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1 Introduction and summary of results

The modern goal of the S-matrix bootstrap is to bound the space of allowed two-to-two
scattering amplitudes non-perturbatively. In this paper, we will focus on the two-to-two
scattering amplitude of two identical particles of mass m with no bound states. We denote
the scattering amplitude by S(p1, p2, p3, p4) and its interacting part by T (s, t, u), where
pi are momenta of particles participating in the scattering and s, t, u are the standard
Mandelstam variables, satisfying s+ t+ u = 4m2. Our goal is to find the space of all such
scattering amplitudes allowed by the three constraints of crossing symmetry, analyticity,
and partial amplitude unitarity:

1. Crossing: T (s, t, u) is invariant under permutations of s, t, u

2. Analyticity: T (s, t, u) is an analytic function of s, t, u, except for physical branch cuts
and poles.

3. Unitarity: the partial amplitudes Sj(s) satisfy |Sj(s)|2 ≤ 1 for s > 4m2 and all spins
j = 0, 2, 4, . . .

The partial amplitudes Sj(s) are defined as integral transformations of T (s, t, u):

Sj(s) ≡ 1 + iTj(s)
Nd(s)

, Tj(s) ≡
∫ +1

−1
d cos θ µd,j(cos θ)T (s, t(cos θ), u(cos θ)), (1.1)

where µd,j and Nd are given in (2.5) and (2.6). Further details of our conventions for
scattering amplitudes, partial amplitudes, and unitarity are given in section 2.

Regarding the analytic structure (on the s complex plane for a fixed value of t), all the
amplitudes considered in the literature can be split into two classes. In this paper, we refer
to them as the nonperturbative amplitudes and the EFT amplitudes.1 The nonperturbative
amplitudes have a branch cut starting at the two-particle threshold 4m2 together with the
one related by the s− u crossing. The EFT amplitudes instead have a branch cut starting
from some “cut-off” scale M together with the one related by the s − u crossing. It is
also assumed that the mass of the particle m is much smaller than the “cut-off” scale M ,
namely m�M . In the EFT amplitudes, we can set m = 0. Both classes of amplitudes are
purely real on the horizontal axis between the two cuts. Notice that they could have poles
in this region, however, we assume in this paper the absence of such poles (say, by imposing
a Z2 symmetry and that the particle is Z2 odd). The analytic structure of nonperturbative
and EFT amplitudes is depicted in figure 1. The nonperturbative amplitudes were studied
in various contexts in [1–33].2 The EFT amplitudes were studied extensively in various
contexts in [35–48].

Using crossing, analyticity, and unitarity, one can bound the space of allowed scatter-
ing amplitudes using various methods to be discussed shortly. The final output is a set

1This nomenclature is potentially slightly misleading, because amplitudes in EFTs do have branch cuts
below the cut-off, though they are typically small, and the idea is that it is a good approximation to neglect
them.

2For an overview of recent results and discussion of some future directions, see [34].
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(s+ t+ u = 4m2)

s

−t 4m2

(s+ t+ u = 0)

s

−M2 − t M2

Figure 1. Analytic structure in the s complex plane for a fixed value of t of two classes of amplitudes
considered in the literature: the left plot is for the nonperturbative amplitude and the right one is
for the EFT amplitude. Here m is the mass of the particle and M is the EFT “cut-off”. It is also
assumed that m � M , thus we set m = 0 in this case. No poles are present due to the assumed
presence of Z2 symmetry.

of allowed values for some physical observables that we get to choose. Ideally, we would
like to choose these physical observables to be both intuitive and complete. For instance,
given a specific model Lagrangian, it should be clear how to compute these observables,
and moreover, the full set of them should uniquely fix the full two-to-two scattering am-
plitude. We will choose a complete set of parameters/observables describing the scattering
amplitudes in section 3.

Let us now discuss tools that allow us to impose the constraints 1–3. Imposing any
of these constraints 1, 2, or 3 individually is fairly straightforward; the main challenge
is to impose them all simultaneously. Looking only at T (s, t, u) in Mandelstam variables
obscures unitarity. Projecting it onto partial amplitudes makes unitarity transparent, but
obscures analyticity and crossing. This is because the full unitarity constraint |Sj(s)|2 ≤ 1
is nonlinear in Tj(s), namely

full unitarity: |Tj |2 ≤ (ImTj)(2Nd), (1.2)

thus, it is difficult to keep track of the analytic properties of the underlying object T (s, t, u)
while studying this constraint. A weaker constraint could be obtained from (1.2). Dropping
the square of the real part of Tj on the left-hand side of (1.2) does not invalidate the
inequality and leads to

linearized unitarity: 0 ≤ ImTj ≤ 2Nd. (1.3)

We refer to (1.3) as linearized unitarity. The left-hand side of the linearized unitarity
constraint is the so-called positivity constraint:

positivity: 0 ≤ ImTj . (1.4)

The most known tool for obtaining bounds on the amplitudes uses dispersion relations
and combines them with positivity (1.4). There are various implementation of this tool,
see for example [35, 37, 44]. In modern literature, this was mostly applied in the context
of EFT amplitudes. For completeness of the discussion, we review the machinery of [37] in
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the context of nonperturbative amplitudes and derive a set of rigorous positivity bounds in
section 4. The second tool which allows to impose linearized unitarity (1.3) was recently de-
veloped in [47]. It was applied in the context of EFT amplitudes and led to stronger bounds
than the ones obtained using positivity only. Finally, there is a third class of numerical
methods that allows us to impose the full non-linear unitarity (1.2). The methods from this
class can be divided into two groups, the “primal” ones [3, 9] and the “dual” ones [25–27, 49].

In this paper, we will use the primal numerical method of [3, 9] to construct novel
bounds on both the nonperturbative and EFT amplitudes. This is done in section 5. The
primal numerical method will be explained in section 5.1. We will present our bounds
on nonperturbative amplitudes in various number of space-time dimensions 2 < d ≤ 4
(including fractional dimension) in section 5.2. The results are given in figures 3 and 7–12.
The numerical bounds on EFT amplitudes in d = 4 space-time dimensions are given in
section 5.3, see figures 14 and 16. The method of [3, 9] can be easily modified to impose only
linearized unitarity (or even only positivity). We will demonstrate on two examples (one
for nonperturbative amplitudes and one for EFT amplitudes) that the bounds obtained
using full non-linear unitarity are much stronger than the ones of linearized unitarity (or
positivity).

We make publicly available all the numerical data obtained in section 5. It al-
lows to re-construct all the bounds and also to extract scattering and partial am-
plitudes on the boundary of allowed regions. The data can be downloaded from:
https://zenodo.org/record/6891946#.Ytwnmi8Roe0.

One could ask when the class of EFT amplitudes (recall the right part of figure 1) is
relevant for physics. For instance, scattering amplitudes of truly massless particles such
as pions, photons, or gravitons contain branch cuts all the way to the origin due to the
presence of log(−s) terms. Thus, the class of EFT amplitudes defined above does not seem
to be relevant for describing this situation. One can sometimes argue, however that the log
terms are negligible at least in weakly coupled theories such as general relativity describ-
ing gravitons, or in theories of Goldstone bosons where there is additional suppression of
amplitude at low momentum. This is also true in theories where m � M is a controlled
approximation. For the most part, we will not discuss further the relevance of the EFT
amplitudes for physics and simply view them for now as some mathematical objects which
must obey a set of constraints 1–3.

In section 6, we will show how the bounds obtained in section 5 can be used to bound
effective field theory on a particular example of (pseudo-)Goldstone bosons. Finally in
section 7, we compare the perturbative two-particle amplitude of φ4 theory to our numerical
bounds.

As a warm-up in appendix A, aimed at the reader without much previous background
in the numeric S-matrix bootstrap, we discuss all the above aspects in d = 2 where there
are significant technical simplifications but no fundamental difference in how the method
works compared to d > 2. Here, one can develop a much better intuition for how the three
constraints of crossing, analyticity, and unitarity combine together. Throughout this d = 2
section, we refer to and compare to the analogous d > 2 results obtained in the main text.
As a bonus, we will explain how to obtain numerical bounds of [3, 28] purely analytically,
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following a method from [10]. Particularly, it is interesting to see that by only considering
the S-matrix at the crossing symmetric point and its second derivative, one can obtain the
full S-matrix of the Sinh-Gordon model simply from unitarity and analyticity.

In appendix B, we discuss the d→ 2 limit of the general d formulas given in section 2.
In appendix C, we provide the connection between our observables defined in section 3 and
the ones of [37].

2 Scattering and partial amplitudes

The goal of this section is to define unitarity constraints for scattering amplitudes of scalar
particles in general number of dimensions d > 2. The discussion below is an elaborated
version of section 2.2 in [20].

We denote by S(p1, p2, p3, p4) the scattering amplitude and by T (s, t, u) its non-trivial
(interacting) part. The Mandelstam variables s, t and u obey the standard relation

s+ t+ u = 4m2. (2.1)

The partial amplitude is denoted by Sj(s), where j = 0, 2, 4, . . . is the total spin. It is
related to the interacting part of the scattering amplitude as

Sj(s) = 1 + i

Nd(s)
× Tj(s), (2.2)

where Tj(s) is defined by
Tj(s) ≡ Πj [T (s, t(x), u(x))] . (2.3)

Here Πj is the integral transform (projector) defined as

Πj [f(x)] ≡
∫ +1

−1
dxµd, j(x) f(x) (2.4)

with the measure µd, j(x) defined as

µd, j(x) =
j! Γ

(
d−3

2

)
4π(d−1)/2Γ(d− 3 + j)

× (1− x2)
d−4

2 C
(d−3)/2
j (x). (2.5)

The function Nd(s) in (2.2) is given by

Nd(s) ≡ 2d−1√s
(
s− 4m2

)(3−d)/2
. (2.6)

The object C(d−3)/2
j (x) in the measure (2.5) is the Gegenbauer polynomial and d denotes

the number of space-time dimensions. The variable x is defined as x ≡ cos θ, where θ is
the scattering angle. The Mandelstam variables t and u are related to x as

t = −s− 4m2

2 (1− x), u = −s− 4m2

2 (1 + x). (2.7)

– 5 –



J
H
E
P
1
2
(
2
0
2
2
)
0
9
2

The relation (2.3) can be inverted as follows

T (s, x) = ad ×
∑

j=0,2,4,...
(2j + d− 3)C(d−3)/2

j (x)Tj(s), (2.8)

where the coefficient ad is defined as

ad ≡ (4π)(d−3)/2Γ
(
d− 3

2

)
. (2.9)

These definitions are identical to the ones of section 3 in [3] and section 2.3 of [16].
Unitarity imposes the following simple constraint on the partial amplitudes

|Sj(s)| ≤ 1 (2.10)

for the physical range of the Mandelstam variable s, namely s ≥ 4m2 and all the spins,
namely j = 0, 2, 4, · · · . The unitarity constraint (2.10) can be written in the semipositive-
definite form as (

1 1
1 1

)
+Nd(s)−1 ×

(
0 −iT ∗j (s)

iTj(s) 0

)
� 0. (2.11)

An equivalent form can be written as(
1 0
0 0

)
+
(
−1

2N
−1
d ImTj N−1/2

d ReTj
N−1/2
d ReTj 2ImTj

)
� 0. (2.12)

The equivalence between (2.10), (2.11) and (2.12) can be seen by simply taking into ac-
count (2.2) and evaluating the determinant of (2.11) and (2.12).

