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Résumé

Dans cette these, nous généralisons le théoreme de Jeffrey-Kirwan pour le cas non compact et
équivariant. Nous 'appliquons au calcul de volumes équivariants symplectiques et d’anneaux de
cohomologie des quotients symplectiques ou hyper-Kéhler non compacts.

Nous considérons un quotient symplectique M /G non compact d’une G-variété Hamiltoni-
enne M. Nous suivons 'approche de Hausel-Proudfoot [19] pour surmonter le probléme de non
convergence des intégrales sur les variétés non compactes M et M /G en supposant qu’il existe

une action Hamiltonienne sur M d’un tore S tel que I’ensemble des points fixes M*° est com-

pact. Nous définissons ensuite les intégrales j{ B et ks(B) d’une classe de cohomologie
M M)G
équivariante 8 € Hgxs(M) formellement par la formule d’Atiyah-Bott-Berline-Vergne. De plus,

motivés par Prato-Wu [40], Proudfoot [41] et Martens [31], nous posons la condition additionnelle
que le tore S contient un sous-tore de dimension 1 admettant une application moment propre et
bornée par en bas.

Nous introduisons EqRes®, une version équivariante du résidu de Jeffrey-Kirwan et nous
montrons qu’il admet des propriétés similaires a la version classique. Nous le comparons a la
version de Martens [3T]. Avec les conditions mentionnées plus haut, nous montrons la formule
suivante (Théoreme [LF)),

w
HS(BGU‘}?”GXS) = lim EqResA <% ﬁewMTxSJrep) ,
?{M//G =0 vol(T)|W| Jur

c’est-a-dire qu’on peut calculer les intégrales formelles sur M /G a partir des intégrales formelles
sur M par le résidu équivariant si on choisit une polarisation A compatible avec l'action de
K. Nous donnons une variante de la formule ci-dessus pour les quotients hyper-Kéhler M Jj/G
(Théoreme [£.14)).

Dans ’hypothese ou 'application de Kirwan kg est surjective, on peut calculer les anneaux
de cohomologie ordinaire et équivariant des quotients non compacts en utilisant la formule ci-
dessus combinée & la forme bilinéaire non dégénérée de Hausel-Proudfoot [19] et & la propriété de
formalité équivariante, cf. [26] [4I]. On remarque qu’avec nos conditions, I’application de Kirwan
est surjective dans le cas symplectique, cf. [41], mais n’est en général pas connue dans le cas
hyper-Kéhler. Ce principe est illustré par le schéma de Hilbert sur le plan complexe.

Par le théoréme de Prato-Wu [40], la formule ci-dessus peut aussi étre utilisée pour le calcul de



volumes symplectiques équivariants de quotients symplectiques ou hyper-Kéhler non compacts.
On illustre ce type d’applications par le calcul de la fonction de partition de Nekrasov [38] sur
Iespace des modules des faisceaux sans torsion sur CP? avec rang et deuxiéme classe de Chern
fixés. Dans ce cas-1a, nous arrivons au méme résultat que dans Nakajima-Yoshioka [37].

En général, on obtient des variétés plus compliquées par la réduction symplectique ou hyper-
Kahler que les variétés initiales, donc on peut s’attendre a ce que les calculs par notre formule
soient plus simples que les calculs directs sur les quotients.

ii



Preface

In the thesis we generalize the Jeffrey-Kirwan theorem to the non-compact and equivariant
setting. We demonstrate how it can be applied to compute equivariant symplectic volumes and
cohomology rings of non-compact symplectic or hyperKéahler quotients.

We consider a non-compact symplectic quotient M /G of a Hamiltonian G-manifold M. We
follow the approach of Hausel-Proudfoot [I9] to overcome the non-convergence problem of in-
tegrals on non-compact manifolds M and M /G by presuming the existence of an auxiliary
Hamiltonian torus action S on M with compact fixed point set M* and by defining the inte-

grals B and 74 k() of equivariant cohomology classes f € Hgxs(M) formally by the
M MG
Atiyah-Bott-Berline-Vergne localization formula. Motivated by Prato-Wu [40], Proudfoot [41]

and Martens [31] we also pose the additional condition that S contains an 1-dimensional subtorus
K with proper and bounded below moment map.

We introduce our main computational tool EqResA7 an equivariant version of the Jeffrey-
Kirwan residue and we show that it shares similar properties with the classical one. We also
compare it with the version given by Martens [3I]. Under the above assumption we prove the

following formula (Theorem 4.5))

w
HS(5€w7MGXS) = lim EqResA <% Bew#TxSJrep) )
%M//G =0 vol (T)|W| Jur

That is, we can compute formal integrals on the quotient M /G out of formal integrals on
the original space M using the equivariant Jeffrey-Kirwan residue when the polarization A is
compatible with the K-action. We also give a similar formula when the symplectic quotient
M /G is replaced by the hyperKéhler quotient M /G (Theorem .

Under the assumption that the Kirwan map kg is surjective the above formula can be used to
compute the equivariant and ordinary cohomology rings of non-compact quotients if we couple it
with the non-degenerate bilinear pairing of Hausel-Proudfoot [19] and equivariant formality, cf.
[26, [4T]. This principle also works in the hyperKéahler case and we demonstrate it on the example
of Hilbert scheme of points on the plane. We remark that the Kirwan surjectivity holds in our
setup for symplectic quotients, cf. [4I], but in the hyperKéhler case is generally not known.

By the Prato-Wu theorem [40] the above formula can be also used for equivariant symplectic

volume computations on symplectic or hyperKéhler quotients. As an illustration we compute

iii



Nekrasov’s partition function [38] on the framed moduli space of torsion free sheaves on CP? with
fixed rank and second Chern class using Nakajima quiver model [36]. We get back the result of
Nakajima-Yoshioka [37] computed with Atiyah-Bott-Berline-Vergne localization formula on the
quotient.

In general, we get topologically more complicated spaces from simpler ones by symplectic or
hyperKahler reduction. Therefore, we can expect that the computation of the formal integrals
on M and the evaluation of the equivariant Jeffrey-Kirwan residue is easier than the direct
computation on the quotients M /G or M JJ/G.

v
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1

Introduction

In this chapter we recall basic notions, constructions and results about equivariant cohomology,
characteristic classes, orbifolds and symplectic geometry. Here we also present conventions and
examples which will be used later in the text.

1.1 Equivariant cohomology

1.1.1 Group actions and fundamental vector fields

Let G be a compact connected Lie group and M be a manifold. A right group action is a
(smooth) map G x M — M, (g,x) — x - g with property (z-¢1) 92 = x-(g192) for all g1,902 € G
and x € M. To any £ € g we can associate a vector field £ € X(M) on M such that

d
£, = pr e exp(t€), Vo e M

and exp : g — G is the exponential map. This association defines a Lie algebra homomorphism
g — X(M), £ &

Similarly, a left group action of G on M is a map G x M — M, (g,z) — ¢ - x satisfying
relation g1 - (g2 - ) = (g192) -« for all g1,¢g2 € G and x € M. We can also associate a vector field
£ € X(M) to any & € g such that

d
&, == et 2 vaem

It induces a Lie algebra homomorphism g — X(M), § — &.
Definition 1.1. The vector field £ is called the fundamental vector field of .

Remark 1.2. (i) From a right action G x M — M, (g,m) — m - g we can construct a left

1

action by setting g - m = m - g~ . The fundamental vector field of this left action will be

the opposite of the fundamental vector field of the original right action.



(ii) For G abelian the same action can be considered both as left and as right action. In this

case both actions yield the same fundamental vector field.
S

We say that G acts on M locally freely if for any { € g the fundamental vector field § is

nowhere vanishing. A left G-action on M induces a left action on X(M)
(9,v) = dg(v),  VgeG, VveX(M),
and on differential forms Q(M) on M

(9.8) = (¢7")" B, VgeG, VBe M),

where we consider g~! € G as amap M — M, z + g~ 'a.

1.1.2 Cartan model

Denote Sg* the symmetric algebra of g* with grading induced by degw = 2 for any non-zero
w € g*. We can consider homogeneous element of Sg* as homogeneous polynomials in R[g]
and their degree in Sg* is twice of the polynomial degree in R[g]. Moreover, Sg* has a natural
G-action induced by the coadjoint action on g*. If M is a G-manifold then we consider on
Q(M) ® Sg* the diagonal G-action

g (a®@p) =g"a®Ady(p), VgeQq,
and the contraction by a vector field
Ly(@®@p) = (tya) @ p, Vo e X(M).
On Q(M) ® Sg* we take the total grading and the graded commutative multiplication

(B1®@p1) - (B2 @Dps) = (B182) @ (P1P2)-

Definition 1.3. The graded differential algebra of G-equivariant differential forms on M is
Qa(M) = (M) ® Sg*)¢ with equivariant differential

De(a®@p)=da®p— Zbgza ® u;p,
i=1
where d is the exterior differential on M and {¢!, ..., £"} is a basis of g with dual basis {u, ..., u,}.

The equivariant cohomology Hg (M) of M is the cohomology of the chain complex (2¢(M), Dg).
Remark 1.4. (i) If G =T is a torus then Qg(M) = Q(M)T ® St*.
(ii) We can consider equivariant differential forms 8 € Qg(M) as G-equivariant polynomial

maps B : g — (M) with equivariant differential (DgB)(§) = d(B(£)) — 1e(B(E)) for all

&g (cf. [M5]).
o



Theorem 1.5. If G is a connected compact Lie group with mazimal torus T and Weyl group W
then
Hg(M) ~ Hp (M)W

induced by restriction g* — t* (cf. [15], Theorem 6.8.2).

1.1.3 Connection and curvature forms
Let P — M be a (left) principal G-bundle (i.e. G acts on P from left).

Definition 1.6. A connection form 6 on P is a Lie algebra valued 1-form with the following

properties

(1) 6 € (Q(P) ® g)“, where we consider on g the adjoint action and on Q(P) ® g the diagonal
G-action,

(2) f=Eforall{ €g.
Any principal bundle admits a connection form.

Ezample 1.1. Let G C GL,(R) be a Lie group considered as a (right) principal G-bundle over
the point. Then the Maurer-Cartan form (6p¢), = g~ 'dg is a connection form on G as principal
bundle. o

T .
Remark 1.7. If {€1,...,£"} is a basis of g then we can write § = 3_ 6, ® ¢!, where 0; are 1-forms

i=1
T

on P. Then the first condition is equivalent to Y (¢%6;) ® ' = Y 0; ® Ady&", and the second
i=1 i=1

= 1=
condition is equivalent to tzi0; = d; j, where 9; ; is the Kronecker symbol. <

R
Let K be a compact Lie group. 7@ : P — M is a K-equivariant principal G-bundle if K

acts on P and M, the G- and K-action on P commute and 7 is K-equivariant. A connection
form 6 € (Q(P) ® g)¢ is K-invariant if k*0 = > k*0; ® € = 0 for all k € K. We can get an
i=1

invariant connection form out of any connection form by averaging over K. That is, f i kr0dk is

a K-invariant connection for any € connection form on P.

Definition 1.8. The curvature form © of the connection form 6 is defined as

1
O =df+ 5[9,9],
where [9,9] = 291@)51, E 9j®fj = Z 9i9j® [fi,fj].
i=1 j=1 ij=1
The curvature form has the following properties.
(1) Tt is G-invariant, i.e. © € (Q*(P) ® g)°.
(2) Tt is horizontal, i.e. ®=0foral €g.

(3) dO© = [0, 0] (Bianchi identity or Cartan structure equation).



Definition 1.9. The equivariant curvature © i of a K-invariant connection form 6 is defined as

1
O = Dkl + 5[9,9}

1.1.4 Cartan isomorphism

Let 7 : P — M be a K-equivariant principal G-bundle and let § be a K-invariant connection

form on P.

Definition 1.10. The set of horizontal forms on P is defined as

Q(P)hor = {04 € Q(P) I lgx = 0, Vf € g}

G

We call G-invariant and horizontal forms on P basic and we use notation Q(P)pqs = Q(P),,.-

Moreover, we define Qg (P)pas = (Q(P)baS ® SE*)K.

Remark 1.11. We can identify Q(M) with basic forms Q(P)pes via the pull-back ©* : Q(M) —
QP). o

Definition 1.12. We define the horizontal morphism Horg : Q(P) — Q(P)por by

r

Horg(a) = H(l — Oitei)a,

i=1
where {¢!,...,£"} is a basis of g and 0 = Y 0, ® &°.
i=1
Remark 1.13. The horizontal morphism Hory is a projection to Q(P)per, that is, Horp(a) = «
for all & € Q(P)por- ©

Theorem 1.14 (Equivariant Cartan isomorphism). The chain homomorphism

CF + (Qaxic(P), Daxic) = (Quc(Phas, D), CF (D ;@ p;) = Horg (- a; @ p,(0x))

induces an isomorphism (C§*)« : Hax i (P) — Hy (M). Moreover, C* = (Cf*), does not depend
on the choice of 8 and it is called the (equivariant) Cartan isomorphism (cf. [15], Theorem
5.2.1).

1.1.5 Associated bundles

Let P — M be a (right) principal G-bundle and let p : G — GL(V) be a representation. Consider
the G-action on P x V defined by

—1

(p,v)-g=(pg, 9 'v), VgeG,VpeP, YvoeV.

The quotient space P xg V = (P x V)/G is a vector bundle over M. Denote by [p,v] the class
of (p,v) and remark that [pg,v] = [p, gv]. If P — M is a K-equivariant principal G-bundle then
P xgV — M becomes a K-equivariant vector bundle.



1.1.6 Frame bundles

Let E — M be a K-equivariant complex vector bundle of rank n. We construct an associated
vector bundle which is equivariantly isomorphic to E. Choose a K-invariant Hermitian metric
on FE and on C™ consider the standard Hermitian inner product. The unitary frame bundle of
E is defined as Fr(E) = ¥, Fo(E)g, where Fe(E), = {p, : C" — E; | ¢, isometry}. It is a
principal U(n)-bundle over M

(@z - 9)(v) = @a(gv), VgeU(n), YvoeC"
It admits a K-action which commutes with the U(n)-action
(1.1) (k-pz)(v) =k - (pz(v)), Vke K, YveC".
Moreover, we have K-equivariant isomorphism of vector bundles

®: Fe(E) xym) C" = E, ([, v]) = @u(v).

Choosing a different K-invariant Hermitian metric on E yields an isomorphic principal bundle.

Let E — M be a K-equivariant real orientable vector bundle of rank n. Similarly, we can con-
struct it as an associated vector bundle. Choose a K-invariant Riemannian metric on E and the
standard scalar product on R™. On R"™ we choose the orientation given by the standard basis. Let
Ff (E) = W,cp Fit (E)a, where Ff (E) = {¢, : R™ — E, | ¢, orientation preserving isometry}.
Then F (E) is a principal SO(n)-bundle over M and it is called the real oriented frame bundle
of E. We also have a K-action on it defined by (I.I), which commutes with the SO(n)-action
and

D : Ff (B) xsom R = B, 0([pa]) = ¢a(0)

is a K-equivariant isomorphism of vector bundles.

1.1.7 Euler class

Recall that the Lie algebra so(n) of SO(n) is the set of skew-symmetric real matrices. Let
{e1,...e,} be an orthonormal basis of R inducing the same orientation as the standard basis.
To any A € so(n) we can associate a skew-symmetric form wy € A2R™ by wa (v, w) = (Av,w)
for all v,w € R".

Definition 1.15. The Pfaffian of A € so(n) is defined as the coefficient of e; A... A e, in

exp (Z(Aei,ej) “ei A ej).

i<j
Alternatively we can define it by
wn/Q
Pi(A)(er A v Aep) = 2=
n!

if n is even and Pf(A) = 0 if n is odd. From the definition of w4 follows that Pf € (Sso*)5°(™).



By the spectral theorem of skew-symmetric matrices any A € so(n) is conjugate in O(n) to

a matrix of form

0 —\
0 M A o1
N0 !
if n = 2k or B ifn=2k+1,
0 -\
0 —\ \ 0’“
Ao 0 k .
hence
AN, if =2k,
Pf(A) =
0 ifn=2k+1.

In particular, we have Pf(A)? = det(A) for all A € so(n).

Definition 1.16. The Euler class of a real orientable vector bundle £ — M of rank n is

S L T P

where 6 is a connection form on the real oriented frame bundle of Fy (E) and © is its curvature
[39]. The equivariant Euler class of a real orientable K-equivariant vector bundle E — M of

rank n is equal to

ex(E) =CE ((_;ﬁn/z> = Pf (—(;f:) € HEY (M),

where ¢ is a K-invariant connection form on Fj (E) and O is its equivariant curvature [I5].

1.1.8 Chern classes

Denote u(n) the Lie algebra of U(n). We define oy € (Su(n)*)V (™ by relation

det (I+ tA) Zok

By the spectral theory of skew-Hermitian matrices any A € u(n) is conjugate in U(n) to a
diagonal matrix diag(\/—l)\l, ey \/—1)\71), hence

Sk()\l, ey )\n)
or(A) = N
where sp(A1,...,\,) is the k"' elementary symmetric polynomial in A1,..., \,.

Definition 1.17. The k** Chern class of a rank n complex vector bundle E — M is defined by

Ck(E) = C@(O’k) = O'k(@) € HQk(M),



where 0 is a connection form on the unitary frame bundle F(F) and © is its curvature. The
total Chern class of E is
¢(E)=14c1(E)+...+cn(E).

We call ¢, (E) the top Chern class of E. We define the k* equivariant Chern class of a K-
equivariant complex vector bundle £ — M of rank n by

cii (B) = Cg' (ox) = 04 () € HZF (M),

where 6§ is a K-invariant connection form on the unitary frame bundle Fr(E) and ©F is its

equivariant curvature.

1.1.9 Relation between the Euler class and the top Chern class

Recall that C™ considered as real vector space has a natural orientation. If {z;,...,z,} is a
basis of C™ then the orientation is induced by the real basis {z1,vV/—1y1, ..., Tn, vV —1ys} of C™.
Therefore, any complex vector bundles £ — M of rank n can be considered as oriented real

vector bundle of rank 2n. The following result can be found in [I5] or [39].

Proposition 1.18. The Euler class of E as real oriented vector bundle agrees with top Chern

class of E as complex vector bundle. That is,
e(E) = cn(E).
It also holds for K -equivariant complex vector bundles E — M, that is,

ex(E) = cff(E)

1.1.10 Properties of the Euler class

Let E — M be a K-equivariant (real orientable or complex) vector bundle and let f : N — M be
a K-equivariant map which induces homomorphism f* : Hx (M) — Hg (N). Then the pull-back

bundle f*F is also K-equivariant and we have

ex (fE) = f*(ex(E)).

If F — M is another K-equivariant vector bundle then ex(E @ F) = ex(F)ex (F) (Whitney
product formula).

For computations of Euler classes we will use the following correspondence. Let P — M be a
K-equivariant principal G-bundle and let E — P be a (K x G)-equivariant real oriented vector
bundle. If C¥ : Hwq(P) — Hy (M) is the Cartan isomorphism then

CK(eKXg(E)) = eK(E/G).

Let ¢ : G — K be a Lie group homomorphism and denote ¢* : £* — g* the induced map.

The K-equivariant (real orientable) vector bundle E — M can be consider as a G-equivariant



vector bundle via the homomorphism ¢. We also have a homomorphism ¢* : Hx (M) — Hg(M)

between equivariant cohomologies, and moreover
eq(E) = ¢"(ex (E)).

To make computation with the Euler classes we will use the Spitting Principle (cf. [I5],
Section 8.6 or [4], Section 21). If E — M is an K-equivariant complex vector bundle of rank r
then we will assume that it splits to K-equivariant complex line bundles, that is, &' = ®;_;L;
and by Whitney product formula

€K(E) = HeK(Li).

Ezample 1.2. Let K be a torus acting on C by weight v € €, that is,
exp(€) z =™V, veee VzeC.

We consider C as a K-equivariant vector bundle over the point and we denote it by C,. The
standard Hermitian metric on C is K-invariant and Fc(C,) = U(1) is the unitary frame bundle.

d
The Maurer-Cartan form (0p¢), = —Z, z € U(1) C Cis a K-invariant connection on Fr(C,) —
z

q
{pt}. Let {&',...,£9} be a basis of € and {uy,...,u,} be its dual basis. If we write v = > v;u;

i=1
then

. d
§7,

== | 2Vhi) . = Zﬁ'yi\/—lzé.
z dtlt=0 0z

q q
Moreover, (O0)% = -3 teicu; = — ) 2my/—1yu; = —2my/—17 and
i=1

i=1 =

ex(€) = (€)= LA (2my Ty = 4.

1.2 Symplectic manifolds

1.2.1 Hamiltonian action

Definition 1.19. A 2-form w on a manifold M is symplectic if it is closed and non-degenerate,
ie. dw =0 and if w(v,w) =0 for all w € X(M) then v = 0. The pair (M,w) is called symplectic

manifold.

Definition 1.20. An action of a compact Lie group G on a symplectic manifold (M,w) is
called Hamiltonian if g*w = w for all ¢ € G (it preserves the symplectic form) and there is a

G-equivariant map ug : M — g*, called moment map, such that

(1.2) dlpc, &) = —ew,  VEes.

On g* we have considered the coadjoint action.



The form w — pug € Q*(M) & Q°(M) ® g* is invariant and equivariantly closed, that is,
Dg(w —pg) = 0.

Hence, w — pug € Hé(M ) is called equivariant symplectic form. Let S be another compact
connected Lie group which acts on M and preserves w. If the G- and S-action commute then

e is S-invariant, that is, S preserves the fibers of ug.

Ezxample 1.3. On C™ we have a natural symplectic form

\/jl n n n

Wen = T Zdzz N dZi = Z dd?z A dyi = Zridridﬂia
=1 i=1 =1

where z; = x; + vV —1y; = rieV=1i, Let K be a torus acting on C" with weights v1,...,v, € £,

that is,

exp(§) -z = (ez’r\/j”l(g)zl, cee 62”\/?7"‘(5)2”) , VEet Vz=1(z1,...,2,) € C".

n 0
Then & = > 27r’yi(§)ﬁ and from l) follows that the moment map has of form
= i

) =2y g 0 (Cet).

1.2.2 Symplectic reduction and Kirwan map

The relation and non-degeneracy of w imply that ¢ € (g*)¢ is a regular value of g if and
only if G acts locally freely on ug'(¢). The quotient MG = ug'(¢)/G is called symplectic
quotient. Moreover, M /G admits a symplectic form which is called reduced symplectic form.
Hence, if G acts freely on u&l(g) then MG is a symplectic manifold. If the action is only
locally free then M G is a symplectic orbifold.

Let S be a connected compact Lie group. If the S-action on M preserving the symplectic form
commutes with the G-action then we also have an S-action on M J;G. Moreover, if the S-action
is Hamiltonian with G-invariant moment map pg : M — s*, then the S-action on M /G is also

Hamiltonian.
The Kirwan map k : Ho(M) — H(M /;G) is defined by

k=Coi",

where i : ug' (¢) — M is the inclusion and C : Hg(ug'(¢)) — H(M/:G) is the Cartan isomor-
phism. We remark that if ¢ = 0 then k(w — p¢) is the reduced symplectic form on M oG. It was
proved in [26] that if M is compact then & is surjective. Similarly, we can define the equivariant
version of the Kirwan map kg : Hoxs(M) — Hs(M /. G),

kg =C% 0¥,



where C% : Hoxs(ug' (¢)) — Hs(M/:G) is the equivariant Cartan isomorphism. If ¢ = 0 then
ks(w— g — pg) is the reduced equivariant symplectic form on M /pG. The Kirwan surjectivity
was extended to the equivariant setting in [12].

1.2.3 Compatible triples and symplectic weights

M is a complex manifold of dimension n if admits an atlas {U;}; with U; open unit disk in C"
and holomorphic transition maps. The multiplication by v/—1 on C" defines an anti-involutive
section I € T'(End(TM)), that is I? = —idrys, which is called complex structure on M.

Definition 1.21. A Riemannian metric p on a complex manifold M is a Hermitian metric if it

is compatible with the complex structure
(1.3) p(Iv, Iw) = p(v,w), Vo, we X(M).

Definition 1.22. A complex manifold M is Kdhlerif it has a Hermitian metric p and a symplectic

form w such that
(1.4) w(v,w) = p(Iv,w), Vo, we X(M).
The triple (I, p,w) is called Kdhler structure on M.

Definition 1.23. An anti-involution I € T'(End(T'M)) is called almost complex structure on M.
An almost Kdhler structure on M is a triple (I, p,w) such that I is an almost complex structure,

p is a Riemannian metric and w is a symplectic form on M satisfying compatibility relations

(1.3) and (1.4). We call (I, p,w) a compatible triple.

Proposition 1.24. Let (M,w) be a symplectic manifold then there exist a Riemannian metric
p and an almost complex structure I on M such that (I,p,w) is a compatible triple (cf. [7],
Corollary 12.7 or [21)], Lemma 3.16).

Corollary 1.25. If a compact Lie group G acts on a symplectic manifold M, preserving the
symplectic form w then there exist an invariant Riemannian metric p and an almost structure I

such that (I, p,w) is an invariant compatible triple.

Proof. Following the proof of Lemma 3.16 of [21] we choose a G-invariant Riemannian metric p’
on M. Then there exists a skew-adjoint operator A € T'(End(T'M)) (with respect to p’) such
that w(u,v) = p'(Au,v) for all vector fields u,v € X(M). Since w and p’ are G-invariant, hence
A is a G-invariant section of End(T'M). Moreover, A*A is a (G-equivariant) self-adjoint positive
definite operator on TM (with respect to p'). The almost complex structure I € I'(End(TM)) is
defined by the relation A = /A*AI = I\/A*A and remark that it is preserved by the G-action.
Finally, the Riemannian metric p is given by p(u,v) = p'(vV/A* Au,v). It is G-invariant and

w(u,v) = p'(Au,v) = p'(VA* Alu,v) = p(Iu,v)

for all u,v € X(M). O
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Proposition 1.26. Let (M,w) be a symplectic manifold. The set of almost complex structures

compatible with the symplectic structure on M
T, = {I eT(End(TM))|I?> = —idrps, 3 (I, p,w) compatible triple}
is path connected (cf. [], Proposition 12.8).

If a compact torus T acts on (M,w) preserving the symplectic form and # € M€ is a fixed
point then by choosing an invariant compatible triple we can talk about T-weights of T, M and
by Proposition [1.26] it does not depend on the choice of the compatible triple. Similarly, by
choosing a compatible triple on a symplectic manifold (M,w) we can consider Chern classes of
TM.

1.2.4 HyperKahler manifolds

Definition 1.27. A Riemannian manifold (M, p) is hyperKdhler if it admits three K&hler struc-

tures (I;, p,w;), @ = 1,2, 3 such that the three complex structures satisfy the quaternionic relations
=12 =1 = L1113 = —idpyy.

Definition 1.28. A G-action on a hyperKé&hler manifold is called hyper-Hamiltonian if it pre-
serves the hyperKéahler structure and it is Hamiltonian with respect to all three symplectic
structures. If pu; : (M,w;) — g*, i = 1,2,3 are the three moment maps then we can compose real

and complex symplectic forms and moment maps as follows
WR = W1, HR = M1,
we = w2 +V—1lws, pe = po + vV —1ps.

Ezxample 1.4. Denote H the quaternions with 1, j, k such that i> = j2 = k? = ijk = —1. Let
A= Ao+ iAs + jAs + kAs € M, (H) and denote Z = Ag +iA;, W = Ay +iA3 € M, ,(C).
We identify M, ,(H) 5 T*M,,(C) = M, (C) & M, ,(C), A = Z + W'j — (Z,W). The left
multiplications by i, 7,k on M, ,(H) define three complex structures on 7% M, ,.(C)

L(Z,W) = (V-1Z, \/—IW) , L(Z,W)=(-W*2%), I3(Z,W)= (—v—lW*,\/—lZ*) .
Moreover, we also define Riemannian metric p, real and complex symplectic forms wg and we on
T*M, »(C) by

p=Tr(dZdZ* + dWdW™),

v—1
2
we = Tr(dZ A dW).

Tr (dZ A dZ* + dW A dW™) |

WR =

All these structures make T*M,, (C) a hyperKéhler manifold. We consider the natural U(n) x
U(r)-action on T*M,, ,(C) given by

U, V) (Z,W) = (UZV*,VWU*), YU €U(n), VV €U(r), VZ,W' € M, ,(C).

11



This action is hyper-Hamiltonian with real and complex moment maps

pr : (T* M, - (C),wr) = u(n)* du(r),  ur(Z,W)= V-1 (

2

Z7* — W*W
WW* —2z*7 )"’

pic = (T My 1 (C), we) — u(n)c @ u(r)c, HelZ, W) = <_ZMI;VZ> ,

where we have identified u(N) ~ u(N)* via the non-degenerate bilinear pairing (u,v) = Tr(u*v)
for all u,v € u(N) and N =n or N =r. ©

Similarly to the symplectic case, ¢ = ((g, (c) € (8" @ g5)¢ is a regular value of (ug, uc) if and
only if G acts locally freely on pg'(Cr) N g (Ce). Moreover, M ffJ:G = g ' (Cr) N e’ (Ce)/G is
again hyperKéhler and it is called the hyperKdhler quotient [22]. We also have a hyperKéahler
version of the Kirwan map & : Hg (M) — H(M[lJcG), k = Coi*, where i : ug ' (CGr)Npg ' (Cc) = M
is the inclusion and C : Hg(ug'(Cr) N pue'(Ce)) — H(MJ:G) is the Cartan isomorphism.
Similarly can be defined the equivariant version of the hyperKahler Kirwan map.

