
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2013                                     Open Access

This version of the publication is provided by the author(s) and made available in accordance with the 

copyright holder(s).

Equivariant Jeffrey-Kirwan theorem in non-compact settings

Szilagyi, Gesa Zsolt

How to cite

SZILAGYI, Gesa Zsolt. Equivariant Jeffrey-Kirwan theorem in non-compact settings. Doctoral Thesis, 

2013. doi: 10.13097/archive-ouverte/unige:35402

This publication URL: https://archive-ouverte.unige.ch/unige:35402

Publication DOI: 10.13097/archive-ouverte/unige:35402

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:35402
https://doi.org/10.13097/archive-ouverte/unige:35402
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Résumé

Dans cette thèse, nous généralisons le théorème de Jeffrey-Kirwan pour le cas non compact et

équivariant. Nous l’appliquons au calcul de volumes équivariants symplectiques et d’anneaux de

cohomologie des quotients symplectiques ou hyper-Kähler non compacts.

Nous considérons un quotient symplectique M//G non compact d’une G-variété Hamiltoni-

enne M . Nous suivons l’approche de Hausel-Proudfoot [19] pour surmonter le problème de non

convergence des intégrales sur les variétés non compactes M et M//G en supposant qu’il existe

une action Hamiltonienne sur M d’un tore S tel que l’ensemble des points fixes MS est com-

pact. Nous définissons ensuite les intégrales

∮
M

β et

∮
M//G

κS(β) d’une classe de cohomologie

équivariante β ∈ HG×S(M) formellement par la formule d’Atiyah-Bott-Berline-Vergne. De plus,

motivés par Prato-Wu [40], Proudfoot [41] et Martens [31], nous posons la condition additionnelle

que le tore S contient un sous-tore de dimension 1 admettant une application moment propre et

bornée par en bas.

Nous introduisons EqResΛ, une version équivariante du résidu de Jeffrey-Kirwan et nous

montrons qu’il admet des propriétés similaires à la version classique. Nous le comparons à la

version de Martens [31]. Avec les conditions mentionnées plus haut, nous montrons la formule

suivante (Théorème 4.5),∮
M//G

κS(βeω−µG×S ) = lim
ε→0

EqResΛ

(
$

vol(T )|W |

∮
M

βeω−µT×S+ερ

)
,

c’est-à-dire qu’on peut calculer les intégrales formelles sur M//G à partir des intégrales formelles

sur M par le résidu équivariant si on choisit une polarisation Λ compatible avec l’action de

K. Nous donnons une variante de la formule ci-dessus pour les quotients hyper-Kähler M////G

(Théorème 4.14).

Dans l’hypothèse où l’application de Kirwan κS est surjective, on peut calculer les anneaux

de cohomologie ordinaire et équivariant des quotients non compacts en utilisant la formule ci-

dessus combinée à la forme bilinéaire non dégénérée de Hausel-Proudfoot [19] et à la propriété de

formalité équivariante, cf. [26, 41]. On remarque qu’avec nos conditions, l’application de Kirwan

est surjective dans le cas symplectique, cf. [41], mais n’est en général pas connue dans le cas

hyper-Kähler. Ce principe est illustré par le schéma de Hilbert sur le plan complexe.

Par le théorème de Prato-Wu [40], la formule ci-dessus peut aussi être utilisée pour le calcul de
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volumes symplectiques équivariants de quotients symplectiques ou hyper-Kähler non compacts.

On illustre ce type d’applications par le calcul de la fonction de partition de Nekrasov [38] sur

l’espace des modules des faisceaux sans torsion sur CP2 avec rang et deuxième classe de Chern

fixés. Dans ce cas-là, nous arrivons au même résultat que dans Nakajima-Yoshioka [37].

En général, on obtient des variétés plus compliquées par la réduction symplectique ou hyper-

Kähler que les variétés initiales, donc on peut s’attendre à ce que les calculs par notre formule

soient plus simples que les calculs directs sur les quotients.
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Preface

In the thesis we generalize the Jeffrey-Kirwan theorem to the non-compact and equivariant

setting. We demonstrate how it can be applied to compute equivariant symplectic volumes and

cohomology rings of non-compact symplectic or hyperKähler quotients.

We consider a non-compact symplectic quotient M//G of a Hamiltonian G-manifold M . We

follow the approach of Hausel-Proudfoot [19] to overcome the non-convergence problem of in-

tegrals on non-compact manifolds M and M//G by presuming the existence of an auxiliary

Hamiltonian torus action S on M with compact fixed point set MS and by defining the inte-

grals

∮
M

β and

∮
M//G

κS(β) of equivariant cohomology classes β ∈ HG×S(M) formally by the

Atiyah-Bott-Berline-Vergne localization formula. Motivated by Prato-Wu [40], Proudfoot [41]

and Martens [31] we also pose the additional condition that S contains an 1-dimensional subtorus

K with proper and bounded below moment map.

We introduce our main computational tool EqResΛ, an equivariant version of the Jeffrey-

Kirwan residue and we show that it shares similar properties with the classical one. We also

compare it with the version given by Martens [31]. Under the above assumption we prove the

following formula (Theorem 4.5)∮
M//G

κS(βeω−µG×S ) = lim
ε→0

EqResΛ

(
$

vol(T )|W |

∮
M

βeω−µT×S+ερ

)
.

That is, we can compute formal integrals on the quotient M//G out of formal integrals on

the original space M using the equivariant Jeffrey-Kirwan residue when the polarization Λ is

compatible with the K-action. We also give a similar formula when the symplectic quotient

M//G is replaced by the hyperKähler quotient M////G (Theorem 4.14).

Under the assumption that the Kirwan map κS is surjective the above formula can be used to

compute the equivariant and ordinary cohomology rings of non-compact quotients if we couple it

with the non-degenerate bilinear pairing of Hausel-Proudfoot [19] and equivariant formality, cf.

[26, 41]. This principle also works in the hyperKähler case and we demonstrate it on the example

of Hilbert scheme of points on the plane. We remark that the Kirwan surjectivity holds in our

setup for symplectic quotients, cf. [41], but in the hyperKähler case is generally not known.

By the Prato-Wu theorem [40] the above formula can be also used for equivariant symplectic

volume computations on symplectic or hyperKähler quotients. As an illustration we compute
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Nekrasov’s partition function [38] on the framed moduli space of torsion free sheaves on CP2 with

fixed rank and second Chern class using Nakajima quiver model [36]. We get back the result of

Nakajima-Yoshioka [37] computed with Atiyah-Bott-Berline-Vergne localization formula on the

quotient.

In general, we get topologically more complicated spaces from simpler ones by symplectic or

hyperKähler reduction. Therefore, we can expect that the computation of the formal integrals

on M and the evaluation of the equivariant Jeffrey-Kirwan residue is easier than the direct

computation on the quotients M//G or M////G.
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1

Introduction

In this chapter we recall basic notions, constructions and results about equivariant cohomology,

characteristic classes, orbifolds and symplectic geometry. Here we also present conventions and

examples which will be used later in the text.

1.1 Equivariant cohomology

1.1.1 Group actions and fundamental vector fields

Let G be a compact connected Lie group and M be a manifold. A right group action is a

(smooth) map G×M →M , (g, x) 7→ x · g with property (x · g1) · g2 = x · (g1g2) for all g1, g2 ∈ G
and x ∈M . To any ξ ∈ g we can associate a vector field ξ ∈ X(M) on M such that

ξ
x

=
d

dt

∣∣∣
t=0

x · exp(tξ), ∀x ∈M

and exp : g→ G is the exponential map. This association defines a Lie algebra homomorphism

g→ X(M), ξ 7→ ξ.

Similarly, a left group action of G on M is a map G ×M → M , (g, x) → g · x satisfying

relation g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G and x ∈M . We can also associate a vector field

ξ ∈ X(M) to any ξ ∈ g such that

ξ
x

= − d

dt

∣∣∣
t=0

exp(−tξ) · x, ∀x ∈M.

It induces a Lie algebra homomorphism g→ X(M), ξ 7→ ξ.

Definition 1.1. The vector field ξ is called the fundamental vector field of ξ.

Remark 1.2. (i) From a right action G ×M → M , (g,m) 7→ m · g we can construct a left

action by setting g ·m = m · g−1. The fundamental vector field of this left action will be

the opposite of the fundamental vector field of the original right action.
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(ii) For G abelian the same action can be considered both as left and as right action. In this

case both actions yield the same fundamental vector field.

�

We say that G acts on M locally freely if for any ξ ∈ g the fundamental vector field ξ is

nowhere vanishing. A left G-action on M induces a left action on X(M)

(g, v) 7→ dg(v), ∀ g ∈ G, ∀ v ∈ X(M),

and on differential forms Ω(M) on M

(g, β) 7→
(
g−1

)∗
β, ∀ g ∈ G, ∀β ∈ Ω(M),

where we consider g−1 ∈ G as a map M →M , x 7→ g−1x.

1.1.2 Cartan model

Denote Sg∗ the symmetric algebra of g∗ with grading induced by degw = 2 for any non-zero

w ∈ g∗. We can consider homogeneous element of Sg∗ as homogeneous polynomials in R[g]

and their degree in Sg∗ is twice of the polynomial degree in R[g]. Moreover, Sg∗ has a natural

G-action induced by the coadjoint action on g∗. If M is a G-manifold then we consider on

Ω(M)⊗ Sg∗ the diagonal G-action

g∗(α⊗ p) = g∗α⊗Ad∗g(p), ∀ g ∈ G,

and the contraction by a vector field

ιv(α⊗ p) = (ιvα)⊗ p, ∀ v ∈ X(M).

On Ω(M)⊗ Sg∗ we take the total grading and the graded commutative multiplication

(β1 ⊗ p1) · (β2 ⊗ p2) = (β1β2)⊗ (p1p2).

Definition 1.3. The graded differential algebra of G-equivariant differential forms on M is

ΩG(M) = (Ω(M)⊗ Sg∗)G with equivariant differential

DG(α⊗ p) = dα⊗ p−
r∑
i=1

ιξiα⊗ uip,

where d is the exterior differential onM and {ξ1, . . . , ξr} is a basis of g with dual basis {u1, . . . , ur}.
The equivariant cohomology HG(M) of M is the cohomology of the chain complex (ΩG(M), DG).

Remark 1.4. (i) If G = T is a torus then ΩG(M) = Ω(M)T ⊗ St∗.

(ii) We can consider equivariant differential forms β ∈ ΩG(M) as G-equivariant polynomial

maps β : g → Ω(M) with equivariant differential (DGβ)(ξ) = d(β(ξ)) − ιξ(β(ξ)) for all

ξ ∈ g (cf. [45]).

�
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Theorem 1.5. If G is a connected compact Lie group with maximal torus T and Weyl group W

then

HG(M) ' HT (M)W

induced by restriction g∗ → t∗ (cf. [15], Theorem 6.8.2).

1.1.3 Connection and curvature forms

Let P →M be a (left) principal G-bundle (i.e. G acts on P from left).

Definition 1.6. A connection form θ on P is a Lie algebra valued 1-form with the following

properties

(1) θ ∈ (Ω(P )⊗ g)G, where we consider on g the adjoint action and on Ω(P )⊗ g the diagonal

G-action,

(2) ιξθ = ξ for all ξ ∈ g.

Any principal bundle admits a connection form.

Example 1.1. Let G ⊂ GLn(R) be a Lie group considered as a (right) principal G-bundle over

the point. Then the Maurer-Cartan form (θMC)g = g−1dg is a connection form on G as principal

bundle. �

Remark 1.7. If {ξ1, . . . , ξr} is a basis of g then we can write θ =
r∑
i=1

θi ⊗ ξi, where θi are 1-forms

on P . Then the first condition is equivalent to
r∑
i=1

(g∗θi) ⊗ ξi =
r∑
i=1

θi ⊗ Adgξ
i, and the second

condition is equivalent to ιξiθj = δi,j , where δi,j is the Kronecker symbol. �

Let K be a compact Lie group. π : P → M is a K-equivariant principal G-bundle if K

acts on P and M , the G- and K-action on P commute and π is K-equivariant. A connection

form θ ∈ (Ω(P ) ⊗ g)G is K-invariant if k∗θ =
r∑
i=1

k∗θi ⊗ ξi = θ for all k ∈ K. We can get an

invariant connection form out of any connection form by averaging over K. That is,
∫
K
k∗θdk is

a K-invariant connection for any θ connection form on P .

Definition 1.8. The curvature form Θ of the connection form θ is defined as

Θ = dθ +
1

2
[θ, θ],

where [θ, θ] =

[
r∑
i=1

θi ⊗ ξi,
r∑
j=1

θj ⊗ ξj
]

=
r∑

i,j=1

θiθj ⊗
[
ξi, ξj

]
.

The curvature form has the following properties.

(1) It is G-invariant, i.e. Θ ∈ (Ω2(P )⊗ g)G.

(2) It is horizontal, i.e. ιξΘ = 0 for all ξ ∈ g.

(3) dΘ = [Θ, θ] (Bianchi identity or Cartan structure equation).

3



Definition 1.9. The equivariant curvature ΘK of a K-invariant connection form θ is defined as

ΘK = DKθ +
1

2
[θ, θ].

1.1.4 Cartan isomorphism

Let π : P → M be a K-equivariant principal G-bundle and let θ be a K-invariant connection

form on P .

Definition 1.10. The set of horizontal forms on P is defined as

Ω(P )hor = {α ∈ Ω(P ) | ιξα = 0, ∀ξ ∈ g}.

We call G-invariant and horizontal forms on P basic and we use notation Ω(P )bas = Ω(P )Ghor.

Moreover, we define ΩK(P )bas =
(
Ω(P )bas ⊗ Sk∗

)K
.

Remark 1.11. We can identify Ω(M) with basic forms Ω(P )bas via the pull-back π∗ : Ω(M) →
Ω(P ). �

Definition 1.12. We define the horizontal morphism Horθ : Ω(P )→ Ω(P )hor by

Horθ(α) =

r∏
i=1

(1− θiιξi)α,

where {ξ1, . . . , ξr} is a basis of g and θ =
r∑
i=1

θi ⊗ ξi.

Remark 1.13. The horizontal morphism Horθ is a projection to Ω(P )hor, that is, Horθ(α) = α

for all α ∈ Ω(P )hor. �

Theorem 1.14 (Equivariant Cartan isomorphism). The chain homomorphism

CKθ : (ΩG×K(P ), DG×K)→ (ΩK(P )bas, DK), CKθ
(∑

j

αj ⊗ pj

)
= Horθ

(∑
j

αj ⊗ pj(ΘK)
)

induces an isomorphism (CKθ )∗ : HG×K(P )→ HK(M). Moreover, CK =
(
CKθ
)
∗ does not depend

on the choice of θ and it is called the (equivariant) Cartan isomorphism (cf. [15], Theorem

5.2.1).

1.1.5 Associated bundles

Let P →M be a (right) principal G-bundle and let ρ : G→ GL(V ) be a representation. Consider

the G-action on P × V defined by

(p, v) · g = (pg, g−1v), ∀g ∈ G, ∀p ∈ P, ∀v ∈ V.

The quotient space P ×G V = (P × V )/G is a vector bundle over M . Denote by [p, v] the class

of (p, v) and remark that [pg, v] = [p, gv]. If P →M is a K-equivariant principal G-bundle then

P ×G V →M becomes a K-equivariant vector bundle.

4



1.1.6 Frame bundles

Let E → M be a K-equivariant complex vector bundle of rank n. We construct an associated

vector bundle which is equivariantly isomorphic to E. Choose a K-invariant Hermitian metric

on E and on Cn consider the standard Hermitian inner product. The unitary frame bundle of

E is defined as FC(E) =
⊎
x∈M FC(E)x, where FC(E)x = {ϕx : Cn → Ex |ϕx isometry}. It is a

principal U(n)-bundle over M

(ϕx · g)(v) = ϕx(gv), ∀ g ∈ U(n), ∀ v ∈ Cn.

It admits a K-action which commutes with the U(n)-action

(1.1) (k · ϕx)(v) = k · (ϕx(v)), ∀ k ∈ K, ∀ v ∈ Cn.

Moreover, we have K-equivariant isomorphism of vector bundles

Φ : FC(E)×U(n) Cn → E, Φ([ϕx, v]) = ϕx(v).

Choosing a different K-invariant Hermitian metric on E yields an isomorphic principal bundle.

Let E →M be a K-equivariant real orientable vector bundle of rank n. Similarly, we can con-

struct it as an associated vector bundle. Choose a K-invariant Riemannian metric on E and the

standard scalar product on Rn. On Rn we choose the orientation given by the standard basis. Let

F+
R (E) =

⊎
x∈M F+

R (E)x, where F+
R (E)x = {ϕx : Rn → Ex |ϕx orientation preserving isometry}.

Then F+
R (E) is a principal SO(n)-bundle over M and it is called the real oriented frame bundle

of E. We also have a K-action on it defined by (1.1), which commutes with the SO(n)-action

and

Φ : F+
R (E)×SO(n) Rn → E, Φ([ϕx, v]) = ϕx(v)

is a K-equivariant isomorphism of vector bundles.

1.1.7 Euler class

Recall that the Lie algebra so(n) of SO(n) is the set of skew-symmetric real matrices. Let

{e1, . . . en} be an orthonormal basis of Rn inducing the same orientation as the standard basis.

To any A ∈ so(n) we can associate a skew-symmetric form ωA ∈ Λ2Rn by ωA(v, w) = (Av,w)

for all v, w ∈ Rn.

Definition 1.15. The Pfaffian of A ∈ so(n) is defined as the coefficient of e1 ∧ . . . ∧ en in

exp

(∑
i<j

(Aei, ej) · ei ∧ ej
)
.

Alternatively we can define it by

Pf(A)(e1 ∧ . . . ∧ en) =
ω
n/2
A

n!

if n is even and Pf(A) = 0 if n is odd. From the definition of ωA follows that Pf ∈ (Sso∗)SO(n).

5



By the spectral theorem of skew-symmetric matrices any A ∈ so(n) is conjugate in O(n) to

a matrix of form



0 −λ1

λ1 0
. . .

0 −λk
λk 0

 if n = 2k or



0 −λ1

λ1 0
. . .

0 −λk
λk 0

0


if n = 2k + 1,

hence

Pf(A) =

λ1 · · ·λk if n = 2k,

0 if n = 2k + 1.

In particular, we have Pf(A)2 = det(A) for all A ∈ so(n).

Definition 1.16. The Euler class of a real orientable vector bundle E →M of rank n is

e(E) = Cθ
(

Pf

(−2π)n/2

)
= Pf

(
− Θ

2π

)
∈ Hn(M),

where θ is a connection form on the real oriented frame bundle of F+
R (E) and Θ is its curvature

[39]. The equivariant Euler class of a real orientable K-equivariant vector bundle E → M of

rank n is equal to

eK(E) = CKθ
(

Pf

(−2π)n/2

)
= Pf

(
−ΘK

2π

)
∈ Hn

K(M),

where θ is a K-invariant connection form on F+
R (E) and ΘK is its equivariant curvature [15].

1.1.8 Chern classes

Denote u(n) the Lie algebra of U(n). We define σk ∈ (Su(n)∗)U(n) by relation

det

(
I + t

√
−1

2π
A

)
=

n∑
k=0

σk(A)tk.

By the spectral theory of skew-Hermitian matrices any A ∈ u(n) is conjugate in U(n) to a

diagonal matrix diag
(√
−1λ1, . . . ,

√
−1λn

)
, hence

σk(A) =
sk(λ1, . . . , λn)

(−2π)k
,

where sk(λ1, . . . , λn) is the kth elementary symmetric polynomial in λ1, . . . , λn.

Definition 1.17. The kth Chern class of a rank n complex vector bundle E →M is defined by

ck(E) = Cθ(σk) = σk(Θ) ∈ H2k(M),
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where θ is a connection form on the unitary frame bundle FC(E) and Θ is its curvature. The

total Chern class of E is

c(E) = 1 + c1(E) + . . .+ cn(E).

We call cn(E) the top Chern class of E. We define the kth equivariant Chern class of a K-

equivariant complex vector bundle E →M of rank n by

cKk (E) = CKθ (σk) = σk(ΘK) ∈ H2k
K (M),

where θ is a K-invariant connection form on the unitary frame bundle FC(E) and ΘK is its

equivariant curvature.

1.1.9 Relation between the Euler class and the top Chern class

Recall that Cn considered as real vector space has a natural orientation. If {z1, . . . , zn} is a

basis of Cn then the orientation is induced by the real basis {x1,
√
−1y1, . . . , xn,

√
−1yn} of Cn.

Therefore, any complex vector bundles E → M of rank n can be considered as oriented real

vector bundle of rank 2n. The following result can be found in [15] or [39].

Proposition 1.18. The Euler class of E as real oriented vector bundle agrees with top Chern

class of E as complex vector bundle. That is,

e(E) = cn(E).

It also holds for K-equivariant complex vector bundles E →M , that is,

eK(E) = cKn (E).

1.1.10 Properties of the Euler class

Let E →M be a K-equivariant (real orientable or complex) vector bundle and let f : N →M be

a K-equivariant map which induces homomorphism f∗ : HK(M)→ HK(N). Then the pull-back

bundle f∗E is also K-equivariant and we have

eK(f∗E) = f∗(eK(E)).

If F → M is another K-equivariant vector bundle then eK(E ⊕ F ) = eK(E)eK(F ) (Whitney

product formula).

For computations of Euler classes we will use the following correspondence. Let P →M be a

K-equivariant principal G-bundle and let E → P be a (K ×G)-equivariant real oriented vector

bundle. If CK : HK×G(P )→ HK(M) is the Cartan isomorphism then

CK(eK×G(E)) = eK(E/G).

Let φ : G → K be a Lie group homomorphism and denote φ∗ : k∗ → g∗ the induced map.

The K-equivariant (real orientable) vector bundle E → M can be consider as a G-equivariant
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vector bundle via the homomorphism φ. We also have a homomorphism φ∗ : HK(M)→ HG(M)

between equivariant cohomologies, and moreover

eG(E) = φ∗(eK(E)).

To make computation with the Euler classes we will use the Spitting Principle (cf. [15],

Section 8.6 or [4], Section 21). If E → M is an K-equivariant complex vector bundle of rank r

then we will assume that it splits to K-equivariant complex line bundles, that is, E = ⊕ri=1Li

and by Whitney product formula

eK(E) =

r∏
i=1

eK(Li).

Example 1.2. Let K be a torus acting on C by weight γ ∈ k∗Z, that is,

exp(ξ) · z = e2π
√
−1γ(ξ)z, ∀ ξ ∈ k, ∀ z ∈ C.

We consider C as a K-equivariant vector bundle over the point and we denote it by Cγ . The

standard Hermitian metric on C is K-invariant and FC(Cγ) = U(1) is the unitary frame bundle.

The Maurer-Cartan form (θMC)z =
dz

z
, z ∈ U(1) ⊂ C is a K-invariant connection on FC(Cγ)→

{pt}. Let {ξ1, . . . , ξq} be a basis of k and {u1, . . . , uq} be its dual basis. If we write γ =
q∑
i=1

γiui

then

ξi
z

=
d

dt

∣∣∣
t=0

e2π
√
−1γ(tξi) · z = 2πγi

√
−1z

∂

∂z
.

Moreover, (ΘMC)K = −
q∑
i=1

ιξiθMCui = −
q∑
i=1

2π
√
−1γiui = −2π

√
−1γ and

eK(Cγ) = cK1 (Cγ) =

√
−1

2π
(−2π

√
−1γ) = γ.

�

1.2 Symplectic manifolds

1.2.1 Hamiltonian action

Definition 1.19. A 2-form ω on a manifold M is symplectic if it is closed and non-degenerate,

i.e. dω = 0 and if ω(v, w) = 0 for all w ∈ X(M) then v = 0. The pair (M,ω) is called symplectic

manifold.

Definition 1.20. An action of a compact Lie group G on a symplectic manifold (M,ω) is

called Hamiltonian if g∗ω = ω for all g ∈ G (it preserves the symplectic form) and there is a

G-equivariant map µG : M → g∗, called moment map, such that

(1.2) d〈µG, ξ〉 = −ιξω, ∀ ξ ∈ g.

On g∗ we have considered the coadjoint action.
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The form ω − µG ∈ Ω2(M)⊕ Ω0(M)⊗ g∗ is invariant and equivariantly closed, that is,

DG(ω − µG) = 0.

Hence, ω − µG ∈ H2
G(M) is called equivariant symplectic form. Let S be another compact

connected Lie group which acts on M and preserves ω. If the G- and S-action commute then

µG is S-invariant, that is, S preserves the fibers of µG.

Example 1.3. On Cn we have a natural symplectic form

ωCn =

√
−1

2

n∑
i=1

dzi ∧ dz̄i =

n∑
i=1

dxi ∧ dyi =

n∑
i=1

ridridϑi,

where zi = xi +
√
−1yi = rie

√
−1ϑi . Let K be a torus acting on Cn with weights γ1, . . . , γn ∈ k∗Z,

that is,

exp(ξ) · z =
(
e2π
√
−1γ1(ξ)z1, . . . , e

2π
√
−1γn(ξ)zn

)
, ∀ ξ ∈ k, ∀ z = (z1, . . . , zn) ∈ Cn.

Then ξ
z

=
n∑
i=1

2πγi(ξ)
∂

∂ϑi
and from (1.2) follows that the moment map has of form

µ(z) = 2π

n∑
i=1

γi
r2
i

2
+ ζ, (ζ ∈ k∗).

�

1.2.2 Symplectic reduction and Kirwan map

The relation (1.2) and non-degeneracy of ω imply that ζ ∈ (g∗)G is a regular value of µG if and

only if G acts locally freely on µ−1
G (ζ). The quotient M//ζG = µ−1

G (ζ)/G is called symplectic

quotient. Moreover, M//ζG admits a symplectic form which is called reduced symplectic form.

Hence, if G acts freely on µ−1
G (ζ) then M//ζG is a symplectic manifold. If the action is only

locally free then M//ζG is a symplectic orbifold.

Let S be a connected compact Lie group. If the S-action on M preserving the symplectic form

commutes with the G-action then we also have an S-action on M//ζG. Moreover, if the S-action

is Hamiltonian with G-invariant moment map µS : M → s∗, then the S-action on M//ζG is also

Hamiltonian.

The Kirwan map κ : HG(M)→ H(M//ζG) is defined by

κ = C ◦ i∗,

where i : µ−1
G (ζ) → M is the inclusion and C : HG(µ−1

G (ζ)) → H(M//ζG) is the Cartan isomor-

phism. We remark that if ζ = 0 then κ(ω−µG) is the reduced symplectic form on M//0G. It was

proved in [26] that if M is compact then κ is surjective. Similarly, we can define the equivariant

version of the Kirwan map κS : HG×S(M)→ HS(M//ζG),

κS = CS ◦ i∗,

9



where CS : HG×S(µ−1
G (ζ)) → HS(M//ζG) is the equivariant Cartan isomorphism. If ζ = 0 then

κS(ω− µG − µS) is the reduced equivariant symplectic form on M//0G. The Kirwan surjectivity

was extended to the equivariant setting in [12].

1.2.3 Compatible triples and symplectic weights

M is a complex manifold of dimension n if admits an atlas {Uj}j with Uj open unit disk in Cn

and holomorphic transition maps. The multiplication by
√
−1 on Cn defines an anti-involutive

section I ∈ Γ(End(TM)), that is I2 = −idTM , which is called complex structure on M .

Definition 1.21. A Riemannian metric ρ on a complex manifold M is a Hermitian metric if it

is compatible with the complex structure

(1.3) ρ(Iv, Iw) = ρ(v, w), ∀ v, w ∈ X(M).

Definition 1.22. A complex manifoldM is Kähler if it has a Hermitian metric ρ and a symplectic

form ω such that

(1.4) ω(v, w) = ρ(Iv, w), ∀ v, w ∈ X(M).

The triple (I, ρ, ω) is called Kähler structure on M .

Definition 1.23. An anti-involution I ∈ Γ(End(TM)) is called almost complex structure on M .

An almost Kähler structure on M is a triple (I, ρ, ω) such that I is an almost complex structure,

ρ is a Riemannian metric and ω is a symplectic form on M satisfying compatibility relations

(1.3) and (1.4). We call (I, ρ, ω) a compatible triple.

Proposition 1.24. Let (M,ω) be a symplectic manifold then there exist a Riemannian metric

ρ and an almost complex structure I on M such that (I, ρ, ω) is a compatible triple (cf. [7],

Corollary 12.7 or [21], Lemma 3.16).

Corollary 1.25. If a compact Lie group G acts on a symplectic manifold M , preserving the

symplectic form ω then there exist an invariant Riemannian metric ρ and an almost structure I

such that (I, ρ, ω) is an invariant compatible triple.

Proof. Following the proof of Lemma 3.16 of [21] we choose a G-invariant Riemannian metric ρ′

on M . Then there exists a skew-adjoint operator A ∈ Γ(End(TM)) (with respect to ρ′) such

that ω(u, v) = ρ′(Au, v) for all vector fields u, v ∈ X(M). Since ω and ρ′ are G-invariant, hence

A is a G-invariant section of End(TM). Moreover, A∗A is a (G-equivariant) self-adjoint positive

definite operator on TM (with respect to ρ′). The almost complex structure I ∈ Γ(End(TM)) is

defined by the relation A =
√
A∗AI = I

√
A∗A and remark that it is preserved by the G-action.

Finally, the Riemannian metric ρ is given by ρ(u, v) = ρ′(
√
A∗Au, v). It is G-invariant and

ω(u, v) = ρ′(Au, v) = ρ′(
√
A∗AIu, v) = ρ(Iu, v)

for all u, v ∈ X(M).
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Proposition 1.26. Let (M,ω) be a symplectic manifold. The set of almost complex structures

compatible with the symplectic structure on M

Iω =
{
I ∈ Γ(End(TM)) | I2 = −idTM , ∃ (I, ρ, ω) compatible triple

}
is path connected (cf. [7], Proposition 12.8).

If a compact torus T acts on (M,ω) preserving the symplectic form and x ∈ MG is a fixed

point then by choosing an invariant compatible triple we can talk about T -weights of TxM and

by Proposition 1.26 it does not depend on the choice of the compatible triple. Similarly, by

choosing a compatible triple on a symplectic manifold (M,ω) we can consider Chern classes of

TM .

1.2.4 HyperKähler manifolds

Definition 1.27. A Riemannian manifold (M,ρ) is hyperKähler if it admits three Kähler struc-

tures (Ii, ρ, ωi), i = 1, 2, 3 such that the three complex structures satisfy the quaternionic relations

I2
1 = I2

2 = I2
3 = I1I2I3 = −idTM .

Definition 1.28. A G-action on a hyperKähler manifold is called hyper-Hamiltonian if it pre-

serves the hyperKähler structure and it is Hamiltonian with respect to all three symplectic

structures. If µi : (M,ωi)→ g∗, i = 1, 2, 3 are the three moment maps then we can compose real

and complex symplectic forms and moment maps as follows

ωR = ω1, µR = µ1,

ωC = ω2 +
√
−1ω3, µC = µ2 +

√
−1µ3.

Example 1.4. Denote H the quaternions with i, j, k such that i2 = j2 = k2 = ijk = −1. Let

A = A0 + iA1 + jA2 + kA3 ∈ Mn,r(H) and denote Z = A0 + iA1,W
t = A2 + iA3 ∈ Mn,r(C).

We identify Mn,r(H)
∼−→ T ∗Mn,r(C) = Mn,r(C) ⊕Mr,n(C), A = Z + W tj 7→ (Z,W ). The left

multiplications by i, j, k on Mn,r(H) define three complex structures on T ∗Mn,r(C)

I1(Z,W ) =
(√
−1Z,

√
−1W

)
, I2(Z,W ) = (−W ∗, Z∗) , I3(Z,W ) =

(
−
√
−1W ∗,

√
−1Z∗

)
.

Moreover, we also define Riemannian metric ρ, real and complex symplectic forms ωR and ωC on

T ∗Mn,r(C) by

ρ = Tr(dZdZ∗ + dWdW ∗),

ωR =

√
−1

2
Tr (dZ ∧ dZ∗ + dW ∧ dW ∗) ,

ωC = Tr(dZ ∧ dW ).

All these structures make T ∗Mn,r(C) a hyperKähler manifold. We consider the natural U(n)×
U(r)-action on T ∗Mn,r(C) given by

(U, V ) · (Z,W ) = (UZV ∗, V WU∗), ∀U ∈ U(n), ∀V ∈ U(r), ∀Z,W t ∈Mn,r(C).

11



This action is hyper-Hamiltonian with real and complex moment maps

µR : (T ∗Mn,r(C), ωR)→ u(n)∗ ⊕ u(r)∗, µR(Z,W ) =

√
−1

2

(
ZZ∗ −W ∗W
WW ∗ − Z∗Z

)
,

µC : (T ∗Mn,r(C), ωC)→ u(n)∗C ⊕ u(r)∗C, µC(Z,W ) =

(
ZW

−WZ

)
,

where we have identified u(N) ' u(N)∗ via the non-degenerate bilinear pairing (u, v) = Tr(u∗v)

for all u, v ∈ u(N) and N = n or N = r. �

Similarly to the symplectic case, ζ = (ζR, ζC) ∈ (g∗⊕g∗C)G is a regular value of (µR, µC) if and

only if G acts locally freely on µ−1
R (ζR) ∩ µ−1

C (ζC). Moreover, M////ζG = µ−1
R (ζR) ∩ µ−1

C (ζC)/G is

again hyperKähler and it is called the hyperKähler quotient [22]. We also have a hyperKähler

version of the Kirwan map κ : HG(M)→ H(M////ζG), κ = C◦i∗, where i : µ−1
R (ζR)∩µ−1

C (ζC)→M

is the inclusion and C : HG(µ−1
R (ζR) ∩ µ−1

C (ζC)) → H(M////ζG) is the Cartan isomorphism.

Similarly can be defined the equivariant version of the hyperKähler Kirwan map.

1.3 Orbifolds

We adopt the definition of orbifolds from [34], which extends the original definition of [42] for

non-effective actions.

Let X be a paracompact Hausdorff topological space. An orbifold chart on X is a tuple

(U, Ũ ,H, ϕ), where U is an open subset of X, H is a finite group acting linearly on an open

subset Ũ of Rn and ϕ : Ũ → U is a H-invariant continuous map, which induces homeomorphism

Ũ/H → U . We say that it is a chart around x ∈ X if x ∈ U . An embedding of orbifold charts

φ : (Ui, Ũi, Hi, ϕi) → (Uj , Ũj , Hj , ϕj) consists of a group homomorphism φ̂ : Hi → Hj and a

φ̂-twisting embedding φ̃ : Ũi → Ũj such that

Ũi

ϕi

��

φ̃ // Ũj

ϕj

��
Ui // Uj

commutes, the bottom horizontal map is the inclusion and φ satisfies the additional condition

(1.5) hj · φ̃(Ũi) ∩ φ̃(Ũi) 6= ∅ ⇒ hj ∈ φ̂(Hi).