3 Observables

In this section, we will define several equivalent sets of parameters (called observables)
which describe the interacting part of the scattering amplitude T (s, t). In general, each set
has an infinite number of entries.3 We start by discussing observables of nonperturbative
amplitudes in section 3.1. In section 3.2, we will discuss observable of EFT amplitudes. Re-
call, that the definition of nonperturbative and EFT amplitudes was given in the beginning
of section 1.

3.1 Nonperturbative amplitudes

One way to describe the amplitude is to evaluate it and its derivatives at some particular
values s0, t0, and u0, namely

∂ks ∂
l
tT (s0, t0, u0). (3.1)

The values s0, t0, and u0 are convenient to choose in the Mandelstam region defined as

0 ≤ s0 ≤ 4m2, 0 ≤ t0 ≤ 4m2, 0 ≤ u0 ≤ 4m2, (3.2)
3Notice that if there is a Lagrangian description of the theory, these entries can be computed in terms

of a finite number of “couplings” which describe this Lagrangian.

– 6 –
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because in this region the amplitude is purely real.4 There are two choices of the parameters
s0, t0 and u0 we will use in this paper. The first choice is the crossing symmetric point,
where we defined the observables λk,l as

λk,l ≡
md−4+2(k+l)

k!l! ∂ks ∂
l
tT (4m2/3, 4m2/3, 4m2/3). (3.3)

Using crossing symmetry, one can easily derive the following identities:5

λi,j = λj,i, λ0,k = 0 for odd k, (3.4)
λ1,1 = λ2,0, λ1,3 = 2λ4,0 = 2λ2,2/3, 2λ1,4 = λ3,2, λ5,1 = 3λ6,0 = 3(2λ2,4 − λ3,3)/5, · · · ,

where we have presented all the identities up to k + l ≤ 6. In terms of the observables
defined in (3.3), the amplitude has the following series representation

md−4T (s, t, u) =
∞∑

k,l=0
λk,l m

−2(k+l)(s− 4m2/3)k(t− 4m2/3)l, (3.5)

which is valid in the Mandelstam triangle

0 ≤ s ≤ 4m2, 0 ≤ t ≤ 4m2, 0 ≤ u ≤ 4m2. (3.6)

Due to (3.4), the above representation is automatically fully crossing invariant. For further
details about how (3.5) is related to the method in the literature that writes T in terms of
symmetric polynomials, see appendix C.

The second choice is the forward limit, where we defined the observables Λk,l as

Λk,l ≡
md−4+2(k+l)

k!l! ∂ks ∂
l
tT (2m2, 0, 2m2). (3.7)

Similarly, using the fact that T is crossing symmetric, we can derive the following identities

Λk,0 = 0 for odd k,
Λ1,1 = Λ2,0, Λ1,2 = Λ2,1, Λ4,0 = Λ2,2 − Λ1,3 = Λ3,1/2, (3.8)
Λ4,1 = Λ2,3 − Λ1,4 = Λ3,2/2, Λ5,1 = 3Λ6,0 = 3(2Λ4,2 − Λ3,3)/5, · · · ,

where we again included identities up to k + l ≤ 6. Analogously to (3.5), there exist the
following representation

md−4T (s, t) =
∞∑

k,l=0
Λk,l m−2(k+l)(s− 2m2)ktl (3.9)

valid in the region defined by (3.2). Due to (3.8), it is automatically s-u invariant.
4Recall the analytic structure of the amplitude given in the left part of figure 1. The amplitude is purely

real on the horizontal axis between the two branch cuts.
5This can be done in Mathematica as follows. First, define T (s, t, u) as T (s, t, u) = f(s, t, u)+f(s, u, t)+

f(u, s, t)+f(u, t, s)+f(t, u, s)+f(t, s, u), so that it is crossing symmetric. Then Taylor expand T (s, t, u) at
the crossing symmetric point, and ask Mathematica to find the relationships between the Taylor coefficients,
for example, via using the Eliminate function. This is how we got equation (3.4), and similarly (3.8).

– 7 –
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Another way to describe the amplitude is to use the partial amplitude Tj(s), where
j = 0, 2, 4, . . . is the spin as reviewed in section 2. Analogously to (3.1), we can then define
the following set of parameters

τj;k ≡
md−4+2k

k! ∂ks Tj(2m2). (3.10)

The point s0 = 2m2 is also chosen from the range (3.2) in this paper. Notice that (3.10)
are real due to the same reason as in (3.3) and (3.7).

To summarize, we will be working in this paper with three equivalent (infinite dimen-
sional) sets of observables

λk,l, Λk,l, τj;k. (3.11)

There are other sets of observables discussed in the literature such as arks proposed in [35]
and scattering lengths. We will not construct bounds on them in this work.

3.2 EFT amplitudes

Analogously to (3.3), we can define observables for the EFT amplitudes

λEFT
k,l ≡

Md−4+2(k+l)

k!l! ∂ks ∂
l
tT (0, 0, 0). (3.12)

The observables in (3.12) obey the same relations as in (3.4). Analogously to (3.5), we also
have the series representation of the EFT amplitude which reads as

Md−4T (s, t, u) =
∞∑

k,l=0
λEFT
k,l M−2(k+l)sktl. (3.13)

It is valid in the Mandelstam triangle

0 ≤ s ≤M2, 0 ≤ t ≤M2, 0 ≤ u ≤M2. (3.14)

4 Positivity bounds for nonperturbative amplitudes

In this section, we will derive bounds on the observables defined in section 3.1 using disper-
sion relations and the positivity constraint (1.4). We refer to these bounds as the positivity
bounds. We will use the formalism of [37] applied in the context of nonperturbative am-
plitudes which have m 6= 0 and their branch cut starts at 4m2.

In section 4.1, we will briefly review the formalism of [37]. In section 4.2, we will use
it to bound the observables λk,l defined in (3.3) at the crossing symmetric point, and in
section 4.3, we will use it to bound the observables Λk,l defined in (3.7) for the forward limit.

4.1 Dispersion relations

Consider the following function on the s′ complex plane

F (s′) ≡ T (s′, t)
(s′ − s0)(s′ − s1)(s′ − s2) , (4.1)

– 8 –
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s0

s1

s2

s′

−t 4m2

γ

s0

s1

s2

s′

−t 4m2

Figure 2. Contour integrals of the function F (s′) defined in equation (4.1).

where t, s0, s1 and s2 should be seen as some fixed parameters. Due to the Froissart bound
on the interacting part of the scattering amplitude T (s′, t), this function decays at infinity
as follows

lim
s′→∞

s′F (s′) = 0. (4.2)

On the s′ complex plane, the function F (s′) has two branch cuts inherited from T (s′, t),
see the left part of figure 1. It also has three simple poles at positions s0, s1 and s2. In the
rest of the s′ complex plane, the function F (s′) is analytic.

Since the function F (s′) is analytic in most of the complex plane, we have∮
γ

ds′

2πiF (s′) = 0, (4.3)

where the contour γ is picked as in the left part of figure 2, namely it does not contain
any poles or branch cuts inside. Enlarging the contour to infinity and dropping the arcs
at infinity due to (4.2), we obtain the right part of figure 2. Using the Cauchy theorem
to evaluate the integrals at the simple poles, we obtain the following formula (called the
dispersion relation),

Res
s′=s0, s1, s2

[ T (s′, t)
(s′ − s0)(s′ − s1)(s′ − s2)

]
(4.4)

=
∫ −t
−∞

ds′

2πi
Discs′T (s′, t)

(s′ − s0)(s′ − s1)(s′ − s2) +
∫ +∞

4m2

ds′

2πi
Discs′T (s′, t)

(s′ − s0)(s′ − s1)(s′ − s2) ,

where the integrals are along the branch cuts. The parameters (s0, s1, s2) can be chosen at
our will.

The discontinuity of the amplitude is defined as

DiscsT (s, t) ≡ T (s+ iε, t)− T (s− iε, t)
= T (s+ iε, t)− (T (s+ iε, t))∗

= 2i ImT (s+ iε, t),
(4.5)

where the second line holds on the real axis only. Plugging the su-crossing equation

T (s, t) = T (4m2 − s− t, t) (4.6)

– 9 –
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into the first term on the right-hand side of (4.4), and performing straightforward manip-
ulations, we obtain∫ −t

−∞

ds′

2πi
DiscsT (s′, t)

(s′ − s0)(s′ − s1)(s′ − s2)

=
∫ +∞

4m2

dξ

2πi
DiscξT (ξ, t)

(ξ + s0 + t− 4m2)(ξ + s1 + t− 4m2)(ξ + s2 + t− 4m2) , (4.7)

where we have introduced the following change of variables

ξ ≡ 4m2 − s′ − t. (4.8)

One can use the above result to bring the main formula (4.4) into the following form

Res
s′=s0, s1,s2

[ T (s′, t)
(s′ − s0)(s′ − s1)(s′ − s2)

]
=
∫ +∞

4m2

ds′

π
ImT (s′, t)

(
1

(s′ − s0)(s′ − s1)(s′ − s2)

+ 1
(s′ + s0 + t− 4m2)(s′ + s1 + t− 4m2)(s′ + s2 + t− 4m2)

)
. (4.9)

Decomposing the scattering amplitude on the r.h.s. of the above equation with the
help of (2.7)–(2.9), we get

Res
s′=s0, s1,s2

[ T (s′, t)
(s′ − s0)(s′ − s1)(s′ − s2)

]
=

∑
j=0,2,4,...

∫ +∞

4m2

ds′

π
ImTj(s′)hj(s′), (4.10)

where the function hj(s′) is a purely kinematic object defined as

hj(s′)≡ ad×(2j+d−3)C(d−3)/2
j

(
1+ 2t

s′−4m2

)
(4.11)

×
( 1

(s′−s0)(s′−s1)(s′−s2) + 1
(s′+s0 + t−4m2)(s′+s1 + t−4m2)(s′+s2 + t−4m2)

)
and the coefficient ad is defined in equation (2.9).

It is convenient to define the following angular bracket notation for the integration
with the imaginary part of the partial amplitude and summation over spins

〈hj(s′)〉 ≡ admd−6 ×
∑

j=0,2,4,...
(2j + d− 3)C(d−3)/2

j (1)
∫ +∞

4m2

ds′

π
ImTj(s′)hj(s′). (4.12)

Note that the extra factor of C(d−3)/2
j (1) is introduced in the above definition in order to

simplify the expressions later on. We will refer to 〈hj(s′)〉 as the “average” of the function
hj(s′). Note that the factor of md−6 is inserted such that 〈hj(s′)〉 has the same mass
dimension as hj(s′).

