
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1989 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Secondary Storage Garbage Collection for Decentralized Object-Based

Systems

Bjoernerstedt, Anders

How to cite

BJOERNERSTEDT, Anders. Secondary Storage Garbage Collection for Decentralized Object-Based

Systems. In: Object oriented development = Développement orienté objet. Tsichritzis, Dionysios (Ed.).

Genève : Centre universitaire d’informatique, 1989. p. 277–319.

This publication URL: https://archive-ouverte.unige.ch/unige:159010

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:159010
https://creativecommons.org/licenses/by/4.0

Secondary Storage Garbage
Collection for Decentralized

Object-Based Systems
Anders Bjornerstedt

Abstract
This paper describes a mechanism for secondary storage g.arbage collection that may
be used to reclaim inaccessible resoarces in decentraJ.ized pcrsiste.nt object based
systems.
Schemes for objed addressing and object i<lentHication are discussed and a pro-
1•osaJ is made whjch handles volatile objects separately from persistent objects. The
garbage collection of the space of volatile objects is decoupled from th~ garbage col-
lection of th.e space of persisLe.nt objects. The ·first kind of garbage collection can
avoid the complcx.iLy and overhead of a distributed algorithm by classifying "ex-
ported" object.:; as persistent. T he problem of detecting and collecting ''distributed
garbage" is then deferred to garbage collection of persistent objects.

1 Introduction

Object Oriented programming generates large numbers of dynamically allocated objects.
Many of these are used for a limited period of time and then become unreachable. To
deted such "garbage" and make it available for reuse is tbe garbage collectio.n problem.
The responsibility of releasing unused resources can be placed either on the system (ex-
ecution environment) or on the programmer. If an automatic garbage collection scheme
is inco.rpornted into the exceution environment, then a great deal of programmer effort
and ei:ror cllJl be avoided. The disadvantage with automatic garbage collection is that it
causes either overhead or disruptions in the normal application processing.

Another service which the execution environment can provide is persistence [Atkin87].
By this we mean that the execution environment makes it possjbJe for objects to exist
for an indefinite period of time. This service also relieves the programmer of a problem,
namely how to map the abstract objects with which it is desired to compute, to secondary
(non-volatile) storage.

For several technical reasons objects which are persistent (long lived) arc managed
differenlly from U1e volatile (short lived) objects. Persistence is very much technology
dependent because persistence places demands on the properties of the memory archi-
tecture, such as fault tolernnce and non-volatility. The difference in management usually
leads to cliffercnL gai:bage collection mechanisms, one for volatile memory and one for .Per-
sistent memory. Garbage collecting the memory of persistent objects is expected to be
much more time consuming than garbage collecting the memory of volatile objects. Be-
cause the management of persistent memory is more complicated than the management

278 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

of vola tile memory, tlle number of persistent objects is much larger than the number of
volatile, n.nd persistent memo.ry builds on slower hardware. On the o~her hand we expect
the need to garbage collect the persistent memo•y to be a. much rarer occurrence than
the need to garbage collect the volatile mem.ory. The reason again being the large size
of the persistent memory.

A dccentrali:ed system [Gray86] allows multiple centers of control. This is useful for
several reasons; possibly increased performance due to increased potent.ial for concur-
rency; increased a\-ailability due to opporlunity for physical distribution; and, perhaps
most importantly, increased autonomy for the "owners" of infonriation. We prefer the
term dccentralfatd instead of di3trib'U-ted because autonomy is important to us. By auton-
omy we mean that the system should allow different logical locations to have independent
control over resources. Each location is associated with an authority that "owns" and
controls the local resources. The authority has the power to veto remote requests to use
the local resources. Physical <.Listribut.ion does not imply decentralization, while decen-
tralization "wea.klyn implies physical distribution. A "federated system" would be an
acceptable alternat.ive tel'.ln to "decentralized system." A decentralized system is one
special kind of distributed system. The garbage collection mechanism we present is not
suitable for all kinds of distributed systems.

Garbage collection for decentralized systems is a difficult problem. Either a dis-
tributed algorithm working in parallel with normal operation has to be devised, or the
system has to stop normal operation while doing garbage colleetion. In this paper we
propose a solution which is a compromise between the two. We delegate the problem
of garbage collecting the global object space to the mechanism for collecting the persis-
tent object space. We assume that garbage collection of volatile objects is managed on
a local basis and during nonnal operation. We do not care which method is used for
garbage collecting the space of volatjle objects, indeed, difi'erent methods could be used
itt. rliffo.rl!.nt locations. Persistent objects are not reclaimed dui·ing normal processing but
may be removed or Hushed from primary storage to free space when needed. We say
tpat an object is ezportl!d if either the object itself or a reference to it is moved from one
location to another. If an object is exported, then the system will manage the 0bjed as_
persistent.

Garbage collection of persistent objects, i.e. reclaiming secondary storage, does not
have to be done as frequently as for primary storage. We are talking about periods on
the order of magnitude of days or weeks, or even longer, instead of seconds or subseconds
which may be needed for primary storage garbage collection. Because of this we asswne
that it is acceptable to either temporarily stop normal operation locally (not globally)
for secondary storage garbage collection, or alternatively to temporarily significantly
.lci;rtt,<le local perfoi:mance, if ~he secondary storage garbage collector is run in paraiiel
with normal operation. The different locations of the decentralized system decide when
and how often to have this disruption. There is then local autonomy concerning when
local persistent garbage should be collected. For global garbage, i.e. persistent objects
which have become known to more than one location and then have become garbage,
cooperation is required for safe garbage collect io11. The mechanism we propose puts
emphasis on local autonomy yet achieves safe global garbage collection when all locations

A.Bjornerstedt 279

cooperate.

The paper .is sLructure<l as follows. In section 2 we give a more elaborat-0 motivation
for our approach. ln section 3 we describe a model of the system we envision and .Point
out some important assumptions we are making. In section4 we discuss the requirements
we have on the garbage collection mechan.ism. In section 5 we present ow: mechanism.

2 Background and Motivation

The iuechanisms for providing garbage collection, persistence and decentralization all
have in common that they are very dependent on the addressing and identification mech-
anisms used by the execution environment. First, we discuss addressing schemes in rela-
tion to persistence, then in relation to decentralization. Because our focus is on garbage
collection we concentrate on the design issues of addressing schemes which specifically
influences garbage colle<ition. v\le then propose a combined decentralized and persis-
tent identification scheme. We end this section by explaining how the global garbage
collection problem can be subdivided into smaller sub-problems.

2.1 Addressing and Persistence

The reasoning in this section borrows from a study of different addressing mechanism
suitable for implementing persistence, done by Cockshott [Cocks88].

A very coarse grained level of persistence is to load and dump the whole object space
(the image) using a file. Loadi.ng is done at the start of a session a.od dumping at the end
or whenever a checkpoint is desh:ed. The e;x:ecution environment uses primary memory
addresses (real or virtual), as provided by the ope.rating system and hardware, for the
lowest level of object addressing. During a session all objects reside in virtual memory
(or real memory if virtual memory is no~ supported). There is no distinction between
volatile and persistent objects in terms of how they are managed, i.e. the whole space of
objects has the. same failure. mode. But the file on which the image is dumped resides on
secondary storage with a failure mode independent from virtual memory. For example
in most implementations of Smalltalk-80 [Goldb83) use this approach. This approach
is either not very fault tolerant since a crash destroys all changes since the last save
of the image, or very expensive if frequent saves of the whole image have to be made.
It is mostly suitable for siugle user systems. \>Ve call this the workapace approach to
persistence.

Another possibility is to have different failure .modes for different segments of virtual
memory, but still make use of virtual memory as the lowest level of addressing. The
primary purpose of virtual memory is still to obtain a large address space, but the virtual
memory backing store is also used as the basis for persistence. Since a system crash could
corrupt the system image, or leave it in an unknown state, additional information such as
a log must also be maintained on secondary storage to aid recovery from crashes. This
approach has been explored by Thatte [Thatt86] and by I<olodner, Liskov and Weihl

280 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

[Kolod89]. Wben the system does not encounter any failures then the backing store
remains consistent. There is then no need for initial and final loading and dumping of
objects as in the workspace approach. If a crash does occur then a special recoveq
routine is used to restore the backing store to a consistent state which may need to
use the log. The underlying operating system and hardware provides the translation
between physical RAM and the backing store, but the execution environment has control
over when and how this is done. This requi.t·es either the execution environment to be
indistingillshable Crom the operati11.g system (e.g. a Lisp machine) or the operating
system to allow the implementor of the execution environment some control eV& the
virtual memory backing store, as in Multics [Daley68) or Mach [Jones86]. In the system
described in {l(olod89], the heap is divided into the stable heap and the volatile heap.
This is done by partitioning the address space for the virtual memory used for lhe heap
into two disjoint segments. The execution environment manages the log and the paging
for the stable heap so that the stable heap lms a different failw·e mode from Lhe rest of
virtual memory. The manag<.'D1ent of the log and stable heap uses a: ~ransaction model
[Gray78], so a finer grauulariLy of persistence is achieved (compared to the workspace
model) and multiple users can be su·pported. We call this approach the di~ciplined virtual
memory approach.

A third approach is when the execution environment maintains a separate mapping
between a repository on secondary storage and virtual memory. In other words virtual
memory is only used for obtaining a large primary store. Persistence is implemented by
a separate mapping to secondary storage. A transaction mechanism may also be used
in this appro~ch so the consistency of the persistent store is ensuxed. One difference
between this approach and the disciplined virtual memory approach is that normally
only a subset of all existing objects will be in virtual memory. ln the same wa,y as the
operating system uses physical RAM as a cache against the virtual memory backing store,
tb.e virtual memory is used by the execution enviro.nment as a cache against the persistent
store on secondary storage. Examples of this approach are GernStone [Purdy87), PS-algol
[ALkin87], Mneme (Moss88], Comandos [COMAN87], Av-.ulce [Bjorn88) and, in general,
most of today's database systems. We call tills the multilevel approach, because several
levels of memory are explicitly managed by the exec1,1lion environment.

Note that no logical difference between these approaches is visible to the user of the
system. The whole point with "persistence" is to provide a single level store abstraction
to the programmer.

2.2 Addressing and Decentralization

A requirement for decentralization is a very large address space. Such a space could
be structured or flat. We will not attempt to characteri.ze the actual size needed for
the global address space. We can give a lower bound by saying lhat todays hardware
architecture, dominated by 32 bit addressing, is insufficient;

An excellent exposHion of these issues cn.n be found in a paper by Moss [Moss89].
Moss argues for short context dependent addresses (which are in essence structured
addresses) and against flat global addresses. The argument is mainly against using a

A.Bjornerstedt 281

large global paged virtual memory as the basic approach. His arguments are based on
price/performance, complexity, autonomy and flexibility.

Moss also takes the position that a large flat object identifier space has most of the
same disadvantages. This we do not agree with. An identifier space differs from an
addl'ess space in that an identillel' is not location dependent. Having large context free
identifiers for objects does add a level o{ indi.reclion, which does add execution cost, but
caching can significantly reduce this problem. The major advantages with context Cree
identifiers are the flexibility U1ey give and simplifications in system software. However,
if objects are basically stationary, then using a global flat identifier space may not be
worth the cost. "We assume that objects may move in the decentralized system and that
therefore the distinct.ion between identity and ad<h·ess is important. We note that the
Comandos architecture (COMAN87) has taken this approach.

We can accept structw·ed identifiers that hint at location. For example the identifier
may be constructed on the basis of where the object is created. But it should be an
identifier and not an address. In other words if the object moves the11 ·its identity should
not change.

The identifiel's used are machine generated surrogates which are guaranteed to be
globally unique. Global uniqueness is easy to achieve and does not need to have any
pradical consequences on local auto.nomy. For example, one can easily construct a world
wide globally unique identifier by combining:

1. The internet address of the physical host, which must be unambiguous in the world
wide distributed system.

2. A logical location number, unique relative to the host, to disambiguate between
logical locations in the decentralized system.

3. A host local timestamp of sufficient resolution.

Such an identifier would be unique and would also tell where the object was created,
which could be used as a good hint of location.