We remark that if Hj acts effectively on Ũj then the condition (1.5) is automatically satisfied.

Two orbifold charts (Ui, Ũi, Hi, ϕi), i = 1, 2 on X are compatible if for any point x ∈ U1 ∩
U2 there exists a third orbifold chart (U3, Ũ3, H3, ϕ3) around x with chart embeddings φi :

(U3, Ũ3, H3, ϕ3)→ (Ui, Ũi, Hi, ϕi), i = 1, 2.

Definition 1.29. An orbifold structure on X is an orbifold atlas {(Ui, Ũi, Hi, ϕi)}i∈I of com-

patible charts such that X = ∪i∈IUi.
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Example 1.5. If a compact Lie group G acts locally freely on a manifold P then the quotient

P/G is an orbifold. �

Let x ∈ X and let (U, Ũ ,H, ϕ) be a chart around x. Let y ∈ ϕ−1(x) be a lift of x and denote

Hy = {h ∈ H |hy = y} its isotropy group. Let φ : (V, Ṽ , G, ψ) → (U, Ũ ,H, ϕ) be an embedding

such that x ∈ V . If z ∈ ψ−1(x) is another lift then by condition (1.5) the isotropy groups Hy

and Gz are isomorphic. Thus we can define up to isomorphism the isotropy group Hx of x as

isotropy group of its lifts.

Definition 1.30. The multiplicity of a point x is the order of its isotropy group.

For any point x ∈ X there is an orbifold chart (U, Ũ ,H, ϕ) around x such that H is the

isotropy group of x, that is, ϕ−1(x) ∈ Ũ is a fixed point of H. Since the fixed point set ŨH

is a submanifold of Ũ , hence for a fixed finite group G the set XG = {x ∈ X |Hx ' G} is a

submanifold of X. We can write X = ∪GXG. If X is connected then there is a unique open,

dense submanifold XH• ⊂ X called principal stratum such that the order |H•| is minimal for the

isotropy groups.

Definition 1.31. The orbifold multiplicity of X is defined as the order of isotropy groups of any

point in the principal stratum and we denote it by m(X) [34].

Later in the text orbifolds will appear only as quotients of manifolds by compact groups

acting locally freely. We can define differential form, equivariant cohomology and Euler classes

on orbifolds using orbifold charts [30], but in our cases they will be computed as images of similar

objects via Cartan isomorphism.

Finally, we recall the following orbifold version of the Atiyah-Bott-Berline-Vergne localization

theorem [3, 2].

Theorem 1.32 ([34], Theorem 2.1). Let X be an orbifold with a T torus action. For any

β ∈ HT (X) we have
1

m(X)

∫
X

β =
∑

F⊂XT

1

m(F )

∫
F

i∗Fβ

eTN (F |X)
,

where m(X) and m(F ) are the orbifold multiplicities of X and F (considering F as suborbifold

of X), and N (F |X) is the equivariant normal orbibundle of F in X.

1.4 Proper and bounded below moment map

Let K be an 1-dimensional torus and let (M,ω) be a non-compact Hamiltonian K-manifold

with moment map µK : M → k∗ which is assumed to be proper and non-surjective. Let γ be

a generator of k∗Z and define ϕ : M → R by relation µK = ϕ · γ. Then ϕ is also proper and by

Lemma 1.1 of [40] the image of ϕ is either (−∞, η] or [η,+∞) for some η ∈ R. We assume that

we have chosen γ such that ϕ is bounded below.

Definition 1.33. We call such an action as above a PBB action if MK is compact. We refer to

the data (µK , ϕ, γ) as the proper, bounded below moment map.
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Remark 1.34. (i) Similarly to the compact case the fixed point set MK 6= ∅ by Proposition 1.2

of [40].

(ii) MK is compact if and only if the set of critical values of ϕ is finite. Indeed, ϕ is constant on

K-fixed point components and ϕ(MK) is the set of critical values, since K is 1-dimensional.

Therefore, MK is compact if and only if ϕ(MK) is finite, since ϕ is proper.

�

Let T be a compact torus with Hamiltonian action on (M,ω) which commutes with the K-

action and denote µT : M → t∗ its moment map. We can approximate M by compact symplectic

manifolds using symplectic cut technique [28] as follows. Let ε ∈ R be a regular value of ϕ. We

consider the standard symplectic form ωC =

√
−1

2
dzdz̄ on C and let K act on C by weight

−γ ∈ k∗Z. It is a Hamiltonian action with moment map ψ(z) = −2πγ
|z|2

2
. On the product space

M × C we consider the symplectic form ω + ωC and (T ×K)-action

(t, k) · (m, z) = (tk ·m, k−1 · z) ∀ (t, k) ∈ T ×K, ∀ (m, z) ∈M × C.

The K-action admits moment map Ψ : M × C→ k∗,

Ψ(m, z) = µK(m) + ψ(z) =
(
ϕ(m) + π|z|2

)
γ

and εγ is a regular value of it. Indeed, we have decomposition

Ψ−1(εγ) =
(

Ψ−1(εγ) ∩ (M × C×)
)⊎(

µ−1
K (εγ)× {0}

)
,

on which K acts locally freely, becauseK acts locally freely on C× and µ−1
K (εγ) by the assumption

that εγ is a regular value of µK . Hence X≤ε = Ψ−1(εγ)/K is a symplectic orbifold. Moreover,

if Imϕ = [η,+∞) then

Ψ−1(εγ) ⊂ ϕ−1 ([η, ε])×
{
z ∈ C

∣∣π|z|2 ≤ ε− η}
and since ϕ is proper, it follows that Ψ−1(εγ) and consequently X≤ε is compact. Denote [m, z]

the image of (m, z) by the quotient map Ψ−1(εγ)→ X≤ε and let X<ε = {[m, z] ∈ X≤ε | z 6= 0}.
The torus T acts on X≤ε with moment map X≤ε → t∗, [m, z] 7→ µT (m), which we will denote

by φT . Moreover, there is a T -equivariant symplectomorphism

ϕ−1(−∞, ε)→ X<ε, m 7→

[
m,

√
ε− ϕ(m)

π

]
.

We recall the following two theorems from [30], which are the orbifold versions of similar

results of [1] and [16].

Theorem 1.35 ([30], Theorem 5.1). Let (X,ω) be a compact connected symplectic orbifold with

Hamiltonian T -action and φT : X → t∗ moment map. Then for every ζ ∈ t∗ the fiber φ−1
T (ζ) is

connected.
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Theorem 1.36 ([30], Theorem 5.2). Let a T torus act on a compact connected symplectic orbifold

(X,ω) with moment map φT : X → t∗. Then the image of the moment map φT (X) ⊂ t∗ is a

rational convex polytope. Moreover, φT (X) is the convex hull of φT
(
XT
)
.

Approximating M by X≤ε as ε tends to +∞ we can show that

Corollary 1.37. (a) For every ζ ∈ t∗ the fibers µ−1
T (ζ) ⊂M are connected.

(b) The image of the moment map µT (M) ⊂ t∗ is a convex polytope.

Let H ⊂ T be a subtorus and let N ⊂MH be an H-fixed point component. Assume that H

is the maximal subtorus of T fixing every point of N . The restriction of ϕ to N is also proper

and bounded below, therefore µT (N) is a subpolytope of µT (M). Since N is a H-fixed point

component, the H-moment map is constant on N , therefore µT (N) lies in the affine subspace

µT (x) + ker(t∗ → h∗) for any x ∈ N . Moreover, the quotient group T/H acts (locally) freely on

an open dense subset of N , hence the dimension of the polytope µT (N) agrees with the dimension

of ker(t∗ → h∗).

Definition 1.38. The proper subpolytopes µT (N) are called walls of the moment polytope

µT (M). Let x ∈ N . We will refer to ker(t∗ → h∗) and µT (x) + ker(t∗ → h∗) respectively as

supporting plane and supporting affine plane of the wall µT (N).

Example 1.6. For x ∈ MT let αi ∈ t∗Z, i ∈ I be the weights of TxM (with respect to an

invariant compatible almost complex structure). Consider the subtorus H ⊂ T with Lie algebra

h = ∩kj=1 kerαij . Let N ⊂ MH the fixed point component containing x. Then the supporting

affine plane of µT (N) is equal to µT (x) + span〈αi1 , . . . , αik〉. Indeed, if TxM = ⊕i∈IWαi is

the decomposition to weight spaces then TxN = ⊕j∈JWαj , where J = {i ∈ I |αi(h) = 0}.
Thus, H is the maximal subtorus of T fixing every point of N and we have ker(t∗ → h∗) =

span〈αi1 , . . . , αik〉. �

Lemma 1.39. The moment polytope µT (M) has finitely many walls.

Proof. If x ∈ NT×K ⊂MT×K then TxN ⊂ TxM is a T -invariant subspace and moreover it is a

direct sum of weight spaces corresponding to weights α ∈ t∗Z such that α ∈ ker(t∗ → h∗). TxM

has finitely many weights and they depend only on the connected components of MT×K , which

are also finite in number, therefore µT (M) has finitely many walls.

The Kirwan surjectivity also extends to manifolds with proper bounded below moment maps.

Theorem 1.40 ([26], [12], [41]). Let G be a compact Lie group and let S be a compact torus

acting on M . Assume that the G-action is Hamiltonian with moment map µG : M → g∗ and let

ζ ∈ (g∗)G be a regular value of µG. Moreover, we suppose that the actions of G, S and K on M

commute. Then the S-equivariant Kirwan map κS : HG×S(M)→ HS(M//ζG) is surjective.
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2

Symplectic cut

In this chapter we review in detail the symplectic cut technique with respect to a cone closely fol-

lowing [25]. In that paper the symplectic cut construction is used to get localization formulas as

follows. From a Hamiltonian K-manifold M we can construct another Hamiltonian K-manifold

(or orbifold) MΓ which contains the torus symplectic quotient M//K as a K-fixed point compo-

nent. Some of the K-fixed point components of M appear among the fixed point components

of M , too. The Atiyah-Bott-Berline-Vergne localization formula on MΓ yields a fraction of a

particular form and the Jeffrey-Kirwan residue can be used to extract from this fractions rela-

tions between contributions of fixed point components. In this way we can compute integrals

on the quotient space M//K in terms of the Jeffrey-Kirwan residue and fixed point data on M .

Therefore, the goal of the chapter is to compute fixed point data on the symplectic cut space MΓ

such as fixed point components, Euler classes of their normal bundles and orbifold multiplicities

in order to write up the Atiyah-Bott-Berline-Vergne localization formula on it (Theorem 2.13).

Our setup differs from [25] solely in considering K as a subgroup of a bigger torus T .

Let (M,ω) be a connected symplectic manifold with Hamiltonian action of an n-dimensional

compact torus T with moment map µT : M → t∗. We assume that M is compact or admits a

PBB action which commutes with the T -action. Let K ⊂ T be a q-dimensional subtorus and we

denote by µK its moment map.

We also consider the auxiliary symplectic manifold Cq with the standard symplectic form

ωCq =

√
−1

2

q∑
i=1

dzidz̄i and let K act on Cq by linearly independent weights γ1, . . . , γq ∈ k∗Z. It is

also a Hamiltonian action with moment map ψ : Cq → k∗,

ψ(z) = 2π

q∑
i=1

γi
|zi|2

2
.

The product space M × Cq admits symplectic form ω + ωCq and Hamiltonian (T ×K)-action

(t, k) · (m, z) = (tm, kz), ∀ (t, k) ∈ T ×K, ∀ (m, z) ∈M × Cq
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with moment map µT × ψ : M × Cq → t∗ ⊕ k∗. The K-action will refer to the action of K on

Cq and we will specify when the action of K on M as subgroup of T occurs. We consider the

embedding K → T × K, k 7→ (k, k−1). We denote its image by Kdiag and its Lie algebra by

kdiag. The Kdiag-moment map is Ψ : M × Cq → k∗diag,

Ψ(m, z) = µK(m)− ψ(z).

We will investigate when is 0 a regular value of Ψ. By definition 0 is a regular value of Ψ if

Im dmµK − Im dzψ = k∗ for all (m, z) ∈ Ψ−1(0). Let Km ⊂ K be the maximal subtorus fixing m

and denote km its Lie algebra. Remark that Im dmµK = ker(k∗ → k∗m), since dm〈µK , v〉 = −ιvmω
for all v ∈ k and ω is non-degenerate. If Fm ⊂ MKm is the connected component containing m

then µK(Fm) is a convex polytope in k∗ with supporting plane Im dmµK . Moreover, Im dzψ =

span 〈γj | zj 6= 0〉. Therefore, 0 is a regular value of Ψ if and only if the polytopes µK(Fm) and

Cone(γj | zj 6= 0) intersect transversally for all (m, z) ∈ Ψ−1(0). That is, we got the following

characterization of 0 being a regular value of Ψ from [25]:

(T) for every subset I ⊂ {1, . . . , q} the intersection of Cone(γi | i ∈ I) with every wall of µK(M)

is transverse.

Remark 2.1. (i) For I = ∅ condition (T) implies that 0 is a regular value of µK .

(ii) Recall that µK(M) has finitely many walls. Therefore, if 0 is a regular value of µK then

for generic choice of γ1, . . . , γq ∈ k∗Z the condition (T) holds.

�

From now on we assume that the transversality condition (T) holds. We denote by M//K =

µ−1
K (0)/K the symplectic quotient.

Definition 2.2. The symplectic cut ofM with respect to the simplicial cone Γ = Cone(γ1, . . . , γq)

is the symplectic quotient

MΓ = Ψ−1(0)/Kdiag.

We will use notations [m] and [m, z] for images of m ∈ µ−1
K (0) and (m, z) ∈ Ψ−1(0) by

quotient maps. As shown in [29], the T -action on M ×Cq descends to MΓ and it is Hamiltonian

with moment map φT : MΓ → t∗,

φT ([m, z]) = µT (m)

(φK for K-moment map). We denote by ωΓ the reduced symplectic form on MΓ.

Moreover, we have relations between moment polytopes φK(MΓ) = µK(M)∩Γ and φT (MΓ) =

µT (M) ∩ pr−1
k∗ (Γ), where prk∗ : t∗ → k∗.

2.1 T -fixed components on MΓ

For m ∈ M and z ∈ Cq denote Tm ⊂ T and Kz ⊂ K the maximal subtorus fixing m and z,

respectively. Denote tm and kz their Lie algebras. Let Fm ⊂MTm and Fz ⊂ (Cq)Kz be connected

components containing m and z, respectively.
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Lemma 2.3. [m, z] ∈ MΓ is a T -fixed point if and only if t = tm ⊕ kz. Moreover, if F[m,z] ⊂
(MΓ)T is the fixed point component containing [m, z] then

F[m,z] = (Fm × Fz)//Kdiag = (Fm × Fz) ∩Ψ−1(0)/Kdiag.

Proof. Let T ′m = {t ∈ T | t ·m = m} and K ′z = {k ∈ K | k · z = z} be isotropy subgroups of m

and z, respectively. We have [m, z] ∈ (MΓ)T if and only if for any t ∈ T there exists k ∈ K such

that (tk ·m, k−1 · z) = (m, z), that is, tk ∈ T ′m and k−1 ∈ K ′z. It implies that T ′m ×K ′z → T ,

(t′, k′) → t′k′ is surjective, which is equivalent to tm + kz = t since T is connected. Moreover,

(m, z) belongs to Ψ−1(0) on which Kdiag acts locally freely, hence tm ∩ kz = {0}. Therefore,

[m, z] ∈ (MΓ)T exactly when tm ⊕ kz = t. In particular,

ΦT : Tm ×Kz → T, (t, k) 7→ tk

is a finite cover, because Tm ×Kz is compact.

We remark that (Fm × Fz) ∩ Ψ−1(0) is connected by [1] or Corollary 1.37, hence (Fm ×
Fz)//Kdiag is also connected. If [m1, z1] ∈ (Fm × Fz)//Kdiag then by surjectivity of ΦT we can

write any τ ∈ T as τ = tk with t ∈ Tm and k ∈ Kz. Hence

τ · [m1, z1] = [tk ·m1, z1] = [t ·m1, k · z1] = [m1, z1],

therefore (Fm × Fz)//Kdiag ⊂ F[m,z] by connectedness.

Finally, we will show that (Fm×Fz)//Kdiag is a closed and open subset of the connected space

F[m,z] which will imply the equality of these two sets. Remark that Fm×Fz is a closed subset of

M×Cq, hence (Fm×Fz)//Kdiag is a closed subset of F[m,z]. It remains to show that it is an open

subset, too. If [m1, z1] ∈ (Fm×Fz)//Kdiag then Tm ⊂ Tm1
, Kz ⊂ Kz1 and tm⊕kz = t = tm1

⊕kz1 ,

whence Tm = Tm1 and Kz = Kz1 . The isotropy groups locally decrease (cf. [9], Tube theorem),

thus there is an open neighborhood U ⊂ M × Cq of (m1, z1) such that for all (m2, z2) ∈ U
we have T ′m2

⊂ T ′m1
and K ′z2 ⊂ K ′z1 . If [m2, z2] ∈ F[m,z] ⊂ (MΓ)T then tm2

⊕ kz2 = t, hence

Tm2
= Tm1

= Tm and Kz2 = Kz1 = Kz. It implies that [m2, z2] ∈ (Fm×Fz)//Kdiag and therefore

(Fm × Fz)//Kdiag is an open subset of F[m,z].

Remark 2.4. From the proof follows that for any [m1, z1] ∈ F[m,z] we have Tm = Tm1
and

Kz = Kz1 , hence the finite cover ΦT depends only on the fixed point component F[m,z] not on

the points m and z. �

Remark 2.5. The above lemma is reflected on the geometry of the moment polytope as follows.

For z = (z1, . . . , zq) ∈ Cq we introduce the index set Jz = {j = 1, . . . , q | zj = 0}.

(i) Since µK(m) = φK(F[m,z]) and ψ(Fz) = Cone(γj | j /∈ Jz), we have

φK(F[m,z]) = µK(Fm) ∩ Cone(γj | j /∈ Jz).

(ii) Moreover, dimµT (Fm) = dim kz = dimµK(Fm) and prk∗(µT (Fm)) = µK(Fm), therefore

µT (Fm) and pr−1
k∗ Cone(γj | j /∈ Jz) also have complementary dimensions and intersect

transversally in t∗, thus

φT (F[m,z]) = µT (Fm) ∩ pr−1
k∗ Cone(γj | j /∈ Jz). �
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We consider the following subsets of M and MΓ:

Mint = {m ∈M |µK(m) ∈ int Γ},

MΓ,int = {[m, z] ∈MΓ |µK([m, z]) ∈ int Γ},

MΓ,0 = {[m, z] ∈MΓ | z = 0}.

We organize the T -fixed point components of MΓ in three groups.

(F0) Fixed point components D0 ⊂ (MΓ,0)T . They are characterized by φK(D0) = 0, that

is, D0 = F[m,0] for some m ∈ µ−1
K (0). They can be naturally identified to T -fixed point

components F0 ⊂M//K via the T -equivariant diffeomorphism

Υ0 : M//K →MΓ,0, [m] 7→ [m, 0].

(F1) Fixed point components D1 ⊂ (MΓ,int)
T characterized by φK(D1) ∈ int Γ, i.e. D1 = F[m,z]

for some [m, z] ∈ (MΓ)T with z ∈ (C×)q. They correspond to fixed point components

of Mint as follows. Let K ⊂ K be the maximal subgroup of K acting trivially on Cq

and remark that it is finite since γ1, . . . , γq are linearly independent. For any m ∈ Mint

we can write µK(m) =

q∑
i=1

πγiµK(m)i with µK(m)i > 0 for all i = 1, . . . , q. The map

Mint →MΓ,int, m 7→
[
m,
(√

µK(m)1, . . . ,
√
µK(m)q

)]
induces T -equivariant isomorphism

(2.1) Υint : Mint/K →MΓ,int

of orbifolds. Under this map the fixed point components D1 correspond to suborbifolds

F1/K of Mint/K, where F1 is a T -fixed point component of Mint.

(F2) Other fixed point components D ⊂ (MΓ)T which are characterized by φK(D) 6= 0 and

φK(D) lies on the boundary of Γ.

Remark 2.6. When dimK = 1 and γ1 ∈ k∗Z is a generator then K is trivial and Υint : Mint →
MΓ is an open embedding. Moreover, fixed components as in (F2) do not occur and we have

decomposition

MΓ = Υint(Mint) ]Υ0(M//K).

�

2.2 Choice of cohomology classes and their restrictions

Definition 2.7. We define the homomorphism ∆ : HT (M)→ HT (MΓ) by the following diagram

HT (M)

��

∆ // HT (MΓ)

HT×K(M)
∼ // HT×Kdiag (M × Cq)

κT

OO

where the left vertical map is induced by T × K → T , (t, k) 7→ tk, the bottom horizontal

isomorphism is induced by projection M × Cq →M and κT is the Kirwan map.
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More explicitly, if i : Ψ−1(0)→M is the composition of the inclusion Ψ−1(0)→M ×Cq and

projection M × Cq →M then for any β ∈ HT (M)

(∆β)(u) = Horθ
[
(i∗β)(u+ Θ(u))

]
,

where u ∈ t and θ is a T -invariant connection form on the principal Kdiag-bundle Ψ−1(0)→MΓ

with equivariant curvature form Θ(u). We remark that the cohomology class of ∆(β) does not

depend on the choice of θ.

Lemma 2.8.

(i) If iint : Mint →M and iΓ,int : MΓ,int →MΓ are inclusions then

i∗int = Υ∗int ◦ i∗Γ,int ◦∆ : HT (M)→ HT (Mint).

In particular, if D1 ⊂ (MΓ,int)
T and F1 ⊂ (Mint)

T are fixed point components such that

Υint(F1) = D1 then for all β ∈ HT (M)

(2.2) Υ∗int(i
∗
D1

∆(β)) = i∗F1
β.

(ii) If iΓ,0 : MΓ,0 →MΓ denotes the inclusion then

κT/K = Υ∗0 ◦ i∗Γ,0 ◦∆ : HT (M)→ HT (M//K).

In particular, if D0 ⊂ (MΓ,0)T and F0 ⊂ (M//K)T are fixed point components such that

Υ0(F0) = D0 then for all β ∈ HT (M)

Υ∗0(i∗D0
∆(β)) = i∗F0

κT/K(β).

(iii) ∆(ω−µT ) = ωΓ−φT ∈ H2
T (MΓ) is the class of the T -equivariant symplectic form on MΓ.

Proof.

(i) Denote π : Ψ−1(0)→MΓ the quotient map. To compute the restriction i∗MΓ,int
∆(β) we may

choose any T -invariant connection form θ on the principal Kdiag-bundle π−1(MΓ,int) →
MΓ,int by the naturality of the Cartan isomorphism with respect to restrictions. Consider

the Kdiag
=−→ K twisting map π−1(MΓ,int)→ U(1)q,

(m, (z1, . . . , zq)) 7→

(
z1√

µK(m)1

, . . . ,
zq√

µK(m)q

)
and let θ be the pull-back of a connection form on the principal K-bundle U(1)q → {pt}.
Remark that θ is T -invariant, moreover dθ = 0 and ιuθ = 0 for all u ∈ t, hence its T -

equivariant curvature Θ(u) = 0. Denote iΓ : π−1(MΓ,int) → M the restriction of i :

Ψ−1(0)→M . We have

Υ∗int
(
i∗MΓ,int

∆(β)
)
(u) = Υ∗int (Horθ [(i∗Γβ)(u+ Θ(u))]) = Υ∗int (Horθ [(i∗Γβ)(u)]) = (i∗intβ)(u),

because Υ∗int is induced by ν : Mint → π−1(MΓ,int), m 7→
(
m, (

√
µK(m)1, . . . ,

√
µK(m)q)

)
and ν∗(θ) = 0, thus the operator Υ∗int(Horθ) is the identity.
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(ii) Again, to compute the cohomology class i∗MΓ,0
∆(β) we may use any T -invariant connection

form θ on the principal Kdiag-bundle π−1(MΓ,0) = µ−1
K (0)×{0} →MΓ,0, by the naturality

of the Cartan isomorphism. Moreover, the natural map µ−1
K (0)→ µ−1

K (0)× {0} induces a

T ×K =−→ T ×Kdiag twisting isomorphism of principal bundles

µ−1
K (0)

��

∼ // µ−1
K (0)× {0}

��
M//K

Υ0

∼ // MΓ,0.

Let θ′ the pull-back of θ and denote Θ′(u) and Θ(u) their T -equivariant connection forms.

Hence

Υ∗0
(
i∗MΓ,0

∆(β)
)

= Υ∗0 (Horθ[(i
∗
0β)(u+ Θ(u))]) = Horθ′ [(j

∗
0β)(u+ Θ′(u))] = κT/K(β),

where j0 : µ−1
K (0)→M is the inclusion and i0 : µ−1

K (0)× {0} →M is the restriction of i.

(iii) Remark that ωCq − ψ = DK

(
q∑
i=1

xidyi − yidxi
2

)
is exact, therefore

∆(ω − µT ) = κT (ω − µK − µT ) = κT (ω + ωCq −Ψ− µT ) = κ(ω + ωCq )− µT = ωΓ − φT .

Remark 2.9. In particular, Υ∗0(∆(ω−µT )) is the class of the reduced equivariant symplectic form

κT/K(ω − µT ) on M//K. �

2.3 T -equivariant Euler classes of normal bundles of fixed point com-

ponents

We have described the T -fixed point components of MΓ in section 2.1. To compute their normal

bundles and Euler classes we will use the following lemma (cf. [25], Proposition 2.2).

Lemma 2.10 ([13], Proposition 3.1). Let G be a compact Lie group and let Z be an invariant

symplectic submanifold of a Hamiltonian G-manifold X with moment map µ : X → g∗. Assume

that 0 is a regular value of µ and let X//G = µ−1(0)/G be the symplectic quotient. If Z∩µ−1(0) 6=
∅ then 0 is also a regular value of µ|Z : Z → g∗ and let Z//G = (µ|Z)−1(0)/G. We have

isomorphism of normal bundles

(2.3) N (Z//G |X//G) ' N (Z |X)//G

and consequently eN (Z//G |X//G) = κ(eGN (Z |X)), where κ : HG(Z) → H(Z//G) is the Kir-

wan map. In particular, if X has an additional S-action which commutes with G and preserves

the fibers of µ then the isomorphism (2.3) is S-equivariant and eSN (Z |X) = κS(eG×SN (Z |X)),

where κS : HG×S(Z)→ HS(Z//G) is the S-equivariant Kirwan map.
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Proof. 0 is a regular value of µ is equivalent to locally free action of G on µ−1(0). Hence G acts

locally freely on the set Z ∩ µ−1(0) = (µ|Z)−1(0). Therefore, 0 is a regular value of µ|Z and we

have symplectic quotient Z//G = (µ|Z)−1(0)/G = (Z ∩ µ−1(0))/G.

Denote π : µ−1(0) → X//G the quotient map. We have the following commutative diagram

of G-equivariant vector bundles over π−1(Z//G) with short exact sequences in rows and in the

first two columns.

0

��

0

��
0 // π−1(Z//G)× g //

��

(π−1(X//G)× g)|π−1(Z//G)
//

��

0

��
0 // TZ|π−1(Z//G)

//

��

TX|π−1(Z//G)
//

��

N (Z |X)|π−1(Z//G)
//

��

0

0 // π∗T (Z//G) //

��

π∗(T (X//G)|Z//G) //

��

π∗N (Z//G |X//G) //

��

0

0 0 0

The 9-lemma implies the exactness of the last column, thus N (Z |X)//G ' N (Z//G |X//G).

If we have an additional S-action commuting with G and preserving fibers of µ then the

above diagram is (G× S)-equivariant, hence the isomorphism (2.3) is also S-equivariant.

By Lemma 2.3 we have F[m,z] = (Fm × Fz)//Kdiag and by Lemma 2.10 we also have a

T -equivariant isomorphism of vector bundles

N (F[m,z] |MΓ) ' N (Fm × Fz |M × Cq)//Kdiag '
(
pr∗1N (Fm |M)⊕ pr∗2N (Fz |Cq)

)
//Kdiag,

therefore

eTN (F[m,z] |MΓ) = κ′T
[
eT×Kdiag (pr∗1N (Fm |M))

]
κ′T
[
eT×Kdiag (pr∗2N (Fz |Cq))

]
,

where κ′T : HT×Kdiag (Fm × Fz)→ HT (F[m,z]) is the equivariant Kirwan map. The isomorphism

of tori ν : T ×Kdiag → T ×K, ν(t, k) = (tk, k−1) is compatible with their actions on M × Cq,
therefore it induces isomorphism

ν∗ : HT×K(Fm × Fz)→ HT×Kdiag (Fm × Fz)

in equivariant cohomology.

Denote Cγj → {pt} the K-equivariant complex line bundle over a point on which K acts by

weight γj ∈ k∗Z and T acts trivially. If Lj is the pull-back of the bundle Cγj along Fm×Fz → {pt}
then pr∗2N (Fz |Cq) = ⊕j∈JzLj , where Jz = {j = 1, . . . , q | zj = 0}. Therefore, the Euler class

can be computed as

eT×Kdiag (pr∗2N (Fz |Cq)) =
∏
j∈Jz

eT×Kdiag (Lj) =
∏
j∈Jz

ν∗(eT×K(Lj)) =
∏
j∈Jz

ν∗ (γj) =
∏
j∈Jz

(−γj) .
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The vector bundle pr∗1N (Fm |M) splits (Tm ×Kz)-equivariantly to Tm-weight bundles

pr∗1N (Fm |M) =
⊕
i

Ni,

that is, Tm acts on the fibers of Ni by some weight αi ∈ (tm)∗Z. To compute Euler classes by the

Splitting Principle we suppose that Ni are complex line bundles with respect to a compatible

almost complex structure on M . Recall that we have finite covers of tori ΦT : Tm×Kz → T and

ΦK : Km ×Kz → K which induce splitting of Lie algebras t = tm ⊕ kz and k = km ⊕ kz. They

yield the following commutative diagram

t∗

prk∗

��

∼
Φ∗T // t∗m ⊕ k∗z

prk∗m
⊕id

��
k∗ ∼

Φ∗K // k∗m ⊕ k∗z

where all the maps are adjoint to inclusions. Denote

% : t∗m ⊕ k∗z → t∗

and %k : k∗m ⊕ k∗z → k∗ the inverses of Φ∗T and Φ∗K , respectively. Moreover, let

σ = % ◦ prk∗z : k∗ → t∗,

where prk∗z : k∗ → k∗z is the projection. Hence

eTm×Kz (Ni) = αi + eKz (Ni)

and

eT×K(pr∗1N (Fm |M)) = eT (pr∗1N (Fm |M)) = %(eTm×Kz (⊕iNi)).

We emphasize that here the Kz-action is induced by the T -action on M × Cq and recall that

the K-action is trivial on M . Choose a T -invariant connection form θ on the principal Kdiag-

bundle Ψ−1(0) ∩ (Fm × Fz)→ F[m,z]. Its T -equivariant curvature is Θ = λ+ dθ, where λ : t→
Ω0(Ψ−1(0) ∩ (Fm × Fz))⊗ k, λ(u) = −ιuθ.

Remark 2.11. (i) If u ∈ tm then its fundamental vector field u on Ψ−1(0)∩ (Fm×Fz) vanishes

since Tm acts trivially on Fm × Fz.

(ii) If u ∈ kz ⊂ t then ιuθ = u since Kz as subgroup of T acts the same way on Fm × Fz as

subgroup of Kdiag.

(iii) Recall that t = tm ⊕ kz, thus by the above remarks λ is the projection t∗ → k∗z under

identification of k∗z with ker(k∗ → k∗m) via %k.

�
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Denote κ′ : HKdiag (Fm × Fz) → H(F[m,z]) the ordinary Kirwan map. For any u ∈ t and

j ∈ Jz we compute

κ′T (eT×Kdiag (Lj))(u) = Horθ [−γj(Θ(u))]

= Horθ
[
−γj(−ιuθ + dθ)

]
= γj(prkzu)−Horθ [γj(dθ)]

= γj(prkzu)− κ′ (γj) ,

thus

(2.4) κ′T
(
eT×Kdiag (Lj)

)
= σ (γj)− κ′ (γj)

Moreover, κ(eKdiag (Ni)) = Horθ [(αi + eKz (Ni)) (dθ)] = Horθ
[
αi(prkmdθ) + eKz (Ni)(prkzdθ)

]
and

κT (eT×Kdiag (Ni))(u) = Horθ[eT×Kdiag (Ni)(u,Θ(u))]

= Horθ[eT×K(Ni)(ν∗(u,Θ(u)))]

= Horθ[eT (Ni)(u+ Θ(u))]

= Horθ
[
αi(prtm(u− ιuθ + dθ)) + eKz (Ni)(prkz (u− ιuθ + dθ))

]
= αi(prtmu) + Horθ

[
αi(prkmdθ) + eKz (Ni)(prkzdθ)

]
= αi(prtmu) + κ′(eKdiag (Ni)),

thus

(2.5) κ′T (eT×Kdiag (Ni)) = % (αi) + κ′(eKdiag (Ni)).

We have got

eTN (F[m,z]|MΓ) =
∏
i

[
% (αi) + κ′(eKdiag (Ni))

] ∏
j∈Jz

[σ (γj)− κ′ (γj)]

=
∏
i

[% (αi) + e(Ni//Kdiag)]
∏
j∈Jz

[σ (γj) + e (Lj//Kdiag)] .(2.6)

The geometry of the weight vectors of the normal bundle N (F[m,z] |MΓ) will be important in

the proof of the equivariant Jeffrey-Kirwan theorem. Therefore, we make the following remarks.

The K-weights of the normal bundle N (F[m,z] |MΓ) are either parallel to the supporting planes

of µK(Fm) or ψ(Fz). Indeed, the supporting plane of ψ(Fz) is equal to %k(k
∗
m) = ker(k∗ → k∗z),

which is the subspace of k∗ spanned by γj , j /∈ Jz since kz = ∩j /∈Jz ker γj . Hence

(2.7) prk∗(%(αi)) ∈ %k(k∗m) = span〈γj | j /∈ Jz〉, ∀ i.

Moreover, the K-weight prk∗(σ(γj)), j ∈ Jz is the projection of γj to the supporting plane

%k(k
∗
z) = ker(k∗ → k∗m) of µK(Fm) along the supporting plane %k(k

∗
m) of ψ(Fz). It also implies

that

(2.8) Γ = Cone(γ1, . . . , γq) ⊂ span〈γj | j 6∈ Jz〉+ Cone(prk∗(σ(γj)) | j ∈ Jz).
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Remark that k∗z = span〈γj | j ∈ Jz〉, hence the supporting affine plane of the wall µT (Fm) is

equal to µT (m) + span〈σ(γj ) | j ∈ Jz〉. Moreover, since µT (m) = ψ(z) is in the relative interior

of pr−1
k∗ (Cone(γj | j /∈ Jz)), hence

(2.9) µT (Fm) ∩ pr−1
k∗ (Γ) ⊂ µT (m) + Cone(σ(γj) | j ∈ Jz)

by (2.8).