The dispersion relation written in the form (4.10) together with the positivity con-
straint

ImTj(s) ≥ 0 (4.13)

and the definition of “averages” (4.12) will be the key ingredients for constructing bounds
on various observables.
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4.2 Bounds on λk,l

In this subsection, we bound the observables λk,l defined in (3.3) at the crossing symmetric
point. We choose the points s0, s1 and s2 as follows

s0 = s, s1 = 4m2/3, s2 = 8m2/3− t. (4.14)

This choice maintains the st crossing symmetry. Plugging them into (4.10), we obtain the
following expression

Res
s′={s, 2m2, 2m2−t}

[
md−6T (s′, t)

(s′ − s)(s′ − 4m2/3)(s′ + t− 8m2/3)

]
(4.15)

=
〈

3
(
4m2 − 2s′ − t

)
(s′ − s) (s′ − 4m2/3) (3s′ + 3t− 8m2) (s′ + s+ t− 4m2)

C
(d−3)/2
j

(
1 + 2t

s′−4m2

)
C

(d−3)/2
j (1)

〉
,

where the angular bracket is defined in (4.12).
In order to evaluate the left-hand side (l.h.s.) of the expression (4.15), we use the

polynomial representation of the amplitude (3.5) in the vicinity of the crossing symmetric
point. Plugging (3.5) into the l.h.s. of (4.15), and expanding around s = 4m2/3 and
t = 4m2/3, we get

m6 × l.h.s. = λ2,0 + λ2,1t̂+
(
t̂2λ4,1 + t̂λ4,0

)
ŝ

+
(
λ4,0 + t̂2 (λ4,2 − 2λ6,0) + t̂λ4,1

)
ŝ2 + 2λ4,0t̂

2 + · · · , (4.16)

where we have defined

ŝ ≡ m−2s− 4/3, t̂ ≡ m−2t− 4/3. (4.17)

Similarly we can expand the right-hand side (r.h.s.) of the equation (4.15) around
s = 4m2/3 and t = 4m2/3. Equating the coefficients in front of the same ŝk t̂l terms, we
get the following relations

λ2,0 =
〈

54m6F(d, j, s′)
(3s′ − 4m2)3

〉
, (4.18)

λ2,1 =
〈

108m8j(d+ j − 3)F(d+ 2, j − 1, s′)
(d− 2) (s′ − 4m2) (3s′ − 4m2)3 − 243m8F(d, j, s′)

(4m2 − 3s′)4

〉
, (4.19)

λ4,0 =
〈

486m10F(d, j, s′)
(3s′ − 4m2)5

〉
, (4.20)

λ4,0 =
〈

27m10Γ(d/2− 1)
2(3s′ − 4m2)5

[
36F(d, j, s′)
Γ (d/2− 1) + j(d+ j − 3)

(
3s′ − 4m2)2

(s′ − 4m2)2 (4.21)

×
(

(j − 1)(d+ j − 2)F(d+ 4, j − 2, s′)
Γ(d/2 + 1) − 9

(
s′ − 4m2)F(d+ 2, j − 1, s′)

Γ(d/2) (3s′ − 4m2)

)]〉
,
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where we have defined

F(d, j, s) ≡ 2F1

(
−j, d+ j − 3; d− 2

2 ;− 4m2

3 (s− 4m2)

)

= j!
(d− 3)j

C
(d−3)/2
j

(
4m2 − 3s′

3(4m2 − s′)

)
.

(4.22)

The factor (d− 3)j in the above equation is the Pochhammer symbol. Note that we have
two expressions for λ4,0, and subtracting one from the other we get a null constraint

0 =
〈 27m10j(d+ j − 3)

(d− 2)(3s′ − 4m2)4 (s′ − 4m2)2 ×
(
−9
(
s′ − 4m2

)
F(d+ 2, j − 1, s′) (4.23)

+ 2(j − 1)(1 + (j − 2)/d)
(
3s′ − 4m2

)
F(d+ 4, j − 2, s′)

)〉
.

One can expand (4.15) to higher orders to find more null constraints. For example, there
is one null constraint coming from two different expressions of λ4,1, and another one from
two different expressions of λ6,0.

Analytic bounds. The definition of “averages” in equation (4.12) involves an integra-
tion over the region s′ ∈ [4m2,∞) and a summation over spins j. Using the positivity
condition (4.13), we can derive various bounds.

If we look at the equations (4.18) and (4.20), we notice that the integrands in the
averages are non-negative function,6 thus we immediately conclude that

λ2,0 ≥ 0 and λ4,0 ≥ 0. (4.25)

Notice that the expressions in the angular brackets of λ2,0 and λ4,0 only differ by a factor
of (3s′ − 4m2)2 in the denominator (and a constant factor), we can easily show that

0 ≤ λ4,0
λ2,0

≤ 9
64 . (4.26)

Here we have used the fact that∫ ∞
4m2

ds′
q(s′)

(3s′ − 4m2)n ≤
1

8m2

∫ ∞
4m2

ds′
q(s′)

(3s′ − 4m2)n−1 , (4.27)

which holds for any function q(s′) obeying q(s′) ≥ 0 in the integration region.
For λ2,1, notice that the first term in the angular bracket is also non-negative (for

d > 2, j ≥ 0 and s ≥ 4m2), therefore, we have

λ2,1 ≥ −
〈

243m8F(d, j, s′)
(4m2 − 3s′)4

〉
≥ − 9

16λ2,0, (4.28)

6Note that F(d, j, s) is positive for the d > 2, j ≥ 0 and s > 4m2. This can be shown by writing it as a
sum of manifestly positive terms as follows

F(d, j, s) =
j∑
i=0

(j − i+ 1)i(d+ j − 3)i
i!
(
d
2 − 1

)
i

(
4m2

3 (s− 4m2)

)i
. (4.24)
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where we have used (4.27) again to relate it to λ2,0. In other words, we have obtained the
lower bound

− 9
16 ≤

λ2,1
λ2,0

. (4.29)

Numerical bounds. One can also construct bounds on λ2,1 numerically [37]. In order
to do that let us denote the expressions in the angular brackets in equations (4.18), (4.19),
and (4.23) by L2,0(j, s′), L2,1(j, s′) and N4,0(j, s′) respectively. Then these equations can
be written in a compact form as follows

λ2,0 = 〈L2,0(j, s′)〉, λ2,1 = 〈L2,1(j, s′)〉, 0 = 〈N4,0(j, s′)〉. (4.30)

One can then define the following simple optimization problemminimize A

subject to AL2,0(j, s′)− L2,1(j, s′) + cN4,0(j, s′) ≥ 0
(4.31)

for all s′ ≥ 4m2 and j = 0, 2, 4, · · · . Here, we are minimizing over any possible real value
of c. Taking the “average” of the second line in (4.31) and using the definitions (4.30), we
then conclude that

Aλ2,0 − λ2,1 ≥ 0. (4.32)

Thus, the optimization problem (4.31) finds the upper bound on the ratio λ2,1/λ2,0.
We solved the optimization problem (4.31) using the LinearOptimization function

in Mathematica at a large number of different values of s′ and j (from j = 0 up to some
value jmax) as the constraints. For d = 3 and d = 4, we found the optimal value of A to
be A ≈ 1.152, which means that

λ2,1 ≤ 1.152λ2,0. (4.33)

Similarly, one can find a lower bound on the ratio λ2,1/λ2,0 by solving the following
optimization problemminimize B

subject to −BL2,0 (j, s′) + L2,1 (j, s′) + cN4,0 (j, s′) ≥ 0
(4.34)

for all ∀s′ ≥ 4m2 and j = 0, 2, 4, · · · . Taking the “average” of the second line in (4.34) and
using the definitions (4.30) we conclude that

−Bλ2,0 + λ2,1 ≥ 0. (4.35)

Thus, the optimization problem (4.34) finds the lower bound on the ratio λ2,1/λ2,0. By
solving the optimization problem (4.34), we find numerically that the optimal value of B
reads as B = −9/16, which is precisely the result found already in (4.29). Summarizing,
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for d = 3 and d = 4, we obtained the following two-sided bound.7

− 9
16 ≤

λ2,1
λ2,0

≤ 1.152. (4.36)

We compare (4.36) with the numerical S-matrix result in figures 9 and 10. We see that
the numerical S-matrix bounds are much stronger for generic values of λ2,0, but coincide
with the positivity bounds for small enough values of λ2,0. This is interesting in at least two
aspects. First, this confirms the correctness of our numerical results in section 5. Second,
this also shows how including the full unitarity constraint (numerical S-matrix bootstrap)
improves the result obtained using only positivity.

4.3 Bounds on Λk,l

In this section, we bound the observables Λk,l defined in (3.7) in the forward limit. We
choose the points s0, s1 and s2 as follows

s0 = s, s1 = 2m2, s2 = 2m2 − t. (4.37)

This choice maintains the su symmetry. Plugging them into (4.10), we obtain

Res
s′={s, 2m2, 2m2−t}

[
md−6T (s′, t)

(s′ − s)(s′ − 2m2)(s′ + t− 2m2)

]

=
〈

(2s′ + t− 4m2)
(s′ − s)(s′ − 2m2)(s′ + t− 2m2)(s′ + s+ t− 4m2)

C
(d−3)/2
j

(
1 + 2t

s′−4m2

)
C

(d−3)/2
j (1)

〉
, (4.38)

where the definition of the angular bracket is given in (4.12).
In order to evaluate the l.h.s. of the expression (4.38), we use the polynomial represen-

tation of the amplitude (3.9) in the forward limit. Plugging (3.9) into the l.h.s. of (4.38),
and expanding around s = 2m2 and t = 0, we get

m6 × l.h.s. = Λ2,0 + Λ2,1t̃+ (Λ2,2 − Λ4,0) t̃2

+
(
Λ4,0 + Λ4,1t̃+ (Λ4,2 − 2Λ6,0) t̃2

)
s̃2 +

(
Λ4,1t̃

2 + Λ4,0t̃
)
s̃+ . . . , (4.39)

where we have defined
s̃ ≡ m−2s− 2, t̃ ≡ m−2t. (4.40)

7The upper bound in (4.36) stays the same if we also include the null constraint from λ4,1. However,
including also the null constraint coming from λ6,0, we get a slightly better bound λ2,1

λ2,0
≤ 1.126. We expect

that more null constraints in the optimization problem will improve this bound, but their effects will be
small, similar to the case considered in [37]. Another comment about the upper bound in (4.36) is that at
the precision we are reporting, it does not depend on the spacetime dimension d. We have checked up to
d = 26 and the dependence on d is very weak. The difference for different d only shows up at the fifth digit
after the decimal point in the cases that we considered.
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Similarly we can expand the r.h.s. of equation (4.15) around s = 2m2 and t = 0. Equating
the coefficients in front of the same s̃k t̃l terms we get the following relations

Λ2,0 =
〈

2m6

(s′−2m2)3

〉
, Λ4,0 =

〈
2m10

(s′−2m2)5

〉
,

Λ2,1 =−
〈
m8 3(s′−4m2)− 4

d−2J2(s′−2m2)
(s′−2m2)4(s′−4m2)

〉
, (4.41)

Λ2,2−Λ4,0 =4m10

〈 (s′−4m2)2+J2(s′−2m2)
(

4−5d
2d(d−2) (s′−4m2)− 2

dm
2
)

+ 1
d(d−2)J

2
2 (s′−2m2)2

(s′−2m2)5(s′−4m2)2

〉
.

