
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2006                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Optimized Schwarz Methods

Gander, Martin Jakob

How to cite

GANDER, Martin Jakob. Optimized Schwarz Methods. In: SIAM journal on numerical analysis, 2006, vol. 

44, n° 2, p. 699–731. doi: 10.1137/S0036142903425409

This publication URL: https://archive-ouverte.unige.ch/unige:171407

Publication DOI: 10.1137/S0036142903425409

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:171407
https://doi.org/10.1137/S0036142903425409


SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. 699–731

OPTIMIZED SCHWARZ METHODS∗

MARTIN J. GANDER†

Abstract. Optimized Schwarz methods are a new class of Schwarz methods with greatly en-
hanced convergence properties. They converge uniformly faster than classical Schwarz methods
and their convergence rates dare asymptotically much better than the convergence rates of classical
Schwarz methods if the overlap is of the order of the mesh parameter, which is often the case in
practical applications. They achieve this performance by using new transmission conditions between
subdomains which greatly enhance the information exchange between subdomains and are motivated
by the physics of the underlying problem. We analyze in this paper these new methods for symmetric
positive definite problems and show their relation to other modern domain decomposition methods
like the new Finite Element Tearing and Interconnect (FETI) variants.
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1. Introduction. The convergence properties of the classical Schwarz methods
are well understood for a wide variety of problems; see, for example, the books [37], [35]
or the survey articles [4], [40], [41] and references therein. Over the last decade, peo-
ple have looked at different transmission conditions for the classical Schwarz method.
There were three main motivations: the first motivation for different transmission
conditions came from the nonoverlapping variant of the Schwarz method proposed by
Lions, since without overlap the classical Schwarz method does not converge. Lions
proposed to use Robin conditions to obtain a convergent algorithm in [31]. At the
end in his paper, we find the following remark: “First of all, it is possible to replace
the constants in the Robin conditions by two proportional functions on the interface,
or even by local or nonlocal operators.” Lions then gives a simple example in one
dimension and shows that the optimal choice for the parameters in the Robin trans-
mission conditions of the algorithm are constants in that case. In higher dimensions,
however, the optimal choice involves a nonlocal transmission operator, as was shown
for a two-dimensional convection diffusion problem by Charton, Nataf, and Rogier in
[5], where a parabolic factorization of the operator was used to derive the optimal
transmission conditions. Since nonlocal operators are not convenient to implement
and costly (“ils se prêtent peu au calcul numérique” [5]), the authors propose for
the convection dominated convection-diffusion problem to expand the symbols of the
nonlocal operators in the small viscosity parameter to obtain local approximations. A
different approximation using a Taylor expansion in the frequency parameter to obtain
local transmission conditions for the convection diffusion equation is proposed in [33];
see also [34] and [32]. For symmetric coercive problems, a formulation of the nonover-
lapping Schwarz method with Robin transmission conditions which avoids the explicit
use of normal derivatives was introduced independently in [7], and convergence of the
resulting algorithm was proved using energy estimates. A first optimization of the
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transmission conditions for the performance of the algorithm was done by Japhet in
[26] for convection diffusion problems, where one coefficient in a second order trans-
mission condition was optimized, which led to the first optimized Schwarz method in
this context. This approach was further developped and refined in [29], [27], and [28]
for convection diffusion problems.

The second motivation for changing the transmission conditions came from acous-
tics. For problems of Helmholtz type, the classical Schwarz algorithm is not conver-
gent, even with overlap. Després therefore proposed in [8] to use radiation conditions
instead for the Helmholtz equation and proved convergence of a nonoverlapping vari-
ant of the Schwarz algorithm with these transmission conditions using energy esti-
mates; see also [9]. The radiation conditions used were again Robin conditions, and
the same conditions were also used in an overlapping context in [3]. Higher order
local transmission conditions for the Helmholtz equation were introduced in [6] and
a first attempt was made to optimize the free parameter in the transmission condi-
tions for the performance of the algorithm, leading to the first optimized Schwarz
method without overlap for the Helmholtz equation. The optimization problem for
the Robin transmission conditions was then completely solved for this case in [22]
and a simple strategy to optimize the second order transmission conditions was also
presented. For a complete optimization of the second order transmission conditions
for Helmholtz problems, see [14] for the case without overlap and [21] for the case
with overlap.

The third motivation was that the convergence rate of the classical Schwarz
method is rather slow and very much dependent on the size of the overlap. In a
short note on nonlinear problems [24], Hagstrom, Tewarson, and Jazcilevich intro-
duced Robin transmission conditions between subdomains and suggested, “Indeed, we
advocate the use of nonlocal conditions.” Later and independently, Tang introduced
in [39] the generalized Schwarz alternating method, which uses a weighted average of
Dirichlet and Neumann conditions at the interfaces, which is equivalent to a Robin
condition. Numerically, optimal values for the weighting parameter were determined,
and it was shown that a good choice of the parameter leads to a significant speedup
of the algorithm. The main difficulty remaining in this approach is the determina-
tion of these parameters on the interfaces, like for successive overrelaxation (SOR)
methods. Even stronger coupling was proposed in [38], where the authors introduced
the overdetermined Schwarz algorithm, which enforces the coupling not only on the
interfaces but also in the overlap itself, in so-called artificial boundary layers, and the
relaxation parameter is now a function depending on space, as proposed earlier by
Lions [31]. But the link with absorbing boundary conditions was only made later in
[10], where an overlapping version of the Schwarz algorithm for Laplace’s equation was
analyzed with Robin and second order transmission conditions and a first attempt was
made to determine asymptotically optimal parameters. In the waveform relaxation
community, a link made with Schwarz methods in [23] opened up the way for better
transmission conditions in the Schwarz waveform relaxation algorithms; see [19]. This
led to optimized Schwarz algorithms for evolution problems, where one can clearly see
that the optimal transmission conditions are absorbing boundary conditions. For the
case of the wave equation with discontinuous coefficients, a nonoverlapping optimized
Schwarz method is introduced and analyzed in detail at both the continuous and the
discrete level in [20]. For the heat equation, see [17].

Optimized Schwarz methods have several key features:
1. They converge necessarily faster than classical Schwarz methods, at the same

cost per iteration.
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2. There are simple optimization procedures to determine the best parameters
to be used in the transmission conditions, sometimes even closed formulas,
depending on the problem solved.

3. Classical Schwarz implementations need only a small change in the implemen-
tation, in the information exchange routine, to benefit from the additional
performance.

4. Optimized Schwarz methods can be used with or without overlap.
We present here a complete analysis of optimized Schwarz methods for a symmetric
positive definite model problem and analyze in detail the optimization problems and
the asymptotic performance of different approximations to the optimal transmission
conditions. We restrict our analysis to the simple case of two subdomains, because
optimized Schwarz method are greatly enhancing the local coupling between subdo-
mains. Once optimized coupling conditions are found, they can be used in the general
context of many subdomains, as we show with numerical examples at the end (see also
[22]). As for classical Schwarz methods, a coarse grid is necessary as soon as many
subdomains are used, if a convergence rate independent of the number of subdomains
is desired, but we do not consider this issue here.

2. The classical Schwarz algorithm for a model problem. We use through-
out the paper the model problem

L(u) = (η − Δ)(u) = f on Ω = R
2, η > 0,(2.1)

where we require the solution to decay at infinity. To introduce the ideas behind
optimized Schwarz methods, we start by analyzing a parallel variant of the classical
alternating Schwarz method introduced by Lions [30], applied to the model problem
(2.1). We decompose the domain Ω into the two overlapping subdomains

Ω1 = (−∞, L) × R, Ω2 = (0,∞) × R.(2.2)

The Jacobi–Schwarz method for the two subdomains and the model problem is then
given by

(η − Δ)un
1 = f in Ω1, (η − Δ)un

2 = f in Ω2,
un

1 (L, y) = un−1
2 (L, y), y ∈ R, un

2 (0, y) = un−1
1 (0, y), y ∈ R,

(2.3)

and we require the iterates to decay at infinity. By linearity it suffices to consider
only the case f = 0 and analyze convergence to the zero solution. Our analysis is
based on the Fourier transform,

f̂(k) = F(f) :=

∫ ∞

−∞
e−ikxf(x)dx, f(x) = F−1(f̂) :=

1

2π

∫ ∞

−∞
eikxf̂(k)dk, k ∈ R.

(2.4)
Taking a Fourier transform of the Schwarz algorithm (2.3) in the y direction, and using
the property of the Fourier transform that derivatives in y become multiplications by
ik, we obtain

(η + k2 − ∂xx)ûn
1 = 0, x < L, k ∈ R, (η + k2 − ∂xx)ûn

2 = 0, x > 0, k ∈ R,
ûn

1 (L, k) = ûn−1
2 (L, k), k ∈ R, ûn

2 (0, k) = ûn−1
1 (0, k), k ∈ R.

(2.5)
Hence subdomain solutions in the Fourier transformed domain are of the form

ûn
j (x, k) = Aj(k)eλ1(k)x + Bj(k)eλ2(k)x, j = 1, 2,(2.6)
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where the λj(k), j = 1, 2 satisfy the characteristic equation η−λ2
j +k2 = 0 and hence

λ1(k) =
√
k2 + η and λ2(k) = −

√
k2 + η. By the condition on the iterates at infinity,

we obtain for the subdomain solutions

ûn
1 (x, k) = ûn−1

2 (L, k)e
√

k2+η (x−L), ûn
2 (x, k) = ûn−1

1 (0, k)e−
√

k2+η x.

Inserting these solutions into algorithm (2.5), we obtain by induction

û2n
1 (0, k) = ρnclaû

0
1(0, k), û2n

2 (L, k) = ρnclaû
0
2(L, k),(2.7)

where the convergence factor ρcla(k, η, L) of the classical Schwarz algorithm is given
by

ρcla = ρcla(k, L, η) := e−2
√

k2+ηL < 1 ∀k ∈ R.(2.8)

Note that we have chosen here to define the convergence factor over two iterations,
which would correspond to one iteration of the Gauss–Seidel–Schwarz method in this
two-subdomain case. From (2.8), we see that the iterates converge to zero on the line
x = 0 and x = L. Since with zero boundary conditions the solution vanishes identi-
cally, we have shown that the classical Schwarz method converges for all frequencies,
provided η > 0. The convergence factor depends on the problem parameter η, the size
of the overlap L, and the frequency parameter k: the top curve in Figure 4.1 shows
the dependence of ρcla on k for an overlap L = 1

100 and η = 1. One can see that the
Schwarz algorithm is a smoother; it damps high frequencies effectively, whereas for
low frequencies the convergence factor is close to one and hence the algorithm is very
slow.