For the rest of this section we assume that T = K × S and z = 0. Then k0 = k and

J0 = {1, . . . , q}, hence σ = % and prk∗ ◦ σ = idk∗ . Moreover, by (2.4)

κ′T (eT×Kdiag (Li)) = γj − κ′S(γj) = γj + ζj − κ′(γj),

where κ′S : HK×S(Fm × {0}) → HS(F[m,0]) is the S-equivariant Kirwan map and ζj ∈ s∗ is the

projection of σ(γj) to s∗.

If we regard M//K ⊂MΓ via the embedding Υ0 then i∗F[m,0]
N (M//K |MΓ) = ⊕qj=1Lj//Kdiag,

thus

(2.10) i∗F[m,0]
eK×SN (M//K |MΓ) =

q∏
j=1

(
γj − i∗F[m,0]

κS(γj)
)
,

where κS : HK×S(M) → HS(M//K) and i∗F[m,0]
κS = κ′S . In particular, if K is 1-dimensional

then

(2.11) i∗F[m,0]
eK×SN (M//K |MΓ) = γ+i∗F[m,0]

eSN (M//K |MΓ) = %(γ)+i∗F[m,0]
eN (M//K |MΓ),

and M//K ⊂ (MΓ)K yields

(2.12) eK×SN (M//K |MΓ) = γ + eSN (M//K |MΓ).

Finally, N (F[m,0] |M//K) = ⊕iNi//Kdiag and M//K is fixed by K, thus by (2.5)

(2.13) eSN (F[m,0] |M//K) = eK×SN (F[m,0] |M//K) =
∏
i

[%(αi) + κ′(eKdiag (Ni))],

furthermore N (F[m,0] |MΓ) = N (F[m,0] |M//K) ⊕ N (M//K |MΓ)|F[m,0]
, therefore by (2.10) and

(2.13) we have

(2.14) eK×SN (F[m,0] |MΓ) = eSN (F[m,0] |M//K)

q∏
j=1

[γj − i∗F[m,0]
κS(γj)].

2.4 Orbifold multiplicities

In general MΓ is an orbifold and its fixed point components are suborbifolds. Next we will

compute the orbifold multiplicities of fixed point components as in (F1) for Theorem 2.13.

Lemma 2.12. Let τ = {τ1, . . . , τq} be a basis of the lattice k∗Z and define δΓ =
∣∣det([γij ]

q
i,j=1)

∣∣,
where γi =

q∑
j=1

γijτj. Then for any D ⊂ (MΓ,int)
T fixed point component the orbifold multiplicity

m(D) of D equals δΓ.

26



Proof. Recall that we have isomorphism of orbifolds Υint : Mint/K → MΓ,int, where K is the

kernel of the K-action on Cq. Hence there is a fixed point component F ⊂ (Mint)
T such that D

is isomorphic to the orbifold F/K, therefore m(D) = m(F/K) = |K|. Recall that the action of K

on Cq is given by

exp(u) · (z1, . . . , zq) =
(
e2π
√
−1γ1(u)z1, . . . , e

2π
√
−1γq(u)zq

)
,

for all u ∈ k and (z1, . . . , zq) ∈ Cq. Then |K| is equal to the degree of the map K → U(1)q,

exp(u) 7→
(
e2π
√
−1γ1(u), . . . , e2π

√
−1γq(u)

)
.

The basis τ yields an isomorphism K → U(1)q, exp(u) 7→
(
e2π
√
−1τ1(u), . . . , e2π

√
−1τq(u)

)
, thus

|K| is the degree of the map U(1)q → U(1)q,

(t1, . . . , tq) 7→ (tγ11

1 · · · tγ1q
q , . . . , t

γq1
1 · · · tγqqq ),

which is equal to δΓ = |det([γij ])
q
ij=1|.

We also remark that since we have embedding of orbifolds Υ0 : M//K → MΓ, the orbifold

multiplicity of M//K is the same as the orbifold multiplicity of Υ0(M//K) as suborbifold of MΓ.

2.5 Atiyah-Bott-Berline-Vergne theorem on MΓ

We apply Theorem 1.32 on MΓ, which incorporates most of the results of this chapter.

Theorem 2.13. Suppose that T = K × S and MΓ is compact. For any β ∈ HT (M) we have

1

m(MΓ)

∫
MΓ

∆(βeω−µT ) =

∮
M//K

κS(βeω−µT )
q∏
j=1

[γj − κS(γj)]

+
∑

F⊂MT

µK(F )∈Γ

1

δΓ

∫
F

i∗F (βeω−µT )

eTN (F |M)

+
∑

D⊂MT
Γ

µK(D)∈∂Γ\{0}

1

m(D)

∫
H

i∗D
(
∆(β)eωΓ−φT

)
eTN (D |MΓ)

,

where the number δΓ is defined in Lemma 2.12 and we used notation∮
M//K

κS(βeω−µT )
q∏
j=1

[γj − κS(γj)]

=
∑

B⊂(M//K)S

1

m(B)

∫
B

i∗BκS(βeω−µT )

eS(B |M//K)
q∏
j=1

[
γj − i∗BκS(γj)

] .
Proof. By the Atiyah-Bott-Berline-Vergne theorem on MΓ (Theorem 1.32) we have

1

m(MΓ)

∫
MΓ

∆(βeω−µT ) =
∑

D⊂(MΓ)T

1

m(D)

∫
D

i∗D∆(βeω−µT )

eTN (D |MΓ)
.

If D ⊂ (MΓ)T is as in (F1) then there is F ⊂MT such that Υint(F ) = D and

1

m(D)

∫
D

i∗D∆(βeω−µT )

eTN (D |MΓ)
=

1

δΓ

∫
F

i∗F (βeω−µT )

eTN (F |M)
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by Lemma 2.8(i), Lemma 2.12 and Υ∗int(eTN (D |MΓ)) = eTN (F/K |M/K) = eTN (F |M). If

D ⊂ (MΓ)T is as in (F0) then there is B ⊂ (M//K)S such that Υ0(B) = D and

1

m(D)

∫
D

i∗D∆(βeω−µT )

eTN (D |MΓ)
=

1

m(B)

∫
B

i∗BκS(βeω−µT )

eSN (B |M//K)
q∏
j=1

[γj − i∗BκS(γj)]

by Lemma 2.8(ii) and (2.14). Finally, ∆(ω − µT ) = ωΓ − φT by Lemma 2.8(iii).

Corollary 2.14. Let K be 1-dimensional and let Γ = R≥0γ be such that γ is a generator of k∗Z.

Assume that T = K × S and MΓ is compact. Then for any β ∈ HT (M) we have∫
MΓ

∆(βeω−µT ) =

∮
M//K

κS(βeω−µT )

γ − κS(γ)
+

∑
F⊂MT

µK(F )∈Γ

∫
F

i∗F (βeω−µT )

eTN (F |M)
.

28



3

Jeffrey-Kirwan residues

In this chapter we introduce our main tool an equivariant version of the Jeffrey-Kirwan residue.

It is based on the classical Jeffrey-Kirwan residue [23, 24], therefore we start the discussion

with the classical one. Besides new results (Proposition 3.20) we reprove classical ones ([24],

Proposition 3.2) to make the chapter self-contained. We show that this equivariant version of

the Jeffrey-Kirwan residue admits similar properties as the usual one (Proposition 3.35 and 3.39).

Finally, we compare our equivariant version with the one in [31].

3.1 The classical Jeffrey-Kirwan residue

The Atiyah-Bott-Berline-Vergne formula on Hamiltonian manifolds formally yields fractions of

form
∑
I

PIe
λI∏

i∈I αi
, where the finite sum is over finite index sets I, λI , αi ∈ t∗, i ∈ I, and

PI ∈ R[t] are polynomial functions on the r-dimensional real vector space t. The construction

will be explained in more detail in section 3.1.2. Therefore, we define the real vector space of

functions

F = F[t] =

{∑
I

PIe
λI∏

i∈I
αi

∣∣∣∣∣PI ∈ R[t], λI , αi,∈ t∗, αi 6= 0, i ∈ I, I finite set

}
.

We will consider two subsets of F. In section 3.1.1 we will define the subset of regular fractions

Freg which can be considered as subset of generic elements of F, while in section 3.1.2 we will

introduce a geometrically motivated subset FHam.

We define the classical Jeffrey-Kirwan residue as linear functional on F given in terms of

iterated residues with respect to a fixed ordered basis x on t∗. However, we are mainly interested

in its behavior on subsets Freg and FHam, in particular its dependence on the ordered basis x.

Definition 3.1. Let x = {x1, . . . , xr} be an ordered basis of t∗. Let
Peλ∏
i∈I αi

∈ F and write
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λ = λ1x1 + . . .+ λrxr. We define

Res+

x1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 =


Res
x1=∞

P (x)eλ(x)∏
i∈I

αi(x)
dx1 if λ1 ≥ 0,

0 if λ1 < 0

considering x2, . . . , xr as constants while taking the residue with respect to x1. We fix a scalar

product on t∗ and we define the Jeffrey-Kirwan residue as

JKRes
x

P (x)eλ(x)∏
i∈I

αi(x)
dx =

1√
det
[
(xi, xj)

]r
i,j=1

Res+

xr

(
. . .

(
Res+

x1

P (x)eλ(x)∏
i∈I

αi(x)
dx1

)
. . .

)
dxr,

where det
[
(xi, xj)

]r
i,j=1

is the Gram determinant. We will use the short notation Res+

x
for

Res+

xr
. . .Res+

x1

.

Remark 3.2. If τ = {τ1, . . . , τr} is an orthonormal basis of t∗ then

JKRes
x

P (x)eλ(x)∏
i∈I

αi(x)
dx =

∣∣∣∣∣det

(
∂xi(τ)

∂τj

)r
i,j=1

∣∣∣∣∣
−1

Res+

x

P (x)eλ(x)∏
i∈I

αi(x)
dx.

�

Proposition 3.3. JKRes
x

can be extended to F additively.

Proof. Suppose that in F there is a non-trivial relation
∑
I

PI(x)eλI(x)∏
i∈I αi(x)

= 0 with λI 6= λJ for

I 6= J . We may assume that it is a non-trivial relation with smallest number of summands.

Bringing to common denominator we get an equation of form
∑
I

QI(x)eλI(x) = 0, where QI =

PI(x)
∏
J 6=I

∏
j∈J

αj(x) ∈ R[t]. We fix a J and we write the latter equation in form

−QJ(x) =
∑
I 6=J

QI(x)eλI(x)−λJ (x).

Let ξ ∈ t be such that λI(ξ) 6= λJ(ξ) for all I 6= J . Take the derivative in direction ξ of both

sides (degQJ + 1) times to get an equation of form

0 =
∑
I 6=J

[cIQI(x) +RI(x)] eλI(x)−λJ (x),

where cI ’s are non-zero constants and RI are polynomials with degree smaller than degQI .

Thus, we have got a non-trivial relation with less summand as the initial one, which leads to

contradiction.
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Example 3.1. Let t∗ be an one-dimensional real vector space with orthonormal basis {x} and

consider the analytic function x 7→ ex

x
+
e−x

−x
. Conflicting intuitions about analytic functions

and residues we have

JKRes
x

(
ex

x
+
e−x

−x

)
dx = JKRes

x

ex

x
dx = 1.

�

The notion of polarization of non-zero elements of t∗ emerges inevitably when we investi-

gate the properties of the classical Jeffrey-Kirwan residue and it will play a crucial role in the

equivariant case.

Definition 3.4. Let z = {z1, . . . , zr} be an ordered basis of t∗. For any non-zero α =
r∑
i=1

aizi ∈ t∗

we define its polarization as

α =

α if a1 = . . . = ak−1 = 0, ak > 0,

−α if a1 = . . . = ak−1 = 0, ak < 0.

We say that α is polarized with respect to z if α = α. We define ε(α) ∈ {±1} by α = ε(α) · α.

It will be handy in the case of the equivariant residue to separate the polarization from the

basis x according to which we take the residue. If the reader is interested only in the classical

Jeffrey-Kirwan residue he/she may suppose that x = z.

The set of polarized vectors in t∗ with respect to the basis z form a cone Cz in t∗ which we

call the cone of polarized vectors. Moreover, we have decomposition t∗ = Cz ∪{0}∪−Cz. Jeffrey

and Kirwan implicitly defined the polarization of vectors in a slightly different way [24]. Let

A = [αi | i ∈ I] be a finite collection of non-zero vectors in t∗. Let Λ be a connected component

of {t ∈ t |αi(t) 6= 0, ∀i ∈ I}. For any ξ ∈ Λ let

(3.1) α̃i =

αi if αi(ξ) > 0,

−αi if αi(ξ) < 0,

which does not depend on the choice of ξ. We call α̃i the polarization of αi with respect to the

cone Λ. The relationship between the two notions of polarization is as follows. For a cone Λ as

above choose any ξ ∈ Λ and consider an ordered basis z = {z1, . . . , zr} of t∗ such that z1(ξ) = 1,

z2(ξ) = . . . = zr(ξ) = 0. Then the polarization αi of αi with respect to the ordered basis z

agrees with α̃i for all i ∈ I. Conversely, for an ordered basis z of t∗ consider the open cone

Λ = {t ∈ t |αi(t) > 0, ∀i ∈ I}, which is non-empty and moreover, α̃i agrees with αi for all i ∈ I.

The advantage of Definition 3.4 is that on addition of new vectors to A their polarization is

induced automatically, while in the other case we may have to choose a subcone of Λ in order

to the polarization of newly added vectors to be defined. However, by (3.1) it is clear that

all possible simultaneous polarizations for a fixed collection of vectors A are parametrized by

connected components of {t ∈ t |α(t) 6= 0, ∀α ∈ A}.
We borrow the notation Λ for polarizations induced by ordered basis, too. A polarization Λ

on t∗ induces polarizations on any subspace V ⊂ t∗. More precisely

31



Lemma 3.5. There is an ordered basis v of V such that any non-zero vector α ∈ V is polarized

with respect to Λ if and only if it is polarized with respect to v.

Proof. Assume that Λ is induced by ordered basis z = {z1, . . . , zr} of t∗. Let {z1, . . . , zr} ⊂ t

be its dual basis. Denote i∗ : t → V ∗ the adjoint of the inclusion i : V ↪→ t∗. Let {v1 =

i∗(zj1), . . . , vq = i∗(zjq )} be a basis of V ∗ such that j1 + . . . + jq is minimal and let v =

{v1, . . . , vq} ⊂ V be its dual basis.

If α ∈ V is polarized with respect to Λ then there is a k such that α(z1) = . . . = α(zk−1) = 0

and α(zk) > 0. Then we have α(i∗(z1)) = . . . = α(i∗(zk−1)) = 0 and α(i∗(zk)) > 0. Hence

i∗(z1), . . . , i∗(zk−1) cannot span V ∗, therefore i∗(zk) = vl for some l by minimality condition.

We also have v1, . . . , vl−1 ∈ {i∗(z1), . . . , i∗(zk−1)}, thus α is polarized with respect to v.

Conversely, let α ∈ V be polarized with respect to v, i.e. α(v1) = . . . = α(vl−1) = 0 and

α(vl) > 0. We have α(zj1) = . . . = α(zjl−1) = 0 and α(zjl) > 0. By minimality, for all h < jl

we have i∗(zh) ∈ span〈i∗(zj1), . . . , i∗(zjl−1)〉, therefore α(zh) = α(i∗(zh)) = 0. Thus α is also

polarized with respect to z.

To deduce properties of the Jeffrey-Kirwan residue we start to analyze iterated residues in

more depth.

Definition 3.6. Denote Π〈β1,...,βk〉 : t∗ → span〈xk+1, . . . , xr〉 the projection along span〈β1, . . . , βk〉
when {β1, . . . , βk, xk+1, . . . , xr} is a basis of t∗.

We fix two bases x = {x1, . . . , xr} and z = {z1, . . . , zr} of t∗. Denote Λ the polarization

induced by z. For β ∈ t∗ we define the residue Res
x1|β

Λ as follows. If β =
r∑
i=1

bixi /∈ span〈x2, . . . , xr〉

then β(x) = 0 it defines a pole x1 = −
r∑
i=2

bi
b1
xi and the residue at this pole

(3.2) ResΛ

x1|β

P (x)eλ(x)∏
i∈I

αi(x)
dx1 =

1

|b1|
Res
u=0

P (u, x2, . . . , xr)e
λ1u+Π〈β〉λ(x)∏

i∈I
(aiu+ Π〈β〉αi(x))

du,

where u = β is the polarization of β with respect to Λ and αi = aiu + Π〈β〉αi for all i ∈ I.

If β ∈ span〈x2, . . . , xr〉 then β(x) = 0 does not define a pole with respect to x1 and we set

Res
x1|β

Λ P (x)eλ(x)∏
i∈I αi(x)

dx1 = 0. Similarly, if λ = λ1β + Π〈β〉λ then we define

ResΛ,+

x1|β

P (x)eλ(x)∏
i∈I αi(x)

dx1 =


ResΛ

x1|β

P (x)eλ(x)∏
i∈I

αi(x)
dx1 if λ1 ≥ 0,

0 otherwise.

In the case z = x we will drop Λ from notations, that is,

Res
x1|β

= ResΛ

x1|β
and Res+

x1|β
= ResΛ,+

x1|β
.
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Example 3.2. Let x = {x1, x2}, z = {x2, x1} and β(x) = 2x1 − x2. Then we set u = β(x) =

x2 − 2x1 and we compute

ResΛ

x1|β

dx1

(2x1 − x2)3x1
=

1

2
Res
u=0

du

−u3(−u2 + x2

2 )
= −Res

u=0

1

u3x2

∑
l≥0

(
u

x2

)l
du = − 1

x3
2

,

ResΛ,+

x1|β

e2x1

(2x1 − x2)3x1
dx1 =

1

2
Res+

u=0

e−u+x2

−u3(−u2 + x2

2 )
du = 0.

If we take z = x then u = β(x) = 2x1 − x2 and

Res
x1|β

dx1

(2x1 − x2)3x1
=

1

2
Res
u=0

du

u3(u2 + x2

2 )
= Res

u=0

1

u3x2

∑
l≥0

(
− u

x2

)l
du =

1

x3
2

,

Res+

x1|β

e2x1

(2x1 − x2)3x1
dx1 =

1

2
Res+

u=0

eu+x2

u3(u2 + x2

2 )
du = ex2 Res

u=0

eu

u3x2

∑
l≥0

(
− u

x2

)l
du

= ex2

(
1

x3
2

− 1

x2
2

+
1

2x2

)
.

�

In computing the right hand side of (3.2) we expand every fraction

(3.3)
1

aiu+ Π〈β〉αi
=

1

Π〈β〉αi

∑
li≥0

(
− aiu

Π〈β〉αi

)li
if Π〈β〉αi 6= 0, and remark that we can truncate every expansion at li = |I|. Thus, (3.2) yields a

fraction of form
Q(x2, . . . , xr)e

Π〈β〉λ(x2,...,xr)∏
j∈J α

′
j(x2, . . . , xr)

∈ F.

Remark 3.7. Suitable truncations of expansions (3.3) will not affect Res+

x1

. However, the same

is not true for eλ(x). Suitable truncation of the expansion of eλ(x) does not change the usual

residue, but it will affect Res+. For example, Res
x

e−x

x3
dx = Res

x

1− x+ 1
2x

2

x3
dx =

1

2
, while

Res+

x

e−x

x3
dx = 0 and Res+

x

1− x+ 1
2x

2

x3
dx =

1

2
. �

Two vectors β, γ ∈ t∗ yield the same pole if and only if β = c·γ for some c 6= 0. We will denote

the class of β under this equivalence relation by [β]. Moreover, (3.2) vanishes if Π〈β〉αi 6= 0 for

all i ∈ I, that is, [β] 6= [αi] for all i ∈ I. With these notations we have relations

Res
x1=∞

P (x)eλ(x)∏
i∈I

αi(x)
dx1 =

∑
[β]

Res
x1|β

P (x)eλ(x)∏
i∈I

αi(x)
dx1

and

Res+

x1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 =

∑
[β]

Res+

x1|β

P (x)eλ(x)∏
i∈I

αi(x)
dx1.
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We define Res
x1

Λ and Res
x1

Λ,+ such that they satisfy similar relations

ResΛ

x1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 =

∑
[β]

ResΛ

x1|β

P (x)eλ(x)∏
i∈I

αi(x)
dx1

and

ResΛ,+

x1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 =

∑
[β]

ResΛ,+

x1|β

P (x)eλ(x)∏
i∈I

αi(x)
dx1.

More generally, if a tuple (β1, . . . , βk) satisfies flag like condition

(Fl) Π〈β1,...,βi−1〉βi ∈ span〈xi, . . . , xr〉 \ span〈xi+1, . . . , xr〉, ∀ i = 1, . . . , k

then let

(3.4)



u1 = β1(x)

u2 = Π〈β1〉β2(x)
...

uk = Π〈β1,...,βk−1〉βk(x)

,

where the polarization is taken with respect to Λ. We express this system in matrix form

(3.5) (u1, . . . , uk)t = B · (x1, . . . , xr)
t,

where B ∈ Mk,r(R) is an upper triangular matrix with non-zero diagonal entries and denote

δB = |det([Bij ]
k
i,j=1)|. We set

(3.6) ResΛ

xk|βk
. . .ResΛ

x1|β1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk

= ResΛ

xk|Π〈β1,...,βk−1〉βk
. . . ResΛ

x2|Π〈β1〉β2

ResΛ

x1|β1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk

=
1

δB
· Res
uk=0

. . . Res
u1=0

P (u1, . . . , uk, xk+1, . . . , xr)e
λ1u1+...+λkuk+Π〈β1,...,βk−1〉λ(x)∏

i∈I
(ai1u1 + . . . aikuk + Π〈β1,...,βk〉αi(x))

du1 . . . duk,

where λ = λ1u1+. . .+λkuk+Π〈β1,...,βk〉λ and αi = ai1u1+. . .+aikuk+Π〈β1,...,βk〉αi for all i ∈ I. If

(β1, . . . , βk) does not satisfy condition (Fl) then we set ResΛ

xk|βk
. . .ResΛ

x1|β1

P (x)eλ(x)∏
i∈I αi(x)

dx1 . . . dxk = 0.

Similarly, if λ = λ1β1 + . . .+ λkΠ〈β1,...,βk−1〉βk + Π〈β1,...,βk〉λ then we set

ResΛ,+

xk|βk
. . .ResΛ,+

x1|β1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk

=


ResΛ

xk|βk
. . .ResΛ

x1|β1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk if λ1, . . . , λk ≥ 0,

0 otherwise.
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Definition 3.8. Tuples (β1, . . . , βk) and (γ1, . . . , γk) satisfying condition (Fl) are equivalent if

there are ci 6= 0 such that Π〈β1,...,βi−1〉βi = ci · Π〈γ1,...,γi−1〉γi for all i = 1, . . . , k. We denote by

[β1, . . . , βk] the equivalence class of (β1, . . . , βk).

Remark 3.9. To a tuple (β1, . . . , βk) satisfying condition (Fl) we can associate a flag V1 ⊂ V2 ⊂
. . . ⊂ Vk such that Vi = span〈β1, . . . , βi〉. Then (β1, . . . , βk) and (γ1, . . . , γk) are equivalent if

they have the same associated flag. �

The tuples (β1, . . . , βk) and (γ1, . . . , γk) satisfying condition (Fl) are equivalent if and only if

ResΛ

xk|βk
. . .ResΛ

x1|β1

F (x)dx = ResΛ

xk|γk
. . .ResΛ

x1|γ1

F (x)dx

for all F ∈ F. Inductively we can also see that ResΛ

xk|βk
. . .ResΛ

x1|β1

P (x)eλ(x)∏
i∈I αi(x)

dx1 . . . dxk may not

vanish only if there are i1, . . . , ik ∈ I such that [β1, . . . , βk] = [αi1 , . . . , αik ]. In this case we may

suppose that βl = αil for all l = 1, . . . , k. Then we have relation

ResΛ,+

xk
. . .ResΛ,+

x1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk =

∑
[β1,...,βk]

ResΛ,+

xk|βk
. . .ResΛ,+

x1|β1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk

=
∑

[αi1 ,...,αik ]

ResΛ,+

xk|αik
. . .ResΛ,+

x1|αi1

P (x)eλ(x)∏
i∈I

αi(x)
dx1 . . . dxk.(3.7)

We have the following vanishing result (cf. [24], Proposition 3.2(iii)).

Lemma 3.10. Let Q ∈ R[x1, . . . , xk] ⊂ R[x1, . . . , xr] be a homogeneous polynomial of degree d

and let β1, . . . , βk ∈ span〈x1, . . . , xk〉. If d > n− k then

Res
xk|βk

. . . Res
x1|β1

Q(x)
n∏
i=1

αi(x)
dx1 . . . dxk = 0.

In particular, if P ∈ R[x1, . . . , xr] is a homogeneous polynomial of degree d such that d > n− r

then JKRes
x

P (x)eλ(x)∏n
i=1 αi(x)

dx = 0.

Proof. We will prove it by induction on k. Assume that β1 /∈ span〈x2, . . . , xk〉 and let u = β1

with respect to the polarization induced by x. Write αi = aiu + γi with ai ∈ R and γi ∈
span〈x2, . . . , xr〉 for all i = 1, . . . , n. Moreover, suppose that γi 6= 0 if i ≤ m and γi = 0 if i > m.

If k = 1 the the lemma is trivial since Res
x1|β1

= Res
x1=0

. If k > 1 then

Res
x1|β1

Q(x)∏n
i=1 αi(x)

dx1 =

∣∣∣∣∂β1

∂x1

∣∣∣∣−1 ∑
l1,...,lm≥0

Res
u=0

(−a1u)l1 · · · (−amu)lmQ(u, x2, . . . , xk)

γ1(x)l1+1 · · · γm(x)lm+1(am+1u) · · · (anu)
du.

On the right hand side there are finitely many non-zero terms, since summands with l1+. . .+lm ≥

n−m vanish. Moreover, it yields a homogeneous fraction
R(x2, . . . , xk)

γ1(x)h1 . . . γm(x)hm
of degree d−n+1
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in variables x2, . . . , xr. Hence

Res
xk|βk

. . . Res
x1|β1

Q(x)
n∏
i=1

αi(x)
dx1 . . . dxk = Res

xk|Π〈β1〉βk
. . . Res

x2|Π〈β1〉β2

R(x2, . . . , xk)

γ1(x)h1 . . . γm(x)hm
dx2 . . . dxk = 0

by the induction hypothesis, since Π〈β1〉β2, . . . ,Π〈β1〉βk ∈ span〈x2, . . . , xk〉 and d − n + 1 >

−(k − 1).

Corollary 3.11. Let F =
∑
I

PIe
λI∏

i∈I αi
∈ F and let β1, . . . , βk ∈ V = span〈x1, . . . , xk〉. Write

αi = α′i + α′′i such that α′i ∈ V and α′′i ∈ span〈xk+1, . . . , xr〉. Denote FV ∈ F the fraction got

from F by replacing every fraction
1

αi
=

1

α′i + α′′i
by

1

α′′i

|I|∑
li=0

(
− α

′
i

α′′i

)li
when α′′i 6= 0. Then

Res+

xk|βk
. . .Res+

x1|β1

F (x)dx1 . . . dxk = Res+

xk|βk
. . .Res+

x1|β1

FV (x)dx1 . . . dxk.

Proof. It is enough to show it for F =
Peλ∏n
i=1 αi

. Moreover, the construction of FV does not

change the exponential eλ, hence it is enough to show that

Res
xk|βk

. . . Res
x1|β1

F (x)dx1 . . . dxk = Res
xk|βk

. . . Res
x1|β1

FV (x)dx1 . . . dxk.

Assume that α′′i = 0 if and only if i > m. Let u = {u1, . . . , uk} be the basis of V given by

(3.4) and v = {xk+1, . . . , xr}. If a � b � c then we can expand
1

a+ b+ c
in two ways: first

expand as a� b+ c followed by expansion with respect to b� c and secondly we can expand as

a+ b� c. These two expansions are equal. Hence, the expansion of
1

α′i(u) + α′′i (v)
with respect

to α′i(u) � α′′i (v) yields the same result as successive expansions u1 � u2 � . . . � uk � v.

Therefore,

Res
xk|βk

. . . Res
x1|β1

F (x)dx1 . . . dxk =
1

δB
· Res
uk=0

. . . Res
u1=0

P (u, v)eλ(u,v)

n∏
i=1

(α′i(u) + α′′i (v))
du1 . . . duk

=
1

δB
· Res
uk=0

. . . Res
u1=0

∑
l1,...,lm≥0

(−α′1(u))l1 · · · (−α′m(u))lmP (u, v)eλ(u,v)

m∏
i=1

(α′′i (v))li+1
n∏

j=m+1

α′j(u)
du1 . . . duk

=
1

δB
· Res
uk=0

. . . Res
u1=0

n∑
l1,...,lm=0

(−α′1(u))l1 · · · (−α′m(u))lmP (u, v)eλ(u,v)

m∏
i=1

(α′′i (v))li+1
n∏

j=m+1

α′j(u)
du1 . . . duk

=
1

δB
· Res
uk=0

. . . Res
u1=0

FV (u, v)du1 . . . duk

= Res
xk|βk

. . . Res
x1|β1

FV (x)dx1 . . . dxk

by (3.6) and Lemma 3.10.
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We have the following base change formula, which will be used in section 3.1.2.

Lemma 3.12. Let x = {x1, . . . , xr} be an ordered basis and let (β1, . . . , βk) satisfy condition

(Fl). For i ≤ k define vi to be the projection of xi to span〈β1, . . . , βk〉 along span〈xk+1, . . . , xr〉
and for i > k let vi = xi. If F ∈ F then

Res+

xk|βk
. . .Res+

x1|β1

F (x)dx1 . . . dxk = Res+

vk|βk
. . .Res+

v1|β1

F (v)dv1 . . . dvk.

Proof. By construction span〈xk+1, . . . , xr〉 = span〈vk+1, . . . , vr〉 and for all i = 1, . . . , k

(3.8) xi + span〈xk+1, . . . , xr〉 = vi + span〈vk+1, . . . , vr〉,

hence

span〈xl, . . . , xr〉 = span〈vl, . . . , vr〉

for all l = 1, . . . , r. This implies that the tuple (β1, . . . , βk) also satisfies the condition (Fl) with

respect to the basis v. Moreover, for all l = 1, . . . , k the projection of βl to span〈xl, . . . , xr〉 and

span〈vl, . . . , vr〉 along span〈β1, . . . βl−1〉 agree which we denote by Π〈β1,...,βl−1〉βl. The relation

(3.8) implies that the polarization of Π〈β1,...,βl−1〉βl for all l = 1, . . . , k with respect to ordered

bases x and v are the same, and we denote it by Π〈β1,...,βl−1〉βl. Furthermore, we consider systems

of equations 

u1 = β1(x)

u2 = Π〈β1〉β2(x)
...

uk = Π〈β1,...,βk−1〉βk(x)

and



u1 = β1(v)

u2 = Π〈β1〉β2(v)
...

uk = Π〈β1,...,βk−1〉βk(v)

,

which we express in matrix form

(u1, . . . , uk)t = B · (x1, . . . , xr)
t and (u1, . . . , uk)t = B′ · (v1, . . . , vr)

t.

Matrices B,B′ ∈ Mk,r(R) are upper triangular with positive diagonal entries and we denote by

δB and δB′ the product of their diagonal entries, respectively. The relation (3.8) implies that

δB = δB′ and finally, the lemma follows from (3.6).

3.1.1 Regular fractions

Definition 3.13. A vector λ ∈ t∗ is regular with respect to {αi ∈ t∗ | i ∈ I} if λ is not on any

(r−1)- or less dimensional subspace of t∗ spanned by subsets of {αi | i ∈ I}. We call
Peλ∏
i∈I αi

∈ F

regular if λ is regular with respect to {αi | i ∈ I} and we say that F =
∑
I

PIe
λI∏

i∈I αi
is regular if

each summand is regular. We denote by Freg the set of regular fractions.

Definition 3.14. A fraction
Peλ∏
i∈I αi

∈ F is called generating if {αi | i ∈ I} spans t∗, otherwise

it is called non-generating.
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Remark 3.15. The relation (3.7) implies the vanishing of ResΛ,+

xr
. . .ResΛ,+

x1

, and therefore of

JKRes
x

, on non-generating fractions. �

We have the following partial fraction decomposition. We will prove it in a bit more general

form in Lemma 3.37.

Lemma 3.16 (cf. [6], Theorem 1). Any fraction
Peλ∏
i∈I αi

can be written as linear combination of

non-generating fractions and generating fractions of simple form
eλ

αn1+1
i1

. . . αnr+1
ir

with i1, . . . , ir ∈

I and n1, . . . , nr ≥ 0.

The following proposition gives a explicit formula for the Jeffrey-Kirwan residue if we apply

it to a partial fraction decomposition as in Lemma 3.16. The second part of the proposition can

be found in [24] (Proposition 3.2 (iv)) for n1 = . . . = nr = 0 and with some generic assumption

on the basis x.

Proposition 3.17. Let Λ be a polarization on t∗ and let x = {x1, . . . , xr} be an ordered basis

of t∗. Consider k vectors αi = ai1x1 + . . .+ airxr ∈ t∗, i = 1, . . . , k such that det([aij ]
k
i,j=1) 6= 0.

Let λ = λ1α1 + . . .+ λkαk + η such that λ1, . . . , λk 6= 0 and η ∈ span〈xk+1, . . . , xr〉. Then

ResΛ,+

xk
. . .ResΛ,+

x1

eλ(x)

k∏
i=1

αi(x)ni+1

dx1 . . . dxk =


eη

|det([aij ]ki,j=1)|

k∏
i=1

ε(αi)
ni+1λnii
ni!

λ1, . . . , λk > 0

0 otherwise,

where ε(αi) ∈ {±1} such that αi = ε(αi)αi. In particular, for k = r we have

JKRes
x

eλ(x)

r∏
i=1

αi(x)ni+1

dx =


1√

det
[
(αi, αj)

]r
i,j=1

r∏
i=1

ε(αi)
ni+1λnii
ni!

λ1, . . . , λr > 0

0 otherwise,

where det
[
(αi, αj)

]r
i,j=1

is the Gram determinant.

Proof. Remark that we want to show that

ResΛ,+

xk
. . .ResΛ,+

x1

eλ(x)

k∏
i=1

αi(x)ni+1

dx1 . . . dxk

=
eη

|det([aij ]ki,j=1)|

k∏
i=1

ε(αi)
ni+1λnii
ni!