Here we have defined the eigenvalue of the quadratic Casimir J2 as

J2 ≡ j(j + d− 3). (4.42)

Analytic bounds. Similar to the λk,l case we considered in the last subsection, since
integrands in the first two lines of (4.41) are non-negative in the integration region s ∈
[4m2,∞), we immediately conclude that

Λ2,0 ≥ 0, Λ4,0 ≥ 0. (4.43)

Let us now address Λ2,1. Using linearity of the average, we can rewrite (4.41) as follows

− Λ2,1 = 3
〈

m8

(s′ − 2m2)4

〉
− 4
d− 2

〈
J2m

8

(s′ − 2m2)3(s′ − 4m2)

〉
. (4.44)

Since the second term above is non-negative (for d > 2 which is what we consider in this
section), the following inequality follows

− Λ2,1 ≤ 3
〈

m8

(s′ − 2m2)4

〉
≤ 3Λ2,0

4 . (4.45)

In other words, we have obtained the lower bound

− 3
4 ≤

Λ2,1
Λ2,0

. (4.46)

To get the second inequality here, we used the following simple property of the integral∫ ∞
4m2

ds′
q(s′)

(s′ − 2m2)n ≤
1

2m2

∫ ∞
4m2

ds′
q(s′)

(s′ − 2m2)n−1 , (4.47)

similar to the inequality in (4.27), which holds true for any function q(s′) obeying q(s′) ≥ 0
in the integration region. Using the above inequality, we can also show that

0 ≤ Λ4,0
Λ2,0

≤ 1
4 , (4.48)

where we also included the lower bound from (4.43) for completeness. Further bounds can
be derived from the last line of (4.41). The numerical procedure described in the previous
subsection applied in this case does not improve the analytic bound (4.48).
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5 Numerical bounds in d > 2

In order to put numerical bounds on observables defined in section 3, we employ the primal
numerical approach of [3, 9]. For a concise summary of this approach see sections 1 and
4.1 of [19]. We will briefly summarize this approach also in section 5.1. There we start by
explaining the primal numerical approach in the context of nonperturbative amplitudes and
then indicate what changes if we want to apply it to EFT amplitudes. We show our bounds
on nonperturbative amplitudes in section 5.2. We show our bounds on EFT amplitudes in
section 5.3. Recall, that the definition of nonperturbative and EFT amplitudes was given
in the beginning of section 1.

5.1 Primal numerical approach

Analyticity and crossing symmetry are implemented by writing the following ansatz for
the scattering amplitude

md−4T (s, t, u) =
∑

a+b≤Nmax

αab ×
(
r(s, s0)ar(t, t0)b

+ r(s, s0)ar(u, u0)b + r(t, t0)ar(u, u0)b
)
, (5.1)

where αab are the unknown real dimensionless coefficients symmetric in their indices a, b
and the r-variable is defined as

r(z; z0) ≡
√

4m2 − z0 −
√

4m2 − z√
4m2 − z0 +

√
4m2 − z

. (5.2)

Here z0 is some free parameters of our choice. In this paper, we make the following choice

s0 = t0 = u0 = 4m2/3. (5.3)

This choice does not affect the bounds given large enough values of Nmax. The ansatz (5.1)
can be used in d > 2 dimensions. The parameter Nmax is introduced to make the sum
finite. All the bounds presented below are constructed for Nmax = {20, 22, 24, 26} and
then extrapolated to Nmax =∞ with a linear function fit q+ r/Nmax, where q and r are fit
parameters.8 In our numerical procedure, we set m = 1. All the dimensionless quantities
we bound do not depend on this choice.

The coefficients αab can be related straightforwardly to the observables defined in
section 3. Consider for example the observables defined in equation (3.3). We can obtain
the expression for (λ0,0, λ2,0, λ2,1) in terms of αab by applying (3.3) to (5.1). They read as

λ0,0 = α00, λ2,0 = 9
256α01 + 9

512α02 −
9

1024α11, λ2,1 = − 405
32768α01 + . . . (5.4)

Solving these relations for (α00, α01, α02) and using the solution in (5.1), we obtain the
ansatz which depends on the following unknown parameters

(λ0,0, λ2,0, λ2,1, α03, α04, . . . , α11, α12, . . .). (5.5)
8Improved Ansatzes, such as those used in [3], would potentially improve the convergence rate in 1/Nmax

but should not affected the value of our Nmax =∞ result.
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We can now perform the integral transform of the ansatz (5.1) according to (1.1)
to obtain the partial amplitudes. They will also depend on the set of unknown coeffi-
cients (5.5). We impose full non-linear unitarity constraint in the form (2.12) for a discrete
number of points Ngrid in s and a finite number of spins j = 0, 2, . . . , Lmax. In practice,
we use Ngrid = 200 and Lmax = Nmax + 10 unless stated differently. The coefficients of the
ansatz (5.5) satisfying (2.12) are found by solving various numerical optimization problems
using the SDPB software [50, 51].

Let us briefly discuss the d → 2 limit. In [28], we have obtained bounds in d = 2.
There, we used a much simpler ansatz

m−2T (s, t) =
Nmax∑
a=0

βa ×
(
r(s, s0)a + r(t, t0)a

)
, (5.6)

where the βαs are the unknown real parameters. Clearly, the ansatz (5.1) contains a lot
more unknown parameters compared to (5.6). In the vicinity of d = 2, we will need to
use very large values of Lmax and Ngrid in order to numerically reproduce (5.6) from (5.1).
Also, the numerics might become very sensitive to the precision of some numerical integrals
we use internally. See appendix B for further discussion. Concluding, we expect to have
trouble when constructing bounds in the vicinity of d = 2. In practice, we will be able to
go as low as d = 2.4.

Using linearized unitarity (1.3) instead of the full non-linear unitarity (2.12) in the
primal numerical method is trivial. We simply need to replace the single condition (2.12)
given by a 2 by 2 matrix with two conditions given by two 1 by 1 matrices

ImTj ≥ 0, 2Nd − ImTj ≥ 0. (5.7)

Notice however that these do not constraint the purely real part of the ansatz (5.1) given
by the coefficient α0,0 = λ0,0. During the optimization process, the coefficient α0,0 = λ0,0
will remain undetermined and will cause instabilities. The simplest way to deal with this
issue is to set λ0,0 = 0.

To impose only positivity, we need to take into account the first condition in (5.7)
and drop the second one. Notice however that if we found one solution which satisfies
ImTj ≥ 0, we could obtain an infinite set of solutions by re-scaling the coefficients of the
ansatz (5.5). In order to obtain a uniquely defined solution, we need to further fix one of
the coefficients in (5.5). For example, we can fix λ2,0. The bounds we obtain then will
be exactly of the form as in section 4, more precisely, as in equation (4.36). The explicit
values for the bounds obtained in section 4 and by using the primal numerical method will
also coincide since the two approaches impose the same amount of constraints.

To apply the above method to EFT amplitudes (where the branch cut is assumed to be
absent below s = M2 instead of s = 4m2), one should simply modify the analytic structures
of the ansatz (5.1). See figure 1 for a visual representation of the analytic structure of both
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classes of amplitudes. The EFT ansatz reads as

Md−4T (s, t, u) =
∑

a+b≤Nmax

αab ×
(
r(s, s0)ar(t, t0)b

+ r(s, s0)ar(u, u0)b + r(t, t0)ar(u, u0)b
)
, (5.8)

where the r-variable is defined as

r(z; z0) ≡
√
M2 − z0 −

√
M2 − z√

M2 − z0 +
√
M2 − z

. (5.9)

The parameter z0 can now be chosen as

s0 = t0 = u0 = 0. (5.10)

Recall that we also assume m�M of the particles, thus we can set m = 0 in (2.1), (2.6)
and (2.7). The observables we bound now are defined in (3.12). In our numerical procedure
we set M = 1. All the dimensionless quantities we bound do not depend on this choice.

5.2 Nonperturbative amplitudes

Let us now present our numerical results for the class of nonperturbative amplitudes. We
start by showing the bounds on (τ0;0, τ0;1) observables for various values of space-time
dimensions d. They are given in figure 3. For each value of d, the allowed region of
the parameters is contained inside the corresponding leaf shape. Different dimensions are
marked by different colors. In figure 4, we provide 3d plots that show how the bound on
(τ0;0, τ0;1) evolves as a function of d. The bounds on figure 3 have two well-pronounced
tips. The position of the left tip steadily moves when increasing d. However, the right tip
stays very close to the origin for 2 < d . 3.5 and only starts visibly moving to the right
around d & 3.5. We present the positions of both tips as functions of d in figure 5, where
one can see more clearly their behavior. We also show how the tips of d > 2 connect to
the tips of d = 2 which are at (τ0;0, τ0;1) = (−8, 0) and (τ0;0, τ0;1) = (0, 0) (for more details,
see appendix A or section 4 of [28]).

On the boundary of the leaves in figure 3, one can reconstruct numerically the scat-
tering amplitude and all its partial amplitudes. As an example in figure 6, we provide the
spin-zero partial amplitude at the tips of d = 3 and d = 4. All of these partial amplitudes
saturate unitarity as can be seen from the plot.

Before proceeding with the rest of our numerical results, let us emphasize that all the
numerical data and the description of how to use these data can be downloaded from:
https://zenodo.org/record/6891946#.Ytwnmi8Roe0. This data allows not only to recon-
struct bounds like figures 3 and 4, but also to reconstruct the amplitudes and partial ampli-
tudes on the boundary of the allowed region. Figure 6 should be simply seen as an example.

The bounds on the observables (λ0,0, λ2,0) at the crossing symmetric point and
(Λ0,0, Λ2,0) in the forward limit for various spacetime dimensions d are presented in fig-
ures 7 and 8, respectively.9 For each value of d, the allowed region is again inside the

9We expect that the boundaries of figures 7 and 8 correspond very nearly to the boundaries of figure 3;
the data we provide for these amplitudes can be used to investigate this comparison further.
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Figure 3. Nonperturbative bound on the observables (τ0;0, τ0;1) defined in (3.10) for various
spacetime dimensions d ∈ [2.4, 4]. Different colors represent different d. For each value of d, the
allowed region is inside the corresponding “leaf” shape. The plot is built with Lmax = 50.

Figure 4. Nonperturbative bound on the observables (τ0;0, τ0;1) defined in (3.10) as a function of
the spacetime dimension d. The plot is built with Lmax = 50.
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Figure 5. Dependence of left and right tips of the allowed regions in figure 3 on the spacetime
dimension d. In the left plot, we have also indicated the d = 2 result from equation (A.8), namely
(τ0;0, τ0;1) = (−8, 0). The dashed lines indicate how the d > 2 results approach d = 2 one. In the
right plot, we see that the right tip in figure 3 approaches zero as we lower the spacetime dimension d.
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Figure 6. Spin-zero partial amplitudes S0 at the tips of figure 3 for d = 3 and d = 4. We used
Nmax = 26 and Lmax = 50 for these plots. Note that the kinks in figures 9 and 10 correspond to
the kinks of d = 3 and d = 4 in figure 3, and their spin-zero partial amplitudes are also given by
the above plots.
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corresponding leaf. On both plots, one observes tips on the right that behave similarly to
the ones of figure 3. One can see some wiggles in figure 8 for d = 3.5, 3.7 and 3.9, which are
completely unphysical. They are present due to errors in the extrapolation to Nmax =∞.10

The bounds on (λ2,0, λ2,1) in d = 3 and d = 4 are presented in figures 9 and 10,
respectively. The allowed region is shaded in blue. These have a very elongated shape with
two kinks/tips on the very left and very right. Under closer inspection, one sees that the
bottom boundaries are smooth. The bounds (Λ2,0, Λ2,1) in d = 3 and d = 4 are presented
in figures 11 and 12, respectively. The allowed region is also shaded in blue. In d = 3, the
bound has a single kink (left tip), whereas, in d = 4, the bound has two kinks. The kink
on the upper boundary of the d = 4 plot simply corresponds to the right tip in figure 10.