1.3 Orbifolds

We adopt the definition of orbifolds from [34], which extends the original definition of [42] for
non-effective actions.

Let X be a paracompact Hausdorff topological space. An orbifold chart on X is a tuple
(U, U, H, ¢), where U is an open subset of X, H is a finite group acting linearly on an open
subset U of R" and p: U — U is a H-invariant continuous map, which induces homeomorphism
ﬁ'/H — U. We say that it is a chart around = € X if z € U. An embedding of orbifold charts
¢ : (Ui,ﬁi,Hi,goi) — (Uj,ﬁj,Hj,goj) consists of a group homomorphism ngS: H; — Hj; and a
;é\-twisting embedding (E U; — ﬁj such that

S

¢
—

=

Pi

5
-~

—_—

S

=

commutes, the bottom horizontal map is the inclusion and ¢ satisfies the additional condition
(1.5) hi-dU)NGU) A0 = hyj € p(Hy).

We remark that if H; acts effectively on Tj'j then the condition is automatically satisfied.

Two orbifold charts (U;, ﬁi, H;, i), i = 1,2 on X are compatible if for any point z € U; N
U, there exists a third orbifold chart (U3,(73,H3,<p3) around x with chart embeddings ¢; :
(Us, Us, Hz, @3) = (Ui, Uy, Hi, 03), i = 1,2.

Definition 1.29. An orbifold structure on X is an orbifold atlas {(U,, ﬁi,Hi,goi)}ieI of com-
patible charts such that X = U;;Us;.

12



Ezxample 1.5. If a compact Lie group G acts locally freely on a manifold P then the quotient
P/G is an orbifold. ¢

Let 2 € X and let (U,U, H, ¢) be a chart around z. Let y € ¢~ !(z) be a lift of # and denote
H, ={h € H|hy = y} its isotropy group. Let ¢ : (V, V.G, ¥) — (U, U, H, ©) be an embedding
such that € V. If z € ¢~ () is another lift then by condition the isotropy groups H,
and G, are isomorphic. Thus we can define up to isomorphism the isotropy group H, of x as

isotropy group of its lifts.
Definition 1.30. The multiplicity of a point x is the order of its isotropy group.

For any point z € X there is an orbifold chart (U, U, H,¢) around z such that H is the
isotropy group of z, that is, ¢~ !(z) € U is a fixed point of H. Since the fixed point set UH
is a submanifold of U, hence for a fixed finite group G the set X¢ = {re X|H, ~G}isa
submanifold of X. We can write X = UgXg. If X is connected then there is a unique open,
dense submanifold X, C X called principal stratum such that the order |H,| is minimal for the

isotropy groups.

Definition 1.31. The orbifold multiplicity of X is defined as the order of isotropy groups of any
point in the principal stratum and we denote it by m(X) [34].

Later in the text orbifolds will appear only as quotients of manifolds by compact groups
acting locally freely. We can define differential form, equivariant cohomology and Euler classes
on orbifolds using orbifold charts [30], but in our cases they will be computed as images of similar
objects via Cartan isomorphism.

Finally, we recall the following orbifold version of the Atiyah-Bott-Berline-Vergne localization
theorem [3} [2].

Theorem 1.32 ([34], Theorem 2.1). Let X be an orbifold with a T torus action. For any

B € Hr(X) we have 5
L 1 i
m(X)/Xﬁ_ 2 m(F)/FeTN(F|X)’

FcXT

where m(X) and m(F) are the orbifold multiplicities of X and F (considering F as suborbifold
of X), and N(F|X) is the equivariant normal orbibundle of F in X.

1.4 Proper and bounded below moment map

Let K be an 1-dimensional torus and let (M,w) be a non-compact Hamiltonian K-manifold
with moment map px : M — £ which is assumed to be proper and non-surjective. Let v be
a generator of £ and define ¢ : M — R by relation pux = ¢ - . Then ¢ is also proper and by
Lemma 1.1 of [40] the image of ¢ is either (—oo,n] or [, +00) for some n € R. We assume that
we have chosen 7 such that ¢ is bounded below.

Definition 1.33. We call such an action as above a PBB action if M¥ is compact. We refer to

the data (uk,p,7) as the proper, bounded below moment map.

13



Remark 1.34. (i) Similarly to the compact case the fixed point set M % # () by Proposition 1.2
of [40].

(i) MX is compact if and only if the set of critical values of ¢ is finite. Indeed, ¢ is constant on
K-fixed point components and (M) is the set of critical values, since K is 1-dimensional.
Therefore, M¥ is compact if and only if o(MX) is finite, since ¢ is proper.

S

Let T be a compact torus with Hamiltonian action on (M,w) which commutes with the K-
action and denote ur : M — t* its moment map. We can approximate M by compact symplectic
manifolds using symplectic cut technique [28] as follows. Let € € R be a regular value of . We

V=1
consider the standard symplectic form we =

dzdz on C and let K act on C by weight

2
z
—v € &. It is a Hamiltonian action with moment map (z) = —27wi. On the product space

M x C we consider the symplectic form w 4 we and (T x K)-action
(t, k) - (m,2) = (th-m, k' 2) V(t,k) €T x K, ¥(m,z) € M x C.
The K-action admits moment map ¥ : M x C — ¢*,

U(m,z) = ux(m) +¢¥(z) = (gp(m) + 7T|z|2) Y

and e7v is a regular value of it. Indeed, we have decomposition
U (ey) = (971 (en) N (M x ) 1Y (wx(e7) x {0}),

on which K acts locally freely, because K acts locally freely on C* and ul}l (e7y) by the assumption
that e is a regular value of px. Hence X<. = ¥~ !(ev)/K is a symplectic orbifold. Moreover,
if Im ¢ = [, +00) then

U ey) Cot(me]) x {z € C|nlz* <e—n}

and since ¢ is proper, it follows that ¥~ () and consequently X<, is compact. Denote [m, z]
the image of (m, z) by the quotient map ¥~1(e7) — X<. and let X, = {[m, 2] € X<. |2z # 0}.
The torus T acts on X<, with moment map X<, — t*, [m, 2] — pr(m), which we will denote
by ¢7. Moreover, there is a T-equivariant symplectomorphism

E—w(m)].

ap_l(—oo,s) = Xeey, m— [m,
T

We recall the following two theorems from [30], which are the orbifold versions of similar
results of [I] and [16].

Theorem 1.35 ([30], Theorem 5.1). Let (X,w) be a compact connected symplectic orbifold with
Hamiltonian T-action and ¢p : X — t* moment map. Then for every ( € t* the fiber qﬁ}l(g) 18
connected.
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Theorem 1.36 ([30], Theorem 5.2). Let a T torus act on a compact connected symplectic orbifold
(X,w) with moment map ¢ : X — t*. Then the image of the moment map ¢ (X) C t* is a
rational convex polytope. Moreover, ¢p(X) is the convex hull of ¢r (XT).

Approximating M by X<. as € tends to +0o0 we can show that
Corollary 1.37. (a) For every ¢ € t* the fibers up"(¢) C M are connected.
(b) The image of the moment map pur(M) C t* is a convex polytope.

Let H C T be a subtorus and let N € MH be an H-fixed point component. Assume that H
is the maximal subtorus of T fixing every point of N. The restriction of ¢ to N is also proper
and bounded below, therefore ur(N) is a subpolytope of pur(M). Since N is a H-fixed point
component, the H-moment map is constant on N, therefore pr(N) lies in the affine subspace
pr(z) + ker(t* — b*) for any € N. Moreover, the quotient group T/H acts (locally) freely on
an open dense subset of N, hence the dimension of the polytope pr(IN) agrees with the dimension
of ker(t* — b*).

Definition 1.38. The proper subpolytopes pr(N) are called walls of the moment polytope
pr(M). Let & € N. We will refer to ker(t* — b*) and ur(x) + ker(t* — b*) respectively as
supporting plane and supporting affine plane of the wall ur(N).

Ezample 1.6. For x € M7T let o; € t5, ¢ € I be the weights of T, M (with respect to an
invariant compatible almost complex structure). Consider the subtorus H C T with Lie algebra
h = O;?:l kercy,. Let N C MH the fixed point component containing z. Then the supporting
affine plane of ur(N) is equal to pr(z) + span{ay,,...,«;, ). Indeed, if T,M = @;c;W,, is
the decomposition to weight spaces then T, N = @;jc;W,,, where J = {i € I |a;(h) = 0}.
Thus, H is the maximal subtorus of T fixing every point of N and we have ker(t* — h*) =

span{a;,, ..., Q). o
Lemma 1.39. The moment polytope ur (M) has finitely many walls.

Proof. If x € NT*K ¢ MT*K then T, N C T, M is a T-invariant subspace and moreover it is a
direct sum of weight spaces corresponding to weights « € t such that a € ker(t* — b*). T, M
has finitely many weights and they depend only on the connected components of M7 *¥  which
are also finite in number, therefore pr (M) has finitely many walls. O

The Kirwan surjectivity also extends to manifolds with proper bounded below moment maps.

Theorem 1.40 ([20], [12], [41]). Let G be a compact Lie group and let S be a compact torus
acting on M. Assume that the G-action is Hamiltonian with moment map ug : M — g* and let
¢ € ()€ be a regular value of ug. Moreover, we suppose that the actions of G, S and K on M
commute. Then the S-equivariant Kirwan map ks : Haxs(M) — Hg(M J:G) is surjective.
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2

Symplectic cut

In this chapter we review in detail the symplectic cut technique with respect to a cone closely fol-
lowing [25]. In that paper the symplectic cut construction is used to get localization formulas as
follows. From a Hamiltonian K-manifold M we can construct another Hamiltonian K-manifold
(or orbifold) Mt which contains the torus symplectic quotient M /K as a K-fixed point compo-
nent. Some of the K-fixed point components of M appear among the fixed point components
of M, too. The Atiyah-Bott-Berline-Vergne localization formula on Mt yields a fraction of a
particular form and the Jeffrey-Kirwan residue can be used to extract from this fractions rela-
tions between contributions of fixed point components. In this way we can compute integrals
on the quotient space M /K in terms of the Jeffrey-Kirwan residue and fixed point data on M.
Therefore, the goal of the chapter is to compute fixed point data on the symplectic cut space M
such as fixed point components, Euler classes of their normal bundles and orbifold multiplicities
in order to write up the Atiyah-Bott-Berline-Vergne localization formula on it (Theorem .
Our setup differs from [25] solely in considering K as a subgroup of a bigger torus T'.

Let (M, w) be a connected symplectic manifold with Hamiltonian action of an n-dimensional
compact torus T with moment map pur : M — t*. We assume that M is compact or admits a
PBB action which commutes with the T-action. Let K C T be a g-dimensional subtorus and we
denote by px its moment map.

We also C(;nsider the auxiliary symplectic manifold C? with the standard symplectic form
Wea = g Z dz;dz; and let K act on C? by linearly independent weights v1,...,7v, € €. It is

i=1
also a Hamiltonian action with moment map 1 : C? — £,

\Zi|2

q
W(z)=2my 5
i=1

The product space M x C? admits symplectic form w + wee and Hamiltonian (T x K)-action

(t, k) - (m, 2) = (tm, kz), V(t,k)eTx K, ¥Y(m,z) € M xC?
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with moment map pur X ¢ : M x C? — t* @ t*. The K-action will refer to the action of K on
C? and we will specify when the action of K on M as subgroup of T occurs. We consider the
embedding K — T x K, k — (k,k™'). We denote its image by Kg;qy and its Lie algebra by
£4iag. The Kgiqg-moment map is ¥ : M x C? — El’;mg,

U(m, 2) = e (m) — (2).

We will investigate when is 0 a regular value of ¥. By definition 0 is a regular value of ¥ if
Imd,, pux —Imd, ) =€ for all (m,2) € ¥=1(0). Let K,, C K be the maximal subtorus fixing m
and denote ¢, its Lie algebra. Remark that Im d,,p1xc = ker(¢* — &},), since d, (e, v) = —1y, w
for all v € £ and w is non-degenerate. If F,, C M is the connected component containing m
then pug (Fp,) is a convex polytope in £ with supporting plane Imd,,ux. Moreover, Imd, v =
span (7y; | z; # 0). Therefore, 0 is a regular value of ¥ if and only if the polytopes px (F,) and
Cone(vj | z; # 0) intersect transversally for all (m,z) € ¥=1(0). That is, we got the following
characterization of 0 being a regular value of ¥ from [25]:

(T) for every subset I C {1,...,q} the intersection of Cone(~; |i € I) with every wall of ug (M)

is transverse.
Remark 2.1. (i) For I = ( condition implies that 0 is a regular value of pg.

(ii) Recall that pug (M) has finitely many walls. Therefore, if 0 is a regular value of px then

for generic choice of 1, ...,7, € & the condition ((T]) holds.
o

From now on we assume that the transversality condition holds. We denote by MK =
15t (0)/K the symplectic quotient.

Definition 2.2. The symplectic cut of M with respect to the simplicial cone I' = Cone(y1, ... ,7q4)
is the symplectic quotient
Mr = U"0)/Kdiag-

We will use notations [m] and [m,z] for images of m € ug'(0) and (m,z) € ¥~1(0) by
quotient maps. As shown in [29], the T-action on M x C? descends to Mt and it is Hamiltonian
with moment map ¢ : Mp — t*,

¢r([m, 2]) = pr(m)
(¢ for K-moment map). We denote by wr the reduced symplectic form on Mr.

Moreover, we have relations between moment polytopes ¢x (Mr) = px (M)NT and ¢ (M) =
pr (M) Npry. (T'), where pry. @ t* — €.

2.1 T-fixed components on Mr

For m € M and z € C? denote T}, C T and K, C K the maximal subtorus fixing m and z,
respectively. Denote t,,, and €, their Lie algebras. Let F,,, C M™» and F, C ((Cq)Kz be connected

components containing m and z, respectively.
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Lemma 2.3. [m,z] € Mr is a T-fived point if and only if t = t,, © £.. Moreover, if Fy,,, ;) C
(Mr)T is the fived point component containing [m, z] then

Fin o) = (B X F2) [ Kaiag = (Fry X F2) 00 7(0)/ Kaiag-

Proof. Let T} = {t € T|t-m = m} and K, = {k € K | k- z = z} be isotropy subgroups of m
and z, respectively. We have [m, z] € (Mr)T if and only if for any ¢ € T there exists k € K such
that (tk-m, k=1 - 2) = (m, 2), that is, tk € T!, and k= € K/. It implies that T x K. — T,
(t', k') — t'K’ is surjective, which is equivalent to t,, + €. = t since T is connected. Moreover,
(m, z) belongs to ¥~1(0) on which Kgiay acts locally freely, hence t,, N€, = {0}. Therefore,
[m, z] € (Mr)T exactly when t,, ® £, = t. In particular,

Op Ty x K, > T, (t,k) — tk

is a finite cover, because T,, x K, is compact.

We remark that (F,, x F.) N ¥~1(0) is connected by [I] or Corollary hence (F,, X
F.)//Kdiag is also connected. If [my, z1] € (Fn X F.)//Kaiag then by surjectivity of ®7 we can
write any 7 € T as 7 = tk with t € T,,, and k € K,. Hence

T [my,z1] = [tk -my,z1) = [t-ma, k- z1] = [ma, z1],

therefore (Fy, x F.)//Kgiag C Fim, ) by connectedness.

Finally, we will show that (F,, X F,) /K giag is a closed and open subset of the connected space
Fip,») which will imply the equality of these two sets. Remark that F, x F, is a closed subset of
M x C9, hence (Fy, X F) | Kgiag is a closed subset of Fj,, .j. It remains to show that it is an open
subset, too. If [my, z1] € (Fpy X F%) [/ Kgiag then T,,, C Tpypy, K. C K, and ¢, &, = t = t,,,, L.,
whence T,,, = T),,, and K, = K,,. The isotropy groups locally decrease (cf. [9], Tube theorem),
thus there is an open neighborhood U C M x CY of (mq,z1) such that for all (mg,2) € U
we have T}, C Ty, and K C K. . If [m2, 2] € Fjy.) C (Mp)” then ty,, & t., = t, hence
Ty =Ty =T and K, = K,, = K. It implies that [ma, 23] € (Fi, X F) J Kgiqg and therefore
(Frn % F.) / Kdiag is an open subset of F, ;. O

Remark 2.4. From the proof follows that for any [mi,z1] € Fpy . we have T, = T,,, and
K. = K,,, hence the finite cover ®7 depends only on the fixed point component F,, .; not on
the points m and z. o

Remark 2.5. The above lemma is reflected on the geometry of the moment polytope as follows.
For z = (z1,...,24) € C? we introduce the index set J, = {j=1,...,¢|z; =0}.

(i) Since pg(m) = ¢ (Flm,z)) and Y(F.) = Cone(v; | j ¢ J.), we have
K (Flm,z)) = pxc (Fm) N Cone(y; | & J2).

(ii) Moreover, dim pg(F,) = dim¢, = dim pg (Fn) and pre. (ur(Fn)) = pr(Fn), therefore
pr(Fy) and pr@lCone(’yj |j ¢ J.) also have complementary dimensions and intersect
transversally in t*, thus

¢T(F[m,z]) = ,U/T(Fm) N pI‘;}CO’I’Le(’Yj |j ¢ Jz) ¢
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We consider the following subsets of M and Mr:
Mipt ={m € M |ug(m) € intT'},
Mr int = {[m,z] € Mr | px(Im, 2]) € intT'},
Mr o = {[m,z| € Mr |z = 0}.
We organize the T-fixed point components of My in three groups.

(FO) Fixed point components Dy C (Mr o). They are characterized by ¢x(Dy) = 0, that
is, Do = Fjy, ) for some m € ul}l (0). They can be naturally identified to T-fixed point
components Fy C M /K via the T-equivariant diffeomorphism

TQ : M//K — MF,O» [m] — [m,O]

(F1) Fixed point components Dy C (Mr nt)? characterized by ¢ (D1) € intT, i.e. Dy = Fin 2
for some [m,z] € (Mp)T with z € (C*)?. They correspond to fixed point components
of M, as follows. Let K C K be the maximal subgroup of K acting trivially on C9
and remark that it is finite since v1,...,7, are linearly independent. For any m € M;y,

q
we can write g (m) = ZwymK(m)i with pg(m); > 0 for all ¢ = 1,...,¢9. The map
i=1
Mint = Mr int, m — [m, (\/,uK(m)l, s/ B (m)g )] induces T-equivariant isomorphism
(2.1) Yint : Mint/IC — Mrp ine

of orbifolds. Under this map the fixed point components D; correspond to suborbifolds
Fy/K of M;n:/K, where F is a T-fixed point component of M.

(F2) Other fixed point components D C (Mr)?T which are characterized by ¢ (D) # 0 and
¢k (D) lies on the boundary of T.

Remark 2.6. When dim K = 1 and y; € & is a generator then K is trivial and ;s @ Mins —
My is an open embedding. Moreover, fixed components as in (F2)) do not occur and we have

decomposition
MF - Tint(Mznt) U] TO(M//K)

2.2 Choice of cohomology classes and their restrictions

Definition 2.7. We define the homomorphism A : Hy (M) — Hy(Mr) by the following diagram

A

Hrp (M) Hr(Mr)

HTXK(M) — HTXKdmg (M X (Cq)

where the left vertical map is induced by T' x K — T, (t,k) — tk, the bottom horizontal
isomorphism is induced by projection M x C? — M and k7 is the Kirwan map.
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More explicitly, if s : ¥=1(0) — M is the composition of the inclusion ¥ ~1(0) — M x C? and
projection M x C? — M then for any 8 € Hr (M)

(AB)(u) = Horg [(i* B) (u + O(u))],

where u € t and 6 is a T-invariant connection form on the principal Kg;q,-bundle ¥—1(0) — Mp
with equivariant curvature form O(u). We remark that the cohomology class of A(3) does not
depend on the choice of 6.
Lemma 2.8.
(i) If tint : My — M and ivint : Mrine — Mr are inclusions then
int —

i T, o szt oA: Hp(M) — Hp(Mint).

In particular, if Dy C (Mr in)T and Fy C (Mn)T are fived point components such that
Yint(F1) = Dy then for all B € Hr (M)

(2.2) Yini(ip, A(B)) = i, B.
(ii) Ifir o : Mp,o — Mr denotes the inclusion then
kg = YooipgoA: Hp(M) — Hr(M/K).
In particular, if Do C (Mro)? and Fy C (MJK)T are fized point components such that
Yo (Fo) = Dy then for all B € Hp(M)
Y5(ip, A(B)) = ix kr i (B)-

(iii) A(w — pr) = wr — ¢r € HZ(Mr) is the class of the T-equivariant symplectic form on Mr.
Proof.

(i) Denote m : ¥=1(0) — Mr the quotient map. To compute the restriction W A(B) we may
choose any T-invariant connection form € on the principal Kg;q4-bundle 771 (M ;nt) —
Mt int by the naturality of the Cartan isomorphism with respect to restrictions. Consider
the Kgiqqg — K twisting map 7= (M int) — U(1)4,

(m, (21, ...

) (\/MK(m)l s \/uK(m)q>

and let 6 be the pull-back of a connection form on the principal K-bundle U(1)? — {pt}.
Remark that 6 is T-invariant, moreover df = 0 and ¢,0 = 0 for all u € t, hence its T-
equivariant curvature ©(u) = 0. Denote ir : 7~ '(Mrn:) — M the restriction of i :
U~1(0) — M. We have

Yt (a1, AB)) (w) = T, (Horg [(i78) (u + O (w))]) = T}, (Horg [(i78)(w)]) = (i7,.6) (w),
because Y7, is induced by v : My — 7= Y (Mr jnt), m — (m7 (WVpr(m),. .., \//u((m)q))

and v*(6) = 0, thus the operator T7,,(Horg) is the identity.

int
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(ii) Again, to compute the cohomology class i}k\/[F’OA(ﬁ) we may use any 7-invariant connection
form 6 on the principal K g;q4-bundle 771 (Mr o) = u}l (0) x {0} = Mp,g, by the naturality
of the Cartan isomorphism. Moreover, the natural map g5 (0) — px"(0) x {0} induces a
TxK-—Tx K giag twisting isomorphism of principal bundles

1 (0) —== ' (0) x {0}

| |

M//K%())Mr‘,o.

Let 6" the pull-back of 8 and denote ©'(u) and ©(u) their T-equivariant connection forms.
Hence

Y5 (i, A(B)) = 15 (Horg[(i58) (u + O (u)]) = Horg [(j ) (u + ©'(w))] = rr/x (B),
where jo : 5" (0) — M is the inclusion and ig : ' (0) x {0} — M is the restriction of i.
4 xidy; — yida;

(iii) Remark that wee — 9 = Dg (Z

is exact, therefore
i=1 2

Alw — pr) = kr(w — px — pir) = kr(w +wes — ¥ — pr) = k(w + wee) — pr = wr — ¢r.

O

Remark 2.9. In particular, T§(A(w — pr)) is the class of the reduced equivariant symplectic form
kr k(W —pr) on MJK. o

2.3 T-equivariant Euler classes of normal bundles of fixed point com-
ponents

We have described the T-fixed point components of Mt in section|2.1] To compute their normal
bundles and Euler classes we will use the following lemma (cf. [25], Proposition 2.2).

Lemma 2.10 ([13], Proposition 3.1). Let G be a compact Lie group and let Z be an invariant
symplectic submanifold of a Hamiltonian G-manifold X with moment map p: X — g*. Assume
that 0 is a regular value of i and let X )G = u=1(0)/G be the symplectic quotient. If ZNu~1(0) #
0 then 0 is also a reqular value of plz : Z — g* and let Z))G = (u|z)"1(0)/G. We have
isomorphism of normal bundles

(2.3) NZJGIX)G)~N(Z|X))G

and consequently e N(Z)G | X)|G) = k(egN(Z | X)), where  : Hz(Z) — H(ZJG) is the Kir-
wan map. In particular, if X has an additional S-action which commutes with G and preserves
the fibers of u then the isomorphism is S-equivariant and esN(Z | X) = kg(eaxsN(Z | X)),
where ks : Hoxs(Z) — Hs(Z)|G) is the S-equivariant Kirwan map.
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Proof. 0 is a regular value of 4 is equivalent to locally free action of G on p=1(0). Hence G acts
locally freely on the set Z N u=(0) = (u|z)~1(0). Therefore, 0 is a regular value of u|z and we
have symplectic quotient Z /G = (u|z)~1(0)/G = (Z N p=1(0))/G.

Denote 7 : u~1(0) = X//G the quotient map. We have the following commutative diagram
of G-equivariant vector bundles over 771(Z/G) with short exact sequences in rows and in the

first two columns.

0—= 7 1(Z)G) x g — (x~1 (X)) x g)

04>TZ|7T*1(Z//G)4>TX|7T*1(Z//G) N(Z|X)|7r*1(Z//G)4>O

00— 1T(Z)G) ——— 7 (T(X)G)|z)c)

N(ZJG|X)G)——=0

0 0 0
The 9-lemma implies the exactness of the last column, thus N (Z | X) /G ~ N (Z)G | XJG).

If we have an additional S-action commuting with G and preserving fibers of u then the

above diagram is (G x S)-equivariant, hence the isomorphism (2.3 is also S-equivariant. O

By Lemma we have F, .) = (Fyn X F.)/Kdiag and by Lemma we also have a

T-equivariant isomorphism of vector bundles
N (Fin,z) | Mr) = N (Fpy x Fo | M % C?) [ Kgiag > (priN (Fp | M) @ priN (F | C?)) [ Kaiag,
therefore
erN (Fiy 21 | Mr) = K7 [erx K iay (PN (Frn | M))] K7 (€75 K gia, (PraN (F. | CY))],

where k7 0 Hrx kg, (Fn X F2) = Hp(Fjy, 2)) is the equivariant Kirwan map. The isomorphism
of tori v : T X Kgiag — T x K, v(t,k) = (tk,k™1) is compatible with their actions on M x CY,

therefore it induces isomorphism
v HTXK(Fm X Fz) — HTXKdmg(Fm X Fz)

in equivariant cohomology.

Denote C,, — {pt} the K-equivariant complex line bundle over a point on which K acts by
weight v; € €, and T' acts trivially. If £; is the pull-back of the bundle C,; along F,, x I, — {pt}
then prsN(F, |CY) = @jey. L), where J, = {j = 1,...,¢|z; = 0}. Therefore, the Euler class

can be computed as

€T x K yia, (PTaN (F2 | CT)) H eTx Kyiay (L H v (erx i (L H v () H (—v5) -

j€J: j€J: j€J: j€J:
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The vector bundle priN (F,, | M) splits (T}, x K,)-equivariantly to T,,-weight bundles

PN (F | M) = DN,

that is, T, acts on the fibers of A; by some weight «; € (tm)3- To compute Euler classes by the
Splitting Principle we suppose that A; are complex line bundles with respect to a compatible
almost complex structure on M. Recall that we have finite covers of tori &7 : T,, Xx K, — T and
dy : K, X K, — K which induce splitting of Lie algebras t =t,, ® ¢, and ¢t = ¢, ® ¢,. They
yield the following commutative diagram

*

e, O

pre*i \Lprefn@id
o*

) SNEcE o
where all the maps are adjoint to inclusions. Denote
0t Bt
and o : &, @ € — € the inverses of ®%. and ®j., respectively. Moreover, let
0 = Q0PI -t
where Prgs £* — €} is the projection. Hence
er,, xk. N;) = o + ek, (N;)

and
erx i (PN (Fp | M) = er (priN (F, | M)) = o(er,, x k. (®:iN3)).

We emphasize that here the K,-action is induced by the T-action on M x C? and recall that
the K-action is trivial on M. Choose a T-invariant connection form ¢ on the principal Kg;qq-
bundle ¥=1(0) N (Fy, x F.) — Fjyy, .. Its T-equivariant curvature is © = A + df, where X : t —
QUEL0) N (Fy, x FL)) @8, A(u) = —1,,0.

Remark 2.11. (i) If u € t,, then its fundamental vector field u on ¥~1(0) N (F,, x F,) vanishes

since T,, acts trivially on F,, x F.

(ii) If w € ¢, C t then 1,0 = u since K, as subgroup of T acts the same way on F,, x F, as

subgroup of Kgjag-

(iii) Recall that t = t,, @ t,, thus by the above remarks A is the projection t* — £ under
identification of £ with ker(t* — €¥)) via ge.

