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Abstract

Extreme value data with a high clump-at-zero occur in many domains.

Moreover, it might happen that the observed data are either truncated

below a given threshold and/or might not be reliable enough below that

threshold because of the recording devices. This situations occurs in partic-

ular with radio audience data measured using personal meters that record

environmental noise every minute, that is then matched to one of the sev-

eral radio programs. There are therefore genuine zeroes for respondents

not listening to the radio, but also zeroes corresponding to real listeners for

whom the match between the recorded noise and the radio program could

not be achieved. Since radio audiences are important for radio broadcast-

ers in order for example to determine advertisement price policies, possibly

according to the type of audience at different time points, it is essential to

be able to explain not only the probability of listening a radio but also the

average time spent listening the radio by means of the characteristics of

the listeners. In this paper, we propose a generalized linear model for zero-

inflated truncated Pareto distribution (ZITPo) that we use to fit audience

radio data. Because it is based on the generalized Pareto distribution, the

ZITPo model has nice properties such as model invariance to the choice

of the threshold and from which a natural residual measure can be de-

rived to assess the model fit to the data. From a general formulation of the

most popular models for zero-inflated data, we derive our model by consid-

ering successively the truncated case, the generalized Pareto distribution

and then the inclusion of covariates to explain the non-zero proportion

of listeners and their mean listening time. By means of simulations, we

study the performance of the maximum likelihood estimator (and derived

inference) and use the model to fully analyze the audience data of a radio

station in an area of Switzerland.



1 Introduction

Audience indicators – like rating1, time spent listening2 and market share – are

essential for radio stations managers and advertisers. They give important in-

dications on public profiles and on radio stations benchmarking allowing proper

radio programming and optimization of advertising strategies. The weaknesses

of traditional audience measurements methods based on individual recollection of

the time spent listening to all radio stations led to the development of individual,

portable, and passive electronic measurement systems providing more reliable

and detailed measures (Heindervckx and Phillips 2001). Radiocontrol3 developed

a “wristwatch meter”, which records 4 seconds of ambient sound every minutes

and compares this sequence to the corresponding one of all available radios. The

“people portable meter” of Arbitron4 or the “Eurisko multimedia monitor” of Gfk5

consist in a pager-sized device which detects inaudible codes that broadcasters

embed in their programs.

Hence, the fundamental audience measure available through these portable and

passive measurement systems is a dichotomous variable Yismt indicating if the

participant i was listening to the radio station s at the minute m of the day t.

Most used audience indicators for a given radio station are all functions of the

sum of those quantities over a day part, mostly 24 hours, i.e. Yist =
∑1440

m=1 Yismt.

We have at our disposal radio audience data of the swiss measurement system

‘Radiocontrol’ in 2007. As illustrated in Figure 1, the distribution of the daily

number of listening minutes for a given radio is extremely skewed, left-truncated

and zero-inflated. In other words, firstly, the empirical distribution of the data

1Percentage of people who tune to a given radio station during a day.
2Average listening time to a given radio station per listener.
3http://www.radiocontrol.ch
4http://www.arbitron.com
5http://www.gfk.com
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appears monotonically decreasing. The probability to listen to a radio during a

time interval decreases with the time interval length. Secondly, because of con-

tact validation rules of the swiss measurement system, listening times inferior to

3 minutes are recorded as zeroes. It should also be noted that a part of these

observed zeroes as well as a part of the observed 3 to 4 minutes listening times

may respectively be false zeroes or false positive observations. The probability to

observe false positive or negative contact is negligible over a time interval of five

or more consecutive minutes. Thirdly, the data contains a high clump-at-zero

corresponding to the percentage of people that had no contact (or a contact of

less than 3 to 5 minutes) with that radio station.
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Figure 1: Empirical distribution of the daily listening times to a national radio in an
area of the French part of Switzerland during the first semester 2006. 1382 participants
were measured by means of the Radiocontrol system during one day of the period of
interest. Zeroes represent 65.7% of the data. The distribution of the positive data is
extremely skewed with a maximum daily listening time of 1136 minutes. The lowest
possible positive listening time is of 3 minutes.

Data with a clump-at-zero and an asymmetric heavy-tail distribution occur in

numerous disciplines. Examples are the daily levels of precipitation in an area

(Weglarczyk et al. 2005), the yearly amount of car insurance claims per client
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(Chapados et al. 2002; Christmann 2004) or the length of overnight stays at hos-

pital per patient (Chen et al. 2007). However, no model has been proposed sofar

for data with a clump-at-zero together with a truncation of small values under

a threshold, a model that is necessary to describe, in particular, radio audience

data like in our example, but also any other type of data that might, for example

for recording reasons, have unreliable measurements at small values of the vari-

able of interest. Hence, the purpose of this paper is to develop a model able to

fit zero-inflated truncated heavy-tail data and to explain, by means of covariates,

both the probability associated with a non-zero value and the expectation of pos-

itive outcomes. Such a model makes particularly sense in the context of radio

audience: The probability of a non-null value and the expectation of positive

outcomes respectively correspond to the rating and time spent listening audience

indicators. Market shares are a function of these expectations.

Models for zero-inflated data have received a quite large attention in the literature.

The most popular ones include the two-parts model of Duan et al. (1983) and

the zero-inflated count models initiated by Lambert (1992) for continuous data,

or the hurdle model of Mullahy (1986) for count data. In section 2, we describe

our model as a natural extension of these models that takes into account the

left truncation of the outcome variable. To model the positive part of the radio

listening times, we propose a zeromodal Pareto-like distribution. Choice has

been made for the generalized Pareto distribution because of its ability to fit

heavy tails, to be “model invariant” to the choice of the threshold for the left

truncation, and because it can be used to only model the tail of the distribution.

The resulting model we propose is hence a zero-inflated truncated Pareto (ZITPo)

model in which the probability of non-zero outcomes and the mean of the positive

outcomes is linked to a set of covariates in a generalized linear model framework.

