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J. M. J A U C H  

T H E  Q U A N T U M  P R O B A B I L I T Y  C A L C U L U S *  

At bottom, the theory of  probability is only 
common sense reduced to calculation. 

Pierre Simon Laplace, 1812 

Probability is the most important concept in 
modern science, especially as nobody has the 
slightest notion what it means. 

Bertrand Russell, 1929 

I. I N T R O D U C T I O N  

Quantum mechanics has opened a vast sector of physics to probability 
calculus. In fact most of the physical interpretation of the formalism of 
quantum mechanics is expressed in terms of probability statements. 1 

There are of course large segments of classical physics, too, which are 
expressed in probabilistic terms. But there is an essential difference be- 
tween the probabilistic statements of quantum physics and those of 
classical physics. The present article is devoted to the elucidation of this 
difference. 

The probabilities which occur in classical physics are interpreted as 
being due to an incomplete specification of the systems under consid- 
eration, caused by the limitations of our knowledge of the detailed 
structure and development of these systems. Thus these probabilities 
should be interpreted as being of a subjective nature. 

In quantum mechanics this interpretation of the probability state- 
ments has failed to yield any useful insight, because it has not been 
possible to define an infrastructure whose knowledge would yield an 
explanation for the occurrence of probabilities on the observational 
level. Although such theories with 'hidden variables' have been envisaged 
by many physicists, 2 no useful result has come from such attempts. 
I therefore take here the opposite point of view which holds that the 
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132 J . M .  J A U C H  

probabilities in quantum mechanics are of a fundamental nature deeply 
rooted in the objective structure of the real world. We may therefore call 
them objective probabilities. 

It has been noted quite early that the probabilities in quantum theory 
have some peculiar properties, unrelated to anything previously en- 
countered in classical probability theory. One way of exhibiting these 
anomalies is by studying joint probabilities for certain pairs of random 
variables, for instance, those corresponding to the quantum-mechanical 
position q and the canonically conjugate momentum p.3 For this case it 
has been noted by Wigner (1932) already that no positive joint distri- 
bution exists. 

Various interpretations have been given of this anomaly. I shall not 
review them critically here, but rather offer yet another one, which I 
believe corresponds better to the objective character of the quantum 
probability calculus than previous interpretations. 

One point of departure is the observation that the Wigner anomaly 
for the joint distribution of noncompatible observables is an indication 
that the classical probability calculus is not applicable for quantal prob- 
abilities. It should therefore be replaced by another, more general cal- 
culus, which is specifically adapted to quantal systems. In this article I 
exhibit this calculus and give its mathematical axioms and the definitions 
of the basic concepts such as probability field, random variable, and 
expectation values. 

Generalized probability calculi have been proposed before. 4 My 
proposal differs in several respects from previous work on this subject 
insofar as it is specifically motivated by and adapted to the axiomatic 
structure of quantum theory as it has been developed by the Geneva 
School 5 since 1960. 

II .  P R O B A B I L I T Y  C A L C U L U S  A N D  P R O B A B I L I T Y  T H E O R Y  

The proposed modification of the probability calculus appears more 
natural if we distinguish between probability calculus and probability 
theory. 6 With calculus we denote the mathematical formalism devoid of 
any interpretation of this formalism. With theory we refer to the the 
application of this calculus to various situations involving the occur- 
rences of observable phenomena. 
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The calculus is a branch of mathematics (in fact of measure theory) 
and presents no problems of interpretation. The theory on the other hand 
is beset with numerous difficulties which have been the object of much 
controversy. 

It is remarkable that in none of these controversies was the calculus 
as such ever questioned and its definitive form as given by Kolmogorov 7 
in 1933 has been the basis of all the work on mathematical statistics. 
The slight generalization of this calculus by Renyi8 is not essentially 
different insofar as it removes the restriction of a normalized total 
probability and replaces it by the basic notion of conditional probabil- 
ity. 

Little thought has been given to the question why this particular 
calculus should be so effective in predicting the probabilities of actually 
occurring events. 

The logical situation that we are facing here may be illustrated by an 
analogy from another branch of mathematics. The discovery of geometry 
by the Greeks, and in particular its axiomatization by Euclid, led to the 
idea that the geometry of physical space was unique and absolute. The 
discovery of non-Euclidean geometries was at first thought to be of no 
relevance to the geometry of physical space. Only in the physics of the 
twentieth century, especially through the work of Hilbert and Einstein, 
did the idea break through that physical geometry is not Euclidean and 
can actually be determined objectively through physical observations. 

Clearly geometry plays the role of the calculus and its interpretation 
in terms of physical phenomena. It is conceivable that the general theory 
of relativity could be expressed on the background of a Euclidean space, 
but in the light of present knowledge it would not be natural to do so. 

In an analogous way, we contend, it would be possible to express 
quantum theory on the background of a classical probability calculus, 
but again, Wigner's work has clearly shown that it would not be natural 
either to do so. 

So just as the geometry of space-time is determined by physical 
phenomena in the context of a natural theory, it is my belief that prob- 
ability calculus is equally determined by certain phenomena in the con- 
text of quantum theory. 