24



Denote +' : Hg,,, (Fm x F.) = H(Fj,, ) the ordinary Kirwan map. For any u € t and
j € J, we compute

K (€T x Kyiaq (£5)) (w) = Horg [=7;(0(u))]
= Horyg [—’Yj(—LHG + dﬁ)]
= 7 (pre,u) — Horg [v;(d0)]
=75 (pre.u) = & (75)

thus

(2.4) K (eTx Kaiay (L)) = 0 (1) — K (77)
Moreover, k(er,,,,(Ni)) = Horg [(a; + ek, (N;)) (df)] = Horg [ai(prtde) + er. (N3)(pr, d9)]
and
KT (€T x Kaiag (Ni)) (1) = Horglerx ki, (N3) (1, ©(u))]
= Horplerx x (Vi) (V" (u, O(u)))]
= Horgler (N;) (u + O(u))]
Horg [ovi(pry, (u — tu0 + dB)) + ex (N;) (pre (u — tuf + db))]
= a;(pry,u) + Horg [ai(pre,, df) + ex. (N7)(pre_ db)]

m m

Q@ (prtmu) + H/(eKdmg (M))a

thus
(2.5) K (€T x Kaiag (Ni)) = 0 (i) + K (€K g0y (N3))-
We have got
erN (Fim,1|Mr) = [ ] [o (i) + 8 (expny N)] [T o () = & (7))
i JEJ:
(2.6) =[] le() + €N/ Kaiag)] T lo (v) + € (L) Kaiag)] -
i Jj€J:

The geometry of the weight vectors of the normal bundle NV'(Fj,, .) | Mr) will be important in
the proof of the equivariant Jeffrey-Kirwan theorem. Therefore, we make the following remarks.
The K-weights of the normal bundle N (F] tm,2] | M) are either parallel to the supporting planes
of pk (Fy,) or ¢(F,). Indeed, the supporting plane of ¥(F.) is equal to g (€%,) = ker(£* — £5),
which is the subspace of £* spanned by ~;, j ¢ J. since £, = N;¢ s ker+y;. Hence

(2.7) pre- (o)) € oe(t),) = span{y; |j & J.), Vi.

Moreover, the K-weight pry.(o(v;)), j € J. is the projection of ; to the supporting plane
oe(8:) = ker(¢* — €) of ux(Fy,) along the supporting plane g¢(€},) of ¥ (F.). It also implies
that

(2.8) I' = Cone(y1,...,7q) Cspan(y; | j & J.) + Cone(pre. (a(v;)) | j € Jz).
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Remark that ¢ = span(y;|j € J.), hence the supporting affine plane of the wall pp(F,,) is
equal to pr(m) 4 span(o(v,)|j € J.). Moreover, since pr(m) = 1)(z) is in the relative interior
of pry.' (Cone(v; |7 ¢ J.)), hence

(2.9) pr (Fr) N pre (D) € pr(m) + Cone(o ()| j € Jz)

by (2.8).
For the rest of this section we assume that T = K x S and z = 0. Then ¢, = £ and
Jo={1,...,q}, hence 0 = p and pry. o 0 = idg«. Moreover, by (2.4)

K (€T x Kuiag (£i)) = Vi — K (v5) = v + G — K ()

where K : Hixs(Fm x {0}) = Hs(Fim,0)) is the S-equivariant Kirwan map and ¢; € s* is the
projection of o(v;) to s*.

If we regard M /K C Mp via the embedding Ty then i*F[m_O]N(M//K | Mr) = ®{_,L; )/ Kdiags
thus

q
(2.10) i, gexxsN(MJK | M) =[] (w — b, ns(%)) ,
j=1

where ks : Hgxs(M) — Hg(M//K) and (P55 = K. In particular, if K is 1-dimensional

then

]

(2.11) if,, exxsN(MJK|Myr) =y+ip,  esN(MJK|Mr) = o(y)+if,, ,eN(M/JK | M),
and MK C (Mp)X yields
(2.12) exxsN(MJK|Mr)=~y+esN(M/JK|Mr).

Finally, '(Flyn o) | MJ/K) = &N [ Kdiag and MK is fixed by K, thus by

(2.13) esN (Fim,0) | MJK) = exxsN (Fimo | M) E) = [ Jlo(c) + K (x40, (N3))],
furthermore N (Fip o) | Mr) = N (Fim,0) | M) K) © N(M K | Mr)|,, ,,» therefore by and
we have

q
(2.14) ex SN (Fim,o) | Mr) = esN (Fimo) | MJK) [ ]I - B0 5 (V3]

Jj=1

2.4 Orbifold multiplicities

In general M is an orbifold and its fixed point components are suborbifolds. Next we will
compute the orbifold multiplicities of fixed point components as in (F'1)) for Theorem

Lemma 2.12. Let 7 = {m,...,7,} be a basis of the lattice €, and define op = ‘det([%j]g,jzl)

q
where v; = Y vij7j. Then for any D C (Mrint)T fived point component the orbifold multiplicity
j=1
m(D) of D equals dr.
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Proof. Recall that we have isomorphism of orbifolds Y;n : Mini/KC — Mp ine, where K is the
kernel of the K-action on C?. Hence there is a fixed point component F C (Mm,g)T such that D
is isomorphic to the orbifold F/IC, therefore m(D) = m(F/K) = |K|. Recall that the action of K

on C1 is given by
exp(u) - (z1,...,2¢) = (627‘—\/?171(“)21, ce, 627“/?17‘1(“)2(1) ,
for all u € € and (21,...,2,) € C%. Then |K]| is equal to the degree of the map K — U(1)4,
exp(u) — (e%\/jl'“(“), .. ,e2”ﬁ7q(“)) .
The basis 7 yields an isomorphism K — U(1)%, exp(u) — (eQ’T‘/lel(“), ey eQﬂmTq(“)), thus
|| is the degree of the map U(1)? — U(1)9,
(b1, ooy tg) o (B tdba, L T g0,
O

which is equal to or = | det([vi;]){;— -

We also remark that since we have embedding of orbifolds Yo : MK — Mr, the orbifold
multiplicity of MK is the same as the orbifold multiplicity of To(M/K) as suborbifold of Mr.

2.5 Atiyah-Bott-Berline-Vergne theorem on M

We apply Theorem on Mp, which incorporates most of the results of this chapter.

Theorem 2.13. Suppose that T = K x S and My is compact. For any 8 € Hr(M) we have

1 W Hs(ﬁe“’ pry i (Bev—HT)
m(MF)M/A(ﬁe = f > 5p/6TNF|M

MJK H[ ks (7;)] ﬂl;“(%{y)fer
DI YL e
~  m(D) erN (D | Mr)
DCM} H
K (D)Edr\ {0}

where the number dr is defined in Lemma and we used notation

j{ rs(Be ™M) 3 1 / ipks(Be” ) :
e T = rstp] - mcdigios ™85 ea(B 1350 11 [y - igms()]

J=1

Proof. By the Atiyah-Bott-Berline-Vergne theorem on Mr (Theorem [1.32)) we have

1 oy L[ ipA(Bes )
m(Mp)M/A(Be )= 2 m(D)[[eTN(D|Mp)'

Dc(Mp)T

If Dc (Mp)T is as in then there is F' C M7 such that Y;,,(F) = D and

! (Beemtr) 1 [ ip(Be )
m(D)D/ erN(D|Myp) 5FF/€TN(FM)
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by Lemma [2.8|f), Lemma - and Y7, (epN (D | Myr)) = e N(F/K|M/K) = epN(F | M). If
D C (Mr)T is as in then there is B C (M //K)® such that To(B) = D and

1 /%A(ﬁe“—w): 1 / iphs(Be M)
m(D)D erN'(D| Mr) m(B)B esN(

q
B|M/K) Hl[ i — ipks(75)]
j=
by Lemma [2.8{fii) and (2.14). Finally, A(w — pur) = wr — ¢ by Lemma [2.8)(iil). O

Corollary 2.14. Let K be 1-dimensional and let I' = R>q7y be such that v is a generator of €.
Assume that T = K x S and Mr is compact. Then for any 8 € Hp(M) we have

Jroem f R B [He

MK
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3

Jeffrey-Kirwan residues

In this chapter we introduce our main tool an equivariant version of the Jeffrey-Kirwan residue.
It is based on the classical Jeffrey-Kirwan residue [23, [24], therefore we start the discussion
with the classical one. Besides new results (Proposition we reprove classical ones ([24],
Proposition 3.2) to make the chapter self-contained. We show that this equivariant version of
the Jeffrey-Kirwan residue admits similar properties as the usual one (Proposition and.

Finally, we compare our equivariant version with the one in [31].

3.1 The classical Jeffrey-Kirwan residue

The Atiyah-Bott-Berline-Vergne formula on Hamiltonian manifolds formally yields fractions of
Prer
form Z Hli, where the finite sum is over finite index sets I, Aj,a; € t*, ¢ € I, and
I el @
P; € R[] are polynomial functions on the r-dimensional real vector space t. The construction
will be explained in more detail in section [3.1.2] Therefore, we define the real vector space of

functions

Ple)‘f
stmz{
2T

iel

Pr e R[], Aj,a,€t*, a; #0, i € I, I finite sct}.

We will consider two subsets of §. In section we will define the subset of regular fractions
Sreg Which can be considered as subset of generic elements of §, while in section we will
introduce a geometrically motivated subset §gqm -

We define the classical Jeffrey-Kirwan residue as linear functional on § given in terms of
iterated residues with respect to a fixed ordered basis x on t*. However, we are mainly interested

in its behavior on subsets §r¢y and §gam, in particular its dependence on the ordered basis .
Per
[Lics i

Definition 3.1. Let © = {x1,...,2,} be an ordered basis of t*. Let € § and write
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A= X\z1+ ...+ \z,.. We define

P
. P(x)ek(x) ll}ego T o) ————dx; if A\ >0,
Res™ ———dx; = T v
o ] i) €
i€l 0 if )\1 <0
considering xs, ..., x, as constants while taking the residue with respect to z;. We fix a scalar

product on t* and we define the Jeffrey-Kirwan residue as

P )\(;c) P Az)
JKRes (z)e _ Res* ( (Res+ (x)edm) ...)da:,,
H al \/det Tii T Tr Z1 H Oél(J?)
v J iel

=1

where det [(xi,xj)]:j_l is the Gram determinant. We will use the short notation Res™ for
W x
Rest...Res™.

T, T

Remark 3.2. If 7 = {m,...,7-} is an orthonormal basis of t* then

P(z)e @) ; T P(z)e @)

JKRes %dx = |det (83; (T)> Res™ L x
z [] ai(z) or; ij=1 e ] ci()
iel iel
o
Proposition 3.3. JKRes can be extended to § additively.
Py(x)e(®)

Proof. Suppose that in § there is a non-trivial relation = 0 with A\; # A; for

T Hie[ a;(x)
I # J. We may assume that it is a non-trivial relation with smallest number of summands.

Bringing to common denominator we get an equation of form Z Q7 (x)e)" @) =0, where Q; =
I
H H oz . We fix a J and we write the latter equation in form
J#£I jeJ

Qi) = 3 Qi@ @A),

I#]
Let £ € t be such that A;(&) # Aj(€) for all I # J. Take the derivative in direction & of both

sides (deg @ + 1) times to get an equation of form

0= [erQi(2) + Ry(w)] M5,

I£J

where c;’s are non-zero constants and Rj; are polynomials with degree smaller than deg@;.
Thus, we have got a non-trivial relation with less summand as the initial one, which leads to
contradiction. O
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Ezample 3.1. Let t* be an one-dimensional real vector space with orthonormal basis {z} and
x —X

. . . € € C . . o . .
consider the analytic function z — — + ——. Conflicting intuitions about analytic functions
x

and residues we have
—x
e

e’ e’
JKRes ( + ) dr = JKRes —dx = 1.
x €T —X xT X

<

The notion of polarization of non-zero elements of t* emerges inevitably when we investi-
gate the properties of the classical Jeffrey-Kirwan residue and it will play a crucial role in the
equivariant case.

T
Definition 3.4. Let z = {z1, ..., 2.} be an ordered basis of t*. For any non-zero o = ) a;z; € t*
i=1
we define its polarization as

« ifalz...:ak_lz(),ak>0,

]
I

—a ifa;=...=ar_1=0, ar <O.
We say that « is polarized with respect to z if @ = @. We define e(a) € {£1} by a =¢(a) - @.

It will be handy in the case of the equivariant residue to separate the polarization from the
basis z according to which we take the residue. If the reader is interested only in the classical
Jeffrey-Kirwan residue he/she may suppose that z = z.

The set of polarized vectors in t* with respect to the basis z form a cone C, in t* which we
call the cone of polarized vectors. Moreover, we have decomposition t* = C, U {0} U—C,. Jeffrey
and Kirwan implicitly defined the polarization of vectors in a slightly different way [24]. Let
A = [o; | i € I] be a finite collection of non-zero vectors in t*. Let A be a connected component
of {t € t|a;(t) #0, Vi € I'}. For any £ € A let

o if Oéi(f) >0,

(3.1) a; =
—Q if Oél(f) < 0,

which does not depend on the choice of £&. We call a; the polarization of «; with respect to the
cone A. The relationship between the two notions of polarization is as follows. For a cone A as
above choose any £ € A and consider an ordered basis z = {z1, ..., 2.} of t* such that z;(£) = 1,
29(§) = ... = z.(§) = 0. Then the polarization @; of «; with respect to the ordered basis z
agrees with «; for all ¢ € I. Conversely, for an ordered basis z of t* consider the open cone
A ={tet|at) >0, Vi I}, which is non-empty and moreover, &; agrees with @; for all ¢ € I.
The advantage of Definition [3.4] is that on addition of new vectors to A their polarization is
induced automatically, while in the other case we may have to choose a subcone of A in order
to the polarization of newly added vectors to be defined. However, by it is clear that
all possible simultaneous polarizations for a fixed collection of vectors A are parametrized by
connected components of {t € t|a(t) # 0, Va € A}.

We borrow the notation A for polarizations induced by ordered basis, too. A polarization A

on t* induces polarizations on any subspace V' C t*. More precisely
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Lemma 3.5. There is an ordered basis v of V' such that any non-zero vector o € V' is polarized

with respect to A if and only if it is polarized with respect to v.

Proof. Assume that A is induced by ordered basis z = {21,...,2,} of t*. Let {z!,...,2"} C t
be its dual basis. Denote i* : t — V* the adjoint of the inclusion i : V < t*. Let {v! =

i*(291),...,v9 = i*(z97)} be a basis of V* such that j; + ...+ j, is minimal and let v =
{v1,...,v4} CV be its dual basis.

If a € V is polarized with respect to A then there is a k such that a(z') = ... = a(zF71) =0
and a(z¥) > 0. Then we have a(i*(z!)) = ... = a(i*(z*71)) = 0 and a(s* (zk)) > 0. Hence
i*(21),...,i*(2*71) cannot span V*, therefore i*(2*) = v! for some | by minimality condition.
We also have v, ... v!=1 € {i*(21),...,i*(2*71)}, thus « is polarized with respect to v.

Conversely, let a € V be polarized with respect to v, i.e. a(v!) = ... = a(v!"!) = 0 and
a(v') > 0. We have a(27!) = ... = a(z*-1) = 0 and a(z%') > 0. By minimality, for all h < j
we have i*(z") € span(i*(z71),...,i*(z%-1)), therefore a(z") = a(i*(z")) = 0. Thus « is also
polarized with respect to z. U

To deduce properties of the Jeffrey-Kirwan residue we start to analyze iterated residues in

more depth.

Definition 3.6. Denote II(3, . 5,) : t* — span(zxi1,...,2,) the projection along span(Si, ..., B)

when {f1,..., Bk, Tk+1, ..., T} is a basis of t*.
We fix two bases © = {x1,...,z,} and z = {z1,..., 2.} of t*. Denote A the polarization
induced by z. For 8 € t* we define the residue Relzg as follows. If § = Z bix; ¢ span(za, ..., x.)
1
then B(x) = 0 it defines a pole 1 = — Z —xi and the residue at this pole
i=2 01

P(z)eM® 1 p o ay)er s M)

(3.2) Resh DO L peg P2, ar)e u,
wis ] ailx) [or] w=0 T (aiu+ g ai(e))
i€l iel

where u = [ is the polarization of B with respect to A and o; = a;u + Igya; for all i € 1.
If 8 € span(xa,...,x,) then S(x) = 0 does not define a pole with respect to x; and we set
po P

Az _
" _dx; = 0. Similarly, if A\ = A3 + ITgy A then we define
7«1\5 Hzel a;()

P A(z)
Pl @) Rest @™ i > 0,
Res™t 7@)6 dz; = 1lB H ai(z)
z1|B Hzel al( ) el
0 otherwise.
In the case z = x we will drop A from notations, that is,
Res = Res™ and Res™ = Res™t .
z1|B z1|B z1|8 z1|B
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Ezample 3.2. Let * = {x1,22}, 2 = {22, 71} and B(z) = 2x; — xo. Then we set u = B(z) =

T9 — 2x1 and we compute

l
dzry 1 du 1 u 1
Res® ——— = ~Res———————— = — Res — ) du=—-——
wlf (201 —x2)%my 2u=0 —ud(—3 + F) u=0 uw ; <$2> 3’
2z —utx2
e 1 e
Res™ —— dz = = Rest du=0
g?lﬁ (221 — x2)321 R —ud (=5 + %) "

If we take z = z then u = B(r) = 2z, — 22 and

dzy 1 du 1 uw\! 1
Res— = —Res————— =R — 2 ) du=—
mﬁE (21’1 — $2)3.’E1 2 U:es U3(% + %) u:e(s) USZEQ Z: ( 1’2) Y 1'37

62I1

Rest ——————dx; =
z1|B (21’1 — 1'2)31'1 !

o
In computing the right hand side of (3.2)) we expand every fraction
l’.
1 1 a;u ) '
3.3 = __nr
(33) aiu+gya; g a; lz;() ( g
if Il gya; # 0, and remark that we can truncate every expansion at I; = [I|. Thus, (3.2]) yields a
Q(an sy Xy ) o Mez,...owr)
fraction of form €F.
H]eJ J(an e 7xr)
Remark 3.7. Suitable truncations of expansions 1’ will not affect Res™. However, the same
1
is not true for eM*). Suitable truncation of the expansion of e*(*) does not change the usual
- 1—x+ La?
residue, but it will affect Res™. For example, Rese—dx = Res ———2"dx = —, while
) z x3 x 3 2
- 1—x+ 122 1
Res™ e—da: =0and Rest ———— 2" dx = —. o
x .Z‘3 x 1‘3 2

Two vectors 3,y € t* yield the same pole if and only if 5 = ¢-+y for some ¢ # 0. We will denote
the class of 3 under this equivalence relation by [3]. Moreover, (3.2)) vanishes if IT;s,a; # 0 for
all ¢ € I, that is, [8] # [a] for all 4 € I. With these notations we have relations

P )\(a: (I)
Res ( Je ZR ————dx;
m= T ai(@) (8] ai(®)
el ZEI
and @) @)
P xT xr
ResT™ —4—— Res T1.
er [T ci(z) Z lﬁ Haz )
i€l i€l

33



We define Res® and Res™™* such that they satisfy similar relations
1

x1
P(z) A(r)
Re AT ————dx
e ( Z 5 T ™
i€l i€l
and Az) Az)
P x P x
ResM+ Ldml _ ZRQSA’+ P(x)er™ 1.
1 [ ai() ] wp ] ai(x)
iel il
More generally, if a tuple (81, ..., B;) satisfies flag like condition
(F1) g, ... 5 Bi € span(zs, ..., o) \ span(ziy1,. .., ), Vi=1,...,k
then let
= Bu(z)
=1I ﬂz(l‘)
(3.4) (B1) ,

up = g, g0 B (@)
where the polarization is taken with respect to A. We express this system in matrix form
(3.5) (ug,...,up)" =B (21,...,2,)",

where B € My, (R) is an upper triangular matrix with non-zero diagonal entries and denote
op = |det([Bl-j]f,j:1)|. We set

Pz A(m)
(3.6) Res™...Res® Plz)e™™ x71...dxg
Ik\ﬁk z1]B1 Haz(x)
el
P(x)er®)
= Res® .. Res® Res® L T1...dx
e lgy, .8y 1>5k »Lz\le)Bz z1|B1 H ai(a:)
el
Aur o AN T g, A(z)
Pluy,...,ug,x o xp)es (BrsesBr—1)
- Res ... Res (U Uk Thgts o @) duy ... duy,
(53 up=0 w1 =0 .l_[l(a“ul + ... aipur + H(ﬁl ,,,, 5@0[1‘(1‘))
S

where A = Mui+. . .—|—)\kuk+H</31 gayAand o = agur+. . tagpur+1lig, gy foralli € I. If

A P(x)er®
(B1,...,B%) does not satisfy condition (Fl) then we set Res® ... Res® —~"———
olBr z1|p1 Hie[ O‘z(x)

Similarly, if A = M3, + ... + AkH<ﬂ17---;5k—l>5k +1Lg,,...5,) A then we set

...,

dxl...dxk:&

P A(z)
Res™*t ... Res™t Ldm coodxy
zk Bk z1|p1 H a;(x)
i€l
AP Az)
Resd . Resd LU o dmy AL NS0,
oelBr  wilB [ ai(z)
el
0 otherwise.
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Definition 3.8. Tuples (81,...,8) and (v1,...,7%) satisfying condition are equivalent if
there are ¢; # 0 such that Iz, . 5,_,)8i = ¢; -1 yvi for all i =1,... k. We denote by
[B1,- .., B%] the equivalence class of (81, ..., Bk).

Y15 Vi—1

Remark 3.9. To a tuple (81, .., Bk) satisfying condition we can associate a flag V3 C Vo C
... C Vi such that V; = span(f,...,5;). Then (51,...,0k) and (y1,...,7%) are equivalent if
they have the same associated flag. o

The tuples (51, ...,8k) and (71, ...,7) satisfying condition are equivalent if and only if

Res® .. .Res" F(z)dz = Res® ... Res® F(z)dx

| Br z1|p1 Tk | vk z1]y1

P A(z)
for all F € §. Inductively we can also see that Res™...Res® L

dxy ...dzr may not
arlBe @ilbr [Lier i)

vanish only if there are i1,...,4; € I such that [51,...,8k] = [y, ..., a;,]. In this case we may
suppose that §; = «;, for all I =1,..., k. Then we have relation
P Az) P Az)
Res™* ... Res™t Ld:ﬂl .odxy = Res™ ™ ... Res™t % T1...dxy
T T1 H C%Z(LU) i |Br z1|61 H Oéi(l‘)
el [Bl:nwﬂk] el
P A(x)
(3.7) = Res™T ... Res™™ Plz)e™ 1 ... dxg
(s . Tl wifoi,  [] ai(x)
Qi yeey iy, i€l

We have the following vanishing result (cf. [24], Proposition 3.2(iii)).

Lemma 3.10. Let Q € Rlzy,...,zx] C Rlz,...,2,] be a homogeneous polynomial of degree d
and let By, ..., Bk € span{zy,...,xk). If d > n —k then

Res ... Res Lx)dxl...dxkzo.

k| B z1]B1 ﬁ
ai(z)
=1 '

In particular, if P € R[xy,...,2,] is a homogeneous polynomial of degree d such that d > n —r
P(z)e ®)

H?:l ai(z)

Proof. We will prove it by induction on k. Assume that 3 ¢ span(xs,...,z;) and let u = (1

then JKRes r =0.

with respect to the polarization induced by x. Write a; = a;u + 7; with a; € R and v; €

span(zsy, ..., xz,) foralli =1,...,n. Moreover, suppose that v; # 0if ¢ < m and ; = 0if i > m.
If kK = 1 the the lemma is trivial since R‘eﬁs = Reso. If K > 1 then
x1|p1 1=
=1 _ Lo (— Im
Res nQ(‘T) dl’l — % Res ( a;u)l ( amlu) - Q(ua Z2,... 7:rk) du.
wilpy [z i) Qx| A Ju=0 (@)t (@)t (@ w) - (anw)

On the right hand side there are finitely many non-zero terms, since summands with Iy +. ..+, >
R(.’L‘Q, ces ,Z‘k)
yi(z)Pr Ly ()

n—m vanish. Moreover, it yields a homogeneous fraction of degree d—n+1
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in variables zs, ..., x,. Hence

y R(xo, ...,

Res ... Res nidwl ...dry= Res ... Res (}?2 Tp) _

o B @1l | | Oz(d?) e Tpy ) B za|ll(g,) B2 ’}/1(1‘) L. -'Ym(x) "
i

i=1

d.’L’Q...d!Ek:O

by the induction hypothesis, since II;,)f32,...,Il;5,)Br € span(xs,...,zx) and d —n + 1 >
—(k—=1). O

Pje)\l .
27 € § and let By,...,8k € V = span(xy,...,xr). Write
I HiGI o
a; = o + o such that o, € V and o € span(zgy1,...,2.). Denote Fy € § the fraction got
11 /N L
1 1 1 A\
from F by replacing every fraction — = —— by — Z (—a’) when of #0. Then

] / 1" 1" "
Qoo o = i

Corollary 3.11. Let F =

Res™...Res® F(z)dr; ...dx,, = Rest ... Res™ Fy(z)dz; ... dzy.

k| Bk z1]B1 k| Bk z1|B1

Pe?
H?:l o

change the exponential e*, hence it is enough to show that

Proof. 1t is enough to show it for F' = Moreover, the construction of Fy does not

Res ... Res F(x)dxy...dxy, = Res ... Res Fy(x)dxy ... dzg.
x| Br z1|B1 x| B z1]B81

Assume that o = 0 if and only if ¢ > m. Let v = {uy,...,ur} be the basis of V' given by

1) and v = {zg41,...,2-}. If a € b < ¢ then we can expand T bic in two ways: first
a c

expand as a < b+ ¢ followed by expansion with respect to b < ¢ and secondly we can expand as

1
a+b < c. These two expansions are equal. Hence, the expansion of —

m with respect

to of(u) < o (v) yields the same result as successive expansions u; < ug < ... < up < v.
Therefore,
1 P(u,v)erwv)
Res...ResF(m)dﬂcl...dmk:é—~Rg%...RgsO - (u,v) duq . ..duy
el R VCHOEHO)
1=

= i - Res ... Res Z (704’1(“))11 (7alm(u))imp(u,v)e)‘(“’”) p

uy...du
6B uk:O u1:0 k

=1 Jj=m+1
1 n Y i, .. (_A lmP A(u,v)
=5 Re_so . Re_sO Z ( al(ugrg ( am(u))n (u, v)e duy ... duy
T T (L) Kanl | I ()
i=1 j=m+1

1
- i .ge:so...uPl{gsOFV(u, v)duyg . .. dug

= Res ... Res Fy(z)dxy ...dxy
TklBr  ®1|Ba

by (3.6) and Lemma O
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We have the following base change formula, which will be used in section [3.1.2

Lemma 3.12. Let © = {x1,...,2,} be an ordered basis and let (B1,...,Bk) satisfy condition
. For i <k define v; to be the projection of x; to span(f,...,Bk) along span{Tii1,...,T,)
and fori >k let v; =x;. If F € § then

Res™...Res® F(z)dz ...dx;, = Rest ... Res™ F(v)dvy ... dvy.

k| Bk x1|B1 v | B v1]B1
Proof. By construction span{(zy1,...,2Z,) = span{vgi1,...,0,) and for all i =1,...k
(3.8) Ti + Span(Tp41, - - - Tr) = Vi + SPAN(Vk41, - - -, V),
hence
span{x, ..., x,) = span{vy, ..., v,)

for all { =1,...,7. This implies that the tuple (51, ..., Bx) also satisfies the condition with
respect to the basis v. Moreover, for all [ = 1,...,k the projection of §; to span{zy,...,z,) and
span(vy, ..., v,) along span(f3i,... 3 1) agree which we denote by Il . 3_, 5. The relation
implies that the polarization of I, . g _,)6 for all [ =1,... k with respect to ordered

bases z and v are the same, and we denote it by Il(5, . g _,)8;. Furthermore, we consider systems

.....

of equations

ur = Bi(z) ur = B1(v)

ug = 1lg,) B2 () uy = g,y B2(v)

] and ) ,
U = H(ﬁl,.i.,ﬁk,ﬁﬂk(x) Uk = H(ﬁlw--aﬁk—l)ﬂk(v)

which we express in matrix form

t t

(u1,...,ux)' = B-(z1,...,2.)" and (ug,...,ux)' =B - (v1,...,0,)".

