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Interleukin-18 in metabolism:
From mice physiology to
human diseases

Emmanuel Somm1,2,3* and François R. Jornayvaz1,2,3*

1Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of
Internal Medicine, Geneva University Hospitals, Geneva, Switzerland, 2Department of Cell
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Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As

IL-1b, IL-18 precursor is processed by inflammasome/caspase-1 into amature and

biologically active form. IL-18 binds to its specific receptor composed of two

chains (IL-18Ra and IL-18Rb) to trigger a similar intracellular signaling pathway as

IL-1, ultimately leading to activation of NF-kB and inflammatory processes.

Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-g
production, driving the Th1 immune response. In circulation, IL-18 binds to the

IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free

IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family

members, IL-18 is produced constitutively by different cell types, suggesting

implications in normal physiology. If the roles of IL-18 in inflammatory processes

and infectious diseases are well described, recent experimental studies in mice

have highlighted the action of IL-18 signaling in the control of energy homeostasis,

pancreatic islet immunity and liver integrity during nutritional stress. At the same

time, clinical observations implicate IL-18 in various metabolic diseases including

obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/

nonalcoholic steatohepatitis (NASH). In the present review, we summarize and

discuss both the physiological actions of IL-18 inmetabolism and its potential roles

in pathophysiological mechanisms leading to the most common human

metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
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Introduction

Interleukin-18 (IL-18) is a member of the IL-1 superfamily of cytokines structurally

similar to IL-1beta (IL-1b) (1, 2). Originally, Kupffer cell (liver-resident macrophage) was

described as the main source of IL-18 (3). Nevertheless, many other cell types, including

both hematopoietic cells and non-hematopoietic cells (such as intestinal epithelial cells,
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keratinocytes, endothelial cells) have also the potential to produce

IL-18 in the basal state or under stimulation (3). IL-18 is regulated

at the transcriptional, post-transcriptional and post-translational

levels. The IL18 gene, which contains 7 exons, is located on

chromosome 11 in humans and chromosome 9 in mice (4). The

human IL18 promoter presents several single nucleotide

polymorphisms (SNPs) at the 5′-end impacting gene

transcription (5). IL18 gene expression could also be regulated

by miRNAs (6). IL-18 is characterized by a specific mechanism of

cellular production (partly shared with IL-1b). In contrast to

cytokines expressed and subsequently secreted thank to their

signal peptide, IL-18 is stored in the cytosol of its producing

cells as a biologically inactive precursor (pro-IL-18) (4, 7). Pro-IL-

18 requires post-translational processing to become biologically

active and released extracellularly, meaning that constitutive or

stimulated expression of IL-18 does not necessarily imply its

secretion. Caspase-1 (initially named IL-1b-converting enzyme)

is the major IL-18-processing enzyme, acting in large cytoplasmic

multiprotein complexes named inflammasomes (8, 9).

Inflammasomes are activated by specific stimuli and are

composed of a sensor molecule, an adaptor protein, and an

effector molecule responsible for precursor cleavage. Of note,

caspase-1 requires autolysis to be cleaved into active caspase-1

which converts pro-IL-18 into mature IL-18. In addition, active

caspase-1 cleaves gasdermin D and liberates a pore-forming

domain allowing the release of mature IL-18 (10). The

nucleotide-binding oligomerization domain leucine rich repeat

and pyrin domain containing 3 (NLRP3) inflammasome was

originally demonstrated to be a cytoplasmic platform necessary

for caspase-1 activation (11). In some cells (such as blood-derived

macrophages), NLRP3 inflammasome activation requires two

signals: priming (generally mediated by Toll-like receptor

[TLR]) and activation (triggered by various cellular responses

including endogenous or exogenous particulates/microcrystals/

metabolites/mitochondrial oxidized DNA). Bacterial or viral

components are also sensed by inflammasome subunits,

promoting inflammasome assembly and caspase-1-mediated IL-

18 secretion (12). In Kupffer cells, LPS can trigger IL-18 secretion

without priming (13). IL-18 maturation can also occur through

the activation of other inflammasomes, such as NLRP6 or NLRP9.