In order to place the new calculus in the proper perspective, I begin 
with a commentated review of the classical probability calculus. 
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III. THE C L A S S I C A L  P R O B A B I L I T Y  C A L C U L U S  

The classical calculus of probability is based on a few concepts which I 
shall introduce and comment briefly in this part. The concepts are: the 
measurable space, the probability measure, the random variables, the 
probability distribution function, and the expectation values. 

1. The Measurable Space 

The primary concept of probability calculus is 'the universe of basic 
events' which in the classical case are identified with a certain class SO of 
subsets of a set f2. 

The set f2 may be completely arbitrary. Actually as we shall see this 
set plays in fact only a subsidiary role. What is important are the subsets 
of the class SO which shall be called the measurable sets. 

The class of subsets SO is assumed to be a 'field'. This means it is closed 
with respect to the operations of the complement, countable unions, and 
intersections. Furthermore ~it contains ~b, the null set, and consequently 
also f2, the entire set. 

Thus i f S c s o  then the complementary set S ' e so .  I fS ,  (n= 1, 2 .... ) is a 
countable family of sets from SO then 

kJ S, eso  and (3 S,6SO. 
11 /1 

2. The Probability Measure 

On the field S ° is defined a positive-valued function 

with the properties 

(i) # ( ~ )  = O; # ( ~ )  = 1. 
(ii) For any pairwise disjoint sequence S, (n = 1, 2 .... ) such that 

S~cS k for i # k  

# ( U  Sn)---- ~ #(S,) (a-additivity). 
n n 

This function is the probability measure on SO. 
We shall refer to the triplet (t2, SO, #) as the probability space. The 

interpretation of this calculus is that the sets SeSo denote the possible 



THE QUANTUM PROBABILITY C A L C U L U S  135 

'events' and the numbers # (S) represent the 'probability' for the occur- 
rence of these events. 

3. Random Variables 

Let X : I 2 - ~  be a real-valued function X(o)), co~f2. For any subset 
A ~ ~ we denote by 

X-I (A)=  {o, I X(~,)+A} 

the inverse image of the set A under the function X. 
A function f is said to be measurable-B or simply measurable if for 

every Borel set A ~ ~ (~) the inverse image X-  1 (A)~5¢. 
A real random variable is a real-valued measurable function on ~2. 
It will be seen in the following that the essential property of a random 

variable, in fact the only property which is really used, is the correspon- 
dence which it establishes between Borel sets A ~ ~ (R) and the measurable 
sets. In view of the proposed generalization it is useful to introduce a 
special notation for this correspondence. Thus we shall denote by 
~:~(E)--+5¢ the correspondence set up by the random variable X(co) 
through 

X-I(A)=¢(A),  

and we shall call { also a random variable. 
This correspondence has the following properties: 

(i) ¢(~b)= 4~eSP; ¢(R)=fa. 
( i i )  I f A i l A  k for i ~ k  then ~(Ai)A_~(Ak) 

(disjoint sets are mapped into disjoint sets). 

(iii) ¢(U A. )=U {(A.) 
n 

for any pairwise disjoint sequence A.. 
IfXo, X1, and )(2 are random variables, i.e., measurable functions, then 

so are X,  -t- X2, X ,Xz ,  X -  1 (if it exists) and for any sequence X, (n = 1, 
2,...) lim supX., lim infX., and limX, (if the limit exists). 

4. The Distribution Function 

Let X be a random variable and denote by 

so -c ( ( -  oo, a]) 
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then 
F¢(a)=#(S.) 

is called the distribution function of the random variable 4 in the prob- 
ability space (0, ~,/z). 

It has the following properties : 
(i) F¢(a) is a nondecreasing function, continuous from the right and 

it tends to the limit 0 as a ~ = oo. 
(ii) F¢(oo)= 1. 
If Fc(a)= 1 is continuous and absolutely continuous then we may 

define a probability density f¢(a) >>. by setting 

dF¢(a) 
da - f~(a). 

The derivative exists everywhere. 

5. The Expectation Value 

Let 4 be a random variable, F(a) its distribution function, then we define 
the expectation value by the integral (if it exists) 

+ o o  
t ~  

<4>= _t a dF(a)=E(X). 
- - O 9  

This is also called the mean value of 4 in (O, 5", #). 
The notation is chosen deliberately in order to adumbrate the proposed 

generalization. The expression on the right-hand side is the classical one, 
while the left-hand side is used for the quantal one. 

If ~ 1 and ~2 are two random variables represented by their measurable 
functions X1 and X 2 we denote by 41 +42 the random variable repre- 
sented by X1 + Xz. Similarly if 4 is represented by X then 42 is repre- 
sented by X z. 

With this notation we find for the variance 
o 2 (~) = <(¢ _ <~ >)2> = E((x  - E(X)D 

or 

D2(~) = <42> - <4.>2 = E ( X  2) - E ( X )  ~ . 

