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Secondary Storage Garbage 
Collection for Decentralized 

Object-Based Systems 
Anders Bjornerstedt 

Abstract 
This paper describes a mechanism for secondary storage g.arbage collection that may 
be used to reclaim inaccessible resoarces in decentraJ.ized pcrsiste.nt object based 
systems. 
Schemes for objed addressing and object i<lentHication are discussed and a pro-
1•osaJ is made whjch handles volatile objects separately from persistent objects. The 
garbage collection of the space of volatile objects is decoupled from th~ garbage col-
lection of th.e space of persisLe.nt objects. The ·first kind of garbage collection can 
avoid the complcx.iLy and overhead of a distributed algorithm by classifying "ex-
ported" object.:; as persistent. T he problem of detecting and collecting ''distributed 
garbage" is then deferred to garbage collection of persistent objects. 

1 Introduction 

Object Oriented programming generates large numbers of dynamically allocated objects. 
Many of these are used for a limited period of time and then become unreachable. To 
deted such "garbage" and make it available for reuse is tbe garbage collectio.n problem. 
The responsibility of releasing unused resources can be placed either on the system (ex-
ecution environment) or on the programmer. If an automatic garbage collection scheme 
is inco.rpornted into the exceution environment, then a great deal of programmer effort 
and ei:ror cllJl be avoided. The disadvantage with automatic garbage collection is that it 
causes either overhead or disruptions in the normal application processing. 

Another service which the execution environment can provide is persistence [Atkin87]. 
By this we mean that the execution environment makes it possjbJe for objects to exist 
for an indefinite period of time. This service also relieves the programmer of a problem, 
namely how to map the abstract objects with which it is desired to compute, to secondary 
(non-volatile) storage. 

For several technical reasons objects which are persistent (long lived) arc managed 
differenlly from U1e volatile (short lived) objects. Persistence is very much technology 
dependent because persistence places demands on the properties of the memory archi-
tecture, such as fault tolernnce and non-volatility. The difference in management usually 
leads to cliffercnL gai:bage collection mechanisms, one for volatile memory and one for .Per-
sistent memory. Garbage collecting the memory of persistent objects is expected to be 
much more time consuming than garbage collecting the memory of volatile objects. Be-
cause the management of persistent memory is more complicated than the management 
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of vola tile memory, tlle number of persistent objects is much larger than the number of 
volatile, n.nd persistent memo.ry builds on slower hardware. On the o~her hand we expect 
the need to garbage collect the persistent memo•y to be a. much rarer occurrence than 
the need to garbage collect the volatile mem.ory. The reason again being the large size 
of the persistent memory. 

A dccentrali:ed system [Gray86] allows multiple centers of control. This is useful for 
several reasons; possibly increased performance due to increased potent.ial for concur-
rency; increased a\-ailability due to opporlunity for physical distribution; and, perhaps 
most importantly, increased autonomy for the "owners" of infonriation. We prefer the 
term dccentralfatd instead of di3trib'U-ted because autonomy is important to us. By auton-
omy we mean that the system should allow different logical locations to have independent 
control over resources. Each location is associated with an authority that "owns" and 
controls the local resources. The authority has the power to veto remote requests to use 
the local resources. Physical <.Listribut.ion does not imply decentralization, while decen-
tralization "wea.klyn implies physical distribution. A "federated system" would be an 
acceptable alternat.ive tel'.ln to "decentralized system." A decentralized system is one 
special kind of distributed system. The garbage collection mechanism we present is not 
suitable for all kinds of distributed systems. 

Garbage collection for decentralized systems is a difficult problem. Either a dis-
tributed algorithm working in parallel with normal operation has to be devised, or the 
system has to stop normal operation while doing garbage colleetion. In this paper we 
propose a solution which is a compromise between the two. We delegate the problem 
of garbage collecting the global object space to the mechanism for collecting the persis-
tent object space. We assume that garbage collection of volatile objects is managed on 
a local basis and during nonnal operation. We do not care which method is used for 
garbage collecting the space of volatjle objects, indeed, difi'erent methods could be used 
itt. rliffo.rl!.nt locations. Persistent objects are not reclaimed dui·ing normal processing but 
may be removed or Hushed from primary storage to free space when needed. We say 
tpat an object is ezportl!d if either the object itself or a reference to it is moved from one 
location to another. If an object is exported, then the system will manage the 0bjed as_ 
persistent. 

Garbage collection of persistent objects, i.e. reclaiming secondary storage, does not 
have to be done as frequently as for primary storage. We are talking about periods on 
the order of magnitude of days or weeks, or even longer, instead of seconds or subseconds 
which may be needed for primary storage garbage collection. Because of this we asswne 
that it is acceptable to either temporarily stop normal operation locally (not globally) 
for secondary storage garbage collection, or alternatively to temporarily significantly 
.lci;rtt,<le local perfoi:mance, if ~he secondary storage garbage collector is run in paraiiel 
with normal operation. The different locations of the decentralized system decide when 
and how often to have this disruption. There is then local autonomy concerning when 
local persistent garbage should be collected. For global garbage, i.e. persistent objects 
which have become known to more than one location and then have become garbage, 
cooperation is required for safe garbage collect io11. The mechanism we propose puts 
emphasis on local autonomy yet achieves safe global garbage collection when all locations 
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cooperate. 

The paper .is sLructure<l as follows. In section 2 we give a more elaborat-0 motivation 
for our approach. ln section 3 we describe a model of the system we envision and .Point 
out some important assumptions we are making. In section4 we discuss the requirements 
we have on the garbage collection mechan.ism. In section 5 we present ow: mechanism. 

2 Background and Motivation 

The iuechanisms for providing garbage collection, persistence and decentralization all 
have in common that they are very dependent on the addressing and identification mech-
anisms used by the execution environment. First, we discuss addressing schemes in rela-
tion to persistence, then in relation to decentralization. Because our focus is on garbage 
collection we concentrate on the design issues of addressing schemes which specifically 
influences garbage colle<ition. v\le then propose a combined decentralized and persis-
tent identification scheme. We end this section by explaining how the global garbage 
collection problem can be subdivided into smaller sub-problems. 

2.1 Addressing and Persistence 

The reasoning in this section borrows from a study of different addressing mechanism 
suitable for implementing persistence, done by Cockshott [Cocks88]. 

A very coarse grained level of persistence is to load and dump the whole object space 
(the image) using a file. Loadi.ng is done at the start of a session a.od dumping at the end 
or whenever a checkpoint is desh:ed. The e;x:ecution environment uses primary memory 
addresses (real or virtual), as provided by the ope.rating system and hardware, for the 
lowest level of object addressing. During a session all objects reside in virtual memory 
(or real memory if virtual memory is no~ supported). There is no distinction between 
volatile and persistent objects in terms of how they are managed, i.e. the whole space of 
objects has the. same failure. mode. But the file on which the image is dumped resides on 
secondary storage with a failure mode independent from virtual memory. For example 
in most implementations of Smalltalk-80 [Goldb83) use this approach. This approach 
is either not very fault tolerant since a crash destroys all changes since the last save 
of the image, or very expensive if frequent saves of the whole image have to be made. 
It is mostly suitable for siugle user systems. \>Ve call this the workapace approach to 
persistence. 

Another possibility is to have different failure .modes for different segments of virtual 
memory, but still make use of virtual memory as the lowest level of addressing. The 
primary purpose of virtual memory is still to obtain a large address space, but the virtual 
memory backing store is also used as the basis for persistence. Since a system crash could 
corrupt the system image, or leave it in an unknown state, additional information such as 
a log must also be maintained on secondary storage to aid recovery from crashes. This 
approach has been explored by Thatte [Thatt86] and by I<olodner, Liskov and Weihl 
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[Kolod89]. Wben the system does not encounter any failures then the backing store 
remains consistent. There is then no need for initial and final loading and dumping of 
objects as in the workspace approach. If a crash does occur then a special recoveq 
routine is used to restore the backing store to a consistent state which may need to 
use the log. The underlying operating system and hardware provides the translation 
between physical RAM and the backing store, but the execution environment has control 
over when and how this is done. This requi.t·es either the execution environment to be 
indistingillshable Crom the operati11.g system (e.g. a Lisp machine) or the operating 
system to allow the implementor of the execution environment some control eV& the 
virtual memory backing store, as in Multics [Daley68) or Mach [Jones86]. In the system 
described in {l(olod89], the heap is divided into the stable heap and the volatile heap. 
This is done by partitioning the address space for the virtual memory used for lhe heap 
into two disjoint segments. The execution environment manages the log and the paging 
for the stable heap so that the stable heap lms a different failw·e mode from Lhe rest of 
virtual memory. The manag<.'D1ent of the log and stable heap uses a: ~ransaction model 
[Gray78], so a finer grauulariLy of persistence is achieved (compared to the workspace 
model) and multiple users can be su·pported. We call this approach the di~ciplined virtual 
memory approach. 

A third approach is when the execution environment maintains a separate mapping 
between a repository on secondary storage and virtual memory. In other words virtual 
memory is only used for obtaining a large primary store. Persistence is implemented by 
a separate mapping to secondary storage. A transaction mechanism may also be used 
in this appro~ch so the consistency of the persistent store is ensuxed. One difference 
between this approach and the disciplined virtual memory approach is that normally 
only a subset of all existing objects will be in virtual memory. ln the same wa,y as the 
operating system uses physical RAM as a cache against the virtual memory backing store, 
tb.e virtual memory is used by the execution enviro.nment as a cache against the persistent 
store on secondary storage. Examples of this approach are GernStone [Purdy87), PS-algol 
[ALkin87], Mneme (Moss88], Comandos [COMAN87], Av-.ulce [Bjorn88) and, in general, 
most of today's database systems. We call tills the multilevel approach, because several 
levels of memory are explicitly managed by the exec1,1lion environment. 

Note that no logical difference between these approaches is visible to the user of the 
system. The whole point with "persistence" is to provide a single level store abstraction 
to the programmer. 

2.2 Addressing and Decentralization 

A requirement for decentralization is a very large address space. Such a space could 
be structured or flat. We will not attempt to characteri.ze the actual size needed for 
the global address space. We can give a lower bound by saying lhat todays hardware 
architecture, dominated by 32 bit addressing, is insufficient; 

An excellent exposHion of these issues cn.n be found in a paper by Moss [Moss89]. 
Moss argues for short context dependent addresses (which are in essence structured 
addresses) and against flat global addresses. The argument is mainly against using a 
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large global paged virtual memory as the basic approach. His arguments are based on 
price/performance, complexity, autonomy and flexibility. 