Other proteases, including caspase-8 (an apoptosis-initiating

protease), proteinase 3, chymase or granzyme B are also

involved in conversion of pro-IL-18 into mature IL-18

independently of NLRC4, NLRP3, or caspase-1 (3, 14). IL-18

signals through the IL-18 receptor (IL-18R), belonging to the IL-

1R family. IL-18R is composed of the IL-18Ra chain (IL-18R1/IL-

1Rrp) and the IL-18Rb chain (IL-18R accessory protein/IL-

1RAcPL) (4). Binding of IL-18 to IL-18Ra and IL-18Rb chains

forms a trimer. The intracellular region of IL-18R contains a TIR

domain (analog to TLR) that binds MyD88 and initiates a signal

transmission into the cell (15). MyD88 recruits IRAK1 and IRAK4

(16, 17), followed by binding to TRAF6, degradation of inhibitor

of kB (IkB), phosphorylation and nuclear translocation of p65/

p50 NF-kB (18). Other kinases, including the Mitogen-Activated

Protein Kinase (MAPK) cascade of Extracellular Signal-regulated

Kinase (ERK), c-jun N-terminal kinase (JNK), and p38 are also

activated and implicated in IL-18 signaling (19). Together, these

signals induce IFN-g production or cell proliferation. IL-18 also

induces the phosphorylation and activation of phosphatidylinositol-

3 kinase (PI3K)/Akt/S6 and mammalian target of rapamycin

(mTOR) (20). This signaling enhances the proliferation and

survival of Natural Killer (NK) cells. IL-18R expression is

stimulated by IL-12, IFN-a or Signal Transducer and Activator of

Transcription (STAT)4 in T cells and NK cells (3). IL-18R is also

expressed in non-immune cells (epithelial cells, nerve cells, etc…) in

which IL-18 signaling is involved in cell survival and differentiation.

Surprisingly, IL-18Ra also binds to IL-37 (IL-1F7), preventing IL-

18 signaling. IL-18Ra/IL-37 complex binds to IL-1R8 (TIR8/

SIGIRR), promoting an anti-inflammatory effect through STAT3

(21). In circulation, IL-18 binds to the IL-18 binding protein (IL-

18BP) with high affinity (higher affinity than IL-18R), leaving only a

small fraction of free IL-18 able to trigger receptor-mediated

signaling. In consequence, IL-18BP can be considered as a

negative regulator of the IL-18 signaling pathway (22, 23).

Immunologic functions of IL-18 are pleiotropic and include

stimulation of IFN-g production, activation of basophils and mast

cells, allergic inflammation, defense against extracellular pathogens,

helminth infection and intracellular pathogens (bacteria, protozoan,

virus) (3).

If the role of IL-18 in inflammatory and infectious diseases is

well established, recent experimental studies in mice have

involved IL-18 signaling in the control of energy homeostasis,

pancreatic islet immunity and liver integrity during nutritional

stress. At the same time, clinical observations have implicated

IL-18 in various metabolic diseases including obesity, type 1

(T1D) and type 2 (T2D) diabetes, and nonalcoholic fatty liver

disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the

present review, we summarize and discuss the physiological roles

of IL-18 in metabolism and its potential involvement in

pathophysiological mechanisms leading to the most common

human metabolic disorders, such as obesity, diabetes, and

NAFLD/NASH.

Role of IL-18 in obesity

Due to behavioral, environmental, and sometimes genetic

factors, the prevalence of obesity has risen to unacceptable levels

worldwide (24). Obesity is associated with a shortened life span,

predisposing to T2D, cardiovascular diseases, liver disorders,

and cancers among others (24). In this pathophysiological

context, a huge research effort has been brought to the study

of cytokines (including IL-18) produced by the adipose tissue

and upregulated during obesity. Beyond inflammation, these

‘‘adipokines’’ are also involved in the crosstalk between

metabolic organs, acting on several physiological processes
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(such as energy homeostasis or glucose/fat metabolism) involved

in obesity onset (25).

Central action of IL-18 in obesity
and behavior

First evidence for a role of IL-18 in the regulation of body

weight and fat mass comes from the phenotyping of mice

globally deficient in IL-18. IL-18-/- mice displayed primary

hyperphagia leading to obesity and insulin resistance in the

liver, adipose tissue, and muscle (26). Similar hyperphagia was

observed in mice deficient in IL-18R and in mice overexpressing

IL-18BP, while central administration of recombinant IL-18

(rIL-18) inhibited food intake and reversed hyperglycemia in

IL-18-/- mice (26). Both central and peripheral administration of

IL-18 suppressed appetite and weight regain in food-deprived

mice (27). In animal models of binge eating, a down-regulation

of the IL-18/IL-18R system (but increased expression of IL-

18BP) was specifically observed in the preoptic and anterior-

tuberal region of the hypothalamus (28). In contrast, food

restricted animals exhibited increased IL-18 expression (28). In

humans, plasma IL-18 levels were significantly decreased in

patients with anorexia nervosa and circulating IL-18 levels

correlated to body mass index (BMI) in controls, but not in

anorexic patients (29). Additional studies have attempted to

elucidate the mechanisms of IL-18 action on food intake in the

central nervous system (CNS).

Firstly, investigations concerning the distribution of IL-

18Ra in the mouse brain allowed exploring the exact sites of

central IL-18 action. In situ hybridization combined with

immunohistochemistry revealed that IL-18Ra is expressed in

neuronal cell bodies, as well as on their dendrites, throughout the

brain, with particularly high levels in regions involved in

metabolic control such as the hypothalamus and the thalamus

but also in other regions of the limbic system such as the

hippocampus, the amygdala, and the cerebral cortex (30).

Secondly, cellular mechanisms underlying the anorexigenic

effects of IL-18 have also been deeply investigated. A high

expression of both subunits of the IL-18R was detected in the

bed nucleus of the stria terminalis (BST), a region of extended

amygdala known to influence feeding via its projections to the

lateral hypothalamus (LH) (31). Local injection of rIL-18 in this

area significantly reduced c-fos activation and food intake (31).

