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1 Introduction

The breakthrough discovery of gravitational waves [1] has catalyzed rapid progress and
new directions in many areas of astronomy, cosmology, and particle physics. In theoretical
high-energy physics, the challenge of modeling binary sources to high precision has inspired
new methods of calculation using the tools of Quantum Field Theory (QFT), leading to
a number of new results in General Relativity. In turn, the application of QFT in this
new arena has uncovered theoretical structures that have brought new insights into the
deep connections between field theory and Einstein’s geometric picture of gravity. See, e.g.,
refs. [2–5] for reviews.

The QFT-based approach to classical binary dynamics weaves together cutting-edge
tools from the theory of elementary particles, such as effective field theory (EFT), on-shell
methods, and techniques for multi-loop integration. These tools have been honed over decades
to tackle significant problems in gauge theory where multiple scales are nonlinearly coupled.
However, the precision demands of future gravitational wave detectors, such as LISA [6],
the Einstein Telescope [7] and Cosmic Explorer [8], are posing new challenges that will take
these technologies to their breaking-point.
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State-of-the-art calculations provide a stress test for our understanding of QFT and
unveil deep insights and underlying structure. A celebrated example is the double copy [9–11],
which, in its original incarnation, directly connected amplitudes in gauge and gravitational
theories, and has since been generalized to a web of interconnected theories (see ref. [12]
for a recent review). Computations relevant for the binary problem, in particular, have also
led to formal developments. For example, ref. [13] obtained an all-orders-in-G amplitude in
the probe limit, ref. [14] exposed relations among various amplitudes in the classical limit,
while ref. [15] conjectured an exponential form for the amplitude in terms of the classical
radial action. These calculations demonstrate how fertile this program is for deepening our
understanding of scattering amplitudes, which are some of the fundamental objects in QFT,
and at the same time impacting the exciting frontier of gravitational-wave science.

In the present work we extend the application of QFT methods to binary dynamics by
exploring scattering amplitudes in curved space. We leverage exact solutions to Einstein’s
equations to develop a framework for systematically computing classes of contributions
to all orders in the gravitational coupling G but as an expansion in the small ratio of
masses, m/M ≪ 1, which characterizes so-called extreme-mass-ratio inspirals. More broadly,
describing the dynamics around a non-trivial background is a rich, albeit underexplored,
field-theory problem with generic aspects that can find applicability beyond the context
of gravitational waves.

In attempting to address the binary inspiral problem analytically one is immediately led
to the principles of EFT. Indeed, the separation of scales inherent in the problem, namely the
distance between the two bodies in the inspiral phase being much larger than their size, allows
one to treat the bodies as point particles. This line of reasoning led to the original treatment
of the binary as two point particles following geodesics in a metric induced by their motion
(see ref. [16] for a review). Later, the problem was reformulated explicitly as an EFT [17] (see
also the reviews [18, 19]). The same point of view is built into the modern QFT approaches
to the problem as well (see refs. [15, 20–25] for remarkable recent results at 4PM1).

The above approaches do not assume a hierarchy between the masses of the bodies in
the binary, rather they are perturbation schemes in Newton’s constant G. Indeed, one of
the open challenges is modeling the inspiral of binary systems consisting of a compact body
of mass m and a supermassive black hole of mass M , with M ≫ m. The limiting case of
these so-called extreme-mass-ratio inspirals is described by geodesic motion in a background
spacetime, such as Schwarzschild or Kerr, but beyond this the probe particle interacts with
its own gravitational field, giving rise to an effective “self-force.” The gravitational self-force
framework aims to solve this system as an expansion in m/M but to all orders in G. In this
framework, the nth order self-force (nSF) correction is suppressed by a factor of (m/M)n

when compared to geodesic motion.
Developing a systematic framework for controlled calculations of m/M corrections

to binary dynamics is quite challenging. At 1SF, refs. [26, 27] obtained an equation of
motion for a point particle interacting with its own gravitational field. The framework was
further formalized in refs. [28–31] and extended to 2SF order in refs. [32–35] (see also [36–
39]). Corrections at 2SF order will be relevant for LISA [40–42]. Current state-of-the-art

1The post-Minkowskian (PM) expansion is organized in powers of G: nPM ↔ O (Gn).

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
1
2
5

computations include observables for eccentric orbits at 1SF [43, 44] and waveforms for
quasicircilar orbits at 2SF [45]. There is also recent interest in studying SF corrections
for scattering trajectories [46–48]. The worldline-based approach of ref. [39] extended the
pioneering work of Goldberger and Rothstein [17] to curved space, and the framework we
develop here shares some of its features. However, our framework is based on QFT, which
has its own merits and challenges. For example, one key difference is the focus on calculating
scattering amplitudes, as opposed to deriving corrections to equations of motion.

There exists many interesting connections between exact curved spacetimes and ampli-
tudes around flat space. Indeed, by resumming Feynman diagrams [49] or using on-shell meth-
ods [50], one may relate an appropriate scattering amplitude directly to the Schwarzschild met-
ric. Refs. [51, 52] and [53] followed an analogous approach for the Schwarzschild-Tangherlini
and Reissner-Nordström-Tangherlini metrics respectively. Similarly, there is growing evidence
that amplitudes of spinning particles capture observables related to the Kerr black hole [54–
70]. Moreoever, amplitudes containing all-orders-in-G information have been extracted from
calculations in curved space [71–77].

In this paper, we combine elements of EFT and scattering amplitudes in curved space
to develop a framework for computing gravitational self-force corrections to classical binary
dynamics. By expanding around the black-hole geometry sourced by the heavy particle, our
interaction vertices contain information to all orders in G, and observables are organized
as an expansion in powers of m/M . The dynamics of the probe particle are derived from
the classical limit of self-energy diagrams of a massive scalar (see figure 5), which may be
thought of as a manifestation of the fact that self-force corrections are due to the particle
interacting with its own gravitational field.

An important aspect of our framework is the backreaction of the background spacetime,
which we capture via light degrees of freedom that follow from symmetry breaking consid-
erations [78–80]. In particular, the spontaneous breaking of spacetime symmetries due to
the black-hole geometry dictates the existence of Goldstone bosons, which become relevant
beyond the geodesic limit. This line of analysis is based solely on aspects of symmetry
in QFT and leads us to incorporate effective degrees of freedom that are consistent with
the worldline approach [17].