The notion of independent random variable is of great importance in 
probability calculus. We formulate it here also in a generalizable fashion 
first for sets. 
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Two sets A, Be6e are said to be independent with respect to the prob- 
ability measure # if 

# (An  B) = # (A) # (B). 

The notion can be generalized to n sets Ax, A2,..., A, z5  ~. They are in- 
dependent if and only if for every ix, i2, ..., im (m<~n) 

#(All  N Ai2 ~ . . . N  Aim ) = kt(Aq) #(Ai2)...#(Aim). 

The notion can be extended to random variables. The random variables 
and ~/ represented by the measurable functions X and Y are inde- 

pendent with respect to # if for any pair A, B~3(R)  of Borel sets on 
the real line 

# (4 (A) n q (B)) = # (4 (A)) # (~/(B)). 

These are the essential concepts of the classical probability calculus. 

IV. T H E  P R O B A B I L I T Y  C A L C U L U S  IN C L A S S I C A L  M E C H A N I C S  

For a classical mechanical system the probability space f2 is the classical 
phase F. The probability measure for a system with no restriction will 
be the Lebesgue measure on F. Lionville's theorem assures that this 
measure is invariant under the evolution of the system due to the classical 
equations of motion. 

Actually in isolated systems it is not this measure which can be used 
since it is not normalizable to one. Isolated systems will be restricted 
to a surface of constant energy. This measure is called the microcanonical 
measure and it is only defined on the surfaces of constant energy. If the 
system is not isolated but kept at a constant temperature by thermal 
contact with a heat bath then it is the canonical measure which is ap- 
propriate. 

Every state of the system defines a new kind of measure. In particular 
a 'pure' state is given by a measure concentrated in one point coeF. We 
shall denote it by 6,0. It is defined explicitly by 

6,0(A)={~ for ro~A 

for coeA. 

The distribution function F(a) of a random variable ¢ for a pure state 
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6,o is defined by 
a ] ) )=~l  for o 9 ~ ( ( - ~ ,  a]) 

F(a)=6,o(¢((- (3O, 
for 09¢¢((- 0% a]). 

For such a state the expectation value of the random variable ~ is given 
by 

/ m  

(¢>=  | a dF(a)=ao 
- - O 0  

where ao is the smallest value a for which ~ ( ( -  ~ ,  a]) = 1. 

V. THE P R O B A B I L I T Y  C A L C U L U S  I N  Q U A N T U M  M E C H A N I C S  

The preceding discussion of the probability calculus in classical me- 
chanics serves the purpose of illustrating the need for generalizing this 
calculus if it is intended for application in quantum physics. 

The first important observation is the absence of the phase space F 
in quantum mechanics. Hence it is necessary to develop a probability 
calculus without Kolmogorov's set f2 used for the definition of the mea- 
sure space. At first sight this seems impossible since it would seem to 
make the definition of random variables impossible. However this is not 
SO. 

A careful examination of the classical probability calculus reveals that 
it could have been developed without ever mentioning the set ~2. The 
only place where this is not obvious is in the definition of random vari- 
ables which we have defined as measurable functions X(co) of coef2. 
However the subsequent use of these functions consisted merely in es- 
tablishing tr-homomorphism 4: ~ (E) ~ ~ through the formula 

~(A)=X-I(A)~Se foral l  A~3(R).  

Hence the calculus can be reconstructed in its entirety without ever 
mentioning t2 if we define random variables by this homomorphism. Of 
course in this case the class ~ must no longer be considered as con- 
sisting of the subsets of a set. Instead we replace it by a set of elements 
for which union, intersection, and complement is defined, in short 2~ 
is a lattice. 

In the classical case the lattice ~ was of a special kind, called a Boolean 
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lattice, which is characterized by the distributive law 

A w (B c~ C) = (A w B) n (A u C). (0) 

Once we have freed ourselves from the special interpretation of the lat- 
tice 5: as subsets of a set there is no need for maintaining the distributive 
law. 

The structure of the lattice of 'elementary events' - we shall call them 
propositions, or yes-no experiments - will have to be determined from 
experiment and this involves a physical interpretation of the operations 
c~, u and the complement. This has been done in the case of quantum 
mechanics, and the result is that the operations of union and intersection 
lead to a non-Boolean lattice. This is the essential feature of general 
quantum mechanics. 

I should perhaps mention here for completeness that there have been 
attempts to represent the quantum-mechanical proposition system on 
a weaker structure, the partially ordered sets (or posets). 9 The reason 
is that it is not always possible to exhibit in an operational manner the 
meet A c~ B of two elementary events. However, as shown in Jauch 
(1968), 1° there are situations where this is possible even for a noncom- 
patible pair of propositions A, B. This is always the case if there exist 
two passive filters, which represent measurements of the first kind cor- 
responding to these two propositions. There exists then a filter A c~ B 
which is obtained as an infinite alternating sequence of filters A and B. 
This is the operational analogue of the well-known formula Ec~F 
= S -  limn~ ~ (EF) ~ for the meet of two not necessarily commuting pro- 

jection operators E and F in Hilbert space. 
We shall denote by ~F the lattice of elementary events (propositions) 

in quantal physics and by a, b, c,... the elements from ~ .  
We have a partial-order relation in ~¢ denoted by c, as well as the 

operations of join and meet a u b  and ac~b. They define the greatest 
lower bound and the least upper bound of a and b. 