Let us now discuss how our bounds compare with the ones obtained by using only
linearized unitarity or positivity. First of all, full non-linear unitarity gives bounds on
the observables λ0,0 and Λ0,0, whereas linearized unitarity or positivity does not. Several
bounds using positivity were obtained in section 4. We found in section 4 analytically that
λ2,0 ≥ 0 and Λ2,0 ≥ 0, which is consistent with figures 9–13. More interesting bounds given
by equations (4.36) and (4.46) are depicted by the black dashed lines in figures 9–13, we
see that they are weaker than the bounds from full unitarity, but agree very well at small
λ2,0 or Λ2,0, as expected. Finally, in figure 13, we display three bounds together obtained
by using positivity only (black dashed line), linearized unitarity (yellow region), and full
non-linear unitarity (blue region) for d = 4. We can clearly see how much stronger the
bounds become when we require more unitarity.

5.3 EFT amplitudes

Let us now address bounds on EFT amplitudes with m = 0 and a branch cut starting from
the cut-off scale M . Please recall that their observables are defined in (3.12). Here we do
not perform a systematic study of EFT amplitudes in various space-time dimensions d and
focus instead on d = 4 only.

We start by bounding the observable (λEFT
0,0 , λEFT

2,0 ). The result is given in figure 14,
the allowed region of parameters is shaded in red. Such type of bounds is inaccessible to
techniques that use linearized unitarity or positivity as explained at the end of section 5.1.
An interesting point useful for the discussion in the next section is λEFT

0,0 = 0. For this
particular value of λEFT

0,0 , we obtain the bounds on λEFT
2,0 at different values of Nmax and

extrapolate to Nmax =∞. We got

If λEFT
0,0 = 0 : 0 ≤ λEFT

2,0 ≤ 0.073. (5.11)

The bound on (λEFT
2,0 , λEFT

2,1 ) is given in figures 15 and 16, where we compare the allowed
region (shaded in yellow) obtained using linearized unitarity only and the allowed region
(shaded in red) obtained using full non-linear unitarity. Notice that the axes labels in
figures 15 and 16 have a relative factor of (4π)2. The comparisons in these two plots make
it clear how much stronger the bound obtained using full non-linear unitarity is than the
one obtained using linearized unitarity only.

10The reader interested in the comparison of these bounds with the perturbative φ4 model should refer
to figure 20.
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Figure 7. Nonperturbative bounds on the observables (λ0,0 λ2,0) defined in (3.3) at the crossing
symmetric point obtained using full unitarity. For each value of d, the allowed region is inside the
corresponding “leaf” shape.
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Figure 8. Nonperturbative bounds on the observables (Λ0,0 Λ2,0) defined in (3.7) in the forward
limit obtained using full unitarity. For each value of d, the allowed region is inside the corresponding
“leaf” shape. The wiggles in the upper boundaries of the bounds in d = 3.5, 3.7 and 3.9 spacetime
dimensions are due to errors in the extrapolation to Nmax =∞.
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Figure 9. Nonperturbative bounds in d = 3 on the observables (λ2,0, λ2,1) defined in (3.3) at
the crossing symmetric point. The allowed region obtained using full unitarity is shaded in blue.
The dashed lines represent the positivity bound derived in the last section, see (4.36). The allowed
region is enclosed in the cone between the two dashed lines. The positivity bound agrees with the
full unitarity bounds at small λ2,0, but overall is much weaker.
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Figure 10. Nonperturbative bounds in d = 4 on the observables (λ2,0, λ2,1) defined in (3.3) at
the crossing symmetric point. The allowed region obtained using full unitarity is shaded in blue.
The dashed lines represent the positivity bound derived in the last section, see (4.36). The allowed
region is enclosed in the cone between the two dashed lines. The positivity bound agrees with the
full unitarity bounds at small λ2,0, but overall is much weaker.
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Figure 11. Nonperturbative bounds in d = 3 on the observables (Λ2,0, Λ2,1) defined in (3.7) in
the forward limit. The “whale shape” allowed region obtained using full unitarity is shaded in blue.
This bound has only one kink at the origin. The dashed line represents the positivity bound given
in (4.46). The allowed region from positivity lies above the dashed line. The positivity bound is
much weaker than the full unitarity bound.
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Figure 12. Nonperturbative bounds in d = 4 on the observables (Λ2,0, Λ2,1) defined in (3.7) in the
forward limit. The allowed region obtained using full unitarity is shaded in blue. This bound has
two kinks, one at the origin and one on the upper edge. The dashed line represents the positivity
bound given in (4.46). The allowed region from positivity lies above the dashed line. The positivity
bound is much weaker than full unitarity bound.
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Figure 13. Nonperturbative bounds in d = 4 on the observables (λ2,0, λ2,1) defined in (3.3) at the
crossing symmetric point with various amount of unitarity imposed. Black dashed lines indicate
positivity bounds, with the allowed region lying in the cone between the two lines. The region
shaded in yellow is the allowed region obtained using linearized unitarity only. The region shaded
in blue is the allowed region obtained using full non-linear unitarity. The plot is constructed with
Nmax = 20. Here, we do not perform the extrapolation with Nmax.
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Figure 14. Bound in d = 4 on the observables (λEFT
0,0 , λEFT

2,0 ) of EFT amplitudes defined in (3.12)
using full non-linear unitarity. The allowed region is shaded in red.

The black dashed lines in figures 15 and 16 are the positivity bounds obtained in [37].
The relation between the notation of our observables defined in (3.12) and the ones of [37]
can be easily established using appendix C. Comparing the first line of our (C.4) (there we
need to replace m by M and we need to set m = 0 in (C.2)) with their equation (2.3), we
get the relationships between their gi and our λEFT

k,l :

g2 =
λEFT

2,0
2 M−d, g3 = −λEFT

2,1 M−d−2, g4 =
λEFT

2,2
12 M−d−4, . . . (5.12)
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Figure 15. Bounds in d = 4 on the observables (λEFT
2,0 , λEFT

2,1 ) of EFT amplitudes defined in (3.12).
The allowed region built with linearized unitarity is shaded in yellow. The allowed region built with
full non-linear unitarity is shaded in red. The black dashed lines are bounds obtained in [37] using
positivity only, which we summarized in (5.14). Notice the re-scaling of the axes labels by (4π)2 com-
pared to all the other plots. This plot is in perfect agreement with figure 5 in [47]. The inset at the
right corner is the zoomed version of the region near the origin. It will be presented again in figure 16.

Thus, the very first bound in equation (4.2) in [37] given by

− 10.346 ≤ g3M
2

g2
≤ 3 (5.13)

in our notation reads as

− 3/2 ≤
λEFT

2,1
λEFT

2,0
≤ 5.173. (5.14)

The positivity bound (5.14) is consistent with our numerical bounds given in figures 15
and 16.

The bound in figure 15 was already obtained in figure 5 in [47] using a different tech-
nique. To match the notation between our and their work, we can compare our equa-
tion (3.13) and their equation (1.4). We conclude that their gi,j are related to our λEFT

k,l by11

g2,0 = λEFT
20 , g3,1 = λEFT

2,1 , g4,2 = λEFT
2,2 , . . . (5.15)

We see that our result in figure 15 is in perfect agreement with their figure 5.

6 Full unitarity constraints on EFTs

We have derived various novel bounds in section 5. Let us now show how they can be used
for bounding effective field theories on a particular example of pseudo-Goldstone bosons.

11In writing these relations, we assumed that the authors use conventions where their coefficients gk,l are
dimensionless and they set M = 1 in their equation (1.4).
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Figure 16. Zoomed version of figure 15 around the origin. The black dashed lines are bounds
obtained in [37] using positivity only, which we summarized in (5.14). The yellow region is obtained
with linearized unitarity. The red region is obtained with full non-linear unitarity. Notice that we
do not include the (4π)2 re-scaling of the axes labels compared to figure 15.

There will be two key differences in this analysis from the more standard EFT constraints
from dispersion relations. The first is that by imposing the full unitarity constraint, we
obtain bounds on the contact term ∼ φ4, parameterized by λ0,0 or Λ0,0, which at tree-
level contributes only to the real part of the amplitude and therefore is not constrained by
positivity or linearized unitarity. The second is that we can keep track of the finite, nonzero
value of the mass m, rather than taking the limit m→ 0 from the beginning. We will see
that our full unitarity bounds on the leading derivative interaction ∼ (∂φ)4 depends in an
interesting way on the size of the contact term.12

So, consider the effective theory of a pseudo-Goldstone boson, and take M to be
the cutoff. Up to field redefinitions, there are two quartic interactions with up to four
derivatives:

LEFT = −1
2(∂φ)2 − 1

2m
2φ2 + 1

Md
(−am4φ4 + b(∂φ)4 + . . .), (6.1)

where a and b are real dimensionless parameters and m is the mass of the pseudo-Goldstone
boson. Dots denote interactions that should be higher order in 1/M . When m = 0, we
recover the case of the true Goldstone boson.

Using the Lagrangian density (6.1), it is straightforward to compute the interacting
part of the scattering amplitude. At tree level, it reads as

md−4T (s, t, u) =
(
m

M

)d
(6.2)

×
(
−24a+ 2bm−4

(
(s− 2m2)2 + (t− 2m2)2 + (u− 2m2)2

)
+ . . .

)
.

12The 2d version of this argument, which is slightly cleaner, is covered in section A.2.2.
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(s+ t+ u = 4m2)

s

−t 4m2

(s+ t+ u = 0)

s

−M2 − t M2

Figure 17. Analytic structure in the s complex plane for a fixed value of t of two classes of
amplitudes considered in the literature: the left plot is for the nonperturbative amplitude and
the right one is for the EFT amplitude. The red dashed circle schematically indicates the region
where we evaluate our physical observables λk,l,Λk,l, τj;l; throughout this region, the tree level
expression (6.2) is a good approximation for the full non-perturbative amplitude.

Using (6.2) and the definition (1.1), we can also compute the spin-zero EFT partial ampli-
tude. It reads as

md−4T0(s) = C

(
m

M

)d
×
(

(−6a(d− 1) + bd) + b(d− 2)
(
s

m2 − 2
)

+ . . .