The ZITPo has a great fitting flexibility and useful properties as argued in section
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2.4. In section 3 we investigate by means of simulations the sample properties

of the maximum likelihood estimator and inferential procedures. Since ZITPo

models are new, it is also important to be able to check the fit of the model

and therefore we propose in section 4 a new data analysis tool based on Pareto

residuals that is derived in a natural manner from the properties of the ZITPo

model. The data from a radio station in an area of Switzerland are then fully

analyzed in section 5 by means of the ZITPo which provides and excellent fit

to the data and hence good explanatory power for the probability of non-zero

outcomes and the mean of the positive outcomes.
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2 The ZITPo model

The generalized Pareto distribution, introduced by Pickands (1975), is a limit

distribution for the excess over a (large) threshold α for data coming from gen-

eralized extreme value distributions, as well as a generalization of the Pareto

distribution. The three-parameters generalized Pareto distribution has the fol-

lowing cumulative distribution function:

FY (y|α, τ, ξ) =


1− (1 + ξ y−α

τ
)−

1
ξ if ξ 6= 0,

1− exp(−y−α
τ

) if ξ = 0;

(1)

where α, τ and ξ are location, scale and shape parameters, α ≥ 0 and τ > 0.

The range of y is ]α,− τ
ξ+α

[ if ξ < 0, and ]α,∞[ otherwise. Special cases are the

exponential distribution with mean τ for ξ = 0, and the uniform distribution

for ξ = −1. Pareto-like distributions occur for ξ > 0. The generalized Pareto

distribution has been widely used to model rare events in several fields. Applica-

tions for environmental extremes are especially numerous (river flow, ozone levels,

earthquakes).

For modeling audience radio data, it is also important to be able to link moments

or parameters of the generalized Pareto distribution to a set of explanatory vari-

ables. The generalized linear models (GLM) framework, introduced by Nelder

and Wedderburn (1972), provides a general setting to achieve this aim. GLM

are a generalization of the linear regression model in which the assumption of

normality of the conditional distribution of the responses vector y given a set of

covariates X, y|X, is relaxed. These models assume that the ith unit response,

yi, follows a distribution belonging to the exponential family, and the expecta-

tion of the ith response, yi, is linked to a set of fixed covariates xi through an

invertible linear predictor function ν(·), by means of E[Yi] = ν−1(xiβ), with β
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a set of regression coefficients. The generalized Pareto distribution falls outside

the exponential family framework, and hence the advantages associated with this

framework – like well known iterative estimation procedures and mathematical

properties – are not available. However, extension of the GLM to distributions

outside the exponential family is pretty straightforward.

Actually, generalized linear modeling exists since a long time with responses fol-

lowing extreme value distributions, but not in the traditional scheme that directly

relates the response expectation to the explanatory variables through a linear

predictor. Indeed, in extreme value analyzes, very often the parameters of the

response distribution instead of the response expectation are linked to the covari-

ates. Davison and Smith (1990, p. 395) consider that this represents “a more

fruitful approach” than the usual one that links the distribution moments to the

regressors, as the moments of generalized extreme value distribution do not ex-

ist for all values of their parameters. Following this approach, Chavez-Demoulin

and Davison (2005) adapt generalized additive models to the generalized Pareto

distribution to fit meteorological and environmental extremes. We refer to Coles

(2001, section 6.4) for a review. In survival analysis, depending of the choice of

the hazard function h(t), the survival function f(t) may follow an extreme value

distribution. In this context, the hazard function h(t) = f(t)
1−F (t)

, is then related

to the covariates through a linear predictor instead of the response expectation.

Such developments may be found in Aitkin and Clayton (1980). As we will see in

more details below, for the purpose of modeling radio audience data, it is more

sensible to link the excepted value of the response to a set of covariates.

Before adapting the generalized Pareto distribution to handle clump-at-zero and

left truncation of the positive part of the data, as well as incorporating in the

resulting model covariates in order to explain the probability of a zero outcome
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and the mean of the positive part, we briefly describe models proposed sofar

for zero-inflated data. The aim is to propose a general formulation from which

different models for different situations can be deduced, and in particular from

which we build our zero inflated truncated Pareto (ZITPo) model. We then

also describe in details the ZITPo model assumptions and discuss some possible

extensions.

2.1 Models for nonnegative zero-inflated data

There is a rich literature about adaptation of statistical models to the case of

zero-inflated data. We refer to Min and Agresti (2002, 2005) and Ridout et al.

(1998) for a review. Min and Agresti (2002) compare the advantages and disad-

vantages of existing approaches and note that the most appealing modeling for

zero-inflated continuous data is the two-parts model of Duan et al. (1983), and

the zero-inflated count models initiated by Lambert (1992) or the hurdle model

of Mullahy (1986) in the case of count data with a clump-at-zero.

These models are similar. Their key idea is to mix two random variables: A first

one, Y1, that handles the zeroes excess and a second one, Y2, that models the other

part of the data. Y1 typically follows a Bernoulli distribution where PY1(0) = 1−π

denotes the probability to observe a zero outcome. In the hurdle and two-parts

models (also called conditional models), the probability of the data being equal to

zero only depends on Y1 and the positive data are all modeled by Y2, which may

follow a zero-truncated distribution in the case of count data (hurdle model) or

a continuous distribution (two-parts model). In these cases, PY2(0) = 0. In zero-

inflated models (also called mixture models), Y2 does not follow a zero-truncated

distribution. The probability associated to zero thus depends on both Y1 and Y2.

Let Y be a random variable with probability distribution PY for the clump-at-
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zero and the positive part, when the latter is discrete, i.e. Y2 is discrete, then PY

may be expressed in the following way:

PY (y) =

[
PY1(0)+(1−PY1(0))PY2(y)

]
ι(y = 0)+

[
(1−PY1(0))PY2(y)

]
∆0(y), (2)

where y = 0, 1, 2, ..., ι(·) is the indicator function which equals one if the condition

is true and zero otherwise, and ∆0(y) is a step function taking the value of one

for y > 0 and zero otherwise. When Y2 is continuous or semicontinuous (see Min

and Agresti 2002, p. 7), we have the following density function for Y :

fY (y) =

[
PY1(0) + (1− PY1(0))PY2(0)

]
δ(y) +

[
(1− PY1(0))fY2(y)

]
∆0(y) (3)

where δ(y) is a Dirac delta function which equals zero for y 6= 0, and y ∈ [0,∞[.