Our framework is an analytic perturbative scheme designed to leverage the all-orders-in-G
information encoded in the background geometry, while still taking advantage of the efficient
tools developed for flat-space calculations. Scattering amplitudes in curved space encode
binary dynamics of the inspiral phase. They do not capture non-perturbative effects; rather,
they are constructed to match the corresponding amplitudes in flat space when expanded in
G. While the focus of our work is not on reformulating the PM expansion, it is worth noting
that our curved-space framework offers several advantages for computing amplitudes in flat
space. For example, particular families of diagrams in flat space are automatically combined
in curved space, yielding compact expressions. Moreover, higher-order loop diagrams in flat
space are mapped to lower-order loop diagrams in curved space which in some cases lead
to fewer integrations (see, e.g., figure 11). In fact, our formalism yields certain classes of
Feynman graphs to all orders in G.

We perform a number of nontrivial checks. In particular, we calculate the 0SF two-point
amplitude, which corresponds to the flat-space two-to-two amplitude, to all orders in G,
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finding agreement with ref. [13]. Furthermore, since our curved-space amplitudes match
flat-space amplitudes at fixed order in G, we recompute the O

(
G2) two-point amplitude

and the integrand for the O
(
G3) two-point amplitude, finding agreement with refs. [81, 82].

As building blocks to the above amplitudes we obtain the Compton amplitude and the
single-graviton-emission amplitude, which also match the literature [83].

The remainder of this paper is organized as follows: in section 2 we give a summary of
our formalism, and review some background material and conventions. In section 3 we use
our framework to study the 0SF dynamics of a probe particle around a Schwarzschild black
hole. In section 4 we introduce the backreaction of the background and obtain the Feynman
rules relevant for 1SF observables, we discuss the general powercounting and we provide
consistency checks. Finally, in section 5 we conclude and present possible future directions.

Note added. While this paper was at a late stage we learned of the upcoming work [84]
on an effective field theory for extreme mass ratios using a curved-space worldline formalism.
We thank the authors for coordinating the appearance of the manuscripts.

2 Preliminary remarks

In this section we give an overview of our setup, discuss a few aspects of QFT in curved
space, and establish our conventions.

2.1 Summary of the setup

The standard approach for describing classical two-body dynamics using scattering amplitudes
is to consider two massive scalar fields interacting through gravity. Here, we instead model
the binary system by considering only a single scalar field but in a curved background
spacetime. This captures the dynamics of a light probe particle moving around a heavy
gravitational source. Moreover, we model the backreaction or recoil of the heavy source
against the probe particle by including additional light degrees of freedom. These three
key elements are described by the action

S = SG + SL + SH , (2.1)

where the subscripts correspond to ‘gravitational,’ ‘light’ and ‘heavy.’
For the gravitational part of the action we take

SG = SEH + SGF , (2.2)

where SEH is the Einstein Hilbert action and SGF is a gauge-fixing term; for the explicit form
of these terms see eq. (4.1). SG describes the dynamics of the graviton hµν . In particular,
we define the graviton by expanding the metric as

gµν = ḡµν + κ hµν , (2.3)

for some background metric ḡµν , which we later specify to be the Schwarzschild metric.
For the probe particle we consider a real scalar field ϕ minimally coupled to gravity,

SL =
∫

d4x
√
−g

(1
2gµν∂µϕ∂νϕ − 1

2m2ϕ2
)

. (2.4)
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Finally, SH captures the dynamics of the light degrees of freedom associated with the
backreaction of the heavy source. As we discuss in more detail in section 4.2, choosing a
particular background fixes these light degrees of freedom, and SH is the most general effective
theory that describes their interactions. Restricting to the case of a Schwarzschild black hole,
for the purposes of this paper it is sufficient to consider

SH = −M

∫
dτ , (2.5)

where M is the mass of the black hole appearing in the metric (see eqs. (2.8) and (2.9)) and
τ is its proper time. The heavy-particle contribution from this action sources the background
geometry ḡ through Einstein’s equations. The geodesic motion of the probe is then seen
as a consequence of the curved metric rather than the exchange of gravitons between the
two particles. The remaining contributions of this action, which only contribute beyond
0SF, capture the deflection of the source.

2.2 Quantum Field Theory in curved spacetime

Let us briefly comment on a few salient features of QFT in curved spacetime that are relevant
for our setup. For a comprehensive treatment we refer the reader to textbooks, e.g. [85, 86].

Firstly, we restrict our analysis to stationary spacetimes, where we are able to define
a Fock space similar to the one we are familiar with from flat space. In particular, given
that the spacetime is static, there exists a time-like Killing vector ∂t associated with time
translations, and we can choose both our in and out Fock spaces to comprise of eigenstates
of this Killing vector, i.e. states of definite energy. This means that the in and out Fock
spaces share the same vacuum and that there is no spontaneous particle production. On
the other hand, if the time-like vector that defines energy eigenstates in the far past was
different from the one in the far future, then a single-particle in-state might have non-trivial
overlap with a multiparticle out-state.

Secondly, we restrict our analysis to spacetimes that are asymptotically flat. The
black-hole geometries that belong in this category are of particular interest for modeling
two-body dynamics, and we focus here on the simplest case of a Schwarzschild black hole. By
constructing the Fock spaces as described above, we ensure that the vacuum state reduces
to the Minkowski one away from the black hole. Thus the perturbative expansion of our
amplitudes matches the corresponding one in flat space.

Finally, we do not consider horizon phenomena. Black-hole geometries generically have
horizons, and one might be able to extend a geometry accurate outside the horizon to one
that is also valid past the horizon. Defining a vacuum state on the extended geometry
results in a state that looks mixed to an asymptotic observer, given that they do not have
access to the part of the state that describes the interior of the horizon. In particular, this
state appears thermal such that the density matrix corresponds to a thermal average at the
Hawking temperature [87, 88]. Particle detectors placed away from the black hole would
register particles in this state, a phenomenon known as Hawking radiation [89].

In our analysis we are effectively removing the physics of the horizon by our choice
of vacuum state, and by treating the black-hole geometry as a (resummed) perturbative
expansion about flat space. It would be interesting to return to this point and extend our
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formalism to retain these effects. Specifically, retaining the physics of the horizon would
potentially give access to non-perturbative phenomena of interest for the binary problem,
such as the excitation of quasi-normal modes.

