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Abstract
We study parametric unsupervised mixture learn-
ing. We measure the loss of intrinsic informa-
tion from the observations to complex mixture
models, and then to simple mixture models. We
present a geometric picture, where all these rep-
resentations are regarded as free points in the
space of probability distributions. Based on min-
imum description length, we derive a simple ge-
ometric principle to learn all these models to-
gether. We present a new learning machine with
theories, algorithms, and simulations.

1. Introduction
Knowledge is often gradually perceived from simple to
complex. In the realm of mixture modeling (Hinton et al.,
1995; Rasmussen, 2000; Vincent & Bengio, 2003), a sim-
ple representation with a few components and a complex
representation with many components are both meaning-
ful in the learning path. For example, the point cloud in
fig. 1 (a) can either be perceived as 3 blobs, or as 9 blobs,
which are both “correct”.

A stack of mixture models, or clustering schemes, with
a different number of components at each layer can be
learned (Ward, 1963; Heller & Ghahramani, 2005; Gold-
berger & Roweis, 2005; Garcia et al., 2010; Liu et al., 2012;
Schwander & Nielsen, 2012; Krishnamurthy et al., 2012).
Often, such learning is split into stages, and the learners
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Figure 1. (a) a point cloud; (b) a simple perception (colors and
circles denote mixture components); (c) a complex perception;
(d) a stacked mixture model.

at different stages are not fully communicating with each
other. For example, while successively merging small clus-
ters (Ward, 1963), these clusters are often not re-adjusted
based on the latter-learned hierarchy. As another example,
consider a stage-À learner for complex mixture modeling
using many components, and a stage-Á learner for simplifi-
cation (Goldberger & Roweis, 2005; Schwander & Nielsen,
2012). The communication from À to Á is unidirectional.
What are the intrinsic principles of stacked mixture learn-
ing, and how to implement full communication within this
stack, so that different representation layers help each other
to learn, are still open problems.

This paper studies such a stacked mixture model as in
fig. 1 (d). This model fits in a minimum description length
(MDL, Rissanen, 1978; 1989) network, where all mixture
components at different layers are regarded as free points
in the space of probability distributions. Based on a global
cost function, these points are learned so that the whole
network is compact in the geometric sense. Under this con-
cept, we implement one specific method, where the mixture
components are Gaussian distributions. We show empirical
results on the effectiveness of the network-structured regu-
larization.
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The proposed MDL networks extend to stacked mixtures
of any distribution in the exponential family. It unifies
the concepts of geometric compactness and description
conciseness. It provides new insights on the connections
among machine learning, information geometry, and MDL.

In the following, section 2 recalls useful concepts of infor-
mation geometry. Sections 3 and 4 present the method and
how to implement it, respectively. Section 5 shows density
estimation simulations. Section 6 presents an analysis on
the learning theory. Section 7 concludes.

2. Information Geometry
This section introduces basic known facts about infor-
mation geometry to make the manuscript self-contained.
Readers are referred to other materials (Amari & Nagaoka,
2000; Nielsen, 2013) for a more complete understanding.

2.1. Exponential Family Statistical Manifolds

In an exponential family S dominated by certain measure
σ(x), any probability distribution can be written in the
canonical form

p(x |θ) = exp
(
θT t(x)− ψ(θ)

)
, (1)

where θ is the canonical parameter, t(x) is a vector of
sufficient statistics, and ψ(θ) is a strictly-convex poten-

tial function. The Hessian of ψ(θ), given by g(θ)
def
=

∂2ψ/∂θ2, must be positive definite and can be regarded
as a Riemannian metric (Jost, 2011) of S, known as the
Fisher Information Metric (FIM) (Rao, 1945). Using Rie-
mannian geometry as a tool, and based on the fundamen-
tals defined by FIM, the discipline of information geome-
try (Rao, 1945; Čencov, 2000; Efron, 1975; Amari & Na-
gaoka, 2000; Nielsen & Nock, 2009) studies the measure-
ments and dynamics of intrinsic information on S as a Rie-
mannian manifold.