Moss also takes the position that a large flat object identifier space has most of the 
same disadvantages. This we do not agree with. An identifier space differs from an 
addl'ess space in that an identillel' is not location dependent. Having large context free 
identifiers for objects does add a level o{ indi.reclion, which does add execution cost, but 
caching can significantly reduce this problem. The major advantages with context Cree 
identifiers are the flexibility U1ey give and simplifications in system software. However, 
if objects are basically stationary, then using a global flat identifier space may not be 
worth the cost. "We assume that objects may move in the decentralized system and that 
therefore the distinct.ion between identity and ad<h·ess is important. We note that the 
Comandos architecture (COMAN87) has taken this approach. 

We can accept structw·ed identifiers that hint at location. For example the identifier 
may be constructed on the basis of where the object is created. But it should be an 
identifier and not an address. In other words if the object moves the11 ·its identity should 
not change. 

The identifiel's used are machine generated surrogates which are guaranteed to be 
globally unique. Global uniqueness is easy to achieve and does not need to have any 
pradical consequences on local auto.nomy. For example, one can easily construct a world 
wide globally unique identifier by combining: 

1. The internet address of the physical host, which must be unambiguous in the world 
wide distributed system. 

2. A logical location number, unique relative to the host, to disambiguate between 
logical locations in the decentralized system. 

3. A host local timestamp of sufficient resolution. 

Such an identifier would be unique and would also tell where the object was created, 
which could be used as a good hint of location. 

Smnlltalk has been used as the implementa tion basis for decentralized systems [De-
cou86, Bennc87, l\11cCul87, Scbel88). Each location is then a single user workspace. 
Various forms of fonvarding objects (proxys) are used for remote addressing. Except 
for the system described by McCullough [McCul87], objects generally do not maintain 
strong (surrogate based) identi't;y between different locations. The reason being, we be-
lieve, that all of the systems based on Smalltalk-80 want to avoid major changes to the 
virtunl machine. In addition these systems have the problem of ensuring fault-tolerant 
consistency only on a: per-workspace basis. 1 Transactions would require all workstations 
to take coordinated clumps of their images each time a commit is made, or a change to 
the implementation of persistence has to be made. 

1The system described in [Schel88) does provide global consistency for replicated objects using the so 
called Thomas write rule [Thoma79). However these objects are special and only a small part of the total 
object space. 
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We conclude the discussion on addressing and decentralization by assuming a large 
and global identifier space as the best solution for a decentralized system where objects 
move. We also conclude that a transaction based approach is appropriate to ensure 
consistency in a multiuser system, which a decentralized system is by definition. This 
means that the simple workspace approach for persistence is not appropriate. Using a 
transaction based approach also means that we can have multiple users at each location. 

2.3 A decentralized and persistent identifier space 

An addressing scheme for persistent objects which interacts with a transaction mec.hanism 
is complicated to implement. The same is true for an identification scheme for objects 
in a decentralized syslem' whicb also interacts wiLh a transaction mechanism. It then 
makes sense to try to un.ify the two as far as possible. It also makes sense to find means 
to avoid using the expensive decentralized and persistent identification mechanism for 
all objects. 

Using location indcpe.udent identifiers for persistent objects means that there must 
be at least one level of indirection between idenlifiers and persistent addresses. The 
disciplined virtual memory approach could still be used for local persistent addressing. 
In fad an advantage of having the indirection between identi6er and address is that 
several dlfferent persistent addressiug mechanisms could be used , even at one location ill 
the decentralized system. 

A beneficial consequence of this approach is that any persistent object may be ex-
ported without complications. Another consequence is that any object which is exported 
is also persistent. This may in some cases cause efficiency problems. We will return to 
this problem in section 2.4. 

Since the proposed identification mechanism wiU be expensive to use, alternative and 
simpler mechanisms must also be provided. Volatile objects could use a short and simple 
addressing scheme. If necessary, they would be matu1·ed to pt!rsistent objec~, and only 
then be associated with a long identifier. 2 A distiliction orthogonal to volatile/persistent 
is uso:d iu U1e Avance system [Bjom88), where a distinction is made between dependent 
and i11dcpendent ohjr.ct.11. 3 Dependent objects are owned by, and internal to, some inde-
pendent object 11 ncl may not be shared between independent objects. Dependent objects 
always accompany their enclosing independent object, when moved between locations in 
the decent.ra.lized system, and when read or written to secondary storage for persistence. 
The dependent objec~ are a simple and obvious way of clustering or statically grouping 
[Stamo84) objects around an independent object. The expensive identification scheme is 
only used for the independent objects. Dependent objects are addressed relative to their 
enclosing independent object. Reclaiming an iudepcndent object also means reclaiming 
all ils dependent objects. 

2This is similar to the maturing of objects done in the Smalltak LOOM [Kaehl86] . Although the LOOM 
does not support persistence with faul t tolerance it does provide a large non volatile memory. 

3 Independent objects are called "packets" and dependent objects are called "datatype values" in Avance. 
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We conclude that a large global identifier space is a feasible and appropriate way to 
manage both persistent and exported objects. Such an identification scheme can be used 
together with other forms of identification and addressing, for objects which are more 
constrained and less demanding in their use. 

2.4 Subdividing the garbage collection problem 

Garbage Collection methods. 

A great many algorithms have been presented for doing garbage collection. Perhaps the 
sim plest method is ref erence counting [Colli60, Cohen81J. Each object has a counter 
field which is incremented each time a reference to the object is created and decremented 
when a reference is destroyed. When the count reaches zero the object can be reclaimed. 
Reference counting has the advantage that it does not require application processing to 
stop. It has the disadvantage that it does not reclaim cyclic garbage, that it requires 
space for the counter in each object, and that it has unpredictable short term overhead. 
Removal of the last reference to a large aggregate causes a cascade of activity. 

Another meLhod is ma.rk a.n d scan [Knuth68, Cohen81] . In a first phase a traversal 
is made of the object-refeL·encc graph starting at a root object. Each object which is 
reached is marked. In a second phase the memory is scanned and every unmarked 
object is reclaimed. The major disadvantage with the mark and scan approach is that 
application processing must stop during garbage collection. It has the advantage that it 
has no overhead during normal operation and that it reclaims cyclic garbage. Refinements 
of mark & scan have been made to allow it to run in parallel with application processing 
(Dijks78]. Of course it then does have overhead during normal operation. 

A copying collector (Fenic69, Cohen81] can be seen as a refinement of mark and 
scan. Instead of marking, objects are copied from a from-3pace to a to-3pace. Instead 
of scanning the memory for unmarked objects, the roles of from-space and to-space 
are interchanged. Copying collection compacts allocated memory as a side effect. The 
basic copying approach suffers from the same problem as mark & scan of requiring 
application processing to stop while the garbage collector is runing. Refinements of the 
copying approach have been made to make the copying incremental (Baker78]. Instead 
of having one long interruption of application processing where the complete graph is 
copied, several short interruptions are made and only a few objects are copied at each 
time. 

Many Smalltalk systems use a method called generation scavenging for;_ garbage col-
lection [Ungar84, Liebe83]. This method, which is a refinement of copying garbage 
collection, capitalizes on the knowledge that most objects either "die young" or live very 
long. If an object has survived a sufficient number of cycles of the garbage collection 
mechanism it is moved to a separate address space called old-apace. Objects in old-space 
are ignored by the regular garbage collector. The old-space is garbage collected sepa-
rately and as infrequently as possible. The reason being that it will generally be very 
large and therefore garbage collection will take a long time and cause a lot of paging 
activity. On the other hand, not collecting the old-space when there is much garbage 
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will also slow down normal processing, because of increased paging due to fragmentation 
of virtual memory [Ungar88]. 

It is not strictly necessary that old-space (or at least not all of it) be a paging virtual 
memory segment. If old-space is a multilevel address space, where objects are swapved 
in and out of virtual memory, then the problem of the old-space fragmenting a paged 
virtual memory disappears. Garbage collecting the old-space can then be postponed until 
we need to reclaim secondary storage. Such a hybrid approach using both paging virtual 
memory and object swapping has been proposed by Ballard and Shirron [Balla83]. 

The old-space is similar ,to a space of persistent objects because both contain "long 
lived" objects. They are not exactly the same since objects are placed in the old-space 
not because of fault tolerance reasons but because the primary garbage collector wants 
not to be bothered with them. If one unifies the old-space with a persistent space then 
objects should be allowed to be moved to this space either prematurely by the garbage 
collector, or by other parts of the system (i.e. the transaction manager) for fault tolerance 
reasons. 

Garbage Collection of Secondary Storage 

Reference counting is in general not appropriate for secondary storage address spaces. An 
update of an object changing a reference from pointing to one object to point to another 
will have to update three objects instead of one [Butle87], because reference counts have 
to be updated in the objects pointed to. A delete will require all objects referenced. by 
the deleted OQject to be updated. Although it is true that reference counting is used 
in the Unix file syslem [llitch74), the objects (inodes) are in this case usually large and 
the fre<1uency of ci·eation and destruction of references low, compared to what one would 
expect for an object oriented system. Furthermore the graph does not contain cycles and 
the system is centralized. 4 

Cuvyiugcollection is suitable for garbage collecting address spaces based on secondary 
storage [But!e87, Kolod89]. Because it compacts and increases locality of reference, the 
number of disk accesses can be reduced. This is especially true for paged virtual memory 
address spaces, but also for segmented and multilevel add.ress spaces, since these also may 
use clustering techniques. Copying collection does fewer t.raversals of accessible objects 
than ma1·k and scan. This also i·educes the amount of p13:ging or swapping. 

As explained previously, doing parallel mark and.scan or incremental r.npying garbage 
collection avoids the problem of having to interrupt application processing. But even 
if application processing can continue in parallel when such an algorithm is used, a 
significant degradation of performance will be noticed while garbage collection is being 
done. In a study· made by Butler [Butle87] it is indicated that even the best alternative 
[Baker78] may increase paging by as much as 10 times. 

Garbage Collection of Decentralized Systems 

4More modern versions of Unix have "symbolic links" allowing cycles in the reference structure. But 
these are second class references and in fact not guaranteed to be valid. Several distributed versions of the 
Unix file system have also been built (Howar88, Svobo84] but they are decentralized on the granularity of 
a physical file system, i.e. mounted volume. Cross volume hard links are not allowed. 
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Most mechanisms designed for distributed systems should be applicable also for decen· 
tralized systems. However, if a mechanism infringes much on local autonomy, then it 
is prob<tbly not suitable. Using "naive" reference counting in a distributed system is 
certainly not appropriate, since many purely local operations (copying a reference) will 
require a remote access to update the count.er of the object. Another problem is that 
remote access cannot always be guaranteed. Although this does not have to affect the 
safety of t he mechanism, it complicates it. One of the adVlllltages of reference counting in 
a centnJized sys,tem is that it spreads out the overhead (not. necessarily evenly) over ap· 
plicat.ion processing. This may turn out to be a disadvantage in a decentralized system. 
Executing an application, iit one location may degrade performance at another location 
and possibly at Wlpredictable times. This is precisely the type of problem we \\'ant .to 
avoid when sLriving for autonomy. This problem may aJso be overcome, but it adds 
complexity. If cyclic garbage is to be reclaimed then we have yet another complication. 
Reference counting can no longer be seen as having an advantage of being simple in a 
distributed system. 