3. The optimal Schwarz algorithm. We now introduce the key modification
in the classical Schwarz method: new transmission conditions between the subdo-
mains. The new algorithm is given by

(η − Δ)un
1 = f in Ω1, (η − Δ)un

2 = f in Ω2,
(∂x + S1)(u

n
1 )(L, ·) = (∂x + S1)(u

n−1
2 )(L, ·), (∂x + S2)(u

n
2 )(0, ·) = (∂x + S2)(u

n−1
1 )(0, ·),

(3.1)
where Sj , j = 1, 2, are linear operators along the interface in the y direction which
we will determine in what follows to get the best possible performance of the new
Schwarz algorithm. As for the classical Schwarz method, taking a Fourier transform
in the y direction for f = 0, we obtain

ηûn
1 − ∂xxû

n
1 + k2ûn

1 = 0, x < L, k ∈ R,
(∂x + σ1(k))(ûn

1 )(L, k) = (∂x + σ1(k))(ûn−1
2 )(L, k), k ∈ R,

(3.2)

where σ1(k) denotes the symbol of the operator S1, and

ηûn
2 − ∂xxû

n
2 + k2ûn

2 = 0, x > 0, k ∈ R,
(∂x + σ2(k))(ûn

2 )(0, k) = (∂x + σ2(k))(ûn−1
1 )(0, k), k ∈ R,

(3.3)

where σ2(k) is the symbol of S2. The solutions on the subdomains are again of
the form (2.6), and using the condition on the iterates at infinity, the transmission
conditions, and the fact that

∂ûn
1

∂x
=

√
k2 + η ûn

1 ,
∂ûn

2

∂x
= −

√
k2 + η ûn

2 ,
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we find the subdomain solution in Fourier space to be

ûn
1 (x, k) =

σ1(k) −
√
k2 + η

σ1(k) +
√
k2 + η

e
√

k2+η(x−L)ûn−1
2 (L, k),

ûn
2 (x, k) =

σ2(k) +
√
k2 + η

σ2(k) −
√
k2 + η

e−
√

k2+η xûn−1
1 (0, k).

Inserting these solutions into algorithm (3.1), we obtain by induction

û2n
1 (0, k) = ρnoptû

0
1(0, k), û2n

2 (L, k) = ρnoptû
0
2(L, k),(3.4)

where the new convergence factor ρopt is given by

ρopt = ρopt(k, L, η, σ1, σ2) :=
σ1(k) −

√
k2 + η

σ1(k) +
√
k2 + η

· σ2(k) +
√
k2 + η

σ2(k) −
√
k2 + η

e−2
√

k2+ηL.(3.5)

The only difference between the new convergence factor ρopt and the one of the classi-
cal Schwarz method, ρcla given in (2.8), is the factor in front of the exponential. But
this factor has a tremendous influence on the performance of the method: choosing
for the symbols

σ1(k) :=
√
k2 + η, σ2(k) := −

√
k2 + η,(3.6)

the new convergence factor vanishes identically, ρopt ≡ 0, and the algorithm converges
in two iterations, independently of the initial guess, the overlap L, and the problem
parameter η. This is an optimal result, since the solution in one subdomain depends
on the forcing function f in the other subdomain and hence a first solve is necessary
to incorporate the influence of f into the subdomain solution, then one information
exchange is performed to give this information to the neighboring subdomain and a
second solve on the subdomains incorporates this information into the new subdomain
solution. Convergence in less than two steps is not possible. One can also see from
(3.6) that the optimal choice depends on the problem. The optimal convergence result
for two subdomains in two iterations can be generalized to J > 2 subdomains and
convergence in J iterations (see, for example, [33] or [16]), provided the subdomains
are arranged in a sequence. In addition, with this choice of σj , the exponential
factor in the convergence factor becomes irrelevant and we can have Schwarz methods
without overlap.

To use the optimal choice of σj in practice, we need to back-transform the trans-
mission conditions involving σ1 and σ2 from the Fourier domain into the physical
domain to obtain the transmission operators S1 and S2. Hence we need

S1(u
n
1 ) = F−1

k (σ1û
n
1 ), S2(u

n
2 ) = F−1

k (σ2û
n
2 ),(3.7)

and thus for the optimal choice of σj we have to evaluate a convolution in each
step of the algorithm, because the σj contain a square root and thus the optimal
Sj are nonlocal operators, as advocated in [24]. If the symbols σj were, however,
polynomials in ik, then the operators Sj would consist of derivatives in y and thus be
local operators. We will therefore approximate the optimal choice of σj by polynomials
in the following sections, which leads to the new class of optimized Schwarz methods.
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4. Optimized Schwarz algorithms. We approximate the symbols of the op-
timal transmission conditions found in (3.6) by polynomial symbols in ik which cor-
responds to local approximations. We choose polynomials of degree two here,

σapp
1 (k) = p1 + q1k

2, σapp
2 (k) = −p2 − q2k

2.(4.1)

Note that we do not consider a first order term, because the operator of the underlying
problem is self-adjoint. Higher order approximations would be possible as well, as
long as the subdomain problems remain well posed. With the approximation (4.1),
the convergence factor of the optimized Schwarz algorithm becomes

ρ = ρ(k, L, η, p1, p2, q1, q2) =

√
k2 + η − p1 − q1k

2√
k2 + η + p1 + q1k2

·
√
k2 + η − p2 − q2k

2√
k2 + η + p2 + q2k2

e−2
√

k2+ηL.

(4.2)
Theorem 4.1. The optimized Schwarz method (3.1) with transmission conditions

defined by the symbols (4.1) converges for pj > 0, qj ≥ 0, j = 1, 2, faster than the
classical Schwarz method (2.3), |ρopt(k)| < |ρcla(k)| for all k.

Proof. The only difference between ρcla in (2.8) and ρopt in (4.2) is the additional
factor in front of the exponential, which satisfies for pj > 0 and qj ≥ 0∣∣∣∣∣

√
k2 + η − p1 − q1k

2√
k2 + η + p1 + q1k2

·
√
k2 + η − p2 − q2k

2√
k2 + η + p2 + q2k2

∣∣∣∣∣ < 1 ∀k,

and hence |ρ(k)| < |ρcla(k)| for all k.
The goal of optimized Schwarz methods is now to choose the free parameters

pj , qj ≥ 0 for j = 1, 2 to further improve the performance of the method.

4.1. Low-frequency approximations. As we have seen, the classical Schwarz
method is effective, due to the overlap, for high frequencies but ineffective for low
frequencies. The low frequencies can, however, be treated in the new Schwarz algo-
rithm with the transmission conditions: expanding the symbols σj(k) of the optimal
operators Sj in a Taylor series, we find

σ1(k) =
√
η +

1

2
√
η
k2 + O(k4), σ2(k) = −√

η − 1

2
√
η
k2 + O(k4),(4.3)

and hence a second order Taylor approximation would lead to the values p1 = p2 =√
η, q1 = q2 = 1

2
√
η , whereas a zeroth order approximation could be obtained by

setting q1 = q2 = 0 for the same values of pj . The corresponding optimized Schwarz
methods have the convergence factors

ρT0(k, L, η) =

(√
k2 + η −√

η√
k2 + η +

√
η

)2

e−2
√

k2+ηL,

ρT2(k, L, η) =

⎛
⎝
√
k2 + η −√

η − 1
2
√
ηk

2√
k2 + η +

√
η + 1

2
√
ηk

2

⎞
⎠

2

e−2
√

k2+ηL,

(4.4)

where we used the index T0 to denote a Taylor approximation of order zero and T2 to
denote a Taylor approximation of order two of the optimal symbol in the transmission
condition. Figure 4.1 shows on the left the convergence factors obtained with this
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Fig. 4.1. Convergence factor ρcla of the classical Schwarz method (top curve) as a function of k,
compared on the left to ρT0 (middle curve) and ρT2 (bottom curve) of the optimized Schwarz methods
with zeroth and second order transmission conditions, respectively, obtained by Taylor expansion,
and on the right compared to the OO0 and OO2 Schwarz methods, and the optimized Schwarz method
with two-sided optimized Robin transmission conditions, which lies in between OO0 and OO2.

choice of transmission conditions for the model problem with two subdomains, overlap
L = 1

100 and problem parameter η = 1, together with the classical convergence factor
ρcla. First one can clearly see that the optimized Schwarz methods are uniformly
better than the classical Schwarz method; in particular the low-frequency behavior
is greatly improved. The maximum of the convergence factor of classical Schwarz
is about 0.980, whereas the maximum of the convergence factor with zeroth order
Taylor condition is 0.568 and the maximum with second order Taylor condition is
0.449 in this example. Hence the classical Schwarz method needs about 28 iterations
to obtain the contraction factor of one iteration of the optimized Schwarz method
with zeroth order Taylor conditions, and about 40 iterations are needed to obtain
the contraction of one iteration of the optimized Schwarz method with second order
transmission conditions from Taylor expansion.

As we mentioned earlier, the classical Schwarz method does not converge without
overlap: for L = 0 we obtain ρcla(k, 0, η) = 1 and hence convergence is lost for all
modes. Optimized Schwarz methods, however, can be used without overlap, and
nonoverlapping Schwarz methods can be of great interest, if the physical properties
in the subdomains differ, for example, when there are jumps in the coefficients of the
equation as in [20] or the nature of the equations changes, like in the case of coupling
of hyperbolic and parabolic problems; see, for example, [18] and references therein.
If we set L = 0 in the convergence factor (4.4) of the optimized Schwarz method, the
exponential term becomes one, but the factor in front remains unchanged, and thus
ρT0(k, 0, η) < 1 and ρT2(k, 0, η) < 1 for all k. In a numerical implementation there is
a maximum frequency which can be represented on a grid with grid spacing h. An
estimate for this maximum frequency is kmax = π

h . Hence the slowest convergence for
the optimized Schwarz method without overlap and Taylor transmission conditions
is obtained for the highest frequency: the method is a rougher as opposed to the
smoother the classical Schwarz method is.