2.3 Conventions

In this subsection we collect the conventions used in this paper. We adopt κ2 = 32πG.
For the Riemann tensor we use

gµνRαβγν = Γµ
αγ,β − Γµ

βγ,α + Γλ
αγΓ

µ
βλ − Γλ

βγΓ
µ
αλ . (2.6)

For our scattering amplitudes we use the all-incoming convention. Throughout the paper we
refer to the nSF two-point amplitude in curved space, which corresponds to the nSF two-to-two
amplitude in flat space, simply as the nSF amplitude. We work with a mostly-minus metric,

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.7)

We express the Schwarzschild metric in isotropic coordinates as follows:

ḡµν =


A 0 0 0
0 −B 0 0
0 0 −B 0
0 0 0 −B

 , ḡµν =


1
A 0 0 0
0 − 1

B 0 0
0 0 − 1

B 0
0 0 0 − 1

B

 , (2.8)

where

A = (1− a4)2

(1 + a4)2 , B = (1 + a4)b4 , a4 = GM

2r
, b4 = 4 . (2.9)

The exposition given is in exactly four dimensions. When we need to regulate infinite
intermediate expressions, we choose dimensional regularization where all expressions are
lifted to d dimensions. In particular, the black-hole geometry is also lifted to a corresponding
d-dimensional version [90]. In this case ηµν and ḡµν are diagonal (d × d) matrices of the
above form, with

a4 → ad = 4πGM

(d − 2)Ωd−2

1
rd−3 , b4 → bd = 4

d − 3 , Ωd−2 = 2π(d−1)/2

Γ
(

d−1
2

) . (2.10)

3 0SF: geodesic dynamics

In this section we describe the dynamics of the probe particle to all orders in G in the limit
where the source is infinitely heavy, i.e., m ≪ M . This limit is referred to as 0SF order, and
describes geodesic motion where the black hole is static during the scattering process.

In the SF expansion, higher-SF orders are suppressed compared to lower-SF orders by
factors of the small ratio m/M . In section 4.5 we give the precise powercounting rules for our
formalism, which make the SF counting apparent. For now we simply state that to describe
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p1 p2

Figure 1. Feynman graph for the probe two-point vertex obtained from S
(0)
L, int or S

(0)
LY, int. We depict

the probe particle as a black solid line. The dot signifies the background insertion. The background
injects spatial three-momentum through the vertex, such that p1 + p2 ̸= 0.

geodesic motion we may neglect the dynamical graviton as well as the backreaction of the
background, and therefore, 0SF dynamics is captured by

S
(0)
L ≡ SL|g→ḡ =

∫
d4x

√
−ḡ

(1
2 ḡµν∂µϕ∂νϕ − 1

2m2ϕ2
)

, (3.1)

where SL =
∑

n S
(n)
L , with S

(n)
L being exactly order n in the graviton field hµν .

3.1 0SF amplitude at O(G)

Before tackling 0SF to all orders in G, we first demonstrate our formalism by deriving the
two-point amplitude at O(G). We perform all steps of the calculation explicitly, and discuss
the connection to the usual flat-space four-point amplitude.

In order to use standard methods for calculating amplitudes, we need the propagators of
our fields to be identical to those in flat space. We therefore identify

L(0)
L, free =

1
2ηµν∂µϕ∂νϕ − 1

2m2ϕ2 ,

L(0)
L, int =

1
2
(√

−ḡḡµν − ηµν
)

∂µϕ∂νϕ − 1
2m2

(√
−ḡ − 1

)
ϕ2 , (3.2)

where S
(0)
L =

∫
d4x

(
L(0)

L,free + L(0)
L,int

)
. The terms appearing in L(0)

L, int vanish in the G → 0
limit as well as in the r → ∞ limit, which justifies identifying them as interaction vertices.
On the other hand, L(0)

L, free is the usual free flat-space Lagrangian for a scalar particle, which
implies the propagator

p
= i

p2 − m2 . (3.3)

Throughout this paper we have the (iϵ) prescription implicit. Since we are calculating
amplitudes, we choose the Feynman prescription. By splitting the Lagrangian in this manner,
we have the same propagator as in flat space, and the all-orders-in-G information is encoded in
the interaction vertices. A similar approach was taken in ref. [91] in the cosmological context.

In our setup, the existence of the heavy particle is captured by the interaction vertices.
In particular, there is no field that creates a heavy-particle state, and thus there are no
external states for the heavy particle in our amplitudes. We therefore have the heuristic map
Acurved

n ∼ Aflat
n+2 between n-point amplitudes in curved space and (n + 2)-point amplitudes in

flat space. An important part of this work focuses on exploring the details of this map.
For two-body dynamics, we are interested in the two-point amplitude for a probe particle

moving in the background metric ḡ, which corresponds to the four-point flat-space amplitude
between the probe and the heavy particle that sources ḡ. We obtain the two-point amplitude
using the Feynman rule derived from L(0)

L, int and shown in figure 1. We define

C
(0)µν
L = 1

2
(√

−ḡḡµν − ηµν
)

, C
(0)
L = −m2

2
(√

−ḡ − 1
)

, (3.4)

– 7 –
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such that,

L(0)
L, int = C

(0)µν
L ∂µϕ∂νϕ + C

(0)
L ϕ2 . (3.5)

In momentum space, we have

S
(0)
L, int =

∫
d4xL(0)

L, int =
∫

d4p

(2π)4
d4p′

(2π)4
d3q

(2π)3 (2π)δ
(
E + E′) (2π)3δ(3) (p + p′ + q

)
×

ϕ̃(p)ϕ̃(p′)
(
−pµp′νC̃

(0)µν
L (q) + C̃

(0)
L (q)

)
, (3.6)

where p = (E, p), p′ = (E′, p′), and we denote functions related by a Fourier transform with a
tilde. The two-point vertex respects energy conservation for the two incoming scalar lines, but
spatial three-momentum is not conserved; the background inserts spatial momentum through
the vertex. This agrees with the fact that the background metric respects time-translation
symmetry but breaks spatial-translation symmetry (see also section 4.2).

We may now straightforwardly compute the two-point amplitude with a single insertion
of the interaction vertex in figure 1. We find

As.in.
2 (p2, q) = 2p2µ(p2ν + qν)C̃(0)µν

L (q) + 2C̃
(0)
L (q) , (3.7)

where q = (0, q) is the momentum transfer and ‘s.in.’ stands for ‘single insertion.’ As in
flat space we strip off a factor of 2πi δ (E2 + E3) in defining the amplitude, noting that
here we do not have three-momentum conservation and hence only have a delta function
for energy conservation. While we cannot obtain C̃

(0)µν
L and C̃

(0)
L exactly, we may perform

the necessary Fourier transform order by order in G. In particular, to leading order in G

and in the classical limit we have

As.in.
2 (p2, q) = 8πGMm2 (1− 2γ2)

q2 +O
(
G2
)

, (3.8)

where γ = E2/m. This result matches the classical flat-space 2 → 2 amplitude at O (G) for
two scalar particles interacting via graviton exchange, evaluated in the appropriate frame
(we discuss this frame choice in detail in section 4.6). Note that in order to match the
flat-space amplitude with relativistic normalization for all particles, we need to multiply the
curved-space amplitude with a factor of 2M for each background-insertion vertex.