2.2. Expectation Parameters

Because of the strict convexity of ψ(θ), there is a one-to-

one mapping between θ and η
def
= ∂ψ/∂θ. Differenti-

ating both sides of
∫
p(x |θ)dσ(x) = 1 w. r. t. θ, by

eq. (1), we get η =
∫
p(x |θ)t(x)dσ(x). Therefore η

is called the “expectation parameter”, i.e., the expectation
of t(x). Both θ and η play the role of a global coordinate
system of S . They are connected by the Legendre trans-
formations (Amari & Nagaoka, 2000) η = ∂ψ/∂θ and

θ = ∂ψ?/∂η, where ψ?
def
=
∫
p(x |θ) ln p(x |θ)dσ(x)

is the negative entropy, the dual potential function which is
convex w. r. t. η. By eq. (1) and the definition of ψ?, ψ and

η2 η1

ψ? (negative entropy)

D(η1 ‖η2) + ≤D(η1 ‖η) D(η ‖η2) D(η1 ‖η2)

η1ηη2

ψ?

Figure 2. (left) D(η1 ‖η2) as a Bregman divergence. (right) An
intuitive presentation of the “gain”, to be used in section 6.

ψ? 1 have the fundamental relationship

ψ? − ηTθ + ψ = 0. (2)

We give without proof that, g(η), the FIM in the η-
coordinates, is the Hessian of ψ?, and is equivalent to
g(θ) under coordinate transformation. Therefore, g(η) =
∂2ψ?/∂η2 = ∂θ/∂η, where ∂θ/∂η denotes the Jacobi
matrix of the mapping η → θ.

2.3. Divergence

By Riemannian geometry (Jost, 2011), the infinitesimal
distance between η and η + dη is

√
dηT g(η)dη. The

macroscopic distance, i.e., the length of the shortest path,
between two points η1 and η2 on S does not have a closed
form in general. As a practical way to measure their dissim-
ilarity, the Bregman divergence (Bregman, 1967; Nielsen
et al., 2010) induced by the function ψ? is 2

D(η1 ‖η2)
def
= ψ?(η1)− ψ?(η2)− θT2 (η1 − η2)

= ψ?(η1)− ηT1 θ2 + ψ(θ2), (by eq. (2))
(3)

which is illustrated by fig. 2 (left) and turns out to be
the Kullback-Leibler divergence. By a Taylor expan-
sion of ψ?(η) at η2 up to the second order, we see that
D(η1 ‖η2) ≈ (η1 − η2)T g(η2)(η1 − η2)/2 is half of the
square distance between η1 and η2 w. r. t. the FIM at η2.
This approximation is accurate when η1 and η2 are close
enough.

2.4. The Gaussian Manifold

A multivariate Gaussian density with mean µ and co-
variance matrix Σ can be written as G(x |µ,Σ) =

exp
(
xTθ(1) + tr(θ(2)xxT )− ψ

(
θ(1),θ(2)

))
, where

θ(1) = Σ−1µ, θ(2) = −Σ−1/2, and tr(·) is the trace.

1In this paper, functions defined on S, like ψ(θ) or ψ?(η),
and coordinate transformations of S, like η(θ) or θ(η), can be
notated without their arguments.

2To avoid confusion, ψ? in this paper is denoted as ϕ in the
textbook (Amari & Nagaoka, 2000), and D(· ‖ ·) in this paper is
denoted as D(−1)(· ‖ ·) or D?(· ‖ ·).
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Therefore, the Gaussian manifold, i.e., the parameter space
of all such G(x |µ,Σ), is in the exponential family. Its
dimensionality is dim(S) = dim(x)(dim(x) + 3)/2. The
expectation parameters are given by η(1) = E(x) = µ
and η(2) = E(xxT ) = Σ + µµT . The Legendre
transformations θ ↔ η involve matrix inversions and can
have a cubic complexity in dim(x). All diagonal Gaussian
distributions with the same dim(x) form an embedded
sub-manifold. There, the computational complexity of the
Legendre transformations is linear in dim(x).

3. Minimum Description Length Networks
3.1. Divergence-induced Priors

For developing the proposed method, we introduce a new
tool called divergence-induced priors. Using a reference
set B = {η1, . . . ,ηm} on an exponential family S, and
using some non-negative weights α = (α1, . . . , αm) so
that

∑m
i=1 αi = 1, we define a distribution of a random

η ∈ S as

p(η | B, α) =
1

N(B,α)

m∑
i=1

αi exp (−D(η ‖ηi)) , (4)

where N(B,α) =
∫
η∈S

∑m
i=1 αi exp (−D(η ‖ηi)) dη.

The intuition is that any η close to some ηi ∈ B has a
high probability, where closeness is defined by the infor-
mation divergence. Although the η-coordinates are used
here, p(η | B, α) is a density function defined on S and is
invariant to coordinate transformations. This p(η | B,α) is
an informative prior, as compared to the non-informative
prior (Jeffreys, 1946) or weakly informative priors used in
Bayesian learning (Ghahramani & Beal, 2000).