χCone(α1,...,αk,±xk+1,...,±xr)(λ),

where χCone(α1,...,αk,±xk+1,...,±xr) is the characteristic function of the closed set

Cone(α1, . . . , αk,±xk+1, . . . ,±xr).

It is enough to prove the proposition for polarized αi’s, i.e. when ε(αi) = 1. First we prove

it for n1 = . . . = nk = 0 from which we will deduce the general case. We proceed by induction

on k. For k = 1 the statement is obvious.
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Let σ ∈ Sk be a permutation such that σ(1) = j. If αj /∈ span〈x2, . . . , xr〉 then denote

γi = Π〈αj〉αi and ν = Π〈αj〉λ moreover, we compute

ResΛ,+

xk|ασ(k)

. . .ResΛ,+

x2|ασ(2)

ResΛ,+

x1|αj

eλ(x)

k∏
i=1

αi(x)

dx1 . . . dxk

=
1

|aj1|
· ResΛ,+

xk|γσ(k)

. . .ResΛ,+

x2|γσ(2)

Res+

u=0

eλ
′
ju+ν(x)

u
∏
i6=j

(ciu+ γi(x))
dudx2 . . . dxk

=
1

|aj1|
· χ[0,+∞)(λ

′
j) ResΛ,+

xk|γσ(k)

. . .ResΛ,+

x2|γσ(2)

eν(x)∏
i 6=j

γi(x)
dx2 . . . dxk,

where u = αj(x), λ = λ′ju + ν, χ[0,+∞) is the characteristic function of the set [0,+∞) and

ci ∈ R such that αi = ciαj + γi. Assume that α1, . . . , αq /∈ span〈x2, . . . , xr〉 and αq+1, . . . , αk ∈
span〈x2, . . . , xr〉. By induction we have

ResΛ,+

xk
. . .ResΛ,+

x1

eλ(x)

k∏
i=1

αi(x)

dx1 . . . dxk

=

q∑
j=1

∑
σ∈Sk
σ(1)=j

ResΛ,+

xk|ασ(k)

. . .ResΛ,+

x2|ασ(2)

ResΛ,+

x1|αj

eλ(x)

k∏
i=1

αi(x)

dx1 . . . dxk

=

q∑
j=1

χ[0,+∞)(λ
′
j)

|aj1|
∑
σ∈Sk
σ(1)=j

ResΛ,+

xk|γσ(k)

. . .ResΛ,+

x2|γσ(2)

eν(x)∏
i 6=j

γi(x)
dx2 . . . dxk

=

q∑
j=1

χ[0,+∞)(λ
′
j)

|aj1|

∏
i 6=j

ε(γi)∣∣∣∣det

([
∂γi(x)
∂xl

]
i6=j, l 6=1

)∣∣∣∣χCone(γi,±xk+1,...,±xr | 1≤i≤k)(ν)

=
1∣∣∣det

(
[ai,l]

k
i,l=1

)∣∣∣
q∑
j=1

∏
i6=j

ε(γi)χCone(αj , γi,±xk+1,...,±xr | 1≤i≤k)(λ)

We will show that

(3.9) χCone(α1,...αk,±xk+1,...,±xr)(λ) =

q∑
j=1

∏
i 6=j

ε(γi)χCone(αj , γi,±xk+1,...,±xr | 1≤i≤k)(λ).

It is enough to show it when αi(x) = x1 + βi(x), 1 ≤ i ≤ q, αi(x) = βi(x), q < i ≤ k with

βi ∈ span〈x2, . . . , xr〉 and βi − βj = βi − βj if j < i ≤ q. Then we can reformulate (3.9) as

(3.10)

χCone(α1,...,αk,±xk+1,...,±xr)(λ) =

q∑
j=1

(−1)j−1χCone(αj , βi−βj , βl,±xk+1,...,±xr | i≤q, q<l≤k)(λ).
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For any j ≤ q we have

λ = η + λ1α1 + . . .+ λkαk = η + (λ1 + . . .+ λq)αj +

q∑
i=1

λi(βi − βj) +
∑
q<l≤k

λlβl

= η + (λ1 + . . .+ λq)αj −
∑
i<j

λi(βi − βj) +
∑
j<i≤q

λi(βi − βj) +
∑
q<l≤k

λlβl.

By hypothesis λ1, . . . , λk 6= 0, thus if we write η = ηk+1xk+1 + . . .+ ηrxr then we have

χCone(α1,...,αk,±xk+1,...,±xr)(λ) = χ(R>0)k×Rr−k(λ1, . . . , λk, ηk+1, . . . , ηr) = χ(R>0)k(λ1, . . . , λk)

and

χCone(αj , βi−βj , βl,±xk1
,...,±xr | i≤q, q<l≤k)(λ)

= χ{
s∈(R×)k×Rr−k

∣∣ q∑
i=1

si≥0, si<0, sl>0, i<j<l≤k
}(λ1, . . . , λk, ηk+1, . . . , ηr),

= χ{
s∈(R×)k

∣∣ q∑
i=1

si≥0, si<0, sl>0, i<j<l≤k
}(λ1, . . . , λk),

where R× = R \ {0}. Then (3.10) is equivalent to the following inclusion-exclusion relation

χ{s∈(R×)k | s1,...,sk>0} = χ{
s∈(R×)k

∣∣ q∑
i=1

si≥0, s1,...,sk>0

}
= χ{

s∈(R×)k
∣∣ q∑
i=1

si≥0, s2,...,sk>0

}
− χ{

s∈(R×)k
∣∣ q∑
i=1

si≥0, s1<0, s3,...,sk>0

}
+ χ{

s∈(R×)k
∣∣ q∑
i=1

si≥0, s1,s2<0, s4,...,sk>0

}
. . .+ (−1)q−1χ{

s∈(R×)k
∣∣ q∑
i=1

si≥0, s1,...,sq−1<0, sq+1,...,sk>0

}.
Thus we have proved the proposition for n1 = . . . = nk = 0. To deduce the general case we

set yi = txi, (t > 0) and Rn1,...,nk = ResΛ,+

xk
. . .ResΛ,+

x1

eλ(x)∏k
i=1 αi(x)ni+1

dx1 . . . dxk. Then for

λ =
r∑
j=1

λjxj and N = n1 + . . .+ nk we have

ResΛ,+

xk
. . .ResΛ,+

x1

e
η+t

k∑
i=1

λiαi(x)

k∏
i=1

αi(x)ni+1

dx1 . . . dxk

= tN ResΛ,+

yk
. . .ResΛ,+

y1

eη+λ1y1+...+λryr

k∏
i=1

(ai1y1 + . . .+ airyr)ni+1

dy1 . . . dyk = tNRn1,...,nk .
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Take the derivative of both sides with respect to t at t = 1 to get

k∑
i=1

λiRn1,...,ni−1, ni−1, ni+1,...,nk = N Rn1,...,nk .

From this relation it follows the first part of the proposition by induction on N .

Finally, we show the last part of the proposition. Let τ = {τi, . . . , τr} be an orthonormal

basis of t∗. If we write xi =
r∑
j=1

xijτj then det [(xi, xj)]
r
i,j=1 = det

(
[xij ]

r
i,j=1

)2
and

det
(
[aij ]

r
i,j=1

)2
det
(
[xij ]

r
i,j=1

)2
= det [(αi, αj)]

r
i,j=1 ,

thus the second part of the proposition follows.

Corollary 3.18. If F =
∑
I

PIe
λI∏

i∈I αi
∈ F is regular then JKRes

x
F (x)dx depends only on the

polarization induced by the ordered basis x. Moreover, JKRes
x

F (x)eρ(x)dx depends continuously

on ρ ∈ t∗ in a small neighborhood U of 0. The neighborhood U is such that
PIe

λI+ρ∏
i∈I αi

is regular

for all I and ρ ∈ U .

The following property is very useful in showing vanishing of Jeffrey-Kirwan residues (prop-

erty (1) in [25], section 3.4).

Corollary 3.19. Let x be an ordered basis and let
Peλ∏
i∈I αi

be regular. If λ /∈ Cone(αi | i ∈ I)

then JKRes
x

P (x)eλ(x)∏
i∈I αi(x)

dx = 0.

Proof. By Lemma 3.16 we can decompose
P (x)eλ(x)∏
i∈I αi(x)

to sum of non-generating fractions and

generating fractions of form
eλ(x)∏r

k=1 αik(x)nk
. Recall that on non-generating fractions Res+

x
van-

ishes. Since Cone(αi1 , . . . , αir ) ⊂ Cone(αi | i ∈ I) for all i1, . . . , ir ∈ I, hence the corollary

follows from Proposition 3.17.

The following proposition is a generalization of Lemma 3.3 in [25].

Proposition 3.20. Let F =
∑
I

PIe
λI∏

i∈I αi
be regular. If F (x) is analytic then JKRes

x
F (x)dx is

independent on the choice of the ordered basis x.

Proof. By Corollary 3.18 the JKRes
x

F (x)dx may only depend on the polarizations induced by

the ordered basis x. Polarizations on A = ∪I{αi | i ∈ I} correspond to connected components of

{t ∈ t | α(t) 6= 0, ∀α ∈ A}. These components are open polyhedral cones. Let Λ and Λ′ be two

neighboring cones, separated by a hyperplane {t ∈ t | α(t) = 0} for some α ∈ A. We suppose

that all elements of A are polarized with respect to Λ. Let ξ ∈ t be in the relative interior of the

intersection of closures cl(Λ) ∩ cl(Λ′). Then A∩ {τ ∈ t∗ | τ(ξ) = 0} contains only multiples of α.

Let x = {x1, . . . , xr} be an ordered basis such that
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• x1(ξ) = 1, x2 = α, x3(ξ) = . . . = xr(ξ) = 0,

• λI /∈ span〈x1, x3, . . . , xr〉 for all I,

• every β = b1x1 + b2x2 + . . . + brxr ∈ A \ Rα is in the opposite open half-space of

span〈x1, x3, . . . , xr〉 as α, i.e. b2 < 0.

We can modify an ordered basis satisfying the first two generic conditions to get a new basis

which will satisfy all three conditions as follows. Denote π : t∗ → span〈x1, x2〉 the projection to

the 2-dimensional plane span〈x1, x2〉 along span〈x3, . . . , xr〉. Remark that π(β) 6= 0 and b1 > 0

for all β ∈ A \ Rα, hence there exists a δ ∈ R such that the line R(x1 + δx2) in span〈x1, x2〉
separates {π(β) |β ∈ A \Rα} from α and π(λI) /∈ R(x1 + δx2) for all I. Then the ordered basis

{x1 + δx2, x2, . . . , xr} satisfies all three conditions.

An ordered basis x = {x1, x2, . . . , xr} satisfying the above properties induces the same polar-

ization on elements of A as Λ, while x′ = {x′1 = −x2, x
′
2 = −x1, x

′
3 = x3, . . . , x

′
r = xr} induces

the same polarization on A as Λ′. It is possible that there is I such that λI ∈ Rα, therefore

choose a small ρ ∈ t∗ such that for all s ∈ (0, 1] and all I the following generic conditions are

fulfilled

• λI + sρ is regular with respect to {αi | i ∈ I},

• λI + sρ /∈ span〈x2, . . . , xr〉,

• λI + sρ /∈ span〈x1, x3, . . . , xr〉.

We define Res– by replacing “λ1 ≥ 0” by “λ1 ≤ 0” in Definition 3.1. Since F is analytic and

λI + sρ /∈ span〈x2, . . . , xr〉 for all I and s ∈ (0, 1], we have that

Res+

x1

F (x)esρ(x)dx1 + Res–

x1

F (x)esρ(x)dx1 = Res
x1

F (x)esρ(x)dx1 = 0,

hence

Res+

xr
. . .Res+

x2

Res+

x1

F (x)esρ(x)dx1dx2 . . . dxr = Res+

xr
. . .Res+

x2

Res–

x1

F (x)esρ(x)d(−x1)dx2 . . . dxr.

Moreover, for all β = b1x1 + b2x2 + . . . + brxr ∈ A \ Rα we have b1 > 0 and b2 < 0, hence

the ordered basis {−x1, x2, . . . , xr} and {x2,−x1, x3 . . . , xr} induce the same polarization on A.

Since Res–

x1

= Res+

−x1

, by Proposition 3.17 we have

Res+

xr
. . .Res+

x2

Res–

x1

F (x)esρ(x)d(−x1)dx2 . . . dxr = Res+

xr
. . .Res–

x1

Res+

x2

F (x)esρ(x)dx2d(−x1). . . dxr.

Again, since F is analytic, and λI + sρ /∈ span〈x1, x3, . . . , xr〉 for all s ∈ (0, 1] and I, thus we

have

Res+

xr
. . .Res–

x1

Res+

x2

F (x)esρ(x)dx2d(−x1) . . . dxr =

Res+

xr
. . .Res–

x1

Res–

x2

F (x)esρ(x)d(−x2)d(−x1) . . . dxr = Res+

x′r
. . .Res+

x′1

F (x′)esρ(x
′)dx′1 . . . dx

′
r.
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Summarizing the above results for all s ∈ (0, 1] we have

Res+

xr
. . .Res+

x1

F (x)esρ(x)dx1 . . . dxr = Res+

x′r
. . .Res+

x′1

F (x′)esρ(x
′)dx′1 . . . dx

′
r.

Taking the limit when s approaches to 0 yields

Res+

xr
. . .Res+

x1

F (x)dx1 . . . dxr = Res+

x′r
. . .Res+

x′1

F (x′)dx′1 . . . dx
′
r

by Corollary 3.18. Finally, by Remark 3.2 we get equality

JKRes
x

F (x)dx = JKRes
x′

F (x′)dx′.

Lemma 3.21. Let F =
∑
I

PIe
λI∏

i∈I αi
be regular. If F is analytic and 0 is not contained in the

convex hull conv(λI | I) then for all ordered basis x we have Res+

x
F (x)dx = 0.

Proof. Since Res+

x
F (x)dx is a multiple of JKRes

x
F (x)dx, it is enough to show the lemma for

a particular ordered basis x by Proposition 3.20. Since 0 /∈ conv(λI | I), there is a hyperplane

H containing the set conv(λI | I) in one of its open half-spaces. Choose an ordered basis x =

{x1, . . . , xr} such that H = span〈x2, . . . , xr〉 and conv(λI | I) ⊂
{ r∑
k=1

akxk

∣∣∣∣ a1 < 0

}
. But all

polarized vectors αi, i ∈ I lie in

{ r∑
k=1

akxk

∣∣∣∣ a1 ≥ 0

}
, therefore from Corollary 3.19 follows the

lemma.

3.1.2 Hamiltonian fractions

Definition 3.22. We call a basis x = {x1, . . . , xr} of t∗ generic with respect to F =
∑
I

PIe
λI∏

i∈I αi
∈

F if for any I the vector λI is regular with respect to a set {αj | j ∈ J}, J ⊂ I then it remains

regular for the set {x1, . . . , xr, αj | j ∈ J}, too. That is, the affine planes λI + span〈αi1 , . . . , αik〉,
i1, . . . , ik ∈ I intersect the coordinate planes span〈xj1 , . . . , xjl〉 transversally.

Remark 3.23. Let x be a generic basis with respect to
Peλ∏
i∈I αi

. If (αi1 , . . . , αir ) satisfies condition

(Fl) then

λ+ span〈αi1 , . . . , αik〉 ∩ span〈xk+2, . . . , xr〉 6= ∅ ⇔ 0 ∈ λ+ span〈αi1 , . . . , αik〉,

hence Π〈αi1 ,...,αik 〉λ = 0. It means that if we write λI = λ1 αi1 + . . .+ λr Π〈αi1 ,...,αir−1
〉αir then

λ1, . . . , λk 6= 0 and λk+1 = . . . = λr = 0 for some k ∈ {1, . . . , r}. In particular, if λ is regular

with respect to {αi1 , . . . , αir} then λ1, . . . , λr 6= 0. �
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Definition 3.24. Let x be a generic basis with respect to
Peλ∏
i∈I αi

∈ F and let i1, . . . , ir ∈ I such

that (αi1 , . . . , αir ) satisfies condition (Fl). The order ord(i1, . . . , ir; I) of the iterated residue

Res+

xr|αir
. . .Res+

x1|αi1

P (x)eλ(x)∏
i∈I

αi(x)
dx

is equal to k if λ =

r∑
l=1

λl Π〈αi1 ,...,αil−1
〉αil with λ1, . . . , λk 6= 0 and λk+1 = . . . = λr = 0.

Remark 3.25. If Res+

xr|αir
. . .Res+

x1|αi1

P (x)eλ(x)∏
i∈I αi(x)

dx has order k, then

(3.11) Res+

xr|αir
. . .Res+

x1|αi1

P (x)eλ(x)+ρ(x)∏
i∈I

αi(x)
dx

depends continuously on small ρ ∈ span〈αi1 , . . . , αik〉 (small means that (3.11) stays of order

k). �

Let T be a compact torus of rank r and let t be its Lie algebra. Let (M,ω) be a compact

Hamiltonian T -manifold with moment map µ : M → t∗. For any η ∈ HT (M) we have

(3.12)

∫
M

ηeω−µ =
∑

D⊂MT

∫
D

i∗D(ηeω−µ)

eTN (D |M)

by Atiyah-Bott-Berline-Vergne theorem. The integral

∫
D

i∗D(ηeω−µ)

eTN (D |M)
yields a fraction

PDe
λD∏

i∈ID αi
as follows. The moment map µ is constant on fixed point component, hence λD = −µ(D). Choose

an invariant compatible almost complex structure on M to make N (D |M) a T -equivariant com-

plex vector bundle and assume that it splits to T -equivariant complex line bundles N (D |M) =

⊕lNl by the Splitting Principle. Then eT (Nl) = αl+e(Nl), where αl ∈ t∗Z is the T -weight of fibers

of Nl and
1

αl + e(Nl)
=
∑
k≥0

(−1)k
e(Nl)k

αk+1
l

=
1

αd+1
l

d∑
k=0

(−1)kαd−kl e(Nl)k, where d =
1

2
dimD.

Thus PD =

∫
D

i∗D(ηeω)
∏
l

[
d∑
k=0

(−1)kαd−kl e(Nl)k
]

and
∏
i∈ID

αi =
∏
l

αd+1
l . Denote

(3.13) F =
∑
D

PDe
λD∏

i∈ID
αi

and we emphasize that F is analytic by the Atiyah-Bott-Berline-Vergne formula.

Definition 3.26. We call (3.13) a Hamiltonian fraction if (M,ω) is a compact Hamiltonian

T -manifold or orbifold with moment map µ having 0 as regular value. We denote the set of

Hamiltonian fractions by FHam.
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There are Hamiltonian manifolds M such that (3.13) is not a regular fraction, but 0 is a

regular value of µ.

Example 3.3. Let a 2-dimensional torus K = U(1)2 act on CP3 as

(t, s) · (z0 : z1 : z2 : z3) = (t−1sz0 : (ts)−1z1 : tz2 : t2z3).

It is a Hamiltonian action with moment map

µ(z) =
(σ − τ)|z0|2 − (τ + σ)|z1|2 + τ |z2|2 + 2τ |z3|2

2(|z0|2 + |z1|2 + |z2|2 + |z3|2)

and 0 is a regular value of it. By Atiyah-Bott-Berline-Vergne formula∫
CP3

eω−µ =
(2π)3eτ−σ

2σ(σ − 2τ)(3τ − σ)
+

(2π)3eτ+σ

2σ(2τ + σ)(3τ + σ)
+

(2π)3e−τ

(2τ − σ)(2τ + σ)τ
+

(2π)3e−2τ

(σ − 3τ)(3τ + σ)τ
,

which is not a regular fraction. �

We will show that JKRes
x

has similar properties on Hamiltonian fraction for generic basis

x which have been shown for regular fractions. We will use walls of µ(M) to group iterated

residues. Let i1, . . . , ir ∈ ID and assume that (αi1 , . . . , αir ) satisfies condition (Fl) for a generic

basis x with respect to F . To each residue Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)∏
i∈ID αi(x)

dx we associate a series

of walls of the moment polytope µ(M) as follows. Let k < r and let K = Kk be a subtorus of T

with Lie algebra k = ∩kj=1 kerαij . We can identify

Lie(T/K)∗ = (t/k)∗ = ker(t∗ → k∗) = span〈αi1 , . . . , αik〉.

Let N = Nk be the fixed point component of MK containing the fixed point component D ⊂
MT . Then µ(N) is a k-dimensional convex subpolytope of µ(M) with supporting affine plane

−λD + span〈αi1 , . . . , αik〉. Remark that if ord(i1, . . . , ir; ID) ≤ k then 0 is in the supporting

affine plane of µ(N).

Consider a k-dimensional wall µ(N) such that N ⊂ MK is a fixed point component. Let

vN = {v1
N , . . . , v

k
N} be the projection of {x1, . . . , xk} to (t/k)∗ = span〈αi1 , . . . , αik〉 along the

plane span〈xk+1, . . . , xr〉 and let wi = xi for all i > k. Choose S ⊂ T subtorus such that

Φ : K × S → T , Φ(k, s) = ks is a finite cover. We identify t∗ = s∗ ⊕ k∗ via Φ∗ and remark that

s∗ = ker(t∗ → k∗) = span〈v1
N , . . . , v

k
N 〉.

Moreover, we also have isomorphism Φ∗ : HT (M)→ HK×S(M). Let D ⊂ NT = NS be a fixed

point component. We have a (K × S)-equivariant isomorphism of vector bundles N (D |M) =

N (N |M)|D ⊕N (D |N) and assume that N (N |M) splits to (K × S)-equivariant complex line

bundles N (N |M) = ⊕jLj . Moreover, let

eK×S(Lj) = βj + eS(Lj),
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where βj ∈ k∗Z is the K-weight of fibers of Lj and let i∗DeS(Lj) = γDj + i∗De(Lj), where γDj ∈ s∗Z
are the S-weights of the fibers of Lj |D. We split

βj = β′j + β′′j ∈ span
〈
v1
N , . . . , v

k
N

〉
⊕ span〈wk+1, . . . , wr〉.

Remark that
1

βj + i∗DeS(Lj)
=
∑
lj≥0

(−1)lj
[β′j + i∗DeS(Lj)]lj

(β′′j )lj+1
is the expansion of

∑
l≥0

[−i∗De(Lj)]l

(βj + γDj )l+1

with respect to vN � w, that is β′j + γDj � β′′j for all j. Therefore,

(3.14)

∫
D

i∗D(ηeω−µ)

eSN (D |M)

∏
j

∑
lj≥0

(−1)lj
[β′j + i∗DeS(Lj)]lj

(β′′j )lj+1

is the expansion of

∫
D

i∗D(ηeω−µ)

eTN (D |M)
=

PDe
λD∏

i∈ID αi
with respect to vN � w. We truncate every

infinite sum in (3.14) at lj = n2, where n =
1

2
dimN , and we set

FN (vN , w) =
∑

D⊂NT

∫
D

i∗D(ηeω−µ)

eSN (D |M)

∏
j

n2∑
lj=0

(−1)lj
[β′j + i∗DeS(Lj)]lj

(β′′j )lj+1
.(3.15)

By Atiyah-Bott-Berline-Vergne formula

FN (vN , w) =

∫
N

i∗N (ηeω−µ)
∏
j

n2∑
lj=0

(−1)lj
[β′j + eS(Lj)]lj

(β′′j )lj+1
,

hence it is analytic in vN . Moreover,

(3.16)

Res+

wr|αir
. . . Res+

wk+1|αik+1

Res+

vkN |αik
. . . Res+

v1
N |αi1

FN (vN , w)dvNdw =
∑

D⊂NT
Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)∏
i∈ID

αi(x)
dx

by Corollary 3.11, Lemma 3.10 and 3.12.

Lemma 3.27. Denote Wk(M) the set of k-dimensional walls µ(N) of µ(M) containing 0 in

their supporting affine plane. Then

∑
ord(i1,...,ir;ID)≤k

Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)∏
i∈ID

αi(x)
dx =

∑
µ(N)∈Wk(M)

Res+

w
Res+

vN
FN (vN , w)dvNdw.

Proof. Remark that all linear terms in the denominator of FN (vN , w) involving vN are S-weights

of a normal bundle N (D |N) for a fixed point component D ⊂ NS , i.e. they are equal to an

αi ∈ s∗ = span〈v1
N , . . . , v

k
N 〉 for some i ∈ ID. By (3.16) we have

Res+

w
Res+

vN
FN (vN , w)dvNdw =

∑
D⊂NT

∑
[αi1 ,...,αir ]

Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)∏
i∈ID

αi(x)
dx,
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where the second sum is over all classes of tuples satisfying condition (Fl) such that i1, . . . , ir ∈ ID
and αi1 , . . . , αik is in the supporting plane of µ(N) ∈ Wk(M), hence the residues on the right

hand side have order ord(i1, . . . , ir; ID) ≤ k.

Conversely, let µ(N) be the associated k-dimensional wall of

(3.17) Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)∏
i∈ID

αi(x)
dx

in µ(M). If (3.17) has order ord(i1, . . . , ir; ID) ≤ k then λD ∈ span〈αi1 , . . . αik〉, hence 0 is in

the supporting affine plane of µ(N), that is, µ(N) ∈ Wk(M). From (3.16) follows that (3.17) is

a summand of Res+

w
Res+

vN
FN (vN , w)dvNdw.

We have the following vanishing result.

Proposition 3.28. Let x be a generic basis with respect to F =
∑
D

PDe
λD∏

i∈ID αi
∈ FHam. Then

for any k < r ∑
ord(i1,...,ir;ID)=k

Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)+ρ(x)∏
i∈ID

αi(x)
dx = 0

for any ρ in a small neighborhood of 0.

Proof. By hypothesis there is a Hamiltonian T -manifoldM such that F =
∑

D⊂MT

∫
D

i∗D(ηeω−µ)

eTN (D |M)

and 0 is a regular value of µ. That is, 0 is not on any (proper) wall of the moment polytope

µ(M). First, we will show by induction on k that for any µ(N) ∈ Wk(M), k < r we have

Res+

vN
FN (vN , w)eρ(vN ,w)dvN = 0

for any ρ in a small neighborhood of 0.

Let k0 be the smallest number such that Wk0(M) 6= ∅. By Lemma 3.27 this is equal to the

smallest order. Since x is generic, we have k0 > 0. Consider w as a fixed parameter and remark

that FN (vN , w) is regular as fraction in vN for µ(N) ∈ Wk0
(M). Furthermore, FN (vN , w)eρ

′(vN )

is also regular for small ρ′ ∈ span〈v1
N , . . . , v

k0

N 〉. Since 0 is on the supporting affine plane of µ(N),

but it is not contained in the convex polytope −µ(N) + ρ′(vN ), and FN (vN , w) is analytic in

vN , we have Res+

vN
FN (vN , w)eρ

′(vN )dvN = 0 by Atiyah convexity theorem [1] and Lemma 3.21.

Moreover, we can write any small ρ as ρ(vN , w) = ρ′(vN ) + ρ′′(w), thus

Res+

vN
FN (vN , w)eρ(vN ,w)dvN = eρ

′′(w) Res+

vN
FN (vN , w)eρ

′(vN )dvN = 0.

For general k < r the residue Res+

vN
FN (vN , w)dvN can be written as sum of order k terms and

lower order terms. By Lemma 3.27 the sum of lower order terms is equal to∑
µ(N ′)∈Wl(N), l<k

Res+

w′
Res+

vN′
FN ′(vN ′ , w

′, w)dvN ′dw
′,
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where w′ = {vl+1
N , . . . , vkN}. By induction hypothesis∑
µ(N ′)∈Wl(N), l<k

Res+

w′
Res+

vN′
FN ′(vN ′ , w

′, w)eρ
′(vN′ ,w

′)dvN ′dw
′ = 0

for all ρ′ ∈ 〈v1
N , . . . , v

k
N 〉 small. It implies by Remark 3.25 that

Res+

vN
FN (vN , w)eρ

′(vN )dvN

depends continuously on small ρ′. Fix ρ′ small and let %N (vN ) such that FN (vN , w)eρ
′(vN )+%N (vN )

is regular as fraction in vN . Then

Res+

vN
FN (vN , w)eρ

′(vN )dvN = lim
s→0

Res+

vN
FN (vN , w)eρ

′(vN )+s%N (vN )dvN = 0

by Atiyah convexity theorem [1] and Lemma 3.21. We can write any small ρ as ρ(vN , w) =

ρ′(vN ) + ρ′′(w) and we have

Res+

vN
FN (vN , w)eρ(vN ,w)dvN = eρ

′′(w) Res+

vN
FN (vN , w)eρ

′(vN )dvN = 0.

In particular, for any µ(N) ∈ Wk(M), k < r and for any ρ small we have

Res+

w
Res+

vN
FN (vN , w)eρ(vN ,w)dvNdw = 0.

Together with Lemma 3.27 it implies that for small ρ we have

∑
ord(i1,...,ir;ID)=k

Res+

xr|αir
. . .Res+

x1|αi1

PD(x)eλD(x)+ρ(x)∏
i∈ID

αi(x)
dx

=
∑

µ(N)∈Wk(M)

Res+

w
Res+

vN
FN (vN , w)eρ(vN ,w)dvNdw

−
∑

µ(N)∈Wk−1(M)

Res+

w
Res+

vN
FN (vN , w)eρ(vN ,w)dvNdw = 0.

Proposition 3.29. Let x be a generic basis with respect to F ∈ FHam. Then

(i) JKRes
x

F (x)eρ(x)dx depends continuously on ρ in a small neighborhood of 0.

(ii) JKRes
x

F (x)dx does not depend on the choice of generic basis x. That is, if y is another

generic basis with respect to F then JKRes
x

F (x)dx = JKRes
y

F (y)dy.

Proof. (i) By Proposition 3.28 we have that for small ρ the residue Res+

x
F (x)eρ(x)dx is equal

to the sum of residues of order r = dim t∗. By Remark 3.25 the residues of order r depend

continuously on small ρ.
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(ii) If F is regular then it follows from Proposition 3.20, because F is also analytic. If F is not

regular then there exist arbitrarily small ρ such that Feρ is regular. Then by the continuity

and Corollary 3.18 we have

JKRes
x

F (x)dx = lim
s→0

JKRes
x

F (x)esρ(x)dx = lim
s→0

JKRes
y

F (x)esρ(y)dy = JKRes
y

F (y)dy.

Definition 3.30. For F =
∑
D

PDe
λD∏

i∈ID αi
in Freg or FHam and polarization Λ on t∗ we define

JKResΛF (t)dt = JKRes
x

F (x)dx,

where x is any generic ordered basis with respect to F , inducing the same polarization as Λ on

∪D{αi | i ∈ ID}. The polarization Λ can be thought as an ordered basis on t∗ or in this case as

a connected component of ∩D{τ ∈ t |αi(τ) 6= 0, ∀i ∈ ID}.

We remark that if F ∈ Freg then non-generic basis x is also allowed in the above definition,

which can make computations easier. However, if F ∈ FHam \ Freg then let ρ ∈ t∗ such that

Feρ ∈ Freg and in this case

JKResΛF (t)dt = lim
s→0

JKRes
x

F (x)esρ(x)dx

for any ordered basis x (not necessarily a generic basis) inducing the same polarization as Λ on

∪D{αi | i ∈ ID}.

3.2 Equivariant Jeffrey-Kirwan residue

The equivariant Jeffrey-Kirwan residue can be thought as a parametric version of the usual one,

but the additional freedom in the choice of polarization makes it more flexible.

Let k∗ and s∗ be real vector spaces of dimension q and r − q, respectively. Set t∗ = k∗ ⊕ s∗.

Definition 3.31. A k∗-pole in t∗ is a q-dimensional subspace V such that V ⊕ s∗ = t∗. If Λ is a

polarization on t∗ then we will denote by ΛV the polarization induced on V .

Definition 3.32. An F =
∑
I

PIe
λI∏

i∈I αi
∈ F is called k∗-regular if for all I the vector prk∗(λI) is

regular with respect to {prk∗(αi) | i ∈ I}, where prk∗ : t∗ → k∗ is the projection. We denote the

set of k∗-regular fractions by Fk∗-reg.

Let K and S be two compact tori with Lie algebras k and s, respectively. Let (M,ω) be a compact

Hamiltonian (K × S)-manifold with moment map µ = µK × µS : M → k∗ ⊕ s∗. We assume that

0 ∈ k∗ is a regular value of µK . We denote by Fk∗-Ham the set of F =
∑

D∈MK×S

∫
D

i∗D(ηeω−µ)

eK×SN (D |M)

for such M and for some η ∈ HK×S(M).
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We fix a scalar product on k∗. It defines a symmetric bilinear pairing on k∗ ⊕ s∗ by

(α, β) = (prk∗(α),prk∗(β)), ∀α, β ∈ k∗ ⊕ s∗.

In particular, it induces scalar product on every k∗-pole V . Let F =
∑
I

PIe
λI∏

i∈I αi
. For each k∗-

pole V we define FV by replacing every
1

αi
=

1

α′i + α′′i
by

1

α′′i

|I|∑
li=0

(
− α

′
i

α′′i

)li
in F , where α′i ∈ V

and 0 6= α′′i ∈ s∗. Remark that linear terms in the denominators of FV are either in V or s∗.

Definition 3.33. We define the equivariant Jeffrey-Kirwan residue of F ∈ Fk∗-reg or F ∈ Fk∗-Ham

as

EqResΛF =
∑

k∗-pole V

JKResΛV FV (v, s)dv,

where v and s are basis of V and s∗, respectively.

Remark 3.34. It is enough to take k∗-poles of form V = span〈αi1 , . . . , αiq 〉 with i1, . . . , iq ∈
I, otherwise FV (v, s) will be non-generating as fraction in v and JKResΛV vanishes on non-

generating fractions. �

Proposition 3.35. Let F be in Fk∗-reg or Fk∗-Ham. Then

(i) EqResΛF is well defined.

(ii) If F is analytic then EqResΛF does not depend on Λ.

(iii) EqResΛFeρ depends continuously on ρ ∈ t∗ in a small neighborhood of 0.

Proof. If F is k∗-regular then for every k∗-pole V the FV (v, s) is regular as fraction in v, hence

(i) and (iii) follows by Corollary 3.18. If in addition F is analytic then FV (v, s) is analytic in v

and (ii) follows from Proposition 3.20.

If F ∈ Fk∗-Ham then

F =
∑
D

PDe
λD∏

i∈ID
αi

=
∑

D⊂MK×S

∫
D

i∗D(ηeω−µ)

eK×SN (D |M)

for a Hamiltonian (K × S)-manifold M such that 0 is regular value of the K-moment map

µK and η ∈ HK×S(M). Let V = span〈αi1 , . . . , αiq 〉 be a k∗-pole, where i1, . . . , iq ∈ ID. Let

v be a basis of V , generic with respect to FV and inducing the same polarization as ΛV on

∪i∈ID{αi | i ∈ ID} ∩ V . We will show that JKRes
v

FV (v, s)dv does not depend on v, hence

JKResΛV FV (v, s)dv is well defined.