In BST brain slices, IL-18 reduced the excitatory input on

neurons through a presynaptic mechanism (31). This effect

was cell-specific, only observed in Type III GABAergic

neurons located in the juxtacapsular BST. In consequence, IL-

18 increases the firing of glutamatergic LH neurons through a

mechanism of disinhibition (31).

In addition, to hyperphagia, adult IL-18-/- mice gained 2- to

3-fold more weight than wild-type mice per unit of food

consumed (low- or high-fat diet) (27). This suggests that in

addition to its anorexic action, IL-18 limits food efficiency.

Accordingly, indirect calorimetry revealed a reduced energy

expenditure in IL-18-/- mice, in association with an increased

respiratory exchange ratio (RER), suggesting a preferential

oxidation of carbohydrate at the expense of fat (27). The

reduction in energy expenditure of IL-18-/- mice was seen

across fasting/feeding conditions, low/high-fat diets, low/high

levels of physical activity and times of day, suggesting an

underlying action of IL-18 on basal metabolic rate (32). The

circadian amplitude of energy expenditure, but not those of RER,

food intake, or motor activity, was also blunted in IL-18-/-mice

(32). In accordance, hepatic gene expression of circadian

regulators [such as circadian locomotor output cycles kaput

(CLOCK), brain and muscle Arnt-like protein (BMAL1), and

period circadian clock 2 (PER2)] was also altered in IL-18-/-

mice (33).

Taken together, these data demonstrate that endogenous IL-

18 not only suppresses appetite but also promotes energy

expenditure and lipid oxidation (as illustrated in Figure 1).

Outside the metabolic field, IL-18-/- mice also exhibited a

reduction in depressive-like behavior and a decreased expression

of neuroendocrine genes in the amygdala (34). In humans,

association between polymorphisms in the IL-18 gene

(resulting in higher IL-18 production) and depressive behavior

have been reported (35, 36). In addition, other observations also

involved IL-18 in stress responses and the hypothalamic-

pituitary axis (37, 38–43).

Peripheral action of IL-18 in obesity

In addition to its role in the inhibition of food intake, some

evidence has implicated peripherally-produced and -acting IL-

18 in the regulation of body weight homeostasis and fat

mass accretion.

IL-18 in brown adipose tissue
In vitro, brown adipocyte precursors isolated from IL-18-/-

mice showed an impaired differentiation featured by increased

lipid accumulation and decreased gene expression of type 2

iodothyronine deiodinase when compared to those of control

mice (44). Similar findings were observed in vivo, since the BAT

of IL-18-/- mice spontaneously accumulated fat and

overexpressed Apoc3 and Insig1 (44). Treatment with rIL-18

reduced the size and number of fat droplets in BAT of IL-18-/-

mice (44). The surrounding perivascular adipose tissue (PVAT)

of IL-18-/- mice exhibited a conversion from brown adipose

tissue-like features to white adipose tissue-like features,

impacting the aorta physiology (45). In line with these

observations, IL-18-/- mice failed to develop diet-induced

thermogenesis as shown by non-induction of uncoupling

protein-1 (UCP-1) in BAT and inguinal white adipose tissue

(iWAT) (46). This defect could result from non-activation of
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some IL-18R expressing subpopulations of group 2 innate

lymphoid cells (ILC2s) (47), an immune cell type known to

promote adipocyte beiging (48). Surprisingly, IL-18R-/- mice

were overweighted on standard chow diet but appeared to resist

to high-fat diet (HFD)-induced obesity or cold exposure-

induced hypothermia (46), suggesting the absence of BAT

dysfunction. This discrepancy between IL-18-/- and IL-18R-/-

mice suggests that a more complex signaling system than IL-18/

IL-18R interaction could be involved in the adipose thermogenic

action of IL-18 (46). In this way, the anti-inflammatory IL-37

which binds IL-18Ra/IL-1R8 heterodimer has not yet been

identified in mice (49).

IL-18 in white adipose tissue
IL-18 is produced inWAT. In mice and humans, obesity was

associated with increased IL-18 levels in WAT, which contribute

to systemic concentrations (50–55). Expression of the IL-18R

and the IL-18BP was also observed in human WAT, mirroring

that of IL-18 (56). IL-18 gene expression was evident in human

subcutaneous and visceral adipose tissues (56), but a higher

secretion levels of IL-18 was observed in explant from visceral

WAT, possibly due to increased inflammasome and caspase-1

activation in this intraperitoneal depot (57). The cellular source

of IL-18 in WAT was a matter of debate since several studies

reported that expression of IL-18 occurs in both mature

adipocytes and the stromal vascular fraction (56), while other

stated that most of the IL-18 released by explants of human

adipose tissue are derived from the non-fat cells, not from the

adipocytes (58). In this way, IL-18 expression is similar in

mesothelial cells and the stromal vascular fraction (59). Other

observations showed that IL-18 was immunolocalized in WAT

neutrophils and mast cells, but not in macrophages or in

adipocytes (59). In humans, IL-18 expression was increased in

adipose tissue from HIV-associated lipodystrophic patients (60)

and a haplotype associated with lower IL-18 levels was associated

with a higher body mass index (61). Weight loss after bariatric

surgery (62–64), or after lifestyle changes (53, 65), resulted in

decreased IL-18 concentrations in the blood.