3.2 0SF amplitude to all orders in G

We now present a novel derivation of the 0SF contribution to all orders in G by directly
computing amplitudes in curved space. It is straightforward to extend the calculation
described in the previous section to compute diagrams with n insertions of the two-point
vertex, and then resum the infinite set of contributions as a geometric series. Here, we present
an alternative approach where the complete 0SF amplitude is instead given in terms of a
single-insertion diagram using a different field basis.

The idea is to perform a field redefinition such that any multi-insertion diagram gives
only superclassical iteration contributions. We start from S

(0)
L given in eq. (3.1) and plug

in the explicit form of the background metric given in eq. (2.8),

S
(0)
L =

∫
d4x

B
√

AB

2

(
(∂tϕ)2

A
− (∇ϕ)2

B
− m2ϕ2

)
. (3.9)

– 8 –
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We then perform the field redefinition

ϕ → ϕ

(AB)1/4 , (3.10)

which results in

S
(0)
L → S

(0)
LY =

∫
d4x

1
2

(
B

A
(∂tϕ)2 − (∇ϕ)2 +

(
−Bm2 + F

)
ϕ2
)

,

F = −∇2A

4A
+ 3(∇A)2

16A2 − (∇A) · (∇B)
8AB

+ 3(∇B)2

16B2 − ∇2B

4B
, (3.11)

up to total derivatives. As we see below this new action naturally yields the amplitude in
the so-called Y-pole subtraction scheme [92], hence the subscript label ‘LY.’ Note that the
field redefinition reduces to the identity in both the G → 0 and the r → ∞ limits, which
means that it is a valid perturbative redefinition that does not change the normalization
of the external states. We find that F only contributes terms with subleading scaling in
the classical limit, and we drop it henceforth.

Next, we split S
(0)
LY into a free part and an interaction part as in eq. (3.2). The free

part is the same as before. The interaction part is

S
(0)
LY, int =

∫
d4x

1
2

((
B

A
− 1

)
(∂tϕ)2 +

(
−Bm2 + m2

)
ϕ2
)

, (3.12)

which again results in a Feynman vertex as the one depicted in figure 1. As we noted, this
two-point vertex does not impart energy to the probe particle. We may manifest this fact
by Fourier transforming in time,

S
(0)
LY, int =

∫
d3x

dE

2π

dE′

2π
(2π)δ(E + E′)ϕ(E, x)ϕ(E′, x)×

1
2

(
E2
(

B

A
− 1

)
+
(
−Bm2 + m2

))
. (3.13)

It is straightforward to see that multiple insertions of this vertex only contribute to super-
classical iterations: such contributions involve propagators of the probe particle that need to
be cancelled in order to yield a classical contribution. However, the field redefinition was
chosen such that the vertex is free of spatial derivatives, and thus it is impossible to get
the inverse propagators required for cancellation.

We thus identify

Ã0SF
2 (p2, x) = m2

(
γ2
(

B

A
− 1

)
+ (1− B)

)
, (3.14)

as an off-shell position-space generating function for the complete 0SF amplitude. The 0SF
amplitude in momentum space is then

A0SF
2 (p2, q) =

(∫
d3x

(2π)3 e−iq·xÃ0SF
2 (p2, x)

)
on shell

+ iteration , (3.15)
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where by ‘on shell’ we mean that q needs to be restricted to obey p2 ·q = −q2/2 and ‘iteration’
denotes the superclassical iteration contributions organized in terms of Y poles [92]. The above
generating function was obtained in ref. [13], and an equivalent result was obtained in ref. [93].

We may readily expand Ã0SF
2 (p2, x) to any order in G and perform the Fourier transform

to obtain the classical part of A0SF
2 (p2, q) to that order. Already in position space, however,

we recognize the familiar combinations of γ2 that appear in the probe limit of the flat-space
scattering amplitudes (see, e.g., eq. (9.3) of ref. [94]). To the first few orders we have,

Ã0SF
2 (p2, x) =

(
2γ2 − 1

)
GMm2

r
+ 3

(
5γ2 − 1

)
G2M2m2

4r2

+
(
18γ2 − 1

)
G3M3m2

4r3 +
(
129γ2 − 1

)
G4M4m2

32r4 +O
(
G5
)

. (3.16)

3.3 Heavy expansion and geodesic expansion

We conclude this section with a brief discussion of two alternative setups for analyzing the
probe particle. The first setup is the heavy expansion familiar from Heavy Quark Effective
Theory [95] as well as its recent applications for the binary problem [96]. The heavy particle
expansion for the real scalar field [97] representing the probe particle is

ϕ(x) = e−ip·xφp(x)/
√
2m = eip·xφ̄p(x)/

√
2m . (3.17)

With this expansion, every term in the Lagrangian has definite powercounting in m since
derivatives on φp(x) and φ̄p(x) are O (q). We expect that with an appropriate field redefinition,
this heavy expansion leads to amplitudes that are directly expressed in terms of Z-poles [15, 98]
instead of Y-poles.

The second setup is inspired by the first and is similar to the WKB approximation:
instead of expanding around a heavy particle moving in a straight line, we expand around a
heavy particle following a geodesic in curved space [99] (see also refs. [77, 100, 101]). We thus
consider the following ansatz where the plane-wave factor is replaced with a semi-classical
solution to the equations of motion:

ϕ(x) = e−iSp(x)Φp(x)/
√
2m = eiSp(x)Φ̄p(x)/

√
2m . (3.18)

Here we take Sp(x) to be the classical on-shell action satisfying the Hamilton-Jacobi equation,
along with the requirement that it reduces to a plane wave in the limit of vanishing G,

ḡµν ∂µSp(x) ∂νSp(x) = m2 and Sp(x) → p · x as G → 0 . (3.19)

We may iteratively compute Sp(x) in terms of simple one-dimensional integrals. The explicit
form to the first few orders in G is

Sp(x) = m

(
γ t +

√
γ2 − 1 z

)
+

mGM
(
2γ2 − 1

)
tanh−1 ( z

r

)√
γ2 − 1

(3.20)

−
mG2M2

(
2
(
1− 2γ2)2 z − 3

(
5γ4 − 6γ2 + 1

)√
r2 − z2 tan−1

(
z√

r2−z2

))
4 (γ2 − 1)3/2 (r2 − z2)

+O
(
G3
)

,
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where we took pµ = m
(
γ, 0, 0,

√
γ2 − 1

)
. The 0SF scattering angle follows from this on-shell

action using standard methods of classical mechanics.
The expansion in eq. (3.18) may be useful for resumming geodesic motion and sys-

tematically calculating deviations from it. An encouraging observation is that using this
expansion in the Lagrangian removes the leading-in-m term, effectively factoring out the 0SF
contribution. We postpone a detailed investigation of this to future work.