Recall that αi ∈ (k ⊕ s)∗Z for all i. Consider the subtorus G ⊂ K × S with Lie algebra

g = ∩qj=1 kerαij . Then Φ : K × G → K × S, (k, g) 7→ (k, 1)g is a finite cover and it induces

splitting Φ∗ : k∗ ⊕ s∗ → k∗ ⊕ g∗ such that Φ∗(s∗) = g∗ and Φ∗(V ) = k∗. Moreover, it also

induces isomorphism in cohomology Φ∗ : HK×S(M)→ HK×G(M) and we have relation between

equivariant symplectic forms Φ∗(ω − µ) = ω − µK×G.

50



Let N ⊂MG be a fixed point component. Assume that its normal bundle splits to (K ×G)-

equivariant line bundles N (N |M) = ⊕jLj with respect to an invariant compatible almost

complex structure on M and let eK×G(Lj) = βj + eK(Lj), where βj ∈ g∗. Let D ⊂ NK

be a fixed point component and observe that∫
D

i∗DΦ∗(ηeω−µ)

eKN (D |N)

∏
j

∑
lj≥0

(−1)lj
i∗DeK(Lj)lj

β
lj+1
j

corresponds to the expansion of

(∫
D

i∗D(ηeω−µ)

eK×SN (D |M)

)
(v, s) with respect to v � s under Φ∗.

We truncate expansions at lj = n2, where n =
1

2
dimN and we set

FN (v, s) = (Φ∗)−1

( ∑
D∈NK

∫
D

i∗DΦ∗(ηeω−µ)

eKN (D |N)

∏
j

n2∑
lj=0

(−1)lj
i∗DeK(Lj)lj

β
lj+1
j

)
,

which is equal to

(Φ∗)−1

( ∫
N

i∗NΦ∗(ηeω−µ)
∏
j

n2∑
lj=0

(−1)lj
eK(Lj)lj

β
lj+1
j

)

by Atiyah-Bott-Berline-Vergne formula, hence FN (v, s) is a Hamiltonian fraction in v. Remark

that if a D ⊂ MK×S is not a fixed point component of some N ⊂ MG then
PD(v, s)eλD(v,s)∏

i∈ID αi(v, s)
is

non-generating as fraction in v. Hence

JKRes
v

FV (v, s)dv =
∑

N⊂MG

JKRes
v

FN (v, s)dv

by Lemma 3.10, therefore the proposition follows from Proposition 3.29.

Definition 3.36. A fraction
PIe

λI∏
i∈I αi

is called k∗-generating if {prk∗(αi) | i ∈ I} spans k∗, other-

wise we call it non-k∗-generating.

Similarly to Lemma 3.16 we can decompose any F ∈ F to sum of k∗-generating and non-k∗-

generating fractions.

Lemma 3.37. Any fraction
Peλ∏
i∈I αi

∈ F[t] can be written as linear combination of non-k∗-

generating fractions and k∗-generating fractions of form Q
eλ∏q

j=1 α
nj+1
j

, where Q ∈ F[s].

Proof. We assume that λ = 0 and we consider P ∈ R[k ⊕ s] as polynomial function on k with

coefficients in R[s]. We denote its degree by degk P . We reduce the problem first to the degk P = 0

case, i.e. P ∈ R[s] by induction on degree degk P of P . If
Peλ∏
i∈I αi

is k∗-generating then there
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are i1, . . . , iq ∈ I such that prk∗(αi1), . . . ,prk∗(αiq ) generate k∗. If degk P ≥ 1 then we can write

P = P0 +
q∑

k=1

αikPk such that P0 ∈ R[s] and degk Pk < degk P for all k = 1, . . . , q. Moreover,

P∏
i∈I αi

=
P0∏
i∈I αi

+

q∑
k=1

Pk∏
i∈I\{ik} αi

.

Assume that P = 1 and I = {1, . . . , N}. We may also suppose that αi /∈ s∗ for all i ∈ I. We

consider ordering on fractions
Q

αn1
1 . . . αnNN

with Q ∈ F[s] by associating it the lexicographical

order (n1, . . . , nN ) ∈ NN . Suppose that
1

αn1
1 . . . αnNN

is k∗-generating. Let i1, . . . , im ∈ {i ∈

I |ni > 0} such that i1 < . . . < im and
m∑
k=1

akαik = β ∈ s∗ with ak 6= 0 for all k = 1, . . . ,m. We

distinguish two cases. If β = 0 then

(3.18)
1

αn1
1 . . . αnNN

=

m−1∑
k=1

−aka−1
m

αn1
1 . . . αnk−1

ik
. . . αnm+1

im
. . . αnNN

.

If β 6= 0 then

(3.19)
1

αn1
1 . . . αnNN

=

m∑
k=1

ak
β
· 1

αn1
1 . . . αnk−1

ik
. . . αnNN

.

Remark that the fractions on the right hand side of (3.18) and (3.19) are also k∗-generating and

have order strictly less than the fraction on the left hand side. We continue the decomposition on

fraction on the right hand sides. This algorithm stops in finite steps because the lexicographical

order is a well-order. Moreover, it yields fractions
Q

αm1
1 . . . αmNN

with mj = 0 unless j = i1, . . . , iq

such that {prk∗(αi1), . . . ,prk∗(αiq )} is a basis of k∗ and Q ∈ F[s].

Remark 3.38. Since non-k∗-generating fractions yield non-generating fractions FV (v, s) in v (con-

sidering s as real parameter), therefore the equivariant Jeffrey-Kirwan residue vanishes on non-

k∗-generating fractions. �

We have the following analogue of Proposition 3.17.

Proposition 3.39. Let Λ be a polarization on t∗ = k∗ ⊕ s∗. Consider α1, . . . , αq, λ ∈ t∗ such

that {prk∗(αi) | i = 1, . . . , q} spans k∗ and prk∗(λ) is regular with respect to it. Write λ = λ0 +

λ1α1 + . . .+ λqαq with λ0 ∈ s∗ and λ1, . . . , λq ∈ R. Then we have

EqResΛ eλ

q∏
i=1

αni+1
i

=


eλ0√

det [(αi, αj)]
q
i,j=1

q∏
i=1

ε(αi)
ni+1λnii
ni!

if λ1, . . . , λq > 0,

0 otherwise.

Proof. We have only one relevant k∗-pole V = span〈α1, . . . , αq〉 and let v be a basis of V inducing

the same polarization on α1, . . . , αq as Λ. Then

EqResΛ eλ

q∏
i=1

αni+1
i

= JKRes
v

eλ0(s)+λV (v)

q∏
i=1

αi(v)ni+1

dv,
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where λV = λ1α1 + . . . + λ1αq and s is a basis of s∗. Hence the proposition follows from

Proposition 3.17.

We also have an analogue of Corollary 3.19.

Corollary 3.40. Let F =
Peλ∏
i∈I αi

∈ Fk∗-reg. If prk∗(λ) /∈ Cone(prk∗(αi) | i ∈ I) with respect to

the polarization Λ then EqResΛF = 0.

Proof. Let V be a k∗-pole. Write λ = λ0 + λV , where λ0 ∈ s∗ and λV ∈ V . Remark that λV is

regular with respect to V ∩ {αi | i ∈ I}. Moreover, prk∗(λ) /∈ Cone(prk∗(αi) | i ∈ I) implies that

λV /∈ Cone(αi |αi ∈ V, i ∈ I), hence by Corollary 3.19 follows that JKResΛV FV (v, s)dv = 0.

Corollary 3.41. Let F =
Peλ∏
i∈I αi

∈ Fk∗-reg and let Λ be the polarization induced by an ordered

basis {x1, . . . , xq, s1, . . . , sr−q} such that x = {x1, . . . , xq} and s = {s1, . . . , sr−q} are basis of k∗

and s∗, respectively. If λ = −λ with respect to the polarization Λ then EqResΛF = 0.

Proof. Since F is k∗-regular, we have λ /∈ s∗. For any β /∈ s∗ we have prk∗(β) = prk∗(β), which

implies that prk∗(λ) /∈ Cone(prk∗(αi) | i ∈ I) = Cone(prk∗(αi) | i ∈ I), hence the corollary follows

from Corollary 3.40.

We can also compute EqResΛ using residue ResΛ,+.

Proposition 3.42. If F ∈ Fk∗-reg then

EqResΛF =
1√

det[(xi, xj)]
q
i,j=1

ResΛ,+

x
F (x, s)dx,

where x = {x1, . . . , xq} and s are basis of k∗ and s∗, respectively.

Proof. Decompose F to partial fraction as in Lemma 3.37. On non-k∗-generating fractions both

EqResΛ and ResΛ,+

x
vanish by Remark 3.38 and (3.7). For k∗-generating fractions of form G =

Qeλ(x,s)∏q
j=1 αj(x, s)

nj+1
with Q ∈ F[s] we have

EqResΛG =
1√

det[(xi, xj)]
q
i,j=1

ResΛ,+

x
G(x, s)dx

by Propositions 3.17 and 3.39.

Example 3.4. Let {x, y} be an orthonormal basis of k∗ and let {s} be a basis of s∗. On k∗ ⊕ s∗

we consider the polarization Λ induced by the ordered basis {s, x, y} and let

F (x, y, s) =
ex

(x− y + s)2(x+ y + s)(y − 2s)
.

We will compute EqResΛF in two ways: by definition and by Proposition 3.42, since F is k∗-

regular.

53



In the first case we remark that F has three k∗-poles V1 = span〈x − y + s, x + y + s〉,
V2 = span〈x− y+ s, y− 2s〉 and V3 = span〈x+ y+ s, y− 2s〉. We consider basis {ui, vi} on poles

Vi inducing the same polarization as ΛVi on {x− y + s, x+ y + s, y − 2s} ∩ Vi, hence

EqResΛF =

3∑
i=1

JKResΛViF (ui, vi, s)duidvi.

(a) Let u1 = s+ x− y and v1 = s+ x+ y. Then

JKResΛV1F (u1, v1, s)du1dv1 = JKResΛV1
e
u1+v1

2 −s

u2
1v1( v1−u1

2 − 2s)
du1dv1 =

e−s

2

(
1

8s2
− 1

4s

)
.

(b) Let u2 = s+ x− y and v2 = 2s− y. Then

JKResΛV2F (u2, v2, s)du2dv2 = JKResΛV2
eu2−v2+s

u2
2(u2 − 2v2 + 4s)(−v2)

du2dv2 = 0.

(c) Let u3 = s+ x+ y and v3 = 2s− y. Then

JKResΛV3F (u3, v3, s)du3dv3 = JKResΛV3
eu3+v3−3s

(u3 + 2v3 − 4s)2u3(−v3)
du3dv3 =

e−3s

−16s2
.

Therefore,

EqResΛF =
e−s

2

(
1

8s2
− 1

4s

)
+

e−3s

−16s2
.

Now we compute ResΛ,+

y
ResΛ,+

x
F (x, y, s)dxdy. We have two linear terms in the denominator

of F containing x, namely u1 = s+ x− y and u2 = s+ x+ y. Both of them are polarized with

respect to Λ. Hence

ResΛ,+

x

ex

(x− y + s)2(x+ y + s)(y − 2s)
dx = Res+

u1=0

eu1+y−s

u2
1(u1 + 2y)(y − 2s)

du1

+ Res+

u2=0

eu2−y−s

(u2 − 2y)2u2(y − 2s)
du2

=
(2y − 1)ey−s

(2y)2(y − 2s)
+

e−y−s

4y2(y − 2s)
.

We compute first ResΛ,+

y

(2y − 1)ey−s

(2y)2(y − 2s)
dy. Again, v1 = y and v2 = 2s−y are the polarized linear

terms in the denominator involving y. Hence,

ResΛ,+

y

(2y − 1)ey−s

(2y)2(y − 2s)
dy = Res+

v1=0

(2v1 − 1)ev1−s

4v2
1(v1 − 2s)

dv1 + Res+

v2=0

(4s− 2v2 − 1)es−v2

4(2s− v2)2(−v2)
dv2

= e−s
(

1

16s2
− 1

8s

)
+ 0.
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Finally, we compute ResΛ,+

y

e−y−s

4y2(y − 2s)
dy. Again, w1 = y and w2 = 2s − y are the polarized

vectors in the denominator containing y. Thus,

ResΛ,+

y

e−y−s

4y2(y − 2s)
dy = Res+

w1=0

e−w1−s

4w2
1(w1 − 2s)

dw1 + Res+

w2=0

ew2−3s

4(2s− w2)2(−w2)
dw2

= 0 +
e−3s

−16s2
.

Therefore,

ResΛ,+

y
ResΛ,+

x
F (x, y, s)dxdy = e−s

(
1

16s2
− 1

8s

)
+

e−3s

−16s2
.

�

Remark 3.43. We compare our version of equivariant Jeffrey-Kirwan residue with the one in

[31]. Let x = {x1, . . . , xq} and s = {s1, . . . , sr−q} be an ordered basis of k∗ and s∗, respectively.

Denote Λ and Λ′ the polarizations induced by ordered basis {x1, . . . , xq, s1, . . . , sr−q} and x on

k∗ ⊕ s∗ and k∗, respectively. Then EqResΛ corresponds to JKResΛ′ the Jeffrey-Kirwan residue

adapted to the equivariant setting in [31]. It is enough to check it on k∗-regular fractions of

form
eλ∏q

i=1 α
ni+1
i

. For simplicity we demonstrate it when dim k∗ = 1 and the same computation

can be carried out in the general case. Let β ∈ k∗, γ ∈ s∗ such that α = β − γ and suppose

that β = β. Then we can write λ = λ0 + λ1β with λ0 ∈ s∗ and assume that λ1 > 0. In [31]

JKResΛ′ eλ(x,s)

αn+1(x, s)
dx is reduced to the usual Jeffrey-Kirwan residue by expansion x � s as

follows

JKResΛ′ eλ(x,s)

β(x)n+1
(

1− γ(s)
β(x)

)n+1 dx = JKResΛ′
∑

k1,...,kn+1≥0

γ(s)k1+...+kn+1eλ(x,s)

β(x)n+1+k1+...+kn+1
dx

= JKResΛ′
∑
m≥0

(
m+ n

n

)
γ(s)meλ0(s)+λ1β(x)

β(x)m+n+1
dx =

∑
m≥0

γ(s)mλm+n
1 eλ0(s)√

(β, β)m!n!
=
λn1 e

λ0(s)+λ1γ(s)

n!
√

(β, β)

by Proposition 3.20. In the case of EqResΛ there is a single k∗-pole V = span〈α〉, moreover

α = α, thus

EqResΛ eλ

αn+1
= JKResΛV e

λ0(s)+λ1γ(s)+λ1α

αn+1
dα =

λn1 e
λ0(s)+λ1γ(s)

n!
√

(α, α)

by Proposition 3.39. Finally, we have equality of norm squares (α, α) = (β, β) by definition. �
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4

Equivariant Jeffrey-Kirwan theorem

In this chapter we give a generalization of Jeffrey-Kirwan theorem to non-compact symplectic

quotients. We use the Atiyah-Bott-Berline-Vergne formula to define integrals on non-compact

spaces and the usual Jeffrey-Kirwan residue is replaced by the equivariant version introduced in

section 3.2. At the end of the chapter we give an hyperKähler version of our theorem.

4.1 Symplectic version

Let G be a compact connected Lie group with maximal torus T of rank r and let S be a q-

dimensional torus. Let (M,ω) be a possibly non-compact connected symplectic manifold with

Hamiltonian (G × S)-action and denote by µG×S : M → g∗ ⊕ s∗ its moment map. For any

subgroup H ⊂ G × S we denote by µH = prh∗ ◦ µG×S the corresponding moment map, where

prh∗ : g∗ ⊕ s∗ → h∗ is the natural projection.

We assume that there is an 1-dimensional subtorus K ⊂ S such that the K-action on M is

PBB, that is, MK is compact, moreover there is γ ∈ k∗Z generator such that the K-moment map

µK = ϕ · γ with ϕ : M → R proper, bounded below.

Remark 4.1. MK is compact is equivalent to MT×S being compact. Indeed, since MT×S ⊂MK

is closed, therefore MT×S is compact. Conversely, assume that MT×S is compact. Each fixed

point component F ⊂ MK is compact since µK is proper, moreover F contains a (T × S)-

fixed point component. Then MK has finitely many connected components, because MT×S has

finitely many, too. �

Motivated by [19] we define equivariant integration onM formally by the Atiyah-Bott-Berline-

Vergne formula.

Definition 4.2. For any β ∈ HG×S(M) ' HT×S(M)W we define∮
M

β =
∑

F⊂MT×S

∫
F

i∗Fβ

eT×SN (F |M)
.
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It is well defined due to the compactness assumption and Stokes theorem. If M is compact

then the definition is compatible with the usual equivariant integration by the Atiyah-Bott-

Berline-Vergne theorem.

Let 0 ∈ g∗ be a regular value of µG and denote M//G = µ−1
G (0)/G the symplectic quotient.

It is a possibly non-compact symplectic manifold (orbifold) with Hamiltonian S-action induced

by the action of the same group on M . In order to define integration on M//G similarly to

Definition 4.2 we have to show that (M//G)S is compact.

Proposition 4.3. If MK is compact then (M//G)S is also compact.

Proof. Since (M//G)S ⊂ (M//G)K is a closed subset, it suffices to show that (M//G)K is compact.

Denote π : µ−1
G (0)→M//G the quotient map. Let m ∈ (M//G)K and x ∈ π−1(m). Let (G×K)x

be the maximal connected subgroup of G×K which fixes x. Since G acts locally freely on π−1(m),

therefore (G ×K)x is 1-dimensional, i.e. it is a torus. For any y ∈ (G ×K) · x the subgroups

(G×K)x and (G×K)y are conjugate in G×K, therefore there is y such that (G×K)y ⊂ T ×K.

Since y ∈ π−1(m) = (G×K) · x, we have that (G×K)y 6⊂ T and π−1(m) ⊂ G ·M (G×K)y . Let

T be the set of all 1-dimensional subtori T ′ ⊂ T ×K with properties

(T1) T ′ 6⊂ T ,

(T2) there is F ′ ⊂ MT ′ connected component such that for any T ′′ 6= T ′ torus such that

T ′ ⊂ T ′′ ⊂ T ×K we have that (F ′)T
′′

is strictly smaller than F ′.

We show that the set T is finite. Indeed, let T ′ ∈ T and let F ′ be as in (T2). Then F ′

contains a (T ×K)-fixed point since F ′ is a K-invariant symplectic submanifold of M with K-

moment map µK |F ′ , which is also proper and non-surjective. We choose an invariant compatible

almost complex structure on M and let D′ ⊂ (F ′)T×K be a fixed point component. For any

u ∈ D′ the tangent space TuF
′ is an (T × K)-invariant complex subspace of TuM . Denote

{ηi ∈ (t⊕ k)∗Z | i ∈ I} the set of (T ×K)-weights on TuF
′ and remark that they do not depend on

u. The Lie algebra t′ of T ′ satisfies t′ ⊂ ∩i∈I ker ηi. Moreover, the subalgebra t′′ = ∩i∈I ker ηi is

the Lie algebra of a subtorus T ′′ ⊂ T ×K and we have T ′ ⊂ T ′′. Furthermore, T ′′ acts trivially

on TuF
′, hence (F ′)T

′′
is an open and closed subset of the connected component F ′, therefore

(F ′)T
′′

= F ′. By (T2) we must have T ′ = T ′′, hence t′ = ∩i∈I ker ηi. Since MT×K has finitely

many components, therefore we also have finitely many subalgebras of form t′ = ∩i∈I ker ηi,

hence T is finite.

We have inclusions of closed subsets

π−1
(
(M//G)K

)
⊂ G ·

( ⋃
T ′∈T

MT ′ ∩ µ−1
G (0)

)
⊂ G ·

( ⋃
T ′∈T

MT ′ ∩ µ−1
T (0)

)
.

We conclude our proof by showing that MT ′ ∩µ−1
T (0) is compact for any T ′ ∈ T . Let F ′ ⊂MT ′

be a connected component. Recall that µT×K(F ′) lies in an affine hyperplane H of t∗⊕ k∗, where

H is the inverse image of the point µT ′(F
′) under the projection t∗⊕ k∗ → (t′)∗. The intersection

H ∩ k∗ is a point since T ′ 6⊂ T by (T1). Finally,

F ′ ∩ µ−1
T (0) ⊂ F ′ ∩ µ−1

T×K(k∗) ⊂ µ−1
T×K(H ∩ k∗)
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and latter set is compact because µT×K is proper. MT ′ has finitely many connected components

since each of them contains a connected component of MT×K ⊂ MK , hence MT ′ ∩ µ−1
T (0) is

compact.

Thus we can define equivariant integration on M//G as∮
M//G

β =
∑

F⊂(M//G)S

1

m(F )

∫
F

i∗Fβ

eSN (F |M//G)

for any β ∈ HS(M//G) (cf. Theorem 1.32). Let χ : t∗⊕ s∗ → R be the linear function defined by

prk∗ = χ · γ,

where prk∗ : t∗ ⊕ s∗ → k∗ is the projection.

Definition 4.4. A polarization Λ on t∗ ⊕ s∗ is compatible with the proper and bounded below

moment map (µK , ϕ, γ) on M if it is induced by an ordered basis {y1, . . . , yr+q} such that

χ(y1) > 0 and y2, . . . , yr+q ∈ kerχ.

The main result of this chapter is the following generalization of the Jeffrey-Kirwan theorem

to non-compact symplectic quotients.

Theorem 4.5. Let (M,ω) be a Hamiltonian (G×S)-manifold with moment map µG×S. Assume

that 0 ∈ g∗ is a regular value of µG and denote M//G = µ−1
G (0)/G the symplectic quotient.

Moreover, assume that S has an 1-dimensional subtorus with proper, bounded below moment

map and let Λ be a polarization on t∗ ⊕ s∗ compatible with it. Then for any β ∈ HG×S(M) we

have ∮
M//G

κS(βeω−µG×S ) = lim
ε→0

EqResΛ

(
$

|W |vol(T )

∮
M

βeω−µT×S+ερ

)
,

where κS : HG×S(M) → HS(M//G) is the Kirwan map, |W | is the order of the Weyl group of

G, vol(T ) is the volume induced by the scalar product on t∗ used in EqResΛ, $ is the product of

roots of G and ρ is a small regular value of µT .

Remark 4.6. If 0 is a regular value of µT then we may choose ρ = 0 and the limit is unnecessary. �

The strategy of the proof is as follows. First we prove Theorem 4.5 for M compact and G = T

abelian, then we prove it for M non-compact and G = T still abelian. Finally, we deduce the

general case by Martin’s method [32].

4.1.1 Compact and abelian case

As first step to prove Theorem 4.5 we will show the following theorem, which is the generalization

of the abelian version of the Jeffrey-Kirwan theorem for the residue EqRes.
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Theorem 4.7. Let T and S be two compact tori and let (M,ω) be a compact Hamiltonian

(T × S)-manifold. Assume that 0 ∈ t∗ is a regular value of the T -moment map µT and denote

M//T = µ−1
T (0)/T the symplectic quotient. Then for any polarization Λ on t∗ ⊕ s∗ and for any

β ∈ HT×S(M) we have∮
M//T

κS(βeω−µT×S ) = EqResΛ

(
1

vol(T )

∮
M

βeω−µT×S
)
,

where κS : HT×S(M)→ HS(M//T ) is the Kirwan map.

Proof. Since M is compact, it is enough to prove it for a particular polarization Λ by Proposition

3.35(ii). Let t = {t1, . . . , tr} and s = {s1, . . . , sq} be an ordered basis of t∗ and s∗, respectively

such that µT (MT )∩ span〈t2, . . . , tr〉 = ∅. Let Λ be the polarization induced by the ordered basis

{t1, . . . , tr, s1, . . . , sq} of t∗⊕s∗. In this case the proof goes the same way as the proof of Theorem

A in [25]. Denote {t1, . . . , tr, s1, . . . , sq} ⊂ t⊕ s the dual basis and let Γ = Cone(γ1, . . . , γr) ⊂ t∗

such that

(Γ1) γ1, . . . , γr ∈ (t1)<0 ∩ t∗Z are linearly independent, where (t1)<0 = {u ∈ t∗ ⊕ s∗ |u(t1) < 0},

(Γ2) for any I ⊂ {1, . . . , r} the Cone(γi | i ∈ I) intersects every wall of µT (M) transversally,

(Γ3) (t1)<0 ∩ µT (MT ) ⊂ Γ.

By assumptions (Γ1) and (Γ2) we can construct the symplectic cut MΓ. We will denote by

µT×S the (T × S)-moment map and by ωΓ the symplectic form on MΓ. By Theorem 2.13 for

any β ∈ HT×S(M) we have

1

m(MΓ)

∫
MΓ

∆(βeω−µT×S ) =

∮
M//T

κS(βeω−µT×S )
r∏
j=1

(γj − κS(γj))
(4.1)

+
∑

F⊂MT×S

µT (F )∈Γ

1

δΓ

∫
F

i∗F (βeω−µT×S )

eT×SN (F |M)
(4.2)

+
∑

D⊂(MΓ)T×S

µT (D)∈∂Γ\{0}

1

m(D)

∫
D

i∗D∆(β)ei
∗
DωΓ−µT×S(D)

eT×SN (D |MΓ)
.(4.3)

Denote the three summands on the right hand side of (4.1), (4.2), (4.3) by Ired, Iold and Inew,

respectively. We choose ρ ∈ t∗ near 0 in the interior of Γ which is not on the supporting plane

of any wall of µT (MΓ) and with property

(4.4) 0 > 〈ρ, t1〉 > 〈µT (F ′), t1〉

for any F ′ ⊂ (MΓ)T×S with µT (F ′) 6= 0. We will show the following relations:

(i) EqRes−ΛIoldeερ + EqRes−ΛIneweερ = 0,
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(ii) EqResΛIredeερ = 0,

(iii) EqResΛIoldeερ = EqResΛ 1

δΓ

∮
M

βeω−µT×S+ερ,

(iv) EqResΛIneweερ = 0,

(v) lim
ε→0+

EqRes−ΛIredeερ =
vol(T )

δΓ

∮
M//T

κS(βeω−µT×S ).

Then by Proposition 3.35(ii)

EqResΛ(Ired + Iold + Inew)eερ = EqRes−Λ(Ired + Iold + Inew)eερ

for all ε ∈ (0, 1], hence by (i), (ii), (iv) we have

EqResΛIoldeερ = EqRes−ΛIredeερ

for all ε ∈ (0, 1]. By (iii), (v) and Proposition 3.35(iii) we get

EqResΛ 1

δΓ

∮
M

βeω−µT×S = lim
ε→0+

EqResΛIoldeερ = lim
ε→0+

EqRes−ΛIredeερ

=
vol(T )

δΓ

∮
M//T

κS(βeω−µT×S ),

thus the theorem follows.

Now we start to prove the above relations. From (Γ1) and (4.4) follows that −µT×S(F ′) + ερ

are not polarized with respect to −Λ for all F ′ ⊂ MT×S with µT (F ′) ∈ Γ and for all F ′ ∈
(MΓ)T×S with µT (F ′) ∈ ∂Γ \ {0}, thus the relation (i) follows from Corollary 3.41.

Remark that Iredeερ is a t∗-regular fraction of form
∑
I

PIe
λI+ερ∏
i∈I βi

, where λI ∈ s∗, moreover

λI + ερ is not polarized with respect to Λ for any I by (4.4). Hence, the relation (ii) follows

again from Corollary 3.41.

To prove relation (iii) remark that for any F ⊂MT×S we have either µT (F ) ∈ Γ or −µT (F ) ∈
(t1)<0 by (Γ3). In the latter case −µT (F ) + ερ ∈ (t1)<0, therefore −µT×S(F ) + ερ = −µT (F )−
µS(F ) + ερ is not polarized with respect to Λ. By Corollary 3.41 follows that

EqResΛ 1

δΓ

∮
M

βeω−µT×S+ερ = EqResΛ 1

δΓ

∑
F⊂MT×S

∫
F

i∗F (βeω−µT×S+ερ)

eT×SN (F |M)

= EqResΛ 1

δΓ

∑
F⊂MT×S

µT (F )∈Γ

∫
F

i∗F (βeω−µT×S+ερ)

eT×SN (F |M)

= EqResΛIoldeερ.
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To prove (iv) recall that

Ineweερ =
∑

D⊂(MΓ)T×S

µT (D)∈∂Γ\{0}

1

m(D)

∫
D

i∗D∆(β)ei
∗
DωΓ−µT×S(D)+ερ

eT×SN (D |MΓ)
.

By Lemma 2.3 any D ⊂ (MΓ)T×S fixed point component is of form D = F[m,z] = (Fm×Fz)//Tdiag
such that Fm ⊂ M (T×S)m and Fz ⊂ (Cr)Tz are connected components containing m and z,

respectively, where (T×S)m ⊂ T×S and Tz ⊂ T are maximal subtori fixingm and z, respectively.

Recall that µT (D) = µT (m). Let Jz = {j = 1, . . . , r | zj = 0}, where z = (z1, . . . , zr). The

condition µT (D) ∈ ∂Γ \ {0} implies that Jz is a proper subset of {1, . . . , r}. Recall that we have

splitting % : (t ⊕ s)∗m ⊕ t∗z → (t ⊕ s)∗ and let σ = (% ◦ prt∗z ) : t∗ → (t ⊕ s)∗, where prt∗z : t∗ → t∗z.

By Splitting Principle and (2.6) we have

eT×SN (F[m,z] |MΓ) =
∏
i∈I

(%(αi) + e(Ni//Tdiag))
∏
j∈Jz

(σ(γj) + e(Lj//Tdiag),

assuming the splitting

N (F[m,z] |MΓ) =
⊕
i∈I
Ni//Tdiag

⊕
j∈Jz

Lj//Tdiag

to complex line bundles with respect to an invariant compatible almost complex structure on

M . Recall that αi ∈ (t ⊕ s)∗m for all i ∈ I and γj ∈ t∗z for all j ∈ Jz. Hence, the integral

1

m(D)

∫
D

i∗D∆(β)ei
∗
DωΓ−µT×S(D)+ερ

eT×SN (D |MΓ)
is of form

Pe−µT×S(m)+ερ∏
l∈L ηl

, where P ∈ R[t ⊕ s] and ηl ∈

{%(αi), σ(γj) | i ∈ I, j ∈ Jz} for all l ∈ L. Denote ηl the polarization of ηl with respect to Λ.

Remark that by the choice of Λ

(4.5) prt∗(σ(γj)) = prt∗(σ(γj)),

since prt∗(σ(γj)) 6= 0. By Corollary 3.40 it is enough to show that

−µT (m) + ερ /∈ Cone(prt∗(ηl) | l ∈ L),

that is,

(4.6) 0 /∈ µT (m)− ερ+ Cone(prt∗(%(αi)) | i ∈ I) + Cone(prt∗(σ(γj)) | j ∈ Jz).

Moreover, by (2.7) we have span
〈
prt∗(%(αi)) | i ∈ I

〉
⊂ span

〈
γj | j /∈ Jz

〉
, therefore (4.6) holds if

(4.7) 0 /∈ µT (m)− ερ+ span〈γj | j /∈ Jz〉+ Cone
(
prt∗(σ(γj)) | j ∈ Jz

)
.

On the other hand, by (2.8) we have

ερ ∈ int Γ ⊂ span〈γj | j /∈ Jz〉+ intCone(prt∗(σ(γj)) | j ∈ Jz)

and by Remark 2.5(i) we have µT (m) ∈ Cone(γj | j /∈ Jz), therefore

(4.8) 0 ∈ µT (m)− ερ+ span〈γj | j /∈ Jz〉+ intCone(prt∗(σ(γj)) | j ∈ Jz).
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Comparing (4.7) and (4.8) it is enough to show that

(4.9) Cone(prt∗(σ(γj)) | j ∈ Jz) ∩ intCone(prt∗(σ(γj)) | j ∈ Jz) = ∅.

Since Cone(prt∗(σ(γj)) | j ∈ Jz) is simplicial, by (4.5) we only need to show that σ(γj) = −σ(γj)

for some j ∈ Jz.
Since Fm ⊂M (T×S)m is a compact symplectic submanifold, the wall µT×S(Fm) is the convex

hull of µT×S
(
(Fm)T×S

)
by [1]. From Remark 2.5(ii) follows that µT×S(m) ∈ pr−1

t∗ Cone(γj | j 6∈
Jz)∩ µT×S(Fm), and by (Γ3) we have that µT×S(Fm)∩ (t1)<0 6= ∅ and µT×S(Fm)∩ (t1)≥0 6= ∅,
where (t1)≥0 = {u ∈ t∗ ⊕ s∗ |u(t1) ≥ 0}. Therefore, ν : µT×S(Fm) → R, ν(p) = 〈p, t1〉 is a

non-trivial convex function. It takes its minimum on a proper face F of µT×S(Fm). Moreover,

µT×S(m) is in the relative interior of the polytope µT×S(Fm), hence it cannot be a minimum

point of ν. By (2.9) we have

µT×S(Fm) ∩ pr−1
t∗ (Γ) ⊂ µT×S(m) + Cone(σ(γj) | j ∈ Jz).

If p ∈ F then p = µT×S(m) +
∑
j∈Jz

ajσ(γj) with aj ≥ 0 for all j ∈ Jz, hence

ν(p) = ν(µT×S(m)) +
∑
j∈Jz

ajν(σ(γj)).

If σ(γj) = σ(γj) for all j ∈ Jz then ν(σ(γj)) ≥ 0 for all j ∈ Jz, thus ν(p) ≥ ν(µT×S(m)), which

leads to contradiction that µT×S(m) is an inner point of µT×S(Fm).

We conclude the proof of the theorem by proving the relation (v). We have∮
M//T

κS(βeω−µT×S )
r∏
j=1

(γj − κS(γj))
=

∑
B⊂(M//T )S

1

m(B)

∫
B

i∗BκS(βeω−µT×S )

eSN (B |M//T )
r∏
j=1

(γj − i∗BκS(γj))
.