Note that when PY2(0) = 0, we have the hurdle or two parts models, while we

have zero-inflated models when this is not the case.

The use of the generalized Pareto distribution to model zero-inflated data is not

common, one exception being Weglarczyk et al. (2005). The authors compare the

fitting ability of some semicontinuous distributions to fit zero-inflated hydrological

data and consider a Dirac generalized Pareto distribution with density function

fY (y|π, τ, ξ) = (1− π)δ(y) +
π

τ

(
1 + ξ

y

τ

)− 1
ξ
−1

∆0(y), (4)

where τ > 0, ξ 6= 0, 0 ≤ (1−π) ≤ 1 corresponds to the probability of a zero event.

Note that compared to (1), α = 0. The Dirac generalized Pareto distribution in

(4) thus corresponds to a two-parts model with PY2(0) = 0 in which fY2(y) is the

density function of the generalized Pareto distribution.

In the following sections, we propose to extend (3) (and (4)) to take into account
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the possible truncation of small values as well as to incorporate covariates to

explain (a function of) the probability of zero outcomes and the mean distribution

of positive outcomes.

2.2 The ZITPo distribution

Let Y ∗ denote the effective (but unknown) daily listening time for a given radio.

The probability and cumulative distribution functions of Y ∗, fY ∗(y
∗) and FY ∗(y

∗),

are semicontinuous with a point mass in zero and a continuous distribution for

the positive values. Let Y denote the observed listening times with density func-

tion fY (y). As listening times inferior to a given value y◦ are recorded as zeroes,

observed zeroes are then a mixture between the effective zero listening times and

the positive listening times reported as zeroes because of the measurement sys-

tem. Accordingly FY (0) = FY ∗(y
◦).

A semicontinuous version of the zero-inflated count model described in (3) is

indeed adequate to model the double origins of the zeroes in the clump-at-zero

and the positive values of the observed listening times. Let assume that the un-

known and true proportion of zero listening times is 1 − π, with 0 ≤ π ≤ 1,

and that the effective positive listening times follow a two-parameters general-

ized Pareto distribution (with α = 0), Y ∗|(Y ∗ > 0) ∼ GPD(τ, ξ). Then, in

(3), PY1(0) = 1 − π corresponds to the effective proportion of non-listeners, and

PY2(0) = F(Y ∗|Y ∗>0)(y
◦) corresponds to the part of the two-parameters generalized

Pareto distribution that can’t be observed because of the measurement system

limitations. The density functions of the effective listening times Y ∗ and of the
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observed listening times Y are

fY ∗(y
∗|π, τ, ξ) =

[
1− π

]
δ(y∗) +

[
π

τ

(
1 + ξ

y∗

τ

)− 1
ξ
−1 ]

∆0(y
∗), (5)

fY (y|π, τ, ξ) =
[
(1− π) + πF(Y ∗|Y ∗>0) (y◦)

]
δ(y) +

[
πf(Y ∗|Y ∗>0)(y)

]
∆y◦(y)

=

[
1− π

(
1 + ξ

y◦

τ

)− 1
ξ
]
δ(y) +

[
π

τ

(
1 + ξ

y

τ

)− 1
ξ
−1
]
∆y◦(y), (6)

where 0 ≤ π ≤ 1, τ > 0, ξ 6= 0 and y◦ ≥ 0. For y◦ = 0, (6) reduces to

the Dirac generalized Pareto described in (4). Finally note that if the observed

listening times distribution in (6) has the disadvantage of being a mixture dis-

tribution which makes it more complex to fit, its underlying distribution in (5)

takes the advantages of the orthogonal parameterization of the hurdle and two

stages models and is thus easier to interpret (for a discussion on the orthogo-

nal parameterization see e.g. Welsh et al. 1996). Indeed the zeroes depend on

π, while the positive outcomes rely on the generalized Pareto parameters, τ and ξ.

Figure 2 shows the distribution of a dataset simulated from a ZITPo distribution.

The theoretical untruncated and truncated distribution functions, respectively

corresponding to (5) and (6), are superimposed to the plot in black and red

lines. On the discrete part of the plot, the surfaces within the red and black

boxes correspond to the theoretical probabilities to observe zeroes when there

is (red) and when there is no (black) left truncation of the positive part of the

data. Those probabilities respectively equal 1− π and (1− π) + πF−1
(Y ∗|Y ∗>0)(y

◦).

On the continuous part of the plot, the expectations of the truncated (red) and

untruncated (black) distributions are indicated. It is then clear that the expected

value for the true listening time Y ∗ (given by µ in black in Figure 2) is different

from the expected value of the truncated distribution (given by µ in red in Figure

2). For the audience data, one quantity of interest is µ for the untruncated

distribution.
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Figure 2: Empirical distribution function of a dataset simulated from a ZITPo model
with parameters π = 0.5, µ = ξ = 0.25 and y◦ = F−1

(Y ∗|Y ∗>0)(0.25). The theoretical
truncated and untruncated densities functions are superimposed to the plot with red and
black lines. The value of the expectations of the positive values of the truncated and
untruncated distributions are indicated on the x-axis. On the discrete part of the plot,
the surfaces within the red and black boxes correspond to the theoretical probabilities to
observe zeroes when there is (red) and when there is no (black) left truncation of the
positive part of the data. Those probabilities respectively equal 1 − π and (1 − π) +
πF−1

(Y ∗|Y ∗>0)(y
◦)

2.3 Covariates modeling in ZITPo distribution

Adaptation of the GLM to zero-inflated models is very intuitive. The expectations

of the distributions of Y1 and Y2 in (2) and (3) are linked to the covariates through

adapted link functions. The logit link is often chosen to relate the expectation of

Y1, corresponding to the probability to observe positive values, to the covariates.