The lattice of propositions is orthocomplemented. The orthocomple- 
ment of a is denoted by a' and it satisfies 

a c b ~ b '  ca'  
ana'=c~ 
awa '=I ,  
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where ~b is the smallest and I the largest element in the lattice. These 
elements take the role of the null set and the entire set in the classical 
case. 

Two propositions a, be=g a are said to be disjoint if acb '  where b' is 
the orthocomplement of b. In this form the definition of disjointness is 
identical with the classical one. The notation for this relation is also 
a_Lb. The lattice has a smallest and a largest element denoted by 4~ and 
b y / ,  respectively. In a sense the role of f2 in the classical case is taken 
now by the element I ~ £~. 

A probability measure on £e is a function #:£a__+ [0, 1] defined on 
£z with values in [0, 1] satisfying the following conditions 

(i) S#(a,)=#(Ua,) for a i~£  a, i=l ,  2,...,ai±ak for i#k .  
(ii) #(q$) = O, /x(/) = 1. 
(iii) I f /x(a)=#(b)=l  then # ( a m b ) = l .  

The first two properties are exactly as in the classical calculus; the third 
is new. In fact in the classical calculus the third is a consequence of the 
other two. In the quantal calculus it is independent and therefore has 
to be postulated separately. 

Passing now to the definition of random variables we use the defini- 
tion which does not refer to the space f2. 

DEFINITION. A random variable is a a-homomorphism 4: 9B(R)-+ £Z 
from the Borel sets on the real line into the lattice £P of propositions, 
which satisfies the following conditions. 

(i) ¢(¢)=~b, ¢ (~ )= I .  
(ii) For any disjoint sequence A,efD(R) (A,±Ak, for i # k) 

a,)= u, ,g(a,). 
(iii) AI±A2=v¢(A1)_L~(A2). 

An immediate consequence of these properties is that the range of the 
map { is a Boolean sublattice of £,a. This is due to the fact the map is 
a homomorphism, that is, it conserves the lattice structure, which means 
that 

~(A 1 u A2) ii ¢(A l) u ¢(A2) 
¢(a,  n / I , ) = ¢ ( a , ) n  ¢(A2) 

¢(a 1= ¢(a),. 
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From this follows that the image of the map is a Boolean sublattice of 
~o. The distribution function Fe(a) is defined, as before, by 

Fe(a)=#(~(S,) ) with S , = ( - o % a ] .  

It induces a Stieltjes-Lebesgue measure #¢ on the Borel sets A. 
The expectation value of a random variable ~ is then defined by 

+oo 

( 3 ) =  .t a df¢(a). 
- - 0 0  

From the foregoing we see that there is a close analogy between the 
classical and the quantal probability calculus. But there is also a pro- 
found difference due to the fact that the lattice of yes-no experiments 
for a quantal system is non-Boolean. The difference becomes explicit 
when we study the notion of joint probability distribution of two random 
variables. 

It is useful to begin with the notion of compatibility. Two elements 
a, b ~  are said to be compatible and we denote this relation with a*-*b 
if the smallest sublattice which contains a, b, a', and b' is Boolean. We 
call this the lattice generated by a and b. 

It is easy to See that a sublattice ~B c L~ a is Boolean if and only if every 
pair of elements from ~3 is compatible. 

The notion of compatibility can be transferred to random variables. 
To this end we define the ranges 

~3¢= {a I a=~(A), A s~([R)} 
~B,--{a I a--n(A), A ~(R)} 

and call ~ and r/ compatible if every ae~B~ is compatible with every 
be~B,. 

For pairs of classical random variables one can define the  notion of 
joint distribution. It is defined as follows: let ¢ and r/ be two classical 
random variables. The joint distribution is a function of two real vari- 
ables a and b, 

F¢, ,(a, b)= #(4 (S,) n t 1 (Sb)). 

It is a nondecreasing function of both arguments satisfying the further 
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conditions: 

(i) F¢,.(-oo, b)=F¢,n(a, - oo)=0. 
+oo 

(ii) .I dbF¢'~(a' b)=F¢(a)=#(~(Sa))" 
- - 0 O  

+oo  
I $  

(iii) .I d,r¢,, (a, b) = r ,  (b) = # (~l (Sb)). 
- - O f )  

Since compatible random variables in the quantum probability calculus 
behave exactly like classical ones it is immediately obvious that such 
variables also have a joint probability distribution given by formulas 
identical with the preceding ones. 

VI. R A N D O M  V A R I A B L E S  I N  H I L B E R T  S P A C E  

Before discussing the question of the distribution function of noncom- 
patible random variables in quantum probability calculus we give the 
interpretation of random variables in Hilbert space. 

It is known that every proposition system La admits a representation 
in a linear vector space with coefficients from the real, complex, or- 
quaternion fields. This representation is particularly simple if the lattice 
is irreducible, or in physical terms, if the system admits no superselec- 
tion rules. 