Using a divergence-induced prior, we can describe any
η ∈ S with a code. This description will be used later to
measure the cost to describe the data. We first discretize S
into tiny hyper-cubes with edge-length δ. By Riemannian
geometry (Jost, 2011), the volume3 of the cube containing
η is

√
|g(η)|δdimS . By the divergence-induced prior, the

probability mass of this cube is p(η | B,α)
√
|g(η)|δdimS .

The optimal code length (Shannon, 1948) of η in nats is

− ln
[
p(η | B,α)

√
|g(η)|δdimS

]
=− ln

(
m∑
i=1

αi exp (−D(η ‖ηi))

)
+ lnN(B,α)

− 1

2
ln |g(η)| − dimS ln δ. (5)

We refer the reader to a good introduction of MDL (Hansen
& Yu, 2001) for a related analysis.

In the four-part code on the right-hand-side of eq. (5), the
first term measures the novelty of η or its difference to the

prior knowledge B and α; the second term measures the
strength of the prior knowledge or its similarity with S as
a whole; the last two terms measure the description accu-
racy w. r. t. the discretization. Therefore, longer codes are
assigned to accurate description of new knowledge.

By approximating D(η ‖ηi) to a square distance4,
lnN(B,α) ≈ dimS ln(2π)/2. By discretizing over a co-
ordinate system ν with more uniform |g(ν)| on different
ν ∈ S , − 1

2 ln |g(ν)| can be regarded as constant. There-
fore, it is reasonable to use only the first novelty term in
eq. (5) for parameter learning, and regard the rest terms as
constant, because they are less sensitive to the variation of
the parameters.

We build an equivalence between a mixture model in the
observation space and a divergence-induced prior defined
on S. Given an x, its associated t(x) in the η-coordinates
is not on S but on its boundary ∂S. This is because a sin-
gle observation is a deteriorated distribution with zero vari-
ance. The image of the observation space under the map-

ping t(·) is O def
= {t(x)}, It is embedded in ∂S, where

FIM degenerates (Amari et al., 2006). We can approach O
from inside S using a series of equal-entropy surfaces, or
level sets of ψ?, with reducing entropy levels.

Proposition 1. Given B and α,

m∑
i=1

αip(x |ηi) ∝ lim
η̃→t(x)

p(η̃ | B,α)
(
def
= p(t(x) | B,α)

)
,

(6)

where the limit is taken through equal-entropy surfaces.

The left-hand-side of eq. (6) is a function in the observa-
tion space. On the right-hand-side, p(η̃ | B,α) is given by
eq. (4), constrained on a level set of ψ?. By proposition 1,
when this level set is close enough to ∂S, these two func-
tions become proportional. The proof is straightforward
from eqs. (1), (3) and (4). The likelihood of a sample x can
be measured by giving x a small variance, regarding it as a
point on S, and computing a divergence-induced prior.

3.2. MDL Networks

An unsupervised mixture modeling MDL Network N =
{L0, . . . ,LL} on a statistical manifold is a collection of
points (distributions) on S ∪ O, referred to as “cells” and
organized in pyramid-shaped layers, as shown in fig. 3.
Each layerLl = {ηl1, . . . ,ηlnl

} consists of nl cells, where
n = n0 ≥ · · · ≥ nL. The ground layerL0 = {η0i : η0i =
t(xi)} ⊂ O ⊂ ∂S is fixed by the input samples {xi}ni=1.
Any other layer Ll ⊂ S (1 ≤ l ≤ L) consists of free points

3In this paper, depending on the context, “| · |” denotes either
the determinant or the cardinality of a set.

4Analyses and proofs are in the supplementary material.
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boundary of S L0 ⊂ O

L1

L2 S
Figure 3. An MDL network. The black dots denote the cells, i.e.
points on S and O. The links mean that attraction exists between
the endpoints. The thick colored lines represent different layers.

on S, which are to be learned. The size of N is denoted as
n1 : · · · : nL with the sample size n0 omitted.

Cells of consecutive layers interrelate with each other
through pair-wise attraction forces, shown by the links in
fig. 3. Using each layer Ll (1 ≤ l ≤ L) as a reference set,
and using some mixture weights αl = (αl1, . . . , αlnl

), we
can define a divergence-induced prior p(η | Ll,αl). How-
ever, this “prior” is not known a priori but is to be learned
from data. The learning goal is to reduce the description
length, given by the first novelty term in eq. (5) after aban-
doning constants, of all the cells in N using a one-level-
higher model by minimizing

E(N , A)

= −
L−1∑
l=0

nl∑
i=1

ln

nl+1∑
j=1

αl+1,j exp
(
−D(ηli ‖ηl+1,j)

) ,

(7)

where A = (α1, . . . ,αL) consists of all the mixture
weights. The learning result is a mixture model in the input
space, and a stack of higher-level mixture models.