The log link makes sense to connect the expectation of Y2, corresponding to the

mean of the positive data, to the covariates, as this last is necessarily positive.

For the ith observation, we then have

πi = P(Yi > 0) = ν−1
1 (xTi1β1) =

exp(xTi1β1)

1 + exp(xTi1β1)
, (7)

µi = E[Yi|Yi > 0] = ν−1
2 (xTi2β2) = exp(xTi2β2), (8)
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where ν−1
1 (·) and ν−1

2 (·) are the inverse of the linear predictor functions linking

the expectations of Y1 and Y2 to the covariates, xi1 and xi2 are the covariates

of the ith observation that may contain the same predictors, β1 and β2 are the

corresponding parameters.

Inclusion of covariates in (4) requires to express the distribution fY (y) in terms of

the expectation of the positive values of the data. Let (Y ∗|Y ∗ > 0) ∼ GPD(τ, ξ).

Then

µ = E
[
Y ∗|Y ∗ > 0

]
=

τ

1− ξ
for 1− ξ > 0.

The first moment of the generalized Pareto distribution, µ, thus exists for values

of ξ lower than one. Substituting τ by µ(1− ξ) in (6) gives

fY (y|π, µ, ξ) =

[
1− π

(
1 +

(
ξ

1− ξ

)
y◦

µ

)− 1
ξ
]
δ(y)

+

[
π

µ(1− ξ)

(
1 +

(
ξ

1− ξ

)
y

µ

)− 1
ξ
−1 ]

∆y◦(y),

(9)

with 0 ≤ π ≤ 1, µ > 0, ξ 6= 0 and ξ < 1, y◦ ≥ 0. The inclusion of the covariates

as described in (7) and (8) is now straightforward. For the ith observation, we

have

fYi(yi|xi1,xi2,β1,β2, ξ) =[
1− exp(xTi1β1)

1 + exp(xTi1β1)

(
1 +

(
ξ

1− ξ

)
y◦

exp(xTi2β2)

)− 1
ξ
]
δ(y)+[

exp(xTi1β1)

1 + exp(xTi1β1)

1

exp(xTi2β2)(1− ξ)

(
1 +

(
ξ

1− ξ

)
yi

exp(xTi2β2)

)− 1
ξ
−1 ]

∆y◦(y).

(10)
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2.4 Assumptions, properties and extensions

of ZITPo models

The form of the ZITPo model implies a number of assumptions on the distri-

bution of the positive values. For example, the unobserved positive listening

times belonging to the range ]0, y◦[ correspond to the non-observed part of a

left-truncated generalized Pareto distribution. As the generalized Pareto den-

sity function is zeromodal and monotonically decreasing, this assumption implies

that, conditionally on the covariates, the probability of positive listening times

in the interval ]0, y◦[ is higher than in any other interval of the same size. As

zapping through radio is frequent, we believe that this assumption is realistic.

Moreover, conditionally on the covariates, the real positive listening times follow

generalized Pareto distributions having different expectations µi but sharing the

same ξ-value: Y ∗i |(Y ∗i > 0) ∼ GPD(µi, ξ). We can observe that

F(Y ∗i |Y ∗i >0)(µi) = 1−
(

1 + ξ
µi

µi(1− ξ)

)− 1
ξ

= 1− (1− ξ)
1
ξ , (11)

with ξ 6= 0. An assumption of this model is thus that the expectation µi always

corresponds to the quantile 1−(1−ξ)
1
ξ of a GPD(µi, ξ). Figure 3 shows examples

of two-parameters generalized Pareto density functions sharing the same ξ-value

(within the same graph) but having different expectations. For the same ξ-value,

the density functions show a great variety of forms and thus a high ability to

model different datasets with more or less heavy tails.

One should also stress that because of the reparametrization of the generalized

Pareto density formulated in (9), the shape parameter is restricted to values lower

than one. This doesn’t seem problematic in regard to (11). Indeed, for ξ > 0.95,

µ corresponds to quantiles of the distribution higher than 0.95. We don’t expect
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cases in which the theoretical mean belongs to the last 5% of the distribution at

least with radio listening data.
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Figure 3: Examples of two-parameters generalized Pareto distributions. In both plots,
three distribution functions sharing the same ξ-value are proposed. Their respective
expectations are µ1 = 25, µ2 = 50 and µ3 = 100. The probability to observe data below
the expectation is indicated in red.

Even if there are some restrictions in the use of ZITPo models, the two-parts form

of the density described in (10) as well as properties of the generalized Pareto

distribution offer to ZITPo models additional abilities to fit and analyze a variety

of datasets, in particular our radio audience data in Switzerland. For example, in

addition to the problem of truncation of the listening times lower than 3 minutes,

the observed listening times are not completely reliable in the neighborhood of

the truncation boundary. Indeed, some of the 3 to 4 minutes effective positive

listening times are coded as zeroes and some effective zeroes correspond to small

observed positive listening times. An interesting property of ZITPo models is

that y◦ may be chosen such that the observed data lower than y◦ integrate the

most part of the false zero and false positive observations. If all observed positive

data inferior to y◦ are coded as zeroes in order to belong to the clump-at-zero

in (6), the model will estimate the parameters of fY ∗(y
∗|π, τ, ξ) without being
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affected by the errors of the measurement system occurring on [0, y◦[.

Moreover, for radio stations managers and advertisers, the behavior of important

radio listeners is of particular interest as they represent the core of their audience.