Paracrine effects of IL-18 in WAT could contribute to

regulation of adiposity. Through an activating mutation in the

inflammasome NLRP1, it has been shown that IL-18 triggers

lipolysis in WAT (66). Interestingly, this action could explain

susceptibility to obesity/diabetes of C57BL/6 mice compared to

the healthy metabolic status of Balb/c mice. In fact, while C57BL/

6 mice harbor the NLRP1b2 allelic inflammasome variant, Balb/

c mice harbor the NLRP1b1 inflammasome which produces

more important IL-18 levels, resulting in higher lipolysis,

reduced WAT inflammation and improved insulin sensitivity

(67). Mechanistically, IL-18 promoted adipose hormone-

sensitive lipase (HSL) phosphorylation and activation (67). IL-

18 also enhanced insulin-mediated glucose uptake in adipocytes

and could counteract the suppression of glucose uptake caused

by Tumor Necrosis Factor (TNF)-a in 3T3-L1 adipocytes (68).

Underlying mechanisms involved phosphorylation of protein

kinase B (Akt) and downregulation of phosphorylated p38

MAPK (68).

Obesity-related upregulation of IL-18, which experimentally

limits food intake and food efficiency while promoting energy

expenditure and fat oxidation could appear surprising. However,

as for leptin, obesity could reflect a state of IL-18 resistance. In

this way, it is interesting to note that phosphorylation and then

activation of STAT3 is triggered both following IL-18 signaling

FIGURE 1

Physiological actions of IL-18 signaling in metabolic tissues. Stimulatory effects are indicated by plus signs (+), inhibitory effects by minus signs
(−). Figure produced using illustrations from Servier Medical Art (smart.servier.com) under Creative Commons Attribution 3.0 unported license.
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(27) and leptin signaling (69, 70), suggesting a crosstalk/

convergence of these signaling pathways. In accordance with

this perspective, monocytes from obese patients (leptin resistant)

were also desensitized to IL-18 (71). The stimulatory activity of

IL-18 signaling on brown adipocyte differentiation and

thermogenesis, as well as on white adipocyte transdifferentiation

(into brown-like adipocyte-beiging) and lipolysis are summarized

in Figure 1.

IL-18 in skeletal muscle
Immunohistochemistry demonstrated that IL-18 is solely

expressed by type II (fast-twitch) fibers in different human

skeletal muscles (72). This suggests that the level of daily

muscle activity does not influence basal IL-18 expression,

which is rather implicated in normal physiology (72). A basic

study in mice deficient in IL-18 signaling confirmed that the

action of IL-18 in skeletal muscle could contribute to its anti-

obesity effect. In addition to increased weight gain, IL-18R-/-

mice display ectopic lipid deposition, inflammation, and reduced

AMP-activated protein kinase (AMPK) signaling in skeletal

muscle (73). Conversely, electroporation of IL-18 into normal

skeletal muscle activated AMPK and concomitantly inhibited

HFD-induced weight gain (73). In vitro, treatment of myotubes

and skeletal muscle strips with IL-18 also activated AMPK and

increased fat oxidation (73). Patients with human

immunodeficiency virus (HIV)-lipodystrophy had lower levels of

muscular IL-18 and IL-18R gene expression (74). These low levels

of IL-18 correlated to high muscular levels of deleterious lipid

species as ceramides and sphingosine-1P and increased levels of

triglycerides in circulation (74). The combined activations of AMPK

and lipid oxidation by IL-18 signaling in skeletal muscle are shown

in Figure 1.

Role of IL-18 in diabetes

Type 1 diabetes mellitus (T1D) is an endocrine disorder in

which pancreatic b-cells stop producing insulin, typically due to

autoimmune destruction (75). Incidence peaks in puberty/early

adulthood, but onset can occur at any age (75). Type 2 diabetes

mellitus (T2D) is one of the most common illnesses encountered

by internists (76). Featured by insulin resistance, T2D is

increasing worldwide due to populations aging and obesity

pandemic (76). Although diabetes care is improving by many

measures, complications are still common, including visual loss,

amputation, atherosclerotic disorders or end-stage renal disease

(76). Management of both T1D and T2D should focus on

optimizing glucose control to reduce acute consequences (such

as diabetic ketoacidosis or hyperosmolarity) and long-term

complications (including microvascular and macrovascular

diseases) (75). Experimental and clinical evidence has involved

IL-18 in the onset/progression of both T1D and T2D.

IL-18 in T1D

Innate immunity contributes to the induction and

amplification of the immune response inducing b-cells loss in
T1D (77). In addition, a crosstalk between immune cells and

stressed b-cells is mediated by cytokines and others

immunogenic signals delivered by stressed b-cells (77). IL-18

has been detected in rodent pancreatic b-cells (78, 79), exhibiting
only a minor stimulatory effect on insulin secretion (80). If a

protective role has been early conferred to IL-18 in diabetes

onset in Non Obese Diabetic (NOD) mice [in link with impaired

progression from Th2- to Th1-dependent insulitis (81)], further

works have globally attributed a deleterious role of IL-18 in T1D.