Smnlltalk has been used as the implementa tion basis for decentralized systems [De-
cou86, Bennc87, l\11cCul87, Scbel88). Each location is then a single user workspace.
Various forms of fonvarding objects (proxys) are used for remote addressing. Except
for the system described by McCullough [McCul87], objects generally do not maintain
strong (surrogate based) identi't;y between different locations. The reason being, we be-
lieve, that all of the systems based on Smalltalk-80 want to avoid major changes to the
virtunl machine. In addition these systems have the problem of ensuring fault-tolerant
consistency only on a: per-workspace basis. 1 Transactions would require all workstations
to take coordinated clumps of their images each time a commit is made, or a change to
the implementation of persistence has to be made.

1The system described in [Schel88) does provide global consistency for replicated objects using the so
called Thomas write rule [Thoma79). However these objects are special and only a small part of the total
object space.

282 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

We conclude the discussion on addressing and decentralization by assuming a large
and global identifier space as the best solution for a decentralized system where objects
move. We also conclude that a transaction based approach is appropriate to ensure
consistency in a multiuser system, which a decentralized system is by definition. This
means that the simple workspace approach for persistence is not appropriate. Using a
transaction based approach also means that we can have multiple users at each location.

2.3 A decentralized and persistent identifier space

An addressing scheme for persistent objects which interacts with a transaction mec.hanism
is complicated to implement. The same is true for an identification scheme for objects
in a decentralized syslem' whicb also interacts wiLh a transaction mechanism. It then
makes sense to try to un.ify the two as far as possible. It also makes sense to find means
to avoid using the expensive decentralized and persistent identification mechanism for
all objects.

Using location indcpe.udent identifiers for persistent objects means that there must
be at least one level of indirection between idenlifiers and persistent addresses. The
disciplined virtual memory approach could still be used for local persistent addressing.
In fad an advantage of having the indirection between identi6er and address is that
several dlfferent persistent addressiug mechanisms could be used , even at one location ill
the decentralized system.

A beneficial consequence of this approach is that any persistent object may be ex-
ported without complications. Another consequence is that any object which is exported
is also persistent. This may in some cases cause efficiency problems. We will return to
this problem in section 2.4.

Since the proposed identification mechanism wiU be expensive to use, alternative and
simpler mechanisms must also be provided. Volatile objects could use a short and simple
addressing scheme. If necessary, they would be matu1·ed to pt!rsistent objec~, and only
then be associated with a long identifier. 2 A distiliction orthogonal to volatile/persistent
is uso:d iu U1e Avance system [Bjom88), where a distinction is made between dependent
and i11dcpendent ohjr.ct.11. 3 Dependent objects are owned by, and internal to, some inde-
pendent object 11 ncl may not be shared between independent objects. Dependent objects
always accompany their enclosing independent object, when moved between locations in
the decent.ra.lized system, and when read or written to secondary storage for persistence.
The dependent objec~ are a simple and obvious way of clustering or statically grouping
[Stamo84) objects around an independent object. The expensive identification scheme is
only used for the independent objects. Dependent objects are addressed relative to their
enclosing independent object. Reclaiming an iudepcndent object also means reclaiming
all ils dependent objects.

2This is similar to the maturing of objects done in the Smalltak LOOM [Kaehl86] . Although the LOOM
does not support persistence with faul t tolerance it does provide a large non volatile memory.

3 Independent objects are called "packets" and dependent objects are called "datatype values" in Avance.

A.Bjornerstedt 283

We conclude that a large global identifier space is a feasible and appropriate way to
manage both persistent and exported objects. Such an identification scheme can be used
together with other forms of identification and addressing, for objects which are more
constrained and less demanding in their use.

2.4 Subdividing the garbage collection problem

Garbage Collection methods.

A great many algorithms have been presented for doing garbage collection. Perhaps the
sim plest method is ref erence counting [Colli60, Cohen81J. Each object has a counter
field which is incremented each time a reference to the object is created and decremented
when a reference is destroyed. When the count reaches zero the object can be reclaimed.
Reference counting has the advantage that it does not require application processing to
stop. It has the disadvantage that it does not reclaim cyclic garbage, that it requires
space for the counter in each object, and that it has unpredictable short term overhead.
Removal of the last reference to a large aggregate causes a cascade of activity.

Another meLhod is ma.rk a.n d scan [Knuth68, Cohen81] . In a first phase a traversal
is made of the object-refeL·encc graph starting at a root object. Each object which is
reached is marked. In a second phase the memory is scanned and every unmarked
object is reclaimed. The major disadvantage with the mark and scan approach is that
application processing must stop during garbage collection. It has the advantage that it
has no overhead during normal operation and that it reclaims cyclic garbage. Refinements
of mark & scan have been made to allow it to run in parallel with application processing
(Dijks78]. Of course it then does have overhead during normal operation.

A copying collector (Fenic69, Cohen81] can be seen as a refinement of mark and
scan. Instead of marking, objects are copied from a from-3pace to a to-3pace. Instead
of scanning the memory for unmarked objects, the roles of from-space and to-space
are interchanged. Copying collection compacts allocated memory as a side effect. The
basic copying approach suffers from the same problem as mark & scan of requiring
application processing to stop while the garbage collector is runing. Refinements of the
copying approach have been made to make the copying incremental (Baker78]. Instead
of having one long interruption of application processing where the complete graph is
copied, several short interruptions are made and only a few objects are copied at each
time.

Many Smalltalk systems use a method called generation scavenging for;_ garbage col-
lection [Ungar84, Liebe83]. This method, which is a refinement of copying garbage
collection, capitalizes on the knowledge that most objects either "die young" or live very
long. If an object has survived a sufficient number of cycles of the garbage collection
mechanism it is moved to a separate address space called old-apace. Objects in old-space
are ignored by the regular garbage collector. The old-space is garbage collected sepa-
rately and as infrequently as possible. The reason being that it will generally be very
large and therefore garbage collection will take a long time and cause a lot of paging
activity. On the other hand, not collecting the old-space when there is much garbage

284 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

will also slow down normal processing, because of increased paging due to fragmentation
of virtual memory [Ungar88].

It is not strictly necessary that old-space (or at least not all of it) be a paging virtual
memory segment. If old-space is a multilevel address space, where objects are swapved
in and out of virtual memory, then the problem of the old-space fragmenting a paged
virtual memory disappears. Garbage collecting the old-space can then be postponed until
we need to reclaim secondary storage. Such a hybrid approach using both paging virtual
memory and object swapping has been proposed by Ballard and Shirron [Balla83].

The old-space is similar ,to a space of persistent objects because both contain "long
lived" objects. They are not exactly the same since objects are placed in the old-space
not because of fault tolerance reasons but because the primary garbage collector wants
not to be bothered with them. If one unifies the old-space with a persistent space then
objects should be allowed to be moved to this space either prematurely by the garbage
collector, or by other parts of the system (i.e. the transaction manager) for fault tolerance
reasons.

Garbage Collection of Secondary Storage

Reference counting is in general not appropriate for secondary storage address spaces. An
update of an object changing a reference from pointing to one object to point to another
will have to update three objects instead of one [Butle87], because reference counts have
to be updated in the objects pointed to. A delete will require all objects referenced. by
the deleted OQject to be updated. Although it is true that reference counting is used
in the Unix file syslem [llitch74), the objects (inodes) are in this case usually large and
the fre<1uency of ci·eation and destruction of references low, compared to what one would
expect for an object oriented system. Furthermore the graph does not contain cycles and
the system is centralized. 4

Cuvyiugcollection is suitable for garbage collecting address spaces based on secondary
storage [But!e87, Kolod89]. Because it compacts and increases locality of reference, the
number of disk accesses can be reduced. This is especially true for paged virtual memory
address spaces, but also for segmented and multilevel add.ress spaces, since these also may
use clustering techniques. Copying collection does fewer t.raversals of accessible objects
than ma1·k and scan. This also i·educes the amount of p13:ging or swapping.

As explained previously, doing parallel mark and.scan or incremental r.npying garbage
collection avoids the problem of having to interrupt application processing. But even
if application processing can continue in parallel when such an algorithm is used, a
significant degradation of performance will be noticed while garbage collection is being
done. In a study· made by Butler [Butle87] it is indicated that even the best alternative
[Baker78] may increase paging by as much as 10 times.

Garbage Collection of Decentralized Systems

4More modern versions of Unix have "symbolic links" allowing cycles in the reference structure. But
these are second class references and in fact not guaranteed to be valid. Several distributed versions of the
Unix file system have also been built (Howar88, Svobo84] but they are decentralized on the granularity of
a physical file system, i.e. mounted volume. Cross volume hard links are not allowed.

A.Bjornerstedt 285

Most mechanisms designed for distributed systems should be applicable also for decen·
tralized systems. However, if a mechanism infringes much on local autonomy, then it
is prob<tbly not suitable. Using "naive" reference counting in a distributed system is
certainly not appropriate, since many purely local operations (copying a reference) will
require a remote access to update the count.er of the object. Another problem is that
remote access cannot always be guaranteed. Although this does not have to affect the
safety of t he mechanism, it complicates it. One of the adVlllltages of reference counting in
a centnJized sys,tem is that it spreads out the overhead (not. necessarily evenly) over ap·
plicat.ion processing. This may turn out to be a disadvantage in a decentralized system.
Executing an application, iit one location may degrade performance at another location
and possibly at Wlpredictable times. This is precisely the type of problem we \\'ant .to
avoid when sLriving for autonomy. This problem may aJso be overcome, but it adds
complexity. If cyclic garbage is to be reclaimed then we have yet another complication.
Reference counting can no longer be seen as having an advantage of being simple in a
distributed system.

Using "naive" mark and scan is even less appropriate for decentralized systems since
it requ.ires the whole system to s top. Using one of ~he parallel algori.thms for mark and
scan is conceivable, but any method depending on a global scan certainly infringes on
autonomy. So.me way of parti tioning the problem into more manageable parts is needed.

Our approach

It seams lo be lhe case, that if a system must maintain a large address (or identifier)
space of objects, then the space should be partitioned, niultileveled or both, and garbage
collection should be done at different times, with different frequencies, and probably with
different algorithms for the different partitions or layers of the address space.

We make the distinction between volatile and persistent objects and assume these
reside in different address spaces. Volatile objects may become persistent by being moved
to the persistent <1ddress space, but not vice versa. IL is probable but not certain tha.t an
object which stays volatile will become garbage sooner than an object which has become
persistent. 'We are not concerned with how the volatile space is garbage collected , but the
persistent space could simultaneously be the old-space of a scavenging garbage collector
for the volatile space.

We assume that a global decentralized and persistent identifier space, as described
in section 2.3, is used for both persistent and remote object referencing. The iden.tifier
space should be thought of as pul'e and flat. At the very least we cannot assume that
the identifiers contain any location information guaranteed to be valid. At each location
in the decentralized system, identifiers a.re mapped to a local persistent address. We are
not concerned in this paper with the details of this lookup operation. 5 We then take
the approach that Moss advocates [Moss89) , of having a segmented and heterogeneous
address space for persistent objects, but with the difference that we add a fiat identifier
layer on top of it.

As we have said, this means that any persistent object can be exported and that all

5 It is of course crucial that the lookup operation is as fast as possible. Either hashing (Larso88} or
indexing [Comer79] could be used.

286 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

exported objects also are persistent. Immediately making exported objects persistent
increases the rate of generation of persistent garbage. If many exported objects are
short lived, then this may cause the problem of increasing the frequency when secondary
storage garbage collection is needed. We have two answers to this.

First, if it is the case that secondary storage is quickly exhausted by large amounts
of gaTbage caused by eicported objects being made persistent, then it suggests to us that
there is something very strange or even wrong with either the application creating the
objects, or the system structure. If objects are created, exported and then forgotten in
large amounts then it seems better to communicate values instead of objects. If we define
an object as a mapping from a fixed identity to a. changing state, then a value is simply a
state, without any particular identity. Values can be copied but not shared since sharing
requires identity. Once a value has been communicated from one location to another,
the receiver can encapsulate it in a local volatile object, if sharing is really necessary
locally. If an application requires large amounts of objects shared across locations and at
the same time discards the objects quickly, then the decent.ralized system may not been
structured in the best way.