The mathematical expression for this property is that the center ~f 
of ~La is trivial. With the center ~ we denote the set of elements which 
are compatible with every other element: 

~ =  {a [ a ~ e ,  a+--~x, V x ~ } .  

Evidently ~b~Cg and I~Cg. If these are the only two elements contained 
in ~ then we refer to cg as being trivial. 

The subspaces (or the projection operators) in a Hilbert space ~ form 
a lattice with ~b=O (=zero projection), I=I  (=unit operator) E ' = I - E  
(orthocomplement), and InF=S-lirn~oo~(EF) ~ (=meet). The join is 
then defined by E u  F=(E'c~ F')'. Under some mild additional restric- 
tions one can show that the coefficients of the Hilbert space are the 
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complex number field C. 11 We shall assume that this is the case. Under 
these hypotheses the abstract lattice of propositions is isomorphic to 
the lattice of subspaces of a Hilbert space o~, as it was demonstrated 
by Piron (1964). 

Let us now examine what becomes of a probability measure and 
random variables in this case. 

Let Ei (i = 1,2,...) be a sequence of pairwise disjoint projections (Ei_l_Ek 
or equivalently EiEk = 0 for i ~  k), then a probability measure is a func- 
tional/1 from the set of all projections ~ to the interval [0, 1] 

# : ~  ~ r0, 1] 

satisfying the three characteristic properties 

(i) g # (E , )=#(Z  E,). 
i 

(ii) #(¢) = 0, #(I) = 1. 
(iii) # ( E ) = # ( F ) =  1 =~p ( E n F ) =  1. 

According to a theorem due to Gleason, ~2 if d im~>~3  every such 
measure can be represented by a positive trace class operator p of trace 
1, such that 

I~(E)= Tr pE. 

In the special case that p is a projection operator of rank 1 we have 
p2 = p and if q~ is in the range of p, so that pq~ = q~, one obtains 

(e)  = k0, e o). 

In this manner we recover the usual expectation values for pure states 
as they occur in quantum mechanics. 

Let us now consider a random variable in this setting. According to 
the definition of Part V, a real random variable is a a-homomorphism 
4:~B(N)--* ~ from the Borel sets on the real line to the projections in 
~ ,  which satisfies the three conditions (i), (ii), and (iii) given in Part V. 

An inspection of these conditions shows that these are exactly the 
conditions for the definition of a spectral measure. According to the 
spectral theorem every spectral measure defines uniquely a self-adjoint 



1 4 4  J . M .  J A U C H  

operator X according to the formula 
+co 
t ~  

X =  j 2 dEz 

--Q0 
with 

= ¢ ( ( -  o0, 

From Gleason's theorem follows then that the expectation value of 
in the state # is given by 

+oo 
f a  

(¢)  = T r p X =  J 2 d Tr(pE,). 

- o o  

Thus we have recovered all the usual formulas of quantum theory in 
Hilbert space. 

I add a few comments to this result. 
(1) I stated that property (iii) of the probability measure must be 

postulated since it cannot be derived from the other two as in the classical 
probability calculus. In order to appreciate this remark, I sketch the 
derivation of(iii) from the other two conditions in the classical case when 
La is a Boolean algebra. 

THEOREM 1. I f  Lf  is a Boolean algebra, and # is a function #: satisfying 

conditions (i) and (ii) then 

p(a)=#(b) = 1 =*-#(an b)= 1 Va, b~A °. 

Proof. If a n b = ( 9  then they are disjoint. Hence by (i) #(a)+#(b) 
= # ( a u b ) =  1. Therefore #(a)= l=~#(b)=0 and #(b)= l~#(a )=0 .  The 
hypotheses of the theorem cannot be satisfied. 

We may thus assume that a c~ b = c # (p. We may then write 

a = a l  u c  
b = b l u c  

where al = c ' n  a, bl = c'c~ b, and al, bl, c are pairwise disjoint. Hence 
from (i) we obtain 

1 c) = + , ( c )  
1 =#(b) = #(b 1 w c)=#(bl)  +#(c) .  
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By taking the difference of these two questions we find first that 

~ (a~)=~(b l ) -X .  

On the other hand from the sum of the two questions we obtain 

(1) 1 --- x + #(c)  

since 1 = p (a) ~< # (a u b) ~< 1 we have # (a u b) = 1 and therefore from (i) 

1 =#(aub)=#(al)+p(bl)+#(c ) 
o r  

(2) 1 = 2 x + # ( c ) .  

Comparing (1) with (2) we conclude that x = 0  and therefore 

# ( a n b ) =  1 II. 

(2) In the Hilbert space setting property (iii) can actually also be 
proved as a consequence of (i) and (ii) provided d i m ~ / >  3. 

This is due to the following facts: 
(a) Under this hypothesis every probability measure # is of the form 

# (E)= Tr pE with p a positive trace class operator with trace 1; 
(b) If E, F are any two projections then 

E ~ F= S -  lirrh_.~ (Ef)~ ; 

(c) If T~ is a uniformly bounded sequence of operators and T~ ~ T 
strongly, then TrpT exists and 

TrpT~-~ TrpT, 

where (a) is essentially Gleason's theorem quoted in this part, (b) is a 
well-known result on projections in Hilbert space (cf. note 1), (c) can be 
proved as follows: the operator p being of trace class may be written as 

p = ~ °~rPr 
r = l  

where P, are orthogonal projections which we may assume without loss 
of generality to be of rank 1. 