Matrices B, B € My, »(R) are upper triangular with positive diagonal entries and we denote by
0p and dp/ the product of their diagonal entries, respectively. The relation (3.8]) implies that
0p = dp/ and finally, the lemma follows from (3.6)). O

3.1.1 Regular fractions

Definition 3.13. A vector A € t* is regular with respect to {a; € t*|i € I} if A is not on any

P A
(r—1)- or less dimensional subspace of t* spanned by subsets of {«; |i € I}. We call —° ¢ 5

[Tier i

Pt .
is regular if

T Hie[ @
each summand is regular. We denote by §,.4 the set of regular fractions.

regular if A is regular with respect to {«; |i € I'} and we say that F' =

Per
Definition 3.14. A fraction ———— € § is called generating if {cv; |7 € I} spans t*, otherwise

HiEI o

it is called non-generating.
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Remark 8.15. The relation {i implies the vanishing of Res™™...Res™*, and therefore of

L T

JKRes, on non-generating fractions. o
xr

We have the following partial fraction decomposition. We will prove it in a bit more general
form in Lemma [3.37

pel
Lemma 3.16 (cf. [6], Theorem 1). Any fraction Moo can be written as linear combination of
iel Y
A
e
non-generating fractions and generating fractions of simple form o T Wwithiy, ... iy €
« et

’il ° 1y
I and ny,...,n. > 0.
The following proposition gives a explicit formula for the Jeffrey-Kirwan residue if we apply
it to a partial fraction decomposition as in Lemma [3.16] The second part of the proposition can
be found in [24] (Proposition 3.2 (iv)) for ny = ... =n, = 0 and with some generic assumption

on the basis x.

Proposition 3.17. Let A be a polarization on t* and let x = {x1,...,x,.} be an ordered basis
of t*. Consider k vectors a; = ajyx1+ ...+ apx. €5, 1=1,...,k such that det([aij]ﬁjzl) £ 0.
Let A= Mag + ...+ \gag + 1 such that Ay, ..., A\ #0 and n € span{xp41,...,z,). Then

e E(ai)niJrl)\m
A(z) t Aty ey A >0
Res™t.. . Res™t keidxl coodxg =< | det(["/ij]ﬁj:l)' };[1 n;! ' g

Tk 1 1
Hl o ()it 0 otherwise,
1=

where e(a;) € {£1} such that o7 = e(a;)oy. In particular, for k =r we have

1 r i n,-+1)\m
@) = Hg(a )n" AL, A >0
dx = \/det [(evi, aj)LJ:l i=1 v

JKRes —
x . n;+1
il;[l () 0 otherwise,

where det [(ai,aj)]:jzl is the Gram determinant.

Proof. Remark that we want to show that

A(z)
Res™t. . Res™t ———day .. .day,

Th o ai(z)mitL

e

i=1

e ﬁ ()TN

[ det([ag]F ;)] n;!

XCone(ag,...,ar, +Zht1,..,ET) ()‘)7
=1

where Xcone(ar,...,an, £exs1,...,+2,) 15 the characteristic function of the closed set
Cone(an, ..., 0, Tky1, ..., T,).

It is enough to prove the proposition for polarized «’s, i.e. when £(a;) = 1. First we prove
it for n; = ... = ng = 0 from which we will deduce the general case. We proceed by induction

on k. For k£ = 1 the statement is obvious.

38



Let ¢ € S be a permutation such that o(1) = j. If o ¢ span(za,...,z,) then denote

vi = q,ya; and v = Il (4;) A moreover, we compute
A A A )
R?s ’+...Re‘3$ ’+Res| o+ k dry...dzy
Tk | (k) T2|Qg(2) T1|C H al(x)
i=1
)\’.u+u(93)
= -Res™* ... Res™ ™t Rest dudzxs . .. dxy
el whew T w2hee w=0 u [T (ciu + vi(2))
i#]
(X;) Res™* .. Res™+ e d
= “X[o,+ es es™ T ————dxs ... dxy,
laji (0.70) oy @2l [ i(2)
i#]

where u = a;(z), A = Nju + v, X[0,400) 18 the characteristic function of the set [0, +00) and

¢; € R such that o; = ¢;a; + v;. Assume that a1,..., a4 ¢ span(zs,...,z,) and agp1,..., 0 €

span(zs, ..., z,). By induction we have
A A eM@)
Res™* ... Res™t dry...dzy
Tk Ty k
[] ci(x)
i=1
A
= Z Z RG‘ESA”L ... RellsA’+ ReslA"" ke v dxy...dxy
Tk |®o (k) T2|Qg(2) T1|OQj
7j=1 o€s .
g<1>:kj L ai(@)

9 eV (@)
Z XD +OO) Z Res™t .. Res™™ ——dxs...dxy
= |aji oes, Trhem @2l [T 7i(x)

o(1)=j 73
[Te()
X[o, +c>o i#j
= Z | 1| i) XCone( i, £Th11, k. | 1<i<k) (V)
4 2yi(z)

oz

det <[

1

’det ( a; l]zl 1)‘

‘We will show that

(39) XCone(ozl,...ak,iszFl,“.,imr)()‘)

-2

L;ej z¢1>

ZHE ’V’L XCone(a;, 7iy £Tpi1y.ska, | 1<i<k) ()‘)
J=1li#j

q
H 6(’71) XCone(ozj,%,iwarl,m,ixr |1<i<k) ()‘)
J=1li#j

It is enough to show it when a;(z) = a1 + Si(x), 1 < i < ¢, a;(x) = Bi(z), ¢ < i S k with

z,) and B; — B; =

B € span{za, ...,
(3.10)

q

Jj=1

Bi — B B; if j <i < g. Then we can reformulate as
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For any j < g we have

q
A=n+hon+. .+ ar =0+ A+ 4+ Aoy + > X(Bi— B+ D> N
=1

q<I<k

=0+ Mt A = > NBi =B+ D> NBi =B+ > M.

i<j j<i<q q<I<k

By hypothesis A1,..., A\x # 0, thus if we write n = ng+12k4+1 + . . . + -2, then we have

XCone(ai,..,ap,£Tpi1,ee,£2r) (>\) = X(Rso)kxRT—k (>\13 ces AR, Me+15 -+ 777’) = X(Rso)* ()‘17 ) Ak)

and

Xcone(ay, Bi—By. Br,txn, ..., | i<q, ¢<I<k) (\)

q
> 8i20,8;<0,8>0,i<j<I<k

i=1

Ao A ),
{SE(RX)kXRT—k }( 1y » Aks Mk+1,5 2 )

= q /\1 >\k
X{se(RX)k | > siZO,Si<O,sl>0,i<j<l§k}( oo M),
=1

where R* =R\ {0}. Then (3.10) is equivalent to the following inclusion-exclusion relation

Xk = q
X{s€®*)*|s1,...,55>0} X{se(RX)k| = 630, 817...7Sk>0}
=1

X q
{SE(RX)I“ ‘ >8>0, 52y~~75k>0}
i=1

X q
{sE(]R><)’€ ’ >° 8,20, s1,52<0, 34,...,sk>0}
i=1
—1
(=D X ‘ :
{se(RX)k} S 820, 81,...,80-1 <0, 5q+1,...,8k>0}
i=1

= n; = 0. To deduce the general case we

Thus we have proved the proposition for ny = ...
A(z)

set y; = ta;, (t > 0) and Ry, ., — Res™* .. Rest ————du,...dxy. Then for
Tk o [Jimy ci(a)mitt

T

A= MNz;and N =nq + ...+ n; we have

i=1
k
ntt >0 Aiai(z)
e i=1
Res™t. . Res™™ ——dxy ... dxy,
T X1 k
[T ai(z)mitt
i=1

N A A et A Y1 A Y N
=tY Res™™.. . Res™™ dyi...dyr =t " Rn,,...ns-

Yk Y1
(@iryr + ...+ airyy)it!

k
i=1
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Take the derivative of both sides with respect to ¢t at t = 1 to get

k
E AiRnlauwni—hni_17"i+17~~-»nk = NRnl,uan'

i=1
From this relation it follows the first part of the proposition by induction on .
Finally, we show the last part of the proposition. Let 7 = {7;,...,7.} be an orthonormal
i
basis of t*. If we write x; = Z: x;;7; then det [(z;, :rj)]:’jzl = det ([;vij]ajzl)z and

Jj=1

det ([ai;)7 ;=) det ([zi;17 1) = det (0, ay)]],_, |
thus the second part of the proposition follows. O
PreM
[Lics o
polarization induced by the ordered basis x. Moreover, JKJ]CF{eS F(x)ep(z)dos depends continuously

PIe)\I +p

HieI @

Corollary 3.18. If F' = Z € § is reqular then JKRes F(z)dx depends only on the
I

on p € t* in a small neighborhood U of 0. The neighborhood U is such that
for all I and p € U.

s regqular

The following property is very useful in showing vanishing of Jeffrey-Kirwan residues (prop-
erty (1) in [25], section 3.4).
A

P
Hiel @

Corollary 3.19. Let x be an ordered basis and let be regular. If X\ ¢ Cone(ag | i € I)

A(@)
then JKRes L 4

—t——dz = 0.
@ Hie[ ai(z)

P(z)er®)
Hiel a;(z)

Proof. By Lemma |3.16| we can decompose to sum of non-generating fractions and

Ax)

e

generating fractions of form —————————. Recall that on non-generating fractions Rest van-
Hk::l iy, ()" x

ishes. Since Cone(ag,,...,a;.) C Cone(a; | i € I) for all iy,...,4. € I, hence the corollary

follows from Proposition [3.17] O

The following proposition is a generalization of Lemma 3.3 in [25].

PI€AI
Proposition 3.20. Let F = Z
I Hie] Q;

independent on the choice of the ordered basis x.

be reqular. If F(x) is analytic then JKRes F(z)dx is
T

Proof. By Corollary [3.18| the JKRes F(x)dz may only depend on the polarizations induced by

the ordered basis x. Polarizations on A = Uj{a; | ¢ € I'} correspond to connected components of
{t €et] a(t) #0, Va € A}. These components are open polyhedral cones. Let A and A’ be two
neighboring cones, separated by a hyperplane {t € t | a(t) = 0} for some o € A. We suppose
that all elements of A are polarized with respect to A. Let £ € t be in the relative interior of the
intersection of closures cl(A) Ncl(A’). Then AN{r € t*|7(£) = 0} contains only multiples of «.
Let = {x1,...,2,} be an ordered basis such that
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e ()=l za=0a,238) =...=2,.(§) =0,
e )\; ¢ span{xy,xs3,...,x,) for all I,

e every 8 = byxy + bexa + ... + by, € A\ Ra is in the opposite open half-space of

span{zy,x3,...,Zr) as @, i.e. by < 0.

We can modify an ordered basis satisfying the first two generic conditions to get a new basis
which will satisfy all three conditions as follows. Denote 7 : t* — span(xy,x2) the projection to
the 2-dimensional plane span{z,xs) along span(zs,...,z,). Remark that 7(5) # 0 and b; > 0
for all B € A\ Ra, hence there exists a § € R such that the line R(z1 + dz2) in span(zi, za)
separates {m(8) |8 € A\ Ra} from «a and 7w(A;) ¢ R(z1 + dx2) for all I. Then the ordered basis

{x1 + dz2, xa,...,x,} satisfies all three conditions.
n ordered basis x = {x1,zo, ..., x,} satisfyin e above properties induces the same polar-
A dered b s Ly, tisfying the ab t d th 1
ization on elements of A as A, while o’ = {2} = —u9, ), = —x1,25 = z3,...,2, = 2.} induces

the same polarization on A as A’. It is possible that there is I such that A\; € Rea, therefore
choose a small p € t* such that for all s € (0,1] and all I the following generic conditions are
fulfilled

e \; + sp is regular with respect to {o; |i € I},
L4 )\I + sp ¢ span(xQ, s 7xr>a
o \; +sp ¢ span(xy,x3,...,Ty).

We define Res™ by replacing “A\; > 0” by “A\; < 0” in Definition [3.1} Since F' is analytic and
A1 + sp ¢ span(za, ..., z,) for all I and s € (0, 1], we have that

Rest F(x)e*P@dz; + Res” F(x)e**@dx; = Res F(z)e* @ dx, =0,
T Ty T
hence

Res™...Res™ Res™ F(x)es”('"”)dmldxg ...dx, = Res™...RestT Res™ F(x)esﬁ(r)d(—xl)dxg ... dx,.

Ty To T Ty T2 T

Moreover, for all 8 = bixy + bexs + ... + bpz, € A\ Ra we have by > 0 and b < 0, hence

the ordered basis {—x1,za,...,2,} and {z2,—x1,25...,2,} induce the same polarization on A.
Since Res™ = Res™, by Proposition we have
xrq —xI1

Res™...Res® Res” F(z)e®*®d(—x)dxy . .. dx, = Rest...Res Rest F(z)e®*® dryd(—1). .. dz,.
T2 1

Ty T Ty xr2

Again, since F is analytic, and A; + sp ¢ span(zy,zs,...,z,) for all s € (0,1] and I, thus we
have
Res™...Res Res™ F(z)e** @ dayd(—xy) ... dz, =
Ty Xy xro

Res™...Res Res F(2)e*®d(—xy)d(—x1)...dx, = Res™ ... Rest F(2/)e* ") da!, ... dx'.
Ty T T2 x. x)
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Summarizing the above results for all s € (0, 1] we have

Res ... Res™ F(2)e®®day ... dx, = Res™ ... Res™ F(2e?* ) da), ... da!

’ e
T1
Taking the limit when s approaches to 0 yields

Rest...Res® F(z)dx; ...dv, = Res™ ... Res’ F(2')dz} ...dz!.
T T1 x/ x
by Corollary Finally, by Remark we get equality
JKRes F(x)dz = JKRes F(z)dz'.
T x’

O

PIBAI . . . . .
Lemma 3.21. Let F' = Z be regular. If F is analytic and 0 is not contained in the

T Hie] Q;

convex hull conv(Ar | 1) then for all ordered basis x we have Res™ F(z)dx = 0.

Proof. Since Res™ F(z)dx is a multiple of JKRes F(x)dz, it is enough to show the lemma for
a particular ordered basis x by Proposition Since 0 ¢ conv(Ar|I), there is a hyperplane

H containing the set conv(Ar|I) in one of its open half-spaces. Choose an ordered basis z =

{z1,...,2,} such that H = span(zs,...,z,) and conv(A;|I) C { Zakxk
k=1

a; < O}. But all

T
polarized vectors @;, i € I lie in { Zakxk

k=1
lemma. ]

a; > O}, therefore from Corollary [3.19| follows the

3.1.2 Hamiltonian fractions

PreM
Definition 3.22. We call a basis x = {1, ..., 2, } of t* generic with respect to F' = Z 0 ¢
I el Qg

§ if for any I the vector Ar is regular with respect to a set {a;|j € J}, J C I then it remains
regular for the set {z1,...,2z,, a;|j € J}, too. That is, the affine planes A +span(e;,, ..., ),
i1,...,4x € I intersect the coordinate planes span(z;, ,...,z;) transversally.

A

Pe
[Licr i

Remark 3.23. Let x be a generic basis with respect to

then

I (ayy, .- ., o) satisfies condition

A+ span{ay,,...,q;, ) Nspan(Tiia, ..., xr) #0 < 0€ X+ spanfay,,...,q;,),

hence H<041‘,17---70¢7’,k>)\ = 0. It means that if we write \; = A @, +... + \" Wi, 00 )0, then
Ao A £ 0and AL = ... = X" =0 for some k € {1,...,7}. In particular, if A is regular
with respect to {a;,,...,q;, } then X, ... A" # 0. ©
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A

Definition 3.24. Let = be a generic basis with respect to € §andletiq,...,7. € I such

Pe
[Licr i

that (v,, ..., ) satisfies condition (FI). The order ord(iy, ..., ir;I) of the iterated residue

Res™ ... Res™ M

Tl 1|y H Oél(.T)
iel

is equal to k if A= NTo, o yos with A, AP £ 0 and A = = A" =0,
=1

A(z)
Remark 3.25. If Rest ... Res™ &

dx has order k, then
zp|, 1|, Hie[ OZZ(LE)

(3.11) Rest ... Rogt £@E0T®
Trla, x1 oy H aZ(x)
iel

depends continuously on small p € span{a;,,...,a;, ) (small means that (3.11) stays of order
k). o

Let T be a compact torus of rank r and let t be its Lie algebra. Let (M,w) be a compact
Hamiltonian T-manifold with moment map pu: M — t*. For any n € Hp(M) we have

612 [ 2 [iern

DCMT ¥,
* w—p PreD
by Atiyah-Bott-Berline-Vergne theorem. The integral / M yields a fraction _De
p erN(D|M) [Lics, @i
as follows. The moment map p is constant on fixed point component, hence Ap = —u(D). Choose

an invariant compatible almost complex structure on M to make A (D | M) a T-equivariant com-
plex vector bundle and assume that it splits to T-equivariant complex line bundles N (D | M) =
&NV, by the Splitting Principle. Then er(N;) = ozH—e(J\/l) where o € t, is the T-weight of fibers

1 e(N)F
f N and ———— = > (-1 = Yai—Fe , where d = 7d D.
of N; an ol T eV k>0( )k o d+1 N)*, where im

Thus Pp = /i*D(ne‘”)H Z(fl)kald_ke(./\/l)k and H a; = Haf“. Denote
!

[ d
D 1 Lk=0 i€lp

(3.13) F= Z Ppe’

zEID

Q;

and we emphasize that F' is analytic by the Atiyah-Bott-Berline-Vergne formula.

Definition 3.26. We call (3.13) a Hamiltonian fraction if (M,w) is a compact Hamiltonian
T-manifold or orbifold with moment map g having 0 as regular value. We denote the set of

Hamiltonian fractions by §gam-
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There are Hamiltonian manifolds M such that (3.13]) is not a regular fraction, but 0 is a
regular value of p.

Ezample 3.3. Let a 2-dimensional torus K = U(1)? act on CP? as
(t,s) - (20:21: 20 23) = (t sz : (ts) 2y : tag : t223).
It is a Hamiltonian action with moment map

(0 —7)|20|* = (T + 0)|21]? + 7|22/ + 27232
2(|z0l? + 21| + |22] + [23]?)

u(z) =
and 0 is a regular value of it. By Atiyah-Bott-Berline-Vergne formula

/e“’_“ _ (2m)3e™ =7 (2m)3emte (2m)3e T N (2m)3e—27
2000 —27)(3r —0) 20027 +0)37+0) (2r—0)27+0)7 (0—37)B3T+0)7T’

CPp3

which is not a regular fraction. o

We will show that JKRes has similar properties on Hamiltonian fraction for generic basis
xr
x which have been shown for regular fractions. We will use walls of u(M) to group iterated

residues. Let 41,...,4, € Ip and assume that (a;,,...,a; ) satisfies condition (FI) for a generic

P Ap(x)

basis = with respect to F. To each residue Rest ... Res™ %
wolas,  @ilay [Lieq, ai(@)

of walls of the moment polytope (M) as follows. Let k < r and let K = K, be a subtorus of T

dx we associate a series

with Lie algebra ¢ = ﬁle ker cv;,. We can identify
Lie(T/K)* = (t/8)" = ker(t* — ) = span{o,, ..., i, )-

Let N = N, be the fixed point component of M* containing the fixed point component D C
MT. Then u(N) is a k-dimensional convex subpolytope of u(M) with supporting affine plane
—Ap + span{e;,,..., ;). Remark that if ord(iy,...,4r;Ip) < k then 0 is in the supporting
affine plane of u(N).

Consider a k-dimensional wall ;(N) such that N € MX is a fixed point component. Let
vy = {vk,...,v%} be the projection of {z1,..., 7%} to (t/€)* = span{ay,,...,a;,) along the
plane span{(zgi1,...,2,) and let w; = z; for all ¢ > k. Choose S C T subtorus such that
®: K xS—T, d(k,s)=ks is a finite cover. We identify t* = s* @ £* via ®* and remark that

s* = ker(t" — £*) = span(vk,...,v%).

Moreover, we also have isomorphism ®* : Hp(M) — Hyxs(M). Let D € NT = N¥ be a fixed
point component. We have a (K x S)-equivariant isomorphism of vector bundles N'(D| M) =
N(N|M)|p ® N(D|N) and assume that N (N | M) splits to (K x S)-equivariant complex line
bundles N (N | M) = &;L;. Moreover, let

erxxs(Lj) = Bj +es(Ly),
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where §; € £ is the K-weight of fibers of £; and let i},es(L;) = 7P + ipe(L;), where v € 53,
are the S-weights of the fibers of £;|p. We split

Bj = B} + Bj € span <v}v,...,vlfv> @ span(W41, - - -, Wy ).

| 18, + ipes(£,)1 el
Remark that ——————~ = (-1)b is the expansion of Di
Bj +ipes(L;) l;) (B7)ltt ; (B +~7)+1
with respect to vy < w, that is 8} +~P < 7 for all j. Therefore,
i (ne 5 +iphes(L£5)]
3.14 o
o [ S T
D j ;20
iH(me™H) Ppe?p

is the expansion of with respect to vy < w. We truncate every

perN(D|M) HieID o

1
infinite sum in (3.14) at I; = n?, where n = 3 dim N, and we set

, 1B +ipes(£;)]
(3.19 vy = Y [ B HZ G

DCNT j,
By Atiyah-Bott-Berline-Vergne formula

, 185 +es(£)
FN(Q)N,”LU) :/ H Z B//;H]a

N

hence it is analytic in vy. Moreover,

(3.16)
P Ap(z)
Rest ... Res™ Res' ...Rest Fy(vy,w)dvndw = Res™ ... Res™ %dx
wr o, Wity vk fas, v la, x|, LT H ozl(x)

T
DCN iclp

by Corollary [3.11} Lemma [3.10] and 3.12}

Lemma 3.27. Denote Wy (M) the set of k-dimensional walls n(N) of u(M) containing 0 in
their supporting affine plane. Then

P )\D(CE)
Z Res™ ... Res™ %dl’ = Z Res' Res™ Fy(vy, w)dvydw.

) - Tr|o, x|y ;T w UN
ord(i1,...,0r;Ip)<k 1 iEl_I[D l() (N)EW (M)

Proof. Remark that all linear terms in the denominator of Fiy(vx,w) involving vy are S-weights
of a normal bundle N'(D|N) for a fixed point component D C N¥, i.e. they are equal to an

a; € s* = span{vk,...,v%) for some i € Ip. By (3.16) we have

PD P eAD(m)
Res' Res™ Fy(vy,w)dvndw = E g Res™ ...Res™ L
w UN a:r|oziT 1|, H Oél(l')
DCNr [aiy,...,0 .
-] i€lp

Zz,

46



where the second sum is over all classes of tuples satisfying condition such that ¢1,...,4,. € Ip
and «;,,...,q;, is in the supporting plane of p(N) € Wy (M), hence the residues on the right
hand side have order ord(iy,...,i;Ip) < k.

Conversely, let ;(IN) be the associated k-dimensional wall of

P Ap(z)
(3.17) Res' ... Res™ %dm
Tr|ag, z1|aq, H ai(m)
i€lp

in p(M). If (3.17) has order ord(iy,...,ir;Ip) < k then Ap € span{a;,,...aq;,), hence 0 is in

the supporting affine plane of (), that is, u(N) € Wy (M). From (3.16]) follows that (3.17) is
a summand of Res™ Res+ Fn(vy,w)dvydw.

We have the following vanishing result.

PDe
HzEID

Proposition 3.28. Let x be a generic basis with respect to F' = Z € SHam- Then

forany k <r

Z Rest ... Res™ der =0

) - Ty, x|y H az(‘T)
ord(i1,...,ir;Ip)=k iclp

for any p in a small neighborhood of 0.

w—p
Proof. By hypothesis there is a Hamiltonian T-manifold M such that F' = Z / M
DeMT D CTN D | M)

and 0 is a regular value of p. That is, 0 is not on any (proper) wall of the moment polytope
w(M). First, we will show by induction on k that for any u(N) € Wi(M), k < r we have

Res™ Fy(vn, w)e"(”N’w)va =0
UN

for any p in a small neighborhood of 0.

Let ko be the smallest number such that Wy, (M) # (. By Lemma this is equal to the
smallest order. Since z is generic, we have ky > 0. Consider w as a fixed parameter and remark
that Fy(vn,w) is regular as fraction in vy for w(N) € Wy, (M). Furthermore, F (vy, w)e? (*~)
is also regular for small p’ € span(vk,.. ok ). Since 0 is on the supporting affine plane of p(V),

but it is not contained in the convex polytope —u(N) + p'(vn), and Fy(vn,w) is analytic in

v, we have Res™ Fy (vy, w)e” “Nduy = 0 by Atiyah convexity theorem [I] and Lemma [3.21
UN

Moreover, we can write any small p as p(vy,w) = p'(vy) + p” (w), thus
Rest Fiy (v, w)e? N dyy = e ) Rest Fy (v, w)e? "N doy = 0.
UN UN

For general k < r the residue Res™ Fy(vn,w)dvy can be written as sum of order k terms and
uN

lower order terms. By Lemma the sum of lower order terms is equal to

Z Res+ Res+ FN/(’UN/ w w)va/dw
wewv,ice LY
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where w' = {vk{l, ...,v%}. By induction hypothesis

/ ’
E Re§+ Rvesl+ Fn/(onr,w',w)e? v ) dy s dw’ = 0
N
WV YEW(V), 1<k

for all p’ € (vk,...,v%) small. It implies by Remark that

Res™ Fy(vn, w)ep/(”N)va
VN

depends continuously on small p’. Fix p’ small and let gn (vy) such that Fiy (vy, w)e? (v¥)+en(wn)

is regular as fraction in vy. Then

ResT Fy (v, w)e” N doy = lin(1) Rest Fiy (v, w)e? N +senon) gy o —
VN S—r UN

by Atiyah convexity theorem [I] and Lemma We can write any small p as p(vy,w) =
P (vn) + p’(w) and we have

Rest Fy (v, w)e? ™ @ duy = e (®) Res™ Fyy (v, w)e” "N dvoy = 0.
VN UN
In particular, for any u(N) € Wi (M), k < r and for any p small we have

Res™ Res™ Fiy (v, w)e? "~ ") dyy dw = 0.
w UN

Together with Lemma [3.27) it implies that for small p we have

P Ap (z)+p(x)
Z Res™ ...Res™ D(x)e dzx
ord(i i _k$T\0¢i,,. Ty H ai(x)
T L1yeeeslrs D)— i€lp
= Z Res' Rest Fiy (v, w)ep(”N’“’)vadw
w(N)EW, (M) N

- > Res™ Rest Fy (v, w)e? ") dyydw = 0.
(N)EWn—1 (M) "

Proposition 3.29. Let x be a generic basis with respect to F € §gam- Then

(i) JKRes F(z)e?®dz depends continuously on p in a small neighborhood of 0.

(i) JKRes F(x)dx does not depend on the choice of generic basis x. That is, if y is another
generic basis with respect to F then JKRes F(x)dx = JKRes F(y)dy.
« y

Proof. (i) By Proposition [3.28 we have that for small p the residue Rest F(x)e?® dz is equal
to the sum of residues of order r = dim t*. By Remark the residues of order r depend
continuously on small p.
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(ii) If F is regular then it follows from Proposition because F is also analytic. If F is not
regular then there exist arbitrarily small p such that Fe? is regular. Then by the continuity
and Corollary [3.18 we have

JKRes F(z)dz = lim JKRes F(z)e**®dz = lim JKReb F(z)e**™dy = JKRes F(y)dy.
T Y

s—0 s—0

PD€

Definition 3.30. For F' = Z 0
’LEID

in §reg or Fram and polarization A on t* we define

JKRes*F(t)dt = JKRes F(x)dz,

where x is any generic ordered basis with respect to F, inducing the same polarization as A on
Up{a;|i € Ip}. The polarization A can be thought as an ordered basis on t* or in this case as
a connected component of Np{r € t|a;(7) #0, Vi € Ip}.

We remark that if F' € §,e4 then non-generic basis « is also allowed in the above definition,
which can make computations easier. However, if F € Fgam \Sreg then let p € t* such that
Fef € §req and in this case

JKRes*F(t)dt = lim JKRes F(z)e P(@) dge

s—0

for any ordered basis x (not necessarily a generic basis) inducing the same polarization as A on
Up{a;|i € Ip}.

3.2 Equivariant Jeffrey-Kirwan residue

The equivariant Jeffrey-Kirwan residue can be thought as a parametric version of the usual one,
but the additional freedom in the choice of polarization makes it more flexible.

Let ¢* and s* be real vector spaces of dimension ¢ and r — ¢, respectively. Set t* = £* @ s*.

Definition 3.31. A £*-pole in t* is a g-dimensional subspace V such that V @ s* =t*. If Ais a
polarization on t* then we will denote by Ay the polarization induced on V.

PreM
Definition 3.32. An F = Z HL € § is called #*-regular if for all I the vector pry.(Ar) is
T Llier @i
regular with respect to {pry- (o) |é € I}, where prg. : t* — € is the projection. We denote the
set of £*-regular fractions by §er_reg-
Let K and S be two compact tori with Lie algebras £ and s, respectively. Let (M, w) be a compact
Hamiltonian (K x S)-manifold with moment map p = pux X pg : M — £ @ s*. We assume that

w—p
0 € ¢* is a regular value of ur. We denote by Fex_mram the set of F' = Z / w
DEMKXS DerSN(D|M)

for such M and for some n € Hx xs(M).
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We fix a scalar product on £*. It defines a symmetric bilinear pairing on t* @ s* by

(o, B) = (pr« (@), pre« (8)), Va,B €t ds™.
PreM
In particular, it induces scalar product on every ¢*-pole V. Let F = T For each £*-
T Hiela
1 1 VAN
pole V' we define Fy, by replacing every = PR by i Z (—O/’/> in F, where o, € V
i i i ; i

g 1;=0
and 0 # of € s*. Remark that linear terms in the denominators of Fy are either in V' or s*.