Second, since we have the additional level of indirection provided by an identifier to
address mapping, we can use several different local persistent address spaces. If there
are a fair amount of objects which are neither short-lived nor long-lived, then using a
multilevel address space for them is probably better than a disciplined virtual memory
address space. Having many garbage objects in a multilevel address space does not
increase paging. Long-lived and eternal objects should be placed in a disciplined virtual
memory partition since these, when they are not fragmented, are more efficient than
multilevel spaces.

, ,Ve admit however that there may be applications which need to create many shared
and exported but short-lived objects. The addressing scheme and garbage collection
u1ecl1anism we propose will not be appropriate for such applications. In the rest of
the pnpcr when we speak of garbage collection we will mean garbage collection of the
persistent and decentralized identifier space.

Increased garbage on secondary storage is not the only problem resulting from making
all exported objects persistent. It also reduces efficiency due to writes to secondary
storage which ma.y have h1w.n unnecessary. We belie,,e the added ovcrhco.d is usually
worth it. The ovl\rhc.'\d added because of persistence should be balllllced against the
overhead and complexity of pl'Oviding an additional garbage collection mechanism for
exported volntile ohjcct.s.

Our Mechanism is based on the mark and scan approach. Instead of doing a global
mark and scan and requiring the ;vhole system to stop, Wt <lu local mark and scans at
each location. This means that each location has to stop application processi.ng to do
local garbage collection, but not that the whole system has to stop at the same Lime.
Objects which have been classified as exported and objects reachable from them are not
garbage collected. A second part of the mechanism is devoted to un-classifying objects
as exported so that they become local again and av-uilable for local garbage collection:
The mechanism docs have some overhead <luring normal operation when messages are

A.Bjornerstedt 287

sent to or from a node. There is no overhead during purely local processing.

We use mark and scan instead of a copying collector because it is more general, i.e. it
is applicable to a heterogeneous address space. Our mechanism could easily be adapted
to use a copying collector foi: the local garbage collection. In section 5.4.S we sketch
how this could be done. We use simple made and scan instead of a. parallel ma.i:k and
scan because it is simpler and more efficient (but of course interferes with application
processing). Simple mark and scan also bas the advantage that it ca.n be aborted at any
time without any problems. We use a times tamp for marking so a new marking traversal
will ignore marks from previous traversals. A paJ"allel mark and scan collector inevitably
degrades application processing because it has to cooperate with the marking lra.versaL
An incremental copying collector also deg<ades performance because forwarding pointers
from the old-space to the new-space have to be used until the copying is finished. These
problems are greater for secondary storage address spaces because accessing to secondary
storage is more costly. In section 5.4.3 we also sketch how a a parallel or incremental
collector could fit in our scheme.

3 System model

We first give a. short description of our system model and a list of assumptions. Following
this there is a section with more detail on the reasons behind the assumptions.

3.1 Summary of assumptions

We model the decentralized system by a. set of node!, where each node contains persistent
object3 and persistent rc.ferencc3 t.o objects. Both objects, and references to objects, may
be moved between nodes. Each node has one or more root objectJ which are reachable
by definition and which may not be moved. This is quite a general model and many
existing systems fit this model [Lisko83, Shciv88, Marqu88, Bjorn88]. On top of this we
make the assumptions listed below. They simplify the system and the garbage collection
problem. We believe they are .reasonable assumptions. In other words the decentralized
system and the garbage collection problem are not made trivial by the assumptions.

• Users may only access objects by using references.

• Only the system may create or copy references.

• All references are globally valid.

• Objects or references do not get lost as a result of failures in communication or of
nodes.

• Messages between nodes can be inspected by the system and references distin-
guished from other data.

• An object resides at one node at a time.

288 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

• Objects have a timestamp associated with them indicating when they were last
updated. .

• If new nodes are added to the system, then all existing nodes must be informed
before distributed garbage collection takes place.

• It is always possible to distinguish a reference to a local object from a reference to
a remote object, at least by doing a local lookup (dereferencing) of the object.

• All nodes can stop normal processing at Jome time which does not mean that all
nodes must be able to do this at the Jame time.

• All objects, which have references to them from other nodes than the one where
they are located, are persistent.

3.2 Details of the system model

Nodes are the autonomous locations of a decentralized system. Physical. distribution
is n.ot essential for dece.nlralization, but we assume that in practice it will be the case.
A consequence of this is that inter 11ode messages are assumed to cost much more than
m.essages internal to a node. Autonomy is a relative term. We use this term to emphasize
that a major goal of lhe system archi tecture is to ma....Omize the possible independence
between nodes. But independen.ce is certainly nol the only goal. Another major goal is
to support a great degree of interoperability between nodes. In other words, it should be
as easy as possible to write applications which utilize the resources (objects) at several
nodes. The architecture should guarantee that such applications can be executed without
causing inconsistency, and also that they will make progress.

Object Das"'u Syst"'ms

The interoperability requirnment means that the nodes must compromise some of their
1U1tonomy to be ab1e to cooperate. Not only do we require that all nodes be able to
communicate with each other, we assume that all nodes run a homogeneous software
platform called au object manager. Its main function is to manage the resources of a
node and to cooperate with other nodes. Garbage collection is one of its functions.
Although this software layer is b.omogeneous the hardware need not be .. In fact one of
the goals of the object manager is to insulate applications from hardware dependencies.
The objec~ manager can be compared to an operating system. It makes each node into
a vlrtual machine. The reader can therefore think of nodes as physical machines in a
distributed i;ystem. It should be remembered however that that nodes are logical entities.
We want it to be relatively simple to move a node from one physical machine host to
another and this is reflected in our use of a global object identification scheme. In the
rest of the paper when we speak of "the system" this will mean either the object manage.r
of one node, or the object managers of a.ii nodes working in,cooperation.

We assume an object b43cd data model. In other words resources are objects which are
instances of abstract data types. To access an object, an application needs a reference
to that object. References are capabilities in the "operating systems" sense [Levy84).

A.Bjornerstedt 289

Thus the application/user is not allowed to use a reference in any arbitrary way. What
is i.mpo1·ront in Lliis paper is that references are the only way applications can ac<:ess
objects and that refei:euces nre controlled by the object mannger(s). ln particular the
system can distinguish between references and objects, and references may not be forged
or copied.

The object manager must be wcll behaved in the sense that it does not reconnect
garbage. Any object which has become garbage will stay garbage until collected by our
mechanism. This could be said to be one correctness invariant for the object manager. We
make use of this invariant to avoid the need for exact synchronization in the· distributed
mechanism.

The object maiiager of a node maintains a secondary storage repository (or "data.base")
for the persistent objects located at that node. These objects gen.erally contain refer-
ences, some of which refer to other local objects in the repository and some of which
refer to objects at .othei· nodes. All the objects of the system and the references bet1veen
them, form a large directed graph. References to remote objects are then edges comming
from an object in one node and entering an object at another node. We assume that
eacll node has at least one local persistent root object. A root object is any object which
should never be reclaimed by the object manager.

We assume that references lo objec:ts are globally valid, bohh in space and time. Th.is
means we assume strong identity [Khosh86] for persistent objects and if a reference is
communicated from one node to another then the receiving node can use the reference
to operate on the object just as if the object resided locally. The object managers in
cooperation make it possible to achieve both location transparency (under the autonomy
restrictions particular to the nodes) and location visibility when this is desired. Given
a reference, the 1nterpretation of that reference (the object it refers to) is independent
of locatio11 context. Hence references, and objects which may contain references, can be
passed between a.odes without any semantic problems. We also assume that a reference
points to at most one object. A reference although not necessarily the same t.hing as an
identifier [Steili89], can for the purposes of this paper be thought of as simply containing
an object identifier.

We ru;sume a transaction based model like that of Argus [Lisko83] or Camelot [Spect87]
and that operations on remote objects are done using remote procedure calls [Spect82].
The transaction mechanism and the rpc communiaatioii mechanism are both part of the
object manager. We assume that the object manager can inspect incoming and outgo-
ing messages and distinguish references from other data. The object manager has two
"modes" of operation. During normal proce33ing transactions may be processed. Dur-
ing a qu.ieJcent 3t~tc there may be no transactions in progress. Although the quiescent
state is uol necessarily static in the sense tbaL nothing is happening at t;he node, it is
truly a state from the perspective of transaction mallagement. When a node is about
to enter the quiescent st&te, the object manager refuses to accept new transactions and
waits until all locally ongoing transactions have either committed or aborted. During
the quiesce11t state, the local repository will be in a consistent state. We can ignore
consistency problems which could be caused by comnlllnicatioos or node failures. Such
problems are assumed to be taken care of by the transaction mechanism. Parts of the

290 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

garbage collection processing is done in the quiescent state. Other I.asks such, such as
reorganization and compaction of the repository may also be done in the quiescent state.
All such operations must maintain the consistency of the repository. We assume that all
nodes on a regular basis are able to enter the quiescent state. This does not mean that
all nodes must be able to do this at the same time.

When an object is created by some transaction it is initially volatile. The object
becomes persistent if a reference to it is inserted in an already persistent object by some
operation and the transaction in which the operation participates commits. We also
assume that all objects which are known by more than one node are persistent. This
means that if a reference to an object is exported, then the object must become persistent
if it was not al.ready.

The existence of both volatile and persistent objects complicates the global object.-
reference graph.. We defined a node being in the quiescent state as there not being any
transactions in progress locally. We need in fact to have a stronger definition of the
quiescent state than this. During the quiescent state we require also that there eicist no
local volatile object~ referencing persistent objects. Otherwise we could have persistent
objects which are not reachable from any persistent root yet reachable from a volatile
object. Such an object could be used to reconnect p&-sistent objects to the rooted graph
in a transaction after the quiescent state. If p~istent threads are allowed then we could
have suspended tlueads which survive through the quiescent period. All such threads
must then be regarded as root objects.

The object manager ma.y use stubs to represent remote objects. An object stub is
not an object. It should be seen more as an object header, invisible to applications,
and used by the object manager for bookkee.ping purposes. For example it could contain
information hinting at the real object's location. There is an important difference between
stubs in our system model and proxys in many of the implementations of distributed
Smalll.ti.ll [Do:cou86, Benne87, Schel88). A proxy is reached using a local address and
encapsulates the location and address (or identifier) of the remote object. A stub in our
model is reached using the ~ame global identifier as the real object. We do not require that
stubs always exist for all remote objects referenced by a node, because this would cause
much overhead. But if and when stubs are used then our garbage collection mechanism
will take advantage of their existence and will also perform garbage collection of them.
We assume that it is always possible to distinguish remote objects from local, even if
there are no stubs for some or all of Uie remote objects. When the object manager does
a lookup using a reference H will either hit a local object, a stub representing a remote
object, o.r it will fault in which case all the object manager knows is that the object does
not reside locally. The use of stubs in certain parts of our mechanism should not be seen
as overhead caused by the gar·bag~ collection mechanism.

An object resides at one node at a time. Objects may move from one node to another
as part of a transaction. Replicas of an object could also be allowed as long as the location
of the odginol is well defined and updates are coordinated by that node. Replicas may
be seen as just e""tcnded stubs.

Each object contains a timestamp indicating when, in terms of local host time, the

A.Bjornerstedt 291

object was last updated. T his is not a very strong assumption. Most general computer
systems today have a system clock accessible to applications. Note also that we only
require updates to be time-stamped, not read accesses, and that no synchronization of
clocks between nodes is required.

We assume that each node knows of the existence of all other nodes. New nodes
may be added dynamically to the system, but our mechanism for detecting distrjbuted
garbage will only work properly when all other nodes have been informed of the new
nodes existence. 6

4 Requirements on the garbage collection mecha-
nism

We say that an object x is reachable from an object y if either y contains a reference to
x or if x is reachable from another object z and y contains a reference to z. An object is
said to be globally reachable if it is reachable from a root object on some node. Objects
which are not globally reachable are called garbage. We may also say that an object is
locally reachable with respect to some node, if the object is reachable from a root object
at that node using only the objects and references known at that node. Note that an
object which is locally reachable with respect to a node does not have to reside at the
node, although some object at the node must have a direct reference to it.