An appreciated information is the average listening time of people listening to a

radio station more than y• minutes (typically a value over the median of the

positive outcomes), that is E[Y ∗|Y ∗ > y•]. The stability with respect to excess

over threshold operations of the generalized Pareto distribution (see e.g. Castillo

and Hadi 1997, p. 1610, or Coles 2001, p. 79) and the shifting property of

distribution of the location family, allow to easily determine the distribution of

the data over a threshold y•. Let Y ∗+i = (Y ∗i |Y ∗i > 0) denote the positive values

of the model, with Y ∗+i ∼ GPD(τi, ξ) with τi = µi(1− ξ). Then we have that

f(Y ∗+i |Y
∗+
i >y•)(y

∗+
i |τi, ξ) =

1

τi − ξy•

(
1 + ξ

y∗+i − y•

τi − ξy•

)− 1
ξ
−1

. (12)

The distribution of the listening time over a threshold thus follows a three-

parameters generalized Pareto distribution of parameters α• = y•, τ •i = τi − ξy•

and ξ• = ξ. The corresponding expected listening time over a threshold of y•

minutes, µ•i , is then given by

µ•i = E[Y ∗+|Y ∗+ > y•] =
τ •i

1− ξ
+ y• = µi +

ξy•

1− ξ
+ y•, (13)

where µi = µ in simple models without covariates and µi = exp(xTi2β2) in models

incorporating covariates. The expectation of the positive data over a threshold

(i.e. the expectation of the data on ]y•,∞[) thus simply corresponds to a linear

shift of the expectation of the positive data on ]0,∞[. There is therefore no need

to change the ZITPo model when one is interested in µ•i , or in oder words, the

effect of the covariates on µ•i is the same as on µi.
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Finally, in the same spirit as above, the ZITPo model can easily be extended

to the three-parameters generalized Pareto distribution by introducing a shift

parameter y• ≤ y◦ corresponding to α in (1). In (9) and (10) we have that

y• = 0. Adding the shift parameter makes sense if information below y• is not

of direct interest, like if no listeners and listeners that only zap through a given

radio are considered alike for the radio broadcaster. The resulting model which

extends (9) (and consequently (10)) would allow to model the probability to get

an outcome lower than a given positive value y• as well as the expectation of the

data over y•, with positive outcomes observed above y◦. In this case, all data

lower than y• would be treated as “zeroes” in order to be part of the clump-at-

zero. The density functions of the observed listening times Y would then be (for

an observation yi)

fY (yi|π•i , µ•i , ξ•) =

[
1− π•i

(
1 +

(
ξ

1− ξ

)(
y◦ − y•

µ•i − y•

))− 1
ξ
]
δ(yi)

+

[
π•i

(µ•i − y•)(1− ξ)

(
1 +

(
ξ

1− ξ

)(
yi − y•

µ•i − y•

))− 1
ξ
−1 ]

∆y◦(yi).

(14)

The parameters π•i and µ•i can possibly be linked to a set of covariates as in done

in (10). If there is no y◦-truncation and if the data on ]y•, y◦[ are reliable, y◦ = y•

and (14) is reduced to a two-stages model since the first part of the right handside

of (14) reduces to (1 − π•i )δ(yi). This extension is particularly useful when the

interest only lies on the tail distribution of the positive outcomes. Indeed, in that

case π• is a nuisance parameter and the generalized Pareto distributional assump-

tion on ]0, y•[ is no more necessary. For the model to fit the data (observed above

y◦), one only needs the assumption that the generalized Pareto distribution holds

above y•, with a mean that possibly depends on a set of covariates and constant

ξ. This might be an interesting setting for example in finance when seeking to ex-

plain the value-at-risk of financial instruments. In these cases however, the choice

of y• might become an important issue and criteria based on mean squared errors
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(see e.g. Hill 1975; Hall and Welsh 1985; Beirlant et al. 1996) or prediction errors

(Dupuis and Victoria-Feser 2006) could in principle be extended to the ZITPo.

In what follows, we will however focus on models with y• = 0.

3 Estimation and inference

Fitting methods for the generalized Pareto distribution in (1) (i.e. without a

clump-at-zero) has been of great interest in the literature. Castillo and Hadi

(1997) and Singh and Ahmad (2004) propose a comparative evaluation of the

most used classical estimators for the two and three-parameters distributions.

Robust estimators have also been developed (Dupuis and Tsao 1998; Peng and

Welsh 2001; Juárez and Schucany 2004). We propose here to use the maximum

likelihood estimator (MLE).

The parameters log-likelihood given the data and known information of the ZITPo

model described in (10) is

l(β1,β2, ξ|y, y◦,X1,X2) ={
n∑
i=1

ι(yi = 0) log

[
1− exp(xTi1β1)

1 + exp(xTi1β1)

(
1 +

(
ξ

1− ξ

)(
y◦

exp(xTi2β2)

))− 1
ξ
]}

+{
n∑
i=1

∆y◦(y)

[
xTi1β1 − xTi2β2 − log

(
(1− ξ)−1

1 + exp(1 + xTi1β1)

)]}
+{

n∑
i=1

∆y◦(y)

(
−1

ξ
− 1

)
log

(
1 +

(
ξ

1− ξ

)(
yi

exp(xTi2β2)

))}
(15)

Maximization of this expression is achieved using the quasi-Newton method with

numerically computed gradient matrix. Convergence is obtained rapidly for most

of the cases we have tried, even with models embedding many covariates. The use

of slightly different starting values did always provide a solution to the unusual

cases in which we met convergence problems. The program is implemented in R
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functions available upon request from the authors.

In order to check the finite sample properties of the MLE for the ZITPo model, we

perform a simulation study. The first set of simulations focuses on simple models

in which all the observations follow a ZITPo distribution like described in (9).

In the second set of simulations we consider more complex models incorporating

covariates as in (10).

For each simulation set, the MLE is computed on samples with three different

sample sizes of respectively 500, 1000 and 2000 observations, simulated with two

different values for the shape parameter, ξ = 0.25 and ξ = 0.5. The sampling

distribution of the MLE are presented by means of boxplots on 2500 simulated

datasets. Horizontal red lines indicate the position of the true parameter values.

Blue percentages indicate the coverage levels of 95%- confidence intervals of the

form [θ̂−Φ−1(0.975)σ̂θ̂, θ̂+ Φ−1(0.975)σ̂θ̂], where Φ is the density function of the

standard normal distribution and where σ̂θ̂ are obtained from the inverse of the

estimated hessian matrix.