Using "naive" mark and scan is even less appropriate for decentralized systems since 
it requ.ires the whole system to s top. Using one of ~he parallel algori.thms for mark and 
scan is conceivable, but any method depending on a global scan certainly infringes on 
autonomy. So.me way of parti tioning the problem into more manageable parts is needed. 

Our approach 

It seams lo be lhe case, that if a system must maintain a large address (or identifier) 
space of objects, then the space should be partitioned, niultileveled or both, and garbage 
collection should be done at different times, with different frequencies, and probably with 
different algorithms for the different partitions or layers of the address space. 

We make the distinction between volatile and persistent objects and assume these 
reside in different address spaces. Volatile objects may become persistent by being moved 
to the persistent <1ddress space, but not vice versa. IL is probable but not certain tha.t an 
object which stays volatile will become garbage sooner than an object which has become 
persistent. 'We are not concerned with how the volatile space is garbage collected , but the 
persistent space could simultaneously be the old-space of a scavenging garbage collector 
for the volatile space. 

We assume that a global decentralized and persistent identifier space, as described 
in section 2.3, is used for both persistent and remote object referencing. The iden.tifier 
space should be thought of as pul'e and flat. At the very least we cannot assume that 
the identifiers contain any location information guaranteed to be valid. At each location 
in the decentralized system, identifiers a.re mapped to a local persistent address. We are 
not concerned in this paper with the details of this lookup operation. 5 We then take 
the approach that Moss advocates [Moss89) , of having a segmented and heterogeneous 
address space for persistent objects, but with the difference that we add a fiat identifier 
layer on top of it. 

As we have said, this means that any persistent object can be exported and that all 

5 It is of course crucial that the lookup operation is as fast as possible. Either hashing (Larso88} or 
indexing [Comer79] could be used. 
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exported objects also are persistent. Immediately making exported objects persistent 
increases the rate of generation of persistent garbage. If many exported objects are 
short lived, then this may cause the problem of increasing the frequency when secondary 
storage garbage collection is needed. We have two answers to this. 

First, if it is the case that secondary storage is quickly exhausted by large amounts 
of gaTbage caused by eicported objects being made persistent, then it suggests to us that 
there is something very strange or even wrong with either the application creating the 
objects, or the system structure. If objects are created, exported and then forgotten in 
large amounts then it seems better to communicate values instead of objects. If we define 
an object as a mapping from a fixed identity to a. changing state, then a value is simply a 
state, without any particular identity. Values can be copied but not shared since sharing 
requires identity. Once a value has been communicated from one location to another, 
the receiver can encapsulate it in a local volatile object, if sharing is really necessary 
locally. If an application requires large amounts of objects shared across locations and at 
the same time discards the objects quickly, then the decent.ralized system may not been 
structured in the best way. 

Second, since we have the additional level of indirection provided by an identifier to 
address mapping, we can use several different local persistent address spaces. If there 
are a fair amount of objects which are neither short-lived nor long-lived, then using a 
multilevel address space for them is probably better than a disciplined virtual memory 
address space. Having many garbage objects in a multilevel address space does not 
increase paging. Long-lived and eternal objects should be placed in a disciplined virtual 
memory partition since these, when they are not fragmented, are more efficient than 
multilevel spaces. 

, ,Ve admit however that there may be applications which need to create many shared 
and exported but short-lived objects. The addressing scheme and garbage collection 
u1ecl1anism we propose will not be appropriate for such applications. In the rest of 
the pnpcr when we speak of garbage collection we will mean garbage collection of the 
persistent and decentralized identifier space. 

Increased garbage on secondary storage is not the only problem resulting from making 
all exported objects persistent. It also reduces efficiency due to writes to secondary 
storage which ma.y have h1w.n unnecessary. We belie,,e the added ovcrhco.d is usually 
worth it. The ovl\rhc.'\d added because of persistence should be balllllced against the 
overhead and complexity of pl'Oviding an additional garbage collection mechanism for 
exported volntile ohjcct.s. 

Our Mechanism is based on the mark and scan approach. Instead of doing a global 
mark and scan and requiring the ;vhole system to stop, Wt <lu local mark and scans at 
each location. This means that each location has to stop application processi.ng to do 
local garbage collection, but not that the whole system has to stop at the same Lime. 
Objects which have been classified as exported and objects reachable from them are not 
garbage collected. A second part of the mechanism is devoted to un-classifying objects 
as exported so that they become local again and av-uilable for local garbage collection: 
The mechanism docs have some overhead <luring normal operation when messages are 
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sent to or from a node. There is no overhead during purely local processing. 

We use mark and scan instead of a copying collector because it is more general, i.e. it 
is applicable to a heterogeneous address space. Our mechanism could easily be adapted 
to use a copying collector foi: the local garbage collection. In section 5.4.S we sketch 
how this could be done. We use simple made and scan instead of a. parallel ma.i:k and 
scan because it is simpler and more efficient (but of course interferes with application 
processing). Simple mark and scan also bas the advantage that it ca.n be aborted at any 
time without any problems. We use a times tamp for marking so a new marking traversal 
will ignore marks from previous traversals. A paJ"allel mark and scan collector inevitably 
degrades application processing because it has to cooperate with the marking lra.versaL 
An incremental copying collector also deg<ades performance because forwarding pointers 
from the old-space to the new-space have to be used until the copying is finished. These 
problems are greater for secondary storage address spaces because accessing to secondary 
storage is more costly. In section 5.4.3 we also sketch how a a parallel or incremental 
collector could fit in our scheme. 

3 System model 

We first give a. short description of our system model and a list of assumptions. Following 
this there is a section with more detail on the reasons behind the assumptions. 

3.1 Summary of assumptions 

We model the decentralized system by a. set of node!, where each node contains persistent 
object3 and persistent rc.ferencc3 t.o objects. Both objects, and references to objects, may 
be moved between nodes. Each node has one or more root objectJ which are reachable 
by definition and which may not be moved. This is quite a general model and many 
existing systems fit this model [Lisko83, Shciv88, Marqu88, Bjorn88]. On top of this we 
make the assumptions listed below. They simplify the system and the garbage collection 
problem. We believe they are .reasonable assumptions. In other words the decentralized 
system and the garbage collection problem are not made trivial by the assumptions. 

• Users may only access objects by using references. 

• Only the system may create or copy references. 

• All references are globally valid. 

• Objects or references do not get lost as a result of failures in communication or of 
nodes. 

• Messages between nodes can be inspected by the system and references distin-
guished from other data. 

• An object resides at one node at a time. 
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• Objects have a timestamp associated with them indicating when they were last 
updated. . 

• If new nodes are added to the system, then all existing nodes must be informed 
before distributed garbage collection takes place. 

• It is always possible to distinguish a reference to a local object from a reference to 
a remote object, at least by doing a local lookup (dereferencing) of the object. 

• All nodes can stop normal processing at Jome time which does not mean that all 
nodes must be able to do this at the Jame time. 

• All objects, which have references to them from other nodes than the one where 
they are located, are persistent. 

3.2 Details of the system model 

Nodes are the autonomous locations of a decentralized system. Physical. distribution 
is n.ot essential for dece.nlralization, but we assume that in practice it will be the case. 
A consequence of this is that inter 11ode messages are assumed to cost much more than 
m.essages internal to a node. Autonomy is a relative term. We use this term to emphasize 
that a major goal of lhe system archi tecture is to ma....Omize the possible independence 
between nodes. But independen.ce is certainly nol the only goal. Another major goal is 
to support a great degree of interoperability between nodes. In other words, it should be 
as easy as possible to write applications which utilize the resources (objects) at several 
nodes. The architecture should guarantee that such applications can be executed without 
causing inconsistency, and also that they will make progress. 

Object Das"'u Syst"'ms 

The interoperability requirnment means that the nodes must compromise some of their 
1U1tonomy to be ab1e to cooperate. Not only do we require that all nodes be able to 
communicate with each other, we assume that all nodes run a homogeneous software 
platform called au object manager. Its main function is to manage the resources of a 
node and to cooperate with other nodes. Garbage collection is one of its functions. 
Although this software layer is b.omogeneous the hardware need not be .. In fact one of 
the goals of the object manager is to insulate applications from hardware dependencies. 
The objec~ manager can be compared to an operating system. It makes each node into 
a vlrtual machine. The reader can therefore think of nodes as physical machines in a 
distributed i;ystem. It should be remembered however that that nodes are logical entities. 
We want it to be relatively simple to move a node from one physical machine host to 
another and this is reflected in our use of a global object identification scheme. In the 
rest of the paper when we speak of "the system" this will mean either the object manage.r 
of one node, or the object managers of a.ii nodes working in,cooperation. 

We assume an object b43cd data model. In other words resources are objects which are 
instances of abstract data types. To access an object, an application needs a reference 
to that object. References are capabilities in the "operating systems" sense [Levy84). 
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Thus the application/user is not allowed to use a reference in any arbitrary way. What 
is i.mpo1·ront in Lliis paper is that references are the only way applications can ac<:ess 
objects and that refei:euces nre controlled by the object mannger(s). ln particular the 
system can distinguish between references and objects, and references may not be forged 
or copied. 

The object manager must be wcll behaved in the sense that it does not reconnect 
garbage. Any object which has become garbage will stay garbage until collected by our 
mechanism. This could be said to be one correctness invariant for the object manager. We 
make use of this invariant to avoid the need for exact synchronization in the· distributed 
mechanism. 

The object maiiager of a node maintains a secondary storage repository (or "data.base") 
for the persistent objects located at that node. These objects gen.erally contain refer-
ences, some of which refer to other local objects in the repository and some of which 
refer to objects at .othei· nodes. All the objects of the system and the references bet1veen 
them, form a large directed graph. References to remote objects are then edges comming 
from an object in one node and entering an object at another node. We assume that 
eacll node has at least one local persistent root object. A root object is any object which 
should never be reclaimed by the object manager. 

We assume that references lo objec:ts are globally valid, bohh in space and time. Th.is 
means we assume strong identity [Khosh86] for persistent objects and if a reference is 
communicated from one node to another then the receiving node can use the reference 
to operate on the object just as if the object resided locally. The object managers in 
cooperation make it possible to achieve both location transparency (under the autonomy 
restrictions particular to the nodes) and location visibility when this is desired. Given 
a reference, the 1nterpretation of that reference (the object it refers to) is independent 
of locatio11 context. Hence references, and objects which may contain references, can be 
passed between a.odes without any semantic problems. We also assume that a reference 
points to at most one object. A reference although not necessarily the same t.hing as an 
identifier [Steili89], can for the purposes of this paper be thought of as simply containing 
an object identifier. 