4 Beyond 0SF: backreaction

Beyond 0SF, the motion of the probe perturbs spacetime, and induces a backreaction in the
background metric. This backreaction is mediated by the graviton, and also involves the
deflection of the heavy source. In this section we analyze these key elements, and describe
the Feynman and powercounting rules necessary for computing the nSF amplitude. We apply
our formalism for computing the 1SF amplitude at O(G2) and O(G3), providing a non-trivial
consistency check of the framework developed in this paper.

4.1 Purely gravitational part of the action

The purely gravitational part of the action is given by the Einstein-Hilbert term and the
gauge-fixing term:

SG = SEH + SGF = − 1
16πG

∫
d4x

√
−gR +

∫
d4x

√
−ḡF µFµ ,

Fµ = D̄νhµν − 1
2D̄µh , h = ḡαβhαβ , (4.1)

where D̄µ is the background-metric covariant derivative, indices are raised and lowered with
the background metric ḡ, and the graviton field hµν is defined in eq. (2.3). We emphasize
that the complete graviton dynamics in curved space includes its interaction with the light
degrees of freedom of the heavy source, which we describe in section 4.2.

We obtain Feynman rules from SG by expanding the metric as in eq. (2.3). The resulting
linear-order-in-h term cancels against the corresponding term in SH, as we demonstrate in
section 4.3. The higher-order-in-h terms yield the propagator for h as well as interaction
vertices with the background, similar to our analysis in sections 3.1 and 3.2. Note that we
only need vertices with up to (n + 1) graviton fields for the calculation of the nSF amplitude.
In particular, in this paper we explicitly consider dynamics up to 1SF order and hence only
need the action to quadratic order in h:

LG√
−ḡ

= κ

16πG
Ḡαβhαβ − 1

4h;βh;β + 1
2hαβ;γhαβ;γ (4.2)

+ 1
4R̄

(
2hαβhαβ − h2

)
+ R̄βγ

(
hβγh − hγ

αhαβ
)
− R̄αγβλhαβhγλ +O

(
h3
)

.

Here SG =
∫

d4xLG and we use the shorthand (. . .);µ ≡ D̄µ(. . .) for the covariant derivative.
The Einstein tensor, Ricci scalar, Ricci tensor and Riemann tensor are evaluated on the
background metric, and are respectively denoted by Ḡαβ, R̄, R̄βγ and R̄αγβλ.

We do not set the Einstein tensor, Ricci scalar and Ricci tensor to zero, despite the fact
that ḡ is eventually taken to be the Schwarzschild metric. For instance, for the linearized
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Schwarzschild metric, Ḡαβ , R̄ and R̄βγ evaluate to expressions proportional to a delta function
with support on the position of the black hole. These terms are on a similar footing as terms
originating from SH, which also have support on the position of the black hole; see section 4.3.

4.2 Light degrees of freedom of the heavy source

To capture the backreaction of the metric we need to introduce dynamics for the light degrees
of freedom of the heavy source. While the heavy source could have various light degrees
of freedom, the minimum ones are those dictated by symmetry considerations. For the
Schwarzschild black-hole geometry in eq. (2.8), the existence of a source at rest in the vacuum
state spontaneously breaks Poincaré symmetry to rotational symmetry. The breaking of the
three translation generators induces three Goldstone bosons ζi(t), where i = 1, 2, 3 and t is the
time coordinate in the system defined by eq. (2.8), while the breaking of the boost generators
does not induce more Goldstone bosons [78, 79]. The ζi(t) describe the fluctuations of the
heavy source away from its original position, hence we refer to them as deflections.

The most general effective theory that captures the dynamics of the ζi(t) follows from
the coset construction [80]. Here we only consider minimal coupling to gravity, which leads to
eq. (2.5), but it is straightforward to include finite-size effects. The resulting action is that of a
point particle coupled to gravity, e.g., as in ref. [17], which is intuitive given the interpretation
of the ζi(t) as the displacement of the heavy source. Following standard manipulations (see,
e.g., section 1.2 of [102]), we embed ζi(t) into a covariant but redundant description

ζi(t) → zµ(τ) , (4.3)

in terms of which we may trade eq. (2.5) for the einbein-gauge-fixed Polyakov form,

SH = −M

2

∫
dτ (gµν ẋµẋν + 1) , xµ = vµτ + zµ , (4.4)

which is more convenient for computations. We take vµ = (1, 0, 0, 0). In the full quantum
theory, SH also includes gauge-fixing terms related to the reparametrization invariance of
the worldline, which itself is related to the redundancy introduced in eq. (4.3) (see, e.g.,
section 4.2 of [102]). These terms, however, are not needed for our analysis, which follows
closely that of ref. [103].

The action in eq. (4.4) is ill-defined when expanding around the gravitational field sourced
by the heavy particle. Indeed, the background metric has a singularity at the position of the
heavy particle, which is where we evaluate the action. Expanding eq. (4.4) as in eq. (2.3)
and dropping the constant term we have

SH = −M

2

∫
dτ (ḡµν ẋµẋν + κhµν ẋµẋν) , (4.5)

where ḡ and h are evaluated at x. We define δḡ ≡ ḡ−η and isolate the divergent term as follows:

SH = SH, div + SH, fin ,

SH, div = −M

2

∫
dτ δḡµν ẋµẋν ,

SH, fin = −M

2

∫
dτ (ηµν ẋµẋν + κhµν ẋµẋν) . (4.6)
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For our analysis, which focuses on classical contributions in the potential region, we only
require the finite term SH, fin.

Here we consider the special case of the Schwarzschild black hole, while it would be
interesting to extend our analysis to the Kerr black hole. The degrees of freedom and
corresponding action for a vacuum state that spontaneously breaks rotational symmetries
along with translational ones have been categorized in ref. [80]. Alternatively, we could
work with a worldline theory along the lines of refs. [104–106]. We postpone this analysis
to future work.

4.3 Stability of the background

In this subsection we demonstrate that our background is a proper vacuum state. In other
words, our field configuration solves the equations of motion, or, equivalently, the Lagrangian
terms linear in the fluctuations h and z vanish.

We start with the linear-in-z terms, which arise from the first term of SH, fin in eq. (4.6).
We have

SH, fin
∣∣
linear-in-z = −M

∫
dτηµνvµżν . (4.7)

This is a total derivative, and hence may be removed from the action.
Next, we consider the terms linear in the graviton field h. We have two contributions,

one from SG and one from SH, fin:

SG
∣∣
linear-in-h =

∫
d4x

√
−ḡ

( 1
16πG

Ḡµν
)

κhµν ,

SH, fin
∣∣
linear-in-h =

∫
dτ

(
−1
2Mvµvν

)
κhµν . (4.8)

For the background configuration to be stable, we need these two contributions to cancel.
Here we see that the Einstein tensor Ḡµν cannot be set to zero; instead, these equations hint
that it should be thought of as a distribution with support at the origin. This is indeed
sensible to linear order in G, while there are subtleties at higher orders [107].