For the first set of simulations, the observations were simulated from a ZITPo

distribution with parameters π = 0.5, µ = 0.25. The first quartile of a GPD(µ =

0.25, ξ), F−1
(Y ∗|Y ∗>0)(0.25), was chosen as the cutting value y◦. The clump-at-zero

represents 5/8 of the distribution. Figure 2 presents the distribution of one simu-

lated dataset of 1000 observations with ξ = 0.25 and Figure 4 presents the results

for simulations with ξ = 0.25 (similar results were obtained for ξ = 0.5).

Regardless of the sample size, the boxplots of the MLE of π and µ are well cen-

tered around the true parameters value. The coverage levels of the corresponding

confidence intervals are close to the 95% nominal value. The left truncation
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Figure 4: Boxplots of the MLE computed on 2500 datasets simulated from a ZITPo
distribution with parameters π = 0.5, µ = 0.25, ξ = 0.25 and y◦ = F−1

(Y ∗|Y ∗>0)(0.25).
Analyzes were performed for samples of 500, 1000 and 2000 observations. The hori-
zontal red lines indicate the position of the true parameter values. The blue percentages
indicate the coverage levels of confidence intervals of the form [θ̂ − Φ−1(0.975)σ̂θ̂, θ̂ +
Φ−1(0.975)σ̂θ̂], where Φ is the density function of the standard normal distribution.

of 25% of the generalized Pareto distribution thus doesn’t prevent the MLE to

adequately estimate the true proportion of zeroes and the true mean of the un-

truncated positive values.

Estimation of the shape parameter is known to be problematic even with large

sample sizes and regardless of the estimating method (Hosking and Wallis 1987).

The boxplots of the MLE of ξ in Figure 4 show a slight bias with n = 500, but no

bias for greater values of n. This also confirms the findings of Chavez-Demoulin

and Davison (2005, p. 212) for ξ in slightly different situation with covariates.
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For the second set of simulations, the data are simulated from a ZITPo distribu-

tion with parameters

πi =
exp(xTi1β1)

1 + exp(xTi1β1)
and µi = exp(xTi2β2).

For the covariates, the first column of X is a column vector of 1 corresponding to

the constant. The other columns of X were constructed with random values of

respectively a normal, a Poisson, two binomials and an exponential distribution,

with corresponding regression parameters β1 = [1, 1,−0.5, 0.5, 0.25, 0.25]T and

β2 = [2, 1, 0.5, 0.5, 0.25, 0.25]T . The values of the β1 and β2 were chosen in order

to obtain asymmetrical distributions for the probabilities of positive outcomes, πi,

and for the expectations of positives values, µi. Figure 5 shows their respective

distributions. With a median of 0.3, the probabilities of positive outcomes, πi, are

rather low. The expectations of the positives values, µi have a very asymmetrical

distribution. The cutting value y◦ is a fixed value independent of i and which

approximately corresponds to the quantile 0.1 of the positive simulated data. The

choice of the parameter values πi, µi and y◦ correspond to an extreme choice to

test the performance in the MLE in non-trivial situations.

0.0 0.2 0.4 0.6 0.8 1.0

ππi ==
exp ((x i

Tββ1))
1 ++ exp ((x i

Tββ1))

0.31

● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●●● ●●● ●●● ● ●● ● ●●●● ● ●●● ● ● ●●●●● ●●● ●●● ●● ● ●●● ●●● ● ●● ● ●● ●● ●● ●●● ●● ●●● ●● ● ●●●● ● ●● ● ●●● ●●● ●●●●● ●●●● ●●●● ● ●●● ● ●● ●●●● ● ●● ●● ●●●●●

0 10 20 30

µµi == exp ((x i
Tββ2))

1.2

Figure 5: Distribution of the probabilities of positive outcomes, πi, and of the expecta-
tions of positives values, µi, used to simulate ZITPo realizations.
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The bottom plot of Figure 6 shows the sampling distribution of the MLE of the

shape parameter ξ. The boxplots of the parameters estimates of ξ show an small

underestimation of the parameter value even when the number of positive data

is around 650 observations which correspond to 30% of the maximum sample

size of this analysis. The ξ−estimates seem to converge more slowly when there

are covariates. The bias of the shape parameter seems to depends on both the

number of observations n and on the number of covariates p, a situation similar

to the MLE of the parameter σ in multiple regression analyses.

The upper and centered plots of Figure 6 present the sampling distributions of

the MLE of β1 and β2. Regardless of the sample size, all boxplots are well

centered around the true value of the parameters and the coverage levels of the

corresponding confidence intervals are close to the 95% nominal value.

Note that β2 and the ξ are essentially estimated over the positive part of the data

which represent the 30% of the 500, 1000 et 2000 observations of our study. Hence,

our results appear very satisfactory. Similar results were obtained in simulations

with ξ = 0.5.
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Figure 6: Boxplots of the MLE of β1 (upper plots), β2 (centered plots) and ξ (bottom
plot) computed over 2500 datasets simulated from a ZITPo distribution with param-
eters β1 = [1, 1,−0.5, 0.5, 0.25, 0.25]T , β2 = [2, 1, 0.5, 0.5, 0.25, 0.25]T and ξ = 0.25.
y◦ is a fixed value which approximately corresponds to the quantile 0.1 of the pos-
itive simulated data. Analyzes were performed for samples of sizes 500, 1000 and
2000. The horizontal red lines indicate the position of the true parameter values.
The blue percentages indicate the coverage levels of confidence intervals of the form
[θ̂ − Φ−1(0.975)σ̂θ̂, θ̂ + Φ−1(0.975)σ̂θ̂], where Φ is the density function of the standard
normal distribution.
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4 Model validation

Residual analyses in the context of zero-inflated models like described in (2) and

(3) may be split in two parts: A first one focusing on the distribution that dis-

tinguishes the zeroes from the positive outcomes, and a second one considering

the distribution of the positive values. In models with covariates, the residuals

of the part distinguishing the zeroes correspond to residuals of logistic regres-

sions. As this topic is already well covered in the literature (we refer to Collett

(2003) for a complete overview), the following subsections focus on the residuals

of the positive part of the model. We propose a residual type for truncated and

untruncated generalized Pareto models. Examples based on simulated datasets

with and without covariates are also presented.