We ru;sume a transaction based model like that of Argus [Lisko83] or Camelot [Spect87] 
and that operations on remote objects are done using remote procedure calls [Spect82]. 
The transaction mechanism and the rpc communiaatioii mechanism are both part of the 
object manager. We assume that the object manager can inspect incoming and outgo-
ing messages and distinguish references from other data. The object manager has two 
"modes" of operation. During normal proce33ing transactions may be processed. Dur-
ing a qu.ieJcent 3t~tc there may be no transactions in progress. Although the quiescent 
state is uol necessarily static in the sense tbaL nothing is happening at t;he node, it is 
truly a state from the perspective of transaction mallagement. When a node is about 
to enter the quiescent st&te, the object manager refuses to accept new transactions and 
waits until all locally ongoing transactions have either committed or aborted. During 
the quiesce11t state, the local repository will be in a consistent state. We can ignore 
consistency problems which could be caused by comnlllnicatioos or node failures. Such 
problems are assumed to be taken care of by the transaction mechanism. Parts of the 
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garbage collection processing is done in the quiescent state. Other I.asks such, such as 
reorganization and compaction of the repository may also be done in the quiescent state. 
All such operations must maintain the consistency of the repository. We assume that all 
nodes on a regular basis are able to enter the quiescent state. This does not mean that 
all nodes must be able to do this at the same time. 

When an object is created by some transaction it is initially volatile. The object 
becomes persistent if a reference to it is inserted in an already persistent object by some 
operation and the transaction in which the operation participates commits. We also 
assume that all objects which are known by more than one node are persistent. This 
means that if a reference to an object is exported, then the object must become persistent 
if it was not al.ready. 

The existence of both volatile and persistent objects complicates the global object.-
reference graph.. We defined a node being in the quiescent state as there not being any 
transactions in progress locally. We need in fact to have a stronger definition of the 
quiescent state than this. During the quiescent state we require also that there eicist no 
local volatile object~ referencing persistent objects. Otherwise we could have persistent 
objects which are not reachable from any persistent root yet reachable from a volatile 
object. Such an object could be used to reconnect p&-sistent objects to the rooted graph 
in a transaction after the quiescent state. If p~istent threads are allowed then we could 
have suspended tlueads which survive through the quiescent period. All such threads 
must then be regarded as root objects. 

The object manager ma.y use stubs to represent remote objects. An object stub is 
not an object. It should be seen more as an object header, invisible to applications, 
and used by the object manager for bookkee.ping purposes. For example it could contain 
information hinting at the real object's location. There is an important difference between 
stubs in our system model and proxys in many of the implementations of distributed 
Smalll.ti.ll [Do:cou86, Benne87, Schel88). A proxy is reached using a local address and 
encapsulates the location and address (or identifier) of the remote object. A stub in our 
model is reached using the ~ame global identifier as the real object. We do not require that 
stubs always exist for all remote objects referenced by a node, because this would cause 
much overhead. But if and when stubs are used then our garbage collection mechanism 
will take advantage of their existence and will also perform garbage collection of them. 
We assume that it is always possible to distinguish remote objects from local, even if 
there are no stubs for some or all of Uie remote objects. When the object manager does 
a lookup using a reference H will either hit a local object, a stub representing a remote 
object, o.r it will fault in which case all the object manager knows is that the object does 
not reside locally. The use of stubs in certain parts of our mechanism should not be seen 
as overhead caused by the gar·bag~ collection mechanism. 

An object resides at one node at a time. Objects may move from one node to another 
as part of a transaction. Replicas of an object could also be allowed as long as the location 
of the odginol is well defined and updates are coordinated by that node. Replicas may 
be seen as just e""tcnded stubs. 

Each object contains a timestamp indicating when, in terms of local host time, the 
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object was last updated. T his is not a very strong assumption. Most general computer 
systems today have a system clock accessible to applications. Note also that we only 
require updates to be time-stamped, not read accesses, and that no synchronization of 
clocks between nodes is required. 

We assume that each node knows of the existence of all other nodes. New nodes 
may be added dynamically to the system, but our mechanism for detecting distrjbuted 
garbage will only work properly when all other nodes have been informed of the new 
nodes existence. 6 

4 Requirements on the garbage collection mecha-
nism 

We say that an object x is reachable from an object y if either y contains a reference to 
x or if x is reachable from another object z and y contains a reference to z. An object is 
said to be globally reachable if it is reachable from a root object on some node. Objects 
which are not globally reachable are called garbage. We may also say that an object is 
locally reachable with respect to some node, if the object is reachable from a root object 
at that node using only the objects and references known at that node. Note that an 
object which is locally reachable with respect to a node does not have to reside at the 
node, although some object at the node must have a direct reference to it. 

The purpose of the garbage collection mechanism is to detect garbage and to remove 
it, i.e. reclaim the resources occupied by the garbage. In our case the resource is mainly 
space on secondary storage. There are two correctness criteria which are required from a 
garbage collection mechanism (Manci88]. 7 The first is that any object which is globally 
reachable must not be classified as garbage and collected. This may be called the safety 
property. The second is that any object which is not globally reachable, i.e. garbage, 
should be identified as garbage within some definite and specified upper bound in terms 
of time or processing. In our case the upper bound will be "two cycles of the collection 
mechanism." This may be called the liveness property. Among other things this means 
that cyclic garbage whether distributed or not must be detected. 

The garbage collection mechanism we propose should satisfy the two criteria. This 
does not mean that the object manager taken in a broader perspective has to satisfy 
them. Both of the properties can be relaxed by the object manager. Relaxing the 
liveness property means that one is willing to accept that some garbage might never be 
collected, at least by this mechanism. Relaxing the safety property is only acceptable if 
object identifiers are not reused, so that at least it is possible to detect a reference to a 
nonexistent object. Either of these or both allow for reducing the execution cost of the 
mechanism and for increased autonomy of nodes. We will return to this possibility in 

6 New nodes should not be added to the system during phases 5-7 of the garbage collection mechanism 
(see s.xt.ion 5.2.2). 

7 NoLe that the definition of these properties in [Manci88) is in t.erms of reference counts. Since we 
are using a mark and scan scheme instead of a reference counting scheme, our definition is in terms of 
reachability. 
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section 5.4. 

ln addition to the two correctness criteria there are some properties which we desire the 
mechanism to have. 

1. It should be possible to detect some garbage on a purely local basis. 

2. It must allow the disruptive quiescent state to be entered at different times for 
different nodes. 

3. It should have as little overhead as possible during normal operation. 

4. It should require as few messages as possible. 

5. It should be possible to turn it off completely for some time and then resume, 
without violating the two correctness criteria. 

6. It should only try to collect garbage residing locally. 

7. Objects must be able to move from one node to another. 

5 A garbage collection mechanism 

We will first give an outline of the mechanism. We will then explain the mechanism in 
detail under two simplifying assumptioru;: 

1. Our mechanism has not been turned off. In other words requirement 5 has not 
been exercised. 

2. All nodes go into the quiescent state and do garbage collection processing at the 
.rnm.P. 9lnh11.l nn.l tim.~ Tn nt.hP.r wnrns rPfp1i r-P.mAnt. ?. is nnt. Pnfnrr.P.n. 

These are not assumptions we want to maintain. They are only made to simplify the 
explanation of our mechanism. After this we describe the moclification to the mechanism 
so that we can drop the assumptions. 

5.1 An outline of the mechanism 

Thi! gencmi.I i<l P.n of !.h .. moch>1.nism is ,._q follows. E11r.h node cloes its own local ~earch for 
garbage, producing an iniLial sel of candidates for collection consisting of objects which 
are not locally reachable. Each node also maintains some information making it possible 
to locally identify a subset of the set of candidates which are globally um;eachable. This 
subset can be reclaimed without consulting other nodes. Thi; remainder of the set consists 
of objects which arc not locaUy reachable, but which may be globally reachable. This first. 
part of the mechanism l).Jld the garbage collection made possible by it, is done whenever 
the administrator of the node finds it convenient, independently of other nodes. This is 
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one of the desirable properties mentioned earlier (1). It is then possible for a node to do 
local garbage collection to free resources as often as needed. 

The next step is the generation of the external reachability me3Jage or ERM for short. 
This message contains two parts: 

1. The references to objects at other nodes which are locally reachable on this node. 

2. A set of pairs of references: The first being a reference (entry point) to a local 
object which is not locally reachable but may be globally reachable. The second 
being a reference to an object at another node which is not locally reachable, but 
is reachable from the first object. 

The ERM contains all information concerned with which objects outside of the node 
are referenced from the node. The first part contains references rooted at the node, the 
second part paths "passing through" the node. 

The ERM of a node is made available (broadcast in one way or other) to all other 
nodes. This means that, after a while a node will have received the ERM of all other 
nodes. When this is the case, a node has all information it needs to obtain a view of 
the global object-reference graph, except for one problem. The problem is due to the 
movement of references dw·ing the construction of the ERM's of the other nodes. Since· 
the construction of the ERMs is not synchronized, references (or objects) may move in 
a way so that they are not reflected in any ERM. 

We solve this problem by obtaining information from each node on which references 
have moved since the ERM of lhat node was generated. This information we call the 
moved references message (MR?vI). The MRM of each. node must be collected after the 
ERMs have been received from all nodes. This is how synchronization is achieved in the 
algorithm. We know that all the ERMs were made before any of the MRMs This has the 
effect that any reference which has moved will appear in some MRM. The MRM is also 
exchanged between all nodes. Any local object having a reference in the MRM from some 
node will not be reclaimed. Since garbage does not move it will never appear in an MRM. 
When both the ERMs and the MRMs have been received from all other nodes then each 
node has enough information to detect objects which have been globally unreachable 
since just before the generation of the ERM. Any such objects residing locally are made 
available for reclamation in the local garbage coUection part of the next cycle of the 
mechanism. 

5.2 The mechanism in detail 

Raving the perspective of one node, let us call the set of all objects which either reside 
in the local repository or which reside at some other node but have a. reference to them 
in the local repository, for Known, (see figure 1). This set in general includes garbage 
objects. 

Our mechanism needs to partition Known into three subsets: Local, Export and 
Import. The Import set is the set of objects not located at this node but which this 
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node has references to. The Export set is the set of objects located at this node which 
could be directly referenced from other nodes. In other words at some time, for each 
object in Export, a message containing a reference to that object has been sent to 
another node. The Local set is the set of objects Joca.ted at this node which cannot 
be directly referenced from other nodes. The idea of keeping track of which objects are 
exported and imported we have obtained from Mancini and Shrivastava [Manci88] . 

MLocal 

MUlmport 

Splitting Lhe set of objeclS known at a node 
into subsets based on reachabilhy. 

D Means locally reachable. 

. 
UUlmport 

D Means globally unreachable on local basis .. 

* Means relevant for disLributed GC. 