A first justification of the cost function E(N , A) is the the-
ory of MDL (Rissanen, 1978; 1989), or minimum message
length (Wallace & Boulton, 1968). After reasonable sim-
plifications as discussed in subsection 3.1, E(N , A) mea-
sures the cost to gradually describe the data in a simple-
to-complex manner. If a person would like to communi-
cate the data, he or she can start from some vague common
knowledge LL, and then tell the codes of all the cells in
LL−1, which in turn give another coding scheme to de-
scribe LL−2, and so on.

For simplicity, the cost to describe the top-most layer LL
and the mixture weights A is not measured by E(N , A).
This is because the high-entropy LL is close to some com-
mon knowledge, e.g., uniform distribution, and the scalars
{αli} are negligible in storage compared to the often high-
dimensional vectors {ηli}.

An MDL network corresponds to a spawning process or a
directed graphical model (Heckerman, 1995; Jordan et al.,

Figure 4. A toy example to show how an MDL network of size 3-
1 reduces over-fitting on a dataset of 10 samples (the stars). The
red arrows show the regularization strengths by the top-layer (the
dashed circle) upon the 3 mixture components (the solid circles).

1999), using LL to generate LL−1, and using LL−1 to
generate LL−2, and so on. Minimizing E(N , A) imple-
ments a maximum a posteriori (MAP) estimator. In the
sum in eq. (7), the term corresponding to l = 0 measures
the fitness of L1 to the input data in L0. The rest terms
(l = 1, . . . , L − 1) perform network-structured regulariza-
tion on L1.

An immediate advantage of MDL networks is to avoid sin-
gular mixture components, which is a known problem of
maximum likelihood mixture learning. For example, in
fig. 4, a zig-zag pattern over-fits a “line structure”. By
adding an upper layer with one parent cell, the three mix-
ture components are pulled toward this parent on S, and
thus can avoid the boundary ∂S, where singularity occurs.

4. Implementations
4.1. HARDN

To tackle the log-sum terms in eq. (7), a simple way is to
relax minE(N , A) to min Ê(N , A), where Ê(N , A) is an
upper bound of E(N , A) given by

Ê(N , A) =

L−1∑
l=0

nl∑
i=1

min
j

(
− lnαl+1,j +D(ηli ‖ηl+1,j)

)
.

(8)

This is exactly the strategy used in “hard” assignment mix-
ture learning (Bishop, 2006; Nielsen, 2012). The algo-
rithm is therefore named HARDN, whose outline is given
by alg. 1. Each cell ηli in the layers L0, . . . ,LL−1 is as-
sociated with a unique parent cell ηl+1,j , which minimizes(
− lnαl+1,j +D(ηli ‖ηl+1,j)

)
. Unlike fig. 3, the links

are sparse in HARDN. The algorithm alternates between up-
dating the child-parent associations, and updating all cells
in N with these associations fixed. Its advantage is being
simple and efficient. The computational complexity w. r. t
the size of N is O(

∑L−1
l=0 nlnl+1), which is O(n) if the

scale of L1, . . . ,LL can be neglected as compared to the
sample size n. The main memory cost is on storing N .
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Alg. 1: N , A = HARDN ({xi}ni=1, n1, . . . , nL, γ)

1 Fix L0 = {t(xi)}ni=1; randomly initialize A and
{Ll : 1 ≤ l ≤ L}; store the result into N (0); t← 0;

2 repeat
// Establish the connections of the networkN (t)

3 for l← 0 to L− 1 do
4 foreach cell ηli in Ll do
5 j? ←

arg minj
(
− lnαl+1,j +D(ηli ‖ηl+1,j)

)
;

6 Create the link ηli → ηl+1,j? ;

// Adjust the cells inN (t) based on the connections
7 for l← 1 to L do
8 foreach cell ηli in Ll do
9 ηli ←

relocate(ηli, pred(ηli), succ(ηli), γ)
::::::::::::::::::::::::::::::::

;

// γ is a learning rate
10 αli ← percentage of pred(ηli) in Ll−1;

11 Copy all cells (without connections) from N (t)

to N (t+1); set t→ t+ 1; optionally update γ;
12 until convergence;

pred(·) denotes the predecessors
succ(·) denotes the successors

4.2. SOFTN

In analogy to “soft” v.s. “hard” assignment (Bishop, 2006),
an alternative implementation called SOFTN is to minimize
a variational upper bound (Jordan et al., 1999) of E(N , A)
given by

Ē(N , A, B)

=

L−1∑
l=0

nl∑
i=1

nl+1∑
j=1

βjli

(
ln

βjli
αl+1,j

+D(ηli ‖ηl+1,j)

)
, (9)

where B = {βjli}, ∀l, i, j, β
j
li ≥ 0 and

∑nl+1

j=1 β
j
li = 1.