IL-18 was detected in NOD mouse pancreatic islets during early

stages of insulitis (82), mediating islet injury (83). In response to

the alkylating agent cyclophosphamide, macrophages from

NOD mice presented an increase in IL-18 gene expression

closely associated with diabetes development, while

macrophages from Balb/c mice did not (82, 84). IL-18 has

been implicated in the expansion of islet-destructive T-cells

during pre-diabetes. In fact, IL-18 expanded pathogenic T-cells

in the periphery of NODmice (85), while IL-18-/- mice exhibited

a reduced T-cell turnover, an increased prevalence of naïve/

quiescent T-cells and less effector T-cells, resulting in disease

protection (85). In addition, islet-reactive T-cells failed to

become activated and expanded in the lymphoid organs of IL-

18-/- mice (85). Systemic administration of IL-18 also promoted

diabetes development in young NOD mice (86), while

endogenous IL-18 was required to observe the full

diabetogenic effect of streptozotocin in C57BL/6 mice (87, 88).

Clinical evidence also confirmed a role for IL-18 in T1D. From

a genetic perspective, the genomic loci idd2, associated with T1D,

maps in close proximity to the IL-18 gene (82). Positive

association between T1D and polymorphisms in the promoter

of IL-18 gene (leading to increased IL-18 gene expression) were

found in some studies (89, 90), but not in others (91–93). IL-18

serum levels and IL-18 protein expression in pancreatic islets were

increased selectively in T1D patients (94–96). IL-18 was also

detected in islets infected with enterovirus in pancreas of

patients presenting a fulminant T1D (97).

IL-18 in T2D

Several properties of IL-18 previously described, including

stimulation of insulin-mediated glucose uptake (68), activation

of AMPK (73) or phosphorylation of STAT3 suggest a beneficial

role for IL-18 in glucose homeostasis. Nevertheless, numerous

clinical studies have described an upregulation of IL-18

circulating levels in T2D. Notably, patients with prediabetes

have higher levels of IL-18 compared to obese normoglycemic

controls (98). Circulating IL-18 was increased in patients with

Somm and Jornayvaz 10.3389/fendo.2022.971745

Frontiers in Endocrinology frontiersin.org05

https://doi.org/10.3389/fendo.2022.971745
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


T2D (99–101), independently of a generalized pro-inflammatory

state (102). This association was independent of usual risk

factors, including BMI and other adipokines levels (103, 104).

In addition, circulating IL-18 levels were positively correlated

with the Homeostasis Model Assessment of Insulin Resistance

(HOMA-IR) index (105) and glucose intolerance, independently

of BMI or age (104, 106, 107). Conversely, a decrease in IL-18

was an independent factor for the improvement of b-cell
function in T2D (108). A polymorphism of the IL-18 gene

associated with increased circulating levels of IL-18 has been

linked to impaired insulin sensitivity (109). Similarly to insulin,

high blood IL-18 levels observed in T2D could reflect a state of

IL-18 resistance.

Role of IL-18 in NAFLD/NASH

Obesity and T2D are frequent causes of NAFLD, the most

common hepatic disease in industrialized countries (110, 111). A

significant proportion of patients with NAFLD develop a state of

hepatic inflammation (NASH), which can lead to fibrosis and

cirrhosis, potentially resulting in hepatocellular carcinoma

(HCC) (112). Whilst changes in eating habits, weight loss or

physical activity have beneficial effects on liver steatosis, no

efficient pharmacologic treatment are available to limit the

progression of NAFLD, NASH and fibrosis (113). Some

clinical observations as well as basic studies in rodents

suggested a role for IL-18 in the onset/progression of NAFLD/

NASH. The next sections will summarize how IL-18 can directly

or indirectly act on the liver status before reviewing its

implication in hepatic carcinogenesis.

Direct effect of IL-18 on the liver

IL-18 is mostly produced by macrophages in the liver (114,

115), mediating hepatic defense against bacteria, parasites, virus,

and drug-induced injuries (116–119). Ability of IL-18 to activate

NK cells, inducing apoptosis of infected/damaged hepatocytes

through the Fas ligand (FasL) pathway (115, 120), is central in

this context. Nevertheless, IL-18 signaling required a fine-

tuning. Uncontrolled IL-18 signaling due to loss-of-function in

IL-18BP could result in massive death of human hepatocytes in

vitro and in patients (115). Metabolically, toxic lipids activate the

NLRP3 inflammasome and IL-18 production in different

NAFLD/NASH murine models (121–123). Several experimental

evidence suggest that IL-18 is involved in both steatotic and

fibrotic processes.