The purpose of the garbage collection mechanism is to detect garbage and to remove
it, i.e. reclaim the resources occupied by the garbage. In our case the resource is mainly
space on secondary storage. There are two correctness criteria which are required from a
garbage collection mechanism (Manci88]. 7 The first is that any object which is globally
reachable must not be classified as garbage and collected. This may be called the safety
property. The second is that any object which is not globally reachable, i.e. garbage,
should be identified as garbage within some definite and specified upper bound in terms
of time or processing. In our case the upper bound will be "two cycles of the collection
mechanism." This may be called the liveness property. Among other things this means
that cyclic garbage whether distributed or not must be detected.

The garbage collection mechanism we propose should satisfy the two criteria. This
does not mean that the object manager taken in a broader perspective has to satisfy
them. Both of the properties can be relaxed by the object manager. Relaxing the
liveness property means that one is willing to accept that some garbage might never be
collected, at least by this mechanism. Relaxing the safety property is only acceptable if
object identifiers are not reused, so that at least it is possible to detect a reference to a
nonexistent object. Either of these or both allow for reducing the execution cost of the
mechanism and for increased autonomy of nodes. We will return to this possibility in

6 New nodes should not be added to the system during phases 5-7 of the garbage collection mechanism
(see s.xt.ion 5.2.2).

7 NoLe that the definition of these properties in [Manci88) is in t.erms of reference counts. Since we
are using a mark and scan scheme instead of a reference counting scheme, our definition is in terms of
reachability.

292 Secondary Stornge Garbage Collection for Decentralized Object-Based Systems

section 5.4.

ln addition to the two correctness criteria there are some properties which we desire the
mechanism to have.

1. It should be possible to detect some garbage on a purely local basis.

2. It must allow the disruptive quiescent state to be entered at different times for
different nodes.

3. It should have as little overhead as possible during normal operation.

4. It should require as few messages as possible.

5. It should be possible to turn it off completely for some time and then resume,
without violating the two correctness criteria.

6. It should only try to collect garbage residing locally.

7. Objects must be able to move from one node to another.

5 A garbage collection mechanism

We will first give an outline of the mechanism. We will then explain the mechanism in
detail under two simplifying assumptioru;:

1. Our mechanism has not been turned off. In other words requirement 5 has not
been exercised.

2. All nodes go into the quiescent state and do garbage collection processing at the
.rnm.P. 9lnh11.l nn.l tim.~ Tn nt.hP.r wnrns rPfp1i r-P.mAnt. ?. is nnt. Pnfnrr.P.n.

These are not assumptions we want to maintain. They are only made to simplify the
explanation of our mechanism. After this we describe the moclification to the mechanism
so that we can drop the assumptions.

5.1 An outline of the mechanism

Thi! gencmi.I i<l P.n of !.h .. moch>1.nism is ,._q follows. E11r.h node cloes its own local ~earch for
garbage, producing an iniLial sel of candidates for collection consisting of objects which
are not locally reachable. Each node also maintains some information making it possible
to locally identify a subset of the set of candidates which are globally um;eachable. This
subset can be reclaimed without consulting other nodes. Thi; remainder of the set consists
of objects which arc not locaUy reachable, but which may be globally reachable. This first.
part of the mechanism l).Jld the garbage collection made possible by it, is done whenever
the administrator of the node finds it convenient, independently of other nodes. This is

A.Bjornerstedt 293

one of the desirable properties mentioned earlier (1). It is then possible for a node to do
local garbage collection to free resources as often as needed.

The next step is the generation of the external reachability me3Jage or ERM for short.
This message contains two parts:

1. The references to objects at other nodes which are locally reachable on this node.

2. A set of pairs of references: The first being a reference (entry point) to a local
object which is not locally reachable but may be globally reachable. The second
being a reference to an object at another node which is not locally reachable, but
is reachable from the first object.

The ERM contains all information concerned with which objects outside of the node
are referenced from the node. The first part contains references rooted at the node, the
second part paths "passing through" the node.

The ERM of a node is made available (broadcast in one way or other) to all other
nodes. This means that, after a while a node will have received the ERM of all other
nodes. When this is the case, a node has all information it needs to obtain a view of
the global object-reference graph, except for one problem. The problem is due to the
movement of references dw·ing the construction of the ERM's of the other nodes. Since·
the construction of the ERMs is not synchronized, references (or objects) may move in
a way so that they are not reflected in any ERM.

We solve this problem by obtaining information from each node on which references
have moved since the ERM of lhat node was generated. This information we call the
moved references message (MR?vI). The MRM of each. node must be collected after the
ERMs have been received from all nodes. This is how synchronization is achieved in the
algorithm. We know that all the ERMs were made before any of the MRMs This has the
effect that any reference which has moved will appear in some MRM. The MRM is also
exchanged between all nodes. Any local object having a reference in the MRM from some
node will not be reclaimed. Since garbage does not move it will never appear in an MRM.
When both the ERMs and the MRMs have been received from all other nodes then each
node has enough information to detect objects which have been globally unreachable
since just before the generation of the ERM. Any such objects residing locally are made
available for reclamation in the local garbage coUection part of the next cycle of the
mechanism.

5.2 The mechanism in detail

Raving the perspective of one node, let us call the set of all objects which either reside
in the local repository or which reside at some other node but have a. reference to them
in the local repository, for Known, (see figure 1). This set in general includes garbage
objects.

Our mechanism needs to partition Known into three subsets: Local, Export and
Import. The Import set is the set of objects not located at this node but which this

294 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

node has references to. The Export set is the set of objects located at this node which
could be directly referenced from other nodes. In other words at some time, for each
object in Export, a message containing a reference to that object has been sent to
another node. The Local set is the set of objects Joca.ted at this node which cannot
be directly referenced from other nodes. The idea of keeping track of which objects are
exported and imported we have obtained from Mancini and Shrivastava [Manci88] .

MLocal

MUlmport

Splitting Lhe set of objeclS known at a node
into subsets based on reachabilhy.

D Means locally reachable.

.
UUlmport

D Means globally unreachable on local basis ..

* Means relevant for disLributed GC.

Figure 1

It should be clear to the reader that Local, Export and Import are disjoint. T he
Import set can easily be identified during t he first processing phase of our mechanism.
I.f stubs are maintained for normal processing then. the set consists of all stubs. Otherwise
we can. assume that any reference which cannot be resolved locally is a reference to ~
object located elsewhere, and hence that object is a member of Import.

A.Bjornerstedt 295

To differentiate between the Local and Export sets requires additional information.
II we simply allow any messages containing references to pass out to other nodes without
control, then Export becomes identical to all objects residing at the node, an.cl Local
becomes the empty set. The advantage of allowing this is that the node can operate with-
out any overhead (for garbage collection ·or persistent objects) du.ring normal operation.
There a.re two disadvantages: First, and most importantly, we can do very little local
ga.rbage collection of persistent objects without consultin·g all oilier nodes. Only stubs
which a.re not reachable from any other object residing at the node can be removed (the
UUimport set, explained below). Second, the ERM message, in particular the second
part, can become much larger. This is because now all local objects which are not locally
reachable must be considered as potentially globally reachable. Still, this solution might
be preferable in some systems, where it is desired to keep the over.head during normal
operation at a minimum. Our mechanism .is also consistent with 'this possibility, it simply
means that Local is empty. One can achieve a greater degree of autonomy with respect
to garbage collection, at the cost of some o\·erhead dur.ing normal operation.

Given that we can dist.inguish between Expo1·t1 Import and Local, our mechanism
works by forU1er subclividing these sets. First a marking is done from the local persistent
roots, splitting the three sets into six sets, (see figure 1). Then a second marking is done
using the members of Export which were not marked by the first marking (UExport)
as roots. This second marking spHts the other two sets of objects unmarked by the firs.t
marking (ULocal and ULnport) into four sets. The identification of these subsets is
the basis of our garbage collection mechanism.

5.2.1 The Export-Import list

As in (Manci88] we keep track of which objects have references to them exported or
imported. While Mancini and Shrivastava have two lists we only have one list, but
iufonnation is kept with each entry in the list as to whether it represents an import or
ell.-port of an object. We will call th.iB list the EI-list. The object managers maintain the
El-list during normal operation.

Every outgoing or incoming message has to be checked for references not already
in the list. When such references are found they have to be added to the list. Each
El-list entry consists of three parts. The refecence (identifier) itself, which is used as

· the lookup key; a timestamp showing when the reference was added to the list; ·and an
export/import indicator which indicates whether ilie reference points to a member of
Export, Import or "not known."

Because we are talking about persistent objects and persistent references, this list
also has to be maintained persistently. Furthermore, some operations which previously
were pure functions (side effect free) may now have side effects.

The maintenance of the EI-list interacts with the distributed transaction mechanism
of the system. Since the maintenance of the EI-list is don.e by and for the object ma.nag~,
we do not require full update atomicity. We do not require aborted transactions to
backout effects on the EI-lists. If messages which are part of an aborted transaction have

296 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

caused some additions to the El-lists of one or more nodes, then this is not a consistency
problem. H just means that we are overly conservative and that some gubage may
not be recognized as such as early as was otherwise possible. The garbage collection
mechanism regularly purges the EI-list. This will not only clean up the effects of a.boded
transactions, but more generally remove references which might have been e.xported but
which are in fact not referenced by other nodes any more.

On the other hand we do require that for a transaction to commit, any effects it
has had on EI-lists have been made non-volatile. We will return to the issue of how to
efficiently implement t.he El-list in section 5.4.1.

Since both incoming and outgoing messages are scanned, and since the EI-list is
maintained as one list, imported references which are reexported will be found already
on the list. The same holds for exported references which are reimported. We want to
avoid doin.g actual object lookups when a reference is to be added to the EI- list during
normal operation. This might be needed to determine if the reference was to ai:t imported
or exported object. Instead we assume that if a reference is added to the EI-list as part
of an outgoing message t.hen it points to an object in Export and set the export/import
inclicator of the EI-list entry to be added to "export." For references added as part of
incoming messages we set the indkator to "import." The export/import inclicators in
the EI~list will be consistent with Export and lrnport as long as objects do not move
and if the El-list is continuously maintained, i.e. requirement 5 is not exercised. The
last is one of the simplifying assumptions which we remove later (see section 5.3.1). The
movement of objects is handled by setting the indicator to "unknown" at both the source
and destination nodes. Moving an object from one node to another is an operation which
like other application operations must be part of a transaction. Agrun, this means that
an aborted move will not w1do the "unknown" setting of the expo.d/impod indicator,
but a committed move must have made this setting persistent.

Figure 2 shows a system consisting of four nodes and a number of objects distributed
over the nodes und referencing each other. Root objects llnve a reference (arrow) from
the node border. Taking node 3 (N3) as the basis we see that Export consists of 3, 4
and 7. These objects are referenced from other nodes. Import consists of 2 10 12 and
14 since objects at N3 have references to these objc::ct.s ori oilier nodes. We can assume
that these objects are represented by stu.bs on N3. In the figure, the small circles on the
border of a node represent stubs. Local will then consist of 5, 6, 8 and 9.

5.2.2 Processing for secondary storage garbage collection.

Besides the maintenance of an. EI-list during normal processing, the garbage collection
mechanism consists of seven phases. The fust three phases need to be rnn when a node
is in the quiescent state. Phases 4-7 could all be run in parallel with normal operation,
but only phase 5 needs to be run in parallel. The administrator of a node then bas some
freedom of choice on whether to minimize the time of int~rruption of normal operation
that the quiescent state causes, or to minimize the overhead of the garbage collection
mec.hanisw during normal operation.

