm change in customer service and customer relationship management with a focus on
value-adding product-services.

With these 3 sub-goals in mind, the targeted breakthrough transformation is centred on the develop-
ment of a flexible automated manufacturing system for the cost-effective production of high-quality
customized garments that fully address the customer requirements.”
D.4.1 Contributions

Likewise to the Servive project this project extended the scenario by introducing collaborative aspects
and inclusion of utilizing other devices. From different kinds of devices multiple users are able to
access the same service and interact with it. The challenge here was to have on the server side multiple
sessions active in the same 3D simulation service. The interaction remained the same, thus changing
the avatar body sizes and garment selection, however since there are multiple users interacting from
different devices this became a challenge. An easy but short term solution could’ve been to have the
interface integrated in the end-client, as it was more or less done with the Servive prototype, but this
severely limits the usage and extension of such kinds of services. Therefore bringing it to a more
generalized requirement a more dynamic solution was provided, where each device provides a profile
and on the server side the user interface was rendered directly into the 3D scene. This offered a good
way to overcome this problem, with additionally the ease of updating at the server side without having
to update the client side. In later stages the Servive and Leapfrog challenges were combined and further
extended into the last application scenario 3.10. Which aims at having a fully collaborative service based
environment capable of exploiting the full pipeline for making garments as patterns, extract and convert
them into 3D meshes and simulate these in dynamically created services.

9Project Leapfrog web-link: http://cordis.europa.eu/projects/rcn/80097_en.html
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