Figure 1 

It should be clear to the reader that Local, Export and Import are disjoint. T he 
Import set can easily be identified during t he first processing phase of our mechanism. 
I.f stubs are maintained for normal processing then. the set consists of all stubs. Otherwise 
we can. assume that any reference which cannot be resolved locally is a reference to ~ 
object located elsewhere, and hence that object is a member of Import. 
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To differentiate between the Local and Export sets requires additional information. 
II we simply allow any messages containing references to pass out to other nodes without 
control, then Export becomes identical to all objects residing at the node, an.cl Local 
becomes the empty set. The advantage of allowing this is that the node can operate with-
out any overhead (for garbage collection ·or persistent objects) du.ring normal operation. 
There a.re two disadvantages: First, and most importantly, we can do very little local 
ga.rbage collection of persistent objects without consultin·g all oilier nodes. Only stubs 
which a.re not reachable from any other object residing at the node can be removed (the 
UUimport set, explained below). Second, the ERM message, in particular the second 
part, can become much larger. This is because now all local objects which are not locally 
reachable must be considered as potentially globally reachable. Still, this solution might 
be preferable in some systems, where it is desired to keep the over.head during normal 
operation at a minimum. Our mechanism .is also consistent with 'this possibility, it simply 
means that Local is empty. One can achieve a greater degree of autonomy with respect 
to garbage collection, at the cost of some o\·erhead dur.ing normal operation. 

Given that we can dist.inguish between Expo1·t1 Import and Local, our mechanism 
works by forU1er subclividing these sets. First a marking is done from the local persistent 
roots, splitting the three sets into six sets, (see figure 1). Then a second marking is done 
using the members of Export which were not marked by the first marking (UExport) 
as roots. This second marking spHts the other two sets of objects unmarked by the firs.t 
marking (ULocal and ULnport) into four sets. The identification of these subsets is 
the basis of our garbage collection mechanism. 

5.2.1 The Export-Import list 

As in (Manci88] we keep track of which objects have references to them exported or 
imported. While Mancini and Shrivastava have two lists we only have one list, but 
iufonnation is kept with each entry in the list as to whether it represents an import or 
ell.-port of an object. We will call th.iB list the EI-list. The object managers maintain the 
El-list during normal operation. 

Every outgoing or incoming message has to be checked for references not already 
in the list. When such references are found they have to be added to the list. Each 
El-list entry consists of three parts. The refecence (identifier) itself, which is used as 

· the lookup key; a timestamp showing when the reference was added to the list; ·and an 
export/import indicator which indicates whether ilie reference points to a member of 
Export, Import or "not known." 

Because we are talking about persistent objects and persistent references, this list 
also has to be maintained persistently. Furthermore, some operations which previously 
were pure functions (side effect free) may now have side effects. 

The maintenance of the EI-list interacts with the distributed transaction mechanism 
of the system. Since the maintenance of the EI-list is don.e by and for the object ma.nag~, 
we do not require full update atomicity. We do not require aborted transactions to 
backout effects on the EI-lists. If messages which are part of an aborted transaction have 
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caused some additions to the El-lists of one or more nodes, then this is not a consistency 
problem. H just means that we are overly conservative and that some gubage may 
not be recognized as such as early as was otherwise possible. The garbage collection 
mechanism regularly purges the EI-list. This will not only clean up the effects of a.boded 
transactions, but more generally remove references which might have been e.xported but 
which are in fact not referenced by other nodes any more. 

On the other hand we do require that for a transaction to commit, any effects it 
has had on EI-lists have been made non-volatile. We will return to the issue of how to 
efficiently implement t.he El-list in section 5.4.1. 

Since both incoming and outgoing messages are scanned, and since the EI-list is 
maintained as one list, imported references which are reexported will be found already 
on the list. The same holds for exported references which are reimported. We want to 
avoid doin.g actual object lookups when a reference is to be added to the EI- list during 
normal operation. This might be needed to determine if the reference was to ai:t imported 
or exported object. Instead we assume that if a reference is added to the EI-list as part 
of an outgoing message t.hen it points to an object in Export and set the export/import 
inclicator of the EI-list entry to be added to "export." For references added as part of 
incoming messages we set the indkator to "import." The export/import inclicators in 
the EI~list will be consistent with Export and lrnport as long as objects do not move 
and if the El-list is continuously maintained, i.e. requirement 5 is not exercised. The 
last is one of the simplifying assumptions which we remove later (see section 5.3.1). The 
movement of objects is handled by setting the indicator to "unknown" at both the source 
and destination nodes. Moving an object from one node to another is an operation which 
like other application operations must be part of a transaction. Agrun, this means that 
an aborted move will not w1do the "unknown" setting of the expo.d/impod indicator, 
but a committed move must have made this setting persistent. 

Figure 2 shows a system consisting of four nodes and a number of objects distributed 
over the nodes und referencing each other. Root objects llnve a reference (arrow) from 
the node border. Taking node 3 (N3) as the basis we see that Export consists of 3, 4 
and 7. These objects are referenced from other nodes. Import consists of 2 10 12 and 
14 since objects at N3 have references to these objc::ct.s ori oilier nodes. We can assume 
that these objects are represented by stu.bs on N3. In the figure, the small circles on the 
border of a node represent stubs. Local will then consist of 5, 6, 8 and 9. 

5.2.2 Processing for secondary storage garbage collection. 

Besides the maintenance of an. EI-list during normal processing, the garbage collection 
mechanism consists of seven phases. The fust three phases need to be rnn when a node 
is in the quiescent state. Phases 4-7 could all be run in parallel with normal operation, 
but only phase 5 needs to be run in parallel. The administrator of a node then bas some 
freedom of choice on whether to minimize the time of int~rruption of normal operation 
that the quiescent state causes, or to minimize the overhead of the garbage collection 
mec.hanisw during normal operation. 
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Export=3 4 7 

Import= 2 10 12 14 

Local=5 6 8 9 

Phase 1: Marking from roots 

297 

Figure 2 

This phase is executed whc1.1 the node is in a quiescent state. It consists of the marking 
phase of the standard mnrk & scan. We assume that the repository and the EI-list of the 
objec~ manager is not being modified by anything but the =king traversal. Starting 
a traversal at the local root object(s), all objects reachable from the roots are marked. 
The traversal stops at remote references, i.e. only a local traversal is made. We use 
the update timestamp 6cld of each object for marking and use the Lime when phase 1 
started as !.he marking. When a remote reference is found, the st~1b is marked if jt exists. 
ln addition, the remote reference is looked up in the EI-list and jts timestamp is also 
marked, (if the ex'}Jort/import indicator indicates "unkn.own" it is set to "import"). 

The three sets Export, Import and L_ocaJ are each split in two {see figure 1). The 
objects which arc marked by this first phase are trivially globally reachable since they 
Me locally re<\chable. Any garbage located at this uode must be a member of one of the 
three sets of unmar.ked objects UExport, Ulmport and ULocal. Figure 3 illustrates 
the effect of the first phase on our example. 
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Export=3 4 7 

Import = 2 10 12 14 

Local = 5 6 8 9 

MExport=7 

UExport=3 4 

Mlmport = 10 12 

Ulmporl = 2 14 

MLoca! = 8 9 

ULocal = 5 6 

Figure 3 
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Phase 2: Marking from members of UExport 

The second phase is also run during the quiescent state of the node. The EI-list is 
scanned at the same time as it is updated. Each reference will be either unmarked (have 
an old timestamp), be marked by phase 1, or be marked by this phase (phase 2). Only 
remote (imported) refere.nces in the EI-list are marked by either phase 1 or 2. Different 
actions are taken ior each EI-list entry depending on its contents. 

For entries found with the import/export indicator set to "unknown" an object lookup 
is made to determine the proper setting. Processing then continues according to whether 
the setting is "export" or "import." 

An exported reference is looked up to see if the object in the repository was marked 
or not in phase 1. If the cxportc<l object is marked then it is a member of MExport 
and the EI-list entry is skipped, i.e. prncessing continues wiili the next El-list entry. If 
the exported object was not marked then the object is a member of UExport and it is 
used (immediately before continuing the scitn of the EI-list) as the root for a marking 
traversal. This marking traversal starts by marking the exported object, and not the 
reference in the EI-list. 

Imported references found during the scan of the EI-list are not looked up in the 
repository. Imported references marked in phase 1 correspond to Mimport and are 
appended to a list which we will call ERM-1. This list will contain all references to 
remote objects rooted at this node. Imported references which are unmarked correspond 
to Uimport and are skipped. Imported references marked by this phase correspond to 
the MUimport subset of Ulmport and are also skipped. 

The marking traversals in this phase start from the members of UExport as they 
are found during the scan of the EI-list. Each such traversal uses a new timestamp which 
we asswne is different and later than both the mark of phase 1, and marks obtained for 
traversals for previously found members of UExport. 

Tlle marking traversals in phase 2, like the traversal in phase 1, stops at remote 
references and at objects already marked in phase 1. It does not stop at objects marked 
by previous traversals of phase 2. This is why eac.h traversal in phase 2 must obtain a 
new timesta.mp, otherwise we would risk that the tra:versal di.d not te:aninate. When 
remote references are found during a. traversal in the repository, their entry in the EI-list 
is looked up and marked if it was not already marked in phase 1 or 2. Since only remote 
references in the EI-list which were not marked by phase 1 are marked by phase 2, they 
correspond to the MUimport subset of Uimport (see fig 1). 

This second marking divides ULocal into MULocal and UULocal (in the repos-
itory), and Uimport into MUimport and UUimport (in the EI-list). Figure 4 
illustrates the result of the second phase. Marking in this case started from 3 and 4. 

During the traversals of phase 2, whenever a member of MUimport is reached, 
i.e. a remote reference in the EI-list which is not marked by phase 1, then a pair of 
references is added to a new list which we will call ERM-2. The pair consists of a 
reference to the member of UExport which the current traversal started with, and a 
reference corresponding to the member of MUimport which has been reached. The 
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ERJvI-2 list will consist of all "paths" through the node whlch are not rooted at the 
node. Both the ER.M-1 and ERM-2 lists are saved to secondary storage once phase 2 is 
completed. 

When the scan of the EI-list has completed then: 

All entries with an export/import indication of "unknown" have been corrected to 
either "export" or "import." 

All "import" entries marked by phase 1 can be found in ERM-1 

All "import" entries marked by phase 2 can be found as the second component in 
at least one entry-exit pair appended to ERM-2. 

No "export" entries were marked by either phase 1 or 2. 

It should be obvious that the members of UULocal are garbage. They are obviously not 
locally reachable since they were not marked in the first phase. They ·are not reachable 
Crom any othe·r node either and hence not globally reachable, since anything reachable 
from anothe1: no<le has to be reachable from an exported object, and should then have 
been marked in the second phase. UUlmport can also be used to reclaim resources, 
namely stubs and EI-list entries. Members of UUlmport are remote objects which 
currently cannot be reached by or through this node and hence all information related 
to them can be removed from the node. However this has to be done (in the next 
phase) before resumption of normal processing. The reason is because the members of 
UUlmport do not reside at this node and so they might actually be reachable from 
other nodes and could become reachable again at this node once normal processing 
starts. A removal of stubs and references in the EI-list corresponding to UUlmpor t 
could therefore conflict with operations during normal processing. 