We can write γj − i∗BκS(γj) = γj + ζj − i∗Bκ(γj), where ζj ∈ s∗ and κ : HT (M) → H(M//T ) is

the Kirwan map. Then

1

m(B)

∫
B

i∗BκS(βeω−µT×S )

eSN (B |M//T )
r∏
j=1

(γj − i∗BκS(γj))

=
∑

k1,...,kr≥0

1

m(B)

∫
B

i∗BκS(βeω−µT×S )

eSN (B |M//T )

r∏
j=1

i∗Bκ(γj)
kj

(γj + ζj)kj+1
=

∑
k1,...,kr≥0

PB,k1,...,kre
−µS(B)

r∏
j=1

(γj + ζj)kj+1

,

since µT×S(B) = µS(B) for B ⊂ (M//T )S , and where PB,k1,...,kr are rational functions on s such

that

PB,k1,...,kre
−µS(B) =

1

m(B)

∫
B

i∗B

[
κS
(
βeω−µT×S

)
κ
( r∏
j=1

γ
kj
j

)]
eSN (B |M//T )

.
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We remark that for degree reason only finitely many of these functions are non-zero. By (Γ1)

the vectors γ1 + ζ1, . . . , γr + ζr are polarized with respect to −Λ and we can write

ερ = ερ1(γ1 + ζ1) + . . .+ ερr(γr + ζr)− ε
r∑
j=1

ρjζj

with ρ1, . . . , ρr > 0. Therefore, by Proposition 3.39 we get

EqRes−Λ

(
PB,k1,...,kre

−µS(B)+ερ

r∏
j=1

(γj + ζj)kj+1

)
=

PB,k1,...,kre
−µS(B)−ε

r∑
j=1

ρjζj√
det[(γi + ζi, γj + ζj)]ri,j=1

· (ερ1)k1 · · · (ερr)kr
k1! · · · kr!

.

Let {τ1, . . . , τr} be a basis of the lattice t∗Z and let {ϑ1, . . . , ϑr} be an orthonormal basis of t∗.

By definition (γi + ζi, γj + ζj) = (γi, γj) for all i, j = 1, . . . , r, hence√
det[(γi + ζi, γj + ζj)]ri,j=1 =

√
det[(γi, γj)]ri,j=1 =

∣∣∣∣det

(
∂γi
∂τj

)∣∣∣∣ · ∣∣∣∣det

(
∂τj
∂ϑl

)∣∣∣∣ = δΓ · vol(T )−1.

Finally, we compute

lim
ε→0+

EqRes−ΛIredeερ = lim
ε→0+

EqRes−Λ
∑

B⊂(M//T )S

1

m(B)

∫
B

i∗BκS(βeω−µT×S )eερ

eSN (B |M//T )
r∏
j=1

(γj − i∗BκS(γj))

= lim
ε→0+

∑
B

∑
k1,...,kr≥0

EqRes−ΛPB,k1,...,kre
−µS(B)+ερ

r∏
j=1

(γj + ζj)kj+1

= lim
ε→0+

∑
B

∑
k1,...,kr≥0

vol(T )

δΓ

(ερ1)k1 · · · (ερr)kr
k1! · · · kr!

PB,k1,...,kre
−µS(B)−ε

r∑
j=1

ρjζj

=
vol(T )

δΓ

∑
B⊂(M//T )S

PB,0,...,0e
−µS(B)

=
vol(T )

δΓ

∑
B⊂(M//T )S

1

m(B)

∫
B

i∗BκS(βeω−µT×S )

eSN (B |M//T )

=
vol(T )

δΓ

∮
M//T

κS(βeω−µT×S ).

4.1.2 Non-compact and abelian case

In this section we will prove Theorem 4.7 in the abelian case, namely

(4.10)

∮
M//T

κS(βeω−µT×S ) =
1

vol(T )
EqResΛ

∮
M

βeω−µT×S .

We will approximate M by a compact symplectic space using symplectic cut with respect to the

moment map µK . Denote ϕ′ : M//T → R and ϕ′′ : M//G → R the functions induced by ϕ on

the quotients. They are also proper and bounded below.
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Lemma 4.8. There exists ε ∈ R such that

(E1) MT×S ⊂ ϕ−1(−∞, ε),

(E2) (M//T )S ⊂ (ϕ′)−1(−∞, ε),

(E3) (M//G)S ⊂ (ϕ′′)−1(−∞, ε),

(E4) ε is a regular value of ϕ, ϕ′ and ϕ′′,

(E5) if the supporting affine plane W of a wall of µT×S(M) intersects s∗ in a point, that is

W ∩ s∗ = {p}, then we have χ(p) < ε.

Proof. Since ϕ, ϕ′ and ϕ′′ are K-moment maps and K is 1-dimensional, therefore ϕ(MK),

ϕ′((M//T )K) and ϕ′′((M//G)K) are the set of critical values of ϕ, ϕ′ and ϕ′′, respectively. More-

over, these three functions are constant on K-fixed point components, hence

ϕ(MK) = ϕ
(
MT×S) , ϕ′((M//T )K) = ϕ′

(
(M//T )S

)
, ϕ′′((M//G)K) = ϕ

(
(M//G)S

)
and they are finite by Proposition 4.3.

By Lemma 1.39 we have only finitely many supporting affine planesW, and they yield finitely

many values χ(p) with W ∩ s∗ = {p}. Any value ε bigger than all above will satisfy the required

properties.

Consider an S′ ⊂ S subtorus such that S′ × K → S, (s′, k) 7→ s′k is a finite cover. It

yields a finite cover T × S′ × K → T × S, (t, s′, k) 7→ (t, s′k), which induces isomorphisms

Φ∗ : t∗ ⊕ s∗ → t∗ ⊕ (s′)∗ ⊕ k∗ and Φ∗ : HT×S(M) → HT×S′×K(M). This latter isomorphism

commutes with equivariant integration, reduction and equivariant residue, more precisely

Φ∗
( ∮
M//T

κS(βeω−µT×S )

)
=

∮
M//T

Φ∗
(
κS(βeω−µT×S )

)
=

∮
M//T

κS
(
Φ∗(βeω−µT×S )

)
and

Φ∗
(

EqResΛ

∮
M

βeω−µT×S
)

= EqResΛΦ∗
(∮
M

βeω−µT×S
)

= EqResΛ

∮
M

Φ∗(βeω−µT×S ),

therefore we may suppose that S = S′ ×K. Moreover, for any ξ ∈ s∗ multiplication by eξ also

commutes with equivariant integration, reduction and equivariant residue, more precisely∮
M//T

κS(βeω−µT×S+ξ) = eξ
∮

M//T

κS(βeω−µT×S )

and

EqResΛ

∮
M

βeω−µT×S+ξ = eξEqResΛ

∮
M

βeω−µT×S ,

therefore we may suppose that ε = 0 satisfies conditions of Lemma 4.8 by replacing the moment

map µT×S by µT×S − εγ.
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From now on we will suppose that S = S′ × K and ε = 0. Consider the cone Σ = R≤0γ

and construct the symplectic cut X = MΣ. It is a (G×S)-Hamiltonian manifold (orbifold) with

moment map φG×S : X → g∗⊕ s∗ induced by µG×S and denote ωX the reduced symplectic form

on X.

Lemma 4.9. (i) If 0 ∈ t∗ is a regular value of µT then it is a regular value of φT , too.

(ii) If 0 ∈ g∗ is a regular value of µG then it is a regular value of φG, too.

Proof. We will only prove the second statement. It is enough to check that 0 ∈ g∗ is a regular

value of φG on ϕ−1(0)/K, which is equivalent to G acts locally freely on φ−1
G (0) ∩ ϕ−1(0)/K.

This latter holds if and only if G × K acts locally freely on µ−1
G (0) ∩ ϕ−1(0), that is, when

(0, 0) ∈ g∗ ⊕ R is a regular value of µG × ϕ : M → g∗ ⊕ R. By a similar argument we can show

that this holds exactly when 0 ∈ R is a regular value of ϕ′′ : M//G → R, which is assumed by

(E4) of Lemma 4.8.

Denote X//T = φ−1
T (0)/T and M//K = ϕ−1(0)/K = µ−1

K (0)/K the symplectic quotients.

They admit S- and (T × S)-actions induced by the actions of the same groups on X and M ,

respectively. By Corollary 2.14 and (E1) we have∫
X

∆(βeω−µT×S ) =

∮
M

βeω−µT×S +

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)
.(4.11)

We have a similar formula on X//T by (E2)∮
X//T

κS∆(βeω−µT×S ) =

∮
M//T

κS(βeω−µT×S ) +

∮
(M//K)//T

κS′κT×S′(βe
ω−µT×S )

eSN
(
(M//K)//T |X//T

)
=

∮
M//T

κS(βeω−µT×S ) +

∮
(M//K)//T

κS

(
κT×S′(βe

ω−µT×S )

eT×SN (M//K |X)

)
,(4.12)

since eSN
(
(M//K)//T |X//T

)
= κS

(
eT×SN (M//K |X)

)
by Lemma 2.10. Moreover, by Theorem

4.7 we have∮
X//T

κS∆(βeω−µT×S ) =

∮
X//T

κS
(
∆(β)eωX−φT×S

)
= EqResΛ 1

vol(T )

∮
X

∆(β)eωX−φT×S

= EqResΛ 1

vol(T )

∮
X

∆(βeω−µT×S ),

which yields by (4.11) and (4.12)∮
M//T

κS(βeω−µT×S ) = EqResΛ 1

vol(T )

∮
M

βeω−µT×S + EqResΛ 1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)

−
∮

(M//K)//T

κS

(
κT×S′(βe

ω−µT×S )

eT×SN (M//K |X)

)
.
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Therefore, it is enough to show that

EqResΛ 1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)
=

∮
(M//K)//T

κS

(
κT×S′(βe

ω−µT×S )

eT×SN (M//K |X)

)
.

Despite its resemblance, the formula of Theorem 4.7 cannot be applied directly. By definition

(4.13)∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)
=

∑
D⊂(M//K)T×S′

1

m(D)

∮
D

i∗DκT×S′(βe
ω−µT×S )

i∗DeT×SN (M//K |X)eT×S′N (D |M//K)
.

Recall from section 2.1 that each fixed point component D ⊂ (M//K)T×S
′

is of form D = Dm//K,

where m ∈ ϕ−1(0) is a point such that (t⊕ s)m ⊕ k = t⊕ s and Dm ⊂ M is the (T × S)m-fixed

point component containing m. We have splitting % : (t ⊕ s)∗m ⊕ k∗ → (t ⊕ s)∗ and remark that

%((t⊕ s)∗m) = (t⊕ s′)∗ = kerχ. Then by (2.11)

i∗DeT×SN (M//K |X) = %(γ) + i∗DeN (M//K |X)

and by the Splitting Principle we can assume thatN (Dm |M) = ⊕i∈IDNi is a (T×S)-equivariant

splitting to sum of complex line bundles (using an invariant compatible almost complex structure

on M), thus by (2.13)

eT×S′N (D |M//K) = κ′T×S′(eT×SN (Dm |M)) =
∏
i∈ID

[%(αi) + κ′(eK(Ni))],

where αi ∈ (t⊕ s)∗m is the (T ×S)m-weight of fibers of Ni and κ′T×S′ : HT×S(Dm)→ HT×S′(D),

κ′ : HK(Dm)→ H(D) are Kirwan maps. Therefore, (4.13) has two kinds of t∗-poles

(1) V = span 〈%(αi1), . . . , %(αir )〉 with i1, . . . , ir ∈ ID, i.e. V ⊂ kerχ.

(2) V = span 〈%(γ), %(αi2), . . . , %(αir )〉 with i2, . . . , ir ∈ ID, i.e. V 6⊂ kerχ.

Recall that

EqResΛ 1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)

=
∑

V⊂kerχ

JKResΛV

(
1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)

)
(v, s)dv

+
∑

V 6⊂kerχ

JKResΛV

(
1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)

)
(v, s)dv.

Lemma 4.10. For all t∗-poles V of (4.13) such that V 6⊂ kerχ we have

JKResΛV

(
1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)

)
(v, s)dv = 0.
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Proof. Let V = span 〈%(γ), %(αi2), . . . , %(αir )〉. There is a wall of µT×S(M) such that its support-

ing affine plane is µT×S(m)+V . We construct this wall as follows. Let H ⊂ (T×S)m ⊂ T×S be

a subtorus such that h = ∩rj=2 kerαij and let N ⊂MH be the fixed point component containing

m. By Example 1.6 the supporting affine plane of µT×S(N) is µT×S(m) + ker((t⊕ s)∗ → h∗) =

µT×S(m) + V .

Finally, since V is a t∗-pole, we have (µT×S(m)+V )∩s∗ = {p}. If we write µT×S(m) = λs+λv

with λs ∈ s∗ and λv ∈ V then λs = p. Since m ∈ ϕ−1(0), we have χ(λs)+χ(λv) = χ(µT×S(m)) =

0, thus χ(λv) = −χ(p) > 0 by (E5) and assumption ε = 0. Hence −µT×S(m) = −µT×S(D) is

not polarized with respect to Λ and the lemma follows by Corollary 3.41.

Lemma 4.11.

(4.14)∑
V⊂kerχ

JKResΛV

[
1

vol(T )

∮
M//K

κT×S′(βe
ω−µT×S )

eT×SN (M//K |X)

]
(v, s)dv =

∮
(M//K)//T

κS

[
κT×S′(βe

ω−µT×S )

eT×SN (M//K |X)

]
.

Proof. Let s′ = {s′1, . . . , s′q−1} be a basis of (s′)∗ and recall that {γ} is a basis of k∗. We prove

the equality of fractions on s′ ⊕ k on both sides of (4.14) by showing that for any fixed δ ∈ (s′)∗

their expansions with respect to γ + δ � s′1, . . . , s
′
q−1 are equal. Moreover, by (2.12) we have

eT×SN (M//K |X) = γ + eT×S′N (M//K |X) = γ + δ − δ + eT×S′N (M//K |X),

hence let

(4.15)
1

eT×SN (M//K |X)
=

1

(γ + δ)

∑
n≥0

(
δ − eT×S′N (M//K |X)

γ + δ

)n
.

Now we can apply Theorem 4.7 on M//K with respect to the (T × S′)-action, considering γ + δ

as non-zero constant. Denote Λ′ the polarization induced by Λ on (t ⊕ s′)∗. Remark that

κT×S′(ω − µT×S) = ω′ − µ′T×S′ is the (T × S′)-equivariant symplectic form on M//K, since we

assume that ε = 0. Then we have equality of expansions with respect to γ + δ � s′ by

∑
V⊂kerχ

JKResΛ′V

(
1

vol(T )

∮
M//K

∑
n≥0

(δ − eT×S′N (M//K |X))n

(γ + δ)n+1
κT×S′(β)eω

′−µ′
T×S′

)
(v, s′)dv

= EqResΛ′
(

1

vol(T )

∮
M//K

∑
n≥0

(δ − eT×S′N (M//K |X))n

(γ + δ)n+1
κT×S′(β)eω

′−µ′
T×S′

)

=

∮
(M//K)//T

κS

(∑
n≥0

(δ − eT×S′N (M//K |X))n

(γ + δ)n+1
κT×S′(β)eω

′−µ′
T×S′

)
.

Hereby we have showed (4.10).
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4.1.3 Passing from abelian to the non-abelian case

We deduce the non-abelian version following closely [32]. Recall that 0 ∈ g∗ is a regular value of

µG : M → g∗. First we assume that 0 ∈ t∗ is a regular value of µT : M → t∗, too. Then from

Lemma 4.9 follows that 0 is also a regular value of φG and φT . Denote X//G = φ−1
G (0)/G and

X//T = φ−1
T (0)/T the symplectic quotients.

We make a choice of positive roots of G. Denote R+ and R− the set of positive and negative

roots, respectively. Set v∗ = ker(g∗ → t∗) and fix an isomorphism of real G-representations

(4.16) v∗ '
⊕
α∈R−

Cα,

where Cα is the 1-dimensional representation on which T -acts by weight α. We have a natural

orientation on each Cα, therefore isomorphism (4.16) fixes the orientation of v∗. Moreover,

isomorphism (4.16) induces an isomoprhism of real G-representations

(4.17) v '
⊕
α∈R+

Cα,

which also fixes the orientation of v. Consider the (T × S)-equivariant map σ : X → v∗ defined

by

X

σ
  

φG // g∗

��
v∗

where S acts trivially on g∗ and g∗ → v∗ is the orthogonal projection induced by a T -invariant

scalar product on g∗. This scalar product also yields splitting g∗ = t∗ ⊕ v∗, and under this

splitting φG = (φT , σ). The map σ induces an S-equivariant section σ̃ of the associated bundle

E− = (X × v∗)//T ' X ×
⊕
α∈R−

Cα.

over X//T . It is a transversal section, because 0 ∈ g∗ is a regular value of φG. If we denote

Z = φ−1
G (0) then Z/T is the zero set of σ̃ and it is a submanifold of X//T . We consider the

following diagram

Z/T

π

��

i // X//T

Z/G = X//G

Remark that on X//T we have a canonical orientation induced by the reduced symplectic form

and the orientation of v∗ determines the orientations of the fibers of E−. These two orientations

yield the orientation on Z/T . Moreover, we also have a canonical orientation on X//G induced

by the reduced symplectic form and it fixes the orientation of fibers of π. The vertical subbundle

ker dπ ⊂ T (Z/T ) is isomorphic to (E+|Z/T ), where

E+ = (X × v)//T ' X ×
⊕
α∈R+

Cα.
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Remark that this isomorphism is orientation preserving.

We will use different style of notations for Kirwan maps. Before, in the subscript we have

indicated the group which acts on the quotient, now we will indicate the group by which we

divide. Denote K′T : HT×S(X) → HS(X//T ) and K′G : HG×S(X) → HS(X//G) the Kirwan

maps. As in [32] for any βX ∈ HG×S(X) ' HT×S(X)W we compute∫
X//G

K′G(βX) =
1

|W |

∫
Z/T

eS(E+|Z/T )π∗K′G(βX) by Lemma 4.12

=
1

|W |

∫
Z/T

i∗
[
eS(E+)K′T (βX)

]
π∗K′G = i∗K′T

=
1

|W |

∫
X//T

eS(E−)eS(E+)K′T (βX) by Lemma 4.13

=
1

|W |

∫
X//T

K′T ($βX), by eS(E−E+) = K′T ($),(4.18)

where $ is the product of all roots of G. By (4.12) for any β ∈ HG×S(M) we have

(4.19)

∮
M//T

KT ($β) =

∫
X//T

K′T∆($β)−
∮

(M//K)//T

K′′TK′′K($β)

eSN ((M//K)//T |X//T )
,

where KT : HT×S(M) → HS(M//T ), K′′T : HT×S′(M//K) → HS′((M//K)//T ) and K′′K :

HT×S(M)→ HT×S′(M//K) are Kirwan maps. Similarly,

(4.20)

∮
M//G

KG(β) =

∫
X//G

K′G∆(β)−
∮

(M//K)//G

K′′GK′′K(β)

eSN ((M//K)//G |X//G)
,

where KG : HG×S(M) → HS(M//G) and K′′G : HG×S′(M//K) → HS′((M//K)//G). Let s′ =

{s′1, . . . , s′q−1} be a basis of (s′)∗. For any δ ∈ (s′)∗ and expansion γ + δ � s′1, . . . , s
′
q−1 of

1

eG×SN (M//K |X)
we have by (4.18)

∫
(M//K)//G

K′′G
(∑
n≥0

(δ − eG×S′N (M//K |X))n

(γ + δ)n+1
K′′K(β)

)

=
1

|W |

∫
(M//K)//T

K′′T
(
$
∑
n≥0

(δ − eT×S′N (M//K |X))n

(γ + δ)n+1
K′′K(β)

)
,

therefore

(4.21)

∮
(M//K)//G

K′′GK′′K(β)

eSN ((M//K)//G |X//G)
=

∮
(M//K)//G

K′′G
(

K′′K(β)

eG×SN (M//K |X)

)

=
1

|W |

∮
(M//K)//T

K′′T
(

$K′′K(β)

eT×SN (M//K |X)

)
=

1

|W |

∮
(M//K)//T

K′′TK′′K($β)

eSN ((M//K)//T |X//T )
,
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because K′′K($β) = $K′′K(β), since $ ∈ (St∗)W . Moreover, K ⊂ S implies that the homomor-

phism ∆ : HT×S(M)→ HT×S(X) is HT -linear, hence

(4.22) $∆(β) = ∆($β).

Furthermore,∮
M//G

KG(β) =

∫
X//G

K′G∆(β)−
∮

(M//K)//G

K′′GK′′K(β)

eSN ((M//K)//G |X//G)
by (4.20)

=
1

|W |

∫
X//T

K′T ($∆(β))− 1

|W |

∮
(M//K)//T

K′′TK′′K($β)

eSN ((M//K)//T |X//T )
by (4.18)&(4.21)

=
1

|W |

∫
X//T

K′T∆($β)− 1

|W |

∮
(M//K)//T

K′′TK′′K($β)

eSN ((M//K)//T |X//T )
by (4.22)

=
1

|W |

∮
M//T

KT ($β) by (4.19).(4.23)

By (4.10) and (4.23) follows that∮
M//G

KG(βeω−µG×S ) =
1

|W |

∮
M//T

KT ($βeω−µT×S ) = EqResΛ $

|W |vol(T )

∮
M

βeω−µT×S .

If 0 ∈ t∗ is not a regular value of µT then we choose a regular value ρ close to 0 such that

(ρ, 0) ∈ t∗ ⊕ v∗ remains a regular value of µT × σ. Replacing Z/T = φ−1
G (0)/T by Zερ/T =

φ−1
T (ερ) ∩ σ−1(0)/T in (4.18) and taking the limit ε→ 0 we get∫

X//G

K′G(βX) = lim
ε→0

1

|W |

∫
X//ερT

K′T ($βX)

for any βX ∈ HG×S(X), and where X//ερT = φ−1
T (ερ)/T . Thus, we can similarly show as in the

regular case that ∮
M//G

KG(β) = lim
ε→0

1

|W |

∮
M//ερT

KT ($β)

for all β ∈ HG×S(M), and where M//ερT = µ−1
T (ερ)/T . Finally, by (4.10) we get∮

M//G

KG(βeω−µG×S ) = lim
ε→0

1

|W |

∮
M//ερT

KT ($βeω−µT×S+ερ)

= lim
ε→0

EqResΛ $

|W |vol(T )

∮
M

βeω−µT×S+ερ,

which concludes the proof of Theorem 4.5.

We close this section by showing the following two lemmas, which were used earlier.
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Lemma 4.12. ∫
Z/G

K′G(β) =
1

|W |

∫
Z/T

eS(ker d π)π∗K′G(β).

Proof. We follow the proof of Theorem B in [32]. π : Z/T → Z/G is a fibration with fiber G/T

and π is S-equivariant. For D ⊂ (Z/G)S fixed point component we have π−1(D) = F ⊂ (Z/T )S

is also a fixed point component. Moreover, we have S-equivariant isomorphism of normal bundles

N (F |Z/T ) ' π∗N (H |Z/G). Finally, we compute∫
Z/G

K′G(β) =
∑

D⊂(Z/G)S

∫
D

i∗DK′G(β)

eSN (D |Z/G)

=
1

|W |
∑

F⊂(Z/T )S

∫
F

i∗F (e(ker d π)π∗K′G(β))

eSπ∗N (D |Z/G)
by |W | = χ(G/T ) =

∫
G/T

e(ker dπ)

=
1

|W |
∑

F⊂(Z/T )S

∫
F

i∗F (eS(ker d π)π∗K′G(β))

eSN (F |Z/T )
by e(ker d π|F ) = eS(ker d π|F ),

=
1

|W |

∫
Z/T

eS(ker d π)π∗(K′G(β)).

We have the following equivariant version of Proposition 12.8 of [4].

Lemma 4.13. Let E → X be an S-equivariant vector bundle over a compact manifold (orbifold)

X. Let σ be an S-equivariant section, transverse to the zero section. Denote Z = σ−1(0) the

zero set of the section and iZ : Z ↪→ X the inclusion. For any η ∈ HS(X) we have∫
Z

i∗Zη =

∫
X

eS(E)η.

Proof. Let F ⊂ XS and D ⊂ F ∩ Z ⊂ ZS be fixed point components. Denote iF : F ↪→ X,

iD : D ↪→ Z and jD : D ↪→ F the inclusions. By transversality of σ we have equivariant

isomorphism of vector bundles

(4.24) E|Z ' N (Z |X).

We have equivariant decomposition E|F = (E|F )S ⊕E′, hence E|D = (E|D)S ⊕E′|D. Moreover,

by (4.24) we get

(4.25) N (Z |X)|D ' (E|D)S ⊕ E′|D.

The inclusions D ⊂ Z ⊂ X give

(4.26) N (D |X) ' N (D |Z)⊕N (Z |X)|D,
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and by (4.25) we have

(4.27) N (D |X) ' N (D |Z)⊕ (E|D)S ⊕ E′|D.

Moreover, the inclusions D ⊂ F ⊂ X yield

(4.28) N (D |X) ' N (D |F )⊕N (F |X)|D,

and finally we also have a decomposition

(4.29) N (D |X) ' N (D |X)S ⊕N (D |X)′.

By equations (4.28) and (4.29) we have N (D |F ) ' N (D |X)S , hence

(4.30) N (F |X)|D ' N (D |X)′.

D is a fixed component of Z, therefore from equations (4.27) and (4.29) follows that

(4.31) N (D |X)′ ' N (D |Z)⊕ E′|D.

The isomorphisms (4.30) and (4.31) imply

(4.32) eSN (D |Z) =
j∗D(eSN (F |X))

j∗D(eS(E′))

Finally, we compute∫
Z

i∗Zη =
∑
D⊂ZS

∫
D

i∗Dη

eSN (D |Z)

=
∑
D⊂ZS

∫
D

j∗D(eS(E′))i∗Dη

j∗D(eSN (F |X))
by (4.32)

=
∑
F⊂XS

∫
F

e
(
(E|F )S

)
eS(E′)i∗F η

eSN (F |X)
by Proposition 12.8 of [4]

=
∑
F⊂XS

∫
F

eS(E|F )i∗F η

eSN (F |X)
by e((E|F )S) = eS((E|F )S)

=

∫
X

eS(E)η.

4.2 HyperKähler version

We formulate an analogue of Theorem 4.5 for hyperKähler quotients. First we compare the torus

hyperKähler quotients to symplectic quotients, then we conclude the formula for non-abelian

quotients by [19].
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Let M be a hyperKähler manifold with real symplectic form ωR and complex symplectic form

ωC. Assume that M admits an action of a compact connected Lie group G which acts on it in a

hyper-Hamiltonian manner with hyperKähler moment map µ = (µR, µC) : M → g∗⊕g∗C. We also

consider an additional Hamiltonian S-action on (M,ωR) which commutes with the G-action and

denote µS : M → s∗ the S-moment map. As in the symplectic case we assume that there is an

1-dimensional subtorus K ⊂ S such that its moment map µK is proper and non-surjective. Then

we can write µK = ϕ · γ with a generator γ ∈ k∗Z such that ϕ : M → R is proper and bounded

below. In hyperKähler case we impose the additional conditions that g∗C is an S-representation

such that µC : M → g∗C is (G× S)-equivariant and (t∗C)S = {0}, where t is the Lie algebra of the

maximal torus T ⊂ G of rank r. We introduce notations µTR : M → t∗ and µTC : M → t∗C for

the abelian real and complex moment maps, that is, µTR = prt∗ ◦ µR and µTC = prt∗ ◦ µC, where

prt∗ : g∗ → t∗ is the projection.

Consider a regular value of µ of form (ξ, 0) ∈ (g∗ ⊕ g∗C)G. Then the quotient M////(ξ,0)G =

µ−1
R (ξ) ∩ µ−1

C (0)/G is again a hyperKähler manifold (orbifold) [22].

Theorem 4.14. For any β ∈ HG×S(M) ' HT×S(M)W we have∮
M////(ξ,0)G

κS(βeωR−µR−µS+ξ) = lim
ε→0

EqResΛ ϑ$R$C

|W |vol(T )

∮
M

βeωR−µTR −µS+ξ+ερ,

where κS : HG×S(M)→ HS(M////(ξ,0)G) is the Kirwan map, Λ is a polarization compatible with

the proper bounded below moment map, |W | is the rank of the Weyl group, ϑ$C is the product

of (T ×S)-weights on g∗C, $R is the product of roots of G and ρ ∈ t∗ such that ξ+ ερ is a regular

value of µTR for small ε.

Proof. First we examine the G = T abelian case. Assume that ξ ∈ t∗ is a regular value of

µR. If M//ξT = (µTR )−1(0)/T denotes the symplectic quotient then µTC : M → t∗C induces an S-

equivariant map µ̃TC : M//ξT → t∗C. Since (ξ, 0) ∈ t∗ ⊕ t∗C is a regular value of (µTR , µ
T
C ), therefore

0 ∈ t∗C is a regular value of µ̃TC and we can identify (µ̃TC )−1(0) = M////(ξ,0)T . Consequently, we

have an S-equivariant isomorphism of vector bundles

(4.33) N
(
M////(ξ,0)T |M//ξT

)
'M////(ξ,0)T × t∗C.

Since µ̃TC is S-equivariant, the condition (t∗C)S = {0} implies that

(4.34)
(
M//ξT

)S
=
(
M////(ξ,0)T

)S
.

By (4.33) for any F ⊂ (M////(ξ,0)T )S fixed point component we have

N (F |M//ξT ) = N (F |M////(ξ,0)T )⊕ (F × t∗C),

hence

(4.35) eSN (F |M//ξT ) = eSN (F |M////(ξ,0)T )ϑ,
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where ϑ is the product of all S-weights on t∗C. Remark that ϑ 6= 0 by condition (t∗C)S = {0}.
If κS : HT×S(M) → HS(M////(ξ,0)T ) and κ′S : HT×S(M) → HS(M//ξT ) denote the hyperKähler

and the symplectic Kirwan maps, respectively, then i∗M////(ξ,0)T
κ′S = κS and we compute∮

M////(ξ,0)T

κS(βeωR−µTR −µS+ξ) =
∑

F⊂(M////(ξ,0)T )S

1

m(F )

∫
F

i∗FκS(βeωR−µTR −µS+ξ)

eSN (F |M////(ξ,0)T )

=
∑

F⊂(M////(ξ,0)T )S

1

m(F )

∫
F

ϑi∗Fκ
′
S(βeωR−µTR −µS+ξ)

eSN (F |M//ξT )
by (4.35)

=
∑

F⊂(M////(ξ,0)T )S

1

m(F )

∫
F

i∗Fκ
′
S(ϑβeωR−µTR −µS+ξ)

eSN (F |M//ξT )
(κ′S is HS-linear)

=

∮
M//ξT

κ′S(ϑβeωR−µTR −µS+ξ) by (4.34)

= EqResΛ 1

vol(T )

∮
M

ϑβeωR−µTR −µS+ξ by Theorem 4.5.

If ξ is not regular value of µTR then we perturb ξ to a regular value ξ + ερ and we take the

limit ε→ 0, hence

(4.36)

∮
M////(ξ,0)T

κS(βeωR−µTR −µS+ξ) = lim
ε→0

∮
M////(ξ+ερ,0)T

κS(βeωR−µTR −µS+ξ+ερ)

= lim
ε→0

∮
M//ξ+ερT

κ′S(ϑβeωR−µTR −µS+ξ+ερ) = lim
ε→0

EqResΛ 1

vol(T )

∮
M

ϑβeωR−µTR −µS+ξ+ερ.

Now consider the non-abelian case. Suppose that (ξ, 0) ∈ (g∗⊕g∗C)G is a regular value of (µR, µC)

such that (ξ, 0) ∈ t∗ ⊕ t∗C is also a regular value of (µTR , µ
T
C ) via the identification (g∗)G ' (t∗)W .

By Theorem 2.2 of [19] and (4.36) for any β ∈ HG×S(M) ' HT×S(M)W we have

(4.37)

∮
M////(ξ,0)G

κS(βeωR−µR−µS+ξ) =
1

|W |

∮
M////(ξ,0)T

κS($R$Cβe
ωR−µTR −µS+ξ)

=
1

|W |

∮
M//ξT

κS(ϑ$R$Cβe
ωR−µTR −µS+ξ) = EqResΛ ϑ$R$C

|W |vol(T )

∮
M

βeωR−µTR −µS+ξ.

If (ξ, 0) ∈ t∗⊕ t∗C is not a regular value of (µTR , µ
T
C ) then we choose a small ρ ∈ t∗ such that ξ+ ερ

and (ξ + ερ, 0) are regular values of µTR and (µTR , µ
T
C ), respectively for all ε ∈ (0, 1]. Similarly to

the symplectic case we can show that∮
M////(ξ,0)G

κS(βeωR−µR−µS+ξ) = lim
ε→0

∮
M////(ξ+ερ,0)T

κS($R$Cβe
ωR−µTR −µS+ξ+ερ)

and the theorem follows by (4.37).
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5

Applications

In this chapter we give two applications of results of Chapter 4. In the first one we describe a

method for computation of cohomology ring of the Hilbert scheme of points on the plane [27, 44].

We give a description of the equivariant cohomology of this Hilbert scheme of points from which

the ordinary cohomology ring can be computed in terms of generators and relations.

In the second example we compute Nekrasov’s partition function [38] on the moduli space of

framed torsion free sheaves on CP2. We get back the formula by Nakajima and Yoshioka [37].

5.1 Equivariant cohomology of the Hilbert scheme of points on the

plane

ConsiderM = T ∗(End(Cn)⊕Hom(C,Cn)) = Mn(C)⊕Mn,1(C)⊕Mn(C)⊕M1,n(C) with U(n)-

action

g · (A, a,B, b) = (gAg−1, ga, gBg−1, bg−1),

for all g ∈ U(n), A,B ∈Mn(C) and a, bt ∈Mn,1(C). This action is hyper-Hamiltonian with real

and complex moment maps

µR : (M, ωR)→ u(n)∗, µR(A, a,B, b) =

√
−1

2
([A,A∗] + [B,B∗] + aa∗ − b∗b) ,

µC : (M, ωC)→ u(n)∗C, µC(A, a,B, b) = [A,B] + ab,

where we identify u(n)∗ ' u(n) via the non-degenerate bilinear form (u, v) = Tr(u∗v) for all u, v ∈

u(n). The hyperKähler moment map µ = (µR, µC) has (ξ, 0) =

(√
−1

2
I, 0

)
∈ u(n)∗ ⊕ u(n)∗C

as regular value and the hyperKähler quotient M////(ξ,0)U(n) is diffeomorphic to Hilbn(C2) the

Hilbert scheme of n points on C2 [36].

Let T = {g ∈ U(n) | g diagonal} be a maximal torus of U(n) and we choose the basis

{u1, . . . , un} of t∗ such that ui
(
diag(

√
−1τ1, . . . ,

√
−1τn)

)
= τi for all i = 1, . . . , n. Then the
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real and complex abelian moment maps are as follows

µTR : (M, ωR)→ t∗, µTR (A, a,B, b) =

n∑
k,j=1

(uk − uj)
|Akj |2 + |Bkj |2

2
+

n∑
k=1

uk
|ak|2 − |bk|2

2
,

µTC : (M, ωC)→ t∗C, µTC (A, a,B, b) = −
√
−1

n∑
k=1

uk

 n∑
j=1

AkjBjk −BkjAjk + akbk

 .