The eigenvalues e, may be ordered as a decreasing sequence 

~i >~2>~""  >~,>~ "'"/>0. 
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Furthermore the trace condition means ~ a , =  1. Let R <  o~ be an 
integer such that ~ +  1 :tr < 8 for some arbitrary ~ > 0, and let P/p~ = (p,, 
II~,ll = 1. We obtain then for 

I,u(T~)-g(T)l =1~ ~r(~o,, (T,,- T) ~o,)1 
R 

~< ~ cx,:l(~,.,(rn-T)~,.)l+ ~, ~;I(¢',(T~-T)~o,)I. 
r = l  R + I  

We now choose N such that for n > N  

'1(¢',, (T,,- T) ~r)l <e V(r= 1, 2,..., R). 

This is possible because T ~ T  strongly , hence weakly. The first term 
becomes therefore 

R 

r = l  

For the second term we note that because T ~  T and T, are uniformly 
bounded, T is also bounded, hencet((pr, (Tn = T) (P,)I ~< II T~ H + II TII, so that 
the second term is 

~<( ~ ~) (lIT.I[ + lET II)~<~(llTnll + liT II). 
R + I  

Because of the uniform boundedness the right-hand side is independent 
of n. Hence we have shown 

TrpT exists an T r p T =  l i rn ,~TrpT~.  

Let us now verify property (iii). We note first that 

Tr pE = ~ a, (tpr, E(pr) = 1 
r = l  

implies 

so that 

o r  

(~,, E~,)= IIE~,l12 = 1 ( r = l ,  2 ..... ~ ) ,  

I1~1] 2 = 1 = IIE~ll 2 + I I ( / -  E) ~Pll 2 

rl(!--E) ~112 =0, or finally E(p=(p. 
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Thus for all r such that e, > 0 

Erpr = q~,. 

Similarly 

Therefore 

so that 

Frp, = %. 

TrpEF = 1. 

we denote EF = T, we note that [I T~ II ~ 1 and conclude from the preceding 
reasoning that 

T r p T  ~= 1 (n= 1, 2,...). 

Hence by (c) 

# ( E n F ) = T r p E n F = I  II. 

(3) Property (iii) has a simple physical interpretation in case there 
exist passive filters corresponding to the propositions a and b. Indeed 
p (a)= 1 says that the filter corresponding to a is 100 percent transparent. 
Similarly #(b)= 1 implies that the filter corresponding to b is also 100 
percent transparent. Since the filters are passive the system traverses the 
filters without modification of the state. Hence it will also traverse an 
infinite (or very large) alternating sequence of filters a and b. But such a 
sequence represents the filter corresponding to a nb.  Hence # ( a n  b) = 1. 

The only example known to me of a probability measure on a lattice 
which does not satisfy (iii) is in a lattice with a maximal chain of three 
elements. This is of course precisely the case that is excluded by the 
hypothesis of Gleason's theorem that dim ~ ~> 3. In view of this fact it 
would be of considerable interest to prove property (iii) in the lattice- 
theoretic setting. No such proof is known to me. 

(4) The present derivation of Hilbert-space quantum theory from the 
lattice-theoretic one elucidates the relation between compatibility of 
observables and commutativity of the corresponding operators in Hilbert 
space. 
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The former is a physical property and the latter a mathematical one. 
In the light of the phenomenological interpretation of the lattice struc- 
ture, compatibility is represented by the relation a~--~b which in turn is 
equivalent to the property that the sublattice generated by (a, b, a', b') is 
Boolean. This is exactly how it is in classical physics, where every such 
sublattice is Boolean since the entire proposition system Za is. 

In the representation of the proposition system by the subspaces of 
a Hilbert space, compatibility of two projection operations E, F is 
equivalent to commutability of these operators. We have in fact the 
following. 

THEOREM 2. ~LP(E, F, E', F') is Boolean ~ [ E ,  F] =0. 
Proof. If ~ (E, F, E', F') is Boolean then 

E = E I  +G 
F = F I  +G 

Therefore 

E I = E n G '  , F I = F n G ' .  

EF=(E1 + G) (F1 + G)= G 
FE = (F1 + G) (El + G)= G. 

But 

so that 

[E, v ] = 0  11. 
If [E, F] = 0, then E c~ F = EF. Hence for any triplet, for instance E, F, F', 
we have 

F n(Fu 

F u E ' = I - E + F E ,  

E n (F u E') = E (I - E + FE) = EFE = FE = EF. 

Thus for any triplet chosen from E, F, E', F' we have the distributive law 
and this implies that ~ (E ,  F, E', F') is Boolean. [1 

This result disagrees with the opinion expressed by Park and Margenau 
in a recent publication (see Park and Margenau, 1968). However it is 

with 
G=Ec~F,  

It follows that 
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seen that this result is independent of the hypothesis whether the corre- 
spondence between observables and self-adjoint operators is one to one 
contrary to what is claimed in that reference. In fact the essential hy- 
pothesis is the much weaker one that with the propositions a, beS¢ the 
proposition 'a and b ' =  a n b is also contained in ~ .  