Definition 3.33. We define the equivariant Jeffrey-Kirwan residue of F' € F«_reg OF F' € Fer-Ham
as
EqRes"F = > JKRes"" Fy (v, s)dv,
¢*-pole V'

where v and s are basis of V' and s*, respectively.

Remark 3.34. 1t is enough to take €*-poles of form V = span{a;,,...,q;,) with iy,...,i, €
I, otherwise Fy (v,s) will be non-generating as fraction in v and JKRes™V vanishes on non-

generating fractions. o
Proposition 3.35. Let F' be in §ecreg O Sex-rram- Then

(i) EqRes™F is well defined.

(ii) If F is analytic then EqRes®F does not depend on A.

(i41) EqRes™Fe? depends continuously on p € t* in a small neighborhood of 0.

Proof. If F is t*-regular then for every £*-pole V' the Fy (v, s) is regular as fraction in v, hence
and follows by Corollary If in addition F is analytic then Fy (v, s) is analytic in v

and follows from Proposition
If FF € Fer_gam then

Pperr i (e =+
OV R e (b0

@i KxS
zeID DcM

for a Hamiltonian (K x S)-manifold M such that 0 is regular value of the K-moment map
pr and n € Hixs(M). Let V = span(a,,...,q;,) be a €-pole, where iy,...,iq, € Ip. Let
v be a basis of V, generic with respect to Fy and inducing the same polarization as Ay on
Uierp{ai|i € Ip} N V. We will show that JK?GSF\/(’U,S)CI’U does not depend on v, hence

JKRes™ Fy (v, s)dv is well defined.

Recall that a; € (¢ @ s)5, for all i. Consider the subtorus G C K x S with Lie algebra
g =nNJ_ kera;;. Then ®: K x G — K x S, (k,g) v (k,1)g is a finite cover and it induces
splitting ®* : £ @ s* — € @ g* such that ®*(s*) = g* and ®*(V) = ¢*. Moreover, it also
induces isomorphism in cohomology ®* : Hy ws(M) — Hixc(M) and we have relation between

equivariant symplectic forms ®*(w — p) = w — prxc-
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Let N C MY be a fixed point component. Assume that its normal bundle splits to (K x G)-
equivariant line bundles N (N |M) = @;L; with respect to an invariant compatible almost
complex structure on M and let exxa(L;) = B + ex(L;), where 3; € g*. Let D C NX

be a fixed point component and observe that

ip®*(ne™") ) lpeK ;)"
[ I o 2ot

D j 1;2>0 j
corresponds to the expansion of ( / W) (v, s) with respect to v < s under ®*
D erSN(D | M) ’

We truncate expansions at [; = n?, where n = 5 dim N and we set

ipHe by
FN(U,S) ( Z /EKND‘N HZ l DKl'+1) >a

DeNK §,

which is equal to

n? e A\
(cb*)l( [ me ) [T os a2 >

L+1
N j 1;=0 B;

by Atiyah-Bott-Berline-Vergne formula, hence Fy (v, s) is a Hamiltonian fraction in v. Remark

Pp(v,s)erp(v:s)
that if a D € M%*5 is not a fixed point component of some N C M then % is

HieID ai(v, s)

non-generating as fraction in v. Hence

JKRes Fy (v, s)dv = g JKRes Fy (v, s)dv
v v
NCcM€E

by Lemma [3:10} therefore the proposition follows from Proposition [3.29] O

PreM
Definition 3.36. A fraction — 1 is called € -generating if {pre- (o) |7 € I'} spans £, other-

Hie] «

wise we call it non-€*-generating.
Similarly to Lemma we can decompose any F' € § to sum of £*-generating and non-£*-
generating fractions.
e
Hie] @i

generating fractions and €*-generating fractions of form @

Lemma 3.37. Any fraction € F[t] can be written as linear combination of non-¢*-

A
where Q € Fs].

n;+17
J=1"J

Proof. We assume that A = 0 and we consider P € R[t & s] as polynomial function on £ with

coefficients in R[s]. We denote its degree by deg, P. We reduce the problem first to the deg, P = 0
A

Pe
case, i.e. P € RJs] by induction on degree deg, P of P. If ———
Hiel @

is €*-generating then there
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are iy,...,iq € I such that pre. (o, ), ..., pre-(o,) generate €. If degy P > 1 then we can write

q
P=Py+ > o, Py such that Py € R[s] and deg, Py, < deg, P for all k = 1,...,q. Moreover,
k=1

P Po 1 Pk
= + S E—
[Lierei  Ilicrou ; Hie]\{ik} @

Assume that P =1and I = {1,..., N}. We may also suppose that a; ¢ s* for all i € I. We

consider ordering on fractions —-

7w with @ € §[s] by associating it the lexicographical
!

all .oy
order (ni,...,nx) € NV. Suppose that 7 is -generating. Let i1,...,4, € {i €
aly
m
I'|n; > 0} such that 41 < ... < i, and > arey, = €s* with ap Z0 forall k =1,...,m. We
k=1
distinguish two cases. If 3 = 0 then
1 el —apat
(3.18) N ™ s T N
ot .oaly = o ;! g Q
If B # 0 then
(3.19) 2: !
' alt oy ...aZ’rl...a%N

Remark that the fractions on the right hand side of (3.18]) and (3.19)) are also €*-generating and
have order strictly less than the fraction on the left hand side. We continue the decomposition on

fraction on the right hand sides. This algorithm stops in finite steps because the lexicographical

order is a well-order. Moreover, it yields fractions —; ~ with mj; = 0 unless j =i1,...,1,
o't aly
such that {pry(a;, ), ..., pre(ay,)} is a basis of £ and Q € F[s]. O

Remark 8.38. Since non-t*-generating fractions yield non-generating fractions Fy (v, s) in v (con-
sidering s as real parameter), therefore the equivariant Jeffrey-Kirwan residue vanishes on non-

£*-generating fractions. <
We have the following analogue of Proposition

Proposition 3.39. Let A be a polarization on t* = € © s*. Consider ai,...,aq, X € t* such
that {pre-(a;) i =1,...,q} spans € and pre. () is regular with respect to it. Write A = Ao +
Ao+ .. Ao with Mg € s and A, ..., g € R. Then we have

)\0 n;+1 P

(o) -
[] SR AL A > 0,
EqRes® \/det ag,a;)]! il i

lg[ n1+1

otherwise.

Proof. We have only one relevant £*-pole V' = span(ai, . .., aq) and let v be a basis of V' inducing

the same polarization on a1,...,o4 as A. Then

N Ao(s)+Av (v)
EqRes” ——— = JKRes

H am—H v
1

=1 %

dv,
a;(v)nitl

':la 5

1
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where Ay = A\jor + ... + My and s is a basis of s*. Hence the proposition follows from
Proposition O

We also have an analogue of Corollary
A

[lier i

the polarization A then EqRes™F = 0.

Corollary 3.40. Let F' =

€ Feroreg- If pre-(X) ¢ Cone(prg.(o5) |4 € I) with respect to

Proof. Let V be a t*-pole. Write A = Ao + Ay, where A9 € s* and Ay € V. Remark that Ay is
regular with respect to V N {a; |i € I'}. Moreover, pry. () ¢ Cone(pre. () | i € T) implies that
Av ¢ Cone(a; |a; € V, i € I), hence by Corollary follows that JKRes™" Fy (v, s)dv = 0. [

A
Corollary 3.41. Let F = i € Ser-reg and let A be the polarization induced by an ordered
iel Qi
basis {x1,...,2Tq,81,...,5r—q} such that x = {x1,..., x4} and s = {s1,...,8,—q} are basis of &*

and s*, respectively. If X = —\ with respect to the polarization A then EqResAF =0.

Proof. Since F is ¢*-regular, we have A ¢ s*. For any /3 ¢ s* we have pry.(8) = pre.(8), which
implies that pre. (A) & Cone(pre- (o) | i € I) = Cone(prg. (@) | i € I), hence the corollary follows
from Corollary O

We can also compute EqResA using residue Res™t.

Proposition 3.42. If F' € §ee_reg then
1
det[(z;, z;)]

EqRes* F = Res™* F(z, s)dx,

q
i,j=1
where x = {z1,...,x4} and s are basis of * and s*, respectively.

Proof. Decompose F' to partial fraction as in Lemma On non-t*-generating fractions both
EqRes® and Res™™ vanish by Remark [3.38 and 1' For €*-generating fractions of form G =
x

Qek(x,s)

H(JI':I O‘j(w7 s)anrl

with @ € §[s] we have

1

det|(x;, xj)]?,j:l

by Propositions [3.17) and [3:39] O

Ezample 3.4. Let {x,y} be an orthonormal basis of ¢* and let {s} be a basis of s*. On #* @ s*
we consider the polarization A induced by the ordered basis {s,z,y} and let

EqResG =

Res™t G(x, s)dx

ea:

(x—y+s)2@x+y+s)(y—2s)

F(z,y,s) =

We will compute EqReSAF in two ways: by definition and by Proposition since F' is £*-

regular.
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In the first case we remark that F has three £*-poles Vi = span(z — y + s,x + y + s),
Vo = span{x —y+ s,y — 2s) and V3 = span{(x +y + s,y — 2s). We consider basis {u;, v;} on poles
Vi inducing the same polarization as Ay, on {z —y + s,z +y + s,y — 2s} N'V;, hence

3
EqRes"F =~ JKRes™V: F(u;, v;, s)du;dv;.
i=1
(a) Let uy =s+x—yand vy =s+x+y. Then

uytvq _

A : o A . e 2 S N 6_5 1 1
JKRes™"1 F(uy,v1, s)duidvy = JKRes™" u%vl(“;“l “29) duidv; = 3 (832 — 43) .
(b) Let ug = s+ —y and vy = 2s — y. Then
JKRes\V: F dusdvy = JKRes™ e dusd
es V2 ['(ug, v2, s)dusdvy = es V2 uadvy = 0.
(uz, vz, 5)dusdvy u3(ug — 2vg + 4s)(—wvq) 2072
(c) Let u3 = s+ x4y and v3 = 2s — y. Then
A A eU3+v373s 6735
JKRes™*Vs duzdvs = JKRes™"3 dusdvy = ———.
€S (u3,v3, s)duzdvs €3 (us + 203 — 45)2u3(—vs3) U3av3 1652

Therefore,

e (1 1 e 38
EqRes®F = — = — —_
ames 2 (852 4s> AT
Now we compute Res™* Res™* F(z, y, s)dxdy. We have two linear terms in the denominator
Y T

of F' containing =, namely vy = s+ — y and us = s + = + y. Both of them are polarized with
respect to A. Hence

x

e eu1ty—s
Res™ ™ dx = Rest du
. (x—y+9)(x+y+s)(y—29) u1=0 u?(uy + 2y)(y — 2s) !
+ Res™ e v dusg
us=0 (ug — 2y)%us(y — 2s)
(2y — 1)e¥—* e Y—*s

C(29)2(y—2s)  4yP(y —2s)

2y — 1)e¥—*
We compute first Res™ T (yzi)edy. Again, v; = y and vo = 25 —y are the polarized linear
v (29)°(y —2s)
terms in the denominator involving y. Hence,

2y — 1)ev—* (2v7 — 1)e"r—* (4s — 2v9 — 1)~ 72
RA,+(7d:R i e A Rest d
“ (2y)%(y — 2s) =0 4v3(vy — 2s) vt e 4(2s — v9)?(—v2) v2

Y G )
¢ (1652 8s '
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—y—s

e
4y*(y — 2s)
vectors in the denominator containing y. Thus,

Finally, we compute Res™* dy. Again, w; = y and wy = 2s — y are the polarized
Y

—y—s e~ W1—s ew2—3s
Res™ — S — jy= Rest —0_d Res™ d
5 4y?(y — 2s) LR 4w? (wy — 2s) Wt ws=0 4(2s — w2)?(—w2) w2
e—Ss
—0+ 5 .
+ —16s2

Therefore,

1 1 6735
At Reghit =e*
Resy Rei F(z,y,s)dxdy = e <16$2 o 83) T —16s2°

O

Remark 3.43. We compare our version of equivariant Jeffrey-Kirwan residue with the one in

BI]. Let x = {x1,..., 24} and s = {s1,...,S,—¢} be an ordered basis of £* and s*, respectively.

Denote A and A’ the polarizations induced by ordered basis {z1,...,2q,$1,...,8,—¢} and = on

t* @ s* and ¥, respectively. Then EqResA corresponds to JKRes™ the Jeffrey-Kirwan residue

adapted to the equivariant setting in [3I]. It is enough to check it on €*-regular fractions of

form qe;m+1' For simplicity we demonstrate it when dim £* = 1 and the same computation
i=1%

can be carried out in the general case. Let 8 € £, v € s* such that a = § — v and suppose
that B = B. Then we can write A = Ao + A\13 with Ao € s* and assume that A\; > 0. In [31]

, eMzs)

JKRes™ %dw is reduced to the usual Jeffrey-Kirwan residue by expansion x > s as
a"m(x,s
follows
A(z,s) ki+4...tknt1 oA (z,8)
A’ € o A’ v(s) €
JKRes YT ——dz = JKRes > B () 0
B(x)™ (1 — W) E1yeoiskng1>0

, m Ao (s)+X 1 8(x) mym+n _Xo(s) n Ao (s)+A17v(s)
= JKRes 3~ <m+n) Te)me de =) UITAT T e

n

Bla)ym Tt BB minl n! /(8. B)

by Proposition m In the case of EqResA there is a single €*-pole V' = span(a), moreover

m>0

a = @, thus

A 6)\0(5)+)\1'y(s)+)\1a _ )\?er(s)Jr/\lw(s)

= JKRes™v do =

A
EqRes ol = RS

nly/(a, «)

by Proposition m Finally, we have equality of norm squares (o, o) = (8, 8) by definition. ¢
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4

Equivariant Jeffrey-Kirwan theorem

In this chapter we give a generalization of Jeffrey-Kirwan theorem to non-compact symplectic
quotients. We use the Atiyah-Bott-Berline-Vergne formula to define integrals on non-compact
spaces and the usual Jeffrey-Kirwan residue is replaced by the equivariant version introduced in
section At the end of the chapter we give an hyperK&hler version of our theorem.

4.1 Symplectic version

Let G be a compact connected Lie group with maximal torus 7" of rank r and let S be a ¢-
dimensional torus. Let (M,w) be a possibly non-compact connected symplectic manifold with
Hamiltonian (G x S)-action and denote by pgxs : M — g* @ s* its moment map. For any
subgroup H C G x S we denote by uy = pry. o ugxs the corresponding moment map, where
pry- 1 g* ©s* — b* is the natural projection.

We assume that there is an 1-dimensional subtorus K C S such that the K-action on M is
PBB, that is, MX is compact, moreover there is v € €, generator such that the K-moment map

ur = ¢ -y with ¢ : M — R proper, bounded below.

Remark 4.1. M¥ is compact is equivalent to M 7> being compact. Indeed, since M7*5 ¢ MK
is closed, therefore MT*5 is compact. Conversely, assume that MT*9 is compact. Each fixed
point component F' C MX is compact since ug is proper, moreover F contains a (T x S)-
fixed point component. Then MX has finitely many connected components, because M7T*5 has

finitely many, too. ©

Motivated by [I9] we define equivariant integration on M formally by the Atiyah-Bott-Berline-
Vergne formula.

Definition 4.2. For any 3 € Hgxs(M) ~ Hpys(M)W we define

fﬂ_ 2 /esz/l\?é|M)

i FCMTXS %
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It is well defined due to the compactness assumption and Stokes theorem. If M is compact
then the definition is compatible with the usual equivariant integration by the Atiyah-Bott-
Berline-Vergne theorem.

Let 0 € g* be a regular value of ug and denote MG = ,ual(O)/G the symplectic quotient.
It is a possibly non-compact symplectic manifold (orbifold) with Hamiltonian S-action induced
by the action of the same group on M. In order to define integration on M /G similarly to
Definition |4.2] we have to show that (M //G)® is compact.

Proposition 4.3. If M¥ is compact then (M}/G)® is also compact.

Proof. Since (M )G)° C (M}/G)¥ is a closed subset, it suffices to show that (M JG)¥ is compact.
Denote 7 : ug'(0) — M /G the quotient map. Let m € (M/G)X and z € 71 (m). Let (G x K),
be the maximal connected subgroup of G x K which fixes z. Since G acts locally freely on 7 =*(m),
therefore (G x K), is 1-dimensional, i.e. it is a torus. For any y € (G x K) -  the subgroups
(Gx K)g and (G x K), are conjugate in G x K, therefore there is y such that (Gx K), C T x K.
Since y € 7~ 1(m) = (G x K) -z, we have that (G x K), ¢ T and 7= *(m) C G - M(G*E)u_ Let
T be the set of all 1-dimensional subtori 7" C T x K with properties

(T1) T' ¢ T,

(T2) there is F/ ¢ M7T connected component such that for any 7" # T’ torus such that
T' cT" C T x K we have that (F/)T" is strictly smaller than F’.

We show that the set 7 is finite. Indeed, let 77 € T and let F’ be as in . Then F’
contains a (T x K)-fixed point since F” is a K-invariant symplectic submanifold of M with K-
moment map gk | g, which is also proper and non-surjective. We choose an invariant compatible
almost complex structure on M and let D’ C (F")T*X be a fixed point component. For any
u € D’ the tangent space T, F’ is an (T x K)-invariant complex subspace of T,,M. Denote
{n, € (t®¥); |i € I} the set of (T' x K)-weights on T, F" and remark that they do not depend on
u. The Lie algebra t' of T” satisfies ' C N;e kern;. Moreover, the subalgebra t”/ = N;cy kern; is
the Lie algebra of a subtorus 7" € T' x K and we have T C T"”. Furthermore, 7" acts trivially
on T, F’, hence (F’ )T” is an open and closed subset of the connected component F”, therefore
(F/\T" = F'. By we must have 77 = T”, hence t' = Ny kern;. Since MT>*K has finitely
many components, therefore we also have finitely many subalgebras of form t' = N;cy kern;,
hence 7T is finite.

‘We have inclusions of closed subsets
“H(Mm)e)E (U M Nug'( ) (U M Mgt ( ))
T'eT T'eT

We conclude our proof by showing that M7 N ,u;l(O) is compact for any 7" € T. Let F/ ¢ MT'
be a connected component. Recall that ury g (F’) lies in an affine hyperplane H of t* ¢ €*, where
‘H is the inverse image of the point pr/ (F”) under the projection t* @& — (t')*. The intersection
H N is a point since 77 ¢ T by (T1I). Finally,

F'opg'(0) © F'Opgyp(®) C ppge(HOE)
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and latter set is compact because ur« i is proper. M T’ has finitely many connected components
since each of them contains a connected component of MT*X < MX hence MT N uz'(0) is
compact. O

Thus we can define equivariant integration on M /G as

) | 48
]{ b= D o / csN(F| M]C)

MG FC(M)G)s V2

for any € Hs(M//G) (cf. Theorem|[1.32)). Let x : t* ®s* — R be the linear function defined by
Preg- = X7,
where pry. : t* @ s* — £* is the projection.

Definition 4.4. A polarization A on t* @& s* is compatible with the proper and bounded below
moment map (ux,p,y) on M if it is induced by an ordered basis {yi,...,yr4q} such that

X(y1) >0 and ya, ..., Yryq € ker x.

The main result of this chapter is the following generalization of the Jeffrey-Kirwan theorem

to non-compact symplectic quotients.

Theorem 4.5. Let (M,w) be a Hamiltonian (G x S)-manifold with moment map paxs. Assume
that 0 € g* is a regular value of uc and denote M |G = ug'(0)/G the symplectic quotient.
Moreover, assume that S has an 1-dimensional subtorus with proper, bounded below moment
map and let A be a polarization on t* @& s* compatible with it. Then for any 8 € Hgxs(M) we
have

w—pexs) — [; A w w—pTxstep
¢ ms(pes o) — liy EqRes (|W|wl(T) f e )
M

MyG

where ks : Haxs(M) — Hg(M)/G) is the Kirwan map, |W| is the order of the Weyl group of
G, vol(T) is the volume induced by the scalar product on t* used in EqResA, w 1is the product of

roots of G and p is a small reqular value of pr.
Remark 4.6. If 0 is a regular value of pp then we may choose p = 0 and the limit is unnecessary. ¢

The strategy of the proof is as follows. First we prove Theorem[4.5|for M compact and G =T
abelian, then we prove it for M non-compact and G = T still abelian. Finally, we deduce the

general case by Martin’s method [32].

4.1.1 Compact and abelian case

As first step to prove Theorem [4.5] we will show the following theorem, which is the generalization
of the abelian version of the Jeffrey-Kirwan theorem for the residue EqRes.
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Theorem 4.7. Let T and S be two compact tori and let (M,w) be a compact Hamiltonian
(T x S)-manifold. Assume that 0 € t* is a regular value of the T-moment map pr and denote
M)T = u;l(O)/T the symplectic quotient. Then for any polarization A on t* @ s* and for any
B € Hrxs(M) we have

f I{S(ﬂew—MTxS) = EqReSA(»UOll(T) %/Bew—u/rxs>7
M

M)T

where kg : Hryws(M) — Hs(M)|T) is the Kirwan map.

Proof. Since M is compact, it is enough to prove it for a particular polarization A by Proposition
. Let t = {t1,...,t.} and s = {s1,...,54} be an ordered basis of t* and s*, respectively
such that ur(MT)Nspan(ts,...,t,.) = 0. Let A be the polarization induced by the ordered basis
{t1,...,tr,51,...,84} of t* ®s*. In this case the proof goes the same way as the proof of Theorem
A in [25]. Denote {t!,...,t", st ..., 57} C t® s the dual basis and let I' = Cone(v1,...,7,) C t*
such that

(T1) vi,...% € (1)< Nt are linearly independent, where (¢1)<% = {u € t* @ s* |u(t!) < 0},
(I'2) for any I C {1,...,7} the Cone(v;|i € I) intersects every wall of up (M) transversally,
(T3) tH<ONur(MT) CT.

By assumptions (['1)) and (['2)) we can construct the symplectic cut Mp. We will denote by
purxs the (T x S)-moment map and by wr the symplectic form on Mp. By Theorem for
any 8 € Hryxs(M) we have

(4.1) @/A(/Be“’_/wxs): 7{ M

Mr M/T H( ks (7))
Bew Msz>
4.2
(4.2) sz F/eszN F|M)
FCM
pr(F)er

1 i A(ﬂ)eZB“’F’“TXS(D)
4.3 + /D )
(4.3) ZT < m(D) erxsN(D| Mr)
DC(Mp)* > D

wr (D)edT\{0}

Denote the three summands on the right hand side of (4.1)), (4.2), (4.3) by Zred, Zota and Z e,
respectively. We choose p € t* near 0 in the interior of I' which is not on the supporting plane
of any wall of pur(Mr) and with property

(1.4) 0> (p,t1) > (ur(F'), 1)
for any F' C (Mp)T*S with uz(F') # 0. We will show the following relations:

(i) EqRes “Z,14e” + EqRes T ene” = 0,
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(ii) EqRes? T, cqe? =

1
(iii) EqRes Zorae®” = EqRes ?%56W—#sz+€p7
r
M

(iv) EqResAIneweE” =0,

T
(v) lim BqRes T, = ”Oéi) 7( s (B rTs),

Then by Proposition
EqRes™ (Zred + Zotd + Inew)e” = EqRes™ ™ (Zreq + Lota + Znew)e"
for all € € (0, 1], hence by , , we have
EqRes AT e = EqRes 7, .qe”
for all € € (0,1]. By , and Proposition we get
EqRes —fﬂe“’ BTxs — hm EqRes Torge = hrgl EqRes Treac”

vol(T)

= 5F % ,{S(Bew*#sz)y

M)T

thus the theorem follows.

Now we start to prove the above relations. From and follows that —purxs(F') +€ep
are not polarized with respect to —A for all F/ ¢ MT*% with up(F’) € T and for all F' €
(Mp)T*S with pup(F') € '\ {0}, thus the relation (il) follows from Corollary

P]BAIJFEP
7 [Lics Bi
A7 + €p is not polarized with respect to A for any I by . Hence, the relation follows
again from Corollary [3:41]

To prove relation remark that for any F' ¢ M7>% we have either pur(F) € T or —up(F) €
(t1)<° by (T3). In the latter case —ur(F) +ep € (t')<0, therefore —ppys(F) +ep = —pr(F) —
us(F) + €p is not polarized with respect to A. By Corollary follows that

Remark that Z,.qe” is a t*-regular fraction of form , where \; € §*, moreover

ﬁe“’ HT><S+EP)

1
w—prxstep
EqRes™ %Be = BEqRes® o E / p—VOARYY

FCMTXS ¢
ﬁe‘*’ #szJrfp)
= EqRes /
FC;XS €T><SN F ‘ M)
pr(F)er
= EqRes Torae
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To prove recall that

I e Z 1 /z‘*DA(ﬂ)eiE‘”F“TXS(D)“p

news D D | M; '
De(amyTxs m(D) J erxsN(D|Mr)
pr(D)edr\{0}

By Lemma any D C (Mr)T*9 fixed point component is of form D = Fim,z) = (Fn X F.) | Taiag
such that F,,, ¢ MT*S)m and F, ¢ (C")" are connected components containing m and z,
respectively, where (T'xS),, C T'xS and T, C T are maximal subtori fixing m and z, respectively.
Recall that pp(D) = pr(m). Let J, = {j = 1,...,7|z; = 0}, where z = (21,...,2,). The
condition pp (D) € OI'\ {0} implies that J, is a proper subset of {1,...,r}. Recall that we have
splitting o : (t®s);, ©t; — (t@s)" and let 0 = (9o pry) : t* — (tDs)*, where pr. : t* — 1.
By Splitting Principle and we have

eTXSN(F[m,z] |MF) = H(Q(az) + e(M//Tdiag)) H (J(’YJ) + e('cj//Tdiag)a
i€l JEJ.
assuming the splitting
N (Fimz) | Mr) = @ Ni/ Taiag @ L5/ Tiiag
i€l j€J;
to complex line bundles with respect to an invariant compatible almost complex structure on

M. Recall that o; € (t @ s5)%, for all i € I and v; € tf for all j € J,. Hence, the integral

1 i A ipwr—prxs(D)+ep Pe—Hrxs(m)+ep
/ZD (Beto is of form e—’ where P € R[t ® s] and 1, €
m(D)
D

erxsN (D | Mr) [Licrm

{o(cvi),0(yj)|i € I, j € J.} for all | € L. Denote 7; the polarization of n; with respect to A.
Remark that by the choice of A

(4.5) pre-(0(75)) = pr-(0(7;)),

since pry. (o(7;)) # 0. By Corollary it is enough to show that

—pr(m) + ep ¢ Cone(pr,. () |1 € L),

that is,

(4.6) 0 ¢ pr(m) — ep + Cone(pre. (e(a)) i € I) + Cone(pre(0(v;)) |5 € J2).

Moreover, by we have span(pr. (o(ay)) |i € I) C span(v; |j ¢ J.), therefore holds if
(4.7) 0 ¢ pr(m) — ep+ span(; | j ¢ J.) + Cone(pre (a(7)) | € J2)-

On the other hand, by (2.8 we have
ep € intT' C span(y; | j ¢ J.) + int Cone(pry. (o(v;)) |7 € J2)
and by Remark [2.5[i) we have ur(m) € Cone(vy;|j ¢ J.), therefore

(4.8) 0 € pur(m) — ep+span(y; | j & J.) + int Cone(pr. (0(7;)) [ J € J2).-
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Comparing (4.7) and (4.8) it is enough to show that
(4.9) Cone(pry(o(v;)) | j € J.) Nint Cone(pre.(o(v,)) | j € J.) = 0.

Since Cone(pre-(o(v;)) | j € J.) is simplicial, by we only need to show that o(v;) = —a(7;)
for some j € J,.

Since Fy,, ¢ M(T*5)m is a compact symplectic submanifold, the wall fi7y 5(F),) is the convex
hull of pirys((Fn)™%) by [1]. From Remark follows that prxs(m) € pr.' Cone(v; |j &
J)Nprys(Frn), and by we have that purxs(Fy,) N () <0 # 0 and prxs(Fy,) N ()20 # 0,
where (t1)20 = {u € t* @ 5% |u(t!) > 0}. Therefore, v : urxs(Fn) — R, v(p) = (p,t!) is a
non-trivial convex function. It takes its minimum on a proper face F of purxs(F,,). Moreover,
urxs(m) is in the relative interior of the polytope prxs(Fy,), hence it cannot be a minimum
point of v. By we have

prxs(Em) Npre! (T) C prxs(m) + Cone(a(v;) | j € Jz).