ξ is a regular value of µTR , because u1 + . . . + un is regular with respect to {uk − uj , uk | k, j =

1, . . . , n}. Moreover, (ξ, 0) is also regular value of the abelian hyperKähler moment map µT =

(µTR , µ
T
C ). Therefore, both abelian symplectic and hyperKähler quotients M//ξT and M////(ξ,0)T

exist. We note that M////(ξ,0)T is a hypertoric variety [20], [18].

We also consider the following circle action of S = U(1) on M

s · (A, a,B, b) = (sA, sa, sNB, sNb), (N > n)

for all s ∈ S, A,B ∈Mn(C), a, bt ∈Mn,1(C), which commutes with the U(n)-action and admits

moment map µS : (M, ωR)→ s∗, µS = ϕ · z, where

ϕ(A, a,B, b) =
1

2
Tr(AA∗ +NBB∗ + a∗a+Nbb∗)

is proper, bounded below and z ∈ s∗ is such that z(
√
−1σ) = σ for all (

√
−1σ) ∈ s = u(1).

Finally, we note that µC is S-equivariant, i.e. µC(s · (A, a,B, b)) = sN+1µC(A, a,B, b), and

(t∗C)S = {0}.
The cohomology ring H(Hilbn(C2)) is generated by the Chern classes of the tautological

vector bundle Ξn = (M×C)////(ξ,0)U(n), where U(n) acts on Cn via the standard representation

[10]. This is equivalent to the surjectivity of the Kirwan map κ : HU(n)(M)→ H(Hilbn(C2)).

We use the same idea as in [18], Lemma 4.9 to show that

Lemma 5.1. The S-equivariant Kirwan map κS : HU(n)×S(M) → HS(Hilbn(C2)) is also sur-

jective.

Proof. Since the S-moment map onM////(ξ,0)U(n) ' Hilbn(C2) is proper, bounded below, hence

HS(Hilbn(C2)) ' H(Hilbn(C2)) ⊗ HS(pt) as HS(pt)-modules, i.e. HS(Hilbn(C2)) is equiv-

ariantly formal ([26], [43] Theorem 4.2, [41] Proposition 2.10). Recall that HS(pt) = R[z],

HU(n)×S(M) = R[u1, . . . , un, z]
Sn and HU(n)(M) = R[u1, . . . , un]Sn . We have the following

commutative diagram

(5.1) R[u1, . . . , un, z]
Sn

κS //

π1

��

H(Hilbn(C2))⊗ R[z]

π2

��
R[u1, . . . , un]Sn

κ
// H(Hilbn(C2)),

where πi(αi ⊗ 1) = αi and πi(1 ⊗ z) = 0 for all i = 1, 2, α1 ∈ R[u1, . . . , un]Sn and α2 ∈
H(Hilbn(C2)). Since κS is R[z]-linear, therefore H0(Hilbn(C2)) ⊗ R[z] is in the image of κS .
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Assume that ⊕i<kHi(Hilbn(C2))⊗R[z] ⊂ ImκS and let βk ∈ Hk(Hilbn(C2)). By surjectivity of

κ there is αk ∈ R[u1, . . . , un]Sn of degree k such that βk = κ(αk). By commutativity of (5.1) we

have βk ⊗ 1 − κS(αk) ∈ kerπ2 = H(Hilbn(C2)) ⊗ zR[z], hence βk ⊗ 1 = κS(αk) +
k−1∑
i=0

βi ⊗ zk−i

with βi ∈ Hi(Hilbn(C2)) for all i = 0, . . . , k − 1. From the inductive hypothesis follows that

βk ⊗ 1 ∈ ImκS and κS is surjective.

The surjectivity of the Kirwan map provides the generators of the cohomology ring of the

Hilbert scheme, that is, we have isomorphism of rings

HS(Hilbn(C2)) ' R[u1, . . . , un, z]
Sn
/

kerκS .

The Jeffrey-Kirwan formula can be used as follows to compute the relations between generators.

First, we remark that (Hilbn(C2))S is compact byMS = {0} and Proposition 4.3. By [19] there

is a non-degenerate bilinear pairing on the rationalized ring ĤS(Hilbn(C2)) = HS(Hilbn(C2))⊗
R(z), which will play the role of Poincaré duality and it is given by

〈η̂1, η̂2〉 =

∮
Hilbn(C2)

η̂1η̂2

for all η̂1, η̂2 ∈ ĤS(Hilbn(C2)). This pairing is R(z)-linear and the natural map HS(Hilbn(C2))→
ĤS(Hilbn(C2)) is injective by the equivariant formality. Hence η ∈ HS(Hilbn(C2)) is zero exactly

when ∮
Hilbn(C2)

ηγ = 0, ∀γ ∈ HS(Hilbn(C2)).

If we couple it with the Kirwan surjectivity then the kernel of κS can be described as

kerκS =
{
β ∈ R[u1, . . . , un, z]

Sn
∣∣∣ ∮

Hilbn(C2)

κS(βγ) = 0, ∀γ ∈ R[u1, . . . , un, z]
Sn
}
.

We have the following integration formula on Hilbn(C2).

Theorem 5.2. For any β ∈ HU(n)×S(M) = R[u1, . . . , un, z]
Sn we have∮

Hilbn(C2)

κS(β) =
∑
λ`n

bλ(z)β(pλ(z), z),

where

pλ(z) = − (z, (1 +N)z, . . . , (1 + (λ1 − 1)N)z, . . . , kz, (k +N)z, . . . , (k + (λk − 1)N)z)

and 0 6= bλ(z) ∈ R[z±1] for any λ = (λ1, . . . , λk) partition of n with λ1 ≥ . . . ≥ λk.

Remark 5.3. For our purpose only the non-vanishing of bλ(z) is relevant, nevertheless the exact

value is equal

bλ(z) =
(2π)nz−2n∏

i∈Yλ
[−Aλ(i) + (Lλ(i) + 1)N ][Aλ(i) + 1− Lλ(i)N ]

,
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where Yλ is the Young diagram of the partition λ, Aλ(i) and Lλ(i) are the arm-length and leg-

length of the box i in Yλ, respectively (Definition 5.16). We can deduce this formula as follows.

We observe that H ′(u, z) in (5.4) is equal to G′V (u, z,Nz,−z) in (5.10) for r = 1, and which is

computed in Lemma 5.23 via the relation (5.13). �

The following lemma shows that how can we compute the kernel of κS from Theorem 5.2.

Lemma 5.4. Let K be a field and let {q1, . . . , qm} ⊂ Kn. If L : K[x1, . . . , xn] → K, L(P ) =
m∑
i=1

biP (qi) with bi ∈ K \ {0} for all i = 1, . . . ,m then

{P ∈ K[x1, . . . , xn] | L(PQ) = 0, ∀Q} = {P ∈ K[x1, . . . , xn] |P (qi) = 0, ∀ i = 1, . . . ,m}.

Proof. Consider the polynomial Qi(x) =
∏

1≤k≤n

∏
1≤j≤m
qjk 6=qik

(xk−qjk), where qj = (qj1, . . . , qjn). Then

Qi(qj) = 0 if j 6= i and Qi(qi) 6= 0. If P ∈ {P ∈ K[x1, . . . , xn] | L(PQ) = 0, ∀Q} then for all

i = 1, . . . ,m we have L(PQi) = biP (qi)Qi(qi) = 0, hence P (qi) = 0. The other inclusion is

obvious.

We got the following description of the equivariant cohomology ring of the Hilbert scheme of

points on the plane.

Theorem 5.5. We have isomorphism of rings

HS(Hilbn(C2)) ' R[u1, . . . , un, z]
Sn
/{

P ∈ R[u1, . . . , un, z]
Sn
∣∣P (pλ(z), z) = 0, ∀λ ` n

}
.

Furthermore, the ordinary cohomology ring can be computed from the equivariant one as

H(Hilbn(C2)) ' HS(Hilbn(C2))
/
zHS(Hilbn(C2)),

since HS(Hilbn(C2)) is equivariantly formal [11]. Therefore, if the ideal kerκS is generated

by P1(u, z), . . . , Pr(u, z) ∈ R[u1, . . . , un, z]
Sn then kerκ is generated by P1(u, 0), . . . , Pr(u, 0) ∈

R[u1, . . . , un]Sn .

Proof of Theorem 5.2. By Theorem 4.14 for any β ∈ R[u1, . . . , un, z]
Sn we have

(5.2)

∮
Hilbn(C2)

κS(β) = lim
ε→0+

∮
M////(ξ,0)U(n)

κS

(
βeε(ωR−µR−µS+ξ)

)
=

lim
ε→0+

(2π)3n

n! vol(T )
EqResΛ


β(u, z)((N + 1)z)n

∏
1≤i6=j≤n

(ui − uj)((N + 1)z + ui − uj)e
ε
n∑
i=1

ui

Nnz2n
∏

1≤i6=j≤n
(z + ui − uj)(Nz + ui − uj)

∏
1≤k≤n

(z + uk)(Nz − uk)

 =

lim
ε→0+

(2π)2n

n!

[
N + 1

Nz

]n
EqResΛ


β(u, z)

∏
1≤i6=j≤n

(ui − uj)((N + 1)z + ui − uj)e
ε
n∑
i=1

ui

∏
1≤i6=j≤n

(z + ui − uj)(Nz + ui − uj)
∏

1≤k≤n
(z + uk)(Nz − uk)

 ,
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where Λ is the polarization induced by the ordered basis {z, u1, . . . , un} of t∗⊕ s∗ and we choose

the scalar product on t∗ such that {u1, . . . , un} becomes an orthonormal basis, whence vol(T ) =

(2π)n.

Let

F (u, z) =

∏
1≤i 6=j≤n

(ui − uj)((N + 1)z + ui − uj)∏
1≤i 6=j≤n

(z + ui − uj)(Nz + ui − uj)
∏

1≤k≤n
(z + uk)(Nz − uk)

.

To compute EqResΛβ(u, z)F (u, z)e
ε
n∑
i=1

ui
we consider only t∗-poles V spanned by subsets of

A = {z + ui − uj , Nz + ui − uj , z + uk, Nz − uk | i 6= j, i, j, k = 1, . . . , n} which contains linear

terms from the denominator of F . Remark that all elements of A are polarized with respect to

Λ.

Lemma 5.6. Let BV = {α1, . . . , αn} ⊂ A ∩ V be a basis of V = span〈u1 − p1z, . . . , un − pnz〉.

(i) There is k such that Nz − uk or z + uk is in BV .

(ii) For any i = 1, . . . , n we can write ui − piz =
n∑
i=1

qiαi such that qi ∈ {0,±1}.

(iii) For all i = 1, . . . , n we can present −pi = ai + biN uniquely such that −n ≤ ai, bi ≤ n.

Proof. Let N0 and N1 be subsets of {1, . . . , n} such that

(1) i ∈ N1 if z + ui or Nz − ui is in BV ,

(2) i ∈ N1 if j ∈ N1 and εz + ui − uj or εz + uj − ui is in BV for any ε ∈ {1, N}.

(3) any element unsorted by (1) and (2) is in N0.

We can also define subsets B0
V ,B1

V ⊂ BV such that αi ∈ BlV if ±uj is a summand of αi for some

j ∈ Nl. Remark that Nl = ∅ if and only if BlV = ∅. By construction {1, . . . , n} = N0 ]N1, hence

BV = B0
V ] B1

V . If prt∗ : t∗ ⊕ s∗ → t∗ is the projection then prt∗(BlV ) ⊂ span〈ui | i ∈ Nl〉 for

any l = 0, 1. Moreover, B0
V may only contain elements of form εσ + ui − uj (ε ∈ {1, N}), hence∑

i∈N0

ui /∈ span(prt∗(B0
V )). If N0 6= ∅ then

prt∗(V ) = span(prt∗(B0
V )) + span(prt∗(B1

V )) 6= span〈ui | i ∈ N0〉+ span〈ui | i ∈ N1〉 = t∗,

which leads to contradiction that V is a t∗-pole. Therefore, we have N1 = {1, . . . , n}, which

implies (i), and moreover, for any k ∈ {1, . . . , n} there exists a sequence i1, . . . , im such that

ui1 , ui2 − ui1 , . . . , uim − uim−1
∈ ±prt∗(BV ) and im = k, which yields (ii). Finally, by (ii) we

have −pi =
n∑
i=1

qiεi, where qi ∈ {0,±1} and εi ∈ {1, N}, therefore −pi = ai + biN such that

−n ≤ ai, bi ≤ n and the uniqueness of ai, bi follows from n < N .

We associate to a t∗-pole V an oriented graph ΓV with vertices {0, 1, . . . , n} on the sublattice

Z × NZ ⊂ Z2 as follows. The vertex 0 has coordinates (0, 0) ∈ Z2 and the coordinates of a

non-zero vertex i are (ai, biN), where ai, bi are defined by Lemma 5.6(iii). For each element of

AV = A ∩ V we draw on edge according to the following table.
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α ∈ AV edges of ΓV

Nz + ui − uj vertical edge from j to i

Nz − ui vertical edge from i to 0

z + ui − uj horizontal edge from j to i

z + ui horizontal edge from 0 to i

From the proof of Lemma 5.6 follows that the graph ΓV is connected. Moreover, it is complete

in the following sense. If the vertex i has coordinates (a, b) and j has coordinates (a + 1, b)

(respectively (a, b+N))) then there is an edge i→ j if j 6= 0 (respectively i 6= 0). Furthermore,

if vertices i and j have the same coordinates and there is an edge k → i (or i→ k) then we also

have an edge k → j (or j → k) in ΓV .

By decomposing F to partial fractions we will get fractions which can be derived from F by

removing linear terms from its nominator and denominator. The removal of linear terms will be

encoded in a graph which we get from ΓV = ΓV,F by replacing edges i → j with i // j or

by adding additional dotted arrows by the following rules. Let G be a fraction derived from F .

(D1) The partial fraction decomposition

G = G′
((N + 1)z + uk − ui)

(z + uk − ul)(Nz + ul − ui)
= G′

1

z + uk − ul
+G′

1

Nz + ul − ui
= G1 +G2

with z + uk − ul, Nz + ul − ui ∈ V will be pictured as

l // k

=

l // k

+

l // k

i

OO

i

OO @@

i

OO @@ .

We can get G1 from G by removing Nz+ ul− ui and (N + 1)z+ uk − ui respectively from

the denominator and nominator. We translate it in terms of graphs. We get ΓV,G1
from

ΓV,G by replacing the edge i→ l with i // l (corresponding to removal of Nz+ul−ui)
and by adding diagonal arrow i // k (corresponds to removal of (N + 1)z + uk − ui).
Similarly, we get ΓV,G2

from ΓV,G by replacing l→ k with l // k (removal of z+uk−ul)
and by adding diagonal arrow i // k (removal of (N + 1)z + uk − ui).
In general, dotted diagonal arrows i // k corresponds to removal of terms (N + 1)z +

ui − uk from the nominator, hence we cannot have double dotted diagonal arrows from i

to k. Moreover, on pictures we only draw the subgraph, where a mutation occurs in the

initial graph. In the case of l = 0 we set u0 = 0.

(D2) Similarly, for decomposition

G = G′
(N + 1)z + uk − ui

(z + uj − ui)(Nz + uk − uj)
= G′

1

Nz + uk − uj
+G′

1

z + uj − ui
= G1 +G2

with z + uj − ui, Nz + uk − uj ∈ V , i 6= 0 we draw

k

=

k

+

k

0 6= i // j

OO

0 6= i //

==

j

OO

0 6= i

==

// j

OO .
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(D3) The decomposition

G = G′
ui − uj

(z + ui − ul)(z + uj − ul)
= G′

1

z + uj − ul
−G′ 1

z + ui − ul
= G1 −G2

with z + ui − ul, z + uj − ul ∈ V yields

l
li //
lj
// i, j = l

li //
lj
// i, j

ji

��
− l

li //
lj
// i, j

ji

��

where the arrow labeled by li (respectively by lj) goes from l to i (respectively to j). The

dotted hook arrow labeled by ji corresponds to removal of ui − uj from the nominator of

G. Thus we get the graph ΓV,G1 (corresponding to G1) from ΓV,G by replacing l
li−→ i by

l
li // i (removal of z+ul−ui) and by adding hook arrow i, j jiii (removal of ui−uj).

Similarly, we get ΓV,G2
from ΓV,G by replacing l

lj−→ j with l
lj // j and by adding hook

arrow i, j jiii .

(D4) Similarly, the decomposition

G = G′
ui − uj

(Nz + ui − ul)(Nz + uj − ul)
= G′

1

Nz + uj − ul
−G′ 1

Nz + ui − ul
= G1 −G2

with Nz + ui − ul, Nz + uj − ul ∈ V corresponds to mutation of subgraphs

i, j

=

i, j

ji

��

−

i, j

ji

��

0 6= l

li

OO

lj

OO

0 6= l

li

OO

lj

OO

0 6= l

li

OO

lj

OO .

Definition 5.7. We say that a fraction G derived from F (or a graph ΓV,G got from ΓV ) does

not contribute (at pole V ) if

JKResΛV β(u(v, z), z)G(u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv = 0

for all β ∈ R[u1, . . . , un, z]
Sn and ε > 0. If G = F then we say that the pole V does not

contribute.

Definition 5.8. We call (horizontal or vertical) edges j → i tails of the vertex i.

Lemma 5.9. (i) A fraction G derived from F does not contribute if ΓV,G has a vertex i 6= 0

without a tail.

(ii) If there is a vertex i 6= 0 in ΓV with coordinates not in {(a, b, ) ∈ Z2 | a > 0, b ≥ 0} then

the pole V does not contribute.
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Proof. (i) Denote G the set of α ∈ AV which appears in the denominator of G. Since i has no

tail, therefore the only elements of G involving ui may be of form Nz−ui, Nz+uj −ui or

z + uj − ui, that is, any polarized element in G has non-positive ui coefficient. Therefore,

ε

n∑
i=1

ui /∈ Cone(prt∗(α) |α ∈ G) for any ε > 0, hence by Corollary 3.19

JKResΛV β(u(v, z), z)G(u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv = 0

for all β ∈ R[u1, . . . , un, z]
Sn and ε > 0.

(ii) If there is a non-zero vertex i with coordinates (ai, bi) such that ai ≤ 0 then we can assume

that for any other vertex j 6= 0 with coordinates (aj , bj) we have ai ≤ aj and if ai = aj

then bi ≤ bj . Hence there is no edge 0 6= j → i in ΓV and remark that if there is an edge

0→ i then ai > 0. If bi < 0 then similarly we can show that there is a vertex in ΓV without

tail, hence V does not contribute by (i).

Lemma 5.10. A pole V does not contribute if any of the following holds:

(i) ΓV contains a subgraph

k

0 6= i // j

OO

and there is no vertex l such that

l // k

0 6= i

OO

// j

OO

is

also in ΓV ,

(ii) ΓV contains a subgraph

j // k

i

OO
and there is no vertex l such that

j // k

i

OO

// l

OO

is in ΓV ,

(iii) there are two vertices in ΓV with same coordinates.

Proof. Suppose that all non-zero vertex i in ΓV has coordinates (ai, bi) with ai > 0 and bi ≥ 0.

(i) Assume that if (aj , bj) are coordinates of the vertex j then bj is minimal. That is, if there is

a vertex j′ with coordinates (aj′ , bj′) and it admits horizontal and vertical edges 0 6= i′ → j′

and j′ → k′ respectively, then bj′ ≥ bj . If there is no edge l → k then by decomposition

(D2) we get F = G1 +G2 such that in ΓV,G2
the vertex k has no tails, hence F contributes

exactly when G1 does. By assumption any vertex j′ below j, i.e. with coordinates aj′ = aj

and bj′ ≤ bj , may only have vertical tail, thus the last one cannot have tails. Therefore,

G1 does not contribute either.

If the horizontal edge l→ k exists then the vertical edge i→ l also exists in ΓV , because

Nz + ul − ui = (Nz + uk − uj)− (z + uk − ul) + (z + uj − ui) ∈ V.

84



(ii) Similarly, as above assume that if (aj , bj) are coordinates of the vertex j then aj is minimal.

If there is no vertical edge l → k in ΓV then by decomposition (D1) we get F = G1 + G2

such that the vertex k has no tails in ΓV,G2
. Hence F contributes if and only if G1 does.

Moreover, in ΓV,G1
the vertex j has no vertical tail and by assumption any vertex j′ with

coordinates aj′ ≤ aj , bj′ = bj may only admit horizontal tail. But the first vertex in the

row cannot have any tail. If this last vertex is 0 than i has coordinates (ai, bi) with bi < 0,

which leads to contradiction. Therefore, G2 does not contribute either.

If the vertical edge l→ k exists in ΓV then the horizontal edge i→ l also exists, because

z + ul − ui = (Nz + uj − ui) + (z + uk − uj)− (Nz + uk − ul) ∈ V.

(iii) Suppose that there are two vertices i and j with same coordinates (a, b). We may suppose

that there are no more lattice point (x, y) ∈ Z2 with double vertices such that x ≤ a,

y ≤ b and (x, y) 6= (a, b). If there is only horizontal or vertical tail to i (and therefore to

j, too) then by decomposition (D3) or (D4) we get F = G1 − G2 such that in ΓV,G1 and

ΓV,G2
vertices i and j, respectively have no tails. Suppose that i (and therefore j) has both

vertical and horizontal tails. By the assumption that all non-zero vertex i has coordinates

in {(x, y) ∈ Z2 |x > 0, y ≥ 0} we can assume that (a, b) 6= (1, 0). By decompositions (D3)

and (D4) we get

F = G′
(ui − uj)(uj − ui)

(z + ui − ul)(z + uj − ul)(Nz + ui − uk)(Nz + uj − uk)

= −G′ 1

(z + ui − ul)(Nz + ui − uk)
+G′

1

(z + ui − ul)(Nz + uj − uk)

+G′
1

(z + uj − ul)(Nz + ui − uk)
−G′ 1

(z + uj − ul)(Nz + uj − uk)

= −G1 +G2 +G3 −G4

or in picture

l
li //
lj
// i, j

= −

l
li //
lj
// i, j

ij

tt

ji

��

+

l
li //
lj
// i, j

ij

tt

ji

��

k

ki

OO
kj

OO

k

ki

OO
kj

OO

k

ki

OO
kj

OO

+

l
li //
lj
// i, j

ij

tt

ji

��

−

l
li //
lj
// i, j

ij

tt

ji

��

k

ki

OO
kj

OO

k

ki

OO
kj

OO

Remark that in ΓV,G1
and ΓV,G4

the vertex i and j respectively has no tail, hence G1 and

G4 do not contribute. By symmetry we consider only G2. Suppose that l has a vertical
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tail h→ l. By decomposition (D1) we get G2 = H1 +H2, that is,

l
li //
lj
// i, j

ij

tt

ji

��

=

l
li //
lj
// i, j

ij

tt

ji

��

+

l
li //
lj
// i, j

ij

tt

ji

��

h

OO

k

ki

OO

ki

OO

h

OO

hi

>>

k

ki

OO
kj

OO

h

OO >>

hi

>>

k

ki

OO
kj

OO

and in ΓV,H2
the vertex i has no tails, thus H2 does not contribute. Iterating decomposition

(D1) we can assume that all vertices l′ before l (i.e. with coordinates (al′ , bl′) such that

al′ ≤ al and bl′ = bl) may have only horizontal tail. Therefore, the first vertex in the row

has no tails and it is not the zero vertex, hence H1, and thus G2, does not contribute. We

can show similarly that G3 does not contribute either.

From Lemma 5.9 and 5.10 follows

Corollary 5.11. A pole V does not contribute unless

(i) there are no double vertices in ΓV , that is, no vertices with same coordinates,

(ii) all non-zero vertex in ΓV has coordinates in Z>0 ×NZ≥0,

(iii) if there is a vertex in ΓV with coordinates (a, b) ∈ Z>0 × NZ≥0 then for any (x, y) ∈
Z>0 ×NZ≥0 such that x ≤ a and y ≤ b there is a vertex with coordinates (x, y).

Remark 5.12. Graphs ΓV satisfying properties Corollary 5.11(i)-(iii) are in one-to-one corre-

spondence with Young diagrams Yλ of partitions λ ` n with boxes labeled by 1, . . . , n. The

correspondence is as follows.

5 2 4 6

3 1

0 5 2 4 6

3 1

To the box of Yλ in column xi and row yi labeled by i it corresponds the vertex i of ΓV with

coordinates (xi, (yi − 1)N) ∈ Z2. �

Remark 5.13. There is a natural action of the symmetric group Sn on ΓV permuting the non-

zero vertices, which induces Sn-action on poles. Poles in the same Sn-orbit yield the same

contribution. More precisely, if V = span〈u1 − p1z, . . . , un − pnz〉 and π ∈ Sn then V ′ = π · V =

span〈uπ(1) − pπ(1)z, . . . , uπ(n) − pπ(n)z〉 and we have

JKResΛV β(u(v, z), z)F (u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv =

JKResΛV ′β(u(v′, z), z)F (u(v′, z), z)e
ε
n∑
i=1

ui(v
′,z)
dv′,
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because β(u, z)F (u, z)e
ε
n∑
i=1

ui
is Sn-invariant. Moreover, the Sn-action is free on contributing

poles, because for any i = 1, . . . , n we have pi = −xi − (yi − 1)N and pi = pj only if (xi, yi) =

(xj , yj) since n < N . �

Lemma 5.14. Let V be a pole such that ΓV is associated to a labeled Young diagram Yλ of a

partition λ = (λ1 ≥ . . . ≥ λk) of n. Then

lim
ε→0+

JKResΛV β(u(v, z), z)F (u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv = β(pλ(z), z)bλ(z),

where 0 6= bλ(z) ∈ R[z±1].

Proof. Starting with G = F we pick the top-left subgraph

l // k

i //

OO

j

OO

in ΓV and we apply

decomposition (D1) to get G = G1 +G2. That is, in picture

l // k

=

l // k

+

l // k

i

OO

// j

OO

i

OO

//

@@

j

OO

i

OO

//

@@

j

OO .

Since we have picked the top-left rectangle, the vertex l has no tail in ΓV,G1 by Corollary 5.11(iii),

hence

JKResΛV β(u(v, z), z)F (u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv

= JKResΛV β(u(v, z), z)G2(u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv

by Lemma 5.9(i). We replace F by G2 and we continue this decomposition until no rectangle

is left. Finally, we arrive to a graph ΓV,H , where any horizontal edge not in the bottom row is

replaced by a dotted arrow and in every rectangle there is a dotted diagonal arrow.

0 1 2 3 4

5 6 7

8 9

0 1 2 3 4

5 6 7

8 9

In particular,

(5.3) JKResΛV β(u(v, z), z)F (u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv

= JKResΛV β(u(v, z), z)H(u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv.
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To each non-zero vertex there is exactly one (solid) edge, hence the setH of linear terms in the de-

nominator of H which belong to V has exactly n elements. We have ε
n∑
i=1

ui ∈ Cone(prt∗(α) |α ∈

H) since
n∑
i=1

ui =
∑

(l→k)∈ΓV,H

Ckl(uk − ul)

with Ckl > 0. The coefficients Ckl can be computed as follows. We introduce a partial order on

vertices of ΓV,H such that l ≺ k if there is an oriented (solid) path in ΓV,H from l to k. Then

Ckl = #{h | l ≺ h}.
Denote αi the element of H with positive ui-coefficient. Sort non-zero vertices {i1, . . . , in} of

ΓV,H such that k < l when ik ≺ il. Hence the matrix

[
∂αik(u, z)

∂uil

]n
k,l=1

is lower triangular with

1’s on the diagonal. Therefore, we have

√
det[(αk, αl)]nk,l=1 =

∣∣∣∣∣det

[
∂αik(u, z)

∂uil

]n
k,l=1

∣∣∣∣∣ = 1,

and in particular H spans V . Denote xi and yi respectively the column and row of the box

labeled by i in Yλ. Then we have H = H ′
1∏n
i=1 αi

, where

H ′(u, z) =

∏
1≤i6=j≤n

(ui − uj)
∏

1≤i 6=j≤n
(xi,yi)6=(xj+1,yj+1)

((N + 1)z + ui − uj)

∏
1≤i6=j≤n

(xi,yi)6=(xj+1,yj)

(z + ui − uj)
∏

1≤i 6=j≤n
(xi,yi) 6=(xj ,yj+1)

(Nz + ui − uj)
(5.4)

· 1∏
1≤k≤n
xk 6=1

(z + uk)
∏

1≤k≤n
(Nz − uk)

.

By the correspondence between labeled Young diagrams and graphs the vertex i in ΓV has

coordinates (xi, (yi − 1)N) ∈ Z2, hence V = span〈u1 − p1z, . . . , un − pnz〉 such that pi =

−(xi + (yi − 1)N) for all i = 1, . . . , n. Let

(5.5) bλ(z) = H ′(p1z, . . . , pnz, z)

and remark that bλ(z) 6= 0. By Proposition 3.39 and (5.3) we conclude

lim
ε→0+

JKResΛV β(u(v, z), z)F (u(v, z), z)e
ε
n∑
i=1

ui(v,z)
dv =

β(u(0, z), z)H ′(u(0, z), z)√
det[(αk, αl)]nk,l=1

= βλ(pλ(z), z)bλ(z).

Finally, the theorem follows from Corollary 5.11, Remarks 5.12 and 5.13, Lemma 5.14 and

(5.2).
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5.2 Nekrasov’s partition function

ConsiderM(r, n) = T ∗(End(Cn)⊕Hom(Cr,Cn)) = Mn(C)⊕Mn,r(C)⊕Mn(C)⊕Mr,n(C) with

U(n)-action

g · (A, a,B, b) = (gAg−1, ga, gBg−1, bg−1)

for all g ∈ U(n), A,B ∈ Mn(C), a, bt ∈ Mn,r(C). This action is hyper-Hamiltonian with

hyperKähler moment map µ = (µR, µC) :M(r, n)→ u(n)∗ ⊕ u(n)∗C, where

µR : (M(r, n), ωR)→ u(n)∗, µR(A, a,B, b) =

√
−1

2
([A,A∗] + [B,B∗] + aa∗ − b∗b) ,

µC : (M(r, n), ωC)→ u(n)∗C, µC(A, a,B, b) = [A,B] + ab

with identification u(n) ' u(n)∗ induced by non-degenerate bilinear pairing (u, v) = Tr(u∗v)

for all u, v ∈ u(n). Moreover, (ξ, 0) = (
√
−1I, 0) ∈ u(n)∗ ⊕ u(n)∗C is a regular value of µ

and the hyperKähler quotient M(r, n)////(ξ,0)U(n) is isomorphic to the framed moduli space of

torsion free sheaves on CP2 with rank r and second Chern class c2 = n [36]. We consider

T = {g ∈ U(n) | g diagonal} maximal torus of G and we choose a basis {u1, . . . , un} of t∗ such

that ui
(
diag(

√
−1τ1, . . . ,

√
−1τn)

)
= τi for all i = 1, . . . , n. The real and complex abelian

moment maps are as follows

µTR : (M(r, n), ωR)→ t∗, µTR (A, a,B, b) =

n∑
i,j=1

(ui − uj)
|Aij |2 + |Bij |2

2
+

n∑
i=1

ui

r∑
j=1

|aij |2 − |bji|2

2
,

µTC : (M(r, n), ωC)→ t∗C, µ
T
C (A, a,B, b) = −

√
−1

n∑
i=1

uj

 n∑
j=1

AijBji −BijAji +

r∑
j=1

aijbji

 .

Moreover, ξ is a regular value of µTR because u1 + . . . + un is regular with respect to the set

{ui − uj , uj | i, j = 1, . . . , n}, thus the symplectic quotient M(r, n)//ξT exists. Furthermore,

(ξ, 0) is also a regular value of the abelian hyperKähler moment map µT = (µTR , µ
T
C ) and the

abelian hyperKähler quotient M(r, n)////(ξ,0)T also exists.

We also consider a Hamiltonian torus action of S = U(1)r+2 on (M(r, n), ωR) given by

s · (A, a,B, b) =
(
sr+1 ·A, a · diag(s1, . . . , sr)

−1, sr+2 ·B, sr+1sr+2diag(s1, . . . , sr) · b
)

for all s = (s1, . . . , sr+2) ∈ U(1)r+2, A,B ∈ Mn(C), a, bt ∈ Mn,r(C) (cf. [37], Lemma 2.8). If

{x, y, z1, . . . , zr} is a basis of s∗ such that for σ = diag(
√
−1σ1, . . . ,

√
−1σr+2) we have x(σ) =

σr+1, y(σ) = σr+2 and zi(σ) = σi for all i = 1, . . . , r then the S-action has moment map

φS : (M(r, n), ωR)→ s∗,

φS(A, a,B, b) =
1

2
Tr(AA∗ + bb∗)x+

1

2
Tr(BB∗ + bb∗)y +

r∑
j=1

n∑
i=1

|bij |2 − |aji|2

2
zi.

Let K = {(k, k,diag(k−1, . . . , k−1)) ∈ S | k ∈ U(1)} be 1-dimensional subtorus of S which acts

on M(r, n) as

k · (A, a,B, b) = (kA, ka, kB, kb)
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for all k ∈ U(1), A,B ∈Mn(C), a, bt ∈Mn,r(C). It admits moment map φK = ϕ · (x+ y − z1 −
. . .− zr) with ϕ :M(r, n)→ R,

ϕ(A, a,B, b) =
1

2
Tr(AA∗ +BB∗ + a∗a+ bb∗)

proper and bounded below. Finally, we remark that the complex moment map is S-equivariant

µC(s · (A, a,B, b)) = s1s2µC(A, a,B, b) and (t∗C)S = {0}.

Definition 5.15. Nekrasov’s partition function ([38], cf. [37]) is defined as

Z(x, y, z, q) =

∞∑
n=0

qn
∮

M(r,n)////(ξ,0)U(n)

1.

Let δ = (δ1, . . . , δk) be a partition with δ1 ≥ . . . ≥ δk. In the Young diagram Yδ associated

to the partition δ the ith column contains δi boxes.

Definition 5.16. For a box s in the column cs and row rs of Yδ we define the arm-length

Aδ(s) = #{h |h > cs, δh ≥ rs}, and the leg-length Lδ(s) = δcs − rs. That is, Aδ(s) and Lδ(s)

are respectively the number of boxes on the right and on the top of the box s in Yδ.

The definition of arm-length and leg-length also extends to boxes which are off Yδ. Thus for

any two partitions δ and η we define

(5.6) Kδ,η(x, y, ζ) =
∏
i∈Yδ

[−Aδ(i)x+ (Lη(i) + 1)y + ζ]
∏
j∈Yη

[(Aη(j) + 1)x− Lδ(j)y + ζ].

In order to compute Nekrasov’s partition function we reprove the following formula using results

of Chapter 4.

Theorem 5.17 ([38, 37]).∮
M(r,n)////(ξ,0)U(n)

1 = (2π)2rn
∑

(Yλ1
,...,Yλr )

1
r∏

k,l=1

Kλk,λl(x, y, zk − zl)
,

where the sum is over tuples of Young diagrams (Yλ1
, . . . , Yλr ) such that n =

r∑
i=1

ni and λi ` ni
for all i = 1, . . . , r.