A.Bjornerstedt

Export=3 4 7

Import= 2 10 12 14

Local=5 6 8 9

Phase 1: Marking from roots

297

Figure 2

This phase is executed whc1.1 the node is in a quiescent state. It consists of the marking
phase of the standard mnrk & scan. We assume that the repository and the EI-list of the
objec~ manager is not being modified by anything but the =king traversal. Starting
a traversal at the local root object(s), all objects reachable from the roots are marked.
The traversal stops at remote references, i.e. only a local traversal is made. We use
the update timestamp 6cld of each object for marking and use the Lime when phase 1
started as !.he marking. When a remote reference is found, the st~1b is marked if jt exists.
ln addition, the remote reference is looked up in the EI-list and jts timestamp is also
marked, (if the ex'}Jort/import indicator indicates "unkn.own" it is set to "import").

The three sets Export, Import and L_ocaJ are each split in two {see figure 1). The
objects which arc marked by this first phase are trivially globally reachable since they
Me locally re<\chable. Any garbage located at this uode must be a member of one of the
three sets of unmar.ked objects UExport, Ulmport and ULocal. Figure 3 illustrates
the effect of the first phase on our example.

298 Secondaiy Storage Garbage Collection for Decentralized Object-Based Systems

NI

Export=3 4 7

Import = 2 10 12 14

Local = 5 6 8 9

MExport=7

UExport=3 4

Mlmport = 10 12

Ulmporl = 2 14

MLoca! = 8 9

ULocal = 5 6

Figure 3

N4

A.Bjornerstedt 299

Phase 2: Marking from members of UExport

The second phase is also run during the quiescent state of the node. The EI-list is
scanned at the same time as it is updated. Each reference will be either unmarked (have
an old timestamp), be marked by phase 1, or be marked by this phase (phase 2). Only
remote (imported) refere.nces in the EI-list are marked by either phase 1 or 2. Different
actions are taken ior each EI-list entry depending on its contents.

For entries found with the import/export indicator set to "unknown" an object lookup
is made to determine the proper setting. Processing then continues according to whether
the setting is "export" or "import."

An exported reference is looked up to see if the object in the repository was marked
or not in phase 1. If the cxportc<l object is marked then it is a member of MExport
and the EI-list entry is skipped, i.e. prncessing continues wiili the next El-list entry. If
the exported object was not marked then the object is a member of UExport and it is
used (immediately before continuing the scitn of the EI-list) as the root for a marking
traversal. This marking traversal starts by marking the exported object, and not the
reference in the EI-list.

Imported references found during the scan of the EI-list are not looked up in the
repository. Imported references marked in phase 1 correspond to Mimport and are
appended to a list which we will call ERM-1. This list will contain all references to
remote objects rooted at this node. Imported references which are unmarked correspond
to Uimport and are skipped. Imported references marked by this phase correspond to
the MUimport subset of Ulmport and are also skipped.

The marking traversals in this phase start from the members of UExport as they
are found during the scan of the EI-list. Each such traversal uses a new timestamp which
we asswne is different and later than both the mark of phase 1, and marks obtained for
traversals for previously found members of UExport.

Tlle marking traversals in phase 2, like the traversal in phase 1, stops at remote
references and at objects already marked in phase 1. It does not stop at objects marked
by previous traversals of phase 2. This is why eac.h traversal in phase 2 must obtain a
new timesta.mp, otherwise we would risk that the tra:versal di.d not te:aninate. When
remote references are found during a. traversal in the repository, their entry in the EI-list
is looked up and marked if it was not already marked in phase 1 or 2. Since only remote
references in the EI-list which were not marked by phase 1 are marked by phase 2, they
correspond to the MUimport subset of Uimport (see fig 1).

This second marking divides ULocal into MULocal and UULocal (in the repos-
itory), and Uimport into MUimport and UUimport (in the EI-list). Figure 4
illustrates the result of the second phase. Marking in this case started from 3 and 4.

During the traversals of phase 2, whenever a member of MUimport is reached,
i.e. a remote reference in the EI-list which is not marked by phase 1, then a pair of
references is added to a new list which we will call ERM-2. The pair consists of a
reference to the member of UExport which the current traversal started with, and a
reference corresponding to the member of MUimport which has been reached. The

300 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

Nl

0

£xpor1=3 4 7

lmporl=2 10 12 14

Lcx:al=S 6 8 9

MExport=7

UExporl=3 4

Mlmport = 10 12

Ulmport = 2 14

MLcx:al = 8 9

ULocal =5 6
Figure 4

MUimport = 14

Uillmport=2

MULcx:al = 6

UULocal = 5

N4

A.Bjornerstedt 301

ERJvI-2 list will consist of all "paths" through the node whlch are not rooted at the
node. Both the ER.M-1 and ERM-2 lists are saved to secondary storage once phase 2 is
completed.

When the scan of the EI-list has completed then:

All entries with an export/import indication of "unknown" have been corrected to
either "export" or "import."

All "import" entries marked by phase 1 can be found in ERM-1

All "import" entries marked by phase 2 can be found as the second component in
at least one entry-exit pair appended to ERM-2.

No "export" entries were marked by either phase 1 or 2.

It should be obvious that the members of UULocal are garbage. They are obviously not
locally reachable since they were not marked in the first phase. They ·are not reachable
Crom any othe·r node either and hence not globally reachable, since anything reachable
from anothe1: no<le has to be reachable from an exported object, and should then have
been marked in the second phase. UUlmport can also be used to reclaim resources,
namely stubs and EI-list entries. Members of UUlmport are remote objects which
currently cannot be reached by or through this node and hence all information related
to them can be removed from the node. However this has to be done (in the next
phase) before resumption of normal processing. The reason is because the members of
UUlmport do not reside at this node and so they might actually be reachable from
other nodes and could become reachable again at this node once normal processing
starts. A removal of stubs and references in the EI-list corresponding to UUlmpor t
could therefore conflict with operations during normal processing.

Phase 3: Collecting UUlmport references from the EI-list

The third phase is also run in the quiescent state. The EI-list is scanned a second time
to remove references to UUimport. Any reference with the export-import indicator set
to "import" and with a timestamp from before phase 1 can be deleted.

For each reference to UUlmport deleted from the EI-list, the corresponding stub
(if there is one) in the repository is either deleted now or made into a "tombstone" for
delete in phase 4. 8 In the example (figure 4) the EI-list entry and stub for the object
2 in UUl mport can be collected. It is possible to skip this phase without violating
the liveness requirement. This phase does not remove garbage. It only removes remote
references which are not currently used locally. This will reduce the size of the EI-list.
References in the EI-list to garbage will be removed in phase 7.

Phase 4: Collecting UULocal

This phase can be described as the scan phase of the standard mark and scan algorithm.
An exhaustive search of the repository is made looking for objects having a timestamp

8 !f the scan in phase 4 is done during the quiescent state then stubs need not be marked as tombstones.

302 Secondary Storage Gru·bage Collection for Decentralized Object-Based Systems

from before the mark of phase 1. Members of UULocal (and possibly tombstone stubs
in UUimport) have an old update stamp associated with the object in the repository.

If the node goes into normal operation after phase 3 has completed, but before phase
4 (this phase) has completed, then we have to be careful not to regard new or moved
objects as garbage. Objects created, updated or moved to the node after the quiescent
state will have a timestamp after that of phase 2 and so will not be reclaimed.

We have thus identified some garbage on a purely local basis, without consulting
other nodes. This phase could be run either directly after the other three during the
quiescent state of the node, or in parallel with normal operation. Since timestamps are
used as the markii~g "colors," phase 3 could even be run in parallel with phases 1 and 2
of later cycles of the mechanism. 9

The reason that phase 4 can be run in parallel with normal operation is the axiom
that says: "garbage stays garbage." Anything which has become globally unreachable
cannot be reconnected if the object manager is working correctly.

In the example (figure 4) the object 5 in UULocal can be collected.

Phases 1 to 4 could be cycled several times without the following phases as need arises
to reclaim resources.

The following phases are all concerned with detecting garbage on a global basis and
purging the EI-list so that the garbage becomes locally identifiable and collected in phase
4.

Phase 5: Creating and exchanging the ERM

The ERM consists of two parts ERM-1 and ERM-2, both generated in phase 2. Phase
5 consists of the exchange of the ERMs between all nodes. This node's ERM should be
communicated to all other nodes and the ERMs of all other nodes should be received
by this node, sooner or later. This phase could start when the node is in the quiescent
state, but will normally need to continue during normal operation of the node. The
reason being that it may take a long time before the ERMs from all other nodes can be
obtained.

Because our mechanism is cyclic there is a need to be able to identify which cycle
a particular ERM helongs to. We therefore assume that an ERM gcncrntion number is
maintained at all nodes and that this number is incremented and added to the ERM when
it is generated. Only pbase 5 increments the generation number. Several cycles of phases
1-4 ai:e possible .in the same ER?vl generation. Once a node has communicated its own
ERM of a certain generation to any other node then it has committed that generation.
If it later sends an ERM with the same generation number to any other no<lP., then it.
must be the same ERM.

The ERMs received from the other nodes will usually contain some references to
objects located at other nodes and unknown to this node. The receiving node doel!

9 Running phase 3 in parallel with phase 3 of the next cycle of the mechanism is pointless and could
cause consistency problems depending on the storage organization. Phase 3 of a later cycle will reclaim
any garbage which should have been reclaimed by phase 3 of an earlier cycle.

A.Bjornerstedt

External Reachability Message
(ERM)

r;;i
e--10

e--12 4-14
EJ 82 g4

e--2 e---1
3

4

Figure 5

303

not attempt to produce entries in the EI- list (w· stubs) for new references found in the
ER.Ms. The object manager recognfaes the ER.i\1s as bcin.g special and not part of normal
processing. Although it would not cause inconsistency if new references imported wi th
ERlv!s are added to the local EI-list, it could cause the EI-list to be wwecessarily large.
Phase 6: Traversing the global graph

Once a node has received all the ER.Ms of the latest generation from all other nodes it has
sufficient information to obtain a view of the global graph. We remind of the temporary
simplifying assumption that all nodes entered the quiescent state and did phases 1-3 at
the same time. Synchronizing the generation of the ER.Ms in this way has the effect that
all the ER.Ms taken together reflect a consistent global state of the system.

Figure 5 shows the Efu\l[s produced at the four nodes in the example. When the node
N3 has received the ER.Ms from Nl, N2 and N4 it can reconstruct a view of the global
object-reference graph. It is not a complete view of the global graph since only members
of Export and Import are visible. Figure 6 illustrates how the global graph appears
when constructed from the ER.Ms.

A third marking traversal is now made. This traversal does not actually traverse
objects in the repository. Only the ER.Ms, or a graph structure constructed from ~hem,
is used.

The traversal starts with the members of the ERM-1 parts of all ER.Ms as roots and
continues using the paths found in the ERM-2 parts. The traversal stops when marked
entries are found or when no more paths wi th a matching entry reference are found in

304 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

:·· ·-~
y~u l
. . : .

; N2 ~ :
: :

~ NJ ;
"" ····:

: ~ ··· · · · ·"·"· · ·..L~~.
: ~

G ~ :
7 l ~

~ ! iG ·

Figure 6

the ERM-2s.

Looking at figure 5 and 6. The traversal starts with objects 2, 7, 10 and 12 since these
are the references present in the ERM-ls. The traversal from 2 will mark the entries 2,3,4
and 14. Trnversals starting with 7,10 and 12 will only mark these. In the examplt:, nu
global garbage is detected.

If we go back to figure 4 and assume that. there was no reference from object 15 t.o
14 at node N2, then we sec that objects 14, 16, 2, 3, 6 and 4 now become garbage. Tl:iis
would not have affcde<l phases 1-4. In phase 5 the altered ERM received from node N2
is shown in the top of figure 7. In other words, instead of a rooted reference to 2 in the
ERM-1, we get a path 14 -> 2 in ERM-2. Figure 7 also shows the global view given by
the ERMs.

Phase 7: Removing references to garbage from the EI-list

This phase is similar to phase 3 but can be run concurrently with normal processing
because we are only rem.oving garbage Any reference which according to phase 6 is
garbage is looked up in the El-list and removed. II the reference is .remote then a lookup
is made to see iI if; l1as a stub. If there is a stub it is made into a tombstone for remova.l
in phase 4 of the nc.'l:t. cyole.

In the modified example shown in figure 7, the members of Export 3 and 4 at N3
can have their entries cleared from the EI-list. This effectively moves them from Export

A.Bjornerstedt

~~ -!