This
(
β1
li, · · · , β

nl+1

li

)
models a random parent cell of ηli in

Ll+1. By simple derivations, a minimizer of Ē(N , A, B)
must satisfy

βjli =
αl+1,j exp

(
−D(ηli ‖ηl+1,j)

)∑nl+1

j=1 αl+1,j exp
(
−D(ηli ‖ηl+1,j)

) . (10)

The corresponding algorithm is omitted due to space limit.
Basically, it alternates among updating βjli, αl+1,j and ηli.
Because updating each cell ηli requires all the cells in Ll−1
and Ll+1, the computational complexity w. r. t. the size
of N is O(

∑L−1
l=1 nl(nl−1 + nl+1)), which is slower than

HARDN but still approximates to O(n) if n1, · · · , nL are

Alg. 2: relocate
(
η, {(ηLi , wLi )}, {(ηRi , wRi )}, γ

)
1 If {wLi } and {wRj } are missing, set all of them to 1;
2 ηL ← weighted arithmetic average of {(ηLi , wLi )};
3

:::::
Obtain

::::::::::
θR1 ,θ

R
2 , . . .:::

by
:::::::::
Legrendre

:::::::::::::
transformations;

4 θR ← weighted arithmetic average of {(θRi , wRi )};
5

:::::::
Compute

:::
the

:::::
wavy

:::::::::
underlined

::::
term

::
in

:::::::
eq. (12);

6 Compute gradC = ∆T
η ∂/∂η by proposition 2;

7 η ← η − γ∆η;

The underlined procedures are relatively expensive.

relatively small. Storing {βjli}, a real vector of size nl+1

for each cell ηli, adds a memory overhead as compared to
HARDN.

4.3. A Key Procedure

Both HARDN and SOFTN minimize a sum of divergences.
This is a key procedure to implement MDL networks. If we
see Ê(N , A) in eq. (8) or Ē(N , A, B) in eq. (9) as a func-
tion of a single cell η, while fixing all the other parameters,
the problem reduces to

minC(η),

C(η) =
∑
i

wLi D(ηLi ‖η) +
∑
j

wRj D(η ‖ηRj ) (11)

w. r. t. some given {(ηLi , wLi )}, {(ηRj , wRj )} ⊂ S × <+.
Minimizing the first term on the right-hand-side of eq. (11)
leads η to a linear combination of {ηLi }. This inter-
prets the M-step in Estimation-Maximization (EM, Amari,
1995) mixture learning. Minimizing the second term alone
leads θ(η) to a linear combination of {θRj }. Minimizing
both terms introduces non-linearity, resulting in a weighted
symmetrized Bregman centroid, and forming a key differ-
ence with EM. A binary searching algorithm for the case∑
i w

L
i =

∑
j w

R
j was given (Nielsen & Nock, 2009). We

seek more general, albeit slower, solutions.

We use natural gradient (Amari, 1998), which defines
w. r. t. a cost function an intrinsic gradient flow on S,
and shows good properties in machine learning optimiza-
tion (Amari et al., 2006). The natural gradient of C(η)

is gradC
def
=
[
g−1(η)∂C/∂η

]T
∂/∂η, where ∂/∂η de-

notes the local velocities, i.e., tangent vectors (Jost, 2011),
along the η-coordinate curves. By subsection 2.2, g(η) =

∂θ/∂η. Therefore, gradC = (∂C/∂θ)
T
∂/∂η, leading to

Proposition 2.

gradC =

[
wL(η − ηL) + wR

∂η

∂θ
(θ − θR)

::::::::::

]T
∂

∂η
,

(12)
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where wL =
∑
i w

L
i , wR =

∑
j w

R
j , ηL =∑

i w
L
i η

L
i /w

L, and θR =
∑
j w

R
j θ

R
j /w

R.