In practice, even when using the Schwarz method with overlap, the overlap is
often only a few grid cells wide, and thus L = O(h). In that case the convergence
factor of the classical Schwarz method deteriorates as well as one refines the mesh and
h goes to zero and we have the following comparison theorem.

Theorem 4.2. The optimized Schwarz methods with Taylor transmission con-
ditions and overlap L = h have an asymptotically superior performance than the
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classical Schwarz method with the same overlap. As h goes to zero, we have

max
|k|≤π

h

|ρcla(k, h, η)| = 1 − 2
√
ηh + O(h2),(4.5)

max
|k|≤π

h

|ρT0(k, h, η)| = 1 − 4
√

2η
1
4

√
h + O(h),(4.6)

max
|k|≤π

h

|ρT2(k, h, η)| = 1 − 8η
1
4

√
h + O(h).(4.7)

Without overlap, the optimized Schwarz methods with Taylor transmission conditions
are asymptotically comparable to the classical Schwarz method with overlap L = h.
As h goes to zero, we have

max
|k|≤π

h

|ρT0(k, 0, η)| = 1 − 4

√
η

π
h + O(h2),(4.8)

max
|k|≤π

h

|ρT2(k, 0, η)| = 1 − 8

√
η

π
h + O(h2).(4.9)

Proof. For the second result it suffices to expand the convergence factors (4.4)
for L = 0 at k = kmax = π

h for h small. Similarly for the classical Schwarz method
one expands the convergence factor (2.8) with L = h for h small at k = 0. For the
optimized Schwarz methods with Taylor transmission conditions and overlap L = h,
the convergence factors (4.4) attain their maximum in the interior, at

k̄T0 =

√
2η

1
4

√
L

and k̄T2 =
2η

1
4

√
L
,

respectively, as a direct computation shows. Hence with overlap L = h, these max-
ima are in the range of the computational frequencies, since they are smaller than
kmax = π

h and thus relevant for the convergence factor. Expanding the corresponding
convergence factor at these maxima for L = h as h goes to zero leads to the results
(4.8) and (4.9).

Hence already for Taylor expansions of the optimal symbols in the transmission
conditions the asymptotic performance of the new Schwarz method is better than the
one of the classical Schwarz method when the overlap is of the order of the mesh
parameter, which is often the case in applications. One can, however, also see that
increasing the order of the Taylor approximation does not increase the asymptotic
performance further—there is only an initial gain from h to

√
h. This changes with

the approach described in the next subsection.

4.2. Uniformly optimized approximations. We now develop an even better
choice for the transmission conditions: one can choose the parameters pj and qj to
optimize the performance of the new Schwarz method, which means minimizing the
convergence factor over all frequencies relevant to the problem. For the zeroth order
transmission condition we have the min-max problem

min
pj≥0

(
max

kmin≤k≤kmax

∣∣∣∣∣
√
η + k2 − p1√
η + k2 + p1

∣∣∣∣∣
∣∣∣∣∣
√
η + k2 − p2√
η + k2 + p2

∣∣∣∣∣ e−2
√

η+k2L

)
,(4.10)

and for the second order optimized Schwarz method the min-max problem is

min
pj ,qj≥0

(
max

kmin≤k≤kmax

∣∣∣∣∣
√
η + k2 − p1 − q1k

2√
η + k2 + p1 + q1k2

∣∣∣∣∣
∣∣∣∣∣
√
η + k2 − p2 − q2k

2√
η + k2 + p2 + q2k2

∣∣∣∣∣ e−2
√

η+k2L

)
,

(4.11)
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where we have also introduced a lower bound kmin on the frequency range. This is
useful for bounded subdomains: if, for example, the subdomains Ωj were strips of
width 1 in the y direction with homogeneous Dirichlet boundary conditions, then the
lowest possible frequency on those domains would be kmin = π, as one can see from a
sine expansion. More general, if one uses a coarse grid, which is necessary as soon as
one has many subdomains for good performance on elliptic problems, then the highest
frequency representable on the coarse grid would be an estimate for kmin, since the
subdomain iteration does not need to be effective on the coarse grid frequencies.

Since the optimal transmission conditions (3.6) are of the same size with opposite
signs, we first analyze the simpler optimization problems when the approximation of
the optimal transmission conditions is also of the same size with opposite signs, which
means p1 = p2 = p and q1 = q2 = q. In subsection 4.3 we will analyze how much is
lost in performance due to this simplifying assumption.

4.2.1. Zeroth order optimized transmission conditions. Using the same
zeroth order transmission condition on both sides of the interface, p1 = p2 = p and
q1 = q2 = 0, the expression (4.2) of the convergence factor simplifies to

ρOO0(k, L, η, p) :=

(√
k2 + η − p√
k2 + η + p

)2

e−2
√

k2+ηL.(4.12)

To determine the optimal parameter p of the associated optimized Schwarz method
(which we call OO0 for “Optimized of Order 0”), we have to solve the min-max
problem

min
p≥0

(
max

kmin≤k≤kmax

|ρOO0(k, L, η, p)|
)

= min
p≥0

⎛
⎝ max
kmin≤k≤kmax

(√
η + k2 − p√
η + k2 + p

)2

e−2
√

η+k2L

⎞
⎠.

(4.13)

The following Lemma will be needed for several of the results on the min-max problems
that arise in the optimization of the new Schwarz methods.

Lemma 4.3. Let f(x, γ) be a continuously differentiable function, f : [a, b] ×
[c, d] �→ R, with a unique interior maximum in x at x∗(γ) ∈ (a, b) for each γ ∈ [c, d],
∂f
∂x (x∗(γ), γ) = 0, and assume that x∗(γ) is differentiable and ∂f

∂γ < 0 for x ∈ [a, b],

γ ∈ [c, d]. Then

df

dγ
(x∗(γ), γ) < 0 ∀γ ∈ [c, d].

Proof. Since ∂f
∂x (x∗(γ), γ) = 0 for all γ ∈ [c, d], we have

df

dγ
(x∗(γ), γ) =

∂f

∂γ
(x∗(γ), γ) +

∂f

∂x
(x∗(γ), γ)

∂x∗

∂γ
(γ) =

∂f

∂γ
(x∗(γ), γ) < 0

by assumption on the partial derivative with respect to γ.
Theorem 4.4 (optimal Robin parameter). For L > 0 and kmax = ∞, the

solution p∗ of the min-max problem (4.13) is given by the unique root of the equation

ρOO0(kmin, L, η, p
∗) = ρOO0(k̄(p∗), L, η, p∗), k̄(L, η, p) =

√
L(2p + L(p2 − η))

L
.

(4.14)
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For L = 0 and kmax finite, the optimal parameter p∗ is given by

p∗ = ((k2
min + η)(k2

max + η))
1
4 .(4.15)

Proof. The key idea is to use a transformation: the partial derivative of ρOO0

with respect to p is

∂ρOO0

∂p
= 4

(p−
√
k2 + η)

√
k2 + ηe−2

√
k2+ηL

(
√
k2 + η + p)3

,

which shows that as long as p <
√
k2
min + η, increasing p decreases ρOO0 for all

k ∈ [kmin,∞). Hence one can restrict the range for p in the min-max problem to
p ≥

√
k2
min + η, the solution cannot lie outside this range. This implies that for the

new range of p, ρOO0 has a unique zero in [kmin,∞), namely, at k = k1 =
√
p2 − η. We

can thus transform the min-max problem into a new, equivalent one in the parameter
k1. Defining the function

R(k, L, η, k1) :=
(
√
k2 + η −

√
k2
1 + η)√

k2 + η +
√

k2
1 + η

e−
√

k2+ηL,(4.16)

which is negative for k ∈ [kmin, k1) and positive for k > k1, the new min-max problem
which is equivalent to (4.13) is

min
k1≥kmin

(
max

kmin≤k≤kmax

|R(k, L, η, k1)|
)
.

Now in the case of overlap, L > 0, the derivative with respect to k,

∂R

∂k
=

ke−
√

k2+ηL(2
√
k2
1 + η − Lk2 + Lk2

1)

(
√
k2 + η +

√
k2
1 + η)2

√
k2 + η

shows that the function has a maximum at

k̄ = k̄(k1) =

√
2
√
k2
1 + η

L
+ k2

1 > k1.

Hence the maximum in the min-max problem can be attained either at k = kmin or
at k = k̄. Since

∂R

∂k1
= −2

k1e
−
√

k2+ηL
√
k2 + η

(
√
k2 + η +

√
k2
1 + η)2

√
k2
1 + η

< 0,(4.17)

the function R decreases monotonically with k1. For k1 = kmin we have 0 = |R(kmin,
L, η, kmin)| < R(k̄, L, η, kmin) and for k1 large, we have |R(kmin, L, η, k1)| > R(k̄, L, η,
k1), since in the limit as k1 goes to infinity, R(k̄(k1), L, η, k1) goes to zero. By conti-
nuity there exists at least one k∗1 such that −R(kmin, L, η, k

∗
1) = R(k̄, L, η, k∗1). Using

now that R decreases monotonically in k1, we have that |R(kmin, L, η, k1)| increases
monotonically with k1 and by Lemma 4.3 that R(k̄(k1), L, η, k1) decreases monoton-
ically with k1. Hence k∗1 is unique and therefore the unique solution of the min-max
problem. Back-transforming to the p variable gives the first result of the theorem.



OPTIMIZED SCHWARZ METHODS 709

In the case without overlap, L = 0, the function R has no interior maximum, hence
the maximum can be attained only on the boundary at either k = kmin or at k = kmax.
Since the sign of the derivative (4.17) remains the same for L = 0, the function R
decreases monotonically with k1. For k1 = kmin we have 0 = |R(kmin, 0, η, kmin)| <
R(kmax, 0, η, kmin) and for k1 = kmax, we have |R(kmin, L, η, kmax)| > R(kmax, L, η,
kmax) = 0. By continuity there exists at least one k∗1 such that

−R(kmin, 0, η, k
∗
1) = R(kmax, 0, η, k

∗
1)(4.18)

and since R decreases monotonically in k1, we have that |R(kmin, L, η, k1)| increases
monotonically with k1 and R(kmax, L, η, k1) decreases monotonically with k1. Hence
k∗1 is unique and thus the unique solution of the min-max problem. Solving (4.18)
and back-transforming the result to the p variable leads then to the second result of
the theorem.