Observations in rodents suggest that IL-18 could suppress

hepatic lipid deposition. NLRP1-/- mice (with low IL-18 levels)

spontaneously developed hepatic steatosis, a situation

aggravated on HFD (66). In contrast, mice with constitutively

activated NLRP1 (with high IL-18 levels) were devoid of lipid

vacuoles in the liver, and depletion in IL-18 reversed this

protective effect (66, 124). Obese C57BL/6 mice (naturally

harboring the NLRP1b2 allele-resulting in low IL-18 levels)

have increased hepatic steatosis when compared to obese

NLRP1b1 transgenic C57BL/6 mice or Balb/c mice (naturally

harboring the NLRP1b1 allele-resulting in high IL-18 levels)

(67). High levels of IL-18 also mediated the reduction in hepatic

steatosis observed in mice with a conditional deficiency in Src

homology-2 domain-containing protein tyrosine phosphatase-2

(SHP2) in macrophages (125). In accordance, administration of

exogenous IL-18 counteracted steatohepatitis in mice on HFD

(66) while IL-18-/- mice exhibited hepatic steatosis, insulin

resistance, increased expression of gluconeogenic genes and

defective phosphorylation of STAT3 (26). Several explanations

have been argued to explain this NAFLD/NASH phenotype of

IL-18-/- mice. The initial study suggested that primary

hyperphagia and resulting obesity were the cause of steatosis

in IL-18-/- mice (26). Later work showed that IL-18-/- mice

developed hypercholesterolemia and hypertriglyceridemia

before the manifestation of obesity (33) suggesting a primary

effect of IL-18 on the liver. In accordance, hepatic transcriptional

changes were observed in the liver of IL-18-/- mice before obesity

onset (33). Finally, a role for altered gut microbiota composition

has been advanced to explain steatosis in IL-18-/- mice (126).

Hepatic insulin-resistance resulting from IL-18 deficiency seems

to be sex-hormone-dependent (127). In addition, IL-18R-/- mice

(but not IL-1R-/- mice) were protected from precocious dietary

liver damage, possibly due to silencing of early pro-

inflammatory genes initiating NASH (128).

Other basic studies suggest that IL-18 could enhance hepatic

fibrosis. In fact, IL-18 induce multiple functional changes in

Hepatic Stellate Cells (HSCs), the resident perisinusoidal cells

orchestrating the deposition of extracellular matrix (ECM) in

normal and fibrotic liver (129). In vitro, monosodium urate-

induced inflammasome activation led to overexpression of TGF-

b and collagen 1 in primary mouse HSC and HSC line (130). In

vivo, NLRP3-/- mice had reduced chemically-induced liver fibrosis

(130) while conditional NLRP3 knock-in mice expressing an

hyperactive NLRP3 present HSC activation with increased

collagen deposition in the liver (131). These changes were only

partially attenuated by treatment with an interleukin-1 receptor

antagonist suggesting that beyond IL-1b, IL-18 is also involved in

fibrogenesis (131). In this way, adoptive transfer of CD4+ T cells

from IL-18 transgenic mice (but not from wild-type littermates) in

SCIDmice resulted in massive periportal fibrosis (132). The direct

consequences of IL-18 signaling on liver physiology, including

protection against pathogens, inhibition of lipid storage and

stimulation of fibrogenesis are detailed in Figure 1.

Clinically, circulating IL-18 levels were associated with

increased liver injury markers and portal fibrosis in obese

subjects with NAFLD (133), as well as with plasma

concentrations of liver injury markers in healthy subjects

(134). Patients with NAFLD had significantly higher IL-18 and
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IL-18/IL-18BP ratio compared with healthy controls (135).

Plasma levels of IL-18 and IL-18BP were elevated in chronic

liver diseases such as cirrhosis, correlating with inflammation,

liver injury and severity of the disease (136). However, IL-18BP

levels may not be sufficient to counteract the overwhelming pro-

inflammatory response in end stage liver disease (136).

Genetically, IL-18 variants, resulting in higher IL-18 levels,

were significantly associated with chronic liver diseases

(including cirrhosis) in the overall population (137).

Taken together, these results suggest that a physiological/

limited amount of IL-18 exhibits interesting anti-steatotic

properties while IL-18 excess could be deleterious for

liver integrity.

Indirect effect of IL-18 on the liver
through the gut-liver axis

The intestinal mucosal and portal vein enables transport of

gut-derived products directly to the liver and in turn, the liver

secretes bile and other compounds in the intestine. This direct

interaction, concomitantly allowing nutrients to directly reach

the liver and limiting the dissemination of microbes and toxins

to the systemic circulation is called the ‘‘gut-liver axis’’ (138).

Dysbiosis and gut leakiness play a critical role in the

development of NAFLD/NASH (139, 140). IL-18 controls the

gut-liver axis at multiple interconnected levels, including the

maintenance of intestinal epithelial barrier, the production of

intestinal mucus and the production of intestinal Anti-Microbial

Peptide (AMP), all impacting gut microbiota composition.