The proof is straightforward from eqs. (3) and (11). As-
sume the model is represented and updated in the η-
coordinates during learning. The underlined term in
eq. (12) means to push-forward an increment in the θ-
coordinates to the η-coordinates. By eq. (3), this term can
also be written as ∂D(η ‖ηR)/∂θ. A simpler expression
can be derived based on the choice of S. Alg. 2 gives one
gradient descent step in an iterative procedure to minimize
C(η).

5. Simulations on Gaussian MDL Networks
We implement an MDL network N , where S is the Gaus-
sian manifold 5. The purpose is to show how higher levels
in N help regularize a mixture model in L1. This demon-
strates a key advantage of a fully communicating hierarchy
(see section 1) over the bottom-up approach, where L1 is
learned from L0 but not from the higher levels.

MDL networks are a family of methods. How the other
family members perform, how they compare to other hier-
archical modeling approaches, and how an MDL network
with descent scale and depth can be useful in real learning
tasks, are beyond the scope of this paper.

For simplicity, we fix αl (2 ≤ l ≤ L) to be uniform. Only
α1 consisting of the weights of L1 is to be learned. Each
cell η0i in L0 is fixed to be a small spherical Gaussian
G(· |xi, εI), where ε = 10−3. This means that, in prac-
tice, η0i is placed near the boundary ∂S rather than on ∂S.
This blurring trick is known to give better empirical results.

In alg. 1, the µ’s in Ll (1 ≤ l ≤ L) are initialized (line 1)
by the k-means (Arthur & Vassilvitskii, 2007) centroids of
the µ’s in Ll−1; the Σ’s are either initialized by the covari-
ance of the k-means clusters, or the global data covariance.
The learning rate γ is adjusted (line 11) online by a bold
driver (Battiti, 1989).

In alg. 2, because the µ of the weighted centroid in eq. (11)
can be solved in closed form, the lines 5 ∼ 7 are adapted to

H ← Σ(ΣR)−1;

µ←
(
wLI + wRH

)−1 (
wLµL + wRHµR

)
;

Σ← Σ + γwL(ΣL + (µL − µ)(µL − µ)T − Σ)

+ γwR(Σ−HΣ).

This is based on the same natural gradient as in proposi-
tion 2 (derivations omitted). If all cells in N are full Gaus-
sians, alg. 2 has a cubic complexity in dim(x) due to the

5The codes are at https://git.unige.ch/gitweb/
marchand/mdlnetworks

Table 1. Datasets used. The columns, in order, are data name,
number of samples, dimensionality, the number of instance
datasets, and the size of the MDL network.

Name # samples dim(x) # datasets size ofN
faithful 272 2 105 2 : 1

Old Faithful Geyser Data
2moons 104 2 105 8 : 2 : 1

From scikit-learn library
9blobs 104 2 105 9 : 3 : 1

Synthesized data similar to fig. 1
iris 150 4 105 3 : 1
wine 178 13 105 3 : 1

Both from the UCI repository 6

digit1 7877 784 10 n1 : 1
Hand-written digits of “1” in MNIST 7

matrix inversions. If the cells are diagonal Gaussians, alg. 2
has a linear complexity in dim(x).

The methods compared, in order, are GMM — a vanilla
Gaussian mixture model by the scikit-learn machine learn-
ing library (Pedregosa et al., 2011); DP — a Dirichlet pro-
cess Gaussian mixture model (Blei & Jordan, 2006) im-
plemented by Haines (Haines & Xiang, 2014), which does
not need a pre-specified number of components; HARD1
— a flat Gaussian mixture model based on the same imple-
mentation as HARDN, with only L0 and L1 but no higher
levels; HARDN; SOFT1 — SOFTN with only L0 and L1;
SOFTN. Among these methods, GMM and SOFT1 are both
variations of EM with the following difference. The E-step
in SOFT1 is based on eq. (10), or the Gaussian-to-Gaussian
assignment of η0i (with a small variance εI) to η1j . The
E-step in GMM is based on the sample-to-Gaussian assign-
ment. A similar blurring trick is used by GMM by adding εI
(ε = 10−3) to the learned covariances in each iteration.

The datasets used are listed in table 1. For each dataset, a
large number of instance datasets are generated based on
different random seeds and different splits of training and
testing data. The size of the network, given by the last col-
umn, is chosen empirically based on prior knowledge. This
is only to show the effect of regularization by N on L1,
under similar configurations with a flat mixture model with
onlyL1. The model selection will be discussed in section 6.