Phase 3: Collecting UUlmport references from the EI-list 

The third phase is also run in the quiescent state. The EI-list is scanned a second time 
to remove references to UUimport. Any reference with the export-import indicator set 
to "import" and with a timestamp from before phase 1 can be deleted. 

For each reference to UUlmport deleted from the EI-list, the corresponding stub 
(if there is one) in the repository is either deleted now or made into a "tombstone" for 
delete in phase 4. 8 In the example (figure 4) the EI-list entry and stub for the object 
2 in UUl mport can be collected. It is possible to skip this phase without violating 
the liveness requirement. This phase does not remove garbage. It only removes remote 
references which are not currently used locally. This will reduce the size of the EI-list. 
References in the EI-list to garbage will be removed in phase 7. 

Phase 4: Collecting UULocal 

This phase can be described as the scan phase of the standard mark and scan algorithm. 
An exhaustive search of the repository is made looking for objects having a timestamp 

8 !f the scan in phase 4 is done during the quiescent state then stubs need not be marked as tombstones. 
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from before the mark of phase 1. Members of UULocal (and possibly tombstone stubs 
in UUimport) have an old update stamp associated with the object in the repository. 

If the node goes into normal operation after phase 3 has completed, but before phase 
4 (this phase) has completed, then we have to be careful not to regard new or moved 
objects as garbage. Objects created, updated or moved to the node after the quiescent 
state will have a timestamp after that of phase 2 and so will not be reclaimed. 

We have thus identified some garbage on a purely local basis, without consulting 
other nodes. This phase could be run either directly after the other three during the 
quiescent state of the node, or in parallel with normal operation. Since timestamps are 
used as the markii~g "colors," phase 3 could even be run in parallel with phases 1 and 2 
of later cycles of the mechanism. 9 

The reason that phase 4 can be run in parallel with normal operation is the axiom 
that says: "garbage stays garbage." Anything which has become globally unreachable 
cannot be reconnected if the object manager is working correctly. 

In the example (figure 4) the object 5 in UULocal can be collected. 

Phases 1 to 4 could be cycled several times without the following phases as need arises 
to reclaim resources. 

The following phases are all concerned with detecting garbage on a global basis and 
purging the EI-list so that the garbage becomes locally identifiable and collected in phase 
4. 

Phase 5: Creating and exchanging the ERM 

The ERM consists of two parts ERM-1 and ERM-2, both generated in phase 2. Phase 
5 consists of the exchange of the ERMs between all nodes. This node's ERM should be 
communicated to all other nodes and the ERMs of all other nodes should be received 
by this node, sooner or later. This phase could start when the node is in the quiescent 
state, but will normally need to continue during normal operation of the node. The 
reason being that it may take a long time before the ERMs from all other nodes can be 
obtained. 

Because our mechanism is cyclic there is a need to be able to identify which cycle 
a particular ERM helongs to. We therefore assume that an ERM gcncrntion number is 
maintained at all nodes and that this number is incremented and added to the ERM when 
it is generated. Only pbase 5 increments the generation number. Several cycles of phases 
1-4 ai:e possible .in the same ER?vl generation. Once a node has communicated its own 
ERM of a certain generation to any other node then it has committed that generation. 
If it later sends an ERM with the same generation number to any other no<lP., then it. 
must be the same ERM. 

The ERMs received from the other nodes will usually contain some references to 
objects located at other nodes and unknown to this node. The receiving node doel! 

9 Running phase 3 in parallel with phase 3 of the next cycle of the mechanism is pointless and could 
cause consistency problems depending on the storage organization. Phase 3 of a later cycle will reclaim 
any garbage which should have been reclaimed by phase 3 of an earlier cycle. 
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not attempt to produce entries in the EI- list (w· stubs) for new references found in the 
ER.Ms. The object manager recognfaes the ER.i\1s as bcin.g special and not part of normal 
processing. Although it would not cause inconsistency if new references imported wi th 
ERlv!s are added to the local EI-list, it could cause the EI-list to be wwecessarily large. 
Phase 6: Traversing the global graph 

Once a node has received all the ER.Ms of the latest generation from all other nodes it has 
sufficient information to obtain a view of the global graph. We remind of the temporary 
simplifying assumption that all nodes entered the quiescent state and did phases 1-3 at 
the same time. Synchronizing the generation of the ER.Ms in this way has the effect that 
all the ER.Ms taken together reflect a consistent global state of the system. 

Figure 5 shows the Efu\l[s produced at the four nodes in the example. When the node 
N3 has received the ER.Ms from Nl, N2 and N4 it can reconstruct a view of the global 
object-reference graph. It is not a complete view of the global graph since only members 
of Export and Import are visible. Figure 6 illustrates how the global graph appears 
when constructed from the ER.Ms. 

A third marking traversal is now made. This traversal does not actually traverse 
objects in the repository. Only the ER.Ms, or a graph structure constructed from ~hem, 
is used. 

The traversal starts with the members of the ERM-1 parts of all ER.Ms as roots and 
continues using the paths found in the ERM-2 parts. The traversal stops when marked 
entries are found or when no more paths wi th a matching entry reference are found in 
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the ERM-2s. 

Looking at figure 5 and 6. The traversal starts with objects 2, 7, 10 and 12 since these 
are the references present in the ERM-ls. The traversal from 2 will mark the entries 2,3,4 
and 14. Trnversals starting with 7,10 and 12 will only mark these. In the examplt:, nu 
global garbage is detected. 

If we go back to figure 4 and assume that. there was no reference from object 15 t.o 
14 at node N2, then we sec that objects 14, 16, 2, 3, 6 and 4 now become garbage. Tl:iis 
would not have affcde<l phases 1-4. In phase 5 the altered ERM received from node N2 
is shown in the top of figure 7. In other words, instead of a rooted reference to 2 in the 
ERM-1, we get a path 14 -> 2 in ERM-2. Figure 7 also shows the global view given by 
the ERMs. 

Phase 7: Removing references to garbage from the EI-list 

This phase is similar to phase 3 but can be run concurrently with normal processing 
because we are only rem.oving garbage Any reference which according to phase 6 is 
garbage is looked up in the El-list and removed. II the reference is .remote then a lookup 
is made to see iI if; l1as a stub. If there is a stub it is made into a tombstone for remova.l 
in phase 4 of the nc.'l:t. cyole. 

In the modified example shown in figure 7, the members of Export 3 and 4 at N3 
can have their entries cleared from the EI-list. This effectively moves them from Export 
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to Local and they will be collected as members of UULocal in the next cycle, (in fact 
the local object 6 will also be collectec!). The member of Import 14 is also removed 
from the El-List. If phase 3 was skipped then the entry and stub for 2 will be removed 
now instead. 

5.3 Dropping the simplifying assumptions 

5.3.1 Interrupting the maintenance of the EI-list 

The ma.intenance of the EI-list is the only major overhead of our mechanism during nor-
mal operation. Overhead is only incurred when messages containing references are being 
exchanged between nodes. It miglrt be desired to turn of the maintenance of the EI-list 
for some time to have greater performance. If the EI-list is not .maintained while mes-
sages are sent and received from a node, then refez·ences may be exported and imported 
without being recorded in the EI-list. Ii no other information is kept then this means that 
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we must tegard all objects rcsirung at the node as members of Export. The EI-list must 
also be regenerated from the repository. H the l.Frlist maint.enance is turned off then it 
is advisable that at least stubs are maintained for all remole references. Otherwise the 
regeneration of the El-list becomes prohibitively eiq>ensive, if the repository is large. So, 
even if our mechanism does not depend on the maintenance of stubs. as part of normal 
processing, if requirement 5 is to be exercised then stubs are needed. 

Phase 0: Regenerating the EI-list 

This phase can be run in parallel with normal operation. This phase is only necessary 
if the maintenance of the EI-list has been turned of for a period of time when messages 
which may have contained references have been e.xchanged. We assume that the main-
tenance of the EI-list has been tw·ned on again. Auy l'eferences added to the EI-list as a 
consequence of message traffic, after maintenance has been turned on but before phase 0 
has completed will get the export/import marking set to "unknown." Such entries will 
be corrected in phase 2. Phase 0 must be complet.ed before phase 1 can start. 

A complete (read-only) scan is made of all objects in the repository. All objects found 
are looked up in the EI-list using the object identifier. If an entry for a reference to t)le 
object does not exist then an entry is made to the EI-list and marked as "export." If it 
is certain that stubs have been added for all references which have been imported while 
the EI-list was not maintained, lhen lookups in the EI-list are also made :for all stubs 
found in the repository. If a..n entry for a reference to the stub does not exist then an 
entry is made to the EI-list and marked as '' import." lf stubs have not been created for 
all new references imported whlle the EI-list was not maintained, then e11ery reference 
of every object has to be checked to see 1£ it is a remote or local reference, and if remote 
looked up in the El-list and possibly added to it. 

5.3.2 Dropping the synchronized start assumption 

The synchronized start assumption ensures that the ERMs reflect a consistent static 
snapshot of the system. If we drop this assumption, in other words if the nodes enter the 
quiescent state and execute phase 1-3 at different times, then we need to cope with the 
problem of referenr.f'.~ "moving" between nodes. By a reference moving from one node 
to another we really mean that the reference is copied to a node where the object was 
previously not imported, and deleted at a node where it previously was imported. ·we 
note that moving objects is not a problem, as was explained for phase 4. Any moved 
object will have a new timestamp at the receiving node and so will not be collected by 
phase 4. Of course an object which moves may move references, but this then reducf'.!< 
to the moving reference problem. 

The following small example illustrates the problem. Assume that some object x 
is reachable from some node A and not reachable from another node B. The object x 
could reside at any node in the system including A itself. Some other node B enters the 
quiescent state and generates its ERM. After B resumes normal operation, a transaction · 
is executed which makes x reachable from B but unreachable from A. Now A enters the 
quiescent state and generates its ERM. We now have a situation where x is reachable 



A.Bjornerstedt 307 

but this is not reflected in either of the ERMs. The ERM of B docs not reflect it because 
it was generated before the reference to x was received. The ERM of A docs not reflect 
it because it was generated after the refere.nce to x was removed. If we do garbage 
collection based on only these ERMs then x may be removed despite the fact that it is 
reachable, violating the safety property. 

Our solution requires a slight modification of how the El-list is maintained. In section 
4.2.l it was said t.bat only references not found already on ~be list were added to the 
list. '.Ve now modify the behavior in the following way; During phase 4--5, i.e. after 
the quiescent state and until lhe end of phase S, outgoing messages not only add new 
references lo the E!-list, but any reference already on \he list with a timestamp before 
phase 1 will get the timestamp updated to current time. 