Let Y ∗+i = (Y ∗i |Y ∗i > 0) denote the positive values of the model and let Y +
i =

(Yi|Yi > y◦) be the observed truncated positive values. As (Y ∗+i −y◦|Y ∗+i > y◦) =

(Y +
i − y◦) and follows a GPD(µi + ξy◦

1−ξ , ξ), let define the ith residual, εi, in the

following way:

εi = h(Y +
i − y◦) =

Y +
i − y◦

E[Y +
i − y◦]

=
Y +
i − y◦

µi + ξy◦

1−ξ
. (16)

The residuals distribution, fεi(εi), may then easily be derived and is given by

fεi(εi) = f(Y +
i −y◦)

(
h−1(εi)

) ∣∣∣∣ ∂∂εih−1(εi)

∣∣∣∣ =
1

1− ξ

(
1 +

ξ

1− ξ
εi

)− 1
ξ
−1

. (17)

Thus fεi(εi) ∼ GPD(µ = 1, ξ). The residuals theoretically (i.e. if the ZITPo

model holds) follow a generalized Pareto distribution of parameters µ = 1 and ξ.

This result holds also when y◦ = 0. Note that this result is not asymptotic and

hence holds for any sample size, a pretty rare situation in GLM.
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A very powerful and non asymptotic model validation procedure thus consists in

comparing the distribution of the estimated residuals to their estimated theoret-

ical distribution. The former are obtained by substituting in (16) the parameters

by their estimated values, i.e.

ε̂i =
Y +
i − y◦

µ̂i + ξ̂y◦

1−ξ̂

∼ GPD(µ = 1, ξ̂),

QQ-plots should approximately display a straight line when the model adequately

fits the data.

Finally, the result in (17) offers a fast method to generate random realizations

from truncated or untruncated generalized Pareto models. Indeed, let ũ be a

vector of n random realizations of a Uniform(0,1) and let µ = [µ1, ..., µn]T be the

vector of expectations of the generalized Pareto distribution. Then, inverting (16)

and (17) allows to generate y, a vector of n random variates of a y◦-truncated

GPD(µ, ξ), in the following way:

y =

[(
ũ−ξ − 1

) 1− ξ
ξ

](
µ +

ξy◦

1− ξ

)
+ y◦.

The residuals of the generalized Pareto models with covariates studied the pre-

vious section are analyzed for one simulated dataset. The aim is to check if

theoretical behavior of the residuals is suitable in real samples. As the quantiles

of the generalized Pareto distribution are very asymmetrical, QQplots of the log

of the residuals are also proposed.

Figure 7 presents the residual plots of the analysis of a dataset of 1000 observa-

tions simulated from a ZITPo distribution incorporating covariates. The param-

eter values are β1 = [1, 1,−0.5, 0.5, 0.25, 0.25]T , β2 = [2, 1, 0.5, 0.5, 0.25, 0.25]T ,

ξ = 0.25 and y◦ corresponds to the quantile 0.1 of the positive data.
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The ordered residuals are compared to the quantiles of the estimated theoretical

distribution, a GPD(1, ξ̂ = 0.274). The QQplots of the residuals and of their log

show a good adequacy of the model to the data.
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Figure 7: QQplots of the residuals (left) and of the log of the residuals (right) of a
dataset of 1000 observations simulated from a ZITPo distribution with covariates. The
ordered residuals are compared to the quantiles (left) and to the log of the quantiles
(right) of a GPD(1, ξ̂ = 0.274).
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5 Applications to radio audience data

The ZITPo model is applied to the audience data of the local radio station “116”

in its broadcasting area during the weekdays of the second semester of 2007. The

upper plot of Figure 8 presents the distribution of the daily listening times of

2155 participants measured during one day of this period. The clump-at-zero

represents 63% of the data.

The audience indicators of rating and time spent listening are explained by a set

of categorical variables including the age in 5 classes ([15-25[, [25-35[,[35-45[,[45-

60[,[60-120[), the education level in 3 classes (low, mid, high), the gender, the

time in month and the different zones of the broadcast area. The contrasts used

to create the k − 1 dummy variables from a k-classes categorical variable are of

type “treatment” for the variables age, gender and education with base “15 to 25

years old men with low education level”, and of type “Sum” for the geographical

zones and the months. The model includes interaction between age and gender.

Other interactions – like between education and age – appeared non-significant

and did not improve the log-likelihood or the residual distribution.

To protect the parameter estimates of the possible influence of the false positive

and false zeroes observations belonging to the interval [0, 5[, we choose y◦ = 4.95.

Consequently, we coded the 15 observations belonging to the interval [3, 5[ in

Figure 8 as zeroes and let the ZITPo model adequately separate the true from

the false zeroes as described in the first part of (10).

The β1 and β2 estimated values as well as their standard deviations are reported

in Table 1. The p-values corresponding to the (asymptotic) significance tests

for β1 and β2, i.e. 2Φ−1(−|β̂/σ̂β̂|) are also indicated. According to the chosen

contrasts, the estimated intercepts β10 and β20 are related to the estimated rating
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and time spent listening of 15 to 25 years old men with a low education level

through respectively

exp(β̂10)

1 + exp(β̂10)
∼= 0.12 and exp(β̂20) ∼= 59.

15 to 25 years old men living in the broadcast area of interest and having a low

education level have thus a probability of contact to radio station “116” of 12%

and an average contact length of about 59 minutes during the second semester of

2007. The estimated distribution of the effective (untruncated) positive times of

the individuals of this focus group is thus:

Y ∗i |(Y ∗i > 0) ∼ GPD(59, ξ̂ ∼= 0.08).

Thus, under the model, F−1
(Y ∗|Y ∗>0)(3|59, ξ̂) ∼= 0.05 and F−1

(Y ∗|Y ∗>0)(y
◦|59, ξ̂) ∼= 0.09

respectively represent for this focus group the estimation of the part of effective

positive data that is coded as zero by the swiss measurement system and the esti-

mation of the part of the effective positive data that was supposed truncated and

coded as zero for the estimation. The average ratings and time spent listening of

other focus groups – like women with a high education level – are then shifts of

12% and 59 minutes.