If p e F then p = prxs(m) + > ajo(y;) with a; > 0 for all j € J;, hence
JjeJ=

v(p) = vurxs(m)) + Y av
JjE€J=

If o(v;) = o(y;) for all j € J, then v(o(y;)) > 0 for all j € J., thus v(p) > v(urxs(m)), which
leads to contradiction that prxg(m) is an inner point of prxs(Fin)-
We conclude the proof of the theorem by proving the relation . We have

]{ M: Z (1 )/ it kg (Be”HTxs)

iy 105 = () weiiime "B cah (BIMIT) T ()

We can write v; — igrs(;) = v + (G — i5k(y;), where (; € §* and k : Hp(M) — H(MT) is
the Kirwan map. Then

1 / i’fBKS(BeW—Msz)
m(B r o
)5 esNBIMYT) T () = s ()
]:
- ¥ 1 /i*BHS PehT>s) ﬁ ipk(y)® 3 Py, ke 5P
- k +1 r ’
o, TFmo ™B) S esN(BIMJT) 5 (35 + ) Fahe20 [T (5 + ¢kt

j=1

since purxs(B) = us(B) for B C (M//T)®, and where Pg i, ...k, are rational functions on s such
that

st )
esN(B|M/T)

1
P —ps(B) _ /
B,kla"wk)re m(B)
B
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We remark that for degree reason only finitely many of these functions are non-zero. By (')

the vectors v1 + (1, ..,7 + (- are polarized with respect to —A and we can write

ep=epr(y1+C)+ . Feor(m+G) =€ piG
=1

with p1,...,pr > 0. Therefore, by Proposition [3:39 we get

—ps(B)—e 32 p;iG;
EqReS_A<P37k1,...7k,,6_“5(3)+6"> _ Peki ke =t . (ep)Fr - (epr)

[Ty +¢)htt ) ettt G+ Gl,ey et

j=1
Let {7y,...,7 -} be a basis of the lattice t; and let {¢J1,...,9,} be an orthonormal basis of t*.
By definition (v; + G, vj + () = (vi, ;) for all 4,5 = 1,...,r, hence

8’)/1 67']‘ - 1
det< )‘ ‘ <619;)‘_5F vol(T) ™.

/ iGks gewﬂ@xs)eep

\/det FYZ+C7,7’Y]+C])]'L] 1_\/det 77,7’7_7 z] 1=

Finally, we compute

lim EqRes Lreqe™ = hm EqRes

e—0t

BC(M//T)S 5 esN(B|M)T) H( v — ks (V5))
Jj=1
P —ps(B)+ep
= lim+z Z EqRes_A B’kl""’k"e
O kR0 H(,yj+cj)kj+1
j=1

L vol(T) (ep1)*r - - - (epy)Pr —us(B)—e _Z;:l 21e
= 61_1>%1+Z: Z or Kl g Pp k... k.€ j

= vol(T) Z Py, oe P
BC(M/T)S

vol(T) Z 1 / Z'*B,%S(ﬂewﬁusz)

O ety ™B) ] esN(BIM]T)
(T
_ 7)055—‘ ) % HS(BQOJ_MTXS)~
M/T

4.1.2 Non-compact and abelian case

In this section we will prove Theorem [4.7]in the abelian case, namely

(4.10) 7{ Kkg(Be?THTx5) = vol( EqRes 7{56“’ HTxs,
M/T

We will approximate M by a compact symplectic space using symplectic cut with respect to the

moment map pg. Denote ¢’ : MJT — R and ¢” : M//G — R the functions induced by ¢ on

the quotients. They are also proper and bounded below.
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Lemma 4.8. There exists ¢ € R such that
(B1) MT*5 C p~!(~00,¢),

(E2) (M)T)® C (')} (—o00,¢),

(B3) (M) G)® C (¢")"}(=00,0),

/

(E4) € is a regular value of ¢, ¢’ and ¢”,

(E5) if the supporting affine plane W of a wall of urxs(M) intersects s* in a point, that is
Wns* = {p}, then we have x(p) < €.

Proof. Since ¢, ¢’ and ¢” are K-moment maps and K is 1-dimensional, therefore ¢(M¥),
O (MJT)E) and " ((MJJG)¥) are the set of critical values of ¢, ¢’ and ¢”, respectively. More-
over, these three functions are constant on K-fixed point components, hence

(M) = (MT*F) I (MJT)F) =" (MJT)%),  &"(MJC)F) = o ((M)G)?)

and they are finite by Proposition

By Lemma[T.39] we have only finitely many supporting affine planes W, and they yield finitely
many values x(p) with WNs* = {p}. Any value ¢ bigger than all above will satisfy the required
properties. O

Consider an S’ C S subtorus such that S’ x K — S, (s/,k) — s’k is a finite cover. It
yields a finite cover T'x S x K — T x S, (t,8',k) — (t,s'k), which induces isomorphisms
O* i t* D5t >t @ (s) @t and D* : Hyys(M) — Hrxs xx(M). This latter isomorphism

commutes with equivariant integration, reduction and equivariant residue, more precisely
(I)*< % Rs(ﬂequxs)> — % (I,*(HS(Bewfusz)) _ % KS((b*(ﬁewiﬂsz))
M/T M/T M/T

and

P <EQR6SAfB€w_“TXS> = EqResAfI)* <%ﬁ€W—l‘sz) — EqReSA%(b*(ﬁew—uszL
M M M

therefore we may suppose that S = S’ x K. Moreover, for any ¢ € s* multiplication by e also

commutes with equivariant integration, reduction and equivariant residue, more precisely

Hs(ﬂewfyffxs+§):€§ }{ Hs(ﬂewausz)

M/)T M/)T

and
EqResAjI{,Be“””TXS+§ = efEqRes" fﬁe“’*”ms,
M M

therefore we may suppose that ¢ = 0 satisfies conditions of Lemma [4.8| by replacing the moment
map pirxs by prxs —ey.
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From now on we will suppose that S = S’ x K and ¢ = 0. Consider the cone ¥ = R<gy
and construct the symplectic cut X = M. It is a (G x S)-Hamiltonian manifold (orbifold) with
moment map ¢gxs : X — g* ®s* induced by pgxs and denote wx the reduced symplectic form
on X.

Lemma 4.9. (i) If 0 € t* is a regular value of pr then it is a reqular value of ¢, too.
(i) If 0 € g* is a regular value of ug then it is a reqular value of ¢¢, too.

Proof. We will only prove the second statement. It is enough to check that 0 € g* is a regular
value of ¢ on ¢~ 1(0)/K, which is equivalent to G acts locally freely on ¢z'(0) N ~1(0)/K.
This latter holds if and only if G x K acts locally freely on /151(0) N ¢~ 1(0), that is, when
(0, 0) € g* ® R is a regular value of ug x ¢ : M — g* & R. By a similar argument we can show
that this holds exactly when 0 € R is a regular value of ¢” : M /G — R, which is assumed by

(E4) of Lemma |4.8 L

Denote X/T = ¢;'(0)/T and MK = ¢~ *(0)/K = ux'(0)/K the symplectic quotients.
They admit S- and (7' x S)-actions induced by the actions of the same groups on X and M,
respectively. By Corollary and (E1]) we have

(4.11) /A(ﬁew*#sz) :fﬂewfusz i f Krxs (Be?HTxs)
M M)

erxsN(MJK|X)
X K

We have a similar formula on X /T by

Ks' KTy s (BeTHT*S)

esN((MJK)|T|X)T)

¢ msa@erm) = § na(pehree) 4

X)T M)T (MJK) )T
B K/TXS,(/BGW_HTXS) )
4.12 = Ks(BeX HTxS) 4+ j{ K < ,
(.12) § nsts ) 5\ eresNMIJEX)
M)T (MJK))T

since esN (M) K)JT| X)T) = ks(erxsN(MJK | X)) by Lemma Moreover, by Theorem
1.7 we have
1

]{ kg A(Be? TS = ?{ ks (A(B)eX 9Txs) = EqReSAvol(T) fA(g)ewX*dwxs

X/T X/T X

1 W—HUT XS
'UOZ(T) %A(ﬂe " )7
X

= EqResA

which yields by (4.11) and (4.12])
% kg (B HTx5) = EqRes™

M)T

[e?THTXS EqResA

M
o (Ze),

§ €T><SN M//K|X)
M//K)//T

vol(T

f HTXS’(ﬁewiuTXS)
vol(T) Vi erxsN(MJK|X)
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Therefore, it is enough to show that

A 1 lﬁ:TXs,(ﬂew*Msz) B KTXS’(BQW7MTXS)
Fates vol(T') % erxsN(MJK|X) " (eTXs/\/'(M//KX)>'
MK

(MJK)JT

Despite its resemblance, the formula of Theorem cannot be applied directly. By definition
(4.13)

]{ Krxg (Be?~HTxS) _ Z 1 7{ UhKkrxg (Be”HTxs)
s COSNOIRIX) ™ o D) [ yersN MK [ X)erxs N(DIMIEK)
Recall from sectionthat each fixed point component D < (M K)T*5" is of form D = D, J K,
where m € ¢~1(0) is a point such that (t®s),, Dt =t®s and D,, C M is the (T x S),,-fixed
point component containing m. We have splitting o : (t @D s)}, ®€* — (t®s)* and remark that

o((t®s)r,) = (tds')* =ker x. Then by
iperxsN(MJK|X) = o(y) +ipe N(M/K|X)

and by the Splitting Principle we can assume that N (D, | M) = @;c1,N; is a (T x S)-equivariant
splitting to sum of complex line bundles (using an invariant compatible almost complex structure

on M), thus by
erxs N(D|MJK) = Ky gi(erxsN(Dm | M) = ] le(e:) + ' (ex (M),

i€lp

where o; € (t®s)), is the (T x S),,-weight of fibers of N; and k%, ¢/ : Hrxs(Dy) = Hrxs/ (D),
k' : Hix(Dy) — H(D) are Kirwan maps. Therefore, (4.13]) has two kinds of t*-poles

(1) V =span{p(as,),...,0(a;.)) with iq,...,4, € Ip, ie. V C kery.
(2) V =span{o(7y), 0(ai,), ..., 0(a;.)) with ia,..., i, € Ip, i.e. V ¢ kerx.

Recall that

, W—HT xS
EqResA 7{ rrxs (B )

erxsN(MJK|X)
MJK

B v 1 HTXs,(ﬁeW*#sz)
= Y JKRes* <”01(T)MZ{( eTXsN(M//KlX)>(U’5)dU

V Cker x

1 K/TXS'(/Bew_MTXS)

§ JKRes™v dv.

+ os (UOZ(T) 7{ er sSNQIJEX) ) V)Y
V Zker x MK

vol(T)

Lemma 4.10. For all t*-poles V' of such that V ¢ ker x we have

Ay 1 K"TXSI(ﬁew_MTXS) B
JKRes (vol(T) %KeTXSN.(M//K|X))(v,s)dv—O.
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Proof. Let V = span (o(v), o(@i,), ..., 0(a;,)). There is a wall of gy s (M) such that its support-
ing affine plane is purys(m)+V. We construct this wall as follows. Let H C (T'x.S),, C T xS be
a subtorus such that h = N7_, kero;; and let N C M H be the fixed point component containing
m. By Example the supporting affine plane of urxg(N) is purxs(m) + ker((t ® s)* — h*) =
prxs(m)+ V.

Finally, since V is a t*-pole, we have (urxs(m)+V)Ns* = {p}. If we write purxs(m) = As+A,
with A\; € 5* and A, € V then A\, = p. Since m € ¢~1(0), we have x(\s)+x( M) = X(urxs(m)) =
0, thus x(Ay) = —x(p) > 0 by and assumption ¢ = 0. Hence —urxs(m) = —urxs(D) is

not polarized with respect to A and the lemma follows by Corollary O
Lemma 4.11.
(4.14)
1 HTXS,(/B@‘U*I"TXS) KJTXS,(QQW*HTXS)
JKRes™ [ j{ v, s)dv = K .
Vzk: vol(T) erxsN(MJK|X) (v;9) SlerxsN(MJK [ X)
crerx M/ K (M) K))T

Proof. Let s' = {s},...,s;_1} be a basis of (s')* and recall that {} is a basis of £*. We prove
the equality of fractions on s’ @ £ on both sides of (4.14]) by showing that for any fixed § € (s')*
their expansions with respect to v + 0 < s7,...,s;_; are equal. Moreover, by (2.12) we have

erxsN (MK | X) =+ erxs N(MJK | X) =+ — 5 + erxs N (M) K | X),

hence let

1 1 §—erxs N(MJK|X)\"
(4.15) erxsNMJK|X) (7+5),,ZZO< 7o )

Now we can apply Theorem on MK with respect to the (T' x S’)-action, considering v + ¢
as non-zero constant. Denote A’ the polarization induced by A on (t @ §’)*. Remark that
Krxs (W — prxs) = w' — Wy o is the (T x S’)-equivariant symplectic form on M /K, since we
assume that ¢ = 0. Then we have equality of expansions with respect to v + d < s’ by

> JKResA/v< ! }{ Z(5_eTXS'N(M//K|X>)nwxsf(ﬁ)e“'“'TXS')(v,s’)dv

n+1
V Cker x UOI(T)]V[//K n>0 (’Y + 6)
A —eTxS’N M//K‘X)) W =l g
= EqRes ( % Z (v + o)t Krxs (B)e” ~Hrxs
n>0
_ —erxs N(MJK|X)" W —pih o
a ]{ HS<;0 (v + o)+t Krxs (B)e” THrxs ).
(MJK)|T "

Hereby we have showed (4.10)).
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4.1.3 Passing from abelian to the non-abelian case

We deduce the non-abelian version following closely [32]. Recall that 0 € g* is a regular value of
wa : M — g*. First we assume that 0 € t* is a regular value of up : M — t*, too. Then from
Lemma follows that 0 is also a regular value of ¢ and ¢r. Denote X/G = ¢'(0)/G and
X/T = ¢7'(0)/T the symplectic quotients.

We make a choice of positive roots of G. Denote R™ and R~ the set of positive and negative

roots, respectively. Set v* = ker(g* — t*) and fix an isomorphism of real G-representations

(4.16) v*~ P C.,

a€ER~
where C,, is the 1-dimensional representation on which T-acts by weight a. We have a natural
orientation on each C,, therefore isomorphism fixes the orientation of v*. Moreover,
isomorphism induces an isomoprhism of real G-representations

(4.17) v~ P Ca,
acRt
which also fixes the orientation of v. Consider the (T x S)-equivariant map o : X — v* defined
by
(otel

X ——=g"

x l
U*
where S acts trivially on g* and g* — v* is the orthogonal projection induced by a T-invariant

scalar product on g*. This scalar product also yields splitting g* = t* @ v*, and under this
splitting ¢ = (¢, 0). The map o induces an S-equivariant section & of the associated bundle

E-=(Xx0")T~Xx P Ca.
a€ER~
over X//T. Tt is a transversal section, because 0 € g* is a regular value of ¢g. If we denote
Z = ¢5'(0) then Z/T is the zero set of & and it is a submanifold of X/T. We consider the
following diagram
Z)T — > XT
Z|G=X)|G

Remark that on X /T we have a canonical orientation induced by the reduced symplectic form
and the orientation of v* determines the orientations of the fibers of E~. These two orientations
yield the orientation on Z/T. Moreover, we also have a canonical orientation on X /G induced

by the reduced symplectic form and it fixes the orientation of fibers of . The vertical subbundle
kerdm C T(Z/T) is isomorphic to (E¥|z7), where

ET=(Xxv)/T~Xx P Ca.

a€ERT
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Remark that this isomorphism is orientation preserving.

We will use different style of notations for Kirwan maps. Before, in the subscript we have
indicated the group which acts on the quotient, now we will indicate the group by which we
divide. Denote K/, : Hrxs(X) — Hg(X/)T) and K, : Hgxs(X) — Hg(X//G) the Kirwan
maps. As in [32] for any Bx € Hoxs(X) ~ Hrxs(X)" we compute

/ Ke(Bx) = |1W\ / es(EY|z/r)m" Ka(Bx) by Lemma [£.12

X)G zZ/T

les(E
)

Z/T

es(E
~m1 /

X)T

’CT(ﬂX)] " /G = 'L*’CT

Tes(ET)K(Bx) by Lemma [4.13

(4.13) ~ i [ Kil=hx), by es(E~E*) = K (),

X)T

where @ is the product of all roots of G. By (4.12)) for any 8 € Hgxs(M) we have

B / /C"/CN( B)
(4.19) j{ICT(w/B)— / KrA(w B) — f{ esN((MJK)|T|X)T)’

M/)T X/)T (MJK))T

where Kt : Hryxs(M) — Hs(M)T), KY : Hprxs(MJK) — Hs ((MJK)/T) and K/
Hrys(M) — Hryxs (M/J/K) are Kirwan maps. Similarly,

(4.20) f / KLA(B

j{ KLK! ()
esN((MJK) |G| X)G)’

MG X/)G (MJK))G
where ]CG : HGXS(M) — Hs(M//G) and IC/C/; : HGXs/(M//K) — HS/((M//K)//G) Let s =
{s1,...,8,_1} be a basis of (s')*. For any ¢ € (s')" and expansion vy + 4§ < si,...,s,_; of
1

we have by (4.18

eaxsN(MJK|X)

(30 e M k) )

(MJK) )G n=0

1 " 5*e><’NMKXn//
B )

(MJK) )T n20

therefore

KK (8) -
(4.21) f esN((MJK) |G X]C) f
(MJK))G (MJK))G

(MJK)|T
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K (8) >

eGXsN(M//K‘X)

% KUK (wB)
esN((MJEK)|T|X)T)’
MJK)|T



because K (wfB) = w K% (), since w € (St*)W. Moreover, K C S implies that the homomor-
phism A : Hpys(M) — Hrpys(X) is Hp-linear, hence

(4.22) wA(B) = A(wp).
Furthermore,
, ICI/IC/I
§ ko) = [ KeA®) - rmiReTE by @20
M//G X//G (M//K)//G
1 , 1 KK (w )
w1 [ O - b g DR
X/)T (M)K))T
_ 1 , 1 K:”’CH (Wﬂ)
i | red b oot D
X/)T (M)K))T
(4.23) =|—V1V| ¢ Kn(=p) by (E19).
M/)T

By (4.10) and (4.23)) follows that

1 w
W—HGXS — W—UTxS) = R, A W—HT XS
j{ Ka(Be ) Wi j{ Kr(wfe ) qRes W ool(T) ?{ﬁe
M)G M/)T M

If 0 € t* is not a regular value of ur then we choose a regular value p close to 0 such that
(p,0) € t* @ v* remains a regular value of ur x o. Replacing Z/T = ¢5'(0)/T by Z,/T =
o7 (ep) No1(0)/T in (4.18)) and taking the limit ¢ — 0 we get

/ Ke(Bx) = hm / K (wpBx)

X/G X//ep

for any Bx € Hgxs(X), and where X /., T = ¢7"(ep)/T. Thus, we can similarly show as in the

regular case that

fm/a)— gg%‘;m f Kr ()

MG M/, T

for all 8 € Hgxs(M), and where M., T = u;'(ep)/T. Finally, by (4.10) we get

W—HGXS) — W—HTx5TEP
fng(ﬂe )= lljr(l) |W| 7{ Kr(wpBe )

MG M/fe,T

w
— lim EqR. A W—pT % 5+EP
g anes |W\voz(T)f{Be ’

which concludes the proof of Theorem

We close this section by showing the following two lemmas, which were used earlier.
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Lemma 4.12.

| K6 = g [ esteramaia o).

Z/G Z)T

Proof. We follow the proof of Theorem B in [32]. w: Z/T — Z/G is a fibration with fiber G/T
and 7 is S-equivariant. For D C (Z/G)® fixed point component we have 7~1(D) = F C (Z/T)®
is also a fixed point component. Moreover, we have S-equivariant isomorphism of normal bundles
N(F|Z|T) ~7*N(H | Z/G). Finally, we compute

IC/
K@) = Y [ el
Z//G pcZic)s ) esN D|Z/G)
1 i3 (e(ker dm)m* K (5)) /
= by [W| = x(G/T) = ker d
FC%T)S/ esm*N(D|Z/G) y W[ =x(G/T) A e(ker dr)
1 iy (es(kerdm)m* Ky (8)) B
B chﬂs/ esN(F| Z]T) oy elkerdlr) = es(kerdale),
1
= / es(kerd ) (Kg(B))-
Z/T

We have the following equivariant version of Proposition 12.8 of [4].

Lemma 4.13. Let E — X be an S-equivariant vector bundle over a compact manifold (orbifold)
X. Let o be an S-equivariant section, transverse to the zero section. Denote Z = o~ 1(0) the
zero set of the section and iz : Z — X the inclusion. For any n € Hg(X) we have

[izn= [ estem.

zZ X

Proof. Let F ¢ X% and D € FNZ C Z° be fixed point components. Denote i : F < X,
p: D <= Z and jp : D < F the inclusions. By transversality of ¢ we have equivariant
isomorphism of vector bundles

(4.24) Elz ~N(Z| X).

We have equivariant decomposition E|p = (E|r)® @ E', hence E|p = (E|p)° @ E'|p. Moreover,

by ([E24) we get
(4.25) N(Z|X)|p =~ (E|p)° @ E'|p.
The inclusions D C Z C X give

(4.26) ND|X)~NDI|Z)sN(Z|X)|p,
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and by we have

(4.27) N(D|X)~N(D|Z)® (E|p)°® E|p.

Moreover, the inclusions D C F C X yield

(4.28) ND|X)=N(D|F)eN(F|X)|p,

and finally we also have a decomposition

(4.29) N(D|X)~N(D|X) s N(D|X).

By equations and (4.29) we have N (D |F) ~ N(D| X)®, hence

(4.30) N(F|X)|p~N(D|X)".

D is a fixed component of Z, therefore from equations and follows that
(4.31) N(D|X) ~N(D|Z)® F'|p.

The isomorphisms (4.30) and (4.31)) imply

ip(esN(F]X))
(4.32) esN(D|Z) = W
Finally, we compute
-k ZD77
/ 2= Z esN(D|2)
Z Z
* E/
_ Jples(E))ipn by ([{.32)

JplesN(F|X))

e ((Elp)®) es(E)ign
esN F‘X)

MNM

by Proposition 12.8 of [4]

s

Rl
>

C

i E|§’ \ngn by e((B|r)%) = es((E]r))

o
2 Rl
/
X

s

b

es(E)n.

Il
x\ 3

4.2 HyperKahler version

We formulate an analogue of Theorem [£.5]for hyperKéhler quotients. First we compare the torus
hyperKahler quotients to symplectic quotients, then we conclude the formula for non-abelian
quotients by [19].
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Let M be a hyperKéahler manifold with real symplectic form wg and complex symplectic form
we. Assume that M admits an action of a compact connected Lie group G which acts on it in a
hyper-Hamiltonian manner with hyperKahler moment map p = (pr, pic) : M — g* P gg. We also
consider an additional Hamiltonian S-action on (M, wr) which commutes with the G-action and
denote pg : M — s* the S-moment map. As in the symplectic case we assume that there is an
1-dimensional subtorus K C S such that its moment map px is proper and non-surjective. Then
we can write uxg = ¢ -y with a generator v € £ such that ¢ : M — R is proper and bounded
below. In hyperKéhler case we impose the additional conditions that g¢ is an S-representation
such that uc : M — gg is (G x S)-equivariant and (t5)° = {0}, where t is the Lie algebra of the
maximal torus 7 C G of rank r. We introduce notations puf : M — t* and pf : M — t§ for
the abelian real and complex moment maps, that is, M% = pry« o ug and M% = pry. o uc, where
pre- @ g* — t* is the projection.

Consider a regular value of y of form (£,0) € (g* ® g#)®. Then the quotient M Jffi¢,0)G =
g (€) N uz'(0)/G is again a hyperKihler manifold (orbifold) [22].

Theorem 4.14. For any B € Haxs(M) ~ Hyys(M)W we have

Ywrw T
WR—pR—p1STEY — T; A RWC Wr—pE —ps+Etep
ks(Be ) };E)I(l) EqRes Wivol(T) j{Be )
Mffie,00G M

where ks : Hoxs(M) — Hs(M [lfi¢,0)G) is the Kirwan map, A is a polarization compatible with
the proper bounded below moment map, |W| is the rank of the Weyl group, Ywc is the product
of (T x S)-weights on g, wr is the product of roots of G and p € t* such that § + €p is a regular

value of pk for small e.

Proof. First we examine the G = T abelian case. Assume that £ € t* is a regular value of
pr. I M T = (p&)~1(0)/T denotes the symplectic quotient then pl : M — t% induces an S-
equivariant map gk : M T — ;. Since (§,0) € t* @ t}. is a regular value of (uf, ul), therefore
0 € tf is a regular value of it and we can identify (a{)™'(0) = M [}f¢,0)T- Consequently, we

have an S-equivariant isomorphism of vector bundles

(4.33) N(M////(&())T | M//ET) ~ M [lfie,00T X t¢.

Since il is S-equivariant, the condition (t5)% = {0} implies that

(4.34) (M[eT)® = (M e.yT)°.

By for any F C (M flJie,0)T)® fixed point component we have
N(F[M[T) = N(F [ Mflfie,)T) & (F x &),

hence

(4.35) esN(F | M//gT) = esN(F ‘ M////(g’O)T) 9,

74



where 9 is the product of all S-weights on t%. Remark that ¢ # 0 by condition (t%)° = {0}.
If ks : Hrxs(M) — Hs(M [lfie,0)T) and kg : Hpxs(M) — Hg(M J¢T) denote the hyperKéhler
and the symplectic Kirwan maps, respectively, then i}, e O)TH’S = kg and we compute

“ wr—pd —

ﬁs(ﬂewﬂr“l{’“*é) _ 1 /ZFlij/‘(ﬁe R =i —HsHE)
Z m(F e F|M T

Mflfe,00T FC(Mffe,00T)" ( )F s ( | ////(5’0) )

1 /ﬁi}mg(ﬂewmu§u5+§)
N 2 by (4.35)
F F| M/ T
FC(Mffe,00T)" m( )F esN(F'|MT)
_ Z 1 /i}n’s(ﬂﬂewm—ui—usﬁ)
m(F) S esN(F[M[T)

(k' is Hg-linear)
FC(M////(gyo)T)S

— f wape s by (3D
MJeT
1
= EqRes" wol(T) %1956“’“‘*7““{7“”5 by Theorem
M

If ¢ is not regular value of p then we perturb £ to a regular value £ + ep and we take the
limit € — 0, hence

(436) Hs(ﬁewm*#%*#SJrE) — hr% I{S(Bewaﬂg—#s+§+ep)
e—
Mflfe,00T MffereprT
1 T
= li L (9Bewr s —HsTERer) = i F A ]{19 we—nf —ps+Etep
o j{ s (Ve ) = lim EqRes wol(T) Be
M//&+6;>T M

Now consider the non-abelian case. Suppose that (£,0) € (g*@®g%)¢ is a regular value of (ug, uc)
such that (£,0) € t* @t} is also a regular value of (uf, uL) via the identification (g*)¢ ~ (t*)W.

By Theorem 2.2 of [19] and (4.36) for any 8 € Hgxs(M) ~ Hrys5(M)"W we have

1

(4.37) K (BewrHrmnstE) = Wi kg (wroogBe s HE THsTE)
Mfe.00G Mg, T
= ﬁ 7{ ks (VmrooeSe s e —HsTE) — qu’nesAiﬂwaC %ﬁew”&_’t”{_uﬁg

|Wvol(T)
M/eT M
If (£,0) € t* B t% is not a regular value of (ul, ul) then we choose a small p € t* such that & +ep
and (£ + €p,0) are regular values of puf and (uk, ul), respectively for all € € (0,1]. Similarly to

the symplectic case we can show that

Hs(ﬁewu«z—uu«z—us-l-ﬁ) — lim HS(waCBewR—Mnf—Ms+E+ep)
e—0
M/flfe,00G Mfg+ep,0)T
and the theorem follows by (4.37)). O
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5)

Applications

In this chapter we give two applications of results of Chapter [d In the first one we describe a
method for computation of cohomology ring of the Hilbert scheme of points on the plane [27, [44].
We give a description of the equivariant cohomology of this Hilbert scheme of points from which
the ordinary cohomology ring can be computed in terms of generators and relations.

In the second example we compute Nekrasov’s partition function [38] on the moduli space of
framed torsion free sheaves on CP?. We get back the formula by Nakajima and Yoshioka [37].