Remark 5.18. Nekrasov computes the integral

∮
M(r,n)////(ξ,0)U(n)

1 via contour integrals and in [38]

(3.20) arrives to a similar result as in (5.14). His method is close to ours in spirit. Nakajima and

Yoshioka use the Atiyah-Bott-Berline-Vergne formula on the quotient space M(r, n)////(ξ,0)U(n)

to arrive to the same formula as above in [37], (6.2). �

Proof. Let Λ be the polarization on t∗ ⊕ s∗ induced by ordered basis

{x+ y − z1 . . .− zr, x− y, x+ z1, . . . , x+ zr, u1, . . . , ur},
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which is compatible with the proper bounded below moment map (φK , x+ y − z1 − . . .− zr, ϕ).

By Theorem 4.14 we have∮
M(r,n)////(ξ,0)U(n)

1 = lim
ε→0+

EqResΛ

(
ϑ$R$C

n! vol(T )

∮
M(r,n)

eε(ωR−µTR −φS+ξ)

)

= lim
ε→0+

EqResΛ

(
(2π)(2r+1)n

n! vol(T )

∏
1≤i6=j≤n

(ui − uj)
∏

1≤i,j≤n
(x+ y + ui − uj)e

ε
n∑
i=1

ui

∏
1≤i,j≤n
1≤k≤r

(x+ ui − uj)(y + ui − uj)(ui − zk)(x+ y + zk − uj)

)

= lim
ε→0+

(2π)(2r+1)n

n! vol(T )

(x+ y)n

xnyn
EqResΛ

(
F (u, x, y, z)e

ε
r∑
i=1

ui
)
,

where

F (u, x, y, z) =
∏

1≤i 6=j≤n

(ui − uj)(x+ y + ui − uj)
(x+ ui − uj)(y + ui − uj)

∏
1≤i,j≤n
1≤k≤r

1

(ui − zk)(x+ y + zk − uj)
.

Denote A = {x + ui − uj , y + ui − uj , ui − zk, x + y + zk − uj | 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ r} the

set of linear terms in the denominator of F and remark that all elements of A are polarized with

respect to Λ.

To compute the above residue we consider t∗-poles

V = span
〈
u1 − p1

V (x, y, z), . . . , un − pnV (x, y, z)
〉

spanned by subsets of A, and where piV (x, y, z) ∈ s∗ for all i = 1, . . . , n. We can describe these t∗-

poles in terms of graphs as follows. Fix a t∗-pole V and define subsets N 0
V , . . . ,N r

V of {1, . . . , n}
by the following rules

(1) i ∈ N k
V if ui − zk or x+ y + zk − ui is in V ,

(2) i ∈ N k
V if j ∈ N k

V and ε+ ui − uj or ε+ uj − ui belongs to V for any ε ∈ {x, y},

(3) elements of {1, . . . , n} unsorted by (1) and (2) are listed in N 0
V .

We also define subsets A0
V , . . . ,ArV of AV = A∩V as follows: α ∈ AkV if ui or −ui is a summand

of α ∈ AV and i ∈ N k
V .

Lemma 5.19. We have decomposition {1, . . . , n} = N 1
V ] . . . ] N r

V and consequently, AV =

A1
V ] . . . ] ArV . In particular, N 0

V = A0
V = ∅.

Proof. We have {1, . . . , n} = N 0
V ∪ . . . ∪ N r

V and AV = A0
V ∪ . . . ∪ ArV . Moreover, N l

V = ∅ if

and only if AlV = ∅. Therefore, it is enough to show that N 0
V = ∅ and N k

V ∩ N l
V = ∅ for all
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1 ≤ k 6= l ≤ r. If i ∈ N k
V then piV (x, y, z) has of form q1x+ q2y+ zk, hence N k

V ∩N l
V = ∅ if k 6= l.

By construction, N 0
V ∩ (N 1

V ∪ . . .∪N r
V ) = ∅. If N 0

V 6= ∅ then
∑
i∈N 0

V

ui /∈ span〈prt∗(A0
V )〉, therefore

prt∗(V ) = span〈prt∗(A0
V )〉+ span〈prt∗(A1

V ∪ . . . ∪ ArV )〉

6= span〈ui | i ∈ N 0
V 〉+ span〈ui | i ∈ N 1

V ∪ . . . ∪N r
V 〉 = t∗,

which leads to contradition that V is a t∗-pole.

To a t∗-pole V we associate a tuple of graphs ΓV = (Γ1
V , . . . ,Γ

r
V ) as follows. The vertices of

ΓkV lie on the lattice Z2 and they are labeled by elements of {0} ∪N k
V . The coordinates of 0 and

i are respectively (0, 0) and (ai, bi), where

(5.7) aix+ biy = −piV (x, y,−(x, . . . , x))

for all i ∈ N k
V . The oriented edges of ΓkV are drawn according to the table

α ∈ AkV edges of ΓkV
x+ ui − uj horizontal edge from j to i

y + ui − uj vertical edge from j to i

ui − zk horizontal edge from 0 to i

x+ y + zk − uj vertical edge from j to 0.

The graph is complete in the following sense. Let i and j be two vertices in ΓkV with coordinates

(ai, bi) and (aj , bj), respectively. If (aj , bj) = (ai, bi + 1) and i 6= 0 then there is an edge i → j

in ΓkV . If (aj , bj) = (ai + 1, bi) and j 6= 0 then we have an edge i→ j in ΓkV .

We compute JKResΛV F (u(v, x, y, z), x, y, z)e
ε
n∑
i=1

ui(v,x,y,z)
dv by decomposing F to partial

fractions. We only use the following type of decompositions:

(D1)
x+ y + ul − ui

(x+ uj − ui)(y + ul − uj)
=

1

y + ul − uj
+

1

x+ uj − ui
if x+ uj − ui, y + ul − uj ∈ V ,

(D2)
x+ y + ul − ui

(y + uj − ui)(x+ ul − uj)
=

1

x+ ul − uj
+

1

y + uj − ui
if y + uj − ui, x+ ul − uj ∈ V ,

(D3)
x+ y + ui − uj

(x+ y + zk − uj)(ui − zk)
=

1

ui − zk
+

1

x+ y + zk − uj
if x+ y + zk − uj , ui − zk ∈ V ,

(D4)
ui − uj

(x+ ui − ul)(x+ uj − ul)
=

1

x+ uj − ul
− 1

x+ ui − ul
if x+ ui − ul, x+ uj − ul ∈ V ,

(D5)
ui − uj

(y + ui − ul)(y + uj − ul)
=

1

y + uj − ul
− 1

y + ui − ul
if y + ui − ul, y + uj − ul ∈ V .

We will keep track of fractions arising from these partial fraction decompositions on mutations

of the tuple of graphs ΓV . Applying these decompositions to F several times it yields fractions G

which can be got from F by removing certain linear terms from the nominator and denominator

of F . Moreover, G can be encoded in a tuple of graphs ΓV,G = (Γ1
V,G, . . . ,Γ

r
V,G) by modifying

ΓV = (Γ1
V , . . . ,Γ

r
V ) as follows:
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• if i, j ∈ ΓkV have same coordinates and ui− uj is missing from the nominator of G then we

draw a hook i, j jiii in ΓkV,G,

• if i, j ∈ ΓkV are such that (ai, bi) = (aj + 1, bj + 1) and x+ y + ui − uj is missing from the

nominator of G then we have diagonal arrow j // i in ΓkV,G,

• if i, j ∈ ΓkV are such that x+ui−uj , y+ui−uj , ui−zk, x+y+zk−uj ∈ V respectively are

missing from the denominator of G then the corresponding arrows j // i , 0 // i ,

j // 0 are replaced by j // i , 0 // i , j // 0 respectively in ΓkV,G.

The above five types of partial fraction decomposition correspond to following mutations of

subgraphs (only the part is drawn, where the mutation happens):

(M1)

l

=

l

+

l

i // j

OO

i //

AA

j

OO

i

AA

// j

OO

if i, j, l ∈ ΓkV are non-zero vertices,

(M2)

j // l

=

j // l

+

j // l

i

OO

i

OO AA

i

OO AA

if i, j, l ∈ ΓkV are non-zero vertices,

(M3)

0 // i

=

0 // i

+

0 // i

j

OO

j

OO @@

j

OO @@

if i, j ∈ ΓkV ,

(M4) l
li //
lj
// i, j = l

li //
lj
// i, j jiii − l

li //
lj
// i, j jiii if i, j, l ∈ ΓkV ,

(M5)
i, j

=

i, j

ji

��

−

i, j

ji

��

l

li

OO
lj

OO

l

li

OO
lj

OO

l

li

OO
lj

OO if i, j, l ∈ ΓkV .

Definition 5.20. We say that G does not contribute if

lim
ε→0+

JKResΛV G(u(v, x, y, z), x, y, z)e
ε
n∑
i=1

ui(v,x,y,z)
dv = 0.

When G = F we say that the t∗-pole V does not contribute.

Definition 5.21. A tail of a vertex j ∈ ΓkV,G is an edge i→ j.

Similarly to Lemma 5.9 and Corollary 5.11 we can show that

Lemma 5.22. G does not contribute unless

93



(i) every non-zero vertex i ∈ ΓkV,G has a tail,

(ii) every non-zero vertex i has coordinates (ai, bi) ∈ Z>0 × Z≥0,

(iii) for every vertex i ∈ ΓkV having coordinates (ai, bi) and for any (x, y) ∈ Z>0×Z≥0 such that

x ≤ ai, y ≤ bi there is a vertex j ∈ ΓkV with coordinates (x, y),

(iv) for any k = 1, . . . , r the graph ΓkV has no double vertex, i.e. two vertices with same

coordinates.

Tuples of graphs ΓV = (Γ1
V , . . . ,Γ

r
V ) satisfying Lemma 5.22 (i)-(iv) are in one-to-one corre-

spondence with tuples of labeled Young diagrams Yλ = (Yλ1 , . . . , Yλr ) of partitions λk ` |N k
V |

such that boxes of Yλk are labeled by elements of N k
V for all k = 1, . . . , r. To a Young diagram

Yλk labeled by elements of N k
V we associated ΓkV as follows. To the box labeled by i in the column

ci and row ri of Yλk it corresponds the vertex i of ΓkV with coordinates (ci, ri − 1) ∈ Z2. We

draw all horizontal and vertical edges between vertices on neighboring lattice points. We denote

by V(λ1,...,λr) the t∗-pole corresponding to the tuple of labeled Young diagrams (Yλ1 , . . . , Yλr ).

To evaluate JKResΛV F (u(v, x, y, z), x, y, z)e
ε
n∑
i=1

ui(v,x,y,z)
dv for V = V(λ1,...,λr) we choose the

top-leftmost rectangle ijlm ∈ ΓkV for all k = 1, . . . , r and we apply decomposition (D2), that is,

we mutate ΓkV as

(5.8) l // m

=

l // m

+

l // m

i

OO

// j

OO

i

OO

//

@@

j

OO

i

OO

//

@@

j

OO .

Remark that in the first graph on the right hand side of (5.8) the vertex l has no tail, thus the

corresponding fraction does not contribute. We continue this procedure with the second graph

of the right hand side of (5.8) until no rectangle is left. We arrive to a graph ΓkV,GV which can be

constructed from ΓkV by replacing all horizontal edges l // m with l // m except in the

bottom row of ΓkV and by adding diagonal arrow i // m for each rectangle ijlm as above.

In particular, degGV = degF . Moreover,

(5.9) JKResΛV F (u(v, x, y, z), x, y, z)e
ε
n∑
i=1

ui(v,x,y,z)
dv

= JKResΛV GV (u(v, x, y, z), x, y, z)e
ε
n∑
i=1

ui(v,x,y,z)
dv.

Remark that any non-zero vertex i ∈ ΓkV,GV has a unique tail j // i , denote by αiV the

corresponding element of AV . That is,

αiV =


x+ ui − uj if j 6= 0 and j // i is horizontal,

y + ui − uj if j 6= 0 and j // i is vertical,

ui − zk if j = 0.
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We introduce a partial order on {1, . . . , n}. Let i ≺ j when i ∈ N k
V , j ∈ N l

V , k ≤ l and in the

k = l case there is an oriented path from i to j in ΓkV,GV . Then we can write

n∑
i=1

ui =

n∑
i=1

Ciprt∗(α
i
V ) =

r∑
k=1

∑
(j→i)∈ΓkV,GV

Ci(ui − uj),

where u0 = 0 and Ci = #
{
h ∈ N k

V | i ≺ h, i ∈ N k
V

}
+ 1 is positive for any i ∈ ΓkV . It also

implies that {αiV | i = 1, . . . , n} is a basis of V since
n∑
i=1

ui is regular with respect to the set

{ui − uj , uj | i 6= j = 1, . . . , n}.
We choose a scalar product on t∗ such that {u1, . . . , un} is an orthonormal basis, hence

vol(T ) = (2π)n.

Let ν : {1, . . . , n} → {1, . . . , n} be a bijection such that i < j if ν(i) ≺ ν(j). Then

(
∂α

ν(i)
V

∂uν(j)

)n
i,j=1

is lower triangular with 1’s on the diagonal, thus

√
det[(αiV , α

j
V )]ni,j=1 =

∣∣∣∣∣∣det

(
∂α

ν(i)
V

∂uν(j)

)n
i,j=1

∣∣∣∣∣∣ = 1.

Denote (ai, bi) ∈ Z2 the coordinates of the vertex i. Then GV = G′V ·
1

n∏
i=1

αiV

, where

G′V (u, x, y, z) =
∏

1≤k 6=l≤r

∏
i∈NkV
j∈N lV

(ui − uj)(x+ y + ui − uj)
(x+ ui − uj)(y + ui − uj)(ui − zl)(x+ y + zk − uj)

(5.10)

r∏
k=1

∏
i6=j∈NkV

(ui − uj)
∏

i6=j∈NkV
(ai,bi)6=(aj+1,bj+1)

(x+ y + ui − uj)

∏
i 6=j∈NkV

(ai,bi)6=(aj+1,bj)

(x+ ui − uj)
∏

i 6=j∈NkV
(ai,bi)6=(aj ,bj+1)

(y + ui − uj)

r∏
k=1

∏
i,j∈NkV

(ai,bi) 6=(1,0)

1

(ui − zk)(x+ y + zk − uj)
.

Remark that G′V does not contain linear terms in V . By Proposition 3.39 we get

(5.11) lim
ε→0+

JKResΛV GV (u(v, x, y, z), x, y, z)e
ε
n∑
i=1

ui(v,x,y,z)
dv = G′V (pV (x, y, z), x, y, z),

where pV (x, y, z) = (p1
V (x, y, z), . . . , pnV (x, y, z)). If i labels a box of the Young diagram Yλk then

i is a vertex of the graph ΓkV , hence piV (x, y, z) is of form q1x+ q2y+zk. Moreover, by the Young

diagram-graph correspondence and (5.7) we have

piV (x, y, z) = (1− ai)x− biy + zk = (1− ci)x+ (1− ri)y + zk,

95



where ci and ri are respectively the column and the row of the box labeled by i in Yλk of

(Yλ1 , . . . , Yλr ), and (ai, bi) are the coordinates of the vertex i in ΓkV .

We express G′V (pV (x, y, z), x, y, z) in a more comprehensible manner. Therefore, we define

fractions

Hλk,λl(x, y, ζ) =
∏
i∈Yλk
j∈Yλl

[(cj − ci)x+ (rj − ri)y + ζ][(1 + cj − ci)x+ (1 + rj − ri)y + ζ]

[(1 + cj − ci)x+ (rj − ri)y + ζ][(cj − ci)x+ (1 + rj − ri)y + ζ]
(5.12)

∏
i∈Yλk
j∈Yλl

1

[(1− ci)x+ (1− ri)y + ζ][cjx+ rjy + ζ]

and

Eζ(u, x, y, z) =
∏

1≤i,j≤n

(ui − uj + ζ)(x+ y + ui − uj + ζ)

(x+ ui − uj + ζ)(y + ui − uj + ζ)∏
1≤i,j≤n
1≤k≤r

1

(ui − zk + ζ)(x+ y + zk − uj + ζ)
.

Up to a ζ−n factor Eζ(u, x, y, z) is the deformation of
(x+ y)n

xnyn
F (u, x, y, z) by adding ζ to each

linear term, hence lim
ζ→0

Eζ(u, x, y, z)

ζn
=

(x+ y)n

xnyn
F (u, x, y, z). The fraction G′V can be obtained

from F by removing all linear terms which lie in V and remark that degG′V = degF − n.

To get G′V we have removed exactly those linear terms from F which vanish under evaluation

u = pV (x, y, z). The number of such linear terms in the denominator of F is bigger by n than in

the nominator. Therefore,

(x+ y)n

xnyn
G′V (pV (x, y, z), x, y, z) = lim

ζ→0
Eζ(pV (x, y, z), x, y, z)

= lim
ζ→0

∏
1≤k,l≤r

Hλk,λl(x, y, zk − zl + ζ)

=
∏

1≤k 6=l≤r

Hλk,λl(x, y, zk − zl) lim
ζ→0

r∏
k=1

Hλk,λk(x, y, ζ),(5.13)

which does not depend on the labeling of (Yλ1 , . . . , Yλr ).

Moreover, the symmetric group Sn acts on the set of t∗-poles such that

σ · V = span
〈
uσ(1) − p

σ(1)
V (x, y, z), . . . , uσ(n) − p

σ(n)
V (x, y, z)

〉
, ∀σ ∈ Sn.

This action is free on the set of t∗-poles associated to tuples of labeled Young diagrams and it

corresponds to permutation of labels. Poles in the same orbit yield the same contribution by

(5.9), (5.11) and (5.13).

We summarize our calculations so far∮
M(r,n)////(ξ,0)U(n)

1 = lim
ε→0+

(2π)(2r+1)n

n! vol(T )

(x+ y)n

xnyn
EqResΛ

(
F (u, x, y, z)e

ε
n∑
i=1

ui
)
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= lim
ε→0+

∑
t∗-poles V

(2π)(2r+1)n

n! vol(T )

(x+ y)n

xnyn
JKResΛV

(
F (u(v, x, y, z), x, y, z)e

ε
n∑
i=1

ui(v,x,y,z)
)
dv

= lim
ε→0+

∑
V=V(λ1,...,λr)

(2π)2rn

n!

(x+ y)n

xnyn
JKResΛV

(
GV (u(v, x, y, z), x, y, z)e

ε
n∑
i=1

ui(v,x,y,z)
)
dv

=
∑

V=V(λ1,...,λr)

(2π)2rn

n!

(x+ y)n

xnyn
G′V (pV (x, y, z), x, y, z)

(5.14) =
∑

(Yλ1
,...,Yλr )

(2π)2rn
∏

1≤k 6=l≤r

Hλk,λl(x, y, zk − zl) lim
ζ→0

r∏
k=1

Hλk,λk(x, y, ζ),

where the last sum is over unlabeled tuples of Young diagrams (Yλ1
, . . . , Yλr ) such that n =

r∑
k=1

nk

and λk ` nk for all k = 1, . . . , r. The following lemma concludes the proof of the theorem.

Lemma 5.23. For any two partition δ, η all linear terms in the nominator of Hδ,η(x, y, ζ) cancel

out such that we get

Hδ,η(x, y, ζ) = Kδ,η(x, y, ζ)−1.

Proof. We prove it first in the special case when partitions δ = (δ1, . . . , δk) and η = (η1, . . . , ηl)

have Young diagrams Yδ and Yη of rectangular shape, that is, δ1 = . . . = δk and η1 = . . . = ηl.

We introduce notation wδ = k, wη = l, hδ = δ1 and hη = η1. Recall that ci and ri denote the

column and the row of the box i ∈ Yδ.
If Yδ = ∅ then

Hδ,η(x, y, ζ)−1 =
∏
j∈Yη

[cjx+ rjy + ζ] =
∏

1≤cj≤wη
1≤rj≤hη

[cjx+ rjy + ζ]

=
∏

1≤cj≤wη
1≤rj≤hη

[(wη − cj + 1)x− (−rj)y + ζ] =
∏
j∈Yη

[(Aη(j) + 1)x− Lδ(j)y + ζ].

If Yη = ∅ then

Hδ,η(x, y, ζ)−1 =
∏
i∈Yδ

[(1− ci)x+ (1− ri)y + ζ] =
∏

1≤ci≤wδ
1≤ri≤hδ

[(1− ci)x+ (1− ri)y + ζ]

=
∏

1≤ci≤wδ
1≤ri≤hδ

[−(wδ − ci)x+ (1− ri)y + ζ] =
∏
i∈Yδ

[−Aδ(i)x+ (Lη(i) + 1)y + ζ].
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Assume that Yδ, Yη 6= ∅. To simplify Hδ,η(x, y, ζ) first we compute

∏
1≤cj≤wη
1≤ri≤hδ

[(cj − ci)x+ (rj − ri)y + ζ][(1 + cj − ci)x+ (1 + rj − ri)y + ζ]

[(1 + cj − ci)x+ (rj − ri)y + ζ][(cj − ci)x+ (1 + rj − ri)y + ζ]

=
∏

1≤ri≤hδ

[(1− ci)x+ (rj − ri)y + ζ][(1 + wη − ci)x+ (1 + rj − ri)y + ζ]

[(1 + wη − ci)x+ (rj − ri)y + ζ][(1− ci)x+ (1 + rj − ri)y + ζ]

=
[(1− ci)x+ (rj − hδ)y + ζ][(1 + wη − ci)x+ rjy + ζ]

[(1 + wη − ci)x+ (rj − hδ)y + ζ][(1− ci)x+ rjy + ζ]
,

hence

Hδ,η(x, y, ζ) =
∏

1≤ci≤wδ
1≤rj≤hη

[(1− ci)x+ (rj − hδ)y + ζ][(1 + wη − ci)x+ rjy + ζ]

[(1 + wη − ci)x+ (rj − hδ)y + ζ][(1− ci)x+ rjy + ζ]

· 1∏
1≤ci≤wδ
1≤ri≤hδ

[(1− ci)x+ (1− ri)y + ζ]
∏

1≤cj≤wη
1≤rj≤hη

[cjx+ rjy + ζ]

=

∏
1−wδ≤γ≤0

1−hδ≤ρ≤hη−hδ

[γx+ ρy + ζ]
∏

1+wη−wδ≤γ≤wη
1≤ρ≤hη

[γx+ ρy + ζ]

∏
1+wη−wδ≤γ≤wη
1−hδ≤ρ≤hη−hδ

[γx+ ρy + ζ]
∏

1−wδ≤γ≤0
1≤ρ≤hη

[γx+ ρy + ζ]

· 1∏
1−wδ≤γ≤0
1−hδ≤ρ≤0

[γx+ ρy + ζ]
∏

1≤γ≤wη
1≤ρ≤hη

[γx+ ρy + ζ]
.

To further simplify the last fraction, denote χ(E) the characteristic function of the set E ∩ Z2

and we distinguish two cases.

Case I. wδ ≤ wη. Then the fraction Hδ,η(x, y, ζ) can be encoded in the function

χ ([1− wδ, 0]× [1− hδ, hη − hδ]) + χ ([1 + wη − wδ, wη]× [1, hη])

−χ ([1 + wη − wδ, wη]× [1− hδ, hη − hδ])− χ ([1− wδ, 0]× [1, hη])

−χ ([1− wδ, 0]× [1− hδ, 0])− χ ([1, wη]× [1, hη])

= χ ([1− wδ, 0]× [1− hδ, hη − hδ])− χ ([1− wδ, 0]× [1, hη])− χ ([1− wδ, 0]× [1− hδ, 0])

+χ ([1 + wη − wδ, wη]× [1, hη])− χ ([1, wη]× [1, hη])

−χ ([1 + wη − wδ, wη]× [1− hδ, hη − hδ])

= −χ ([1− wδ, 0]× [1 + hη − hδ, hη])− χ ([1, wη − wδ]× [1, hη])

−χ ([1 + wη − wδ, wη]× [1− hδ, hη − hδ]) .
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Now we decode the latter function to get the following simplication

Hδ,η(x, y, ζ)−1 =
∏

1−wδ≤γ≤0
1+hη−hδ≤ρ≤hη

[γx+ ρy + ζ]
∏

1+wη−wδ≤γ≤wη
1−hδ≤ρ≤hη−hδ

[γx+ ρy + ζ]
∏

1≤γ≤wη−wδ
1≤ρ≤hη

[γx+ ρy + ζ]

=
∏

1≤ci≤wδ
1≤ri≤hδ

[−(wδ − ci)x+ (hη − ri + 1)y + ζ]
∏

1≤cj≤wδ
1≤rj≤hη

[(wη − cj + 1)x− (hδ − rj)y + ζ]

∏
wδ<cj≤wη
1≤rj≤hη

[(wη − cj + 1)x− (−rj)y + ζ]

=
∏
i∈Yδ

[−Aδ(i)x+ (Lη(i) + 1)y + ζ]
∏
j∈Yη

[(Aη(j) + 1)x− Lδ(j)y + ζ].

Case II. wη < wδ. Similarly, we encode the fraction Hδ,η(x, y, ζ) in the following function and

we compute

χ ([1− wδ, 0]× [1− hδ, hη − hδ]) + χ ([1 + wη − wδ, wη]× [1, hη])

− χ ([1 + wη − wδ, wη]× [1− hδ, hη − hδ])− χ ([1− wδ, 0]× [1, hη])

− χ ([1− wδ, 0]× [1− hδ, 0])− χ ([1, wη]× [1, hη])

= χ ([1− wδ, 0]× [1− hδ, hη − hδ])− χ ([1− wδ, wη − wδ]× [1, hη])

− χ ([1 + wη − wδ, wη]× [1− hδ, hη − hδ])− χ ([1− wδ, 0]× [1− hδ, 0])

=
(
χ ([1− wδ, wη − wδ]× [1− hδ, hη − hδ]) + χ ([1 + wη − wδ, 0]× [1− hδ, hη − hδ])

)
− χ ([1− wδ, wη − wδ]× [1, hη])

+
(
− χ

(
[1 + wη − wδ, 0]× [1− hδ, hη − hδ]

)
− χ ([1, wη]× [1− hδ, hη − hδ])

)
+
(
− χ

(
[1− wδ, wη − wδ]× [1− hδ, 0])

)
− χ ([1 + wη − wδ, 0]× [1− hδ, 0])

)
= χ ([1− wδ, wη − wδ]× [1− hδ, hη − hδ])− χ ([1− wδ, wη − wδ]× [1− hδ, hη])

− χ ([1, wη]× [1− hδ, hη − hδ])− χ ([1 + wη − wδ, 0]× [1− hδ, 0])

= − χ ([1− wδ, wη − wδ]× [1 + hη − hδ, hη])− χ ([1, wη]× [1− hδ, hη − hδ])

− χ ([1 + wη − wδ, 0]× [1− hδ, 0]) .

Again, decoding the result we get the simplification

Hδ,η(x, y, ζ)−1 =
∏

1−wδ≤γ≤wη−wδ
1+hη−hδ≤ρ≤hη

[γx+ ρy + ζ]
∏

1≤γ≤wη
1−hδ≤ρ≤hη−hδ

[γx+ ρy + ζ]
∏

1+wη−wδ≤γ≤0
1−hδ≤ρ≤0

[γx+ ρy + ζ]

=
∏

1≤ci≤wη
1≤ri≤hδ

[−(wδ − ci)x+ (hη − ri + 1)y + ζ]
∏

1≤cj≤wη
1≤rj≤hη

[(wη − cj + 1)x− (hδ − rj)y + ζ]

∏
wη<ci≤wδ
1≤ri≤hδ

[−(wδ − ci)x+ (−ri + 1)y + ζ]

=
∏
i∈Yδ

[−Aδ(i)x+ (Lη(i) + 1)y + ζ]
∏
j∈Yη

[(Aη(j) + 1)x− Lδ(j)y + ζ].
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We have showed that

(5.15) Hδ,η(x, y, ζ) = Kδ,η(x, y, ζ)−1

for partitions δ and η with rectangular shape Young diagrams.

Let δ = (δ1, . . . , δk) and η be two partitions and assume that the Young diagram of δ is

not of rectangular shape, i.e. there is m such that δm > δm+1. Then we can define three new

partitions

δ1 = (δ1, . . . , δm),

δ1,2 =
(
δm+1, . . . , δm+1︸ ︷︷ ︸

m times

)
,

δ2 =
(
δm+1, . . . , δm+1︸ ︷︷ ︸

m+1 times

, δm+2, . . . , δk
)
.

Yδ Yδ1 Yδ1,2 Yδ2

Formally, we have the inclusion-exclusion formula Yδ = Yδ1 − Yδ1,2 + Yδ2 . From (5.12) follows

that

Hδ,η = Hδ1,η

(
Hδ1,2,η

)−1
Hδ2,η,(5.16)

Hη,δ = Hη,δ1

(
Hη,δ1,2

)−1
Hη,δ2 .(5.17)

Kδ,η has the same properties, more precisely

Kδ,η = Kδ1,η

(
Kδ1,2,η

)−1
Kδ2,η,(5.18)

Kη,δ = Kη,δ1

(
Kη,δ1,2

)−1
Kη,δ2 .(5.19)

Indeed, (5.18) follows from

Kδ1,η(x, y, ζ) =
∏
i∈Yδ1

[−Aδ1(i)x+ (Lη(i) + 1)y + ζ]
∏
j∈Yη

[(Aη(j) + 1)x− Lδ1(j)y + ζ]

=
∏

i∈Yδ1\Yδ1,2

[−Aδ(i)x+ (Lη(i) + 1)y + ζ]
∏

i∈Yδ1,2

[−Aδ1,2(i)x+ (Lη(i) + 1)y + ζ]

∏
j∈Yη
cj≤m

[(Aη(j) + 1)x− Lδ(j)y + ζ]
∏
j∈Yη
cj>m

[(Aη(j) + 1)x− Lδ1,2(j)y + ζ]
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and

Kδ2,η(x, y, ζ) =
∏
i∈Yδ2

[−Aδ2(i)x+ (Lη(i) + 1)y + ζ]
∏
j∈Yη

[(Aη(j) + 1)x− Lδ2(j)y + ζ]

=
∏
i∈Yδ2

[−Aδ(i)x+ (Lη(i) + 1)y + ζ]

∏
j∈Yη
cj≤m

[(Aη(j) + 1)x− Lδ1,2(j)y + ζ]
∏
j∈Yη
cj>m

[(Aη(j) + 1)x− Lδ(j)y + ζ].

By a similar computation follows (5.19).

Any two partitions δ and η can be written as

δ =
(
δ1, . . . , δ1︸ ︷︷ ︸

m1

, . . . , δk, . . . , δk︸ ︷︷ ︸
mk

)
, δ1 > . . . > δk,

η =
(
η1, . . . , η1︸ ︷︷ ︸

o1

, . . . , ηl, . . . , ηl︸ ︷︷ ︸
ol

)
, η1 > . . . > ηl.

Then we define the following partitions with rectangular shape Young diagrams

δi =
(
δi, . . . , δi︸ ︷︷ ︸
m1+...+mi

)
, ∀ i = 1, . . . , k,

δi,i+1 =
(
δi+1, . . . , δi+1︸ ︷︷ ︸
m1+...+mi

)
, ∀ i = 1, . . . , k − 1,

and

ηj =
(
ηj , . . . , ηj︸ ︷︷ ︸
o1+...+oj

)
, ∀ j = 1, . . . , l,

ηj,j+1 =
(
ηj+1, . . . , ηj+1︸ ︷︷ ︸

o1+...+oj

)
, ∀ j = 1, . . . , l − 1.

We get the following formal inclusion-exclusion formulas

Yδ = Yδ1 − Yδ1,2 + Yδ2 − . . .− Yδk−1,k + Yδk ,(5.20)

Yη = Yη1 − Yη1,2 + Yη2 − . . .− Yηl−1,l + Yηl .(5.21)

Finally, we compute

Hδ,η = Hδ1,η

(
Hδ1,2,η

)−1
Hδ2,η · · ·

(
Hδk−1,k,η

)−1
Hδk,η by (5.16), (5.20)

=

k∏
i=1

k−1∏
j=1

l∏
p=1

l−1∏
q=1

Hδi,ηp
(
Hδi,ηq,q+1

)−1 (
Hδj,j+1,ηp

)−1
Hδj,j+1,ηq,q+1 by (5.17), (5.21)

=

k∏
i=1

k−1∏
j=1

l∏
p=1

l−1∏
q=1

(
Kδi,ηp

)−1
Kδi,ηq,q+1Kδj,j+1,ηp

(
Kδj,j+1,ηq,q+1

)−1
by (5.15)

= (Kδ,η)−1,

by (5.18), (5.19), (5.20) and (5.21).
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741.

[7] A. Cannas da Silva, Lectures on symplectic geometry. Lecture Notes in Mathematics 1764,

Springer-Verlag 2001.

[8] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic

form of the reduced phase space, Invent. Math., 69(2) (1982), pp. 259-268.

[9] J.J. Duistermaat, J.A.C. Kolk, Lie groups. Springer, 1999.

[10] G. Ellingsrud and S.A. Strømme, On the homology of the Hilbert scheme of points in the

plane, Invent. Math. 87 (1987), pp. 343-352.

[11] V.A.Ginzburg, Equivariant cohomologies and Kählers geometry, Functional Anal. Appl. 21

(1987), no. 4, pp. 271-283.

[12] R.F. Goldin An effective algorithm for the cohomology ring of symplectic reductions, Geo-

metric & Functional Analysis GAFA 12 (2002), pp. 567-583.

103



[13] V. Guillemin, J. Kalkman, The Jeffrey-Kirwan localization theorem and residue operations

in equivariant cohomology, J. reine angew. Math. 470 (1996), pp. 123-142.

[14] V. Guillemin, Y. Karshon, V.L. Ginzburg, Moment maps, cobordisms, and Hamiltonian

group actions. Vol. 98. AMS, 2002.

[15] V. Guillemin, S. Sternberg, Supersymmetry and equivariant de Rham theory. Vol. 2.

Springer, 1999.

[16] V. Guillemin, S. Sternberg, Convexity properties of the moment mapping I., Invent. Math.

67 (1982), pp. 491-513.

[17] V. Guillemin, S. Sternberg, Symplectic techniques in physics. Cambridge University Press,

1984.

[18] M. Harada, N. Proudfoot, Properties of the residual circle action on a hypertoric variety,

Pacific J. Math 214.2 (2004), pp. 263-284.

[19] T. Hausel, N. Proudfoot, Abelianization for hyperkähler quotients, Topology 44(1) (2005),

pp. 231-248.

[20] T. Hausel, B. Sturmfels, Toric hyperkhler varieties, Doc. Math. 7 (2002), pp. 495-534.

[21] G. Heckman, Symplectic Geometry, (lecture note).

[22] N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyperkähler metrics and supersym-
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