Figure 4.1 shows on the right the convergence factors obtained with the optimized
Robin transmission condition for the model problem with overlap L = 1

100 and η = 1,
comparing the classical Schwarz method and the OO0 Schwarz method. The max-
imum of the convergence factor of the OO0 Schwarz method is 0.332, which means
that about 55 iterations of the classical Schwarz method with convergence factor 0.980
are needed to attain the performance of the OO0 Schwarz method.

Theorem 4.5 (Robin asymptotics). The asymptotic performance of the new
Schwarz method with optimized Robin transmission conditions and overlap L = h, as
h goes to zero, is given by

max
kmin≤|k|≤π

h

|ρOO0(k, h, η, p
∗)| = 1 − 4 · 2 1

6 (k2
min + η)

1
6h

1
3 + O(h

2
3 ).(4.19)

The asymptotic performance without overlap, L = 0, is given by

max
kmin≤|k|≤π

h

|ρOO0(k, 0, η, p
∗)| = 1 − 4

(k2
min + η)

1
4

√
π

√
h + O(h).(4.20)

Proof. For the first result, we need to find an asymptotic expansion for the optimal
parameter p∗ for small h from (4.14). We make the ansatz p∗ = Chα for α < 0, since
we know from Theorem 4.4 that the optimal parameter is growing when h diminishes.
Inserting this ansatz into (4.14) satisfied by p∗ and expanding for small h, we find

the leading order terms in the equation to be 4C
√
k2
min + ηhα−4

√
2C

5
2h

5
2α+ 1

2 . Since
(4.14) holds for all h, this expression must vanish and hence both the exponents and
the coefficients must match, which leads to

α = −1

3
, C =

(4(k2
min + η))

1
3

2

and hence the optimal parameter p∗ behaves asymptotically like

p∗ =
(4(k2

min + η))
1
3

2
h− 1

3 .(4.21)

With this asymptotic behavior of p∗, the interior maximum k̄ behaves asymptotically
like

k̄ = (4(k2
min + η2)

1
6h− 2

3 ,(4.22)
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which is less than kmax = π
h for h small and hence the optimal result given for kmax =

∞ in (4.14) is indeed asymptotically the relevant one on the bounded frequency range
|k| ≤ kmax = π

h for L = O(h). Now inserting the asymptotic value of the optimal
parameter p∗ from (4.21) into the convergence factor (4.12) and expanding at k = kmin

leads to (4.19).
For the second result where L = 0, the optimal parameter p∗ is known in closed

form from (4.15) and hence it suffices to insert this p∗ into the convergence factor
(4.12), to set kmax = π

h , and to expand the result at k = kmin in a series for small h
to find (4.20).

4.2.2. Second order optimized transmission conditions. Using the same
second order transmission condition on both sides of the interface, p1 = p2 = p and
q1 = q2 = q, the expression (4.2) of the convergence factor simplifies to

ρOO2(k, L, η, p, q) :=

(√
k2 + η − p− qk2√
k2 + η + p + qk2

)2

e−2
√

k2+ηL.(4.23)

To determine the optimal parameters p and q for the associated Schwarz method
(which we call OO2 for “Optimized of Order 2,” a term introduced in [25]), we have
to solve the min-max problem

min
p,q≥0

(
max

kmin≤k≤kmax

|ρOO2(k, L, η, p, q)|
)

= min
p,q≥0

⎛
⎝ max

kmin≤k≤kmax

(√
η + k2 − p− qk2√
η + k2 + p + qk2

)2

e−2
√

η+k2L

⎞
⎠ .

(4.24)

We need a second technical lemma for the analysis of the optimal parameters.
Lemma 4.6. Let R1(k1, k2) and R2(k1, k2) be two continuously differentiable

functions, Rj : R
+ × R

+ → R, j = 1, 2, such that the partial derivatives satisfy

∂R1

∂k1
< 0,

∂R1

∂k2
< 0,

∂R2

∂k1
< 0,

∂R2

∂k2
> 0(4.25)

and assume that there exists a unique differentiable k∗1(k2) such that

R1(k
∗
1(k2), k2) + R2(k

∗
1(k2), k2) = 0.(4.26)

Then we must have

dR2

dk2
(k∗1(k2), k2) > 0.(4.27)

Proof. Using implicit differentiation of (4.26), we find

dk∗1
dk2

(k2) = −
∂R1

∂k2
(k∗1(k2), k2) + ∂R2

∂k2
(k∗1(k2), k2)

∂R1

∂k1
(k∗1(k2), k2) + ∂R2

∂k1
(k∗1(k2), k2)

and inserting this result into the total derivative, we obtain

dR2

dk2
(k∗1(k2), k2) =

∂R2

∂k1
(k∗1(k2), k2)

dk∗1
dk2

(k2) +
∂R2

∂k2
(k∗1(k2), k2)

=
−∂R2

∂k1
(k∗1(k2), k2)

∂R1

∂k2
(k∗1(k2), k2) + ∂R2

∂k1
(k∗1(k2), k2)

∂R1

∂k1
(k∗1(k2), k2)

∂R1

∂k1
(k∗1(k2), k2) + ∂R2

∂k1
(k∗1(k2), k2)

> 0

using the assumption on the signs of the partial derivatives.



OPTIMIZED SCHWARZ METHODS 711

Theorem 4.7 (optimal second order parameters). For L > 0 and kmax = ∞,
the solution p∗, q∗ of the min-max problem (4.24) is given by the unique root of the
system of equations

ρOO2(kmin, L, η, p
∗, q∗) = ρOO2(k̄1, L, η, p

∗, q∗) = ρOO2(k̄2, L, η, p
∗, q∗),(4.28)

where the locations of the maxima k̄1 and k̄2 are given by

k̄1,2(L, η, p, q)

=
1

q

√
L + 2q − 2Lpq ∓

√
L2 + 4Lq − 4L2pq + 4q2 − 16Lpq2 + 16Lq3η + 4L2q2η

2L
.

(4.29)
For L = 0 and kmax finite, the optimal parameters p∗ and q∗ are given by

p∗ =
k2
max

√
k2
min

+η−k2
min

√
k2
max+η

√
2(k2

max−k2
min

)
((√

k2
max+η−

√
k2
min

+η
)(

(k2
max+η)

√
k2
min

+η−(k2
min

+η)
√

k2
max+η

)) 1
4
,

q∗ =

(√
k2
max+η−

√
k2
min

+η
) 3

4

√
2(k2

max−k2
min

)
(
(k2

max+η)
√

k2
min

+η−(k2
min

+η)
√

k2
max+η

) 1
4
.

(4.30)

Proof. The argument is again based on a transformation: the partial derivatives
of ρOO2 with respect to p and q are

∂ρOO2

∂p
= 4

√
k2 + η

p + qk2 −
√
k2 + η

(p + qk2 +
√
k2 + η)3

e−2
√

k2+ηL,
∂ρOO2

∂q
= k2 ∂ρOO2

∂p
,(4.31)

and hence ρOO2 is monotonically decreasing when p and q are decreased for all k >
kmin as long as p+ qk2 >

√
k2 + η. This implies that at the solution of the min-max

problem ρOO2 must have at least one zero k1 > kmin. Then instead of using the
parameter p, we can use equivalently the parameter k1 in the min-max problem by
setting p :=

√
k1 + η − qk2

1, which leads to the new form of the convergence factor

ρ′OO2 =
(
√
k2
1 + η −

√
k2 + η + q(k2 − k2

1))
2

(
√
k2 + η +

√
k2
1 + η + q(k2 − k2

1))
2
e−2

√
k2+ηL,

which has now necessarily a zero at k1 > kmin. If we suppose that k1 is the only zero
at the optimum, we reach again a contradiction, because a partial derivative with
respect to q gives

∂ρ′OO2

∂q
= 4

√
k2 + η(k2 − k2

1)

√
k2
1 + η −

√
k2 + η + q(k2 − k2

1)

(
√
k2 + η +

√
k2
1 + η + q(k2 − k2

1))
3
e−2

√
k2+ηL,

where the denominator is positive, since
√
k1 + η − qk2

1 = p ≥ 0, and the numerator
changes sign only at k = k1 by assumption, which together with the factor (k2 − k2

1)
in front makes the sign of the derivative negative for all q > 0 as long as there is only
one zero at k1. Thus increasing q the convergence factor ρ′OO2 can be decreased for
all k > kmin as long as there is no second zero. Hence at the optimum, ρ′OO2 must
have a second zero, without loss of generality at k2 ≥ k1 > kmin. Thus we can use the
parameter k2 instead of q, which leads to the change of variables

p =

√
k2
1 + ηk2

2 − k2
1

√
k2
2 + η

k2
2 − k2

1

, q =

√
k2
2 + η −

√
k2
1 + η

k2
2 − k2

1

(4.32)
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and the new min-max problem, which is equivalent to (4.24), is

min
kmin<k1≤k2

(
max

kmin≤k≤kmax

|R(k, L, η, k1, k2)|
)
,(4.33)

with the new function R(k, L, η, k1, k2), representing the square root of the conver-
gence factor, given by

R(k, L, η, k1, k2)

=

√
k2 + η(k2

2 − k2
1) − (

√
k2
1 + ηk2

2 −
√
k2
2 + ηk2

1) − (
√
k2
2 + η −

√
k2
1 + η)k2√

k2 + η(k2
2 − k2

1) + (
√
k2
1 + ηk2

2 −
√
k2
2 + ηk2

1) + (
√
k2
2 + η −

√
k2
1 + η)k2

e−
√

k2+ηL.