The effect of this is that we keep track of which references have passed out from 
the node since normal processing resumed. All nodes do this until the ERM has been 
received from all other nodes. This ensures that ony reference moved after any of the 
ERMs was generated il1ust be recorded in some llffiM, because it must have been part 
of an outgoing message at some node. We split phase Sin two and change phases 6 and 
7. Phase Sa is the same as phase S previously, (exchanging the ERM). Phase Sb is as 
follows: 

Phase Sb: exchanging the MRM 

Once the ERMs of all other nodes have been received by a node (phase Sa finished at 
the node) it can start phase 5b. A·scan of the El-list is done (in parallel with normal 
operation) and any reference found with a timestamp after phase 2 is added to a moved 
refe1·cnces message (MRM). 10 After the MRM has been generated it is broadcast to 
other nodes in the same way as the ERM. Once the MnMs of all other nodes have been 
received phase 5b is finished. 

Changes to phase 6 

In phase 6 we make two changes. First the MRMs are considered as additions to the 
ERM-ls. This means that any reference which bas moved since the generation of the 
ERMs is considered as rooted. This is a conservative approach and guarantees that we 
do not violate the safety property. Liveness is guaranteed by the fact that garbage does 
not move, since no thread can reach it, and hence cannot have references to it end up in 
the MRMs. 

The sccond change to phase 6 is that when we do the traversal, whenever a reference 
is traversed it is looked up in the El-1.ist and marked. We may in fact use the EI-list to 
represent the nodes and the ERM-2 messages lo represent the edges. References present 
in the ERMs but not in the EI-list may be placed in a temporary "extra" EI-list with 
the same structure as the El-list. If this temporary list is small enough it could be kept 
in virtual memory only and discarded after phase 6. 

We assume that despite that normal processing is being done in parallel with the 
marking traversal, that we can obtain a unique timestamp. This is needed to distinguish 

10Since phase 2 used several timestamps, "after phase 2" means after the last timestamp used in phase 
2. 
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a marked entry iu the El-list from an entry which has been recently inserted or updated. 
Any entry ,..,jth a timestamp different from the llllique timestamp of phase 6 is regarded 
as unmarked. This means that some new or updated entries may get their timestamp set 
back in time by the marking traversal. There is no risk of a race condition between the 
marking traversal at1<l updates to ~he EI-list due to normal processing because updates 
by normal processing only add new entries. The updating of existing entries, for the 
purpose of the MRM is only done until the end of phase 5a (and in fact only updated 
entries with a timestamp older than phase 1). 
Changes to phase 7 

Instead of just removing references to garbage from the El-list we scan the EI-list and 
i·emove all references which have either a timestamp from phase 2, 11 or a tiruestamp from 
before phase 1. The first ru:e imported objects not marked after phase 2 and are definitely 
Ieferences to garbage, the second are exported objects who lu;i.ve not been marked at all, 
and includes both references to garbage and references to non-garbage. We leave entries 
wi th a timest1;1.m1> from phase-1 (which are imported references and were added to ERM-
1) and references adcled or updated after phase 2. This will not only remove references 
to garbage from the El-list but also references which ha.ve been e.-<ported (before phase 
1} but ru:e not used by other nodes any more. This reduces the size of the EI-list and of 
future ERMs. 

5.4 Opti_mizations and Refinements 

5.4.1 The EI-list 

The EI-list must maintain information on all impoi·ted o.r exported objects of a node. 
Rar.h liRt. ~ntry consists of a reference, a tirilestamp and an export/import indicator. It 
must do this with the same degree of fault tolerance as the basic transaction mechanism. 
During normal processing the object manager observes incoming and outgoing messages. 
Ally reference present in a message and not already on the EI-list must be added to it. 
0 bviously this operation must be as fast as possible. During garbage collection processing 
the EI-list .is used to lookup entries, update entries, delete entries, and for e.xhaustive 
linear processiug. 

The best data structur<!S and a lgorithms for solving this problem depends on wl1aL 
kinds of messages applications are sending between nodes. We here only sketch one 
possible design where we assume that the Export and Import sets form a "substantial 
part" of Kno"".n and that the EI-list undergoes a "fair amount" of change. We propose 
to integ1:11.•" Llu:: E!·U~L with tile object lookup mechanism and augment this wifo logging. 

The object lookup mechanism is used by the object manager to map the large identi-
fiers of persistent objects to a slot in an "object table," (this is similar to some Smalltalk 
implementations which have n level of indirection whei:e "oops" point to slots in a table 
containing t.he physical memory address of tbe object). A bashing technique is a.ppro-

11Since phase 2 used several timestamps, "a timestamp from phase 2" means a timestamp after that of 
phase 1 but not after the last .timestamp of phase 2. 



A.Bjornerstedt 309 

priate here because the number of entries in the table will be much smaller than the size 
of the identifier space. The hash function maps identifiers to slot addresses. Whether 
or not the entire object table is maintained in primary storage or some virtual memory 
technique is used we leave open. Each table entry contains the long identifier (to check 
for collisions) and the address of the object in some persistent address space. We pro-
pose that EI-list entries are stored in the object table. The disadvantage is that this will 
make all table entries larger (but still of fixed size), and if we have very few exported 
and imported objects this solution is not cost effective. But it is a simple solution, we 
have one lookup mechanism instead of two. 

The log is used if the object manager has trouble in keeping pace with message 
traffic, i.e., if keeping the EI-list up to date risks being the bottleneck in the handling of 
messages. This could be the case if very many or very large messages (in the sense of 
having many refe1·enccs) have to be processed. If very many references have to be checked 
against Lhe EI-list at one time, the object manager can simply dump the potentially new 
EI-list entr.ies to I.he log. Tile log could be processed in parallel by a low priority thread. 
If the object table is small enough to be kept in primary storage then the log is also 
needed to provide recoverability. The log is also well suited for keeping track of recently 
exported references, which is done after the quiescent state until the end of phase 5a for 
the purpose of the MRM. If the transaction manager maintains a log then the log for the 
EI-list could be integrated with it. 

Since we are assuming that communication is done using remote procedure calls (rpc) 
consisting of paired messages of request and reply there are four "points" at which the 
EI-list may be updated. A node acting as a client for an rpc may discover new exported 
references in the outgoing request message and new imported references in the incoming 
reply message. A node acting as a server for an rpc may discover new imported references 
in the incoming request and new exported references in the outgoing reply. What we need 
to ensure is that when the transaction in which the rpc participated is to commit, that 
all updates to EI-lists have been securely written to non-volatile storage. If the EI-list 
has been altered at a node acting as a server, then either the update of the EI-list to non-
volatile storage has to complete before the reply message is sent, or the message is sent 
in parallel with the write to non-volatile storage and an additional message containing 
an acknowledgement is sent later. 

The acknowledgement message may be sent asynchronously since it is only of concern 
to the object managers and not part of the control flow of any application. In other words 
each reply message of an rpc may contain additional system information indicating that 
an export-import list was updated and that further information should be expected 
concerning whether the update of the EI-list succeeded. This acknowledgement may be 
piggy-backed on some other application related message or sent in a separate message. 
When a transaction is to commit the local transaction managers at client nodes must 
check if there are still acknowledgement messages which have not been received from 
nodes which have been servers to the transaction. If there is any acknowledgement which 
has not been received then the transaction manager must either wait, request a resend of 
the acknowledgement, or abort the transaction. 12 At the latest then, acknowledgements 

12Since the EI-list update acknowledgements may be sent asynchronously' in a separate message it may 
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concerning updated EI-lists become part of the distributed transaction commit messages. 

5.4.2 The ERMs and MRMs 

One problem concerning ERMs and MRMs is how they should be exchanged. Since there 
is generally no "hw.<y," i.e. most garbage will probably be purely local and collected in 
phase 4, il makes sense to take a lazy approach. If a node Nl has not received the ERM 
of the latest generation from some other node N2, then the next time Nl is sending 
some message to N2 as part of normal processing, a request for the ERM is appended. 
In the same way, if a node N2 knows that some other node Nl has requested the ERM, 
then the next time N2 is sending some message to Nl as part of normal processing, the 
ERM is appended. Timeouts could be used to avoid too long delays. The request or 
reply would then be forced out in its own message. 

Another problem is the size of the ERMs. In particular the ERM-1 part could be 
very large since it contains all outgoing references rooted at the node. A simple solution 
to this is to send the difference with respect to the previous message instead of the whole 
set of references each time. 

Phases 5-7 of the mechanism force some synchronization on the global system. All 
nodes are required to "be in step" with the ERM generation number. The node which is 
slowest to supply its ERM and MRM will set the pace for the whole system. Furthermore 
the added overhead during phase 4 and 5a of updating the EI-list for recently exported 
references, can cause problems. If one node is slow to respond it keeps all other nodes in 
phase 5a longer. It is an advantage if all nodes can agree to enter the next generation so 
that it is not postponed by some nodes indefinitely. There is then the question of who 
initiates a new generation. 

Any node which has received all ERMs and MRMs of a certain generation, from 
every other node, is in principle free to enter phase 5 of the next generation whenever 
it is ready. Conversely, before a node has received all the ERMs and MRMs it may not 
enter phase 5 of the next generation. Phases 1-4, as has been explained, can be cycled 
any number of times at a node, under the current generation. The problem is that once 
a node has finished phase 3 and is about to resume normal operation it has to make a 
choice. Either it assumes that it will do phases 1-4 again without entering phase 5, in 
which case it does not have to do the extra processing for the purposes of the MRM 
(see section 5.3.2). Or it assumes that a "go" decision has been reached for the next 
ERM generation and it then needs to do the extra processing. A voting algorithm could 
be used to reach agreement between the nodes to enter the next generation [Thoma79]. 
Once a decision has been reached to enter the next generation by a majority of t.he nodes, 
all nodes should comply by doing all pb.ases of the mechanism t.he next chance they have. 

It is possible for a node to skip a certain ERM generation. It does this by sending 
an ERM where the ERM-1 and ERM-2 components are empty. The MRM is built by 

sometimes happen that the acknowlcdg~ment is received by a node before the rpc reply message. This 
does not matter since when the transaction reaches the point of commit there cannot be any application 
messages belonging to that transaction still in transit. 
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inserting all imported references found in the El-list. This ensures safety but not liveness. 

5.4.3 Using a copying and incremental collector 

In section 5.2.2 it was stated that phase 4 (the reclaiming of garbage) can be run in par-
allel with normal operation. Thls is because logically the reclaiming of garbage cannot 
conflict with any application processing. However, thls fact does not mean that phase 4 
s.hould be run in parallel with normal operation. It will usually be the case that resoui:ces 
are shared on a lower level lhan abstract objects. Because of this, short term synchro-
nization will usually be rec1uircd between the application activities and the activity of 
reclaiming resources. The performance of application processing will then inevitably be 
degraded. If we have interrupted normal processing to do phase 1-3 anyway, it might 
be more reasonable to complete phase 4 also during the quiescent state and be rid of its 
processing cost. 