In order to test the significance of each factor (e.g. age), we use the likelihood

ratio test to compare nested models. Let β = [βT
(1),β

T
(2)]

T be the vector of the

regression parameters. The LRT statistic can be used to test hypotheses of the

form H0 : βT
(2) = 0 against H1 : βT

(2) 6= 0 (with βT
(1) unspecified) and is given by

LRT = 2
[
l(β̂|y, y◦,X1,X2)− l(β̇|y, y◦,X1,X2)

]
,

where β̂ and β̇ respectively denote the full and reduced regression parameters

27



MLE. The LRT statistic follows a χ2
p−ṗ distribution under the null hypothesis,

where p and ṗ are the number of parameters of the full and reduced model.

Table 2 presents the LRT evaluating which variables significantly influence the

rating and the average listening times. According to the corresponding p-values,

the variables significantly influencing the average rating are the age, the educa-

tion level and the geographical zone in the broadcast area. A look at the β1

estimates shows that the rating average increases with age and education classes

and decreases for people living in the countryside area named “Zone 2”. The vari-

ables significantly influencing the average listening time are the age, the gender

and area. The listening time average increases for people belonging to high age

classes and decreases for people living in “Zone 2”. The evolution of listening time

with age is not the same for men and women.

The estimated shape parameter is ξ̂ = 0.082 with σ̂ξ̂ = 0.039. The shape pa-

rameter is thus slightly but significantly higher than zero. The residuals are to

be compared to a GPD(1, 0.082). The analysis of the fit is presented in the two

bottom plots of Figure 8. The QQplots of the residuals and of their log show a

very good adequacy of the model to the data.
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Figure 8: Upper plot: Distribution of the observed listening times to radio “116” during
the second semester of 2007. The number of observations is 2155. The clump-at-zero
represents the 63% of the data. Two bottom plots: QQplots of the residuals (left) and
of the log of the residuals (right) of the ZITPo model applied to the listening times to
radio “116”. The ordered residuals are compared to the quantiles (left) and to the log of
the quantiles (right) of a GPD(1, ξ̂ = 0.082).
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Rating Average Listening Time
β̂1 SE p-value Sig. β̂2 SE p-value Sig.

(Intercept) −1.95 0.32 <0.001 *** 4.08 0.33 <0.001 ***
[25− 35[ 0.40 0.39 0.309 −0.16 0.39 0.680
[35− 45[ 0.94 0.36 0.008 ** 0.20 0.35 0.568
[45− 60[ 1.57 0.34 <0.001 *** 0.40 0.34 0.235
[60− 120[ 2.22 0.35 <0.001 *** 0.76 0.34 0.026 *
Women −0.25 0.49 0.608 −0.73 0.49 0.133
Educ. Middle 0.18 0.16 0.255 0.01 0.13 0.933
Educ. High 0.36 0.12 0.002 ** −0.15 0.09 0.103
July −0.15 0.12 0.216 −0.06 0.10 0.516
August −0.11 0.11 0.346 0.04 0.09 0.695
September 0.14 0.11 0.225 −0.07 0.09 0.393
October 0.18 0.11 0.085 . 0.01 0.08 0.948
November −0.00 0.11 0.973 0.04 0.09 0.654
Zone 2 −0.26 0.05 <0.001 *** −0.08 0.04 0.049 *
Women +[25− 35[ −0.02 0.58 0.970 1.26 0.57 0.028 *
Women +[35− 45[ 0.18 0.54 0.737 0.71 0.53 0.180
Women +[45− 60[ 0.03 0.52 0.961 0.90 0.51 0.079 .
Women +[60− 120[ 0.39 0.52 0.455 1.11 0.50 0.027 *

Table 1: β1 and β2 estimated parameters and corresponding standard deviations of the
ZITPo model applied to the listening times to radio station “116” . The p-values are
for (asymptotic) significance testing of β1 and β2. Low p-values are magnified in the
columns “Sig.” by means of (***), (**), (*), (.) respectively corresponding to significant
tests at the levels of 0.001, 0.01, 0.05 and 0.1.

Rating Average Listening Time
T Df p-value Sig. T Df p-value Sig.

Age + Age·Gender 236.58 8 <0.001 *** 78.54 8 <0.001 ***
Gender + Age·Gender 3.26 5 0.659 16.08 5 0.007 **
Education 9.61 2 0.008 ** 3.41 2 0.182
Month 5.91 5 0.315 1.53 5 0.909
Zone 24.67 1 <0.001 *** 3.92 1 0.048 *
Age·Gender 2.56 4 0.634 8.14 4 0.087 .

Table 2: LRT statistics (with corresponding degrees of freedom) and p-values for the
marginal LRT applied to the listening times to radio station “116”. Each variable (or
variable plus interaction) of the left column are tested in the binomial (Rating) and
truncated GPD (Average Listening Time) part of the model. Low p-values are magnified
in the columns “Sig.” by means of (***), (**), (*), (.) respectively corresponding to
significant tests at the levels of 0.001, 0.01, 0.05 and 0.1.
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6 Conclusion

The ZITPo model is a very powerful model that can be used in particular to

analyze radio audience data. Using the truncated observations, this model allows

to adequately estimate the true proportions of non-zero observations and the av-

erage of positive values – corresponding to the audience indicators of rating and

time spent listening – of the underlying untruncated listening times distribution.

The model also allows to relate these expectations to covariates in a GLM spirit,

providing an explanatory model to audience data. The model validation proce-

dure resulting from properties of the generalized Pareto distribution offers a very

helpful way to judge the adequacy of the model to the data.

Although the main motivation for the development of the ZITPo model was the

analysis of radio audience data, we believe that it can adequately fit a number

of datasets which have heavy tails distributions. For example it provides an

extension to model (4) for hydrological data, that can include covariates to explain

the mean level, with y◦ = 0.
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