(4.34)
Taking the partial derivatives with respect to k1 and k2, we find

∂R

∂k1

=
2k1(k

2 − k2
2)
√
k2 + η

(√
k2
2 + η −

√
k2
1 + η

)2

√
k2
1 + η

(√
k2 + η(k2

1 − k2
2) +

√
k2
1 + η(k2 − k2

2) + (k2
1 − k2)

√
k2
2 + η

)2 e
−
√

k2+ηL,

(4.35)

∂R

∂k2

=
2k2(k

2 − k2
1)
√
k2 + η

(√
k2
2 + η −

√
k2
1 + η

)2

√
k2
2 + η

(√
k2 + η(k2

1 − k2
2) +

√
k2
1 + η(k2 − k2

2) + (k2
1 − k2)

√
k2
2 + η

)2 e
−
√

k2+ηL,

(4.36)
which shows that for k < k2, the function R is decreasing when k1 is increasing and
for k > k2 it is increasing with k1. Similarly for k < k1, the function R is decreasing
when k2 is increasing, and for k > k1 it is increasing with k2.

Now for L > 0, R = (−1 + O( 1
k ))e−Lk as k goes to infinity. Hence the max-

imum in the min-max problem can be attained, by continuity of R and knowing
that there are two zeros at k1, k2 > kmin, either at kmin, where R is negative,
or at k = k̄1 given in (4.29), where R has a maximum, k1 ≤ k̄1 ≤ k2, or at
k = k̄2 given in (4.29), where R has a negative minimum, k2 ≤ k̄2. To show
that the solution of the min-max problem is indeed when the three are balanced,
we first note that for any fixed k2, there exists a unique k∗1 = k∗1(k2) ∈ [kmin, k2]
such that |R(kmin, L, η, k

∗
1(k2), k2)| = R(k̄1, L, η, k

∗
1(k2), k2), because of continuity

and 0 = |R(kmin, L, η, kmin, k2)| < R(k̄1, L, η, kmin, k2) and |R(kmin, L, η, k2, k2)| >
R(k̄1, L, η, k2, k2) = R(k2, L, η, k2, k2) = 0, and |R(kmin, L, η, k1, k2)| is monotonically
increasing with k1 by (4.35) and R(k̄1, L, η, k1, k2) is monotonically decreasing in k1

by (4.35) and Lemma 4.3. Hence denoting by R1(k1, k2) := R(kmin, L, η, k1, k2) and
R2(k1, k2) := R(k̄1, L, η, k1, k2) Lemma 4.6 applies and therefore |R(kmin, L, η, k

∗
1(k2),

k2)| = R(k̄1, L, η, k
∗
1(k2), k2) is monotonically increasing with k2. Now for k2 = kmin,

we have k∗1(kmin) = kmin and thus 0 = |R(kmin, L, η, kmin, kmin)| < |R(k̄2, L, η, kmin,
kmin)| and for large k2 we have |R(kmin, L, η, k

∗
1(k2), k2)| > |R(k̄2, L, η, k

∗
1(k2), k2)|

(since the right-hand term goes to zero in the limit). Therefore by continuity, Lemma
4.6 for |R(kmin, L, η, k

∗
1(k2), k2)| and Lemma 4.3 for |R(k̄2, L, η, k

∗
1(k2), k2)| (note that

(k∗1)′ ≥ 0), there exists a unique k∗2 where these two expressions are equal, |R(kmin, L, η,
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k∗1(k∗2), k∗2)| = |R(k̄2, L, η, k
∗
1(k∗2), k∗2)|, which is the unique solution of the min-max

problem. Back-transforming to the p and q variables using (4.32) we obtain the equa-
tions for the solution of the min-max problem given in (4.28).

In the case without overlap, L = 0, the function R behaves for large k like
−1+O( 1

k ) and hence the maximum in the min-max problem for L = 0 can be attained
either at kmin, kmax, or at the interior maximum k̄1 which satisfies k1 ≤ k̄1 ≤ k2 and
is given in the p and q variables by

k̄1 =

√
q(p− 2qη)

q
.

The same argument used for the case L > 0 is still valid, and hence there exists a
unique solution p∗, q∗ of the min-max problem which is characterized by the system
of equations

ρOO2(kmin, 0, η, p
∗, q∗) = ρOO2(k̄1, 0, η, p

∗, q∗) = ρOO2(kmax, 0, η, p
∗, q∗).(4.37)

This system can be solved in closed form by first solving ρOO2(kmin, 0, η, p, q
∗) =

ρOO2(kmax, 0, η, p, q
∗) for q∗ = q∗(p), which leads to

q∗(p) =
p(
√

k2
max + η −

√
k2
min + η)√

k2
min + ηk2

max − k2
min

√
k2
max + η

.

Inserting this solution into the remaining equation ρOO2(kmin, 0, η, p
∗, q∗(p∗)) = ρOO2

(k̄1, L, η, p
∗, q∗(p∗)) and solving for p∗ leads to the closed form solution (4.30) of the

min-max problem for L = 0.
Figure 4.1 shows on the right the convergence factor obtained with the second

order optimized transmission conditions for our model problem with overlap L = 1
100

and η = 1, comparing it to the convergence factor of the classical Schwarz method.
The maximum of the convergence factor of the new Schwarz method with optimized
second order transmission conditions is 0.0704, which means that about 131 iterations
of the classical Schwarz method with convergence factor 0.980 are needed to attain
the performance of the second order optimized Schwarz method.

Theorem 4.8 (OO2 asymptotics). The asymptotic performance of the new
Schwarz method with optimized second order transmission conditions and overlap
L = h, as h goes to zero, is given by

max
kmin≤k≤π

h

|ρOO2(k, h, η, p
∗, q∗)| = 1 − 4 · 2 3

5 (k2
min + η)

1
10h

1
5 + O(h

2
5 ).(4.38)

The asymptotic performance without overlap, L = 0, is for h small given by

max
kmin≤k≤π

h

|ρOO2(k, 0, η, p
∗, q∗)| = 1 − 4

√
2(k2

min + η)
1
8

π
1
4

h
1
4 + O(h

1
2 ).(4.39)

Proof. To obtain the first result, we need to solve the nonlinear equations (4.28)
asymptotically in h for the optimal parameters p∗ and q∗. We make the ansatz
p = C1h

α and q = C2h
β , insert this together with L = h into the nonlinear equations

(4.28), and expand for small h. The search for the lowest order terms is simplified
by the knowledge that α < 0 and β > 0 since p is growing when h is decaying
and q is diminishing with h. Expanding for h small, we find from the equation
ρOO2(kmin, h, η, p

∗, q∗) = ρOO2(k̄1, h, η, p
∗, q∗) the leading order terms

−4
√

2C1h
α
√
h + 8C2h

β
√
C1hαC1h

α
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and from the equation ρOO2(kmin, h, η, p
∗, q∗) = ρOO2(k2, h, η, p

∗, q∗) the leading order
terms

−4
√

2C2
1h

2α
√
h + 4

√
k2
min + η

√
C2hβC1h

α.

Since the equations hold at the optimum, the leading order terms must match, which
leads to a system of equations for the unknown exponents α and β,

3

2
α + β = α +

1

2
, 2α +

1

2
= α +

β

2
,

whose solution is α = − 1
5 and β = 3

5 , and a system of equations for the constants C1

and C2, whose solution is

C1 = 2−
3
5 (k2

min + η)
2
5 , C2 = (2(k2

min + η))−
1
5 .

Hence asymptotically the optimal parameters p∗ and q∗ are

p∗ = 2−
3
5 (k2

min + η)
2
5h− 1

5 , q∗ = (2(k2
min + η))−

1
5h

3
5 .(4.40)

To see that the min-max solution given in (4.38) on the infinite frequency domain
k ∈ [kmin,∞) is really the relevant one asymptotically on the bounded frequency
domain |k| < kmax = π

h , we must have that the second maximum k̄2 given in (4.29)
satisfies asymptotically k̄2 ≤ kmax. Inserting the asymptotic expressions of p∗ and q∗

from (4.40) into the expression of k̄2 in (4.29), setting L = h and expanding for h
small, we find

k̄2 =
2

3
5 (k2

min + η)
1
10

h
4
5

+ O(h− 2
5 )(4.41)

and hence indeed asymptotically k̄2 ≤ kmax = π
h . Inserting now the asymptotically

optimal parameters p∗ and q∗ from (4.40) into the convergence factor ρOO2 and ex-
panding as h goes to zero, we obtain the result (4.38).

For the second result without overlap, we have the closed formulas (4.30) for the
optimal parameters p∗ and q∗. It suffices therefore to insert them into the convergence
factor and to expand it in h for kmax = π

h at k = kmin to find the result (4.39).

4.3. A two-sided optimized Robin transmission condition. We now in-
vestigate how the simplifying assumption p1 = p2 and q1 = q2 in the min-max problem
(4.11) affects the performance of the optimized Schwarz methods. We do this only
for the case of Robin transmission conditions to illustrate the change. We thus have
q1 = q2 = 0 and the optimization problem (4.10).

Theorem 4.9 (optimal two-sided Robin conditions). If there is overlap, L > 0,
then the optimal two-sided Robin parameters are given by

p∗1 =
1 −

√
1 + 4η(q∗)2 − 4p∗q∗

2q∗
, p∗2 =

1 +
√

1 + 4η(q∗)2 − 4p∗q∗

2q∗
,(4.42)

where p∗ and q∗ are solutions of (4.28) with L replaced by 2L. If there is no overlap,
L = 0, then the optimal two-sided Robin parameters are (4.42), where p∗ and q∗ are
given by (4.30).
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Proof. Multiplying the two factors in the optimization problem (4.10), we obtain
the optimization problem

min
pj≥0

(
max

kmin<k<kmax

∣∣∣∣∣
√
η + k2 − η+p1p2

p1+p2
− k2

p1+p2√
η + k2 + η+p1p2

p1+p2
+ k2

p1+p2

∣∣∣∣∣ e−2
√

η+k2L

)
(4.43)

and hence in the new parameters

p =
η + p1p2

p1 + p2
, q =

1

p1 + p2
,(4.44)

this optimization problem is equivalent to the optimization problem (4.24) provided
L is replaced by 2L. The solution for this problem is given for L > 0 in (4.28)
and for L = 0 in (4.30). Back-transforming these results using (4.44) concludes the
proof.