)
, (6.3)

where the constant C is simply defined as

C ≡ π
3−d

2

2d−3Γ(1+d
2 )

. (6.4)

We will only ever use the EFT amplitude (6.2) to evaluate observables at the scale
s ∼ m2, within the region indicated in the left plot of figure 17. This region is deeply
inside the controlled EFT regime if m�M , where the tree level amplitude (6.2) is a good
approximation to the full non-perturbative amplitude. Consequently, loop corrections to
our observables arise at O(m2d

M2d ) and are negligible subleading corrections compared to the
tree-level contributions. We can thus plug (6.2) into the definitions of our non-perturbative
observables (3.3), (3.7) and (3.10) and relate them with the parameters a and b in the EFT
Lagrangian density. We simply get

λ0,0 = 8
3(b− 9a)

(
m

M

)d
, λ2,0 = 4b

(
m

M

)d
, (6.5)

Λ0,0 = 8(b− 3a)
(
m

M

)d
, Λ2,0 = 4b

(
m

M

)d
, (6.6)

τ0;0 = C

(
m

M

)d
(bd− 6a(d− 1)), τ0;1 = C

(
m

M

)d
b(d− 2). (6.7)

Let us consider now ratios of these observables, the prefactor (m/M)d cancels out:

λ2,0
λ0,0

= 3b
2(b− 9a) ,

Λ2,0
Λ0,0

= b

2(b− 3a) ,
τ0;1
τ0;0

= b(d− 2)
bd− 6a(d− 1) . (6.8)

The bounds on these quantities were given in figures 7, 8 and 3 respectively. We re-plot
them in a more convenient way for our current purposes in figures 18 and 19. We emphasize
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that the only assumption about branch cuts that we used in the bounds in these figures
was that there is no branch cut below the multi-particle threshold at 4m2. In particular,
we did not assume that branch cuts from loops start at s ∼ M2. Nevertheless, we obtain
non-trivial bounds on a and b. Let us focus on d = 3 for concreteness. From figures 18
and 19, we conclude that

d = 3 : −0.45 .
λ2,0
λ0,0

≤ 0, −0.24 .
Λ2,0
Λ0,0

≤ 0, −0.40 .
τ0;1
τ0;0
≤ 0. (6.9)

Assuming that b ≥ 0 without loss of generality and taking into account (6.8) we obtain the
following bounds from the above inequalities

d = 3 : b

a
. 2.07692, b

a
. 0.972973, b

a
. 2.18182, (6.10)

respectively. As a result, we arrive at the final bound in d = 3 which reads as

d = 3 : 0 ≤ b . a. (6.11)

Completely analogously, one can derive bounds on a and b in d < 3 space-time dimen-
sions. In the case of d > 3, the situation is slightly different. From figures 18 and 19 we see
that the bounds become infinitely weak the closer we approach the origin. In order to put
a bound on ratios (6.8), we need to fix the value of λ0,0, Λ0,0 or τ0;0. Let us consider for ex-
ample figure 19. For some fixed value of τ0;0 there will always exist a coefficient α such that

τ0;1
τ0;0

> α. (6.12)

Using (6.8), we conclude that

0 ≤ b

a
<

6α(d− 1)
αd+ 2− d. (6.13)

This result gives precisely the last inequality in (6.10) if we set d = 3 and α = −0.4.
These bounds require an important caveat. To understand why, note that in figures 7, 8

and 3, the location of the tip near the origin changes as a function of d, and as d increases
from d = 2 to larger values, the tip moves farther away from the origin. For concreteness,
let us focus on figure 3. In this case, we have shown the location of the tips explicitly
in figure 5. This means that for any d > 2, strictly at m/M = 0, the bound on the
ratio τ0;1/τ0;0 completely disappears; the same is true if m/M is sufficiently small. So we
apparently have an interesting bound that applies even when m is orders of magnitude
smaller than M , but that disappears in the m→ 0 limit.

Massless case. In section 5.3, we performed a different numeric bootstrap analysis that
tries to take into account more of the expected analytic structure of EFT amplitudes, by
assuming that branch cuts in the amplitude can be neglected up to the UV cutoff scale
M . This situation is depicted schematically in the right plot of figure 17. In this case, it
is possible to take the limit m→ 0 in the definition of our physical observables, as we did
for λEFT

k,l in (3.12).
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Figure 18. Bounds on λ2,0/λ0,0 vs λ0,0 (left plot) and bound on Λ2,0/Λ0,0 vs Λ0,0 (right plot)
in various space-time dimensions d. The allowed regions are to the right of the curves. The gray
dashed lines at −0.45 (left plot) and −0.24 (right plot) are added for reference.
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Figure 19. Bounds on the τ0;1/τ0;0 vs τ0,0. Different colors represent different spacetime dimension
d. The allowed regions are to the right of the curves. The gray dashed line at −0.4 is added for
reference.

Using the massless limit m = 0 (true Goldstone bosons) of the amplitude (6.2), one
obtains for the observables (3.12) that

λEFT
00 = 0, λEFT

20 = 4b. (6.14)

The case λEFT
00 = 0 is exactly the case we considered in equation (5.11), from which we

immediately conclude that in d = 413

d = 4, m = 0 : 0 ≤ b ≤ 0.01825. (6.15)
13Naively this bound seems in contradiction with the linear sigma model at small coupling, since at weak

coupling λEFT
20 turns out to be approximately the linear sigma model quartic coupling if M is set to be

the mass of the radial mode. It is possible that the scattering amplitude of Goldstone bosons in the linear
sigma model falls outside the range of amplitudes accommodated by our Ansatz; or that the parameter M
must actually be taken to be much smaller than the mass of the radial model in the linear sigma model in
order to satisfy the requirement that branch cuts below the scale M can be neglected.
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7 The φ4 model

It is interesting to place some models in the allowed space of parameters constructed in
section 5. In what follows we will consider the perturbative prediction in λφ4 theory, in the
coupling, and in the ε expansion. In d = 2, this was done non-perturbatively in [28, 52].

Let us recall the action of the φ4 model in general dimensions. The renormalized action
reads

S =
∫
ddx

(
−1

2Zφ(∂φ)2 − 1
2Zmm

2φ2 − 1
4!Zλλµ

εφ4
)
, (7.1)

where m is the physical mass and λ is a renormalized dimensionless coupling constant.
The one-loop computation of the two-to-two scattering amplitude is a textbook result:

m−εT (s, t, u) = −
(
µ

m

)ε
λ×

(
Zλ − λ×

(
µ

m

)ε
(V (s) + V (t) + V (u))

)
+O(λ3), (7.2)

where V in the mostly plus metric reads as

V (s) ≡ 1
2

∫ 1

0
dx

Γ(ε/2)
(4π)d/2

1
(1− x(1− x) s

m2 )ε/2
. (7.3)

Next, we project onto partial waves. Using the definition of the partial amplitude (2.3)
and the explicit one loop expression (7.2), we can write

m−εTj(s) = −
(
µ

m

)ε
λ

(
Zλ − λ

(
µ

m

)ε
V (s)

) 22−dπ(3−d)/2δj,0

Γ
(
d−1

2

)
+
(
µ

m

)2ε
λ

2 (Πj [V (t)] + Πj [V (u)]) . (7.4)

The second line in the above equation is easier to evaluate numerically.
We still have to renormalize. First, consider small, but otherwise generic, values of λ

at finite ε. In this case, λ ∝ µ−ε depends on the RG scale µ, which we have to choose. A
common and convenient choice is µ = m, which we will adopt here as well. We also have to
choose a renormalization scheme. We will take a physical renormalization scheme, where
the counterterms cancel all loop corrections to the physical quantity T0(2m2):

Zλ − λ× V (2m2) ≡ 1. (7.5)

The idea behind a physical renormalization scheme such as this is to improve the accuracy of
the perturbative expansion at a given order, without knowledge of higher order corrections.
By definition, if the counterterm removes all loop corrections to T0(2m2), then T0(2m2) is
exact at tree-level. The observable ∂sT0(2m2) will still get corrections at all loop orders,
but because its leading term is O(λ2), its dependence on the counterterm shows up at
O(λ3). To the extent that these higher order corrections to ∂sT0(2m2) are correlated with
the loop corrections to T0(2m2), a physical scheme should minimize them as well.

With these choices, the one-loop amplitude is

m−εTj(s) = −λ π(3−d)/2δj,0

2d−2Γ
(
d−1

2

) + λ
2 (Πj [V (t)] + Πj [V (u)]) . (7.6)
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In figure 20, we show the comparison of this one-loop result to the numeric bootstrap
bounds on τ0;0 ≡ m−εTj(2m2) and τ0;0 ≡ m2−ε∂sTj(2m2). Remarkably, at small values
of the coupling, the perturbative amplitude lies essentially exactly along the bound, for
any value of d. At larger value of the coupling λ, the perturbative prediction eventually
deviates from the bound, and actually goes below it, into the non-unitary region, but
the perturbative result is not reliable there, and higher-order corrections as well as non-
perturbative ones should push the amplitude back up above the bound.14

We are particularly interested in the scattering amplitude in the vicinity of the critical
point. That is, consider the limit where the coupling is tuned very close to its critical value,
so that the mass gap is very small compared to the UV scale where the bare parameters are
fixed. This limit is equivalently described by the conformal fixed point theory deformed by
the “φ2” operator, defined as the most relevant Z2 even operator in the conformal theory.
In the IR description, this limit has no free parameters because the coefficient of φ2 is
uniquely fixed in terms of the physical mass m; in the UV description, there are no free
parameters because λ is set to its critical value. In general, this critical point is at strong
coupling, but it can be computed perturbatively in an expansion in ε ≡ d− 4. We take the
counterterm to have the form

Zλ =
∞∑
n=0

Gn(λ)
εn

, Gn(λ) =
∞∑
m=n

Gnmλ
m
, G00 ≡ 1. (7.7)

Expanding (7.4) to O(λ2
ε0, λε, λ

0
ε2), we find

τ0;0 ≡ m−εT0(2m2) = − λ

2π

+ λ

32π3

((
−ε+ 3λ

(4π)2

)
log µ

m
− (4π)2λG01 + . . .

)

τ0;1 ≡ m2−ε∂sT0(2m2) = λ
2 4 + 2π − π2

512π3 (7.8)

where . . . is easily computed but we suppress it for now for conciseness. At the critical
point

λ = (4π)2

3 ε+O(ε2), (7.9)

the dependence on µ vanishes. Choosing G01 to cancel the remaining terms in the second
line of (7.8), we have

τ0;0 = −8πε
3 ≈ −8.38ε

τ0;1 = − 1
18π(π2 − 2π − 4)ε2 ≈ 0.072ε2. (7.10)

In principle, we could continue this calculation to higher orders in ε in order to obtain a more
accurate result for the amplitude in the vicinity of the fixed point. Since the expansion is

14While it is known [53] that the Wilson-Fisher fixed point is non-unitary in fractional dimensions, this
violation occurs only at very high dimension operators and is unlikely to lead to a non-unitary scattering
amplitude.
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asymptotic, it would be interesting to try to compute to high orders in ε and Borel resum the
result to get a prediction for ε ∼ O(1). In practice, such a calculation requires computing
high order Feynman diagrams, which is beyond the scope of this paper, and we will have to
content ourselves with this low-order result. At this low order, the only practical difference
between this expression and that in (7.6) is that we have substituted the perturbative O(ε)
critical value of the coupling λ, and truncated the loop integrals in an expansion in ε atO(ε),
rather than using their finite ε values. The resulting approximation for the ‘fixed point’
amplitude is indicated by a blue dot in figure 20. This result suggests that the amplitude
in the vicinity of the fixed point lies on, or nearly on, the boundary of the allowed region.

In fact, recall that in d = 2, the fixed point amplitude and the bound can be determined
analytically, and the fixed point does indeed lie exactly at the bound. Moreover, we see that
at d close to 4, where the fixed point is weakly coupled and therefore under perturbative con-
trol, its amplitude still lies along the boundary. Between these two limits, lacking a strongly
coupled calculation of the fixed point amplitude, the best we can say is that figure 20 is
consistent with, and suggestive of, the possibility that it continues to saturate the bound.
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A Warm-up in d = 2

In this appendix, we study S-matrix bootstrap in d = 2. The d = 2 case is much simpler
than the d > 2 case considered in the main text, and many things can be computed
analytically, especially the bounds from the full unitarity constraint. Most of the results in
this appendix are analogous to results in higher dimensions in the body of the paper, and we
explicitly refer to the higher dimensional results throughout. So, this appendix should be a
useful starting point for the reader who wants to gain more intuition about how the S-matrix
bounds work, without the technicalities of the numeric S-matrix bootstrap implementation.