Figure 5 shows the testing errors measured by the average
negative log-likelihood. For each dataset, a small training
size and a big training size are used. The results are stable
based on the large number of instance datasets. The key
observation is that, in all cases, HARDN (resp. SOFTN) per-
forms better than HARD1 (resp. SOFT1), meaning that the
regularization byN is effective. This improvement is more
obvious on a smaller training size. HARD1 and HARDN, al-
though being inconsistent (Bishop, 2006), can gain better
performance than SOFT1 and SOFTN if the dataset has ex-
plicit clustering structures. HARDN is recommended for its

https://git.unige.ch/gitweb/marchand/mdlnetworks
https://git.unige.ch/gitweb/marchand/mdlnetworks
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faithful-0.050
(6.62)

faithful-0.100
(4.60)

blobs-0.005
(9.50)

blobs-0.010
(6.42)

moons-0.005
(1.49)

moons-0.010
(0.76)

iris-0.300
(2.69)

iris-0.700
(1.73)

wine-0.300
(18.44)

wine-0.700
(3.23)
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GMM DP HARD1 HARDN SOFT1 SOFTN
1.3 0.222.5 1.3

Figure 5. Average testing error over all instance datasets. The labels on the x-axis are in the format “data name–ratio of training set”
followed by “(testing error of GMM)”. The y-axis shows the testing error of all methods divided by the testing error of GMM.
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Figure 6. Average training (resp. testing) errors over the training
(resp. testing) samples on digit1 against n1 (n2 is fixed to 1)
with a training : testing ratio of 1 : 9. BIC and MDL are also
normalized to be an average value over the training samples.

good performance and its simplicity. GMM performs a bit
worse than SOFT1 due to the implementation difference as
discussed earlier. The advantage of DP is that, it does not
need to be told a “correct” number of components, and the
results are more stable across different configurations. In
several cases with small training sizes, it performs signifi-
cantly better. When the training size scales up, it does not
catch up with the other methods, because it has less infor-
mation and it is biased by its priors.

The dataset digit1 has a large dimensionality and an un-
known number of clusters. To reduce the model flexibil-
ity, we constrain the network cells to be diagonal Guas-
sians. Figure 6 shows the training and testing errors by
GMM and SOFTN against n1, the size of L1. The testing
errors of SOFTN are consistently smaller than GMM. When
n1 is large, SOFTN is much less affected by over-fitting as
compared to GMM. The effective regularization means less
dependence on choosing a “correct” model scale.

6. Analysis
We investigate the basic properties of an MDL network as
a parameter estimator. The following theorem shows that it
uncovers certain “truth” given enough samples.

Theorem 3. If the true distribution is a finite mixture model
with the components {ηti}, then as n → ∞, L?1 is ex-
actly {ηti} in an optimal MDL network N ? which mini-
mizes eq. (7).

The structural regularization by an MDL network biases
the cells in L1 towards the cells in L2. This strength in-
creases as the size of L2 decreases. If L2 does not cor-
respond to the data, the performance will go down. This
effect is reduced by MDL networks, because the whole hi-
erarchy adapts to the data. This is different from Bayesian
learning, where some vague priors should be fixed manu-
ally.

Why a hierarchy leads to a better description as compared
to a flat model? It is clear from eq. (7) that

L−1∑
l=0

nl∑
i=1

min
j
D(ηli ‖ηl+1,j) ≤ E(N , A)

≤
L−1∑
l=0

nl∑
i=1

nl+1∑
j=1

αl+1,jD(ηli ‖ηl+1,j). (13)

By eqs. (7) to (9) and (13), E(N , A) is essentially a non-
linear integration of the divergences from each ηli to a set
Ll+1, by converting those divergences to similarities on S
and then converting back. Then, how a “routing network”
helps save the total divergence from L0 to LL?

Horizontally, a representation layer Ll could have cluster-
ing structures on S. If {ηli} ⊂ Ll are clustered around a
centroid η̄, it is more economical to route from {ηli} to η̄,
then from η̄ to higher layers. It “saves words” to describe
the common η̄ first, then describe the difference of each
individual ηli.

Vertically, it is a fundamental property of information di-
vergence to favor more representation layers. Consider a
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simplified scenario to route from η1 ∈ S to η2 ∈ S.

Theorem 4. ∀η1,η2 ∈ S , η1 6= η2, then ¬ ∃η ∈ S , s.t.
D(η1 ‖η) +D(η ‖η2) < D(η1 ‖η2); ­ ∃η ∈ S, s.t.

gain(η)
def
= D(η1 ‖η2)−D(η1 ‖η)−D(η ‖η2)

≥ max{D(ηlc ‖η1) +D(η1 ‖ηlc),
D(ηrc ‖η2) +D(η2 ‖ηrc)}, (14)

where ηlc in the θ-coordinates is θlc = (θ1 + θ2)/2, and
ηrc = (η1 + η2)/2.