The preceding theorem shows that one can generate the performance of higher
order transmission conditions using lower order transmission conditions which are not
equal on both sides. In the case without overlap, one needs to perform two iterations
of the two-sided optimized Robin transmission algorithm to attain an error reduction
equivalent to the one from one iteration of the optimized second order transmission
conditions algorithm. With overlap, two iterations of the algorithm with optimized
two-sided Robin transmission conditions is even a bit better than one iteration of
the algorithm with second order transmission conditions, since the overlap has been
effective twice.

Figure 4.1 shows on the right the convergence factors obtained with the two-sided
optimized Robin conditions for our model problem with overlap L = 1

100 and η = 1,
comparing it to the convergence factor of the classical and the optimized zeroth and
second order Schwarz methods. The maximum of the convergence factor of the new
Schwarz method with two-sided optimized Robin conditions is 0.208, which means
that about 78 iterations of the classical Schwarz method with convergence factor
0.980 are needed to attain the performance of the two-sided optimized Robin Schwarz
method.

Corollary 4.10. The asymptotic performance of the two-sided optimized Schwarz
method with L = h is

max
kmin≤k≤π

h

|ρ(k, h, η, p∗1, p∗2)| = 1 − 2 · 2 4
5 (k2

min + η)
1
10h

1
5 + O(h

2
5 ).(4.45)

Without overlap, L = 0, the asymptotic performance is given by

max
kmin≤k≤π

h

|ρ(k, 0, η, p∗1, p∗2)| = 1 − 2

√
2(k2

min + η)
1
8

π
1
4

h
1
4 + O(h

1
2 ).(4.46)

Hence asymptotically, the second order optimized algorithm and the two-sided
optimized Robin algorithm are equivalent: one can get the same asymptotic perfor-
mance from Robin transmission conditions that one gets from second order trans-
mission conditions, provided one uses different parameters in the two transmission
conditions.

The idea of not using the same parameters on each side can be generalized by
not using the same parameter in each iteration: one uses a sequence of transmission
conditions with Robin parameters pi, i = 1, 2, . . . , I, where I is a number of param-
eters chosen and one cycles through the transmission conditions from 1 to I in the



716 MARTIN J. GANDER

Schwarz iteration. This adds more degrees of freedom in the optimization problem
and leads to Schwarz algorithms that have an arbitrarily weak dependence of the
convergence factor on h, even without overlap (see [15]), but at the cost of having to
solve subdomain problems with varying transmission conditions per interation.

5. Optimized Schwarz methods compared to Schur and FETI methods.
We now investigate what the relation is between optimized Schwarz methods, which
can be used without overlap, to other domain decomposition methods without overlap,
like the Schur methods and FETI (Finite Element Tearing and Interconnect [13]). To
this end we will address two questions:

1. What conditions can one impose to couple subdomain problems ?
2. Which of these conditions are good to build efficient domain decomposition

algorithms ?
Although the ideas in this section hold for general second order elliptic problems, we
will use our self-adjoint coercive model problem (2.1) to fix ideas.

5.1. Classical coupling conditions between subdomains. There are two
classical ways to couple subdomain problems. For the first one, one uses an overlap-
ping decomposition of Ω, say, Ω1 = (−∞, L) and Ω2 = (0,∞) for L > 0, and the
coupled subproblems are given by

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(L, y) = u2(L, y), y ∈ R, u2(0, y) = u1(0, y), y ∈ R.

(5.1)

Note that we do not introduce an algorithm to find the solution of the coupled sub-
problems here; we only define coupled subdomain problems which are equivalent to the
original problem. The equivalence can be seen in this case, for example, by studying
the associated Schwarz algorithm.

For the second approach, one uses subdomains without overlap, for example,
Ω1 = (−∞, 0) and Ω2 = (0,∞), and the coupled subdomain problems are

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(0, y) = u2(0, y), y ∈ R, ∂xu2(0, y) = ∂xu1(0, y), y ∈ R.

(5.2)

Note the key difference: in the decomposition without overlap, both the solution
values as well as the normal derivatives are imposed to agree on the interface for this
second order problem, whereas in the approach with overlap, only solution values
are imposed to agree, but at two different locations, which implies the agreement of
normal derivatives.

The classical algorithm to find a solution for the case of an overlapping decom-
position is the one given by Schwarz in [36],

L(un
1 ) = f in Ω1, L(un

2 ) = f in Ω2,
un

1 (L, y) = un−1
2 (L, y), y ∈ R, un

2 (0, y) = un−1
1 (0, y), y ∈ R,

(5.3)

and we have derived the linear convergence factor of this algorithm in (2.8).
Can a similar iterative method be used for the nonoverlapping decomposition?

This would lead, for example, to

L(un
1 ) = f in Ω1, L(un

2 ) = f in Ω2,
un

1 (0, y) = un−1
2 (0, y), y ∈ R, ∂xu

n
2 (0, y) = ∂xu

n−1
1 (0, y), y ∈ R.

(5.4)

In general not, because this algorithm does not converge, as one can see with Fourier
analysis. Setting for the convergence analysis f = 0 by linearity and taking a Fourier
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transform in y with parameter k of (5.4) leads to the transformed iterates

ûn
1 (x, k) = ûn−1

2 (0, k)e
√

η+k2x, ûn
2 (x, k) = −ûn−1

1 (0, k)e−
√

η+k2x.

Thus inserting ûn−1
2 (0, k) from the second equation into the first one and evaluating

at x = 0, we find

ûn
1 (0, k) = −ûn−2

1 (0, k) and similarly ûn
2 (0, k) = −ûn−2

2 (0, k).

Hence the convergence factor of this algorithm is ρ = −1 and thus it does not converge.
A first remedy consists of introducing relaxation parameters γj , j = 1, 2, which

leads to the transmission conditions

un
1 (0, y) = γ1u

n−1
2 (0, y) + (1 − γ1)u

n−1
1 (0, y),

∂xu
n
2 (0, y) = γ2∂xu

n−1
1 (0, y) + (1 − γ2)∂xu

n−1
2 (0, y),

(5.5)

for which convergence results have been established. In [1] we find that for the so-
called Dirichlet–Neumann method, γ2 = 1, there exist γ1 for which the algorithm
converges, and in [35] we find that for the Neumann–Dirichlet method, γ1 = 1, there
exist γ2 for which the algorithm converges. For our model problem, we find for the
interface system in the Fourier domain(

ûn
1 (0, k)

∂xû
n
2 (0, k)

)
=

[
1 − γ1

−γ1√
η+k2

γ2

√
η + k2 1 − γ2

](
ûn−1

1 (0, k)
∂xû

n−1
2 (0, k)

)
.(5.6)

The asymptotic convergence factor of this matrix iteration is governed by the spectral
radius of the 2 × 2 matrix, which is given by the larger eigenvalue in modulus,

ρ =

∣∣∣∣1 − 1

2
(γ1 + γ2) +

1

2

√
(γ1 − γ2)2 − 4γ1γ2

∣∣∣∣ .(5.7)

Note that ρ is independent of the frequency parameter k, which implies that the con-
vergence factor is independent of the mesh parameter h if the algorithm is discretized.
In the case of the Dirichlet–Neumann algorithm, where γ2 = 1, the asymptotic con-
vergence factor for our model problem is

ρ =
1

2

∣∣∣∣1 − γ1 +
√
γ2
1 − 6γ1 + 1

∣∣∣∣ ,
which is less than 1 for 0 < γ1 < 1. The optimal value which minimizes the con-
vergence factor is γ1 = 3 − 2

√
2 ≈ 0.1716, for which the convergence factor becomes

ρ ≈ 0.4142. The same results we find by the symmetry of the parameters γi also
in the case of the Neumann–Dirichlet algorithm, where γ1 = 1. But one could also
use both relaxation parameters simultaneously to minimize the convergence factor.
With both parameters, we can achieve that both eigenvalues vanish simultaneously
by setting the term under the square root and the one outside of the square root in
(5.7) equal to zero. We find that for the choice

γ1 = 1 ± 1√
2
, γ2 = 1 ∓ 1√

2
,

the spectral radius vanishes identically, ρ ≡ 0. Hence this method will converge in
at most two iterations for any initial guess. (The matrix is not normal; otherwise
convergence would be in one iteration, which we know is not possible.)
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In a Gauss–Seidel version of this iteration, subdomain Ω2 would use directly the
newest values at the interface from subdomain Ω1. In that case the relaxed interface
iteration can be found after a short calculation to be

(
ûn

1 (0, k)
∂xû

n
2 (0, k)

)
=

[
1 − γ1

−γ1√
η+k2

γ2(1 − γ1)
√
η + k2 1 − γ2 − γ1γ2

](
ûn−1

1 (0, k)
∂xû

n−1
2 (0, k)

)
.(5.8)

As before the asymptotic convergence of this matrix iteration is governed by the
spectral radius of the 2×2 matrix and the term depending on the frequency parameter
k cancels; the convergence factor is independent of k. In this case, however, both
the Dirichlet–Neumann and the Neumann–Dirichlet algorithm can achieve already
a convergence factor ρ = 0; one parameter suffices. The optimal choice is γ1 =
1
2 for the Dirichlet–Neumann case, where γ2 = 1, and γ2 = 1

2 for the Neumann–
Dirichlet case, where γ1 = 1, results found already in [1] and [35]. Unfortunately
all these results depend strongly on the symmetry in the problem; otherwise the
two symbols depending on the frequency parameter k and containing the square root
would not cancel. Hence for a more general situation with uneven domains or variable
coefficients, convergence in two steps will not be possible with this approach. The
optimal Schwarz method using the exact Dirichlet-to-Neumann map, however, does
still converge in two iterations also in these more general cases.

A second remedy, and this is really the classical approach for subdomain problems
coupled without overlap, consists of avoiding an iteration first. One keeps the coupled
problem and introduces a name for the quantities at the interface,

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(0, y) = u2(0, y) =: λ(y), ∂xu2(0, y) = ∂xu1(0, y) =: λx(y).