The kinematics of d = 2 forces u = 0 and t = 4m2 − s for the interacting part of the
scattering amplitude T (s, t, u). As a result, effectively, it is a function of a single variable
s. Crossing requires

T (s) = T (4m2 − s). (A.1)

In d = 2, there is no spin and as a result, there is only a single partial amplitude denoted
by S(s) which is simply related to the interacting part of the scattering amplitude as

S(s) = 1 + iN−1
2 T (s), N2 ≡ 2

√
s(s− 4m2) (A.2)
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Figure 20. Comparison of the non-perturbative numerical bounds with φ4 perturbation theory.
The blue bands are the numerical S-matrix bootstrap results extrapolated to Nmax → ∞, where
the lower boundaries are determined by linear extrapolation a+b/Nmax while the upper boundaries
are determined by quadratic extrapolation a+b/N2

max. The red dashed lines are the one-loop result
of the φ4 theory given in equation (7.6). Here, for the τ0;0 values of the red dashed lines, we only
include the λ term, while the τ0;1 values included both terms in (7.6). The blue dots are the critical
point of the φ4 theory given in equation (7.10).
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contrary to (1.1) for d > 2. Due to the simplicity of (A.2) the partial amplitude in d = 2
has the same analytic and crossing properties as the interacting part of the amplitude T (s).
Unitarity reads as

|S(s)|2 ≤ 1 for s > 4m2. (A.3)

By a clever change of variables,

z =
√
s(4m2 − s)− 2m2√
s(4m2 − s) + 2m2 , (A.4)

crossing symmetry of S(z) as a function of z is automatic (since z(4m2−s) = z(s)) and the
branch cut at s > 4m2 is mapped to the boundary of the unit disk. Since we are assuming
that there are no bound states,15 S(z) has no poles for |z| < 1, so analyticity is simply the
statement that the function S(z) is an analytic function on the disk |z| < 1. Unitarity is
simply the statement that |S(z)|2 ≤ 1 on the boundary |z| = 1. It is possible to map out
the space of functions S(z) satisfying these properties using numeric bootstrap methods, by
following the strategy explained in section 5.1 by choosing a basis of crossing-symmetric,
analytic functions and then imposing unitarity on this space. This is the strategy that
we used in [28], and it is also how we obtained bounds in d > 2 in this paper. However,
an advantage of the d = 2 case is that the problem of understanding the constraints
on S(z) is a classic complex analysis problem, and much can be said without invoking
numerics. As observed in [10], the Schwarz-Pick theorem is a particularly powerful and
elegant tool for this purpose. The Schwarz-Pick theorem and various generalizations are
simple applications of the maximum modulus principle for analytic functions (that is, the
modulus |f(z)| cannot have strict local maxima except at boundaries) and the fact that
Möbius transformations of the form

ϕ(z) ≡ z − z0
1− zz0

(A.5)

map the unit disk into itself if |z0| ≤ 1.

A.1 Nonperturbative bounds

A.1.1 Parameterizing the space of amplitudes

In the d = 2 case, a natural set of observables to use to parameterize the space of scattering
amplitudes is the set of Taylor coefficients around the crossing symmetric point:16

Λn = m2(n−1) lim
s→2m2

∂ns T (s). (A.6)

15For the case with a bound state pole at si, one can construct a function f(z) that is analytic and
|f(z)| ≤ 1 inside the unit disk |z| ≤ 1 simply by taking f(z) ≡

(
z−zi

1−ziz

)
S (z), where zi = z(si). Since the

factor z−zi
1−ziz

is analytic and | z−zi
1−ziz

| ≤ 1 inside the unit disk, f(z) is also analytic and |f(z)| ≤ 1 inside the
unit disk, and we can now apply the maximum modulus principle and the Schwarz-Pick theorem to f(z).
Multiple poles can similarly be removed by including one such factor for each pole.

16Notice a change of conventions compared to [28]. More precisely Λ0
∣∣
here

= −Λ0
∣∣
there

, instead Λn
∣∣
here

=
Λn
∣∣
there

for n ≥ 1.
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These coefficients uniquely determine T since the Taylor series converges in an open set
around s = 2m2, from which T (s) can be analytically continued. Moreover, the Taylor
series in s can easily be converted into the Taylor series in z, which converges on the
‘physical sheet’ |z| < 1. For d > 2, we need to enlarge the set of coefficients to take into
account both s and t, and there are more than one natural way to do this. However, the
basic idea is still to do a series expansion around a point that is a finite distance from any
poles or branch cuts.

A.1.2 Imposing bounds

On the z-plane, s = 2m2 is mapped to z = 0, and expanding S(z) around z = 0 we get

S(z) = 1 + Λ0
4 +

(
−Λ0

2 − 2Λ2

)
z +

(8Λ4
3 + Λ0

2

)
z2 +O

(
z3
)
. (A.7)

Applying the maximum modulus principle |S(z)| ≤ 1 at z = 0, we immediately see that
the parameter Λ0 is restricted to a finite range:

− 8 ≤ Λ0 ≤ 0. (A.8)

Both endpoints have a simple physical interpretation. In both cases, |S(0)| = 1, which
saturates the maximummodulus and implies that S(z) is a constant. If Λ0 = 0, then S(z) =
1 everywhere and there is no scattering. If Λ0 = −8 then S(z) = −1 everywhere, which is
the S-matrix for a free fermion. This is consistent with the fact that there are families of
theories, such as the 2d λφ4 theory, that interpolate between a free scalar and a free fermion.
Things become more interesting when we start to look at constraints that simultaneously
involve multiple Λns. Because |S(0)| ≤ 1, we can consider the following function

f(z) = 1
z

S(z)− S(0)
1− S(0)S(z)

, (A.9)

which is also analytic for |z| ≤ 1 and bounded by |f(z)| ≤ 1 if |z| = 1.17 Again applying
the maximum modulus principle, this time for |f(z)| ≤ 1 at z = 0, we obtain bounds on Λ2:

Λ2
0

32 ≤ Λ2 ≤ −
Λ0
2 −

Λ2
0

32 . (A.10)

This argument is essentially the Schwarz-Pick theorem. The bounds on Λ0 and Λ2 given
in (A.8) and (A.10) (shown in the left plot of figure 21) are exactly the bounds we obtained
in [28] using a numeric S-matrix bootstrap analysis. Here we see analytically how the
bounds are produced by the constraints of crossing, analyticity, and unitarity working in
concert. We can obtain more bounds by considering additional transformations of S(z).
As noted in [10], we can make repeated applications of Möbius transformations and the
maximum modulus principle to make new analytic and bounded functions. For example,

g(z) = 1
z

f(z)− f(0)
1− f(0)f(z)

(A.11)

with f(z) from (A.9) is analytic for |z| < 1 and satisfies |g(z)| ≤ 1 for |z| = 1.
17The fact that |f(z)| ≤ 1 when |z| ≤ 1 follows from the fact that zf(z) is of the form (A.5) with

z0 → S(0) and z → S(z).
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Now, |g(0)| ≤ 1 implies∣∣∣8 (3Λ3
0 + 96 (Λ0 + 4) Λ2

2 + 48 (Λ0 + 4) Λ0Λ2 − 16 (Λ0 + 8) Λ0Λ4
)∣∣∣

≤ 3
(
Λ2

0 − 32Λ2
)

(Λ0 (Λ0 + 16) + 32Λ2) . (A.12)

From (A.8), (A.10), and the above inequality involving Λ4, we can make a 3-dimensional
plot of the allowed region in the Λ0 − Λ2 − Λ4 space, which is given in figure 22.

The inequality (A.12) involves Λ0,Λ2 and Λ4. Of course, the full space of allowed
S-matrices is an open region in an infinite-dimensional space, which we are parameterizing
by the Λns. In practice, we always look at finite-dimensional projections of this space. For
instance, we can also project onto the allowed region for Λ4 given Λ2, for any value of Λ0
in [−8, 0]. This will be given by the projection of the 3d allowed region in figure 22 onto
the Λ2 − Λ4 plane. Eliminating Λ0 from (A.12), we get

9
8
(
22/3(Λ2 − 2)4/3 − 4

)
+ 3Λ2 ≤ Λ4 ≤ 3Λ2 −

9
8 × 22/3Λ4/3

2 . (A.13)

The plot of the above inequality is given in the right part of figure 21.
The main results of this paper are bounds that generalize figure 22 and figure 21, and

related quantities, to higher dimensions. Because of the presence of spin in d > 2, there
are multiple natural higher-dimensional generalizations of the quantities Λn, leading to
different ways to present the bounds on the space of scattering amplitudes. Bounds that
directly generalize figure 21 are shown in figure 3, 4, and 7–12.

A.1.3 Positivity and linearized unitarity

As in the main text of this paper for d > 2, it is interesting to see how the bounds one
obtains using only positivity or linearized unitarity differ from those of the full unitarity.
In d = 2, positivity and linearized unitarity are simply the statements that

positivity: 0 ≤ Im T , (A.14)
linearized unitarity: 0 ≤ Im T ≤ 2N2. (A.15)

The positivity constraint is usually used in combination with dispersion relations. For
instance, we can pick out Λ2 as the following contour integral of T (s):

Λ2 =
∮

ds

2πi
T (s)

(s− 2m2)3 = 2
∫ ∞

4m2

ds

2π
2Im(T (s))
(s− 2m2)3 ≥ 0 (A.16)

where the second equality is obtained by deforming the contour onto the branch cuts at
−∞ < s < 0 and 4m2 < s < ∞. Moreover, since 2Im(T ) ≥ N−1

2 |T |2, Λ2 can only
vanish if there is no scattering. Additionally, we expect all Λns should satisfy a bound like
Λ2 ≥ xnΛ2

n for some xn, which we saw explicitly was x0 = 1
32 in the case of n = 0. The

constraint (A.16) versus that of (A.10) is a concrete instance of the improvement in the
bounds that one can obtain by using the full unitarity constraint. Analogous comparisons
on d > 2 were given in the main text. In particular, in figures 9–12, we also showed results
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Figure 21. Allowed regions of the S-matrix in the Λ0−Λ4 and Λ2−Λ4 planes, wihch are also the
projections of the 3d plot in figure 22 onto these two planes. The plot on the left is precisely what
we obtained in [28] using numerical S-matrix bootstrap. We have also indicated the locations of
the Sinh-Gordon model with red dashed lines, and its analytic continuation, the Staircase model
with the black dashed lines.

Figure 22. Allowed region of the S-matrix in the Λ0 − Λ2 − Λ4 space. We have indicated the
locations of the Sinh-Gordon model with a red dashed line (−4 ≤ Λ0 ≤ 0), and its analytic
continuation the Staircase model with the black dashed line (−8 ≤ Λ0 ≤ −4).
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Figure 23. Comparison of the bounds obtained using the full unitarity constraint (analytic) and
using only the linearized unitarity constraint (numerical).

from dispersion relations with the positivity condition alongside the results from the full
unitarity condition. This type of argument can be quite powerful, and although it is weaker
than the full unitarity constraint, it has the advantage that it is much more transparent
than the full S-matrix bootstrap analysis. In section 4, we analyzed these bounds in more
detail in d > 2, and in particular we applied the method from [37] of constructing null
constraints to obtain upper- and lower-bounds on the d > 2 analogues of Λn. One of the
main such results was (4.36).