Example Consider a Bernoulli distribution p(x = 1) =
η = exp θ/(1 + exp θ). Let η1 = 0.1, η2 = 0.5. Then
ηrc = 0.3. By theorem 4, ∃η, s. t. gain(η) ≥ 0.5 ln 0.5

0.3 +
0.5 ln 0.5

0.7 + 0.3 ln 0.3
0.5 + 0.7 ln 0.7

0.5 ≈ 0.17.

The triangle inequality of information divergence was
known to be not satisfied (Amari & Nagaoka, 2000; Nielsen
& Nock, 2009). Theorem 4 is not new in information ge-
ometry but presents new meanings in machine learning.
By À, one can always gain a smaller sum of divergence
through intermediate stops, as shown in fig. 2 (right). By
Á, if η1 and η2 are distant, this gain can be large. The same
principle holds in an MDL network, or other layered statis-
tical models, where the cost in measured by divergence. In-
tuitively, a stage-wise incremental description is better than
a one-step description, because it costs less divergence on
S.

With respect to some given data, E(N , A) decreases as the
size of N increases. However, adding a new cell to N
involves a cost given by the second to forth terms on the
right-hand-side of eq. (5). They are regarded as constant
during parameter learning, but has to be considered in post-
learning model selection. Within these terms, only the forth
term −dimS ln δ scales with the number of observations
of η, which is explained as follows.

By Rissanen’s proposition (Rissanen, 1989), it is reason-
able to discretize a parameter space S up to a precision
δ ∝ 1/

√
n, where n is the sample size. A justifica-

tion (Hansen & Yu, 2001) is that, the error magnitude in
parameter estimation scales with 1/

√
n by Cramér-Rao’s

bound (1946). By regarding Ll, l = 0, . . . , L − 1,
as the samples of p(η | Ll+1,α

l+1), we get a criterion
MDL = E(N , A) + dimS

2

∑L
l=1 nl lnnl−1, which cor-

rects E(N , A) by considering the constant terms in eq. (5).
This criterion is similar to Bayesian Information Criterion
(BIC, Schwarz, 1978) or the two-stage MDL (Hansen &
Yu, 2001), except that it measures a stacked representation
as a whole. In Figure 6, both MDL and BIC select a 10-
component mixture model, which achieves a relatively low
testing error with a small model size.

7. Remarks
We propose a novel approach to learn a stacked mixture
model. We picture this model as a pyramid-shaped network
on a statistical manifold. This network is learned to be tight
in the sense of information divergence. This learning is not
gradual, layer-by-layer, but at once, through minimizing a
global cost function. This fully communicating stack dis-
tinguishes from traditional hierarchical learning in letting
adjacent layers to regularize each other.

On the intersection of machine learning and informa-
tion geometry (Banerjee et al., 2005; Garcia et al., 2010;
Schwander & Nielsen, 2012; Nielsen, 2012; Liu et al.,
2012), a novel step is using symmetrized Bregman cen-
troids (Nielsen & Nock, 2009) as basic learning units,
which communicate with both higher-level and lower-level
units. As compared to EM seeking information geometric
compactness in a two-body system (Amari, 1995), MDL
networks seek such compactness in a multi-body system.

On the intersection of information geometry and
MDL (Balasubramanian, 1997; Myung et al., 2000),
a unified view is demonstrated between the concepts of a
small divergence and a short description.

Bayesian mixture learning (Blei & Jordan, 2006; Ghahra-
mani & Beal, 2000) and MDL networks both learn an in-
termediate representation between the priors and the obser-
vations. The former is based on Bayes’ rule. The latter is
based on information geometric quantities. MDL networks
do not need heavy integrations as in Bayesian methods, and
are faster in theory and in our practice. The basic cells are
all same-type distributions in a common space S. This is
simpler to understand and easier to implement.

MDL networks are not neural networks, e.g. (Salakhut-
dinov & Hinton, 2009), where the non-linearity among a
set of neurons is explicitly formalized. Instead, the non-
linearity among the cells is implicitly introduced by infor-
mation divergence. This concept could be interesting to
architect learning machines.

The proposed theory is extensible. Different choices of S,
different divergence measures, and different network struc-
tures, lead to a pool of learning methods.
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