.........
;NI :

r8--i
~

······ .
.! ••••• •Li:r~ j:

.
; N4

------:::-"".@
G. ;

------"""'!'<~

Figure 7

305

to Local and they will be collected as members of UULocal in the next cycle, (in fact
the local object 6 will also be collectec!). The member of Import 14 is also removed
from the El-List. If phase 3 was skipped then the entry and stub for 2 will be removed
now instead.

5.3 Dropping the simplifying assumptions

5.3.1 Interrupting the maintenance of the EI-list

The ma.intenance of the EI-list is the only major overhead of our mechanism during nor-
mal operation. Overhead is only incurred when messages containing references are being
exchanged between nodes. It miglrt be desired to turn of the maintenance of the EI-list
for some time to have greater performance. If the EI-list is not .maintained while mes-
sages are sent and received from a node, then refez·ences may be exported and imported
without being recorded in the EI-list. Ii no other information is kept then this means that

306 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

we must tegard all objects rcsirung at the node as members of Export. The EI-list must
also be regenerated from the repository. H the l.Frlist maint.enance is turned off then it
is advisable that at least stubs are maintained for all remole references. Otherwise the
regeneration of the El-list becomes prohibitively eiq>ensive, if the repository is large. So,
even if our mechanism does not depend on the maintenance of stubs. as part of normal
processing, if requirement 5 is to be exercised then stubs are needed.

Phase 0: Regenerating the EI-list

This phase can be run in parallel with normal operation. This phase is only necessary
if the maintenance of the EI-list has been turned of for a period of time when messages
which may have contained references have been e.xchanged. We assume that the main-
tenance of the EI-list has been tw·ned on again. Auy l'eferences added to the EI-list as a
consequence of message traffic, after maintenance has been turned on but before phase 0
has completed will get the export/import marking set to "unknown." Such entries will
be corrected in phase 2. Phase 0 must be complet.ed before phase 1 can start.

A complete (read-only) scan is made of all objects in the repository. All objects found
are looked up in the EI-list using the object identifier. If an entry for a reference to t)le
object does not exist then an entry is made to the EI-list and marked as "export." If it
is certain that stubs have been added for all references which have been imported while
the EI-list was not maintained, lhen lookups in the EI-list are also made :for all stubs
found in the repository. If a..n entry for a reference to the stub does not exist then an
entry is made to the EI-list and marked as '' import." lf stubs have not been created for
all new references imported whlle the EI-list was not maintained, then e11ery reference
of every object has to be checked to see 1£ it is a remote or local reference, and if remote
looked up in the El-list and possibly added to it.

5.3.2 Dropping the synchronized start assumption

The synchronized start assumption ensures that the ERMs reflect a consistent static
snapshot of the system. If we drop this assumption, in other words if the nodes enter the
quiescent state and execute phase 1-3 at different times, then we need to cope with the
problem of referenr.f'.~ "moving" between nodes. By a reference moving from one node
to another we really mean that the reference is copied to a node where the object was
previously not imported, and deleted at a node where it previously was imported. ·we
note that moving objects is not a problem, as was explained for phase 4. Any moved
object will have a new timestamp at the receiving node and so will not be collected by
phase 4. Of course an object which moves may move references, but this then reducf'.!<
to the moving reference problem.

The following small example illustrates the problem. Assume that some object x
is reachable from some node A and not reachable from another node B. The object x
could reside at any node in the system including A itself. Some other node B enters the
quiescent state and generates its ERM. After B resumes normal operation, a transaction ·
is executed which makes x reachable from B but unreachable from A. Now A enters the
quiescent state and generates its ERM. We now have a situation where x is reachable

A.Bjornerstedt 307

but this is not reflected in either of the ERMs. The ERM of B docs not reflect it because
it was generated before the reference to x was received. The ERM of A docs not reflect
it because it was generated after the refere.nce to x was removed. If we do garbage
collection based on only these ERMs then x may be removed despite the fact that it is
reachable, violating the safety property.

Our solution requires a slight modification of how the El-list is maintained. In section
4.2.l it was said t.bat only references not found already on ~be list were added to the
list. '.Ve now modify the behavior in the following way; During phase 4--5, i.e. after
the quiescent state and until lhe end of phase S, outgoing messages not only add new
references lo the E!-list, but any reference already on \he list with a timestamp before
phase 1 will get the timestamp updated to current time.

The effect of this is that we keep track of which references have passed out from
the node since normal processing resumed. All nodes do this until the ERM has been
received from all other nodes. This ensures that ony reference moved after any of the
ERMs was generated il1ust be recorded in some llffiM, because it must have been part
of an outgoing message at some node. We split phase Sin two and change phases 6 and
7. Phase Sa is the same as phase S previously, (exchanging the ERM). Phase Sb is as
follows:

Phase Sb: exchanging the MRM

Once the ERMs of all other nodes have been received by a node (phase Sa finished at
the node) it can start phase 5b. A·scan of the El-list is done (in parallel with normal
operation) and any reference found with a timestamp after phase 2 is added to a moved
refe1·cnces message (MRM). 10 After the MRM has been generated it is broadcast to
other nodes in the same way as the ERM. Once the MnMs of all other nodes have been
received phase 5b is finished.

Changes to phase 6

In phase 6 we make two changes. First the MRMs are considered as additions to the
ERM-ls. This means that any reference which bas moved since the generation of the
ERMs is considered as rooted. This is a conservative approach and guarantees that we
do not violate the safety property. Liveness is guaranteed by the fact that garbage does
not move, since no thread can reach it, and hence cannot have references to it end up in
the MRMs.

The sccond change to phase 6 is that when we do the traversal, whenever a reference
is traversed it is looked up in the El-1.ist and marked. We may in fact use the EI-list to
represent the nodes and the ERM-2 messages lo represent the edges. References present
in the ERMs but not in the EI-list may be placed in a temporary "extra" EI-list with
the same structure as the El-list. If this temporary list is small enough it could be kept
in virtual memory only and discarded after phase 6.

We assume that despite that normal processing is being done in parallel with the
marking traversal, that we can obtain a unique timestamp. This is needed to distinguish

10Since phase 2 used several timestamps, "after phase 2" means after the last timestamp used in phase
2.

308 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

a marked entry iu the El-list from an entry which has been recently inserted or updated.
Any entry ,..,jth a timestamp different from the llllique timestamp of phase 6 is regarded
as unmarked. This means that some new or updated entries may get their timestamp set
back in time by the marking traversal. There is no risk of a race condition between the
marking traversal at1<l updates to ~he EI-list due to normal processing because updates
by normal processing only add new entries. The updating of existing entries, for the
purpose of the MRM is only done until the end of phase 5a (and in fact only updated
entries with a timestamp older than phase 1).
Changes to phase 7

Instead of just removing references to garbage from the El-list we scan the EI-list and
i·emove all references which have either a timestamp from phase 2, 11 or a tiruestamp from
before phase 1. The first ru:e imported objects not marked after phase 2 and are definitely
Ieferences to garbage, the second are exported objects who lu;i.ve not been marked at all,
and includes both references to garbage and references to non-garbage. We leave entries
wi th a timest1;1.m1> from phase-1 (which are imported references and were added to ERM-
1) and references adcled or updated after phase 2. This will not only remove references
to garbage from the El-list but also references which ha.ve been e.-<ported (before phase
1} but ru:e not used by other nodes any more. This reduces the size of the EI-list and of
future ERMs.

5.4 Opti_mizations and Refinements

5.4.1 The EI-list

The EI-list must maintain information on all impoi·ted o.r exported objects of a node.
Rar.h liRt. ~ntry consists of a reference, a tirilestamp and an export/import indicator. It
must do this with the same degree of fault tolerance as the basic transaction mechanism.
During normal processing the object manager observes incoming and outgoing messages.
Ally reference present in a message and not already on the EI-list must be added to it.
0 bviously this operation must be as fast as possible. During garbage collection processing
the EI-list .is used to lookup entries, update entries, delete entries, and for e.xhaustive
linear processiug.

The best data structur<!S and a lgorithms for solving this problem depends on wl1aL
kinds of messages applications are sending between nodes. We here only sketch one
possible design where we assume that the Export and Import sets form a "substantial
part" of Kno"".n and that the EI-list undergoes a "fair amount" of change. We propose
to integ1:11.•" Llu:: E!·U~L with tile object lookup mechanism and augment this wifo logging.

The object lookup mechanism is used by the object manager to map the large identi-
fiers of persistent objects to a slot in an "object table," (this is similar to some Smalltalk
implementations which have n level of indirection whei:e "oops" point to slots in a table
containing t.he physical memory address of tbe object). A bashing technique is a.ppro-

11Since phase 2 used several timestamps, "a timestamp from phase 2" means a timestamp after that of
phase 1 but not after the last .timestamp of phase 2.

A.Bjornerstedt 309

priate here because the number of entries in the table will be much smaller than the size
of the identifier space. The hash function maps identifiers to slot addresses. Whether
or not the entire object table is maintained in primary storage or some virtual memory
technique is used we leave open. Each table entry contains the long identifier (to check
for collisions) and the address of the object in some persistent address space. We pro-
pose that EI-list entries are stored in the object table. The disadvantage is that this will
make all table entries larger (but still of fixed size), and if we have very few exported
and imported objects this solution is not cost effective. But it is a simple solution, we
have one lookup mechanism instead of two.

The log is used if the object manager has trouble in keeping pace with message
traffic, i.e., if keeping the EI-list up to date risks being the bottleneck in the handling of
messages. This could be the case if very many or very large messages (in the sense of
having many refe1·enccs) have to be processed. If very many references have to be checked
against Lhe EI-list at one time, the object manager can simply dump the potentially new
EI-list entr.ies to I.he log. Tile log could be processed in parallel by a low priority thread.
If the object table is small enough to be kept in primary storage then the log is also
needed to provide recoverability. The log is also well suited for keeping track of recently
exported references, which is done after the quiescent state until the end of phase 5a for
the purpose of the MRM. If the transaction manager maintains a log then the log for the
EI-list could be integrated with it.

Since we are assuming that communication is done using remote procedure calls (rpc)
consisting of paired messages of request and reply there are four "points" at which the
EI-list may be updated. A node acting as a client for an rpc may discover new exported
references in the outgoing request message and new imported references in the incoming
reply message. A node acting as a server for an rpc may discover new imported references
in the incoming request and new exported references in the outgoing reply. What we need
to ensure is that when the transaction in which the rpc participated is to commit, that
all updates to EI-lists have been securely written to non-volatile storage. If the EI-list
has been altered at a node acting as a server, then either the update of the EI-list to non-
volatile storage has to complete before the reply message is sent, or the message is sent
in parallel with the write to non-volatile storage and an additional message containing
an acknowledgement is sent later.

The acknowledgement message may be sent asynchronously since it is only of concern
to the object managers and not part of the control flow of any application. In other words
each reply message of an rpc may contain additional system information indicating that
an export-import list was updated and that further information should be expected
concerning whether the update of the EI-list succeeded. This acknowledgement may be
piggy-backed on some other application related message or sent in a separate message.
When a transaction is to commit the local transaction managers at client nodes must
check if there are still acknowledgement messages which have not been received from
nodes which have been servers to the transaction. If there is any acknowledgement which
has not been received then the transaction manager must either wait, request a resend of
the acknowledgement, or abort the transaction. 12 At the latest then, acknowledgements

12Since the EI-list update acknowledgements may be sent asynchronously' in a separate message it may

310 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

concerning updated EI-lists become part of the distributed transaction commit messages.

5.4.2 The ERMs and MRMs

One problem concerning ERMs and MRMs is how they should be exchanged. Since there
is generally no "hw.<y," i.e. most garbage will probably be purely local and collected in
phase 4, il makes sense to take a lazy approach. If a node Nl has not received the ERM
of the latest generation from some other node N2, then the next time Nl is sending
some message to N2 as part of normal processing, a request for the ERM is appended.
In the same way, if a node N2 knows that some other node Nl has requested the ERM,
then the next time N2 is sending some message to Nl as part of normal processing, the
ERM is appended. Timeouts could be used to avoid too long delays. The request or
reply would then be forced out in its own message.