Furthermore, it is often advantageous to do reorganization and compaction of sec-
ondary storage at the same time as removing garbage. If phases 1-4 are all run i:n the 
quiescent state then we can use a copying collector instead of mark and scan. The mark-
ing in phases l and 2 will then instead do copying and phase 4 disappears entirely. There 
are however some complications. 

Since we can have more than one persistent address space below the identifier space, 
the copying may have to work w1th several from-spaces and to-spaces simultaneously. It 
might even be the case that some spaces use marking while others use copying. 

Furthennore, since phase 2 did not stop the marking tra.versal jf objects are found 
marked by earlier traversals of phnse 2 itself, il should not stop the traversal if doing 
a copying traversal either, although it mu,,t stop the copying of the current branch. 
Remember that phase 2 has one traversal for every member of UExport found in the 
Ef-list. Finding an object marked by phase 2 corresponds to finding an object already 
copied by phase 2. Traversals in phase 2 then do both copying and ma.rkin.g. Marking 
is still needed if an object already copied by phase 2 is traversed, to ensure termination 
of the current ~raversal. The traversals of phase 2 should only stop: at objects copied 
in phase l; at objects copied or marked by the current traversal in phase 2; at remote 
references or stubs. 

Using an incremental copying collector (Ba.ker78] in phase 1 and 2 is also possible. We 
can then allow transactions to be processed in parallel with the local garbage collection. 
This is relatively straight forward if we only allow transactions which are purely local 
to the node. Instead of a quieJcent state as defined in section 3.2 we have an Molated 
state. This means that the El-list is not modified by anything but the garbage collection 
mechanism in phases 1-3. 

The next step of refinement is to allow multinode transactions in parallel with local 
garbage collection, but not allowing objects to move to or from a node in phase 2. 
Transactions which try to move an object during phase 2 will be delayed or aborted. 
Phase 3, which is not essential for safety or liveness, would be skipped. 

Finally it may be possible to allow unrestricted transaction processing in parallel with 
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all phases of our mechanism. This would require further complication of our mechanism, 
making heavier use of the timestamps in the EI-list. We are currently studying this 
possibility. 

Tliere is a trndeoff here between either accepting a shorter but disruptive quiescent 
state with a simpler mechanism, or a. longer non-disruptive period of reduced overall 
performance with a, more complicated mechanism. 

5.4.4 Problems of scale 

A major disadvantage with our mechanism as presented is that it. does not scale well. In 
particular there are two problems. The first is the number of messages. Our mechanism 
generates fewer messages (but la.rger) than other proposed solutions to the distributed 
garbage collection problem. But if there are many nodes then the number of messages 
may become too la.rge ( O(n**2) where n is the number of nodes). A consequence of 
the number of messages being large is that the secondary storage space required at each 
node, for storing the messages, may be large. Tbe second problem has already been 
mentioned. The slowest node in the system to produce the ERM and MRM sets the 
pace for all other nodes in doing global garbage collection. 

The reason that all nodes have to be involved in the exchange of the ERMs and 
MR.Ms is because no information is maintained on where a reference has been exported 
to, or imported from. Imported references are copied and reexported freely, without 

·informing other nodes. Ow· mechanism only takes advantage of locality of reference by 
distinguishing between local objects and objects elsewhere. In reality we expect that 
locality of reference wiU manifest itse.lf also in larger contexts than a node. We expect 
that a node will normally have most of its interaction with a few other nodes and only 
occasionally interact with the larger world. It is also probable that this reasoning applies 
to several levels, e.g. department, company, city, region, country, world. 

One idea is to group nodes into coopero.ting units. Each member of the group would 
agree not t.o reexport any reference, to a node outside the g.oup, without permission 
from the nod<: wh<:1·e the referenced object n~sides . A node m.a.y be a member of more 
than one group and maintains EI-lists for ea.eh such group . .A prerf!qni~ite for nnfl non" 
to permit another node to 1·eexport a reference to one of it,-; ohjed.~ is that both nodes 
are members of the group to which the object is rceiqJorted. Both nodes add an entry 
in the EI-list for the group to wh:ich an object becomes exported. 

Phase 1 would be t.hc sam.e as before, except that re.mote references must be looked 
up in all EI-lists. Phases 2 and 3 must be run fer ea--..h El-list. Phase 1 is unch::m.gcd. 
Phases 5-7 may be run separately for each EI-list. The different EI-lists would have 
different generation numbers permitting different cycle periods for different groups. 

It would also be possible lo organize the groups hierarchically. This would be similar 
to the Unix file system security domains u&er, group, and olAer [Ritch74]. Although our 
node groups are intended for defining locality of reference and not access control, the two 
problems are related and it is possible that node groups could be used for both purposes 
at the same time. When a reference is exported from one n.ode to another, the two nodes 
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would each insert an entry in the EI-list corresponding to the smallest node group both 
are members of (unless the reference already exists in a larger group at the exporting 
node). 

Different node groups could be bound by different "contracts" concerning how to reach 
agreement on when to enter the next EIUvr generation, or concerning the conditions when 
reference may be exported outside the group. 

The problem of scale can also be attacked by relaxing the safety and liveness require-
ments. One could have a global node group which all nodes ai·e members of by definitiou 
(corresponding to the security domain other in Unix). No EI-list would be maintained for 
this group. References exported to this gt:oup would be ma.rked as "unreliable.'' When 
the object manager scans incoming our outgoing messages and £nds such a reference it 
ignores it. In other words no lookup or addition lo the log is made for any EI-lis.t. Safety 
would not be guaranteed for such references. 

6 Comparison with other work 

The Commandos architecture [Marqu88, COMAN87] uses aging instead of garbage col-
lection. Objects which hn.ve not been accessed for a certain period of time are success.ively . 
moved to "lower levels" in a memory hierarchy. This is similar to swapping except that 
objects reaching the lowest level uever return. This approach is not safe in a formal 
sense since reachable objects may be removed. Nevertheless it may be ac.ceptable. The 
approach has the advantage that it scales well. Aging and garbage collection are not mu-
tually exclusive. In fact garbage collectio11 can offload the aging mechanism by removing 
large quantities of "young" garbage, and the aging mechanism can offload the garbage 
collection mechanism by relieving it of the responsibility of collecting certain domains, 
like the global node group discussed in the previous section. 

Mancini and Shrivastava argue for using a refel'ence counting approach [Manci88]. 
Their mechanism is primarily u1tended for garbage collection of volatile objects. Al-
though they do e>..-plain how to extend the mechanism to also handle garbage collection 
of persistent objects, their mechanism does not reclaim distributed cyclic garbage. This 
is more important for persiste11t objects than it is for volatile objects. Because some 
node in the cycle will soonet' Ot' later be taken off-line (either by a crash or by a con-
trolled shutdown), and this will break the volatile cycle. Furthermore, as presented, their 
mechanism can not handle objects which move from one node to another. Nevertheless 
their paper has been the chief influence on our design. We believe their mechanism is 
more sillted for systems with relatively few internode references to volatile objects, which 
do not move, while ou1· mechanism is probably more suitable for systems with relatively 
many intemode references to persistent objects, and objects which frequently move Crom 
one node to another. We believe persistence will tend to increase both the number o{ 
internode references and the need to move objects. 

Kolodner, Liskov and Weihl describe a garbage collector and recovery system for a 
persistent heap [Kolod89]. Their garbage collection algorithm is based on a copying 
collector. It may be run while transactions are in progress, but suspends all transactions 
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during the gnrbagc collecLion. They assume a disciplined virtual memory addres_s space 
as the basis for persistence. They claim that their algorithm, with minor modifications, 
could be used in a distributed system. h is not clear however whether they assume a 
global flat virtual address space and if their distributed solution requires all transactions 
in the entire d.ist.ributcd system to be suspended at the same time. If this is the case, 
then Lhoir solution is not acceptable in a decen tralized system. 

Moss outlines bow garbage collection could be done in his system based on loca-
tion dependent addresses, which has many similarities with the mechanism we propose 
lMoss89]. Because we use location independent identifiers our mechanism bas to keep 
track of some .locality information. This is not necessary if the identifiers themselves con-
tained locality iuformation as proposed by Moss. As already explained, the disadvantage 
with location dependent identifiers is that either are objects not allowed to move, or we 
do not maintain strong identity for objects. 

In (Schel88] a sch.eme is outlined, although not fully explained, which does dynamic 
incremental distributed garbage collection for a distributed Smalltalk system. This is 
a multiple workspace system and cl,oes not have global identifiers. Their system does 
not make any explicit distinction between vole.tile and persistent objects and does not 
seem to -address the problem of inconsistencies when some uodes crash. 13 They base 
their algorithm on the wo1·k of Ali [Ali84) which is an incremen.tal copying collector 
for distributed systems, but which does not reclaim distributed cyclic structures. This 
problem is overcome in [Scbcl88) by an "AccessPath" mechanis.m, the details of which 
are not e;.,.-plaincd in tho paper, nor delegated by reference to a technical report. 

The distributed Smalltnlk described in [Benn.eS7) is sinlllar to the previous one (mul-
tiple workspace mo.del, no global identifiers). Distributed garbage collection is however 
done by global mark and scan in parallel with normal activity. This must be quite 
expensive and goes against autonomy. 

1 Conclusi«j>ns 

\Ve have proposed 31 global persistent and decentralized identification scheme and pro-
videcl n garbage col~cction mechanism fol' a system employing such a scheme. Using a 
global identification scheme allows references and objects to move freely in the system. 

Our garbage collection mechanism allows a considerable degree of node autonomy. It 
is symmetrically decentralized and does not require synchronized clocks. A node doing 
purely local processing docs not need have any overhead from the secondary storage 
gad.1agc collection mechanism when all phases are finishecl . Thi.sis because overhead for 
the gnrbage collection mechanism during normal processing only consists of the main-
tenance of the EI-list, which is only relevant when messages are sent to and from other 
nodes. 

Each node decides locally when and how often to perform local garbage collection. We 
suggested some form of voting protocol so that at least consensus could be established 

13see footnote 1. 
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on when a global garbage collection is desired. Liveness is guaranteed if all nodes do 
garbage collection with a nonzero frequency and are willing to cooperate when a decision 
has been reached to do a global garbage collection. 

The mechanism has the weakness of not scaling well. We introduced the notion of 
node groups and node group hiera.rchles as a means of coping with a large system. It 
seems likely that a node will have most of its interaction with a few closel,y related 
nodes. The garbage collection mechanism will then generate fewer but larger messa.ges 
for a small group closely cooperating nodes, and relatively many but small messages for 
a larger group of nodes where exchanges are Jess common. 
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