IL-18 in maintenance of intestinal
epithelial barrier

Several evidence confer a deleterious role to IL-18 in gut

epithelium integrity. Systemic administration of IL-12 and IL-18

to wild-type mice induced intestinal mucosal inflammation

(141) while administration of IL-18BP reduced intestinal

inflammation and ulceration (142). In addition, IL-18

overproduction in the mucosa exacerbated infiltration of

macrophages and colitis (143) in mouse models of gut

inflammation. In line, mice with a genetic deletion of IL-18 or

its receptor IL-18R1 in intestinal epithelial cells were protected

from chemically-induced mucosal damage (144). In humans, IL-

18 is produced by gut epithelial cells and macrophages and this

production was increased during inflammatory bowel diseases

(145–148). Nevertheless, other studies have suggested a

protective role for physiologic amount of IL-18 on intestinal

epithelium, in particular through its crosstalk with IL-22. In fact,

IL-18 could increase the ratio of IL-22/IL-22BP, which exerts

protective properties during the peak of gut epithelial damage

(149). In turn, a study in ileum organoids showed that IL-22

transcriptionally activates epithelial IL-18 (150). In colitis mouse

models, inflammasome activation led to an increase in both IL-

18 production and mucosal barrier integrity, resulting in a

decreased hepatic bacterial load (151). Epithelium-derived IL-

18 seems to contribute to epithelial proliferation through

induction of stem cell genes (150). In this way, it has been

suggested that IL-18 polymorphisms known to reduce IL-18

mRNA and protein levels may be involved in the susceptibility to

Crohn’s disease (152).

IL-18 in the production of intestinal mucus
Excessive IL-18 signaling through genetic deletion of IL-

18BP resulted in loss of mature mucus-producing goblet cells

associated with colitis (144). Goblet cells defect observed in IL-

18BP-/- mice was rescued by concomitant deficiency for IL-18R1

in intestinal epithelial cells, demonstrating the autocrine/

paracrine deleterious action of uncontrolled IL-18 production

(144). Mechanistically, it seems that IL-18 excess inhibited the

transcriptional program of goblet cells development (144).

However, it has been recently observed that IL-18 could

stimulate mucin secretion from goblet cells during Escherichia

coli infection (150).

IL-18 in the production of intestinal AMP
RNA-sequencing of colon from IL-18-/- mice, as well as

administration of IL-18 to germ-free colon explants or mice,

revealed that non-hematopoietic IL-18 induced AMP, in

particular intelectin 1 (ITLN1), resistin-like molecule b/FIZZ2
(RELMb) and angiogenin-4 (ANG4) in a NF-kB-dependent
manner (151). This was confirmed by another study showing

that IL-18 induces both Paneth cell-related AMP (ITLN1,

ANG4) and Paneth cell-specific AMP (lysozyme, cryptdin) in

a STAT-dependent manner (150). In contrast, IL-18-/- mice

exhibited reduced mRNA levels of AMP and lysozyme-

containing Paneth cells (150). Defect in IL-18 and AMPs due

to intestinal NLRP6 inflammasome-deficiency resulted in a

specific gut microbiota (151). Similarly, mice deficient in the

AIM2 inflammasome had few colonic levels of IL-18, low

expression of AMP, and were highly susceptible to colitis and

microbiota dysbiosis (in particular Escherichia coli enrichment)

(153). Recently, confocal microscopy studies revealed that

intestinal neurons produce IL-18 (154). Deletion of IL-18 from

the enteric neurons, but not from immune or epithelial cells,

made mice susceptible to invasive Salmonella infection (154).

Mechanistic approaches showed that enteric neuronal IL-18 was

specifically required for homeostatic goblet cells AMP

production (154). If IL-18 can modulate AMPs and impact gut

microbiota, the reciprocal action is also true. In fact, both germ

free mice and wild-type mice transplanted with IL-18-/- mice

microbiota exhibited a suppression of colonic IL-18 levels (151).

Metabolomic screening revealed that microbiota-derived taurine

enhanced (while histamine and spermine suppressed) NLRP6

inflammasome-induced IL-18 secretion (151).
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IL-18 in the regulation of gut
microbiota composition

Several studies have shown that IL-18 modulates gut

microbiota composition. NLRP1 and downstream IL-18

reduced the amount of beneficial butyrate-producing

Clostridiales in the gut, aggravating experimentally-induced

colitis (155). In NLRP3-/- mice, potentially pathogenic

members of Enterobacteriaceae (including Citrobacter, Proteus

or Shigella) were over-represented in the gut microbiota (156).

Microbiota from NLRP6-/- and IL-18-/- mice on methionine-

choline deficient (MCD) diet was characterized by increased

proportion of Prevotellaceae and TM7 phylum (126). A

significantly increased levels of Akkermansia muciniphila (a

bacterial strain with ability to degrade mucus) has also been

observed in IL-18-/- mice (157). This central role of IL-18 in

microbiota maintenance impacts, in consequence, liver

metabolism. In fact, increased proportion of Prevotellaceae

and TM7 phylum in the microbiota from IL-18-/- mice led to

an exacerbated influx of TLR4 and TLR9 agonists into the portal

circulation, leading to hepatic overexpression of TNF-a that

drives NASH progression (126).

The physiological functions of epithelial/neuronal-derived

IL-18 in the gut/microbiota interface, including its roles in the

control of intestinal barrier integrity and the production of

mucus and AMPs (all required to maintain a normal

microbiota in the digestive tract) are illustrated in the upper

panel of Figure 2. In contrast, the deleterious action of immune

cells-derived IL-18 (consecutive to gut microbial invasion)

leading to altered gut microbiota composition, increased TLR

agonists in the portal circulation and NASH progression is

shown in the lower panel of Figure 2.