Another problem is the size of the ERMs. In particular the ERM-1 part could be
very large since it contains all outgoing references rooted at the node. A simple solution
to this is to send the difference with respect to the previous message instead of the whole
set of references each time.

Phases 5-7 of the mechanism force some synchronization on the global system. All
nodes are required to "be in step" with the ERM generation number. The node which is
slowest to supply its ERM and MRM will set the pace for the whole system. Furthermore
the added overhead during phase 4 and 5a of updating the EI-list for recently exported
references, can cause problems. If one node is slow to respond it keeps all other nodes in
phase 5a longer. It is an advantage if all nodes can agree to enter the next generation so
that it is not postponed by some nodes indefinitely. There is then the question of who
initiates a new generation.

Any node which has received all ERMs and MRMs of a certain generation, from
every other node, is in principle free to enter phase 5 of the next generation whenever
it is ready. Conversely, before a node has received all the ERMs and MRMs it may not
enter phase 5 of the next generation. Phases 1-4, as has been explained, can be cycled
any number of times at a node, under the current generation. The problem is that once
a node has finished phase 3 and is about to resume normal operation it has to make a
choice. Either it assumes that it will do phases 1-4 again without entering phase 5, in
which case it does not have to do the extra processing for the purposes of the MRM
(see section 5.3.2). Or it assumes that a "go" decision has been reached for the next
ERM generation and it then needs to do the extra processing. A voting algorithm could
be used to reach agreement between the nodes to enter the next generation [Thoma79].
Once a decision has been reached to enter the next generation by a majority of t.he nodes,
all nodes should comply by doing all pb.ases of the mechanism t.he next chance they have.

It is possible for a node to skip a certain ERM generation. It does this by sending
an ERM where the ERM-1 and ERM-2 components are empty. The MRM is built by

sometimes happen that the acknowlcdg~ment is received by a node before the rpc reply message. This
does not matter since when the transaction reaches the point of commit there cannot be any application
messages belonging to that transaction still in transit.

A.Bjornerstedt 311

inserting all imported references found in the El-list. This ensures safety but not liveness.

5.4.3 Using a copying and incremental collector

In section 5.2.2 it was stated that phase 4 (the reclaiming of garbage) can be run in par-
allel with normal operation. Thls is because logically the reclaiming of garbage cannot
conflict with any application processing. However, thls fact does not mean that phase 4
s.hould be run in parallel with normal operation. It will usually be the case that resoui:ces
are shared on a lower level lhan abstract objects. Because of this, short term synchro-
nization will usually be rec1uircd between the application activities and the activity of
reclaiming resources. The performance of application processing will then inevitably be
degraded. If we have interrupted normal processing to do phase 1-3 anyway, it might
be more reasonable to complete phase 4 also during the quiescent state and be rid of its
processing cost.

Furthermore, it is often advantageous to do reorganization and compaction of sec-
ondary storage at the same time as removing garbage. If phases 1-4 are all run i:n the
quiescent state then we can use a copying collector instead of mark and scan. The mark-
ing in phases l and 2 will then instead do copying and phase 4 disappears entirely. There
are however some complications.

Since we can have more than one persistent address space below the identifier space,
the copying may have to work w1th several from-spaces and to-spaces simultaneously. It
might even be the case that some spaces use marking while others use copying.

Furthennore, since phase 2 did not stop the marking tra.versal jf objects are found
marked by earlier traversals of phnse 2 itself, il should not stop the traversal if doing
a copying traversal either, although it mu,,t stop the copying of the current branch.
Remember that phase 2 has one traversal for every member of UExport found in the
Ef-list. Finding an object marked by phase 2 corresponds to finding an object already
copied by phase 2. Traversals in phase 2 then do both copying and ma.rkin.g. Marking
is still needed if an object already copied by phase 2 is traversed, to ensure termination
of the current ~raversal. The traversals of phase 2 should only stop: at objects copied
in phase l; at objects copied or marked by the current traversal in phase 2; at remote
references or stubs.

Using an incremental copying collector (Ba.ker78] in phase 1 and 2 is also possible. We
can then allow transactions to be processed in parallel with the local garbage collection.
This is relatively straight forward if we only allow transactions which are purely local
to the node. Instead of a quieJcent state as defined in section 3.2 we have an Molated
state. This means that the El-list is not modified by anything but the garbage collection
mechanism in phases 1-3.

The next step of refinement is to allow multinode transactions in parallel with local
garbage collection, but not allowing objects to move to or from a node in phase 2.
Transactions which try to move an object during phase 2 will be delayed or aborted.
Phase 3, which is not essential for safety or liveness, would be skipped.

Finally it may be possible to allow unrestricted transaction processing in parallel with

312 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

all phases of our mechanism. This would require further complication of our mechanism,
making heavier use of the timestamps in the EI-list. We are currently studying this
possibility.

Tliere is a trndeoff here between either accepting a shorter but disruptive quiescent
state with a simpler mechanism, or a. longer non-disruptive period of reduced overall
performance with a, more complicated mechanism.

5.4.4 Problems of scale

A major disadvantage with our mechanism as presented is that it. does not scale well. In
particular there are two problems. The first is the number of messages. Our mechanism
generates fewer messages (but la.rger) than other proposed solutions to the distributed
garbage collection problem. But if there are many nodes then the number of messages
may become too la.rge (O(n**2) where n is the number of nodes). A consequence of
the number of messages being large is that the secondary storage space required at each
node, for storing the messages, may be large. Tbe second problem has already been
mentioned. The slowest node in the system to produce the ERM and MRM sets the
pace for all other nodes in doing global garbage collection.

The reason that all nodes have to be involved in the exchange of the ERMs and
MR.Ms is because no information is maintained on where a reference has been exported
to, or imported from. Imported references are copied and reexported freely, without

·informing other nodes. Ow· mechanism only takes advantage of locality of reference by
distinguishing between local objects and objects elsewhere. In reality we expect that
locality of reference wiU manifest itse.lf also in larger contexts than a node. We expect
that a node will normally have most of its interaction with a few other nodes and only
occasionally interact with the larger world. It is also probable that this reasoning applies
to several levels, e.g. department, company, city, region, country, world.

One idea is to group nodes into coopero.ting units. Each member of the group would
agree not t.o reexport any reference, to a node outside the g.oup, without permission
from the nod<: wh<:1·e the referenced object n~sides . A node m.a.y be a member of more
than one group and maintains EI-lists for ea.eh such group . .A prerf!qni~ite for nnfl non"
to permit another node to 1·eexport a reference to one of it,-; ohjed.~ is that both nodes
are members of the group to which the object is rceiqJorted. Both nodes add an entry
in the EI-list for the group to wh:ich an object becomes exported.

Phase 1 would be t.hc sam.e as before, except that re.mote references must be looked
up in all EI-lists. Phases 2 and 3 must be run fer ea--..h El-list. Phase 1 is unch::m.gcd.
Phases 5-7 may be run separately for each EI-list. The different EI-lists would have
different generation numbers permitting different cycle periods for different groups.

It would also be possible lo organize the groups hierarchically. This would be similar
to the Unix file system security domains u&er, group, and olAer [Ritch74]. Although our
node groups are intended for defining locality of reference and not access control, the two
problems are related and it is possible that node groups could be used for both purposes
at the same time. When a reference is exported from one n.ode to another, the two nodes

A.Bjornerstedt 313

would each insert an entry in the EI-list corresponding to the smallest node group both
are members of (unless the reference already exists in a larger group at the exporting
node).

Different node groups could be bound by different "contracts" concerning how to reach
agreement on when to enter the next EIUvr generation, or concerning the conditions when
reference may be exported outside the group.

The problem of scale can also be attacked by relaxing the safety and liveness require-
ments. One could have a global node group which all nodes ai·e members of by definitiou
(corresponding to the security domain other in Unix). No EI-list would be maintained for
this group. References exported to this gt:oup would be ma.rked as "unreliable.'' When
the object manager scans incoming our outgoing messages and £nds such a reference it
ignores it. In other words no lookup or addition lo the log is made for any EI-lis.t. Safety
would not be guaranteed for such references.

6 Comparison with other work

The Commandos architecture [Marqu88, COMAN87] uses aging instead of garbage col-
lection. Objects which hn.ve not been accessed for a certain period of time are success.ively .
moved to "lower levels" in a memory hierarchy. This is similar to swapping except that
objects reaching the lowest level uever return. This approach is not safe in a formal
sense since reachable objects may be removed. Nevertheless it may be ac.ceptable. The
approach has the advantage that it scales well. Aging and garbage collection are not mu-
tually exclusive. In fact garbage collectio11 can offload the aging mechanism by removing
large quantities of "young" garbage, and the aging mechanism can offload the garbage
collection mechanism by relieving it of the responsibility of collecting certain domains,
like the global node group discussed in the previous section.

Mancini and Shrivastava argue for using a refel'ence counting approach [Manci88].
Their mechanism is primarily u1tended for garbage collection of volatile objects. Al-
though they do e>..-plain how to extend the mechanism to also handle garbage collection
of persistent objects, their mechanism does not reclaim distributed cyclic garbage. This
is more important for persiste11t objects than it is for volatile objects. Because some
node in the cycle will soonet' Ot' later be taken off-line (either by a crash or by a con-
trolled shutdown), and this will break the volatile cycle. Furthermore, as presented, their
mechanism can not handle objects which move from one node to another. Nevertheless
their paper has been the chief influence on our design. We believe their mechanism is
more sillted for systems with relatively few internode references to volatile objects, which
do not move, while ou1· mechanism is probably more suitable for systems with relatively
many intemode references to persistent objects, and objects which frequently move Crom
one node to another. We believe persistence will tend to increase both the number o{
internode references and the need to move objects.

Kolodner, Liskov and Weihl describe a garbage collector and recovery system for a
persistent heap [Kolod89]. Their garbage collection algorithm is based on a copying
collector. It may be run while transactions are in progress, but suspends all transactions

314 Secondary Storage Garbage Collection for Decentralized Object-Based Systems

during the gnrbagc collecLion. They assume a disciplined virtual memory addres_s space
as the basis for persistence. They claim that their algorithm, with minor modifications,
could be used in a distributed system. h is not clear however whether they assume a
global flat virtual address space and if their distributed solution requires all transactions
in the entire d.ist.ributcd system to be suspended at the same time. If this is the case,
then Lhoir solution is not acceptable in a decen tralized system.

Moss outlines bow garbage collection could be done in his system based on loca-
tion dependent addresses, which has many similarities with the mechanism we propose
lMoss89]. Because we use location independent identifiers our mechanism bas to keep
track of some .locality information. This is not necessary if the identifiers themselves con-
tained locality iuformation as proposed by Moss. As already explained, the disadvantage
with location dependent identifiers is that either are objects not allowed to move, or we
do not maintain strong identity for objects.

In (Schel88] a sch.eme is outlined, although not fully explained, which does dynamic
incremental distributed garbage collection for a distributed Smalltalk system. This is
a multiple workspace system and cl,oes not have global identifiers. Their system does
not make any explicit distinction between vole.tile and persistent objects and does not
seem to -address the problem of inconsistencies when some uodes crash. 13 They base
their algorithm on the wo1·k of Ali [Ali84) which is an incremen.tal copying collector
for distributed systems, but which does not reclaim distributed cyclic structures. This
problem is overcome in [Scbcl88) by an "AccessPath" mechanis.m, the details of which
are not e;.,.-plaincd in tho paper, nor delegated by reference to a technical report.

The distributed Smalltnlk described in [Benn.eS7) is sinlllar to the previous one (mul-
tiple workspace mo.del, no global identifiers). Distributed garbage collection is however
done by global mark and scan in parallel with normal activity. This must be quite
expensive and goes against autonomy.

1 Conclusi«j>ns

\Ve have proposed 31 global persistent and decentralized identification scheme and pro-
videcl n garbage col~cction mechanism fol' a system employing such a scheme. Using a
global identification scheme allows references and objects to move freely in the system.