(5.9)

The primal Schur method then works as follows: supposing that λ(y) is known, one
computes u1(x, y, λ) and u2(x, y, λ) and then sets

∂xu1(0, y, f, λ) − ∂xu2(0, y, f, λ) = 0,

which is a linear equation to determine the interface function λ. Solving this linear
problem with a Krylov method requires at each step two subdomain solves with
Dirichlet conditions,

Apλ := ∂xu1(0, y, 0, λ)−∂xu2(0, y, 0, λ) = −∂xu1(0, y, f, 0)+∂xu2(0, y, f, 0) =: bp.
(5.10)
To learn more about the conditioning of the primal Schur complement system Apλ =
bp, we take a Fourier transform of Apλ to find the symbol of Ap,

Âpλ̂ = v̂x(0, y, 0, λ̂) − ŵx(0, y, 0, λ̂) = 2
√

η + k2λ̂.(5.11)

This symbol is symmetric in k and hence the condition number of the corresponding
operator can be estimated using the ratio of the symbol at the maximum and minimum
frequencies occurring in a given computation. Estimating the minimum frequency by
0 and the maximum frequency by kmax = π

h as before, where h is the mesh parameter,
we find the asymptotic condition number for h small to be

K(Ap) =
π

√
ηh

+ O(h).(5.12)
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Note that the original operator (η − Δ)u = f had a condition number estimate of
O( 1

h2 ) and thus the primal Schur method improves the condition number by a square
root. On the negative side the matrix vector product is now more expensive, since it
involves subdomain solves.

The dual Schur method, which became famous under the name FETI, is similar,
although the key feature of a natural coarse space cannot be seen in this simple setting:
supposing that λx is known, we compute u1(x, y, f, λx) and u2(x, y, f, λx) and then
set

u1(0, y, f, λx) − u2(0, y, f, λx) = 0,

which is now a linear equation for λx. Solving this linear problem with a Krylov
method requires at each step two subdomain solves with Neumann conditions,

Adλx := u1(0, y, 0, λx) − u2(0, y, 0, λx) = −u1(0, y, f, 0) + u2(0, y, f, 0) =: bd.(5.13)

The Fourier transform of the dual Schur complement system Adλx = bd leads to

Âdλ̂x = v̂(0, y, 0, λ̂x) − ŵ(0, y, 0, λ̂x) =
2√

η + k2
λ̂x,(5.14)

which shows that the operator Ad has the symbol 2√
η+k2

. This symbol is also sym-

metric in k and as in the case of the primal Schur complement, we find the condition
number for h small to be

K(Ad) =
π

√
ηh

+ O(h).(5.15)

Now note that the dual Schur complement with the symbol 2√
η+k2

is the inverse

of the primal Schur complement that had the symbol 2
√
η + k2, up to the constant

4, and hence one is the ideal preconditioner for the other. This led to the famous
Neumann–Neumann preconditioner for the primal Schur complement, with condition
number independent of the mesh parameter [2]. Similarly, one could use a Dirichlet–
Dirichlet preconditioner for the dual Schur complement or FETI to obtain a mesh
independent domain decomposition method.

But why should one give preference to either the Dirichlet or the Neumann con-
dition when formulating a Schur method? And why should we impose the same type
of interface conditions on each subdomain? In the recent FETI-DP method [11], for
some parts of the interfaces continuity of the dual variables is imposed, and for other
parts continuity of the primal variables. One could go a step further and first assume
that both λ and λx are known, then solve for u1(x, y, f, λ) and u2(x, y, f, λx), for
example, and set

u1(0, y, f, λ) − u2(0, y, f, λx) = 0,
∂xu1(0, y, f, λ) − ∂xu2(0, y, f, λx) = 0,

which is now a two-field formulation for the two unknown fields, λ and λx. Solving
this linear problem with a Krylov method requires at each step one subdomain solve
with Dirichlet and one with Neumann conditions,

Apd

(
λ
λx

)
:=

[
1 −u2(0, y, 0, ·)

−∂xu1(0, y, 0, ·) 1

](
λ
λx

)

=

(
u2(0, y, f, 0)

∂xu1(0, y, f, 0)

)
=: bpd.

(5.16)
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Taking a Fourier transform of the operator Apd, we find

Âpd =

[
1 1√

η+k2

−
√
η + k2 1

]
,(5.17)

which is precisely the matrix to which we have applied a Richardson iteration trying
simply to relax the interface conditions in (5.4), an iteration which did not converge.
By applying a Krylov method to solve the problem directly, however, it would converge
in two steps, since the eigenvalues are independent of k, there are only two distinct
points in the spectrum.

We can also write the coupled subdomain problems with overlap in substructured
form. If we give the unknown functions at the interfaces the names λ0(y) and λL(y),
we get

L(u1) = f in Ω1, L(u2) = f in Ω2,
u1(L, y) = u2(L, y) =: λL(y) u2(0, y) = u1(0, y) =: λ0(y).

(5.18)

If we assume that both λL and λ0 are known, then we can compute u1(x, y, f, λL)
and u2(x, y, f, λ0) and then set

u2(0, y, f, λ0) − u1(0, y, f, λL) = 0,
−u2(L, y, f, λ0) + u1(L, y, f, λL) = 0,

which is a linear system of equations for the unknowns λ0 and λL. Solving this
linear problem with a Krylov method requires at each step two subdomain solves
with Dirichlet conditions,

As

(
λ0

λL

)
:=

[
1 −u1(0, y, 0, ·)

−u2(L, y, 0, ·) 1

](
λ0

λL

)
=

(
u1(0, y, f, 0)
u2(L, y, f, 0)

)
=: bs.

(5.19)
In Fourier the symbol of the operator As is given by

Âs =

[
1 −e−

√
η+k2L

−e−
√

η+k2L 1

]
,(5.20)

and we see that the operator is symmetric in this case. If one applies a Richardson
iteration to this operator, one recovers the classical Schwarz method for which we have
seen that it converges independently of the discretization parameter. The eigenvalues

in Fourier are 1±e−
√

η+k2L, which shows that the eigenvalues are clustering for large
k around 1, a very desirable property when a Krylov method is used to solve the
corresponding linear system. The condition number of this symmetric operator can
be estimated by the ratio of the largest and smallest eigenvalue,

K(As) =
1 + e−

√
ηL

1 − e−
√
ηL

,(5.21)

and it is independent of the mesh parameter h, as long as the overlap L is independent
of h. For an overlap which depends on h, L = h, we have for h small

K(As) =
2

√
ηh

+ O(h)(5.22)

as for the primal and dual Schur methods.
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5.2. Coupling conditions optimized for the computation. Optimized Schwarz
methods bring the overlapping and nonoverlapping strategies together. They do not
use either Dirichlet or Neumann conditions, and they work with or without overlap.
The fundamental idea is that the coupled problem can be written with any set of
conditions that implies the classical coupling conditions. The coupled problems

L(u1) = f in Ω1, L(u2) = f in Ω2,
(∂x + S1)(u1)(L) = (∂x + S1)(u2)(L), (∂x + S2)(u2)(0) = (∂x + S1)(u1)(0),

(5.23)

are equivalent to the original, unpartitioned problem, as long as the choice of Sj ,
j = 1, 2, leads to well-posed subdomain problems and implies, for L > 0, u1(0) = u2(0)
and u1(L) = u2(L), and for L = 0, u1(0) = u2(0) and ∂xu1(0) = ∂xu2(0). To write
this system in substructured form, we assume again that the interface functions λ1(y)
and λ2(y) are known,

(∂x + S1)(u1)(L, y) = (∂x + S1)(u2)(L, y) =: λ1(y),

(∂x + S2)(u2)(0, y) = (∂x + S1)(u1)(0, y) =: λ2(y),

solve the subdomain problems, and then set

−(∂x + S1)(u2(0, y, f, λ2)) + λ1 = 0,
λ2 − (∂x + S2)(u1(L, y, f, λ1)) = 0.

This is again a linear system to be solved for λ1 and λ2. Using a Krylov method, at
each iteration two problems with the new transmission conditions need to be solved,

A
(
λ1

λ2

)
:=

[
1 −(∂x + S1)(u2(0, y, 0, ·))

−(∂x + S2)(u1(L, y, 0, ·)) 1

](
λ0

λL

)

=

(
(∂x + S1)(u2(0, y, f, 0))
(∂x + S2)(u1(L, y, f, 0))

)
=: b.

(5.24)

In the Fourier domain, the symbol of the operator A becomes for our model problem

Â =

⎡
⎢⎣ 1 −

√
η+k2−σ1(k)√
η+k2−σ2(k)

e−
√

η+k2L

−
√

η+k2+σ2(k)√
η+k2+σ1(k)

e−
√

η+k2L 1

⎤
⎥⎦ .(5.25)

For well-posedness of the subdomain problems, we need that S1 is a positive operator
and S2 a negative one, as one can also see from the denominators in the symbol of the
operator A. The iterative optimized Schwarz method is obtained when a Richardson
iteration is applied to this system, and we have seen that this iteration converges in
two steps, if = σ2 = −σ1 =

√
η + k2, or very fast, if the symbols approximate this

choice. If we choose σ2 = −σ1 > 0, then the operator becomes symmetric and its con-
dition number equals one for the optimal choice, or it can be made small choosing good
approximations. This is the heart of the optimized Schwarz methods: the optimal
choice always exists, it is the Dirichlet-to-Neumann map, and good approximations
lead to the optimized Schwarz methods with superior performance. The FETI meth-
ods have also started to incorporate these ideas; see, for example, the variant FETI-H
presented in [12], where the authors state, “The modified Lagrangian formulation pre-
sented here can be related to alternative transmission conditions for the subdomain
interfaces.” FETI-H constructs (5.25) using optimized Robin conditions.
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Table 6.1

Number of iterations of the classical Schwarz method compared to the different optimized
Schwarz methods with fixed small overlap of the size L = 1

50
between subdomains.

Classical Taylor 0 Taylor 2 Optimized 0 Two-sided optimized 0 Optimized 2
h Schwarz as an iterative solver

1/50 65 16 11 7 6 4
1/100 77 17 12 7 6 4
1/200 86 16 11 7 6 4
1/400 91 16 12 7 6 4
1/800 93 16 11 7 6 4

Schwarz use as a preconditioner
1/50 11 8 7 5 5 3
1/100 12 8 7 5 5 3
1/200 13 8 7 5 5 3
1/400 13 8 7 5 5 3
1/800 13 8 7 5 5 3

6. Numerical experiments. We perform numerical experiments for our model
problem on the unit square, Ω = (0, 1) × (0, 1),

(η − Δ)(u) = f in Ω,
u = 0 on ∂Ω.