Effect of IL-18 on hepatic carcinogenesis

As a potent activator of NK cells, IL-18 could have a potential

anti-cancer activity. This hypothesis has been validated by

experimental observations in mice. Treatment with a

combination of IL-18/IL-12 decreased tumor burden in mice

with established HCC (158). In colorectal cancer with hepatic

metastases, burden is exacerbated in NLRP3-deficient mice (159).

Downstream NLRP3, IL-18 promoted the maturation of hepatic

NK cells and triggered FasL mediated cytotoxicity (159, 160).

Downregulated expression of NLRP3 inflammasome in HCC

correlated with the aggravation of carcinoma, while

reconstitution of NLRP3 inflammasome reversed the malignant

phenotype of HCC (161). Nevertheless, in contrast to this

protective role of NLRP3/IL-18 axis against hepatic tumor

growth, other results showed that an inhibition of IL-18

signaling could protect TLR2-/- mice from diethylnitrosamine

(DEN)-induced carcinogenesis (162). The underlying

mechanism seems to involve a limitation of IL-18-induced

accumulation of myeloid-derived suppressor cells (162).

From a clinical point of view, several observations have

corroborated this role for IL-18 in liver cancer progression.

Expressions of IL-18 and IL-18R were upregulated in HCC tissue

specimens (163, 164). IL-18 suppressed the apoptosis of human

HCC cells (163) and promoted hepatoma cells metastasis and

migration (164). The underlying mechanism could be partially

attributable to the increased activities of ECM metalloproteinase

(MMP)-2/3/9 by IL-18 (164). Circulating levels of IL-18 were

elevated in patients with HCC compared to controls and they

significantly correlated with the presence of venous invasion and

advanced tumor stages (165). Finally, mutations in IL-18 alleles

contributed to susceptibility to HCC and severity of the disease

in general populations and in patients infected with hepatitis

virus (166–171).

Discussion

To conclude, research over the past 20 years has provided an

increasingly complex view of the pleiotropic functions of IL-18.

Beyond being a classic cytokine allowing fine-tuning of immune

cells communication, this protein has emerged as a key regulator

in the control of metabolism, in normal physiology, but also in

pathological conditions such as obesity, diabetes and associated

liver disorders.

Important metabolic functions resulting from physiological

levels of IL-18 should clearly be dissociated from deleterious

effects resulting from supra-physiological levels of IL-18 reached

through immune stimulation (in a global pro-inflammatory

context) or pharmacological administration (in an

experimental context). Despite the significant advances in the

understanding of physiological functions of IL-18 and its role in

the occurrence and progression of metabolic diseases, several

questions remain unanswered: What is the trigger that leads to

IL-18 production by inflammasomes in metabolic diseases?

Could different stimuli activate different inflammasomes,

resulting in different production of IL-1 and IL-18? What is

the respective contribution of different metabolic tissues (such as

WAT and skeletal muscle) to circulating levels of IL-18? What

are the molecular mechanisms underlying IL-18 resistance? Is

there some link between leptin, insulin and IL-18 resistance?

How circulating levels of IL-18 are related to IL-18 tissular

actions? Can different cytokines (as IL-37 in humans) modulate

IL-18/IL-18R interaction, and if so, how?

Answering these important questions will reinforce our

understanding of IL-18 metabolic roles. In addition, more pre-

clinical studies involving IL-18 regulatory steps, such as
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maturation by inflammasome, retention by IL-18BP or

antagonism by anti-IL-18 or anti-IL-18R antibodies could

open new therapeutic options for patients with metabolic

diseases such as obesity, diabetes, and NAFLD/NASH.
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FIGURE 2

Role of IL‐18 in the gut microbiota balance and consequences on the gut-liver axis. Under physiological conditions (upper illustration), IL‐18 is
produced by intestinal epithelial cells (in light pink) and is regulated by microbiota-derived metabolites (such as taurine, histamine or spermine).
IL‐18 maintains intestinal barrier integrity through stimulation of production of anti‐microbial peptides (AMP) by Paneth cells (in dark pink),
mucus synthesis by goblet cells (in green) and epithelial proliferation through induction of epithelial stem cells (in blue). In addition, IL-18 is also
produced by intestinal neurons controlling homeostatic goblet cells AMP production. In this way, IL‐18 contribute to maintain a normal
microbiota in the digestive tract. When commensal bacteria enter the mucosa, macrophages from the lamina propria secrete IL‐18, which
participate to control infection. In pathological conditions (lower illustration), the intestinal epithelial barrier is disrupted, and microbes can enter
in the lamina propria where they stimulate resident macrophages to produce IL‐18. This excess of IL-18 is deleterious to intestinal epithelial
barrier integrity, leading to leukocytes recruitment from the blood and inhibition of mucus production by goblet cells destruction. Altogether,
these injuries shift gut microbiota favoring dysbiosis. Some of the enriched bacterial populations lead to an increased influx of Toll-Like
Receptor agonists into the portal circulation. Reaching the liver, theses noxious molecules lead to hepatic overexpression of TNF-a and others
pro-inflammatory cytokines that drives NASH progression. Figure produced using illustrations from BioRender.com.
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