VII .  J O I N T  D I S T R I B U T I O N S  OF R A N D O M  V A R I A B L E S  

In the new quantum probability calculus there is an essential feature 
which distinguishes it from the classical calculus. This is the occurrence 
of noncompatible observables or random variables. In the classical 
calculus every observable is compatible with every other one, due to the 
fact that the lattice ~e is Boolean. In the quantum calculus this is not 
necessarily the case. 

In the classical case it was possible to define the joint distribution 
function of two random variables ~, q as the function Fe,, (a, b) satisfying 
the following properties 

(0) El, ~ (a, b)~> 0 and nondecreasing in a and b. 
(1) F~,,(-oo, b)=F¢,,(a, - oo)--0. 

+oo 

(2) ] dbF¢, . (a, b) = F~ (a). 
/ , i  

- - O 0  

+oo 

(3) .I d.F¢.,(a, b)=F,(b). 
- - 0 0  

In the quantal case the definition of such a joint probability may be 
impossible in case the random variables ~ and ~/ are not compatible. 
This corresponds to the physical fact that joint measurements of arbitrary 
noncompatible variables may be impossible. 

Since the preceding statement is flatly contradicted by Park and 
Margenau, 13 I must interpose at this point a few critical remarks con- 
cerning their analysis of the measuring process inquan tum theory. 

Their analysis concerns primarily the notion of pairs of incompatible 
observables. They insist that in spite of the uncertainty relation, such as 
ApA q >1½h for canonical variablesp and q, such variables can be measured 
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with arbitrary degree of accuracy. They therefore reject complementarity, 
so essential in Bohr's analysis of the quantal systems, and they believe 
this concept can be replaced by the simpler notion of 'latency'. Although 
they would agree that the uncertainty relation is valid for measurements 
on an ensemble of identically prepared systems, they believe that this 
relation is not a restriction concerning the accuracy of measurements for 
complementary variables of an individual system. 

The essential point in their analysis concerns the 'joint' measurements 
of noncommuting observables. Although an explicit definition of their 
notion of compatibility is never given in their paper one gathers from 
the context that for them compatibility means that a joint measurement 
of the pair of observables is possible. By showing that certain pairs of 
noncommuting observables are measurable simultaneously to an arbi- 
trary degree of accuracy they come to the conclusion that noncommuting 
observables may very well be compatible in their sense of the term. 
(Incidentally it is not clear from their paper whether they believe that 
any pair of noncommuting observables is compatible in this sense or 
not.) 

They conclude from this that there are joint measurements possible 
for certain variables such as p and q even though neither a joint proba- 
bility distribution nor an operator exists for representing such joint 
measurements. 

In order to appraise this point of view it is necessary to recall that in 
Bohr's point of view the arbitrary precision of individual measurements 
of canonical variables such as p and q was never in question. Both 
quantities can in principle be measured with a precision only limited by 
the inherent precision of the applied experimental arrangement. How- 
ever the very presence of this experimental arrangement precludes the 
simultaneous attributions of precisions to complementary variables, such 
as p and q which would violate the uncertainty relation. 

The example given by Park and Margenau for such a measurement 
is no counterexample to this general and essential feature of quantal 
systems. Their example is in fact only a determination of the position q 
with a g!ven accuracy Aq followed by a determination of p a long time t 
later with an arbitrary accuracy Ap. Their conclusion that this second 
measurement permits them to assert that this also constitutes a measure- 
ment of p with that same accuracy at time t = 0  is not correct. Their 
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justification for this is that the probability distribution of p at time t = 0 
is the same as at a time t > O. While this statement is perfectly correct it 
is not sufficient for asserting that the actual value of the p at the two 
times is equal. 

With this counterexample shown to be irrelevant for the question 
under discussion their entire case falls to the ground and the difficulties 
which they had to face concerning joint distributions of noncommuting 
observables disappear. 

Returning now to the problem of the joint probability distribution 
for incompatible observables it is very easy to see in the quantum proba- 
bility calculus that such a distribution cannot exist satisfying the proper- 
ties listed above for the canonical variables. 

The reason for this is the fundamental relation 

(1) ~(Sa)c~tl(Sb)=d? for - ~ < a , b < + o o .  

Indeed if ~(Sa)C~(Sb) were 4~b then there would exist a function 
~(x)eL 2 ( - ~ ,  + ~ )  with the properties 

q~(x)=0 for x>a  
~(x)=0  for x>b 

where (0 is the Fourier transform of q~. It is well known that such a func- 
tion does not exist unless []~ol[--0. 

Due to the relation (1) it follows that 

Fe,,(a,b)=O for - o o < a , b < + o o  

so that properties (2) and (3) are violated. 
But this negative conclusion does not preclude that p and q (or in fact 

any pair of noneommuting observables) are measurable within an 
accuracy limited by the uncertainty relation. Thus a joint probability 
distribution should exist in a more restrictive sense which is in accord 
with this restriction. 