(6.1)

We decompose the unit square Ω into two subdomains Ω1 = (0, β) × (0, 1) and Ω2 =
(α, 1) × (0, 1), where 0 < α ≤ β < 1 and hence the overlap is L = β − α. Note that
we explicitly allow α = β such that the method does not have any overlap, L = 0.
We use a finite difference discretization with the classical five-point discretization for
the Laplacian and a uniform mesh with mesh parameter h.

6.1. Overlapping optimized Schwarz methods. Classically the overlap in
the Schwarz method is held constant as the mesh is refined to obtain mesh independent
convergence factors for the method. The same is true for optimized Schwarz methods
because of Theorem 4.1, as iteration counts to reach an error reduction of 1e−6 show in
Table 6.1 for a fixed overlap L = β−α = 1

50 . We simulate directly the error equations,
f = 0, and use a random initial guess so that all the frequency components are present.
The results show clearly how important transmission conditions are for this algorithm.
Note also that while the Krylov method has a big impact on the classical Schwarz
method, for the second order optimized Schwarz method the acceleration with the
Krylov method does not reduce the iteration count significantly. This situation is
well known for multigrid methods, which do not need Krylov acceleration either when
applied to a Poisson problem. The Krylov acceleration is then used to improve the
performance of the method on more complex problems.

In practical computations, one can often not afford many mesh cells to overlap,
so the overlap depends on the mesh parameter h. In the following experiments we
choose therefore the overlap L = β − α = h. Table 6.2 shows the iteration counts for
this case. It is interesting to note that the second order optimized Schwarz method
without Krylov acceleration is already six times faster than classical Schwarz with
Krylov acceleration at high resolution.

In Figure 6.1, we show the number of iterations on a log-log plot so they can be
compared to the theoretical asymptotic results. On the top, the Schwarz methods
are used as iterative solvers and the numerical results show the asymptotic behavior
predicted by the theory. On the bottom, the Schwarz methods are used as precon-
ditioners. This improves the asymptotic performance by a square root, as one can
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Table 6.2

Number of iterations of the classical Schwarz method compared to the different optimized
Schwarz methods with overlap L = h between subdomains.

Classical Taylor 0 Taylor 2 Optimized 0 Two-sided optimized 0 Optimized 2
h Schwarz as an iterative solver

1/50 65 16 11 7 6 4
1/100 127 22 16 8 7 4
1/200 257 31 21 11 9 5
1/400 510 42 30 13 10 6
1/800 1020 60 41 16 12 7

Schwarz use as a preconditioner
1/50 11 8 7 5 5 3
1/100 16 9 8 6 6 4
1/200 21 11 9 6 6 4
1/400 31 13 11 7 7 4
1/800 42 16 13 8 8 5
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Fig. 6.1. Number of iterations required by the classical and the optimized Schwarz methods,
with overlap L = h. On the top the methods are used as iterative solvers, and on the bottom they
are used as preconditioners for a Krylov method.
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show in ideal situations, since a square root is taken off the condition number of the
preconditioned system. This is also visible in our numerical results.

We now investigate how well the continuous analysis predicts the optimal param-
eters to be used in the numerical setting. To this end we vary the parameter p in the
Robin transmission conditions for a fixed problem of mesh size h = 1

100 and count for
each value of p the number of iterations to reach a residual of 1e− 6. The results for
both optimized Schwarz used as an iterative solver and as a preconditioner are shown
in Figure 6.2 on the top. The analysis predicts very well the optimal parameter, and
when the method is used as a preconditioner, the area where the optimum is attained
is widened considerably, which shows that the optimized Schwarz method is robust
with respect to the optimal parameter. Similar results hold for the second order opti-
mized Schwarz method, as one can see in Figure 6.2 in the middle when the method
is used iteratively and on the bottom when used as a preconditioner.

6.2. Nonoverlapping optimized Schwarz methods. Nonoverlapping
Schwarz methods are of interest if the physical properties vary from subdomain to
subdomain and one has formulated the subdomain decomposition motivated by this
fact; see, for example, [20]. They also facilitate the construction of nonmatching grids
per subdomain and the formulation of algorithms in that case. We illustrate the
performance of the optimized Schwarz methods without overlap, α = β or L = 0,
by choosing for the mesh parameter diminishing values and counting the number of
iterations the methods take to reduce the error by a factor 1e−6. Table 6.3 shows the
performance of the different optimized Schwarz methods in that case. Note that the
classical Schwarz method is not shown because classical Schwarz does not converge
without overlap. Comparing with the performance of the methods with overlap h,
one can see that the number of iterations is by a factor 1.5–1.7 higher for the second
order optimized Schwarz method, whereas the cost per subdomain is only slightly
higher for the method with overlap; there are m more variables in one subdomain for
matrices of size m2. Hence a physical motivation must outweigh the increased cost of
a nonoverlapping Schwarz method.

In Figure 6.3 we show the number of iterations on a log-log plot so they can be
compared to the theoretical asymptotic factors.

On the left the methods are used as iterative solvers and one can see that again
the numerical results show the asymptotic behavior predicted by the analysis. On the
right the results are shown when the Schwarz methods are used as preconditioners,
and one can see again that Krylov acceleration improves the performance by about a
square root.

We finally show in Figure 6.4 how well the analysis predicts the optimization
parameters in the nonoverlapping case.

6.3. An application. We now show how a nonoverlapping optimized Schwarz
method can be used to compute the temperature distribution in our apartment on
Durocher in Montreal. In Figure 6.5, we show on top the floor plan of our apartment
with a finite element discretization and a decomposition into the different rooms: on
the left is the living room, connected to the kitchen and with a long hallway to the
bathroom and bedroom on the right. Insulated walls are shown in blue, the windows
on top are shown in black, where we assume −20 degrees Celsius for a regular Montreal
winter day, and the doors at the bottom and on the right are also shown in black.
They lead to a heated public hallway, at about 15 degrees Celsius. The interfaces
are shown in red, and we introduced curved interfaces and nonrectangular domains,
so that the Fourier analysis presented in this paper cannot be applied any more. In
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Fig. 6.2. Optimal parameter (*) found by the analytical optimization compared to the perfor-
mance of other values of the parameters: on the top for the Robin case, in the middle for the second
order case used iteratively, and on the bottom used as a preconditioner.
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Table 6.3

Number of iterations of different optimized Schwarz methods without overlap between subdomains.

Taylor 0 Taylor 2 Optimized 0 Two-sided optimized 0 Optimized 2
h Optimized Schwarz as an iterative solver

1/50 425 109 23 13 6
1/100 847 217 31 16 7
1/200 1702 434 44 20 9
1/400 3432 875 62 25 10
1/800 6824 1746 88 30 12

Optimized Schwarz as a preconditioner
1/50 21 15 9 8 5
1/100 28 20 11 10 5
1/200 35 26 13 11 6
1/400 46 34 15 12 6
1/800 59 45 18 13 7
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Fig. 6.3. Asymptotic number of iterations required by the nonoverlapping optimized Schwarz
methods: on the top the methods are used as iterative solvers, and on the bottom they are used as
preconditioners for a Krylov method.
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Fig. 6.5. On top the decomposition of a two-dimensional cross section of an apartment in
Montreal, in the middle the first iteration, and at the bottom the final temperature distribution
computed in winter with an optimized Schwarz method.

the middle in Figure 6.5 we show the first iteration of the optimized Schwarz method
with Robin transmission conditions, where one can clearly see the isolated effect of the
heaters and warm doors in each subdomain: the iterate is discontinuous. In Figure 6.5
at the bottom we show the final result of the simulation, which is now continuous. The
method took 25 iterations to converge to a relative residual of 1e− 3 in the iterative
case and 12 iterations when used as a preconditioner, using the optimal parameter
p∗ = 2.7207 from the two-subdomain theory. Refining once more, the method took
32 iterations in the iterative case and 13 in the preconditioned case, with the optimal
parameter p∗ = 3.8576 from the two-subdomain theory. The ratio in the iterative
case is 32/25 = 1.28 ≈ 21/3 = 1.26, as predicted by the two-subdomain theory for the
simple two-subdomain case with straight interfaces, and in the preconditioned case,
the ratio is 13/12 = 1.08 ≈ 21/6 = 1.12. This shows that although the Fourier analysis
cannot be applied in the more general case, the results predicted by the theory for
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the two-subdomain case are also observed in more practical situations.
The results of this simulation were interesting to us: one can see that while the

heaters in the living room on the left and the bedroom on the right are well placed to
block the cold from the windows, the heater on the left wall in the bathroom is not
effective to keep the room warm, a fact we strongly felt in winter. Also, the kitchen
is not heated and stays cold, except when cooking and baking.

7. Conclusion. We introduced the reader to a new class of Schwarz methods,
the optimized Schwarz methods. The algorithm is the same as for the classical Schwarz
method and it can be used either iteratively or as a preconditioner. The difference
is a new type of transmission conditions between subdomains, instead of the classical
Dirichlet condition. We analyzed for a symmetric positive definite model problem
and two subdomains the influence of the transmission conditions on the convergence
factor of the Schwarz algorithm. We showed both analytically and numerically that
the optimized Schwarz methods have a greatly improved performance compared to
the classical Schwarz method. The number of iterations required to achieve a certain
accuracy is by a factor smaller, often more than an order of magnitude. This perfor-
mance is achieved without an increased cost for the subdomain solves, since the same
type of matrix problem has to be solved in the subdomains, and the new subdomain
matrices have the same bandwidth as the original ones. We also proved that the
optimized Schwarz methods are always faster than the classical Schwarz method and
since their implementation is not more difficult than the implementation of a classical
Schwarz method, they represent a very attractive alternative. We finally showed in
numerical experiments that the results derived for the simple two-subdomain configu-
ration with a straight interface also apply in more complicated situations in practice,
where Fourier analysis cannot be applied any more.
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