In practice, to establish that the two terms in eq. (4.8) cancel at leading order in G, we
need to compute tensors such as Ḡµν with support at the origin. We do this by taking their
Fourier transform in dimensional regularization. For the present paper, using the linear-order-
in-G background metric in SG is sufficient, and we consider the stability of the background
to this order only. It would also be interesting to carry out the analysis beyond this order.

4.4 Feynman rules at 1SF

We now proceed to obtain the Feynman rules relevant for the calculation of the 1SF amplitude.
The Feynman rules in curved space are not more complicated than the ones in flat space
even though they encode information to all orders in G.

We start by considering the graviton vertices originating in SG. Similarly to our treatment
in section 3, we split the action given in eq. (4.2) into a free and interacting part by isolating
the flat-space limit. The free part is

SG, free =
∫

d4x

(1
2ηµνηαγηβδ − 1

4ηµνηαβηγδ
)

∂µhαβ∂νhγδ , (4.9)

– 13 –



J
H
E
P
0
3
(
2
0
2
4
)
1
2
5

(q1, µν) (q2, αβ)

Figure 2. Feynman graph for the graviton two-point vertex obtained from SG, int, where the gravitons
are depicted as wiggly lines. The dot signifies the background insertion. The background injects
spatial momentum through the vertex, such that q1 + q2 ̸= 0.

p1 p2

(q, µν)

p1 p2

(q, µν)

Figure 3. Feynman graphs for the probe-graviton three-point vertices obtained from S
(1)
L or S

(1)
LY .

The left vertex is the same as one would obtain in flat space, hence the usual momentum conservation
holds. The dot on the right one signifies the background insertion. The background injects spatial
momentum through the vertex, such that p1 + p2 + q ̸= 0. The solid black lines stand for the probe
particle, while the wiggly lines stand for the graviton.

which yields the usual de Donder propagator for the graviton,

q
µν αβ = i

q2P
µναβ , Pµναβ = 1

2
(
ηµαηνβ + ηναηµβ − ηµνηαβ

)
. (4.10)

As mentioned above, we keep the (iϵ) prescription implicit. The interaction vertices are
obtained from the remainder

SG, int = SG − SG, free . (4.11)

We depict the Feynman graph for the two-point graviton vertex in figure 2.
Next, we consider the coupling of the graviton to the probe particle. We expand SL

as in eq. (2.3) and keep terms linear in hµν :

S
(1)
L = κ

∫
d4x

√
−ḡ hµν

(
−1
2∂µϕ∂νϕ + 1

4 ḡµν ḡαβ∂αϕ∂βϕ − 1
4 ḡµνm2ϕ2

)
. (4.12)

Here we used the notation introduced below eq. (3.1). Similar to eq. (3.11), we obtain S
(1)
LY

via the field redefinition in eq. (3.10), and then derive the probe-graviton interaction vertex,
which we depict in figure 3. For convenience, we split the vertex into the usual flat-space
three-point vertex, and the remainder, which involves the background.

Finally, we consider the deflection vertices, following the treatment in ref. [103]. Again
we split SH, fin into a free part SH, FF and an interacting part SH, FI:

SH, FF = −M

2

∫
dτ ηµν żµżν , SH, FI = SH, fin − SH, FF . (4.13)

The free part gives the propagator of the deflection field,

α β
ω

= − i

Mω2 ηαβ , (4.14)

where, again, based on the observable considered, one might need to keep track of the (iϵ)
prescription. From the interacting part of the action we extract the vertex sufficient for
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(ω, α) (q, µν)

Figure 4. Feynman graph for the deflection-graviton two-point vertex obtained from SH, FI. The
dashed line stands for the deflection field, while the wiggly stands for the graviton. The vertex satisfies
energy conservation: ω + q0 = 0.

computing the 1SF amplitude. In doing so, we keep in mind that the worldline Lagrangian
is evaluated at xµ given in eq. (4.4). We find

SH, FI = −κM

2

∫
dτ
(
2hµν(vτ)vµżν + hµν,α(vτ)vµvνzα +O

(
z2
))

, (4.15)

where the graviton field is evaluated at vµτ . This yields the deflection-graviton vertex
depicted in figure 4. Since SH, FI is independent of the background metric, the vertex is
identical to the one of ref. [103].

4.5 Diagrams at nSF

In this subsection we discuss a few aspects of the diagrams contributing to the nSF amplitude,
namely their powercounting, the required Feynman rules, and the contribution from the
deflection of the heavy source.

Firstly, we note that the diagram loop counting for the two-point amplitudes in curved
space coincides with the SF counting, but it is different from the number of loop integrations
as we discuss below. For example, for the 0SF dynamics considered in section 3 we only
have diagrams with no loops, while the 1SF amplitudes considered in this section are given
by diagrams with a single loop. This is schematically shown in figure 5. A similar relation
between the loop and SF counting was noted in ref. [39].

To see this, recall that in the classical limit the two-point amplitude A2 admits
the expansion,

Momentum space: A2(q) =
Gm2

q2

∞∑
n=1

Pn (m, M) (G|q|)n−1 ,

Position space: Ã2(r) = m2
∞∑

n=1
P̃n (m, M)

(
G

r

)n

, (4.16)

where Pn and P̃n are polynomials of degree n in the arguments and we keep the dependence
of p2 and γ implicit. Neglecting the deflection contribution momentarily, factors of M only
appear through the background metric and only in the combination GM/r, which has classical
scaling. Hence, in our formalism the amplitude is organized as

Ã2(r) = m2
∞∑

n=0
Fn
[
GM/r

] (Gm

r

)n

, (4.17)

in position space and similarly in momentum space, for some functions Fn
[
GM/r

]
(see, e.g.,

eq. (3.16)). In this way, we see that powers of m are correlated to powers of G that do not
originate in background insertions. In fact, the source of these factors is the probe-graviton
vertices, establishing that the effective coupling constant in our theory is Gm, from which it
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2 3 2 3 2 3

0SF 1SF 2SF

Figure 5. Schematic depiction of the diagram loop-order ↔ SF-order correspondence in our formalism.
Only representative diagrams are shown. The gray blobs with the black dot denote the corresponding
tree-level amplitudes where diagrams with any number of background insertions and virtual deflections
have been included. The external probe-particle lines have momenta p2 and p3.