5.1 Equivariant cohomology of the Hilbert scheme of points on the
plane

Consider M = T*(End(C") @ Hom(C,C")) = M,,(C) ® M,, 1(C) & M,,(C) & M ,,(C) with U(n)-
action

9+ (A,a,B,b) = (9Ag™", ga,gBg~" bg™"),
for all g € U(n), A, B € M,(C) and a,b’ € M,, ;1(C). This action is hyper-Hamiltonian with real
and complex moment maps

v—=1
pr 2 (Mywr) = u(n)*, upr(A,a,B,b) = —~5 ([A, A*] + [B, B*] + aa™ — b*b) ,

pe s (Mywe) = uln)g, uc(4,a,B,b) =[A, B] + ab,

where we identify u(n)* ~ u(n) via the non-degenerate bilinear form (u,v) = Tr(u*v) for all u, v €
V-1
2
as regular value and the hyperKéhler quotient M /¢ 0)U(n) is diffeomorphic to Hilb"(C?) the
Hilbert scheme of n points on C? [36].

u(n). The hyperK#hler moment map pu = (ug, 1c) has (£,0) = 1, 0> € u(n)* @ u(n)g

Let T = {g € U(n)|g diagonal} be a maximal torus of U(n) and we choose the basis
{u1,...,u,} of t* such that u; (diag(\/—ln,...,\/—17'”)) =7 forall i = 1,...,n. Then the
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real and complex abelian moment maps are as follows

T . T RN | Ak 2+ [Bijl® |~ lanl® — |be?
W (M) > € A B = 3 (=) BP9 Joul”

k,j=1 k=1

pt s (Mywe) = 88, pt(A e, B,b) = —vV=1 Zuk ZAijjk — ByjAjk + arby
k=1 =1

¢ is a regular value of uL, because uj + ...+ u, is regular with respect to {uy — u;, u | k,j =
1,...,n}. Moreover, (£,0) is also regular value of the abelian hyperKihler moment map p? =
(&, pE). Therefore, both abelian symplectic and hyperKihler quotients M T and M M.
exist. We note that M J}/¢ )T is a hypertoric variety [20], [1§].

We also consider the following circle action of S = U(1) on M

s-(A,a,B,b) = (sA, sa,s™ B, sVb), (N >n)

for all s € S, A, B € M,(C), a,b* € M, 1(C), which commutes with the U(n)-action and admits
moment map pg : (M,wr) — %, us = ¢ - z, where

1
v(A,a,B,b) = §Tr(AA* + NBB* +a*a+ Nbb")

is proper, bounded below and z € s* is such that z(y/—10) = o for all (v/—10) € s = u(1).
Finally, we note that uc is S-equivariant, i.e. puc(s - (4,a,B,b)) = sV 1uc(4,a, B,b), and
(t2)° = {o}.

The cohomology ring H(Hilb™(C?)) is generated by the Chern classes of the tautological
vector bundle Z,, = (M x C) [//¢,0)U(n), where U(n) acts on C" via the standard representation
[10]. This is equivalent to the surjectivity of the Kirwan map « : Hy(,) (M) — H(Hilb" (C?)).

We use the same idea as in [I8], Lemma 4.9 to show that

Lemma 5.1. The S-equivariant Kirwan map ks : Hy(nyxs(M) — Hg(Hilb"(C?)) is also sur-

jective.

Proof. Since the S-moment map on M [f/¢ oyU(n) ~ Hilb™(C?) is proper, bounded below, hence
Hg(Hilb™(C?)) ~ H(Hilb"(C?)) ® Hgs(pt) as Hg(pt)-modules, i.e. Hg(Hilb"(C?)) is equiv-
ariantly formal ([26], [43] Theorem 4.2, [4I] Proposition 2.10). Recall that Hg(pt) = Rlz],
Hymyxs(M) = Rluy, ..., uy, 2% and Hyy(M) = Rlug, ..., u,]%". We have the following

commutative diagram

(5.1) Rlug, ..., tn, 2]5" —=> H(Hilb"(C?)) @ R[2]
Trll iﬂg
Rlug, .. ., up,]%" — H (Hilb™(C?)),
where m;(o; ® 1) = o; and m(1 ® 2) = 0 for all i = 1,2, oy € Rluy,...,u,]%" and as €

H(Hilb"(C?)). Since rg is R[z]-linear, therefore H°(Hilb™(C?)) ® R[z] is in the image of xg.

78



Assume that @, H*(Hilb"(C?)) @ R[z] C Im kg and let §;, € H*(Hilb"(C?)). By surjectivity of
K there is oy € Rluy, ..., u,]°" of degree k such that By = k(). By commutativity of (5.1)) we

k=1
have Br ® 1 — k() € kermy = H(Hilb"(C?)) ® zR[2], hence B, ® 1 = kg(ag) + > B @ 281
i=0
with 8; € H(Hilb"(C?)) for all i = 0,...,k — 1. From the inductive hypothesis follows that

Br ®1 € Imkg and kg is surjective. O

The surjectivity of the Kirwan map provides the generators of the cohomology ring of the

Hilbert scheme, that is, we have isomorphism of rings
Hg(Hilb™(C?)) ~ Rluy, ..., Un, Z}S”'/ker Ks.

The Jeffrey-Kirwan formula can be used as follows to compute the relations between generators.
First, we remark that (Hilb"(C?))® is compact by M* = {0} and Proposition By [19] there
is a non-degenerate bilinear pairing on the rationalized ring Hg(Hilb™(C2)) = Hg(Hilb"(C2)) ®
R(z), which will play the role of Poincaré duality and it is given by

(M, 72) = 7{ M
Hilb™ (C2)
for all 7y, 7, € Hg(Hilb™(C?)). This pairing is R(z)-linear and the natural map Hg(Hilb™ (C2)) —
Hg(Hilb™(C2)) is injective by the equivariant formality. Hence n € Hg(Hilb"(C?)) is zero exactly
when
ny=0, VYy& Hg(Hilb"(C?)).
Hilb™ (C2)

If we couple it with the Kirwan surjectivity then the kernel of kg can be described as

ker kg = {B € Rluy, ..., un, 2]°"

j{ ks(Bv) =0, V’yeR[ul,...,un,z]S”}.
Hilb™ (C2)

We have the following integration formula on Hilb™(C?).

Theorem 5.2. For any 8 € Hy(nyxs(M) = Rlus, ..., uy,, )5 we have

KS(B) = Z b/\(z) 6(]7)\(2)7 Z)’

Hilb™ (C2) AFn

where
pa(z)=—(2, 1+ N)z, ..., A+ M —1)N)z, ..., kz, (k+ N)z, ..., (k+ (Ag — 1)N)z2)
and 0 # by(z) € R[zFY] for any A = (A1, ..., \x) partition of n with Ay > ... > \g.

Remark 5.3. For our purpose only the non-vanishing of by(z) is relevant, nevertheless the exact

value is equal
(27.‘.)77,27271

g[/ [—Ax() + (La(i) + 1)N][Ax(i) + 1 — LA(i)N]’

br(z) =
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where Y), is the Young diagram of the partition A, A,(i) and Ly (i) are the arm-length and leg-
length of the box ¢ in Y}, respectively (Definition . We can deduce this formula as follows.
We observe that H'(u, z) in is equal to G, (u,z, Nz,—2) in for » = 1, and which is
computed in Lemma via the relation . o

The following lemma shows that how can we compute the kernel of kg from Theorem [5.2]

Lemma 5.4. Let K be a field and let {qi1,...,qm} C K" If L : K[z1,...,2,] = K, L(P) =

b; P(q;) with b; € K\ {0} for alli=1,...,m then
i=1

{PeKz1,...,z,] | L(PQ) =0, VQ} ={P € K[z1,...,2,] | P(;) =0, Yi=1,...,m}.
Proof. Consider the polynomial Q;(x) = T[] I1 (zkx—gjx), where ¢; = (gj1,.-.,¢jn). Then
1<k<n 1<j<m

QikFGik

Qi(g;) =01if j #dand Q;(g;) # 0. If P € {P € K[z1,...,z,) | L(PQ) = 0, VQ} then for all
i =1,...,m we have L(PQ;) = b;P(¢;)Qi(¢;) = 0, hence P(g;) = 0. The other inclusion is
obvious. O

We got the following description of the equivariant cohomology ring of the Hilbert scheme of

points on the plane.
Theorem 5.5. We have isomorphism of rings
Hg(Hilb™(C?)) ~ Rluy, . . . , Un, Z}S"/{P € Rlu, ..., un, 25" | P(pA(2),2) =0, YAFn}.
Furthermore, the ordinary cohomology ring can be computed from the equivariant one as
H(Hilb™(C?)) ~ Hs(Hilb"(C2)) / »Hs(Hilb"(C2)),

since Hg(Hilb™(C?)) is equivariantly formal [I1]. Therefore, if the ideal ker kg is generated

by Pi(u,2),...,P(u,2) € Rluy,...,u,,2] then kerx is generated by P;(u,0),...,P.(u,0) €

Rlug, . .-, un]®".

Proof of Theorem[5.2, By Theorem for any B € Ruq, ..., uy,, 2]°" we have

(52) f ks(B) = lim ?( K (5ee<wwwus+g>) _

e—0t
Hilb"’((Cz) M////(g’m U(n)
€ i Ui
Blu, 2)(N+1)2)" T (wi =) (N + 1)z +us —uy)e =
(2m)™" o pA 1<ij<n B
e—0+ nlvol(T) 4 Noz2n T (24w —u)(Ne4+u; —uj) [] (z+ug)(Nz—ug)|
1<iZj<n 1<k<n
Bs) T (o m ) (V4 D2 — e
g ZOT N1 Resh cidi<n b
=0t nl Nz 4 I GHwuw—u)Nz+u —u;) [[ (z4+u)(Nz—uyg)
1<i#j<n 1<k<n
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where A is the polarization induced by the ordered basis {z,u1,...,u,} of t* ®s* and we choose

the scalar product on t* such that {us,...,u,} becomes an orthonormal basis, whence vol(T') =
(2m)™.
Let
(ui —ug) (N + 1)z + u; — uy)
’ [T GHu—u)(Nz+u;—u;) [I (z+ug)(Nz—ug)
1<i#j<n 1<k<n

To compute EqReSAB(u,z)F (u,z)eeizl we consider only t*-poles V spanned by subsets of
A={z+u; —uj, Nz +u; —uj, z+up, Nz —ug|i# j, 4,5,k =1,...,n} which contains linear
terms from the denominator of F'. Remark that all elements of A are polarized with respect to
A.

Lemma 5.6. Let By = {a1,...,a,} C ANV be a basis of V = span{u; —p1z, ..., Uy — Pnz).

(i) There is k such that Nz — uy or z + uy is in By.
n

(ii) For anyi=1,...,n we can write u; — p;z = Y ¢;; such that q; € {0, £1}.
i=1

(iti) For alli=1,...,n we can present —p; = a; + b;N uniquely such that —n < a;,b; < n.
Proof. Let Ny and N be subsets of {1,...,n} such that

(1) i € N7 if 2+ u; or Nz — u; is in By,

(2) ie M ifjeN; and ez +u; — uj or €2+ u; — u; is in By for any € € {1, N}.

(3) any element unsorted by (1)) and (2)) is in M.

We can also define subsets BY,, B{, C By such that a; € Bﬁ/ if +u; is a summand of a; for some
j € M. Remark that Aj = 0 if and only if B!, = (). By construction {1,...,n} = Ny N, hence
By = BY wB,. If pri. : t* ©s* — t* is the projection then pre.(B},) C span(u;|i € Aj) for
any [ = 0,1. Moreover, BY, may only contain elements of form eo + u; — u; (¢ € {1, N}), hence

> u; & span(pre. (BY)). If No # 0 then
iENo

pr. (V) = span(pre. (BY,)) + span(pr (BY,)) # span(u; |i € Np) + span(u; |i € N7) = t*,
which leads to contradiction that V is a t*-pole. Therefore, we have N7 = {1,...,n}, which
implies (i), and moreover, for any k € {1,...,n} there exists a sequence i1, ..., such that
—u;,_, € £pr(By) and i, = k, which yields . Finally, by we

n
have —p; = > ¢;&;, where ¢; € {0,£1} and ¢; € {1, N}, therefore —p; = a; + b; N such that

uil,uiQ — um...,ui

m

i=1
—n < a;,b; < n and the uniqueness of a;, b; follows from n < V. O
We associate to a t*-pole V an oriented graph I'y; with vertices {0, 1,...,n} on the sublattice

Z x NZ C 72 as follows. The vertex 0 has coordinates (0,0) € Z? and the coordinates of a
non-zero vertex i are (a;,b;N), where a;,b; are defined by Lemma [5.6/(ii). For each element of
Ay = ANV we draw on edge according to the following table.
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a € Ay edges of 'y

Nz +u; —u; vertical edge from j to 4
Nz —u; vertical edge from ¢ to 0
Z 4 u; — uy horizontal edge from j to ¢

Z+ u; horizontal edge from 0 to 4

From the proof of Lemma, follows that the graph I'y, is connected. Moreover, it is complete

in the following sense. If the vertex 7 has coordinates (a,b) and j has coordinates (a + 1,b)

(respectively (a,b+ N))) then there is an edge i — j if j # 0 (respectively ¢ # 0). Furthermore,

if vertices ¢ and j have the same coordinates and there is an edge k — ¢ (or ¢ — k) then we also

have an edge k — j (or j — k) in T'y.

By decomposing F' to partial fractions we will get fractions which can be derived from F' by

removing linear terms from its nominator and denominator. The removal of linear terms will be

encoded in a graph which we get from I'yy = I'v p by replacing edges i — j with ¢ >7j or

by adding additional dotted arrows by the following rules. Let G be a fraction derived from F.

(D1)

(D2)

The partial fraction decomposition

(N 4+ 1)z + up — u;) 1 1

G=G = G’ —Gi+G
(z+up —w)(Nz+u — uy) z+uk—ul+ Nz +u — u; 1+ G2
with z + ur — u;, N2 4+ u; — u; € V will be pictured as
| — >k | — >k |
A 7 7
_ N T

We can get G from G by removing Nz +u; —u; and (N + 1)z 4 uy, — u; respectively from
the denominator and nominator. We translate it in terms of graphs. We get I'y ¢, from

I'y,¢ by replacing the edge ¢ — | with 4 > [ (corresponding to removal of Nz+u; —u;)
and by adding diagonal arrow >k (corresponds to removal of (N + 1)z + ug — ;).
Similarly, we get Iy, from I'y, ¢ by replacing [ — k with ! >k (removal of z4u —u;)

and by adding diagonal arrow i >k (removal of (N + 1)z + up — u;).

In general, dotted diagonal arrows 4 >k corresponds to removal of terms (N + 1)z +
u; — ug from the nominator, hence we cannot have double dotted diagonal arrows from i
to k. Moreover, on pictures we only draw the subgraph, where a mutation occurs in the

initial graph. In the case of [ = 0 we set ug = 0.

Similarly, for decomposition

G (N 41Dz +up —uy o 1 e 1 —Gi+C
(z4+uj —u;)(Nz 4+ up — uy) Nz +up —u; Z+u; —u; ! 2
with z +u; —u;, Nz +up —u; € V, i # 0 we draw
k k k.
0fi—sj  0Fi>j  0Fi—>]
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(D3) The decomposition

Ui — Usj 1 1
G=0q ! J =G yes =G; — G
(z 4w —w)(z+uj —u) z4u; —u Z4+u; —
with z +wu; —ug, z +uj; —u € V yields
ji i
L i - ? li :-, V
| —=1,5 = < N — [ ———
lj lj ly

where the arrow labeled by li (respectively by 15) goes from [ to i (respectively to j). The
dotted hook arrow labeled by ji corresponds to removal of u; — u; from the nominator of
G. Thus we get the graph I'y ¢, (corresponding to G1) from I'y, ¢ by replacing | Ny by
| (removal of z+w; —u;) and by adding hook arrow ,j :ji (removal of u; —uy).
-
, p
Similarly, we get I'y, ¢, from I'y ¢ by replacing { R J with [ ! 7 and by adding hook
arrow i,j ji.
-

(D4) Similarly, the decomposition

" 1 1
G=0' Yi Yy =G el ~G, -G
(Nz4+u; —u)(Nz +uj — ) Nz+u; —uy Nz +u; — ! 2

with Nz 4 u; — u;, Nz +uj; —w; € V corresponds to mutation of subgraphs
ji ji
Lo .
i, ] i,J 2V
A A
liﬁu - le - hT .

01 0#1 041

Definition 5.7. We say that a fraction G derived from F (or a graph I'y,¢ got from T'y/) does
not contribute (at pole V') if

€ zn: w; (v,z)
JKRes™ B(u(v, 2), 2)G(u(v, 2), 2)e =1 dv=0

for all B € Rlui,...,un,2]°" and € > 0. If G = F then we say that the pole V does not
contribute.
Definition 5.8. We call (horizontal or vertical) edges j — 4 tails of the vertex i.

Lemma 5.9. (i) A fraction G derived from F does not contribute if I'y,¢ has a vertez i # 0

without a tail.

(ii) If there is a vertex i # 0 in Iy with coordinates not in {(a,b,) € Z*|a > 0, b > 0} then

the pole V' does not contribute.
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Proof. (i) Denote G the set of o € Ay which appears in the denominator of G. Since i has no
tail, therefore the only elements of G involving u; may be of form Nz —u;, Nz +u; —u; or

z + uj — u;, that is, any polarized element in G has non-positive u; coefficient. Therefore,

GZ u; ¢ Cone(pri- (@) | a € G) for any € > 0, hence by Corollary (3.19
i=1

JKRes™ B(u(v, 2), 2)G (u(v, 2), z)eE P2 m(q)’z)dv =0

for all B € Rluy, ..., Uy, 2]°" and € > 0.

(i) If there is a non-zero vertex ¢ with coordinates (a;, b;) such that a; < 0 then we can assume
that for any other vertex j # 0 with coordinates (a;,b;) we have a; < a; and if a; = a;
then b; < b;. Hence there is no edge 0 # j — 4 in I'y and remark that if there is an edge
0 — i then a; > 0. If b; < 0 then similarly we can show that there is a vertex in I'y, without
tail, hence V' does not contribute by .

O

Lemma 5.10. A pole V does not contribute if any of the following holds:

-

k

8

—_—

1 —

l
(i) Ty contains a subgraph T and there is no vertex | such that T
0#£i——j 0 #

<

also in Ty,

j*>k; [

J k
(ii) Ty contains a subgraph and there is no vertex | such that T T is in Iy,
i l

7 —_—

(iii) there are two vertices in I'y with same coordinates.
Proof. Suppose that all non-zero vertex i in I'y has coordinates (a;, b;) with a; > 0 and b; > 0.

(i) Assume that if (a;,b;) are coordinates of the vertex j then b; is minimal. That is, if there is
a vertex j’ with coordinates (a;/, b;/) and it admits horizontal and vertical edges 0 # 7" — j
and j° — k' respectively, then b;; > b;. If there is no edge | — k then by decomposition
we get F' = G + G2 such that in I'y ¢, the vertex k has no tails, hence F' contributes
exactly when G does. By assumption any vertex j' below j, i.e. with coordinates a;: = a;
and b; < b;, may only have vertical tail, thus the last one cannot have tails. Therefore,
(1 does not contribute either.

If the horizontal edge I — k exists then the vertical edge ¢ — [ also exists in I'y, because

Nz+uw —u; = (Nz+up —uj) — (2 4+up —w) + (2 4+u; —u;) € V.
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(ii) Similarly, as above assume that if (a;, b;) are coordinates of the vertex j then a; is minimal.
If there is no vertical edge [ — k in I'y then by decomposition we get F' = G1 + G
such that the vertex £ has no tails in I'y,¢,. Hence F' contributes if and only if G does.
Moreover, in 'y, the vertex j has no vertical tail and by assumption any vertex j' with
coordinates aj < aj, by = b; may only admit horizontal tail. But the first vertex in the
row cannot have any tail. If this last vertex is 0 than ¢ has coordinates (a;, b;) with b; < 0,
which leads to contradiction. Therefore, G5 does not contribute either.

If the vertical edge | — k exists in I'yy then the horizontal edge ¢ — [ also exists, because

z+w —u;=(Nz+u; —u)+ (z+uy —uj) — (Nz+up —w) € V.

(iii) Suppose that there are two vertices ¢ and j with same coordinates (a,b). We may suppose
that there are no more lattice point (z,y) € Z? with double vertices such that = < a,
y < b and (z,y) # (a,b). If there is only horizontal or vertical tail to ¢ (and therefore to
J, too) then by decomposition or we get F' = G1 — G2 such that in I'y, ¢, and
I'y,q, vertices ¢ and j, respectively have no tails. Suppose that ¢ (and therefore j) has both
vertical and horizontal tails. By the assumption that all non-zero vertex i has coordinates
in {(z,y) € Z?|x > 0, y > 0} we can assume that (a,b) # (1,0). By decompositions
and we get

Foc (wi — uj)(uj — uy)
(z+ui —w)(z+u; —w)(Nz+ v —up)(Nz+uj —up)
= — 4 1 +Gl 1
(z+u; —w)(Nz 4+ u; —ug) (z4+u; —w)(Nz +uj —ug)
1 1
+G s
(z4+u; —w)(Nz +u; —ug) (z4+uj; —u)(Nz +u; — ug)

—G14+ G+ G3—Gy

or in picture

Jt Jt
RO ) R
lﬁ%] l =1,] l =1,]
15 lj A A
ki,mkj = - kiT kj + ki Tkj
k k k
Ji g Ji g
R ) R
li \1' li \'i' B
oz g g < oz g g <
lj A lj A
+ kiT kj - ki Tkj
k k

Remark that in I'y ¢, and I'y ¢, the vertex ¢ and j respectively has no tail, hence G; and

G4 do not contribute. By symmetry we consider only Gs. Suppose that [ has a vertical
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tail h — [. By decomposition (D1f) we get Go = H; + Ha, that is,

Jjio Jio Jio
S ) o ) vy
i \"\- i li \‘- SAG li \i. SAG
| —=%i,j~ < A B l Zi,j~
b A A7) U 7
ki Tki = hi ki Tkj + hi ki Tkj
h k h k h k

and in I'y, g, the vertex ¢ has no tails, thus Hy does not contribute. Iterating decomposition
we can assume that all vertices I’ before | (i.e. with coordinates (a;,b;) such that
ap < a; and by = b)) may have only horizontal tail. Therefore, the first vertex in the row
has no tails and it is not the zero vertex, hence Hy, and thus G5, does not contribute. We
can show similarly that G3 does not contribute either.

From Lemma [5.9] and [5.10] follows

Corollary 5.11. A pole V' does not contribute unless
(i) there are no double vertices in Ty, that is, no vertices with same coordinates,
(i) all non-zero vertex in T'y has coordinates in Zso X NZxq,

(1i1) if there is a vertex in 'y with coordinates (a,b) € Zso X NZxq then for any (z,y) €
Zso x NZ>¢ such that x < a and y < b there is a vertex with coordinates (z,y).

Remark 5.12. Graphs I'y satisfying properties Corollary H are in one-to-one corre-
spondence with Young diagrams Y) of partitions A\ - n with boxes labeled by 1,...,n. The

correspondence is as follows.

B
512]4]6] 0——5——2——4——6

To the box of Yy in column z; and row y; labeled by ¢ it corresponds the vertex ¢ of I'yy with
coordinates (z;, (y; — 1)N) € Z2. ©

Remark 5.13. There is a natural action of the symmetric group S,, on I'yy permuting the non-
zero vertices, which induces Sj,-action on poles. Poles in the same S),-orbit yield the same
contribution. More precisely, if V' = span(u; —p12,...,up, —pnz) and 7 € S, then V' =7V =

span(Us(1) = Pr(1)%; - - - » Un(n) — Pr(n)?) and we have

JKRes™ B(u(v, z), 2) F (u(v, 2), z)e€ b2t Ui(v’Z)dv =

€ i ui(v',2)
JKRes™' B(u(v', 2), 2) F(u(v', z), z)e i=1 dv’,
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€ i u;
because B(u, z)F(u,z)e =1 is Sp-invariant. Moreover, the S,-action is free on contributing
poles, because for any ¢ = 1,...,n we have p; = —x; — (y; — 1)N and p; = p; only if (z;,y;) =

(xj,y;) since n < N. ©

Lemma 5.14. Let V be a pole such that I'y is associated to a labeled Young diagram Yy of a
partition A= (A1 > ... > A\g) of n. Then

lim JKRes™ B(u(v, 2),2)F(u(v, ), 2)e = dv = Bpa(2), 2)ba (2)

where 0 # by(2) € R[z*1].
|l —k
Proof. Starting with G = F we pick the top-left subgraph T in T'yy and we apply

i

decomposition (D1)) to get G = G; + G3. That is, in picture

ok | — >k [
A 7 Ed
> i i

Since we have picked the top-left rectangle, the vertex [ has no tail in 'y, by Corollary [5.11(iii)),
hence

€ i w; (v,2)
JKRes™ B(u(v, 2), 2)F(u(v, 2), 2)e =1 dv

M=

u; (v,z)
dv

€

= JKRes™ B(u(v, 2), 2)Ga(u(v, 2), 2)e

It
-

by Lemma |5.9({i). We replace F' by G5 and we continue this decomposition until no rectangle
is left. Finally, we arrive to a graph I'y, i, where any horizontal edge not in the bottom row is

replaced by a dotted arrow and in every rectangle there is a dotted diagonal arrow.

1 -
0 I l l 4 0 ]ll 4

In particular,

(5.3) JKRes™V B(u(v, 2), 2) F(u(v, 2), z)eE & ui(wZ)dv

€ Zn: w; (v,2)
1

= JKRes™V B(u(v, 2), 2)H(u(v, 2), z)e = dv.
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To each non-zero vertex there is exactly one (solid) edge, hence the set H of linear terms in the de-

nominator of H which belong to V has exactly n elements. We have € >~ u; € Cone(pr. (@) | o €
i=1
H) since

Sui= Y Culur —w)
i=1 (I—k)eTy 1
with Cg; > 0. The coefficients C}; can be computed as follows. We introduce a partial order on

vertices of I'y, i such that [ < k if there is an oriented (solid) path in I'y g from ! to k. Then
Cr = #{h‘l =< h}

Denote «; the element of H with positive u;-coefficient. Sort non-zero vertices {i1,...,%,} of
oa; "
I'v g such that &k <[ when %} < 7;. Hence the matrix {ag(u,z)] is lower triangular with
Uiy k=1
1’s on the diagonal. Therefore, we have
8 . n
\/det[(ozk,al)]zlzl = |det [azk(u,z)} =1,
’ Ou;, k=1
and in particular H spans V. Denote z; and y; respectively the column and row of the box
labeled by 4 in Y. Then we have H = H' — , where
| ye?
(us — u;) I1 (N +1)z +u; —uy)
1<i#j<n 1<i#j<n
(zi,y:)#(x;+1,y;+1)
5.4 H'(u,z) =
(54) (w.2) [1 (2 +ui — uy) I1 (Nz +ui —uy)
1<iz#j<n 1<i#j<n
(@i,y:)#(x5+1,y5) (wi,yi)#(z5,y;+1)
1
IT (z4up) II (Nz—ug)
1<k<n 1<k<n

By the correspondence between labeled Young diagrams and graphs the vertex ¢ in I'y has
coordinates (x;,(y; — 1)N) € Z2, hence V = span{u; — p1z,...,U, — ppz) such that p; =
—(x;+ (y; —1)N) for all i = 1,...,n. Let

(5.5) b)\(Z) = H’(plz,...,pnz,z)

and remark that by(z) # 0. By Proposition and ([5.3) we conclude

lim JKRes™ B(u(v, z), 2) F(u(v, z), z)eegl Ui(y’Z)dv _ Blul0,2), HH(u(0,2), 2)

€0+ \/det[(ak, )lf iz
= Ba(pa(2), 2)ba(2).

O

Finally, the theorem follows from Corollary Remarks and Lemma and
(5-2)- O

88



5.2 Nekrasov’s partition function

Consider M(r,n) = T*(End(C") & Hom(C",C")) = M, (C) & M,, ,»(C) & M, (C) & M, ,,(C) with
U(n)-action
9+ (A,a,B,b) = (9Ag~", ga,gBg™" bg™")

for all ¢ € U(n), A,B € M,(C), a,b® € M, ,(C). This action is hyper-Hamiltonian with
hyperKéahler moment map p = (g, c) : M(r,n) = u(n)* @ u(n)g, where

pr 2 (M(ryn),wr) = u(n)*, pr(A,a,B,b) = g ([A, A*] + [B, B*] + aa™ — b)) ,

He - (M(T, ’I’L),OJ(C) — u(n)&k) /.qu(A,CL,B,b) = [AaB} + ab

with identification u(n) ~ u(n)* induced by non-degenerate bilinear pairing (u,v) = Tr(u*v)

for all u,v € u(n). Moreover, (£,0) = (v/—11,0) € u(n)* & u(n)g is a regular value of u
and the hyperKéhler quotient M(r,n)///¢,0)U(n) is isomorphic to the framed moduli space of
torsion free sheaves on CP? with rank r and second Chern class ¢; = n [36]. We consider
T = {g € U(n) | g diagonal} maximal torus of G and we choose a basis {ui,...,u,} of t* such
that wu; (diag(\/jﬁ, .. .,\/—717'71)) = 7; for all ¢ = 1,...,n. The real and complex abelian
moment maps are as follows

pk  (M(r,n),wr) — t*, uk(A,a, B,b) = Zn: (ui — U')—|Aij|2 1551 +zn:wzr: 7|aij|2 miUl
) ) ) y Uy Dy J 2 e = 2 )

ij=1

i=1

p  (M(r,n),we) = &, ue (A, a, B,b) = —ﬁZuj ZAiiji — BijAji + Zaijbﬁ
j=1 j=1
Moreover, £ is a regular value of ul because uj + ...+ u, is regular with respect to the set
{u; —uj, u;|i,j = 1,...,n}, thus the symplectic quotient M(r,n)/eT exists. Furthermore,
(£,0) is also a regular value of the abelian hyperKéhler moment map p? = (ud, Mg) and the
abelian hyperKahler quotient M(r,n)///¢,0)T also exists.
We also consider a Hamiltonian torus action of S = U(1)"*2? on (M(r,n),wr) given by

s (A,(l, Ba b) = (8r+1 : A7 a- diag(sla vy 37‘)_17 Sr42 - B7 5r+15r+2diag(51; vy 37‘) ’ b)

for all s = (s1,...,8.42) € U(1)"2, A,B € M,(C), a,b' € M, .(C) (cf. [37], Lemma 2.8). If
{z,y,21,...,2.} is a basis of §* such that for o = diag(v/—101,...,vV—1o,12) we have z(o) =
Ort1, Y(0) = or42 and z(0) = o; for all i« = 1,...,r then the S-action has moment map
¢s 1 (M(r,n), wr) — s,

¢s(A,a,B,b) = 1’I&r(AA* +bb" )z + 1’I&“(BB* +bb" )y + ii Mz

S s Uy Dy 2 2 — 2 7.
Let K = {(k,k,diag(k™,...,k™1)) € S|k € U(1)} be 1-dimensional subtorus of S which acts
on M(r,n) as
k- (A a,B,b) = (kA, ka, kB, kb)
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for all k € U(1), A, B € M,(C), a,b* € M, (C). It admits moment map ¢x = ¢ - (x +y — 21 —
... —2zp) with ¢ : M(r,n) = R,

1
o(A,a,B,b) = iTr(AA* + BB* +a*a + bb¥)

proper and bounded below. Finally, we remark that the complex moment map is S-equivariant
pc(s - (A, a, B,b)) = sysauc(A, a, B,b) and (t5)° = {0}.