Stronger than the positivity constraint but weaker than the full unitarity constraint
is the linearized unitarity constraint (A.15). In this case, we use the numerical S-matrix
bootstrap method to obtain the allowed region in the Λ2−Λ4 plane. The comparison with
the full unitarity constraint is shown in figure 23. Interestingly, the tips are the same, while
the full unitarity constraint is clearly more constraining.

A.2 Relation of bounds to specific theories

A.2.1 Weak coupling and integrable models

The bounds become most interesting when there are theories of interest either at or very
close to the edge of the bounded region. We have already mentioned the simplest case
where Λ0 = 0 or Λ0 = −8, where the theory becomes a free boson or free fermion, respec-
tively. The lower bound of the constraint (A.10) is particularly interesting. The maximum
modulus principle also says that if the inequality |f(0)| = 1 is saturated (as it is at the
boundaries of (A.10)), then the function f(z) defined in (A.9) must be a constant:

S(z)− S(0) = cz(1− S(0)S(z)), |c| = 1. (A.17)

One can easily infer from this constraint what the S-matrix is along the entire boundary,
but to emphasize the connection with higher dimensions, let us first consider the limit
where the amplitude is small, T � 1. Then, if we expand the numerator and denominator
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of f(z) to linear order in T , and use the fact that T (0) is real, then we have

T (z)− T (0) = −cz(T (z)− T (0)) + . . . , (A.18)

where . . . are higher order in T . Clearly, the only way to satisfy this equation for all z is
for T (z) = T (0), i.e. T (z) is a constant. But a small, momentum-independent amplitude
is just the perturbative interaction λφ4. So, although the bounds make no reference to
a Lagrangian description, in the limit of weak scattering T � 1 the bound is saturated
exactly by the simplest Lagrangian one can think of. This privileged role of λφ4 at weak
coupling persists in our analysis of higher dimensions as well, as we showed in figure 20.

More generally, for the lower bound in (A.10), if Λ2 = Λ2
0/32, then |f(z)| = const

implies that S(z) is given by

S(z) =
z + 1 + Λ0

4

1 +
(
1 + Λ0

4

)
z
. (A.19)

One can check that this is exactly the S-matrix of the Sinh-Gordon model when −4 ≤ Λ0 ≤
0 (and for −8 ≤ Λ0 ≤ 4, it is the S-matrix for the Staircase model, which is an analytic
continuation of the Sinh-Gordon model). And this is also consistent with what we found
in [52], that is, the Sinh-Gordon matrix is located at the lower boundary of the allowed
region in the Λ0-Λ2 plane, as also shown in the left plot of the figure 21. We also indicate
the location of the Sinh-Gordon model by the red dashed lines in figure 22, where it lies
on the boundary of the 3d allowed region as expected, and in the right plot of figure 21
in the Λ2-Λ4 plane, where it is very close to but not exactly at the boundary, due to the
projection onto the Λ2-Λ4 subspace.

Returning to the role of λφ4 theory, it is interesting to ask whether it continues to
have any relation to the bounds when the coupling is strong. In d = 2, in [52], numerical
analysis showed that the line of (Λ0,Λ2) values obtained by dialing the quartic coupling
λ stayed remarkably close to the allowed lower bound for all values of the coupling from
the free theory limit up to the critical coupling λ∗. This fact can be understood near the
endpoints λ = 0 and λ = λ∗ just from the observation above that the limits Λ = 0 and
Λ0 = −8 are, respectively, the S-matrix of a free scalar and a free fermion. These are
exactly the theories that one obtains in the infrared for λ = 0 and λ = λ∗. Is it possible
that this behavior holds in d > 2 as well? We saw in figure 20 that in fact, an exact
analogy cannot hold, because even at d ∼ 4 where the critical point is weakly coupled and
can be computed perturbatively, it does not sit close to the edge of the allowed region for
the parameter analogous to Λ0. However, we also saw in figure 20 that the critical point
near d ∼ 4 sits very close to the lower boundary of the analogue of the Λ0-Λ2 region. For
d ∼ 3, there is no reliable expansion parameter for the S-matrix near the critical point,
and also no strong coupling calculations of this S-matrix that we are aware of, so at best
the arguments we can make are merely suggestive. Nevertheless, because we saw that the
S-matrix near the critical point sits along the boundary of the (Λ0,Λ2) allowed region for
d = 4 − ε with ε � 1 and for d = 2, we think it is natural to conjecture that it continues
to do so for all d from 2 ≤ d < 4, and we discussed the evidence in favor of this from the ε
expansion in section 7.
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A.2.2 Bounds on EFTs

A remarkable fact about the combination of analyticity and unitarity is that it can reveal
violations of unitarity even in regimes where the EFT is under perturbative control. Such
violations contradict a too-liberal “anything goes” philosophy of EFTs that, as long as all
irrelevant interactions are suppressed by a UV-cutoff scale M to the appropriate power
times at most O(1) coefficients, it should be possible to obtain the EFT from a UV-
completion. While it has been known for some time [54] that the space of EFTs is in fact
much more restricted than this, there is likely still much to be learned about the full set of
constraints. As a simple example, consider the application of the d = 2 bounds to the space
of EFT Lagrangians. Specifically, take the case of a Lagrangian that only has irrelevant
interactions, suppressed by a large scale M , so that the S-matrix is perturbative. In this
limit (i.e., Λ0 → 0), the upper bounds of (A.10) in the two-dimensional space parameterized
by Λ0 and Λ2 reduce to

−Λ2
Λ0
≤ 1

2 . (A.20)

For instance, consider a scalar φ with an approximate shift symmetry φ→ φ+ c, but
a small explicit breaking proportional to m. Assume that the leading interactions in the
EFT are

Leff ≈
1
M2

(
−am4φ4 + b(∂φ)4

)
. (A.21)

The amplitude in this case is proportional to T ∝ (−3a+ b)m4 + b
2(s− 2m2)2. Therefore,

−Λ2
Λ0

= b

3a− b , (A.22)

and unitarity is violated unless 0 < b < a. In particular, it is inconsistent to have only the
(∂φ)4 interaction when φ has a mass.18 A similar, but weaker, bound on EFTs persists as
we increase the spacetime dimension d, and can be read off from the behavior of the bound
near the origin in figure 3. We discussed this in more detail in section 6.

B Limit of scattering amplitudes as d→ 2

In this appendix, we show in what sense the object (2.2) continuously approaches a standard
2d S matrix as the limit d → 2 is taken. It is because of the subtleties of this limit that
we can run our bootstrap analysis efficiently in d = 2 and in 2.5 < d < 4, but there is a
window 2 < d < 2.5 where the numerics become poorly behaved.19 Let us work in the
vicinity of d = 2 and parametrize the deviation from d = 2 by ε in the following way

d = 2 (1 + ε). (B.1)
18One might think that, by continuously taking m to zero, this bound would imply that it is inconsistent

to have only the (∂φ)4 interaction for m = 0 as well. However, notice that the coefficient a is defined as
m−4 times the coefficient of φ4 in the Lagrangian, and therefore a is undefined in the strict m = 0 limit.

19We think it is likely that a more intelligent way of organizing partial waves for d− 2� 1 could resolve
this numerical issue.
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Using (2.5), we define the measure in d = 2 as the following limit

µd=2, j(x) ≡ lim
ε→0

j! Γ
(
ε− 1

2

)
4πε+

1
2 Γ(j − 1 + 2ε)

× (1− x2)ε−1C
ε− 1

2
j (x). (B.2)

Let us now explore this expression. In the range x ∈ (−1,+1), we can safely take the limit
ε→ 0 which simply leads to

x 6= ±1 : µd=2, j(x) = −1
2 C

3/2
j−2(x). (B.3)

Notice, that for j = 0 the measure (B.3) vanishes. At x = ±1 we have poles. To treat
them correctly we first expand the expression (B.2) around x = +1 and x = −1 to the
leading order and then take the limit ε→ 0. Independently of the spin value j we obtain

µd=2, j(x) = lim
ε→0

ε/2
(1− x)1−ε + lim

ε→0

ε/2
(1 + x)1−ε +O(1− x2). (B.4)

The latter expression is formally given by the Dirac δ-functions

µd=2, j(x) = δ(1− x) + δ(1 + x) +O(1− x2). (B.5)

Plugging (B.3) and (B.5) into (2.3) and subsequently into (2.2) we obtain

d = 2 : Sj(s) = 1 + i

2Nd=2
×
(
T (s, 0, 4m2 − s) + T (s, 4m2 − s, 0)

)
− i

2Nd=2
×
∫ +1

−1
dx C

3/2
j−2(x) T (s, t(x), u(x)).

(B.6)

In the first line, notice the appearance of the 1/2 factor due to∫ +1

−1
dx δ(1− x) =

∫ +1

−1
dx δ(1 + x) = 1/2, (B.7)

Let us discuss (B.6). For j = 0 the last term in (B.6) simply vanishes. The j = 0
partial amplitude consists of two disconnected scattering amplitudes, one with t = 0 and
one with u = 0. These two pieces are equal to each other. This can be seen by recalling
that in d > 2 the t-u crossing symmetry reads as

T (s, t, u) = T (s, u, t). (B.8)

Focusing on a particular case when t = 4m2 − s and u = 0, we conclude that

T (s, 0, 4m2 − s) = T (s, 4m2 − s, 0). (B.9)

As a result, we see that (B.6) for j = 0 is in perfect agreement with (3.30)–(3.32) in [20].
For j ≥ 2, the last term in (B.6) does not disappear automatically and can only be removed
by an additional requirement that T is independent of x. Using the fact that

∫ +1

−1
dx C

3/2
j−2(x) =

0, j = 0, 1
2, j ≥ 2

(B.10)
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we get

d = 2 : Sj=0(s) = 1 + i

Nd=2
× T (s, 4m2 − s, 0), Sj≥2(s) = 1. (B.11)

The necessity of invoking this additional assumption in order to recover the d = 2 result,
and the singular nature of the partial waves as this limit is taken, prevent us from obtaining
a continuous interpolation between d = 2 and d > 2 in this paper.

C Symmetric polynomials and amplitudes

Given the series representation (3.5), it is interesting to notice that it can be cast in an
equivalent form in terms of symmetric polynomials.

Let us define our first four symmetric polynomials as

P0(s, t, u) ≡ 1, P1(s, t, u) ≡ 0, P2(s, t, u) ≡ ŝ2 + t̂2 + û2, P3(s, t, u) ≡ ŝ t̂ û, (C.1)

where we have also defined

ŝ ≡ s− 4m2/3, t̂ ≡ t− 4m2/3, û ≡ u− 4m2/3. (C.2)

The rest of the polynomial are built out of the above ones as

P4 = P 2
2 , P5 = P2P3, P6 = P 3

2 , P ′6 = P 2
3 , P7 = P 2

2P3, . . . (C.3)

One can check order by order then that the following holds true

md−4T (s, t, u) = λ0,0 P0 + λ2,0
2 m−4P2 − λ2,1m

−6P3 + λ2,2
12 m−8P4 −

λ4,1
2 m−10P5 + . . .

=
∞∑

k,l=0
λk,lm

−2(k+l)(s− 4m2/3)k(t− 4m2/3)l. (C.4)

where the coefficients of this expansion are precisely the ones defined in (3.3).
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