6 7 6 76 7
= +

Figure 6. The Compton amplitude given as a sum of Feynman diagrams. The gray large blob stands
for the on-shell amplitude, while the rest of the symbols are defined in earlier figures. The on-shell
gravitons have momenta q6 and q7 and polarization tensors ε6 and ε7. We choose this labeling scheme
to avoid confusion with subsequent graphs.

immediately follows that loops count the SF order, i.e. the order in m. Finally, returning to the
deflection contributions, these also scale classically and contribute via the combination GM ,
as can be seen, e.g., in eq. (4.19), so they are on the same footing as background insertions.

We evaluate diagrams using the familiar flat-space tools, such that a diagram with l

loops, n background insertions and k virtual deflections requires l + n + k − 1 integrals. We
emphasize again that the number of loops in the diagram and the number of loop integrals,
while related, do not coincide in our formalism.

Secondly, we note that we only require a finite number of Feynman rules to compute
diagrams at a given SF order since vertices with higher multiplicity would lead to more loops
and would thus be higher SF order. In particular, at nSF, we require vertices with up to
(n + 1) gravitons, vertices with two probe particles and up to n gravitons, and vertices with
a single graviton and n deflections. In the previous subsection, we obtained the Feynman
vertices sufficient for computing the 1SF amplitude.

Finally, for an analysis that focuses on the potential region for the gravitons, we only
need to consider up to n virtual deflections of the heavy source at nSF. Additional deflections
involve extra graviton legs that would either lead to more loops, which would be higher
SF, or to contributions outside the potential region. The latter (e.g., at 1SF see bottom
right diagram in figure 10) correspond to so-called mushroom diagrams in flat space where
a graviton begins and ends on the same matter line.

4.6 1SF amplitude at O
(
G2)

We proceed to compute the Compton amplitude, i.e. the amplitude for the emission of two
gravitons from the heavy source, and the 1SF amplitude at O

(
G2) or 2PM. These are the

simplest amplitudes where backreaction of the background enters the calculation.
For the calculation of the Compton amplitude AC, where the subscript ‘C’ stands for

‘Compton,’ there are two diagrams that contribute, which we depict in figure 6. We refer to
the contribution from the first diagram in figure 6 as Ab

C, where ‘b’ stands for ‘background
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insertion,’ and the second diagram as Ad
C, where ‘d’ stands for ‘deflection.’ We have,

AC = Ab
C +Ad

C , (4.18)

with

Ab
C = − 8πGM

q6 · q7

(
ω2(ε6 · ε7)2 +

(
(v · ε7)(ε6 · q7)− (v · ε6)(ε7 · q6)

)2
+ 2(ε6 · ε7)

(
(v · ε6)(v · ε7)(q6 · q7) + ω

(
(v · ε7)(ε6 · q7)− (v · ε6)(ε7 · q6)

)))
,

Ad
C = 8πGM

ω2 (v · ε6)(v · ε7)
(
4ω2(ε6 · ε7)− (v · ε6)(v · ε7)(q6 · q7)

+ 2ω
(
(v · ε7)(ε6 · q7)− (v · ε6)(ε7 · q6)

))
. (4.19)

In the above we used

ω = v · q6 = −v · q7 , ε6 µν = ε6 µ ε6 ν , ε7 µν = ε7 µ ε7 ν , (4.20)

with v defined below eq. (4.4). Combining the two contributions we arrive at the familiar result,

AC = − 8πGM

ω2(q6 · q7)
(
ω2(ε6 · ε7)− (v · ε6)(v · ε7)(q6 · q7)

+ ω
(
(v · ε7)(ε6 · q7)− (v · ε6)(ε7 · q6)

))2
, (4.21)

which manifests the double-copy structure [9–11] of the Compton amplitude. All pieces of
our Compton amplitude have classical scaling, which would simplify book-keeping of classical
contributions especially for higher-order processes. As mentioned above, to compare the
result in eq. (4.21) to the corresponding flat-space amplitude, we divide the latter by 2M

to account for non-relativistic normalization.
In comparing our amplitudes with corresponding flat-space ones, we should be mindful

in our mapping of v to the momentum of the heavy particle. This point, while not relevant
for the Compton amplitude itself, may enter in higher-order computations that involve
superclassical terms. Let p1 be the incoming momentum of the heavy particle in flat-space
kinematics and q be the total momentum transfer of the process at hand (here q = q6 + q7).
Since in curved space we have v · q = 0, we may identify

v = p̄1/M̄ , p̄1 = p1 +
1
2q , M̄2 = p̄2

1 . (4.22)

This in turn implies that the frame in which we do our curved-space calculations corresponds
to the flat-space frame in which p̄µ

1 = (M̄, 0, 0, 0), rather than the one where pµ
1 = (M, 0, 0, 0).

In this frame we have qµ = (0, q) and

γ = σ +O
(
q2) = y +O

(
q2) , (4.23)

where γ is defined below eq. (3.8) and may also be expressed as γ = v ·p2/m, σ = p1 ·p2/(mM)
and y = p̄1 · p̄2/(m̄M̄) with p̄2 = p2 − 1

2q and m̄2 = p̄2
2. Interestingly, we find that the
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2 3 2 3

Figure 7. The Feynman diagrams that contribute to the 1SF amplitude at O
(
G2). The external

probe-particle lines have momenta p2 and p3.

barred variables introduced in ref. [98], which simplify amplitudes calculations relevant for
gravitational-wave physics, naturally appear in our curved-space formalism.

We may make an interesting observation by studying the contribution of the background
insertion and that of the deflection separately. The Compton amplitude is invariant under
the transformation

ε6 → ε6 + λ6 q6 , ε7 → ε7 + λ7 q7 , (4.24)

for any (λ6, λ7). We may think of this as residual gauge freedom at the level of the amplitude
and we may use it to simplify its form. In particular, if we choose (λ6, λ7) such that

v · ε∗6 = 0 , v · ε∗7 = 0 , (4.25)

where ε∗6,7 signifies the corresponding gauge-fixed polarization, then we have

Ad
C = 0 , AC = Ab

C = −8πGMω2

q6 · q7
(ε∗6 · ε∗7)2 . (4.26)

Given this result, one might wonder whether there exists a gauge choice such that the
deflection part of the action never contributes, or whether this is an accident due to the
simplicity of the particular example. By inspecting SH, FI in eq. (4.15) we see that, while
for all terms linear in zµ there is at least one index of hµν contracted against vµ, this stops
being the case at quadratic order in zµ. This suggests that the gauge choice in eq. (4.25)
would not completely remove the deflection terms when quadratic-in-zµ vertices become
important. Nevertheless, it would be interesting to understand the extent to which gauge
choices of this sort can simplify computations.