Our garbage collection mechanism allows a considerable degree of node autonomy. It
is symmetrically decentralized and does not require synchronized clocks. A node doing
purely local processing docs not need have any overhead from the secondary storage
gad.1agc collection mechanism when all phases are finishecl . Thi.sis because overhead for
the gnrbage collection mechanism during normal processing only consists of the main-
tenance of the EI-list, which is only relevant when messages are sent to and from other
nodes.

Each node decides locally when and how often to perform local garbage collection. We
suggested some form of voting protocol so that at least consensus could be established

13see footnote 1.

REFERENCES 315

on when a global garbage collection is desired. Liveness is guaranteed if all nodes do
garbage collection with a nonzero frequency and are willing to cooperate when a decision
has been reached to do a global garbage collection.

The mechanism has the weakness of not scaling well. We introduced the notion of
node groups and node group hiera.rchles as a means of coping with a large system. It
seems likely that a node will have most of its interaction with a few closel,y related
nodes. The garbage collection mechanism will then generate fewer but larger messa.ges
for a small group closely cooperating nodes, and relatively many but small messages for
a larger group of nodes where exchanges are Jess common.

References

[Ali84] K.A-H.M. Ali, "Objec~Oi:iented Storage Management an.d Garbage Col-
ledion in distributed Processing Systems,'' TRITA-CS-8406, Stockholm,
Sweden, Dec. 1984.

[Atkin87] M.P. Atkinson and O.P. Buneman, "Types and Persistence in Database
P .rogramming Languages,'' ACM Computing SurveyJ, vol. 19, no. 2, pp.
106-190, June 1987.

[Baker78] H.G. Baker, "List-processing in real time on a serial computer," Commu-
nication" of the A CM, vol. 21, no. 4, pp. 280-294, April 1978.

[Balla83] S. Ballard and S. Shlrron, "The Design and Implementat ion of
VAX/Smalltalk-80," in Smalltalk-80 Bits of Hi&tory, Words of Advice, ed.
G. Krasner, pp. 127-150, Addison \Vesley, Reading, Massachusetts, 1983.

[Benne87] J.K. Bennett, "The design and implementation of distributed smalltalk,"
Object-Oriented Programming SyJtemB, La.nguage3 and ApplicationJ 1 pp.
318-330, Orlando, Florida, Oct. 1987.

[Bjom88] A. Bjornerstedt and S. Britts, "AVANCE: An Object Management Sys-
tem," Object-Oriented PTogro.mming SystemB, La.ngu.age3 and Application8,
San Diego, CA, 1988.

[Butle87] M.H. Butler, "Storage reclamation in object-oriented database systems,"
ACM SJGMOD ProceedingJ, pp. 410-425, San Francisco, May 1987.

[COMAN87] "COMANDOS: Object-Oriented Architecture,'' D2-T2.1-870904, Esprit
project 834, 1987.

[Cocks88] W .P. Cockshott, "Addressing mechanisms and persistent programming," in
Data T11pe3 a.nd PerJutence, ed. M.P. Atkinson, P. Buneman, R. Morrison,
pp. 235-252, Springer-Verlag, 1988. Based on proceedings from a workshop
held in Appin in August 1985

316 Secondary Storage Garbage Collection for Decentralized Object Based Systems

[Cohen81] J. Cohen, "Garbage Collection of Linked Data Structures," A CM Comput-
ing Siirueys, vol. 13, no. 3, pp. 341-367, Sept. 1981.

[Colli60] G.E. Collins, "A method for overlapping and erasure of lists," Communi-
cations of the ACM, vol. 3, no. 12, pp. 655-657, Dec. 1960.

[Comer79] D. Comer, "The Ubiquitous B-Tree," ACM Computing Surveys, vol. 11,
no. 2, pp. 121-137, June 1979.

[Daley68] R.C. Daley and J.B. Dennis, "Virtual Memory, Processes, and Sharing in
Multics," Communications of the ACM, vol. 11, no. 5, pp. 306-312, May
1968.

[Decou86] D. Decouchaut, "Design of a distributed object manager for the Smalltalk-
80 system," Object- Oriented Programming Sy3tems, Languages and Appli-
cations, pp. 444-452, Portland, Oregon, 1986.

[Dijks78] E.W. Dij,._;trn., L. Lamport, A.J. Martin, C.S. Scholten , and E.T.M. Stef-
fens, "On-the-Fly Garbage Collection: An Exercise in Cooperation," Com-
munication~ of the ACM, vol. 21, no. 11, pp. 966-975, Nov. 1978.

[Fenic69] R.R. Fenichel and J.C. Yochelson, "A LISP Garbage-Collector for Virtual-
Memory Systems," Communications of the ACM, vol. 12, no. 11, pp. 611-
612, Nov. 1969.

[Goldb83] A. Goldberg and D. Robson, Smalltalk-80 The Language and its Implemen-
tation, Addison Wesley, 1983.

[Gray78] J.N. Gray, "Notes on database operating systems," in Operating Systems,
ed. R. Bayer, R.M. Graham, and G. Seegmuller, pp. 393-481, Springer·
Verlag, Berlin, 1978.

[Gray86] J.N. Gray, "An Approach to Decentralized Computer Systems," IEEE
Transactions on Software Engineering, vol. SE-12, no. 6, pp. 684-692, 1986.

[Howar88] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan,
R.N. Sidebotham, and M.J. West, "Scale and Performance in a Distributed
File System," A CM Tran$actions on Computer Sysle'm.s, vol. 6, no. 11 pp.
51-81, Feb. 1988.

[Jones86] M.B. foncs and R.F. Rashid, "Mach and Matchmaker: l(ernel and Lan-
guage Support for Object-Oriented Distributed Systems," Object-Oriented
Programming Sy.stem.s, Language.s and Application.s, pp. 67-77, Portland,
Oregon, Sept 1986.

[Kaehl86] T. Kaehler, "Virtual Memory on a Narrow Machine for an. Object-Oriented
Language,'' Object· Orienled Programming Sy . .stem.s, Languages and Appli-
cations, pp. 87-106, Portland, Oregon, Sept. 1986.

A.Bjornerstedt 317

[Khosh86) S.N. Khoshafian and G.P. Copeland , "Object Identity," Object--Oriented
Pro9ramming S11atem3, Languages and Applicationa, pp. 406-416, Portland,
Oregon, Sept. 1986.

[Knuth68) D.E. Knuth, The art of computer programming - Fundamental Algorithms,
Addison Wesley, 1968. vol. 1

[Kolod89) E. Kolod11cr, D. Liskov, and W. Weihl1 "Atomic Garbage Collection: Man-
aging a Stable Heap," Proceedfogs of the ACM-SIGMOD Conf1mince; pp.
15-25, Port.land, Oregon, 1989. StGMOD RECORD Vol. 18, Nr. 2, June
1989

[Larso88) P.A. Larson, "Dynamic Hash Tables," Communications of the ACM, vol.
31, no. 4, pp. 446-457, April 1988.

[Levy84) H.M. Levy, Capability - Based Computer Systems, Digital Press, 1984. ISBN
0-932376-22-3

[Liebe83] H. Lieberman and C. Hewitt, "A real-lime garbage collector based on the
lifetimes of objects,'' Communication..1 of the ACM, vol. 26, no. 2, pp. 419-
429, June 1983.

[Lisko83) B. Liskov and R. Scheifler, "Guardians and Actions: Linguistic Support
for Robust, Distributed Programs," ACM Tran.sactions on Programming
LanguagcJ and Systems, vol. 5, no. 3, pp. 381-404, July 1983.

[Manci88] L.V. Mancini and S.K Shrivastava, "Fault-tolerant reference counting for
garbage collection in distributed systems," No. 260, University of Newcastle
upon Tyne, June 1988.

[Marqu88) J.A. Marques, R. Balter, V. Cahill, P. Guedes, N. Harris, C. Horn, S.
Krakowiak, A. Kramer, J. Slattery, iwd G. Vandome, "Implementing the
Comandos Architecture," ESPRIT'88: ProceedingJ of the 5th Annual ES-
PRIT Conf erence, pp. 1140-1157, Brussels, Nov. 1988.

[McCul87] P .L. McOullough, "Transparent Forwarding: First Steps," Object-Oriented
Programming Systems, La.nguagea a.nd Applica.tiona, pp. 331-341, Orlando,
Florida, Oct. 1987.

[Moss88) J .E.B. Moss and S. Sinofsky, "Managing Persisten.t Data with Mneme: De-
signing a Reliable, Shared Object Interface," Jlnd Inter.national Workshop
on Objecl-Oricntcd DatabaJe Syslem3, pp. 298-316, Sept. 1988. Lecture
Notes in Computer Sc.ience: 334 "Advances in Object- Oriented Database
Systems"

[Moss89) J .E.B. Moss, "Addressing Large Distributed Collections of Persistent Ob-
jects: The Mneme Project's Approach," Second International Workshop
on Database Programming La.nguagea, pp. 269-285, GJenden Beach, Ore-
gon, June 1989.

318 Secondary Storage Garbage Collection for Decentralized Object Based Systems

(Purcly87] A. Purdy, B. Schuchardt, and D. Maier, "Integrating an Object Server with
Other Worlds,'' ACM Transactions on Office Information Systems, vol. 5,
no. 1, pp. 27-47, Jan. 1987.

(Ritch74] D.M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Com-
munications of the ACM, vol. 17, no. 7, pp. 365-375, July 1974.

(Schel88] M. Schelvis and E. Bledoeg, "The Implementation of a Distributed
Smalltalk,'' ECOOP'88 European Conference on Object-Oriented Program-
ming, pp. 212-232, Oslo, Norway, Aug. 1988.

(Shriv88] S.K. Shrivastava, G.D. Dixon, F. Hedayati, G.D. Parrington, and S.M.
Wheater, "A Technical overview of Arjuna: a system for reliable distributed
computing," No. 262, University of Newcastle upon Tyne, July 1988.

(Spect82] A.Z. Spector, "Performing Remote Operations Efficiently on a Local Com-
puter Network," Communications of the ACM, vol. 25, no. 4, pp. 246-260,
April 1982.

(Spect87] A.Z. Spector, D. Thompson, R.F. Pausch, J .L. Eppinger, D. Duchamp, R.
Draves, D.S. Daniels, and J .J. Bloch, "Camelot: A distributed transaction
facility for Mach and the Internet - An interim report.,'' CMU-CS-87-129,
Dept. of Comp. Sci. Carnegie Mellon University, Pittsburgh, PA 15213,
June 1987.

(Stamo84] J.W. Stamos, "Static Grouping of Small Objects to Enhance Performance
of a Paged Virtual Memory," ACM Transactions on Computer Systems,
vol. 2, no. 2, pp. 155-180, May 1984.

(Stein89] J. Stein, T .L. Anderson, and D. Maier, "Mistaking Identity," Second In-
teniati1mul Wo 1·f.;3/iop on Database Programming Languages, pp. 287-291,
Gle.ndcn Dead!, Oregon, June 1989.

(Svobo84] L. Svobodova, "File Servers for Network-Based Distributed Systems," ACM
Computing Surveys, vol. 16, no. 4, pp. 353-398, Dec 1984.

(Thatt86] S.M. Thalte, "Persistent Memory: A Storage Archite<:turc for Object-
Oriented Database Systems," Proceedings of the International Workshop
on Object-Oriented Database Management Systems, pp. 148-159, Pacific
Grove, CA, 1986.

[Thoma>r9j R.H. Thomas, "A majority consensus approach to concurrency control for
multiple copy databases," ACM Tranaactions on Database Systems, vol. 4,
no. 2, pp. 180-209, June 1979.

(Ungar84] D . Ungar, "Generation Scavengiug: A non-disruptive high performance
storage reclamation algorithm," A CM Software Engineering Notc4 , vol.
9, no. 3, pp. 157-167, May 1984. Proceedings ACM SIGSOFT/SIGPLAN
Syrop. on Pract,i'cal Soflware Development Environments

A.Bjornerstedt 319

(Ungar88] D. Ungar and F. Jackson, "Tenuring Policies for Generation-Based Stor-
age Reclnma.tion," Object-Orien:tcd· Programm ing Systems, Languages and
Applica.tion.!, pp. 1-17, San Diego, California, 1988.