In order to define this weaker sense we modify the definition of F~, 7" 
Instead of a nondecreasing function on ~z we define it as a finitely addi- 
tive set function on the Borel rectangles. If ~ and q are compatible then 
this definition is possible and the function Fe, n satisfies the properties 

(0) F¢,n (A x B) f> 0 
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(1) F¢,,(q~ × B)=F¢,,(A × ~b)=0 
(2) F¢,, (A × R) = F¢ (A) = # (¢ (A)) 
(3) F¢,,(R × B)=F,(B)=#(rl(B)). 

According to a well-known theorem in measure theory such a finitely 
additive set function on Borel rectangles has a unique extension to the 
Borel sets on •2, defining a product measure on R 2. 

For noncompatible random variables, such as p and q, it is still possible 
to define a function F~,, satisfying all the properties listed above by 
setting 

F¢,,(A x B)=#(¢(A)n q (B)). 

But in agreement with Wigner's (1932) result this function is not an 
additive set function on Borel rectangles and therefore cannot be ex- 
tended to a measure on ~2. 

In spite of this anomaly the function F~,, (A x b) is not entirely devoid 
of physical meaning. It represents in fact the probability that in a given 
state the variable ~ assumes values in the set A while at the same time 
the variable q assumes values in the set B. 

This probability is not necessarily zero as may be seen in the case 
=p  and ~/=q. In this case as we have noted before ~(A)n ~/(B)= ~b if 

m (A') m(B')= oo. 
But in case m(A')m(B')< ov this is not true. We have in fact the fol- 

lowing. 

THEOREM 3. If E-Ea,  F - F g  represent the spectral projections of the 
canonical variables p and q associated respectively with the Borel sets A 
and B, then 

m(A')m(B')< ~ E n F  ~b .  

The proof of this theorem will be given elsewhere. Suffice it here to re- 
mark that the theorem implies the following statement concerning func- 
tions q~eL2( - ~ ,  + ~ )  and their Fourier transform ~b. We shall say that 
q~ has a gap (of positive measure) if there exists a Borel set A with Lebesgue 
measure m(A) such that 

0 < m ( A ' ) < ~ .  
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The theorem then asserts that there exist functions q~ (x) with a gap whose 
Fourier transform also has a gap. 14 

In conclusion I may thus state that, although joint measurements of 
certain noncompatible observable may be possible with nontrivial re- 
suits, it is not true that there exists an observable which represents all the 
joint measurements of two such observables. 

University of Geneva 

N O T E S  
* This article was written during a visit to the University of Colorado in Boulder. It is 
a pleasure to thank Professor K. Gustafson, who made this visit possible. Thanks are 
also due to Professor B. Misra for an important remark concerning the joint distribution 
of noncompatible observables. 
1 The quantum probability calculus was briefly sketched by Jauch (1968). The role of 
probability in quantum theory was the principal subject of three papers by Suppes (1961, 
1963, 1966). 
2 For a detailed review of hidden variable theories the reader is referred to Belinfante 
(1973). 
a This point was first made by Wigner (1932). It was the subject of many subsequent 
papers such as Moyal (1949), Brittin and ChappeU (1962), Park and Margenau (1968). 
4 For recent papers on this subject I refer to Gudder (1967, 1968), Gudder and Marchand 
(1972), and Varadarajan (1962). 
5 The principal difference with respect to some other work in this field is that the quantal 
proposition system is assumed to be a lattice and not just an orthocomplemented partially 
ordered set (poset). The empirical justifications for this assumption were first given by 
Piton (1964), where it was shown quite explicitly that for many physical systems the poset 
structure is not sufficient for representing the phenomenology. Further details are given 
by Jauch (1968). 
6 This useful distinction is due to my late friend, Dr. G. Baron, whose profound knowl- 
edge of fundamental problems on probability theory has greatly influenced my thinking 
on the subject. 
7 Kolmogorov (1956). This is the English version of the original German version. 
8 Renyi (1970) introduced the probability calculus based on the basic notion of relative 
probability. This generalizes Kolmogorov's calculus to nonnormalizable probability fields. 
9 This form of quantum probability calculus was first developed by Varadarajan (1962). 
lo Jauch (1968) uses for instance the construction of composite filters. There are other 
possibilities of constructing the meet of two elementary noncompatible events. 
11 The question of the number field remained for a long time beyond an empirical test. 
The recent work by Gudder and Piron (1971) is the best that one can do. 
12 The conjecture that every a-additive measure on orthogonal subspaces is given by a 
density matrix was finally proved by Gleason (1957). Similar conjectures on the projection 
lattice of von Neumann algebras remain unproved. 
13 Park and Margenau (1968) claim to have shown that measurements are possible which 
violate the uncertainty relations. 
,4 I am indebted to Prof. Martin Peter for an explicit construction of such functions, 
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who also showed that their existence is not without physical interest especially in the theory 
of metals. The question whether such functions exist and their relevance for the problem 
of joint distributions was first mentioned to me by Prof. A. Galindo of Madrid. 
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