Finally, we compute the 1SF amplitude at O
(
G2) via the Feynman diagrams depicted

in figure 7. We also obtained the result via the generalized unitarity method [108, 109].
Our Compton amplitude satisfies the generalized Ward identity, hence we may use the de
Donder projector when performing the sewing [110]. After some simple integral reduction
and integration we find

A
1SF, O

(
G2
)

2 = 3π2G2Mm3(5γ2 − 1)
|q|

, (4.27)

where γ and q are defined below eqs. (3.8) and (4.22) respectively. This amplitude agrees
with the familiar flat-space result [81, 92] up to non-relativistic normalization.

The complete O
(
G2) amplitude is given by the Fourier transform of the second term in

eq. (3.16) together with the one in eq. (4.27). While the total amplitude with appropriate
normalization is symmetric under m ↔ M exchange, we see that the contributions at 0SF
and 1SF are obtained in quite different ways in our formalism.
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= 2 3

5

+ 2 3

5

+

+ 2 3

5

2 3

5

+ 2 3

5

Figure 8. The single-graviton-emission amplitude given as a sum of Feynman diagrams. The gray
large blob stands for the on-shell amplitude, while the rest of the symbols are defined in earlier figures.
The on-shell graviton has momentum q5 and polarization tensor ε5. The probe-particle external lines
have momenta p2 and p3.

2 3

Figure 9. The unitarity cut from which we extract the integrand of the 1SF amplitude at O
(
G3).

The gray large blob stands for the on-shell amplitude we computed above. The vertical green dashed
line signifies the unitarity cut, implying that the cut lines are taken on shell. The probe-particle
external lines have momenta p2 and p3.

4.7 1SF amplitude at O
(
G3)

In this subsection we discuss our computation of the three-point single-graviton-emission
amplitude, which corresponds to the flat-space five-point amplitude, and the integrand for
the conservative 1SF amplitude at O

(
G3) or 3PM.

The necessary Feynman diagrams for the single-graviton-emission amplitude are shown
in figure 8. While the vertices with background insertions contain all-orders-in-G information,
for the case at hand we may truncate them to leading order. At this order, the vertices
arising from SL and SLY are identical. Similar to the Compton amplitude computed in
the previous subsection, we find that for the polarization choice v · ε∗5 = 0 the deflection
contributions vanish in the classical limit.

Our amplitude matches the classical limit of the flat-space five-point amplitude obtained in
ref. [83]. Our curved-space amplitude contains superclassical terms associated with the probe
particle, which we may keep track of by formally considering complex kinematics. These are
contained in the first two diagrams on the right hand side of the equation depicted in figure 8,
and match the corresponding terms in the flat-space amplitude. On the other hand, our
curved-space amplitudes do not contain superclassical terms associated with the heavy source.

We now turn to the 1SF amplitude at O
(
G3). We build a generalized-unitarity [108, 109]

integrand by sewing two single-graviton-emission amplitudes as in figure 9. The simplifications
of ref. [110] are automatic in this case, given that we are sewing amplitudes with a single
graviton. By taking further cuts we verify that we retrieve the unitarity cuts used to obtain
the Hamiltonian at O

(
G3) in ref. [82]. In particular, we obtain the so-called N and H cuts,

which are relevant for the 1SF part of the amplitude at O
(
G3). This provides a non-trivial

validation of our formalism.
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Figure 10. The Feynman diagrams that contribute to the 1SF amplitude at O
(
G3). The probe-

particle external lines have momenta p2 and p3. For the diagrams that are not 2 ↔ 3 symmetric, one
needs to add corresponding ones arising from 2 ↔ 3 exchange.

Recently, ref. [77] computed the single-graviton-emission amplitude by solving the equa-
tions of motion for the probe particle and the graviton in the linearized Schwarzschild
background. Their analysis employs restricted kinematics where recoil terms do not con-
tribute. However, in a generic gauge, the construction of the 1SF amplitude at O

(
G3) via

unitarity would require recoil terms.
Alternatively, we also obtain an integrand for the 1SF amplitude at O

(
G3) using the

curved-space Feynman rules. We depict the relevant diagrams in figure 10. As mentioned
above, the background vertices may be truncated to linear order in G. Also, in accordance
with our general discussion in section 4.5, the last diagram in figure 10 does not contribute in
the potential region. We verify the validity of this integrand in the same way as above.

5 Conclusions

In this paper we used EFT methods and scattering amplitudes in curved space to develop a
framework for computing gravitational self-force corrections to binary dynamics, including
the effects of the backreaction of the background spacetime. We explicitly verified a number
of results, namely the 0SF two-point amplitude to all orders in G, the Compton and single-
graviton-emission tree-level amplitudes, the 1SF two-point amplitude at O

(
G2), and the

integrand for the 1SF two-point amplitude at O
(
G3). We find agreement with the literature

in all cases.
In our setup, vertices encode information to all orders in G through the background

metric, and perturbation theory is organized so that the loop expansion coincides with the
SF expansion. Moreover, classes of higher-loop diagrams in flat space are mapped to a few
lower-loop diagrams in curved space, which may reduce the number of integrations and auto-
matically incorporate simplifications that would otherwise require non-trivial combinations
of diagrams [111]. We depict an example of this feature in figure 11, where a family of
flat-space diagrams are captured by the background insertion. For instance, a subclass of
contributions to the 1SF amplitude and to all orders in G can be obtained as a one-loop
computation through the top right of figure 11.

In the future, it would be interesting to consider a Kerr black hole as well as a spinning
probe particle. Our formalism can also be applied for computing contributions at higher
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Figure 11. Schematic correspondence between classes of diagrams in a flat-space framework and the
curved-space framework of this paper. In the top line, a multi-loop integral on the left is related to
a one-loop integral on the right. In the bottom line, a multi-loop integral on the left is related to a
two-loop integral on the right. See section 4.5 for a discussion of the integral vs diagram loop counting
in the curved-space formalism.

SF order and at higher order in G. For example, one could target the 1SF terms at O(G5)
as a first pass at 5PM. Radiative effects constitute another natural target; these may be
addressed for example by adopting ideas from the amplitudes approach of ref. [112], as in,
e.g., refs. [113, 114], or from the “in-in” or “closed-time-path” formalism [115–117], as in, e.g.,
refs. [23, 39, 118–121]. In pursuing such calculations, it would be advantageous to incorporate
on-shell methods or to further simplify perturbation theory by choosing special gauges. It
would be interesting to see if the advantages of curved-space amplitudes can help with the
complexity of calculations at higher PM orders.

Finally, many aspects of our analysis are still anchored to properties of amplitudes in
flat space, and it would be interesting to explore alternative methods of calculation that
are instead tailored to the inherent properties of amplitudes in curved space. For example,
the all-orders-in-G position-space amplitude in eq. (3.14) is compact, and suggests that one
might calculate in position space where metrics are naturally expressed. Another example is
our deference to the flat-space propagator; one might instead consider numerical methods
for evaluating Green’s functions in curved space.
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