Definition 5.15. Nekrasov’s partition function ([38], cf. [37]) is defined as

Z(z,y,z,0)= > q" 7{ b
=0 M) e 0y U (n)

Let § = (61, ... ,dx) be a partition with 6; > ... > ;. In the Young diagram Yj associated
to the partition § the i*" column contains §; boxes.

Definition 5.16. For a box s in the column c¢; and row 7 of Y5 we define the arm-length
As(s) = #{h|h > cs, On > 15}, and the leg-length Ls(s) = 0., — rs. That is, As(s) and Ls(s)
are respectively the number of boxes on the right and on the top of the box s in Yj.

The definition of arm-length and leg-length also extends to boxes which are off Ys. Thus for

any two partitions § and n we define

(5.6) Ksy(w,y.Q) = [T [ As@a + (Ly (@) + Dy + ] TT [(A5(G) + D = Ls(G)y + €.

1€EYs JEY,

In order to compute Nekrasov’s partition function we reprove the following formula using results
of Chapter [4]

Theorem 5.17 ([38] 37]).

1
1= (2m)2 ' ,
M(r,n) fe,0)U () (Vg Yap) kll_ll K)\kv\z (.’L‘, Y, 2k — Zl)
-
where the sum is over tuples of Young diagrams (Y,,...,Yx,) such that n = > n; and \; F n;
i=1
foralli=1,... r.
Remark 5.18. Nekrasov computes the integral j{ 1 via contour integrals and in [3§]
M(r,n) fffe,0)U (n)

(3.20) arrives to a similar result as in (5.14)). His method is close to ours in spirit. Nakajima and
Yoshioka use the Atiyah-Bott-Berline-Vergne formula on the quotient space M (r,n)/c,0)U(n)
to arrive to the same formula as above in [37], (6.2). ©

Proof. Let A be the polarization on t* @ s* induced by ordered basis

{t+y—2z1...— 2z, —y, T+ 21,..., T+ Zp, U1, .., Up )y

90



which is compatible with the proper bounded below moment map (¢r,z+y— 21 — ... — 2, ).
By Theorem we have

| = lim EqRes®[ UZETC 7{ pelwr—pL —ps+E)
e—0+ ntvol(T) Jana(r,m)

M(r,n) fie,00U (n)

€> u,
- [T (wi—w) II (@+y+u —uje =
. A 2m)Erton 1<iZj<n 1<ij<n
= lim EqRes
e—0+ nlvol(T) ] (4w —uj)(y+uw —uj)(u; — zi)(@+y+ 25 — uj)
1<i,j<n
1<k<r

2r+1)n n
e @0E @y
=0t nlovol(T)  am™y™

where

Flu,a,y,2)= [] (s — uy) (@ + y +ui — uy) 1
1<i£j<n (@ +us = ug)(y + ui — ) 1<iicn (u; — 21)(x + Y + 2 — uj)

Denote A = {& +u; —uj, y+uw; —uj, u; — 2k, e +y+ 2 —u; |1 <i#j<n1<k<r}the
set of linear terms in the denominator of F' and remark that all elements of A are polarized with

respect to A.
To compute the above residue we consider t*-poles

V = Spa‘n <’U,1 7p%/(z7yvz)7 ceey Up *p”‘l/(LE,y,Z)>

spanned by subsets of A, and where p,(z,y, z) € s* forall i = 1,...,n. We can describe these t*-
poles in terms of graphs as follows. Fix a t*-pole V and define subsets NO, ..., Ny, of {1,...,n}

by the following rules
(1) i e NEifu; —zp or 2 +y+ 2, —u; isin V,
(2) i e N if j € N and € + u; — uj or € +u; — u; belongs to V for any ¢ € {x,y},
(3) elements of {1,...,n} unsorted by (1)) and (2)) are listed in NY.

We also define subsets Ay, ..., A}, of Ay = ANV as follows: a € AY, if u; or —u; is a summand

of a« € Ay and i € M.

Lemma 5.19. We have decomposition {1,...,n} = N‘} W...w Ny and consequently, Ay =
AL W WAL In particular, N = AY = 0.

Proof. We have {1,...,n} = NQ U...UAN{; and Ay = AY, U...U A}, Moreover, N}, = 0 if
and only if Al = (. Therefore, it is enough to show that N = ) and NE NN} = 0 for all
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1 <k#1<r. Ifie NE then pi (z,y,2) has of form ¢12 + goy + 2x, hence NENNL, = 0 if k # 1.
By construction, NY N(NEU...UNT) = 0. IEND 0 then Y. wu; ¢ span(pr. (AY)), therefore
ieNY
pre- (V) = span(pr.. (A))) + span(pre. (A, U... U A}))
# span(u; |1 € N¥) 4+ span{u; |[i € N- UL UNT) = ¢,
which leads to contradition that V' is a t*-pole. O

To a t*-pole V we associate a tuple of graphs I'y = (I'f,,...,T%,) as follows. The vertices of
't lie on the lattice Z? and they are labeled by elements of {0} UNE. The coordinates of 0 and

i are respectively (0,0) and (a;, b;), where
(5.7) a;x + by = —pi (x,y, —(z,..., 1))

for all i € . The oriented edges of I't, are drawn according to the table

ae Ak edges of T'¥,
T+ U — uy horizontal edge from j to ¢
Y+ u; — uj vertical edge from j to ¢
Uy — 2k horizontal edge from 0 to 4
x4y + 2z, —u; | vertical edge from j to 0.

The graph is complete in the following sense. Let i and j be two vertices in F"“, with coordinates
(@i, b;) and (aj,b;), respectively. If (aj,b;) = (a;,b; + 1) and 7 # 0 then there is an edge i — j
in I'%. If (aj,b;) = (a; + 1,b;) and j # 0 then we have an edge i — j in I'},.

€ 2 ui(v,2,y,2)

We compute JKReSA"F(u(v,x,y,z),x,y,z)e i=1 dv by decomposing F to partial
fractions. We only use the following type of decompositions:
(D1) Tyt u U = + ifr4+uj—u, y+w—u; eV,
(+u; —u)y+w —u;) y+w—u;, x+u;—u;
(D2) THYtw U = + fy+u; —u, z+w—uj eV,
(y+u—w)(ec+w—u;) c+w—u y+u —uy
—y 1 1
(D3) TAYF U Yy = + ifx+y+az—uj, us—z €V,
(+y+zr—uj)(u—2zp)  w—2z THY+zE— U
 — 1 1
(D4) Ui — Yy = — ifr4+u —w,x+uj—w eV,
(+u—w)(r+u —w) z+uj—w xT+u —w
— 1 1
(D5) it ify+u —w,y+u;—u V.

+w—w)y+u—w) y+u—w  y+u—uy
We will keep track of fractions arising from these partial fraction decompositions on mutations
of the tuple of graphs I'y,. Applying these decompositions to F' several times it yields fractions G
which can be got from F' by removing certain linear terms from the nominator and denominator
of F. Moreover, G can be encoded in a tuple of graphs I'y,¢ = (P%/,Gv -, ¢) by modifying
Iy = (T}, ..., T%,) as follows:
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e if i,j € T'¥, have same coordinates and u; — u; is missing from the nominator of G' then we
draw a hook 1, j V'I‘.jl in Iy g,

e if i,j € T} are such that (a;,b;) = (aj + 1,b; + 1) and = + y + u; — u; is missing from the
nominator of G then we have diagonal arrow j >4 in I‘{“,’G,

o ifi je F"“/ are such that x+w; —u;, y+u; —uj, u;—2x, ++y+2r —u; € V respectively are

missing from the denominator of G then the corresponding arrows j i, 0 i,

73— 0 are replaced by j >3, 0 >4, ] > ( respectively in F]XC/,G'

The above five types of partial fraction decomposition correspond to following mutations of
subgraphs (only the part is drawn, where the mutation happens):

l l l
4 4N\
(M1) T = T + if4,5,1 € I"{} are non-zero vertices,
Jg—=1 J—=I gl
A A A
(M2) = K + e if i, j,1 € I'¥, are non-zero vertices,
i i’ i
0——1 0——1 0 >
A 7 o
(M3) = + T ‘ ifi,j e I'%,
j i i
li li li
(M4) I=—=%i,j = l="zij ‘ji — = %ij i ifi,j,lelk,
lj lj ~ lj ~
ji ji
. . v‘. .}/ . ,V
Ms) Y/ bJ Y i jleTh.

A A
||l = Li|li — 1|l

l l l
Definition 5.20. We say that G does not contribute if

. A € - ui (v,2,y,2)
lim JKRes™ G(u(v,z,y, 2),z,y, z)e =1

e—07t

v =0.

When G = F we say that the t*-pole V does not contribute.
Definition 5.21. A tail of a vertex j € I"&G is an edge i — j.
Similarly to Lemma [5.9] and Corollary we can show that

Lemma 5.22. G does not contribute unless
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(i) every non-zero vertex i € T'Y, o has a tail,
(i) every non-zero vertex i has coordinates (a;,b;) € Zso X Z>o,

(iii) for every vertex i € 'Y, having coordinates (a;, b;) and for any (z,y) € Zso X Z>q such that
x < a;, y <b; there is a vertex j € I't, with coordinates (z,v),

(iv) for any k = 1,...,r the graph F@ has no double vertexr, i.e. two wertices with same

coordinates.

Tuples of graphs I'y = (I‘%,7 ..., ') satisfying Lemma — are in one-to-one corre-
spondence with tuples of labeled Young diagrams Yy = (Yy,,...,Yy,) of partitions Ay F |NE|
such that boxes of Y, are labeled by elements of A% for all k = 1,...,7. To a Young diagram
Yy, labeled by elements of N we associated '}, as follows. To the box labeled by i in the column
¢; and row r; of Yy, it corresponds the vertex i of F"“, with coordinates (¢;,7; — 1) € Z?. We
draw all horizontal and vertical edges between vertices on neighboring lattice points. We denote

by Via,,...,x,) the t*-pole corresponding to the tuple of labeled Young diagrams Ya,...,Y).

A €3 wilv,y,2)
To evaluate JKRes™V F'(u(v, z,y, 2), 2, y, z)e =t dv for V.= V5, .. \,) We choose the

top-leftmost rectangle ijlm € F]‘“, for all k= 1,...,7 and we apply decomposition (D2)), that is,
we mutate I'¥, as

(5.8) l——=m l——=m l >m .
A a 4
f— i i

Remark that in the first graph on the right hand side of the vertex [ has no tail, thus the
corresponding fraction does not contribute. We continue this procedure with the second graph
of the right hand side of until no rectangle is left. We arrive to a graph Fl‘“/yGV which can be
constructed from 'Y, by replacing all horizontal edges | —m with I > m except in the
bottom row of I'{, and by adding diagonal arrow i >m for each rectangle ijlm as above.
In particular, deg Gy = deg F'. Moreover,

. n ’L( o )
(5.9) JKRes™ F(u(v,2,y,2),,y,2)e Zulned)

M=

€ >0 ui(v,2,y,2)

= JKRESAVGV(U(vavyvZ)vx7yaz)e =t dv.

Remark that any non-zero vertex i € F"“/-’GV has a unique tail j ——i, denote by o}, the

corresponding element of Ay . That is,

zx+u;, —u; if j#0and j——=1 is horizontal,
of, = y+u; —u; ifj#0and j——1 is vertical,

U; — 2k if j =0.
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We introduce a partial order on {1,...,n}. Let i < j when i € N, j € M|, k <1 and in the
k =1 case there is an oriented path from 7 to j in F"“,’GV. Then we can write

Yow=Y Cprelai) =3 > Cilui—u),
=1 1=1

k=1 (j—i)ery o,

where ug = 0 and C; = #{h eENE|i<h,i GN"}} + 1 is positive for any i € I't,. It also

implies that {ai |i = 1,...,n} is a basis of V since Y u; is regular with respect to the set
i=1
{ui—uj, UJ‘|i§£j: 1,...,n}.
We choose a scalar product on t* such that {uy,...,u,} is an orthonormal basis, hence

vol(T) = (2m)"™.

b v\ "
Let v: {1,...,n} = {1,...,n} be a bijection such that ¢ < j if v(¢) < v(j). Then <ao‘v>
Uv(i) ),
1,7=1
is lower triangular with 1’s on the diagonal, thus

- v(@)\ "
\/det[(aﬁ/, oy )i =y = |det <8av > =1.

Uy (5)

1,j=1

1

where

Denote (a;,b;) € Z? the coordinates of the vertex i. Then Gy = G, -

i

2
ay

—

=1

(ui — ;) (@ +y + ui — uy)

(5.10) Gy (u,z,y,2) =
v 1<kH#<,) .EII[Ik (@ 4w — ug) (Y + ui — uy) (i — 20) (@ + y + 21 — uy)
= =" v

JENL,
[T (ui—wuy) I1 (z +y+ui —uy)
p EIENT i£TENT
(ai,bq',)?é((lj"rl,bj—‘rl)
Pt I1 (% + ui — uy) I1 (y + ui —uy)
i£FENE i£FENE
(ai,bi)#(a;j+1,bj) (as,bi)#(a;z,b;+1)

ka 1

,};[1 LJ_GHW (ui — 2) (@ +y + 2 — u )
(@i b;)#(1,0)

Remark that G7, does not contain linear terms in V. By Proposition we get

(5.11) lim JKRes™V Gy (u(v,z,y, 2),x,y, z)e =t dv = Gy (pv(z,y,2),x,y, 2),

e—0t

where py (z,y, 2) = (pi- (2,9, 2), ..., pY(z,y, 2)). If i labels a box of the Young diagram Y), then
i is a vertex of the graph F"“/, hence pi, (z,y, z) is of form 12+ g2y + ;. Moreover, by the Young
diagram-graph correspondence and (5.7)) we have

pl{,(m,y,z) =(l-a)zx—by+zr=>10—-¢c)x+ 1 —r)y+ z,
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where ¢; and r; are respectively the column and the row of the box labeled by ¢ in Y), of

(Ya,,--.,Yy,), and (a;,b;) are the coordinates of the vertex i in T'%,.
We express GV, (pv(z,y, 2),,y,2) in a more comprehensible manner. Therefore, we define
fractions
(512) Hyon (0.0 = ] [(¢j —c)x+ (rj —ri)y + (L +¢j ez + A+ —ri)y + (]
ievy, (A F 6 —a)ot (g —ray +(le; — oo+ (1 +r; —ri)y +(]
jeYa,
H 1
A e+ T ry+ ety +
JEYN,
and
Ecwrys)= ] (ui —uj + Q)@ +y +ui —u; +¢)
1<ijen @ U = ug+ Oy ui = uj +C)
1
légén (ui =z + Q)@ +y + 20 —uy + )
i<k<r
(x+

n
niy)F(u, x,y,z) by adding ¢ to each
x

n

Up to a (~™ factor E¢(u,x,y, z) is the deformation of

E n
linear term, hence lim c(u, 2.y, 2) = (= +9) F(u,z,y,z). The fraction G}, can be obtained
¢—0 Cn xnyn

from F by removing all linear terms which lie in V' and remark that degG}, = degF — n.

To get G, we have removed exactly those linear terms from F which vanish under evaluation
u = py(z,y, z). The number of such linear terms in the denominator of F is bigger by n than in
the nominator. Therefore,

(z+y)" :
ey — lim E
zryn V(pV(IvyaZ)vxayaz) CI—I}}) C(pV(z7y7Z)7I7yvz)
= lim II Hvon@ vz —2+¢)
1<ki<r
T
(5.3 = T o0 tim [T Haen,(0.0.0),
1<kAI<r k=1

which does not depend on the labeling of (Yy,,...,Yy.).

Moreover, the symmetric group S, acts on the set of t*-poles such that

o -V =span <ug(1) - pf/(l)(x, YsZ)s e e ey Ug(n) — p{'/(n) (z,y, z)> , VoeS,.

This action is free on the set of t*-poles associated to tuples of labeled Young diagrams and it

corresponds to permutation of labels. Poles in the same orbit yield the same contribution by

E). 1) and (GI3)

‘We summarize our calculations so far

(2r+1)n n
L GO @y y)
=0t nlvol(T)  zny™

EqRes® <F(u, x,y, z)e6 & ul)

M) fe,0)U(n)
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M=

€

91)(2r+1)n n wi(v,3,y,2)
(27) (z+) JKRes™V (F(u(v,x,y,z),x,y,z)e i=1 ! )dv

nlvol(T)  a™y»

= lir(tgl+ Z

t*-poles V

2 2rn n € i w; (v,2,Y,2)
= lim Z LMJKRGSAV (Gv(u(v,x,y,z),%y’z)e = Y )dv

| Mg n
=0+ Vo n! ™y
(2m)*™ (x +y)"
= Z TWG/‘/(pV(‘ray,z)ax,yvz)
V=Vixr...an)
(514) = Z (271,)27"71 H H)\Im)\l (1'7yazk - Zl)%l_r% H H)\k,)\k ('TvyaC)a
(Yagss¥a,) 1<kAI<r k=1
where the last sum is over unlabeled tuples of Young diagrams (Y, , ..., Yy, ) such thatn = > ny
k=1
and Ag Fny for all K =1,...,r. The following lemma concludes the proof of the theorem. [

Lemma 5.23. For any two partition 8, n all linear terms in the nominator of Hs ,(x,y, () cancel

out such that we get

H&n(faya C) = K&,n(l',y, C)_l.

Proof. We prove it first in the special case when partitions § = (01, ... ,0;) and 9 = (1, ... ,m)
have Young diagrams Y5 and Y, of rectangular shape, that is, 1 = ... =dp and 1 = ... = 7.
We introduce notation ws = k, w, = [, hs = 01 and h, = n;. Recall that ¢; and r; denote the
column and the row of the box i € Y.

If Y5 = () then

Hsp(2,9,0) " = [[lege+ry+d= ][] lgz+ry+d

JjeY, 1<c;<wy,
1<r;<hy
= II lwy—c;+ 12— (=rpy+¢ = [ [(4,0) + Da = Ls(G)y + ).
1<, Swn, jev,
1<r;<h,

If Y, = () then

Hyo(a,y. O = [T =che+ 1 =ry+= ] [(1=c)e+1—r)y+(

i€Ys 1<c; <ws
1<r;<hs
= J] Fws—c)z+@—r)y+¢ =[] [=As(i)a+ (Ly() + )y + .
1<e;i<ws i€Ys
1<r;<hs
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Assume that Y5,Y; # 0. To simplify Hs,(x,y,() first we compute

11 [(cj—c)z+(rj—r)y+ 1+ ¢ —c)z+ 1+ —ri)y+ ]
1< S, LB =)zt (rj = ri)y + (]l — ei)z + (141 —ri)y + (]

1<ri<hs
1 (A —ci)a+ (rj —ri)y + I+ wy —c)r+ (1415 —ri)y + (]
r<ron, (L wy = e+ (rj —ri)y + (1 =)z + (141 —ri)y + (]
_ A=)+ (rj = hs)y + QI +wy — ci)z + 159 + (]
(1 4wy = ci)a+ (r; — ho)y + ¢JI(L = ci)x + rjy + ¢’
hence

B (1 = ci)z + (r; — hs)y + (J[(1 + wy — ci)x + 15y + (]
N | O s P iy P P (B PR

1<r;<hy
1
I[I [A=c)z+A-ry+¢ I lejz+rjy+]
1<c; <ws 1<c; <wy
1<Zr;<hs 1<r; <hy,
[1 [y + py + (] [I vz + py + ]
1—ws <~v<0 14w, —ws <y<w,
1-hs<p<hy—hs 1Sp§hn
[I e+py+¢ I [va+py+
1w, —ws <y<w, 1—ws <y<0
15 <p<h,—hs 1<p<hn,
1
I[I bhetpy+d T he+py+
1—ws <y<0 1<y<w,
1-h5<p<0 1<p<hy,

To further simplify the last fraction, denote x(E) the characteristic function of the set E N Z?
and we distinguish two cases.

Case I. ws < w,,. Then the fraction H;,(x,y, () can be encoded in the function
x ([1 = ws, 0] X [L = hs, hy = hs]) + x ([1 4+ wy — ws, wy] X [1, hy))
=X ([1 4wy —ws, wy] X [1 = hs, hy = hs]) = x ([1 = ws, 0] X [1, hy))

—x ([1 = ws, 0] x [1 = hs, O) = x ([1, wy] X [1, hy])

X ([1 = ws, O] x [1 = hs, by = hs]) = x ([1 —ws, O] x [1, hy]) = x ([1 —ws, O] x [1 = hs, 0])
+x ([ 4wy — ws, wy] X [1, hy]) = x ([1, wy] X 1, hy))
—x ([1 +wy, —ws, wy] X [1 = hs, hy — hs))
= —x ([1 —ws, O] x [L+ hy = hs, hy]) = x ([1, wy — ws] X [1, hy))
—x ([1 +wy —ws, wy] X [1 = hs, hy — hs]) .
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Now we decode the latter function to get the following simplication

Hsy(z,y, )7 = [ bhz+py+( I  betew+ad [ ba+ey+d
1—ws<~v<0 14wy —ws <y<wy, 1<y<wy,—ws
1+hy—hs<p<hy 1-hs<p<hy—hs 1<p<hy

= J] Fws—c)a+ty—ri+y+¢ [ lwy—c;+Da— (hs —r;)y + ]
1<ci<ws 1<c; <ws
1<r;<hs 1<r;<h,

[T [y —ci+Da—(=r)y+]

ws <cj<wy

1<r;<hy
= [T =4s@a+ (L) + Dy + ] [T [(Ay() + Dz — Ls(G)y + -
i€Ys JjeY,

Case II. w,, < ws. Similarly, we encode the fraction Hj,(z,y, () in the following function and
we compute

X ([L = ws, O] x [L = hs, hy = hs]) + x ([1 +wy — ws, wy] x [1, hy))
—x (1 +wy, —ws, wy] X [1 = hs, hy — hs]) — x ([1 —ws, 0] x [1, hy))
=X (1= w5, 0] x [1 = hs, 0)) = X ([1, wy] % [1, )

X (1= ws, 0] % [1 = s, by — hal) = x (1 ws, w, — ws) x [1, hy)
—x ([1 4+ w, —ws, wy] X [1 — hs, hy — hs]) — x ([1 —ws, 0] X [1 — hg, 0])

= (X([l_w5a wy — ws] X [1 = hs, hy — hs]) + x ([1 +wy,; — ws, 0] X [1 — he, hn_hé])>
= x ([1 = ws, wy — ws] x [1, hy))
+ (= x ([L+wy —ws, 0] x [1 = hs, by — hs]) = x ([1, wy] x [1 = hs, hy — hs]))
+ (= x ([t = ws, wy —ws] x [1 = hs, 0])) = x ([L +wy —ws, 0] x [1 —hs, 0]))

=X ([1 — ws, wy — ws] X [L = hs, hy — hs]) = x ([1 — ws, wy —ws] X [1 = hs, hy))
X (L, ) [~ hs, iy — hs]) = x ([L 4w, — ws, 0] x [1— hs, 0))

= = x (1 —ws, wy —ws] X [T+ hy = hs, hy]) = x ([1, wy] X [1 = hs, hy — hs])
—x ([14+w, —ws, 0] x [L — hs, 0]).

Again, decoding the result we get the simplification

Hsp(z,y,0) 7" = 11 het+py+¢ I be+tey+d [ he+py+d
1—ws <y<wy,—ws 1<y<wy, 1+wy, —ws <y<0
Lhy—hs<p<h, 1=hs<p<hy—hs 1-hs<p<0
= JI Fws—c)e+ty—ri+y+¢ [[ [(wy—c;+Da—(hs—r)y+(
1<c; <wy 1<c¢;<wny
1<r;<hs 1<r;<h,

H [—(ws — )z + (= + 1)y + (]

wy<ci<ws

1<r;<hs
= [J[=4s()z + (Ly(6) + Dy + ¢ [] [(44G) + Dz — Ls()y + .
1€Ys JEY,
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We have showed that

(5.15) Hs (2, y,¢) = Ksn(z,9,0) 7"

for partitions § and 1 with rectangular shape Young diagrams.

Let 6 = (1, ... ,0x) and n be two partitions and assume that the Young diagram of ¢ is

not of rectangular shape, i.e. there is m such that 6,, > d,,41. Then we can define three new
partitions

51 = (517 75m)a

1,2
07 = (67”"1‘17 55m+1)7
—_————
m times
2
6% = (Omtts - s Oms1s Omt2, - 5 0k).
—_—————

m~+1 times

]

Y; Y Y1, Yie

Formally, we have the inclusion-exclusion formula Y5 = Y51 — Ys1.2 + Ys2. From (5.12)) follows
that

-1
(5.16) Hsy = Hs1 p (H51*2777) Hs2 y,

(

1

5.17) H,s=H,s (Hysz2) Hy,s.

K, has the same properties, more precisely

(
(

5.18) Ksn = Ksiy (K51‘2,77)_ K2
—1
5.19) K,s =K, (Kn’(p,z) K, s2.

1
1

Indeed, (5.18) follows from

Ksip(@,y,0) = ] [FAs @2+ (Ly()) + Dy + ¢ T] [(AG) + Dz = L ()y + ¢]

1€Y1 JEY,
= I Fas@e+ @@ +1y+d I [FAse@a+ (Ly() + 1)y + ]
1€Y51\Y1,2 1€Y51,2
[T ((4,0) + D = LGy + ¢ TT (AG) + Dz = Larz(f)y + (]
JEYy j_€>Y7?L
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and

Ks2 (2,5, = ] [As (@) + (Ly()) + Dy + ¢ T] [(AG) + D = L ()y + (]
1€Y2 JEY,
= [] [~4s(D)z + (L, (i) + 1)y + (]
ieyéz
T [(4,() + D)o = Lz Gy + ¢ TT [(4,0() + Dz = Ls(G)y + ¢)-
JEY, JEY,

By a similar computation follows ([5.19)).

Any two partitions § and 7 can be written as

(5:((51,...,(51,...75k,...,5]€), o1 > ...> 0,
N—— N———
ma my
77:(7}1,...,nl,...,nl,...,nl), nm>...>n.
————r ——
01 o]

Then we define the following partitions with rectangular shape Young diagrams
§ = (8i....0;), Vi=1,...,k,
———
mi+...4+m;
5i’i+1:(51’+1,...,51‘+1), ViZI,...,k—l,
—_———
mi+...+m;

and

= (nj,...,n), Vi=1,...,1,
o1+...+0;
Wj’j+1:(77j+1’-~-777j+1), Vi=1,...,1-1L
—_—
o1+...+0;

We get the following formal inclusion-exclusion formulas
(5.20) Ys=Ys51 — Y5124+ Y52 — ... — Y16 + Yo,
(5.21) Y’Z = Ynl — 1/,]1,2 + YUZ - ... = Ynzfu =+ Y”il'

Finally, we compute

Hyy = Hys g (Hs2g) " Hizgyoo (Hyeorny) ™ Hyy by (.16),

k k-1 1 [-1

= H H Hsi o (H5i7nq,q+1)71 (H(sj,ﬁl,np)il Hgig1 paats by (5.17),

j=1
k—1 [ 1-1

k
= H H H H (K&imp)_l Ksi pa.atr Kgigt1 o (K(Sj,j+17nq,q+1)_1 by

by (6.18), (5.19), (5.20) and (5.21)).
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